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Abstract: Sound intensity is a fundamental quantity describing acous-
tic wave fields and it contains both energy and directivity information.
It is used in a variety of applications such as source localization, repro-
duction, and power measurement. Until now, intensity is defined at a
point in space, however given sound propagates over space, knowing its
spatial distribution could be more powerful. This paper formulates spa-
tial sound intensity vectors in spherical harmonic domain such that the
vectors contain energy and directivity information over continuous spa-
tial regions. These representations are derived with finite sets of closed
form coefficients enabling ease of implementation.
VC 2019 Acoustical Society of America
[PG]
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1. Introduction

Intensity is a fundamental quantity in acoustics that is defined as the power carried by
sound waves per unit area in a direction perpendicular to that area. It indicates the
rate of energy flow and also gives a measure of direction of energy flow. Therefore,
sound intensity has both magnitude and direction components, and that is why it is
also referred to as “intensity vector.”

Sound intensity is useful for localization of sources, reproduction of sound
fields, measurement of sound power, measurement of transmission loss, identification
of transmission paths, etc.1 A practical example for sound intensity based applications
is seen in high speed trains, where noise sources are measured and identified to create
a quiet environment for passengers.2 The reason why sound intensity is useful for a
range of applications as mentioned above is because it plays an important role in
directional psychoacoustics. As shown by Gerzon, the human ability to localize is
related to the ratio of the sound intensity vector gain to the total energy.3 Using this
relationship, Arteaga4 and Scaini and Argeaga,5 propose a novel method for sound
reproduction using intensity matching.4,5 In addition, intensity is an effective tool to
estimate direction of arrival (DOA) because there is no need to compute a spatial cost
function by directly computing the direction of energy flow.6 To improve the accuracy
of DOA estimation, an augmented intensity vector is proposed by exploiting higher
order spherical harmonics.7

All the applications mentioned above are based on sound intensity at a single
point or several points, but these applications can be extended and facilitated by using
spatial sound intensity vectors. For example, sound intensity based reproduction can
be realized over space instead of at a single point using spatial intensity matching so
that the original sound can be reproduced over a large region for more listeners.
Besides, spatial sound intensity vectors facilitate sound intensity measurement over
space that is necessary in most of the aforementioned applications. Currently, the dom-
inating and economical method of measuring sound intensity over space is based on
the combination of two pressure microphones,8,9 which requires performing a measure-
ment in the volume of interest point by point. While this process can be done automat-
ically by an industrial robot, the design and implementation of it with high accuracy is
comparably time-consuming and costly. In such instances, spherical harmonics can
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play a role because they cover the entire space together with the radial functions.
Therefore, if we can generate a spherical harmonic decomposition of the spatial sound
intensity, the sound intensity at any point in space is readily available.

The main contribution of this paper is a theoretical derivation and proof of a
spherical harmonic based representation for sound intensity over a continuous spatial
region. The closed form expressions of spatial sound intensity are given and finite
modes of spherical harmonics in each expression are indicated. We choose the spheri-
cal harmonic domain also because spherical harmonics are spatial basis functions that
can be used to describe a variety of acoustics based functions10,11 in the three-
dimensional space.

2. Problem formulation

Consider a point x ¼ ðr; h;/Þ in a homogeneous medium in space. The sound pressure
at x is Pðx; kÞ and the particle velocity in spherical coordinates is Vðx; kÞ
¼ ½Vrðx; kÞ; Vhðx; kÞ; V/ðx; kÞ�, where k is the wavenumber. The intensity relationship
for the steady state field is defined as12

Iðx; kÞ ¼ P�ðx; kÞVðx; kÞ; (1)

where Iðx; kÞ ¼ ½Irðx; kÞ; Ihðx; kÞ; I/ðx; kÞ� is the sound intensity vector in spherical
coordinates and � stands for complex conjugate. All of the above intensity components
are defined on a sphere and therefore can be decomposed in terms of spherical har-
monic functions13

IDðx; kÞ ¼
X1
p¼0

Xp

q¼�p

SðDÞpq ðk; rÞYpqðh;/Þ; D ¼ fr; h;/g; (2)

where SðDÞpq ðk; rÞ are intensity coefficients in the D direction and Ypqðh;/Þ ¼ ApqPpq

ðcos hÞeiq/ is the spherical harmonic of order p and degree q with Apq ¼ ½ð2pþ 1Þðp� qÞ!=
ð4pðpþ qÞ!Þ�1=2, where Ppqðcos hÞ are the associated Legendre functions.

Our objective is to derive complete sets of closed form intensity coefficients
SðDÞpq ðk; rÞ related to each r, h, / component of the sound intensity vector.

3. Particle velocities in the spherical harmonic domain

In spherical harmonic domain, the sound pressure at x in a source-free region is
given by

Pðx; kÞ ¼
X1
n¼0

Xn

m¼�n

anmðkÞjnðkrÞYnmðh;/Þ; (3)

where anmðkÞ are pressure coefficients and jnð�Þ is the nth order spherical Bessel of the
first kind.

The particle velocity VDðx; kÞ at x, in the direction D, is related to the sound
pressure by14

VD x; kð Þ ¼ i
kq0c

@P x; kð Þ
@D

; (4)

where q0 is the medium density and c is the speed of propagation. Therefore, from Eq.
(3) the particle velocity in the r, h, and / directions can be derived as

Vr x; kð Þ ¼ i
kq0c

X1
n¼0

Xn

m¼�n

anm kð Þj0n krð ÞYnm h;/ð Þ; (5a)

Vh x; kð Þ ¼ i
kq0c

X1
n¼0

Xn

m¼�n

anm kð Þjn krð ÞAnmP0nm cos hð Þeim/; (5b)

V/ x; kð Þ ¼ i
kq0c

X1
n¼0

Xn

m¼�n

imanm kð Þjn krð ÞYnm h;/ð Þ; (5c)

with

j0n krð Þ ¼ nkjn�1 krð Þ � nþ 1ð Þkjnþ1 krð Þ
2nþ 1

; (6)
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P0nm cos hð Þ ¼
n�mþ 1ð ÞP nþ1ð Þm cos hð Þ � nþ 1ð Þcos hPnm cos hð Þ

sin h
; h 6¼ 0; pf g; (7)

P0nmðcos 0Þ ¼ P0nmð1Þ ¼
�nðnþ 1Þ=2; if m ¼ 1;

1=2; if m ¼ �1;

0; otherwise;

8><
>: (8)

and P0nmðcos pÞ ¼ P0nmð�1Þ ¼ ð�1ÞnP0nmð1Þ according to the property of associated
Legendre function.

4. Derivation of the spatial sound intensity vector coefficients

Substituting Eqs. (5a), (5b), and (5c), separately, with Eq. (3) into Eq. (1), we can get

Irðx; kÞ ¼
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
Rnmn0m0 ðk; rÞY �nmðh;/ÞYn0m0 ðh;/Þ; (9a)

Ihðx; kÞ ¼
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
An0m0Tnmn0m0 ðk; rÞY �nmðh;/ÞP

0

n0m0 ðcos hÞeim0/; (9b)

I/ðx; kÞ ¼
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
im0Tnmn0m0 ðk; rÞY �nmðh;/ÞYn0m0 ðh;/Þ; (9c)

where Rnmn0m0 ðk; rÞ ¼ ia�nmðkÞan0m0 ðkÞjnðkrÞj 0n0 ðkrÞ=ðkq0cÞ and Tnmn0m0 ðk; rÞ ¼ ia�nmðkÞ
� an0m0 ðkÞjnðkrÞjn0 ðkrÞ=ðkq0cÞ.
4.1 Intensity coefficients in the r and / directions

In this section, we derive the closed form expressions of intensity coefficients in the r
and / directions and introduce the following theorem.

Theorem 1. The intensity coefficients in the r direction SðrÞpq ðk; rÞ and / direction
Sð/Þpq ðk; rÞ can be expressed separately as

SðrÞpq ðk; rÞ ¼
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
ð�1ÞmþqCnn0pW1W2Rnmn0m0 ðk; rÞ; (10a)

Sð/Þpq ðk; rÞ ¼
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
im0ð�1ÞmþqCnn0pW1W2Tnmn0m0 ðk; rÞ; (10b)

where

Cnn0p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þð2n0 þ 1Þð2pþ 1Þ=4p

p
; W1 ¼

n n0 p
0 0 0

� �
and

W2 ¼
n n0 p
�m m0 �q

� �
denoting Wigner 3-j symbols.

Proof. Multiplying both sides of Eq. (2) by Y �pqðh;/Þ and integrating with
respect to h and /,

SðDÞpq ðk; rÞ ¼
ð2p

0

ðp

0
IDðx; kÞY �pqðh;/Þ sin hdhd/; D ¼ fr; h;/g: (11)

In the r direction, substituting Eq. (9a) into Eq. (11),

SðrÞpq ðk; rÞ ¼
ð2p

0

ðp

0

X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
Rnmn0m0 ðk; rÞY �nmðh;/ÞYn0m0 ðh;/ÞY �pqðh;/Þ sin hdhd/:

(12)

The integral of products of three spherical harmonics is given by15

ð2p

0

ðp

0
Yl1m1 h;/ð ÞYl2m2 h;/ð ÞYl3m3 h;/ð Þsin hdhd/

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l1 þ 1ð Þ 2l2 þ 1ð Þ 2l3 þ 1ð Þ

4p

r
�

l1 l2 l3
0 0 0

 !
l1 l2 l3
m1 m2 m3

 !
; (13)
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as well as Y �nmðh;/Þ ¼ ð�1ÞmYnð�mÞðh;/Þ. Substituting Eq. (13) into Eq. (12) completes
the proof of Eq. (10a). Similarly, substituting Eq. (13), as well as Eq. (9c), into Eq.
(11) completes the proof of Eq. (10b).

4.2 Intensity coefficients in the h direction

The derivation of coefficients in the h direction is more complicated than the other two
due to the partial derivative of the associated Legendre function. With regard to inten-
sity coefficients in the h direction, we derive the following theorem.

Theorem 2. The intensity coefficients in the h direction SðhÞpq ðk; rÞ can be
expressed as

SðhÞpq ðk; rÞ ¼
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
AnmAn0m0ApqPnmn0m0pqEmm0qTnmn0m0 ðk; rÞ; (14)

where Emm0q ¼ 2p when m0 �m� q ¼ 0, otherwise Emm0q ¼ 0, and Pnmn0m0pq ¼ ðn0 �m0

þ1ÞG1 � ðn0 þ 1ÞG2 with

G1 ¼ H n;mð ÞH n0 þ 1;m0ð ÞH p;qð ÞG
mþm0 þ qþ 1

2
;
4� dmþn � dm0þn0þ1 � dpþq

2
;

�
1þm� n� dmþn

2
;
m0 � n0 � dm0þn0þ1

2
;
1þ q� p� dpþq

2
;
2þmþ n

2

� dmþn

2
;
3þm0 þ n0 � dm0þn0þ1

2
;
2þ pþ q� dpþq

2
; mþ 1;m0 þ 1;qþ 1

�
; (15a)

G2 ¼ H n;mð ÞH n0;m0ð ÞH p; qð ÞG
mþm0 þ qþ 1

2
;
5� dmþn � dm0þn0 � dpþq

2
;

�
1þm� n� dmþn

2
;
1þm0 � n0 � dm0þn0

2
;
1þ q� p� dpþq

2
;
2þmþ n

2

� dmþn

2
;
2þm0 þ n0 � dm0þn0

2
;
2þ pþ q� dpþq

2
; mþ 1;m0 þ 1; qþ 1

�
; (15b)

where Hðn;mÞ ¼ ð�1ÞmðnþmÞ!=½2mm!ðn�mÞ!�,

dM ¼
1; if M is even

0; if M is odd

(
(16)

and

G a; b;�n1;�n2;�n3; a1; a2; a3; c1; c2; c3ð Þ ¼
Xn1

j1¼0

Xn2

j2¼0

Xn3

j3¼0

�n1ð Þj1 a1ð Þj1
c1ð Þj1 j1!

�n2ð Þj2 a2ð Þj2
c2ð Þj2 j2!

�n3ð Þj3
c3ð Þj3

�
a3ð Þj3
j3!

�1ð Þ2bþ1 þ 1
h i

B j1 þ j2 þ j3 þ a; bð Þ
2

;

(17)

with

ðaÞj ¼
1; if j ¼ 0

aðaþ 1Þ…ðaþ j � 1Þ; if j ¼ 1; 2;…;

(
(18)

and Bð�Þ is the beta function.
Proof. By substituting Eq. (9b) into Eq. (11), Eq. (14) can be achieved with

Pnmn0m0pq ¼
ð1

�1
Pnmðcos hÞP0n0m0 ðcos hÞPpqðcos hÞd cos h; (19a)

Emm0q ¼
ð2p

0
e�im/eim0/e�iq/d/ ¼ 2p; if m0 �m� q ¼ 0

0; otherwise:

�
(19b)

In order to calculate the integral of Eq. (19a), we begin with the Euler integral,ð1

0
ð1� xÞa�1xb�1dx ¼ Bða; bÞ ðRe a > 0;Re b > 0Þ: (20)

From Eq. (20), we can obtain
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ð1

�1
1� t2ð Þa�1

t2b�1dt ¼
�1ð Þ2bþ1 þ 1

h i
B a; bð Þ

2
Re a > 0;Re b > 0ð Þ: (21)

Into Eq. (21) we add the product of three hypergeometric polynomials defined by

F �n; a; c; xð Þ ¼
Xn

j¼0

�nð Þj að Þj
cð Þj j!

xj; (22)

to obtainð1

�1
1� t2ð Þa�1

t2b�1F �n1;a1;c1;1� t2
� �

F �n2;a2;c2;1� t2
� �

F �n3;a3;c3;1� t2
� �

dt

¼
Xn1

j1¼0

Xn2

j2¼0

Xn3

j3¼0

�n1ð Þj1 a1ð Þj1
c1ð Þj1 j1!

�n2ð Þj2 a2ð Þj2
c2ð Þj2 j2!

�n3ð Þj3 a3ð Þj3
c3ð Þj3 j3!

�1ð Þ2bþ1þ 1
h i

B j1þ j2þ j3þ a;bð Þ
2

;

(23)

and then the relation between the associated Legendre function and the hypergeometric
function can be given as16

Pnm tð Þ ¼ H n;mð Þ dmþn 1� t2ð Þm=2
F

m� n
2

;
1þmþ n

2
; mþ 1; 1� t2

� ��

þdmþnþ1 1� t2ð Þm=2
tF

1þm� n
2

;
2þmþ n

2
; mþ 1; 1� t2

� �	
: (24)

Substituting Eq. (24) into Eq. (19a) together with Eq. (23) completes the proof.
Although the proofs of intensity coefficients in spherical domain are self-sufficient,

we have verified the theory by simulations, but not present due to lack of available space.

5. Truncation theorem

The pressure representation, Eq. (3), has an infinite number of modes, however, we
can truncate this series expansion to a finite number within the region of interest due
to the properties of the spherical Bessel function. Therefore, Eq. (3) can be truncated
to N ¼ dkeR=2e (Refs. 17 and 18) terms as

PNðx; kÞ ¼
XN

n¼0

Xn

m¼�n

anmðkÞjnðkrÞYnmðh;/Þ; (25)

where k is the wave number and R is the radius of the region of interest.
Likewise, it would be beneficial to truncate the intensity expression, Eq. (2).

To describe the spatial sound intensity vectors in the region of interest with radius R,
the order of sound intensity expressions in the r and / directions is P ¼ 2N because of

Fig. 1. (Color online) The relationship between normalized truncation error and intensity truncation order Ph

for various pressure truncation orders N.
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the selection rule of Wigner 3–j symbols that W1 and W2 equal zero when p > nþ n0.
The expressions in the r and / directions can be rewritten as

ID0 ðx; kÞ ¼
XP

p¼0

Xp

q¼�p

SðD
0Þ

pq ðk; rÞYpqðh;/Þ; D0 ¼ fr;/g: (26)

However, it is quite different and hard to identify the active modes directly for
sound intensity expression in the h direction. In order to show the active modes, intuitively
we calculate the normalized truncation error in terms of intensity truncation order Ph for
five different pressure truncation orders N determined by different radii of the region of
interest, which is shown in Fig. 1. Note that the normalized truncation error is measured by

� kð Þ ¼

X
8x
jI x; kð Þ � Î x; kð Þj2

X
8x
jI x; kð Þj2

; (27)

where Î ðx; kÞ is reconstructed sound intensity at point x using Eq. (2) with given trun-
cation orders. Observe that the intensity truncation error becomes less and falls to an
acceptable value as intensity truncation order increases no matter what N is. Also, as
N grows, it has less influence on intensity truncation error.

6. Simulations

As mentioned in Sec. 1, the theory of spatial sound intensity vectors in a spherical har-
monic domain can be largely useful in many applications including intensity measure-
ment over continuous spatial regions, sound field reproduction, DOA estimation, etc.
In this section we provide simulation results for the application of spatial intensity
measurement, using pressure coefficients of a sound field (spherical harmonic domain).
Figure 2 shows sound intensity on a sphere obtained from the proposed theory (note
that the spherical pressure coefficients here were obtained using a spherical microphone
array) against point by point measurement [note that point by point intensity was sim-
ulated using the theoretical expression for pressure due to a plane wave and the rela-
tionship in Eq. (1)]. We observe that reconstructed sound intensity vectors by using the
proposed theory are similar to actual point by point measurements. Note that the per-
formance of sound intensity in the h direction is slightly worse than the other two,
which is caused by the truncation error discussed in Sec. 5.

7. Conclusion

In this paper, we have defined and formulated the theory of spatial sound intensity
vectors in spherical harmonic domain that is applicable to a variety of acoustic scenar-
ios. The complete sets of closed form intensity coefficients are derived, and finite
modes of spherical harmonics are suggested for practical implementations.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Sound intensity on a sphere with radius of 0.05 m, generated by a plane wave from ð3p=4; 5p=6Þ, with fre-
quency 600 Hz. (a)–(c) Sound intensity in the r, h, and / directions, separately, calculated using the proposed the-
ory, (d)–(f) sound intensity in the r, h, and / directions, separately, obtained from point by point measurement.
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