
On the structure of kinematic systems with complete symmetry

Jochen Trumpf, Robert Mahony, and Tarek Hamel

Abstract— This paper provides a new perspective on the
structure of kinematic systems with complete symmetry. These
systems naturally occur as models for mechanical systems with
symmetry, for example flying or submersible robots. The con-
figuration space of such systems is a homogeneous space of the
symmetry Lie group, and it is well known that their kinematics
can be lifted to equivariant kinematics on the symmetry group
thus allowing global state observer constructions. We provide
explicitly checkable sufficient differential-algebraic conditions
on the symmetry that will lead to a lifted system in the form
of standard left or right invariant kinematics on the symmetry
group. Previously known conditions for one of these two cases
required finding a velocity lift map with particular properties
for which there was no general construction known.

I. INTRODUCTION

Systems on Lie groups and their homogeneous spaces have

been studied extensively since the early 1970s, starting with

the work of [5], [6] and [8]. Brockett’s work was motivated

by analytical mechanics and the study of mechanical sys-

tems, see [7].
Aghannen et al. [1] first recognized the importance of

invariance properties of observers for mechanical systems

with symmetry. More recent work on understanding the

generic structure of observers for invariant systems on Lie

groups and homogeneous spaces, [3], [11], [9], has lead to an

understanding of the role of invariance properties of observer

designs in relation to the resulting observer error dynamics,

see [4], [10], [13], [12].
In this paper we close a gap in the structure theory

for kinematic systems with complete symmetry [12]. Good

global observer constructions only exist in the case where

the kinematics lift to standard invariant kinematics on the

symmetry Lie group. We provide simple and explicitly

checkable sufficient differential-algebraic conditions on the

system symmetry for when this is the case and illustrate the

new result in two standard examples.
This paper is structured as follows. Section II contains

a brief introduction to kinematic systems with complete

symmetry. In Section III we show how to embed the system

kinematics into a “larger” system with a canonical velocity

space. The main results for the two prevalent types of

kinematic systems with complete symmetry are presented in

Sections III-A and III-B, respectively. Section IV concludes

the paper.
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II. SYMMETRIC KINEMATIC SYSTEMS

Let M be a smooth (finite-dimensional, real) manifold and

TM its tangent bundle. Let V be a (finite-dimensional, real)

vector space. We study systems of the form

ẋ = f(x, v), (1)

where f : M × V → TM is a smooth vector bundle

homomorphism, meaning that f(x, v) ∈ TxM for all x ∈ M
and v ∈ V , and the partial maps f(x, ·) : V → TxM are

linear for all x ∈ M . We can think of systems of the form

(1) as modelling the kinematics of mechanical systems with

configuration state x ∈ M and kinematic velocity v.

Let G be a Lie group and recall that a smooth map

α : G×M → M

is called a right (resp. left) action of G on M if α(e, x) =
x and α(g, α(h, x)) = α(hg, x) (resp. α(g, α(h, x)) =
α(gh, x)) for all g, h ∈ G and all x ∈ M . Here, e ∈ G
denotes the identity element of the group. If we do not wish

to emphasize the handedness (right or left), we simply use

the term action for such a map. Denote the partial maps

α(g, ·) : M → M by αg and α(·, x) : G → M by αx,

respectively. Note that αg is a diffeomorphism of M for

all g ∈ G. Recall that an action α of G on M is called

transitive if for every pair p, q ∈ M there exists g ∈ G such

that q = α(g, p).
Definition 1: [12] Consider a pair of actions

φ : G×M → M, ψ : G× V → V,

of a Lie group G on M and V , respectively. The triple

(G,φ, ψ) is called a complete symmetry of system (1) if the

action φ is transitive and

dφg(x)[f(x, v)] = f(φg(x), ψg(v)) (2)

for all g ∈ G, x ∈ M and v ∈ V .

We use the term complete right (resp. left) symmetry if we

wish to emphasize the handedness of the symmetry actions.

Note that transitivity of the action φ is equivalent to φx being

surjective for all x ∈ M . The following two examples [12]

will serve to illustrate the theory developed in this paper.

Example 1.1: A physical direction of an inertial feature

(such as the magnetic field of the earth) relative to a body-

fixed frame (of a robotic vehicle to which a suite of magne-

tometers is attached) can be modeled as a direction on the

two-sphere S2 embedded in R
3. As the robotic vehicle rotates

the physical direction of the (inertially known) magnetic field

moves relative to the body-fixed frame. Such kinematics are

important in attitude estimation for mobile robotic vehicles.
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Given the configuration space M = S2 ⊂ R
3, the

kinematics considered are

ẋ = x× v, (3)

where x ∈ M , v ∈ V = R
3 and × denotes the vector

product.

The state x ∈ S2 is the direction of the inertial feature

relative to the body-fixed frame and as an element of the

coordinate space R
3 is expressed in body-fixed coordinates.

Note that the actual state of the vehicle is two-dimensional,

while the parametrisation that we use is the embedding into

R
3, leading to a three-dimensional coordinate representation.

The physical velocity f(x, v) = x × v of the system (an

element of TxS
2), is the motion of the inertial feature relative

to the body-fixed frame. However, this two-dimensional

velocity can only be globally parameterised via a three-

dimensional object v. Physically, v is the angular velocity

of the body-fixed frame relative to the inertial frame. As an

element of the coordinate space v ∈ R
3 it is expressed in

body-fixed coordinates.

The special orthogonal group SO(3) with actions

φ(Q, x) = Q�x, ψ(Q, v) = Q�v,

is a complete right symmetry for this example. The SO(3)
symmetry expresses the physical fact that the laws of motion,

in this case just the first order kinematics, do not depend on

the orientation of the vehicle. �
Example 2.1: A unicycle kinematic system, typically

physically realized by two parallel wheels with castors front

and back to keep the vehicle from tipping, is one of the

most studied non-holonomic systems in the control literature

(see, e.g. [2]). The kinematic state of the system can be

represented by the position and orientation of the vehicle

on a planar surface, the ground plane. Its speed and angular

velocity are measured using tachometers on each driving

wheel individually. In a typical robotics experiment the

vehicle position (but not its orientation) is measured using

an overhead camera.

The configuration space considered is M = R
2 × S1. The

unicycle kinematics are given by

ξ̇1 = cos(θ)u, (4a)

ξ̇2 = sin(θ)u, (4b)

θ̇ = q (4c)

for x = ((ξ1, ξ2)
�, θ) ∈ M and velocity v = (u, q) ∈ V =

R
2.

The state x = ((ξ1, ξ2)
�, θ) ∈ R

2 × S1 is the position

and orientation of the unicycle with respect to an inertial

frame, written in inertial coordinates as an element of the

coordinate space R
2 × R. The physical velocity f(x, v) =

((cos(θ)u, sin(θ)u)�, q) of the system is the motion of the

unicycle with respect to the inertial frame, expressed in

inertial coordinates. The system is non-holonomic and there

is a velocity constraint that enables one to parameterise the

physical velocity with two real parameters u, the scalar

speed (translational velocity), and q the angular velocity,

(u, q) ∈ V = R
2.

The special Euclidean group SE(2) is the set of rigid-

body transformations of two-dimensional Euclidean space.

An element of Q ∈ SE(2) is parameterized by a rotation

R(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)

and a translation z ∈ R
2. The classical homogeneous

coordinates of Q are given by

Q =

(
R(α) z
0 1

)
. (5)

The group SE(2) with actions

φ(Q, (ξ, θ)) = (R(α)ξ + z, α+ θ),

ψ(Q, v) = v,

is a complete left symmetry for this example.

It is straightforward to show that φ is a left action by

representing the state x = (ξ, θ) in homogeneous coordinates

as

xh =

(
R(θ) ξ
0 1

)

and noting that φ(Q, x)h = Qxh, i.e. the action φ corre-

sponds to left matrix multiplication in homogeneous coor-

dinates. This also implies that the action φ is transitive on

M . The trivial group action ψ is both right and left handed.

The SE(2) symmetry expresses the physical fact that the

kinematics of the unicycle do not depend on its pose. �
III. VELOCITY LIFTS

In this section we will start to deviate from the develop-

ment in our previous work [12]. That work was focussed on

constructing lifted kinematics for system (1) on the symmetry

group G directly. In contrast, here we show how to use a

velocity lift to construct an embedding of the trajectories of

system (1) into the trajectories of a “larger” kinematic system

with complete symmetry on the same configuration space M
but with velocity space g, the Lie algebra of the symmetry

group G. We give two different sufficient conditions for when

this is possible, corresponding to what we termed Type I
(resp. Type II) systems in [12].

As a consequence of this different perspective, it becomes

clear that Type I (resp. Type II) is in actual fact a property

of the symmetry and not of the velocity lift as was previously

thought.

In order to construct velocity lifts, we need to fix a

reference point x0 ∈ M . Given a complete symmetry for

system (1), the linear map

dφx0(e) : g → Tx0M

is surjective.

and hence has a linear right inverse rx0
: Tx0

M → g with

dφx0(e) ◦ rx0 [ξ] = ξ (6)



for all ξ ∈ Tx0
M . Given a splitting g = ker dφx0

(e)⊕h, the

restriction of dφx0(e) to h is a linear bijection and its inverse

is a right inverse for dφx0(e). All linear right inverses can

be constructed this way by choosing the direct summand h.

To every right right inverse rx0
of dφx0

(e) there corre-

sponds a linear map,

λ(rx0
) : V → g, v �→ rx0

[f(x0, v)]. (7)

that makes the diagram of linear maps

g

V
f(x0,·)

��

λ(x0)

��

Tx0
M
��
dφx0

(e) (8)

commute. Obviously, the diagram still commutes if we add a

linear map l : V → ker dφx0
(e) to λ(x0). Conversely, every

linear map λ(x0) that makes the diagram (8) commute differs

from λ(rx0
) by such a linear map l. We hence denote

λ(rx0 , l) : V → g, v �→ rx0 [f(x0, v)] + l[v]. (9)

Definition 2: A velocity lift for system (1) with respect to

a reference point x0 ∈ M is a linear map λ(x0) : V → g
that makes the diagram (8) commute.

Example 1.2: Recall the scenario described in Exam-

ple 1.1. The Lie algebra of SO(3) is the set of skew

symmetric 3× 3 matrices

so(3) = {W ∈ R
3×3 W = −W�}.

Fix x0 = e3 ∈ S2 where e3 = (0, 0, 1)� is the unit vector

in the third axis of R3. The velocity lift

λ(rx0 , l)[v] =

⎛
⎝ 0 −v3 v2

v3 0 −v1
−v2 v1 0

⎞
⎠ =: v×.

corresponds to the right inverse

rx0
[(ξ1, ξ2, 0)

�] =

⎛
⎝ 0 0 −ξ2

0 0 ξ1
ξ2 −ξ1 0

⎞
⎠

and the linear functional

l[v] =

⎛
⎝ 0 −v3 0
v3 0 0
0 0 0

⎞
⎠ .

�
Example 2.2: Recall the scenario described in Exam-

ple 2.1. The Lie algebra of SE(2) is the set

se(2) =

⎧⎨
⎩
⎛
⎝ 0 a w1

−a 0 w2

0 0 0

⎞
⎠ ∈ R

3×3 a, w1, w2 ∈ R

⎫⎬
⎭ .

(10)

Fix x0 = (0, 0, 0) ∈ M corresponding to the origin of the

inertial frame with zero orientation. The velocity lift

λ(rx0)[(u, q)] =

⎛
⎝ 0 q u
−q 0 0
0 0 0

⎞
⎠

corresponds to the right inverse

rx0
[((u, 0)�, q)] =

⎛
⎝ 0 q u
−q 0 0
0 0 0

⎞
⎠ .

�
A. Type II symmetries

In our previous work [12], Type II systems were charac-

terized by a trivial velocity action. We turn this into a formal

definition.

Definition 3: A complete symmetry (G,φ, ψ) for system

(1) is called (of) Type II if ψ(g, v) = v for all g ∈ G and all

v ∈ V .

Thinking of dφx0
(e) as the lifted equivalent of f(x0, ·)

and using the defining property (2) of equivariance for x =
φg(x0) then motivates the study of the following system map

f̄ : M × g → TM ,

f̄(φg(x0), U) = dφg(x0)dφx0
(e)[U ]. (11)

Let stab(x0) = {s ∈ G |φ(s, x0) = x0} ⊂ G denote the

stabilizer subgroup of x0 under φ.

Proposition 4: The map f̄ in (11) is well defined if

f(x0, ·) : V → Tx0
M is surjective and ψ(s, v) = v for all

s ∈ stab(x0) and all v ∈ V . In this case, (G,φ,Ψ0) is a

complete symmetry for the system

ẋ = f̄(x, U). (12)

Here, Ψ0(g, U) = U denotes the trivial action of G on g.

Proof: We show the proof for the case of right

handed actions, the proof for the left handed case is entirely

analogous. Let U ∈ g then dφx0
(e)[U ] = f(x0, v) for some

v ∈ V as f(x0, ·) is surjective. Let s ∈ stab(x0) then

f̄(φsg(x0), U) = dφsg(x0)[f(x0, v)]

= f(φsg(x0), ψsg(v))

= f(φg(φs(x0)), ψg(ψs(v)))

= f(φg(x0), ψg(v))

= dφg(x0)[f(x0, v)]

= f̄(φg(x0), U)

for all g ∈ G, where the second and fifth equalities follow

from the symmetry condition (2). This shows that f̄ is well

defined.

Now compute

dφh(φg(x0))f̄(φg(x0), U) =

dφh(φg(x0))dφg(x0)dφx0(e)[U ] =

dφgh(x0)dφx0(e)[U ] =

f̄(φgh(x0), U) =

f̄(φh(φg(x0)), U)

for g, h ∈ G and U ∈ g. This completes the proof.

The following theorem is the main result of this section

for Type II symmetries.

Theorem 5: Consider a Type II complete symmetry

(G,φ, ψ) for system (1), fix a reference point x0 ∈ M and



let λ(x0) : V → g be a velocity lift with respect to x0. If

f(x0, ·) : V → Tx0M is surjective then the map (x, v) �→
(x, λ(v)) maps trajectories of system (1) to trajectories of

system (12).

Proof: This follows immediately from Proposition 8

and

f(φg(x0), v) = f(φg(x0), ψg(v))

= dφg(x0)[f(x0, v)]

= dφg(x0)dφx0
(e)λ[v]

= f̄(φg(x0), λ[v])

for all g ∈ G and v ∈ V .

Remark 6: It is straightforward to show that in the sit-

uation of Theorem 5 and in the case of a right handed

symmetry, the projection φx0
: G → M maps trajectories

of the standard right invariant kinematics ġ = dRg[u] on G
to trajectories of system (12). Here, Rg : G → G, h �→ hg
denotes right translation by g ∈ G.

Example 2.3: Example 2.1 is obviously of Type II and the

lifted kinematics correspond simply to rewriting the system

kinematics in homogeneous coordinates, thereby justifying

the use of the term “homogeneous” in this context. �

B. Type I symmetries

The story for Type I systems is at first glance much more

complicated [12], however, a careful analysis of what does

not work with a lifted system defined by (11) in this case

leads to the following formal definition. We only treat the

case of right handed symmetries as that matches our Example

1.1.

Definition 7: A complete right symmetry (G,φ, ψ) for

system (1) is called (of) Type I with respect to a reference

point x0 ∈ M if

Ads λ(x0)[ψs(v)] = λ(x0)[v] (13)

for all s ∈ stab(x0) and v ∈ V and some velocity lift

λ(x0) : V → g with respect to x0. Here, Adg denotes the

adjoint action of g ∈ G on g.

From similar considerations as in the Type II case, we are

led to study the following system map f̄ : M × g → TM ,

f̄(φg(x0), U) = dφφg(x0)(e)[U ]. (14)

In contrast to the Type II scenario, this map is always well

defined.

Proposition 8: (G,φ,Ad−1) is a complete symmetry for

the system

ẋ = f̄(x, U), (15)

where f̄ is defined by (14).

Proof: We need to show that dφh(x)f̄(x, U) =
f̄(φh(x),Adh−1 U) for all h ∈ G, x ∈ M and U ∈ g.

To this end we compute

dφh(φg(x0))f̄(φg(x0), U) =

dφh(φg(x0))dφφg(x0)(e)[U ] =

Dkφ(h, φ(k, φg(x0))|k=e[U ] =

Dkφ(h
−1kh, φ(h, φg(x0))|k=e[U ] =

dφφ(h,φg(x0))(e)[Adh−1 U ] =

f̄(φh(φg(x0)),Adh−1 U).

This completes the proof.

The following theorem is the main result of this section

for Type I symmetries.

Theorem 9: Consider a Type I complete right symmetry

(G,φ, ψ) for system (1), fix a reference point x0 ∈ M and

let λ(x0) : V → g be a velocity lift with respect to x0. Then

the map λ : M × V → g with

λ(φg(x0), v) = Adg−1 λ(x0)[ψg−1(v)] (16)

is well defined and the map (x, v) �→ (x, λ(x, v)) maps

trajectories of system (1) to trajectories of system (15).

Proof: That the map λ in (16) is well defined follows

immediately from condition (13). To complete the proof we

compute

f(φg(x0), v) = dφg(x0)[f(x0, ψg−1(v)]

= dφg(x0)dφx0
(e)λ(x0)[ψg−1(v)]

= dφφg(x0)(e)Adg−1 λ(x0)[ψg−1(v)]

= f̄(φg(x0),Adg−1 λ(x0)[ψg−1(v)])

= f̄(φg(x0), λ(φg(x0), v)),

for all g ∈ G and v ∈ V , where we have used the

defining property of the velocity lift λ(x0) and the fact that

dφg(x0)dφx0(e)[U ] = dφφg(x0)(e)[Adg−1 U ] for all g ∈ G
and U ∈ g.

Remark 10: It is straightforward to show that in the

situation of Theorem 9, the projection φx0
: G → M maps

trajectories of the standard left invariant kinematics ġ =
dLg[u] on G to trajectories of system (12). Here, Lg : G →
G, h �→ gh denotes left translation by g ∈ G.

Example 1.3: It can easily be checked that Example 1.1

is of Type I with respect to any reference point and any asso-

ciated velocity lift. The system (15) is given by f̄(x, v×) =
v�×x and the lifted kinematics are the standard left invariant

rigid body kinematics. �
IV. CONCLUSIONS

We have provided explicitly checkable sufficient

differential-algebraic conditions on the complete symmetry

of a kinematic system that lead to lifted kinematics of

standard invariant type on the symmetry group. This closes

a gap in the literature on observer design for kinematic

systems with symmetry. The new characterization of Type

I symmetries raises interesting questions about the nature

of the reference point dependence of the lifted kinematics.

This is an interesting topic for future work that will likely

require the careful study of adjoint orbits in the symmetry

Lie algebra, a classical topic in Lie theory.
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