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ABSTRACT

Phase transitions have been an active area of research in statistical mechanics for

almost a century and have recently been integrated into quantum mechanics. Many

phenomena such as superconductivity and unconventional magnetism are understood

to arise from exotic quantum phases and at points describing quantum phase transi-

tions. A detailed understanding of these phase transitions requires numerical simu-

lations of models which benchmark realistic models against theoretical frameworks.

The topic of this thesis is the implementation of Quantum Monte Carlo simulation,

which is a powerful technique to understand quantum condensed matter, in interest-

ing models to illustrate novel phenomena in magnetic systems. The novel features

of condensed matter systems described in this thesis consist of emergent symmetries

at critical points, interesting dynamical features of such systems and the drastic ef-

fects of defects in spin systems used in the field of adiabatic quantum computing.

Emergent symmetries are shown by condensed matter systems especially at critical

points and are features which cannot be shown by individual or a small number of

spins. Examples of this in one and two dimensions are presented in an early chapter

of this thesis. In addition to this, spin systems can show excitations which have an
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interesting spatial structure as a consequence of restricted dynamics which only allow

the excitations to spread in a particular region. This is presented in the context of a

simple model in the following chapter along with numerical support. The following

chapter contains a description of adiabatic quantum computing along with a partic-

ular model which we study. The phase transition and the effects on the performance

of adiabatic quantum computing are studied in this context.
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1

Chapter 1

Introduction

1.1 Phase transitions and scaling relations

Collections of identical interacting entities form much of the world which we engage

with on a daily basis. Most of these systems share common universal features which

are especially evident in the physics governing changes in phase. Universal behavior

of physical quantities at phase transitions helps us gain a concise understanding of the

relevant features. Perhaps the most common examples of this phenomenon are seen

in the phase changes of water, the development of charge or magnetic order in solid

state materials, the onset of superconductivity and transitioning behavior of bacteria

in changing environments. For a large set of phase transitions, a particular symmetry

can be identified which differentiates between different phases. For example, in the

case of water changing phase from liquid to solid, continuous translation and rotation

symmetries are broken as ice forms a lattice structure which can only be rotated or

translated by discrete quantities to get back the same structure. This phenomenon

is called symmetry breaking and can be quantified using a quantity called the order

parameter which is sensitive to development of a symmetry broken phase. In addition

to the order parameter, clear signatures of the phase transition can also be detected

in quantities such as the energy, correlation length and susceptibility or compressibil-

ity. An understanding of phase transitions is generally developed using the concept

of thermodynamic free energy, which is formulated as a functional over the possible

configurations which the system can host. The configurations which minimize this
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functional dictate the phase of the system as they would have the highest Boltzmann

weights. For a thermodynamic system, the free energy is defined in continuous space

and the detailed functional form of the order parameter which minimizes it can be

calculated in some cases. Once this is done, the particular function of the order

parameter can be plugged into the free energy functional which leads to a free en-

ergy function which now depends on external parameters such as temperature T and

pressure P . We illustrate this process for a sample case under the mean field approx-

imation. This approximation assumes that the order parameter has no dependence

on space, which reduces the free energy functional to just a function, and allows us to

perform calculations in a very simple manner. Assuming for simplicity that the phase

transition is only tuned by T and using the knowledge that the order parameter ψ

is small at the critical temperature Tc and should vanish for T > Tc, the free energy

density, or the Landau-Ginzburg functional (Landau, 1937), can now be written as

Φ(T, ψ) = Φ0(T ) + (a(T )ψ2 + b(T )ψ4 + c(T )ψ6 + ...). (1.1)

There are two types of commonly observed phase transitions, namely first-order

and continuous, which derive their names from the behavior of the free energy at the

critical point. First order transitions show a jump in the order parameter value as a

consequence of structure of the free energy. In the context of Eq. (1.1), a possible way

to generate these two cases is as follows. For a continuous transition, using b(Tc) > 0

and a ∝ (T−Tc), the location of the free energy minimum moves smoothly away from

zero and thus the order parameter is continuous in T . For a first order transition,

we use b(Tc) < 0 and a(Tc) > 0, such that there are three minima and T tunes the

free energy values at these minima. In this way, the location of the global minima

jumps from zero to a finite value without passing through intermediate values. Both

of these scenarios are made explicit in Fig. 1·1. It is important to note that the first
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Figure 1·1: The behavior of free energy as function of the order param-
eter for (left) a first order transition and (right) a continuous transition
with t2 < t1 < 0.

order transition does not occur at Tc, but at T < Tc, leading to a finite t as shown in

Fig. 1·1. The term critical temperature is usually used only for continuous transitions.

The Landau-Ginzburg functional can be solved to get the behavior of ψ as a

function of temperature. This yields the correct behavior in the mean field limit,

which means that we ignore spatial correlations. For large dimensional systems the

mean field approximation works well as all to all connections between sites on a

lattice can be perfectly represented by an average field. The lowest dimension up

to which the mean field approximation yields accurate results is called the upper

critical dimension. In dimensions below this limit, this analysis provides a qualitative

understanding but more sophisticated methods are required to work out exact details.

Continuous phase transitions are of special interest as they show exotic scale invariant

behavior and are characterized by scaling exponents which control various quantities

which can be studied experimentally. These are called critical exponents and sets of

these sort varied systems into a relatively small number of universality classes. Some

of the critical exponents which are generally used to identify these classes are

ξ ≈ t−ν , (1.2)

M ≈ tβ, (1.3)
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χ ≈ t−γ, (1.4)

C ≈ t−α, (1.5)

where t = (T − Tc)/Tc is the reduced temperature, which is defined with respect to

the critical temperature Tc, ξ is the correlation length, M is the order parameter, χ

is the susceptibility and C stands for the specific heat. Of the properties discussed

above the one most relevant to numerical simulations is the scaling of the correlation

length, as it sets a natural length scale in the system. As simulations must be carried

out on finite systems, a technique must be developed to read critical exponents at

finite size. This is done by arguing that a finite system can only access physics which

occurs at a length scale shorter than the system size L. From this size, an equivalent

correlation length can be calculated by using ξ ∼ L and t ∼ L−1/ν . This leads to a

rewriting of the criticality equations as a function of L and this can then be used to

extract exponents from finite size scaling analysis.

Another crucial idea used to understand critical phenomena is called renormaliza-

tion group analysis (Wilson, 1971). This analysis is used to understand the behavior

of systems at very large scale by building it up from the smallest scales. An example

is presented here for the classical Ising model on a square lattice where each site hosts

a spin which can take two possible values, +1 and -1, and a Hamiltonian given by

H = −J
∑
〈i,j〉

σiσj, (1.6)

where J is the relevant energy scale with respect to kBT , which is set to unity.

The partition function is given by Z =
∑

c e
−H(c), where c runs over all possible

configurations. We can perform a sequential calculation of the partition function

by summing over certain sites in the square lattice (as shown in Fig. 1·2). The

renormalization step involves rewriting the Hamiltonian in terms of the remaining
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Figure 1·2: The spins on the diamond lattice are traced out first,
following which the lattice is redefined.

spins at a new energy scale J ′. This is achieved by first expressing the sum over

configurations as
∑

σ1

∑
σ2

∑
σ3
... and then performing the sums for the spins on the

diamond-like lattice shown in Fig. 1·2. Following this, the Hamiltonian can be written

again as in Eq. (1.6) where the interactions are now between nearest neighbors on the

remaining diamond-like lattice with a J ′ = 1
2

ln(cosh(4J)) under the Migdal-Kadanoff

approximation which ignores longer range interactions which are created under this

process as well.

1.2 Overview of spin systems

In this thesis, we are going to focus on phase transitions seen in magnetic systems

which are made of spin-1/2 magnetic moments. These are relevant models for insulat-

ing magnetics where the electronic degrees of freedom are frozen. The non-commuting

nature of the Pauli matrices which describe a spin-1/2 magnets leads to interesting

competition between phases hosted by many body systems made out of these entities.



6

We are interested in studying ground state phase transitions for these models where

the physics is driven by quantum fluctuations.

The first class of models which we use in this thesis are called antiferromagnetic

Heisenberg models, which have Hamiltonians made out of terms of the form −~Si · ~Sj

where (i, j) represent lattice sites. These Hamiltonians have an SU(2) symmetry

associated with them as all the spins in the systems can be rotated through an

arbitrary angle in 3D without altering any of the terms as they are all dot products.

When we consider just one such term between two sites which are isolated from the

rest of the system, it is easy to see that the state that minimizes the Hamiltonian is

a singlet given by 1√
2
(|↑i↓j〉− |↓i↑j〉). It is instructive to compare this to the classical

ground state which would be expected from this Hamiltonian, which would require

both spins to point in opposite directions and the direction can be chosen arbitrarily.

At the level of just two spins, it is easy to see the stark difference between the classical

and quantum ground states and appreciate the effects of quantum fluctuations. These

ground states are significantly altered once a competition is included by considering

a large number of interacting sites. An easy illustration of this would be the case of

three sites labeled 0,1 and 2 with a Hamiltonian H = ~S0 · ~S1 + ~S1 · ~S2 which cannot

be minimized term by term due to a shared site between the terms. Many such

competing terms make up many body magnetic systems and in many cases there

is no clear way to determine the ground state properties of such systems. These

are relevant experimentally as well because many magnets are described by these

Hamiltonians. A couple of examples of simple ground states which we discuss in

this thesis are the Néel state and the Valence Bond Solid (VBS). The Néel state is

similar to a classical antiferromagnetic state where neighboring spins align in opposite

directions and this is seen for some lattice arrangements where the geometry allows

this state to partially satisfy all bonds. The VBS state is a product state of singlets
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where each site participates in one and only one singlet and which leads to a lack of

magnetic order. There are a plethora of interesting states other than these and we

study some of these in the following chapters.

The second class of models we consider are transverse field Ising models, which

are generally made out of a classical piece encoding a two body term of the form

σzi σ
z
j and quantum fluctuations generated by σxi . Depending on the lattice and the

coefficients chosen for the classical terms, the ground state in the classical limit can

show long range magnetic order. In the presence of a strong transverse field this order

is washed out and we get a quantum paramagnet. The Hamiltonian usually has a

two fold (Z2) symmetry which is broken by the ordered phase as the system sponta-

neously chooses one of the two directions to order in. These kinds of Hamiltonians

describe systems which have strong anisotropy along a particular direction, defined

as the z-axis, leading to interactions along that direction. In many cases, there are

complete theoretical descriptions of the phase transitions in these models and the

phenomena seen in these models can be mapped on to classical Ising models in one

higher dimension.

1.3 Basics of Monte Carlo sampling

Monte Carlo simulations are used to calculate averages from complex probability

distributions which are difficult or impossible to handle analytically. They are used

widely in science and engineering disciplines. The Monte Carlo algorithm (Newman

and Barkema, 1999) starts with the system in some given initial state, which is

specified by the user and will be irrelevant for simulations with large number of steps.

At each step the system transits from the current state to a new state chosen using

a fixed transition probability. If the transition probabilities are chosen correctly, as

shown in the next paragraph, the Monte Carlo process will visit each state with the
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correct probability for that state. The probability of a state S in a system evolving

with time can be defined as the ratio of the number of steps for which the state was

S to the total number of steps taken during the simulation (P(S)=ns/ntot).

To calculate averages, we do appropriate measurements at each step of the simula-

tion and calculate the average. As each state is generated with the correct probability,

the Monte Carlo average must be equal to the statistical average for large number of

steps as shown below for some observable O, i.e, lim
n→∞
〈O〉MC = 〈O〉.

We start with some initial state µ, and transit to a new state ν using some

mechanism which is specific to the model we are studying with some probability

P (µ→ ν). This probability must satisfy

∑
ν

P (µ→ ν) = 1. (1.7)

As the probabilities of individual configurations is fixed by the Boltzmann distri-

bution, we can say that this is a stable probability distribution, i.e the probabilities

do not change with time. If the Monte Carlo engine is working correctly, every config-

uration produced must have its correct Boltzmann weight. The two conditions above

imply that for any given state, the net flux out of that state must equal the net flux in

to ensure that the probability density for that state remains unchanged. This reduces

to a condition of the form

∑
ν

[P (µ→ ν)p(µ)− P (ν → µ)p(ν)] = 0. (1.8)

One of the simpler solutions to this equation called the detailed balance condition

and is given by the following constraint relation between the transition probabilities

and the Boltzmann probabilities;

P (µ→ ν)

P (ν → µ)
=
p(ν)

p(µ)
. (1.9)
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The Monte Carlo simulation uses this relation to fix the transition probabilities.

For our Monte Carlo simulations to be truly trustworthy, the results should be com-

pletely independent of the initial state in which the simulation was started. To ensure

this we allow the Monte Carlo engine to warm up a little before we actually start do-

ing measurements. During this warm up, the algorithm goes through a predetermined

number of steps which are sufficient to lose all memory of the initial state.

In general, it is not practical to propose transitions form a particular state to all

possible other states as most states have a relatively small probability in the stable

probability distribution. Instead, specific moves may be proposed to ensure that the

system samples all high probability states. In the case of the Ising model described

in the previous section, a popular updating method used in the Metropolis update,

which picks a particular spin to flip with a probability given by the detailed balance

condition. This update proposes a new state which is similar to the current state and

thus ensures that its probability is not drastically different.

1.4 Extensions to quantum Monte Carlo

Quantum systems host highly non-intuitive states due to the non-commuting nature

of the operators involved. The path integral formalism developed by Feynmann is a

powerful tool to extract the properties of these states. For small systems it is usually

possible to calculate the path integral exactly but various approximations need to

be used to treat many body systems. Quantum Monte Carlo simulation provides a

powerful method to numerically calculate the path integral to high accuracy using

stochastic sampling of the space time configurations which make up the path integral.

Here we describe formulations of this method which make no approximations and are

used to extract ground state and thermodynamic behavior as well as a QMC method

to calculate observable expectation values for variational wavefunctions.
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We first review the stochastic series expansion (SSE) method (Sandvik, 2010b)

for carrying out QMC simulations. This method is capable of accessing the complete

path integral encompassing all quantum and thermal fluctuations and in this way is

well suited to study thermal and quantum phase transitions. Calculating observable

expectation values requires us to evaluate 〈O〉 = Tr[Oe−βH ]/Z, which can be extracted

directly while sampling the space time configurations making the partition function

Z = Tr[e−βH ]. This can be achieved by first expanding the exponential in the form

e−βH =
∞∑
n=0

(−β)n

n!
Hn (1.10)

and inserting complete sets of states (
∑

α |α〉 〈α|) using an orthonormal basis of choice.

This results in an expression for the partition function of the form

Z =
∞∑
n=0

(−β)n

n!

∑
α0

∑
α1

∑
α2

... 〈α0|H |α1〉 〈α1|H |α2〉 ... 〈αn−1|H |α0〉 . (1.11)

A particular term in the above summation is often called a space-time configura-

tion as e−βH is similar to evolution in imaginary time. As H itself is made out of a

collection of operators, each term in 〈αi|H |αi+1〉 takes each of these operators and

each term within the summations over n and {α} can be seen as an operator string

which evaluates to a particular number. Exact enumeration of these operator strings

is not possible and can be done using stochastic sampling under the Monte Carlo

method. This yields high quality results for a variety of systems. For any system

with a finite spectrum and for a finite value of β, the length of the operator strings

converge due to the factorial suppression in longer strings. This implies that there

are no approximations to the partition function evaluation under this scheme. The

SSE method treats general β but can also be used to extract ground state features of

finite systems by choosing β � 1/∆, where ∆ is the energy gap between the ground

state and the first excited state. The gap is in general expected to be finite for any
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finite system size.

A slightly simpler formulation of SSE has been developed for studying ground

state physics called projector QMC which works by projecting the ground state out

of a trial wavefunction |ψt〉. For this procedure to work, one must ensure that all the

eigenenergies have the same sign with the ground state having the largest magnitude.

This is easy to do for most finite systems by globally shifting the Hamiltonian through

a constant. Once the Hamiltonian has been modified in this manner, the ground state

can be written as |ψ0〉 = lim
m→∞

Hm |ψt〉 for the purpose of calculating observable expec-

tation values. In practice, the value of m which is used depends on the gap. These

statements can be substantiated by expressing the trial state as |ψt〉 =
∑

i ci |φi〉,

where {φ} denotes the eigenbasis with eigenenergies {E}, and observing that

〈ψ0|O|ψ0〉
〈ψ0|ψ0〉

=
〈ψt|HmOHm|ψt〉
〈ψt|HmHm|ψt〉

=

∑
i

∑
j cicjOijE

m
i E

m
j∑

i c
2
iE

2m
i

=

∑
i

∑
j cicjOij

(
Ei
E0

)m(Ej
E0

)m∑
i c

2
i

(
Ei
E0

)2m .

(1.12)

As we have already set the ground state energy to be the largest in magnitude,

the only terms that survive the summations for large m in the right most term of

Eq. (1.12) are the ones with i = 0, j = 0. In this way the calculated quantity equals

O00, which is the expectation value in the ground state.

QMC methods are also used to understand the accuracy of trial wavefunctions

developed for highly complex many body systems. As it is often impossible to ana-

lytically or numerically extract the exact ground state wavefunction and properties for

such systems, trial wavefunctions are proposed which can be further fine tunes based

on how well they describe the true properties of the ground state. In many cases, the

trial wavefunctions themselves are not tractable and their features may be extracted

using stochastic sampling. The trial wavefunction can be written as |ψt〉 =
∑

i ci |φi〉

in some basis of choice {φ}. The expectation value of some observable can be now
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written as

〈O〉 =

∑
i

∑
j cicjOij∑
i c

2
i

, (1.13)

and can be calculated stochastically as exact enumeration would be too time consum-

ing.

Many Hamiltonians and trial wavefunctions used in the field of frustrated mag-

netism cannot be efficiently simulated using the procedures described above due to

a complication called the sign problem. This condition arises when the coefficients

preceding the operator strings have mixed sign structure and the distribution cannot

be directly interpreted as a probability distribution. In this case, the average sign

needs to be factored out to get the actual operator expectation values. This pro-

cess usually requires a number of Monte Carlo steps exponential in the system size

and quickly becomes impractical. In some cases, the sign problem can be completely

eliminated or drastically reduced by choosing an appropriate basis to represent the

system in. Trivial ways of eliminating the sign problem can also be implemented by

adding constants to the Hamiltonian and this procedure must be carried out during

the design of the QMC simulation.

1.5 Specialization to Heisenberg and Ising systems

Most of the Hamiltonians studied in this thesis fall in the Heisenberg or Ising sym-

metry classes. For the simple Heisenberg and transverse Ising model, we review the

details of implementing QMC techniques described in the previous section. We be-

gin with Heisenberg systems on bipartite lattices as these simulations can be tackled

without the sign problem. The analysis presented here is in the context of spin-1/2

local moments but can be generalized to higher spin as well. SSE is developed usually

in the z-basis, as it provides a convenient orthogonal basis in which operators are easy

to express. In this formalism it is difficult or impossible to measure expectation values
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of certain important operators which are not diagonal in the z-basis. An example of

this would be the correlations of the singlet projection operator (1/4− ~Si · ~Sj), which

is essential to diagnose valence bond solid order. In the ground state, a different basis

can be used to access such off-diagonal operators through projector QMC. This is the

basis of all bipartite singlet covers, where each state is a product state of singlets such

that each site belongs to a singlet. Expressing this state in the z-basis and evaluating

inner products between different singlet covers reveals that this basis is overcomplete

and thus cannot be used in a method such as SSE. In projector QMC, we can begin

with any state which has a non-zero overlap with the ground state and in the case

of the singlet basis, we begin with a uniform superposition of all singlet covers and

carry out the QMC in a combined singlet-z basis. The operators in the Hamiltonian

must now be formulated in this singlet language so that their action on the singlet

covers is clear. Consider an antiferromagnetic Heisenberg model with Hamiltonian

H =
∑
〈i,j〉

~Si · ~Sj, where 〈i, j〉 are some predefined pairs of lattice sites. To build an

operator string with a pair of states sandwiching it, a z-basis state is chosen which

is consistent with the projection boundary singlet cover states and operators in the

string are chosen based on the z-basis state. For example, the diagonal operator

(Szi S
z
j + 1/4) only acts on sites i and j if they have opposite spins. The off-diagonal

operator (S+
i S
−
j + S−i S

+
j ) also enforces the same condition and flips both spins. The

Monte Carlo simulation begins from a valid operator string and updates it based

on moves which move the diagonal operators and implement exchanges between di-

agonal and off-diagonal operators through flipping operations along closed loops as

this respects the constraints for a valid operator string configuration. This process

generates operator configurations with the appropriate weights in an ergodic manner

leading to efficient sampling. Diagonal operators can be directly measured now from

the configurations in the z-basis without considering the singlet basis. It is important
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to note that in the singlet basis, only the operator ~Si · ~Sj occurs, as it is the SU(2)

invariant version. This operator acts as a singlet projection operator, generating a

singlet between sites i and j. For off-diagonal operators, we construct left and right

states starting from the singlet configurations on the ends using 〈ψl|Hm and Hm |ψr〉

respectively. The state is built by following the operators along the operator string

and making appropriate changes to the state when an operator is passed in the string.

In the event that the operator acts on sites i and j which are already connected by a

singlet, the singlet projection operator does not change the state. Sites that belong

to different singlets get connected by a singlet and their partner spins form another

singlet. This can be seen by observing the action of ~Si · ~Sj on a state having singlets

on pairs {i, k}, {l, j}:

Pij |...{i, k}, {l, j}...〉 =
1

2
|...{i, j}, {l, k}...〉 . (1.14)

Here Pij = 1/4− ~Si · ~Sj is the exact projection operator and the above relationship can

be confirmed by expanding both sides in the z-basis. After traversing the operator

string from the left and right ends, the projected singlet states can be assumed to be

drawn from the ground state manifold, and measurements can be carried out using

these. To calculate quantities such as spin correlation functions, the singlet states

must be first expressed in the z-basis and an overlap calculated, which lists the z-

basis states permitted by both states. This set of z-basis states can then be used to

calculate expectation values in the z-basis, such as Szi S
z
j . For off-diagonal operators,

more complicated manipulations of the overlap diagram between the singlet states

must be carried out and this is illustrated in chapter 2.

Next we turn to the transverse field Ising model, where the QMC algorithm closely

mimics the treatment of the classical Ising model. Our basis of choice for this model
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is the z-basis, and the Hamiltonian is this basis can be written as

H = −J
∑
〈i,j〉

σzi σ
z
j − h

∑
i

σxi . (1.15)

σxi acts on a z-basis by just flipping the spin at site i. This Hamiltonian is studied

on various lattices, and in some cases it is difficult to find efficient updates for the

QMC simulation. One way of designing the operator string in this model is by adding

−h
∑

i Ii, which is the identity operator acting on site i, to the Hamiltonian. Now

the operator string can be built using combinations of these three types of operators.

A particular operator string can be broken up into clusters, which are defined in the

following manner. If two sites in the space-time configuration are connected by σzi σ
z
j ,

they must be part of the same cluster and if two points are on opposite sides of the

σxi or Ii operators, then they are uncorrelated. Using these rules, one can construct

clusters of spins and operators which can be flipped independent of other clusters.

This method along with metropolis style updates for operators which are diagonal in

the z-basis, allow us to efficiently sample space-time configurations for some simple

lattices. For frustrated lattices or operators made out of more than two σz operators,

this cluster building algorithm leads to clusters which are either too small or too big,

thus leading to inefficient sampling. We will discuss some methods of getting around

this in later chapters.
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Chapter 2

Conformal Field Theory and Emergent

Symmetry in 1D

2.1 CFT in 1+1D and predictive power

Field theories are in general useful descriptions for large scale features at phase tran-

sitions. In the case of classical phase transitions they result from a coarse graining in

momentum space using renormalization group flows. For quantum phase transitions,

field theories can be written down in a space which is one dimension higher than the

quantum system, using a coarse graining of the path integral. In this chapter, we will

restrict ourselves to 1+1D quantum systems, where the +1 stands for the extra di-

mension associated with the path integral, or 2D classical systems. For such systems,

conformal field theory (CFT) proves to be a powerful analytical technique. Confor-

mal symmetry requires translation, scaling, rotational and inversion symmetries. In

2D, the first three automatically guarantee the fourth. 2D classical systems which

possess the above properties and 1D quantum systems with a dynamic exponent of

1, which implies that imaginary time scales in the same manner as space, qualify for

conformal symmetry at the critical point. It is also important to note that this theory

treats local systems, which is in general true for physically relevant systems.

A 2D CFT is defined on the complex plane and the constraints that conformal

symmetry requires restricts the two and three-point correlation functions of primary
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operators to behave as (Di Francesco et al., 1997):

〈OiOj〉 ∼
δij

|zij|ΛiΛj
, (2.1a)

〈OiOjOk〉 ∼
1

|zij|∆ij |zjk|∆jk |zki|∆ki
, (2.1b)

where Oi are the primary operators of the CFT and Λi are their scaling dimensions

and ∆ij = Λi + Λj − Λk. The scaling dimension of a primary operator is made up

of two numbers hi and h̄i which indicate the scaling in z and z̄ respectively. These

correlation functions can be factorized into two pieces, where one depends on z, and

the other on z̄ and the Λi’s are replaced by hi(h̄i). This is useful when hi 6= h̄i, which

may be the case for current operators, which generate translations in either z or z̄.

For operators with hi = h̄i, we do not mention each of them separately, but only

indicate the total scaling dimension Λi = hi + h̄i.

As these relations are valid on the infinite complex plane and our simulations are

done on a periodic chain, we must use a mapping from the cylinder to the infinite

plane to understand the correlation functions. In our simulations, we use ground state

projector QMC simulations, which means that we project on a trial state with a large

number of Hamiltonians, effectively for a long imaginary time. This implies that we

are using a cylinder whose circumference is the system size and length is infinite for

all practical purposes. The system can then be mapped to the infinite plane through

the transformations τ → r and x → θ (Calabrese and Cardy, 2004) which results

in two spatially separated points on the periodic chain having a conformal distance

between them of

|zij| = L sin
(
π
x

L

)
, (2.2)

where x is the separation on the ring. This substitution into the correlation functions

on the plane tells us what we should expect on the cylinder. In some cases, the
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correlation function on the plane may have different dependence on z and z̄ and

may not be expressible in |z|, but the mapping to the cylinder correlation functions

reverses this (Di Francesco et al., 1997; Calabrese and Cardy, 2004) and they only

depend on the conformal distance given by Eq. (2.2), which must be the case as

they are real. Conformal information has also been used to aid fitting of correlation

functions and other numerical quantities for spin systems (Fáth, 2003; Arita and

Motegi, 2011; Lake et al., 2005). The conformal structure of Potts models has also

been investigated using three-point functions (Delfino et al., 2013). As we will see, the

SU(2) spin chains considered here have additional complications when interpreting

multi-point functions.

2.2 Ising CFT and benchmarking of features

In this section, we will present the results from 2D CFT in the context of the periodic

critical Ising chain, which has a Hamiltonian of the form

H = −
∑
i

σzi σ
z
i+1 −

∑
i

σxi . (2.3)

This Hamiltonian can be written in terms of Majorana fermions in the continuum as

follows (Boyanovsky, 1989):

H =
1

2

(
− i∂ψR(x)

∂x
ψR(x)

)
− 1

2

(
− i∂ψL(x)

∂x
ψL(x)

)
. (2.4)

In general this Hamiltonian should also have a mass term, but it disappears at crit-

icality, leaving H invariant under scaling. From the Hamiltonian we see that the

equations of motion imply that the two fermions are completely disconnected (due to

the absence of a mass term) and thus it is sufficient to study just one of them.

Here we will check that the functional form of the three-point function matches

the CFT prediction for the TFIM as we will be using three-point functions in the
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next section to point out features of the extended symmetry. The CFT of the TFIM

is made up of three primary operators, namely the identity I, the spin σ and the

ferromagnetic part of the energy density ε, with scaling dimensions 0, 1/8 and 1

respectively (Belavin et al., 1984; Knizhnik and Zamolodchikov, 1984). We can first

check the two point correlation function C2(s) = 〈σ0σx〉, which should behave as

C2(x) ∝
(

1

L sin(πx/L)

)2Λσ

, (2.5)

To make the functional dependence expressed there more explicit in graphs, we define

the correlator scaled by the conformal distance as

Csc(x) =
(
L sin

(
π
x

L

))2Λσ
C2(x). (2.6)

If C2(x) follows Eq. (2.5), the scaled correlation should be a constant with respect to

the distance x. As shown in Fig. 2·1, we find that the scaled spin correlation function

indeed converges to a constant, even for relatively small system sizes (indicating small

scaling corrections in this case), and to good precision except for x/L ≈ 0 (and signs

of convergence even when x→ 0 are seen when the system size grows).

For these operators, the non-vanishing three-point function with the smallest scal-

ing dimension is 〈εσσ〉. We also note here again that the CFT only tells us the be-

havior of the connected three-point function and due to this, we compare the CFT

expectation to 〈εσσ〉c = 〈εσσ〉 − 〈ε〉〈σσ〉. We will not carry the subscript c for con-

nected correlation functions as they make the symbolic expressions cumbersome.

Using the conformal distance and Eq. (2.1b), the three-point correlation function

on the ring should be

〈ε0σxσy〉 ∼
[
L sin

(
π |y−x|

L

)] 3
4[

L sin
(
π x
L

)][
L sin

(
π y
L

)] . (2.7)

To compare numerical data to this expression, we define a scaled correlation function
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Csc(x, y) which is the raw correlation function multiplied by the inverse of the expected

form as shown below:

Csc(x, y) ∼ 〈ε0σxσy〉 ×
[
L sin

(
π x
L

)][
L sin

(
π y
L

)][
L sin

(
π |y−x|

L

)] 3
4

(2.8)

If the expression matches, we should expect the scaled correlation function to be a

constant as a function of x and y. In Fig. 2·2, we plot the scaled correlation function

for two different values of x and the whole range of y. For large sizes, we observe

an approach to constant behavior, with the deviations occurring when two out of the

three operators are close to each other and, therefore, the coarse grained description

does not hold.

It is important to note here that we must use the conformal distances when pre-

dicting the finite-size functional form due to the cylinder to plane conformal transfor-

mation that we have used. We can also define the scaled correlation function using

just the lattice distances instead of the conformal distance as

Csc(x, y) ∼ 〈ε0σxσy〉 ×
[s(0, x)][s(0, y)]

[s(x, y)]
3
4

, (2.9)

where s(a, b) is the shortest distance between a and b along the ring. This way of

defining the scaled correlator results in a disagreement with the expected constant

form for the scaled correlation function, as can be seen in Fig. 2·3, although the curves

for different sizes still show data collapse as the correct scaling dimension is being

used even in this correlator.

2.3 Verification in trial wavefunction

The Amplitude Product State is a wavefunction of the resonating valence bond type

on a bipartite lattice (Lin et al., 2012; Liang et al., 1988). Here we define it in 1D,
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Figure 2·1: Scaled spin correlation function, Eq. (2.6), for the critical
TFIM on chains of different lengths (x/L = 0.5 is the largest separation
on a periodic chain). Here we have used ∆σ = 1/8 as that is the scaling
dimension of the Ising spin operator (Knizhnik and Zamolodchikov,
1984).

using parameters λ and κ, as a superposition of valence-bond states as,

|Ψ(λ, κ)〉 =
∑
i

Ai(λ, κ)|Vi〉, (2.10)

where |Vi〉 is a tiling of Nb = L/2 two-spin singlets between the A-sites and the B-sites

on the 1D periodic chain, and it contributes with a weight Ai to the APS. The weight

is given by an amplitude-product depending on the bond-lengths present in |Vi〉;

Ai =

Nb∏
j=1

h(dj), h(d) =


λ, d = 1,

d−κ, d > 1.

(2.11)
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Figure 2·2: The scaled three-point function for the critical periodic
TFIM chain as defined in Eq. (2.8) flows to a constant for x = L/8 (left)
and x = L/2 (right). The line is a guide to the eye and for x = L/2, we
only exclude data around y/L = 0.5 for large sizes as the correlation
function vanishes quickly as x ∼ y ∼ L/2 and this means the numerical
signal is very weak.

It should be noted that the asymptotic properties of the state are not controlled

only by the asymptotic power law, as might be naively expected, but also by the

short-length weights which are important in this regard (Beach, 2009).

We have here chosen a very simple parameterization that allows us to study the

effects of both asymptotic and short-length amplitudes, as in Refs. (Lin et al., 2012;

Beach, 2009). For κ → 0 and λ ≈ 1 all valence-bond coverings contribute equally

and we obtain a long-range ordered Néel state, whereas for κ → ∞ we have only

two contributing components, each with short bonds on alternating spin pairs, i.e.,

two degenerate dimerized states. In (λ, κ) space we have a critical curve, κcrit(λ),

separating these two phases, as shown in Fig. 2·4. The critical spin and dimer expo-

nents vary continuously on this curve (Lin et al., 2012). All our scaling results for

the correlators were obtained for parameter values falling on this critical curve, and

we have improved the estimation of this curve over Ref. (Lin et al., 2012) by going to

larger chain lengths. Measurements in the valence-bond basis are done by following

the mapping to loop estimators developed in (Beach and Sandvik, 2006). To avoid
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Figure 2·3: Three point function for the critical TFIM periodic chain
scaled using the lattice distance rather than the conformal distance,
here for x = L/8.

getting locked into winding sectors at large λ, we have also introduced simultaneous

updates for identical singlets in the bra and ket configurations (Patil et al., 2014)

which considerably improves the sampling efficiency.

We extract crossing points using the Binder cumulant at a particular value of λ, as

shown in Fig. 2·5, and estimate the critical dimension of the spin operator by looking

at the flow of the exponent with chain length. We also see that the Binder cumulant

becomes negative for κ ≈ κcrit and large system sizes (it approaches 0 for larger κ).

A negative Binder cumulant is often taken as an indicator of a first-order transition,

but for that purpose one also has to check that the negative peak value grows as the

system volume. Rigorous examples exist of more slowly divergent negative peaks at

continuous transitions Ref. (Jin et al., 2012), and, as indicated by our results, the

APS may provide yet another example where this may be the case.
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Figure 2·4: Phase diagram of the APS with a critical curve separating
the Néel phase and the VBS phase; this matches well the phase diagram
previously reported in Ref. (Lin et al., 2012).

Next we consider the entanglement entropy (EE) of the APS, using the second

Renyi variant S2(lA), which is accessible in simulations using the swap operation and

the ratio trick (Hastings et al., 2010). We find that the EE follows a profile identical

to what we would expect from a CFT (Calabrese and Cardy, 2004) on a circle (shown

for half a periodic chain in Fig. 2·13), i.e., the EE depends on the size of the entangled

region (lA) as follows:

S2(lA) =
c

4
log

[
L

πa
sin

(
πlA
L

)]
+ d, (2.12)

where L is the total system size, and a is the nearest-neighbor distance (set to 1 in

our case). This form can be derived from the general form for the nth Renyi entropy

(Calabrese and Cardy, 2004). The constant d is different for odd and even sizes and
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Figure 2·5: Flow of the Binder cumulant of the APS with κ for differ-
ent system sizes at λ = 3. We see here the crossing points for three sets
of (L, 2L) (example of extrapolation to critical point shown in inset of
Fig. 2·13) and also that Bc becomes negative for large sizes after the
crossing point.

the constant c corresponds to the central charge of the CFT.

Using this formulation, we can extract the effective central charge of the apparent

CFT. We have done this for a set of different λ (shown in Fig. 2·7) for different sizes

and find the effective central charge to be close to unity for λ 6= 0. At λ = 0, the

VBS phase shifts from being composed of bonds of unit length to one made out of

bonds of length 3 (as unit-length bonds have null weight), and we find the extracted

c to be closer to 3/2 in this case. The values 1 and 3/2 are both possible CFT central

charges in the case of SU(2) symmetry, and c = 1 is associated with continuously

varying exponents. Here we have not studied finite-size effects, due to difficulties in
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Figure 2·6: EE of the 1D critical APS at λ = 1 for a periodic chain
of L = 64 sites. A fit to the form predicted by Eq. (2.12), along with
finite size corrections (Xavier and Alcaraz, 2012) causing the visible
even-odd oscillations, gave c = 1.08(4). Error bars are of the order
of the symbol size. The inset shows the extrapolation of the Binder
cumulant crossings points (examples of which are seen in Fig. 2·12),
which we have used to extract the critical κ for the infinite system.
Here κcrit is 1.519(5).

accurately computing the EE for larger system sizes, and it is not clear whether c will

flow with increasing size to 1 (in general) and 3/2 (in the special case of λ = 0), or

whether the value changes continuously as we vary λ. In any case, as we will see, the

system should not have a CFT description and it is interesting that the “effective c”

nevertheless is close to common CFT values.

Next we look at the critical exponent for the spin correlation using the technique of

Binder crossings and flowing exponents at different λ. The spin dimension calculated
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from the two- and four-point functions in Fig. 2·14 disagree slightly when λ ≈ 1,

but considering the relatively large error bars we consider the agreement satisfactory

nevertheless. The exponent values differ substantially from the expected CFT value

1/2 for the entire range of λ studied. This rules out a k=1 WZW description of the

critical APS.

We can also study the scaled r-dependent correlation function as defined in Eq. (2.6),

and we expect that it would not flow to a constant with respect to point separation

with increasing size as there does not appear to be a CFT description for this system.

In Fig. 2·9 we show results for λ = 1 using the scaling dimension Λσ = 0.38 from

Fig. 2·8 and tuning slightly to 0.40 to get data collapse for a large range of x
L

, and find

that it does not follow the CFT functional form even for a large system of 12288 sites.
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two- and four-point functions calculated on the critical curve.

To check the deviations more explicitly, we define the ratio of the scaled correlations

at two different distances,

R(r1, r2) =
Csc(r1)

Csc(r2)
, (2.13)

which should approach unity for all r1, r2 when L → ∞ if the CFT description is

valid. In the inset of Fig. 2·9 we plot R(0.2, 0.5) as a function of 1/L at criticality

and extrapolate it to infinite size using a second-order polynomial. We see that the

result deviates substantially from unity, suggesting that this indeed is a good CFT

test (here with a negative result). We were not able to look at the behavior of dimer

correlators in the APS, as we have done with the J-Q chain, as the dimer order is

quite weak at criticality and not substantial enough to perform a careful finite-size
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critical APS at λ = 1 (where κcrit = 1.519). The inset shows the ratio
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scaling analysis with large system sizes.

We have found that the EE of the APS falsely points towards the existence of a

conformal description at criticality. We have determined the inapplicability of a CFT

description by extracting the dimension of the spin operator and by investigating the

behavior of the two-point spin correlator. As the APS is capable of harboring a long-

range ordered Néel state in 1D, it is apparent that the Hamiltonian must have long-

range interactions on this side of the phase transition, and it is likely that the effects

of these interactions carry on to the critical point as well, thus perhaps preventing a

CFT description (as that requires sufficient locality of the interactions). Note that

long-range interactions do not automatically preclude a CFT description and there are
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indeed examples of this, e.g., SU(N) spin chains with exchange interactions decaying

with distance r as 1/r2 (Haldane et al., 1992). As the rate of decay is decreased, one

would at some point expect the CFT description to break down.

Examples of direct transitions between antiferromagnetic and VBS phases have

already been seen in both frustrated and (Sandvik, 2010a) and unfrustrated (Lafloren-

cie et al., 2005) spin chains with tunable power-law decaying long-range interactions,

and it was found that the dynamic exponent z < 1. Thus, space and time do not scale

in the same manner and we cannot have a 1 + 1-dimensional CFT description of such

a system (though scale invariance still holds). As the Hamiltonian of the APS is un-

known, it is not possible to determine z, but given that there is a long-range ordered

Néel state terminating at the critical curve it seems plausible that the Hamiltonian

could have z 6= 1. It might indeed be worthwhile to find the parent Hamiltonian and

to test this conjecture.

Our numerics have also shown that the critical APS looks like a CFT when ex-

amined only through the lenses of entanglement, following the predicted scaling with

the size of the subsystem of the bipartition and even delivering values of c in the

range of common CFT values (the effective c being close to 1 and 3/2). Thus, our

study shows that care has to be taken when using the EE to establish the proper

field-theory description, and it is important to also tests the constraints of CFTs in

the details of correlation functions.

2.4 Emergent symmetry in the Heisenberg antiferromagnetic

chain

The spin-1/2 Heisenberg chain, with the Hamiltonian

H =
N∑
i=1

~Si · ~Si+1 (2.14)
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can be transformed into a system of interacting spinless fermions of two species using

the transformation (Affleck, 1985; Affleck and Haldane, 1987):

~Sn =
1

2
ψ†

i

n~σ
j
iψnj, (2.15)

where ψin is a spin doublet and repeated indices imply summation over the range of

values that the index can take (as we will use throughout this work). To take the

continuum limit, we will reiterate the series of arguments presented in (Affleck, 1985;

Affleck and Haldane, 1987) and use this process to define quantities that we will use

later. Each fermion in the doublet can be rewritten as two new fermions,

ψjn ' [inψjL(n± 1

2
) + (−i)nψjR(n± 1

2
)], (2.16)

(plus and minus for even and odd n, respectively) which is an exact transformation

up to an overall factor. This is motivated by the expectation that the free-fermion

ground state would have all states with |k| < π/2a occupied and then only Fourier

modes with k ' ±π/2a would be important (Haldane, 1980). Thus, we understand

the left (L) and right (R) fermion operators to be “locally” constant and to be slowly

varying at the scale of lattice separation. These will ultimately form the operators of

the continuum field theory. We can now write the spin operator on the lattice, using

the current operators

~JL = ψ†
i

L~σ
j
iψLj, (2.17a)

~JR = ψ†
i

R~σ
j
iψRj, (2.17b)

and the fermion bilinear

Gi
j = ψ†

i

LψRj, (2.18)
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by direct substitution in Eq. (2.15) as

Sin = a(J iL + J iR) + (−1)naTr[(G−G†)σi]. (2.19)

Here we have used script letters for lattice operators and bold font for matrices and

we will continue to maintain these conventions throughout this text. The operators

~JL, ~JR,G are defined at the same lattice position n as the spin operator but this is

not explicitly indicated to keep the equations unencumbered. This form of the spin

operator can be substituted into the Hamiltonian of Eq. (2.14), which upon coarse

graining has the following continuum limit,

H = (a/2)

∫
dx[ ~JL · ~JL + ~JR · ~JR + 2 ~JL · ~JR] + ..., (2.20)

where a is the lattice spacing (Affleck, 1985).

Note also that at this stage we have only one SU(2) symmetry which comes along

with the 3D rotation symmetry that the microscopic model has. This is manifest in

each of ~JL/R but they are not free to turn through different arbitrary angles due to

the ~JL · ~JR term which keeps the relative angle between them fixed. Assuming that

this Hamiltonian flows to the free fermion fixed point, which has the Hamiltonian

Hfixed =

∫
dx[ ~JL · ~JL + ~JR · ~JR], (2.21)

it can be shown that the term that couples left and right currents in Eq. (2.20) is

irrelevant under RG flow (Affleck, 1985; Affleck and Haldane, 1987) for this particular

fixed point. This is not true for all perturbations to the fixed point Hamiltonian

and thus was checked explicitly (Affleck, 1985; Affleck and Haldane, 1987) for the

~JL · ~JR term. Thus we see that this line of reasoning leads us to believe that in the

thermodynamic limit we should be left with the free fermion fixed point, which is also

described by the k = 1 Wess-Zumino-Witten (WZW) conformal field theory (Belavin
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et al., 1984).

To understand how the decoupling of the currents affects correlation functions of

spin and dimer operators, we must first connect the primary operators of the CFT

to these order parameters. Once we have done this, we can use the constraints that

the extended symmetry places on the correlation functions of the primary operators

to understand the correlations of the measurable orders.

The primary operators of the k = 1 WZW theory that we are going to be interested

in are [JL,JR, g], which are the left and right currents with scaling dimension 1 and

the primary field with scaling dimension 1/2. These are all SU(2) matrices, although

the currents form matrices which belong to the Hermitian subset of SU(2), which are

described by SO(3) vectors. This can be seen by observing that ~JL/R in the fixed

point Hamiltonian [Eq. (2.21)] are SO(3) vectors and thus the matrices to represent

these must be written as

JL/R = JaL/Rσ
a, (2.22)

where JaL/R form the components of ~JL/R. This structure is also justified by the

framework of the 2D CFT, which requires independent generators of translations for

z and z̄ (conjugate variables in the complex plane). In the Virasoro algebra of the 2D

CFT (Di Francesco et al., 1997), these would usually be called J(z) and J̄(z̄) and in

the case of the left (right) fermion, z = x+ it (z̄ = x− it) would encode its space-time

position.

The primary field g is made out of the continuum versions of the lattice operators

which we shall denote as (Sa, D). The components Sa form the continuum spin

operators and D represents the continuum dimer operator. These together form an

SO(4) pseudovector which is embedded in g through

g = Sa iσa +DI, (2.23)
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as any general SU(2) matrix can be expanded in this manner. The continuum versions

of spins and dimers will be mapped back to the lattice variables in the next section.

The primary field g is also closely related to the fermion bilinear G as g is influenced

by transformations in both z and z̄ (left and right rotations) and G is made out of

left- and right-moving fermions and is also sensitive to transformations in both of

them.

As mentioned earlier, the left and right currents can turn through different arbi-

trary angles at the fixed point and these SO(3) rotations can be written in terms of

transformations on the SU(2) matrices as

JL = JaLσ
a → LJLL

† = J
′a
L σ

a, (2.24a)

JR = JaRσ
a → RJRR

† = J
′a
Rσ

a, (2.24b)

where L and R are the SU(2) rotation matrices. It is important to note here that

these rotations do not mix left and right currents and keep the 2D conformal structure

intact. The field g depends on z and z̄ by construction (Di Francesco et al., 1997)

and thus is affected by both left and right rotations. These rotations are reflected in

(Sa, D) through

g = Sa iσa +DI → LgR† = S
′a iσa +D

′
I, (2.25)

which creates the new set (S
′a, D

′
). The matrices (g,JL,JR) live on the complex

plane formed by space-time and so do their components. The correlation functions

of these components (which are the continuum spin, dimer, and current operators)

on the complex plane are of interest to us as they tell us what to expect for the

correlation functions of the lattice operators, which we will investigate numerically

later. We would also like to point out here that all the correlation functions that we

consider in this text are connected correlation functions as they are the ones which
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the CFT predicts. From this point on, we will not explicitly mention that we are

only considering connected correlation functions. For the continuum operators, the

connected correlation functions we consider are the same as the naive correlation

functions as all the operators have a zero single body expectation (enforced by the

CFT) value and this implies nothing needs to be subtracted from the naive correlation

function to get the connected one.

To extract the correlation functions of (Sa, D), we examine

〈Tr[gz1g
†
z2

]〉 = 〈SaSa〉+ 〈DD〉 (2.26)

and see that the right hand side is non-zero as the arbitrary transformations L and

R leave the two point function of g, as defined here, unchanged through Eq. (2.25)

due to the cyclicity of the trace and as R†R = L†L = I. Similarly, if we look at the

transformation of the three-point function,

〈Tr[gz1g
†
z2
gz3 ]〉 → (2.27)

〈Tr[Lgz1R
†Rg†z2L

†Lgz3R
†]〉,

we see that the only way to keep this invariant under arbitrary L and R would be to

have this vanish. The vanishing of the three-point function then implies that all three-

point functions of (Sa, D) (which could be either of 〈SaSaD〉, 〈SaDSa〉, 〈DSaSa〉,

〈DDD〉) would vanish. This can be seen by writing down all the possible three-point

functions of g and g† and solving for the spin and dimer correlation functions.

When discussing the lattice spin and dimer correlation functions, we will also need

the continuum versions of the correlation functions of the currents and operators.

The expressions which are of interest to us and robust against arbitrary L and R

transformations are

〈Tr[JLJL]〉 ∼ 〈JaLJaL〉, (2.28)
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〈Tr[JLgg
†]〉 ∼ 〈JaLSaD〉+ 〈JaLDSa〉, (2.29)

and permutations of the second equation with JL in different positions. These equa-

tions also apply for the right currents by just switching all L→ R. The non-vanishing

nature of these correlation functions can be seen again using the cyclicity of the trace

and transformation equations (2.24a), (2.24b) and (2.25).

We have seen above that some of the correlation functions of continuum operators

vanish and for the ones that do not, we can predict their functional forms based on

the CFT constraints. The primary operators of the k = 1 WZW model are JL,JR

and g with scaling dimensions (h, h̄) given by (1,0),(0,1) and (1/4,1/4) respectively.

Using these dimensions, we can infer that the correlation functions on the periodic

chain must have the following forms,

〈Tr[g(0)g†(x)]〉 ∼ 1

L sin(π x
L

)
, (2.30a)

〈Tr[JL(0)JL(x)]〉 ∼ 1[
L sin(π x

L
)
]2 , (2.30b)

〈Tr[JL(0)g(x)g†(y)]〉 ∼ 1[
L sin(π x

L
)
][
L sin(π y

L
)
] , (2.30c)

and the same for L→ R. We can now use these expressions to understand the lattice

correlation functions by writing the lattice operators in terms of their continuum

versions. Inspired by the analysis leading up to Eq. (2.19), the spin and dimer lattice

operators have been postulated (Affleck, 1985; Tsvelik, 2007) to be

Sin ∼ α(J iL + J iR) + (−1)nβSi, (2.31a)

Dn = ~Sn · ~Sn+1 ∼ D0 + (−1)nγD, (2.31b)

where α, β, γ are UV sensitive prefactors and D0 is a constant shift of the lattice

dimer operator which must be subtracted out when calculating connected correlation
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Figure 2·10: Scaled dimer two-point function for the critical JQ2

periodic chain as defined in Eq. (2.38). The results flow to a constant
with increasing size. The Horizontal axis only extends to x/L = 0.5 as
two-point functions are symmetric about y = L/2.

functions.

Using this equivalence between the lattice and continuum operators, we can con-

struct the lattice correlation functions that we are going to use;

〈DD〉 ∼ (−1)n〈Tr[gg†]〉+ ..., (2.32a)

〈DDD〉 ∼ 0 + ..., (2.32b)

〈~S · ~S〉 ∼ (−1)n〈Tr[gg†]〉+ 〈 ~JL · ~JL〉+ 〈 ~JR · ~JR〉+ ..., (2.32c)

〈~S · ~SD〉 ∼ 〈Tr[JLgg
†]〉+ 〈Tr[gJLg

†]〉+ (L→ R) + ..., (2.32d)
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Figure 2·11: Spin two-point function for the critical JQ2 chain scaled
with the first term of Eq. (2.35) [as explicitly shown in Eq. (2.39)]. The
approach to a constant for large sizes confirms the expected form.

where we have dropped the prefactors as they are UV-controlled parameters which

are not important from the continuum perspective and to keep the equations from

becoming unnecessarily dense. The additional terms ignored in these equations are

lattice non-asymptotic corrections which occur due to finite distance and lattice size.

Our simulations use lattices large enough to observe the decay toward zero of these

contributions.

We can incorporate the results of Eqs. (2.30a), (2.30b) and (2.30c) to hypothesize

that the full functional forms of the connected lattice correlation functions are

〈D0DxDy〉 ∼ 0 + ..., (2.33)
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Figure 2·12: Spin two-point function for the critical JQ2 chain with
the first term of Eq. (2.35) subtracted out and scaled with the second
term, as in Eq. (2.40). We see improving agreement with the expected
form with increasing L.

〈D0Dx〉 ∼
(−1)x

L sin(π x
L

)
+ ..., (2.34)

〈~S0 · ~Sx〉 ∼
(−1)x

L sin(π x
L

)
+

1[
L sin(π x

L
)
]2 + ..., (2.35)

〈D0
~Sx · ~Sy〉 ∼

1

L sin
[
π
L

(y − x)
][ (−1)x

L sin(π y
L

)
− (−1)y

L sin(π x
L

)

]
+ .... (2.36)

The most striking effects of the extended symmetry are seen in Eqs. (2.33) and

(2.36) where the vanishing of the three-point function of g ensures that there is no

term with scaling dimension 3/2 (three times scaling dimension of g) in either of

these equations. In this case, if we were to use the three-point function’s scaling form
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Figure 2·13: The Dimer three-point function for the critical JQ2 chain
vanishes for large enough system size, which agreement with Eq. (2.33),
here shown for x = L/4 and x = L/2.

to infer the scaling dimensions of the operators (which imply the scaling dimensions

should sum to 2), we would run into errors as we would be unable to make it consistent

with the two point functions (which imply the scaling dimensions should sum to 3/2).

To see proof of this numerically, we again calculate scaled correlation functions for

these expressions, except for 〈D0DxDy〉, which is expected to be zero. If the numerics

agree, we should expect to see that the scaled functions are constants with respect to

x and y, similar to the TFIM.

The continuum description of the Heisenberg model ground state has marginal

operators which lead to log corrections to correlation functions. We shall use the

JQ2 chain which is the Heisenberg model with a four spin term that enforces dimer

order when strong and tunes out the log corrections at the transition point (where

the marginal operator vanishes) into the dimer phase;

H = −JΣiPi,i+1 −QΣiPi,i+1Pi+2,i+3 (2.37)

where Pi,j = 1/4 − ~Si · ~Sj. This model is an alternative to the more commonly used

J1-J2 (first and second neighbor interacting) Heisenberg chain (Eggert, 1996), with

the advantage that it is amenable to QMC studies without sign problems.
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Figure 2·14: The scaled dimer-spin-spin three-point function,
Eq. (2.41), for the critical JQ2 flows to a constant, here demonstrated
for x = L/4 and x = L/2. In the upper panel, the divergence at
y = 3L/4 is due to the exact vanishing of the correlation function at
this point. In the lower panel, data for even y values in the range
y/L ∈ (0.3, 0.7) have been excluded as 〈D0

~Sx · ~Sy〉 tends to a “0/0”
form and, thus, the scaled correlation function is very noisy.

At a critical value of Q/J , Qc/J ≈ 0.84831 (Tang and Sandvik, 2011; Sanyal

et al., 2011), we would expect to see the correlation functions behave according to

the predicted forms. All our simulations of the ground state of the critical JQ2 chain

are done using a projector QMC method formulated in the valence-bond basis. The

correlation functions are evaluated using loop estimators on the transition-graphs

created by sampling the states in the valence-bond basis (Beach and Sandvik, 2006;

Sandvik and Evertz, 2010). Fig. 2·10 illustrates the scaled correlator for 〈D0Dx〉,

defined using Eq. (2.34) as

Csc(x) = 〈D0Dx〉 ×
L sin(π x

L
)

(−1)x
, (2.38)

and we see that it approaches a constant for fairly small chain lengths. Fig. 2·11

shows the scaled version of the first term (scaling dimension of 1) of 〈~S0 · ~Sx〉, again

defined using Eq. (2.35) as
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Csc(x) = 〈~S0 · ~Sx〉 ×
[
L sin(π x

L
)

(−1)x

]
, (2.39)

which dominates the second term (scaling dimension of 2) and we see that this flows

to a constant [1.11(1)] with increasing size. In Fig. 2·12, we subtract out the first

term and present the scaled version of the second term in a scaled correlation function

defined as

Csc(x) =

[
〈~S0 · ~Sx〉 − 1.11× (−1)x

L sin(π x
L

)

]
(2.40)

×
[
L sin

(
π
x

L

)]
,

for which we cannot go to large sizes due to insufficient data quality. We still can

observe that it matches our expectations, flowing to a constant with increasing system

size.

In Fig. 2·13, we show the agreement of the three-point dimer correlation function

[denoted by CD3(x, y) in both figures] with Eq. (2.33) for two different values of x and

the whole range of y values. Only in the case of the three-point dimer function, we

present the raw correlation function without scaling as it is expected to be zero and

there is no sense in which we can scale it. We show the same for Eq. (2.36) through

Figs. 2·14 by again defining a scaled correlator as

Csc(x, y) = 〈D0
~Sx · ~Sy〉

L sin
[
π
L

(y − x)
]

(−1)x

L sin(π y
L

)
− (−1)y

L sin(π x
L

)

(2.41)

and observing that it approaches a constant for large sizes. With this numerical

evidence, we conclude that the signatures of the extended symmetry that we expect

to see are indeed present in the spin-1/2 Heisenberg chain. Finite-size (distance)

corrections can be seen clearly in our numerical data and these should be described

by irrelevant operators.
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We have shown numerical evidence of the effects of the emergent SO(4) ≡ [SU(2)×

SU(2)]/Z2 symmetry in the Heisenberg chain on the correlation functions of lattice

operators. This establishes the IR emergent symmetry which was theoretically ex-

pected from a variety of arguments. The three-point function was discussed here as

a useful tool to understand the structure of the underlying field theory and has been

shown to yield useful information through not only its scaling dimension, but also its

functional form. The clearest example of this is 〈D0
~Sx · ~Sy〉 whose observed scaling

dimension is not directly related to the leading scaling dimensions of the operators

it is made out of, due to cancellations of contributions from the field and current

operators. Here, we have also developed tests of CFT through correlation functions

and these can be used to test suspected extended symmetry in higher dimensional

systems (Nahum et al., 2015; Wang et al., 2017) and more broadly to test for CFT

signatures in general.

In higher dimensions, an open question is what system geometry is best suited

for investigating the conformal symmetry explicitly in equal-time correlation func-

tions. In 1D, for the ring geometry (infinite imaginary time, i.e., the ground state)

the conformal distance naturally emerges, but it does not have a direct generalization

to 2D or 3D. The functional form of the correlation functions when expressed using

the conformal distance in 1D provides perhaps the most striking evidence of confor-

mal invariance in finite systems, and such a concept in higher dimensions would be

very useful for lattice calculations. QMC calculations of correlation functions can be

readily extended to higher dimensions to check the existence of CFT descriptions if

such concepts were to be developed. For 1D systems, density matrix renormalization

group (DMRG) can be used to check the predictions of the CFT as well, including

direct detection of the conformal tower of excitations (Chepiga and Mila, 2017). With

DMRG calculations using the common open boundary conditions (as the computa-
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tional cost of periodic boundaries is significantly higher), CFT results for correlation

functions will only be valid away from the boundaries, and the correlation functions

will then just depend on the lattice separation between sites instead of the conformal

distance (achieved by the mapping of the infinite cylinder to the infinite plane). This

would be relevant when simulating the critical J1-J2 chain which is not amenable to

QMC due to the sign problem but has the same CFT description as the J-Q chain

considered here, and is another model which recreates the k = 1 WZW model in the

continuum limit.

2.5 Measuring Operator Expectation Values in QMC

Operator expectation values are calculated based on overlap diagrams of 〈ψG| and

|ψG〉. For both variational and projector QMC, the ground state |ψg〉 is generated

in the singlet basis using different techniques, and once this is achieved, overlap dia-

grams are represented as shown in Fig. 2·15. As |ψg〉 =
∑

i ci |Vi〉, where |Vi〉 denotes

a singlet cover, a particular step in the Monte Carlo chooses a singlet cover for each

of the left and right projections, and the overlap is created by overlaying these config-

urations, resulting in a loop diagram. As the operator expectation values are usually

calculated in the z-basis, which is an orthogonal basis, we need to understand the

z-basis configurations which this overlap pattern hosts. A particular singlet state is a

product state over singlets between exclusive pairs of sites, which are each a superpo-

sition of two anti-aligned z-states. This means that a singlet state is a superposition

of 2Ns z-states. When considering different left and right singlet states, the common

z-states between these states lists the legitimate z-basis configurations. This listing

is provided by the loop diagram, where the singlet constraints force all sites in a loop

to be exactly aligned or anti-aligned depending on the sublattice assignment. The

number of z-basis configurations is the 2Nl , where Nl is the number of loops and is
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+

Figure 2·15: Overlap of two singlet states (left and right projection)
creates a loop diagram.

necessarily ≤ Ns. This automatically implies that, if we want to know the correlation

between the spin states at two sites, we just need to keep track of how many times

in the Monte Carlo simulation they reside in the same loop. If they are in the same

loop, they are perfectly correlated, i.e. 〈Szi Szj 〉 = 1/4, else perfectly uncorrelated,

i.e. 〈Szi Szj 〉 = 0. The total spin correlation is a sum over this for all loop diagrams

generated during the Monte Carlo.

Configuration Contribution

i

jk

l
1/2

i

k

j

l
1

i j

k l
1/4

Table 2.1: Different loop configurations and their contributions

One must be more careful when considering operators that are off-diagonal in
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the z-basis, e.g. an operator such as ~Si · ~Sj, which changes the loop diagram as

it explicitly creates a singlet between sites i and j with a coefficient of 1/2. The

resulting loop diagram depends on the topology of the connectivity between i and

j and the diagrams which contribute to the expectation value of this operator are

listed in Table. 2.1 The new loop diagram may have a different number of loops,

meaning that it corresponds to a different number of z-basis states and this must

be factored in as well when calculating the contribution of a particular diagram.

The first case in Table. 2.1 shows the new singlets generated by ~Si · ~Sj as dotted

lines, and we can see that the new connections create a figure of 8 without breaking

the loop. This means that the number of loops is the same, and as the projection

generates a factor of 1/2, the contribution to the correlation is 1/2×1. In the second

case, the dotted lines break the loop into 2, which means that the number of loops

has increased by a factor of 21, and this factor applies to the number of z-basis

configurations as well. This implies that the contribution in this case is 1/2×2. In

the third case, i and j are initially in different loops, but the singlet projector links

them into one, resulting in a factor of 1/2 for the number of z-basis states. This

leads to an overall contribution of 1/2×1/2. This process becomes especially tedious

when considering operators which act on more than two sites. For instance, in the

previous section, data is presented for the expectation value of the three point dimer

operator D0DxDy, which is a six point operator as Dx = ~Si · ~Si+1. In this case,

the six point operator must first be rewritten in term of the singlet projectors, and

the corresponding diagrams analyzed to understand the contributing factors. For the

three point dimer correlator, this can be simplified by using the rotational symmetry

and writing it as D0DxDy = D0Dx
~Sy · ~Sy+1 = 3D0DxS

z
yS

z
y+1. All the diagrams

which contribute to this simplified form of the six site correlation function are shown

in Fig. 2·16, and the contributing factors can be worked out using the arguments
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Figure 2·16: Loop diagrams for six site correlation function with sites
represented by crosses, different permutations of site numbers lead to
different contributions

presented for the case of two sites.
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Chapter 3

Emergent Symmetry in 2D and

Unconventional Scaling Behavior

3.1 Continuous symmetries and effects of anisotropy

Many condensed matter systems host degrees of freedom which have continuous sym-

metry. Famous examples of this are the U(1) symmetries of the BCS superconduc-

tivity order parameter and the Berezinskii-Kosterlitz-Thouless transition, and the

SU(2) symmetries of Heisenberg spin systems in magnetic materials. In most realis-

tic systems, these symmetries are not exactly realized due to imperfections such as

lattice anisotropies and preferential couplings. In such cases, it is important to un-

derstand the effect of the anisotropy on the continuous symmetry. In some cases, the

symmetry is preserved as the anisotropy proves to be irrelevant and leaves universal

features such as the behavior at phase transitions unchanged. In this chapter, we

will study the particular case of U(1) symmetry in a 2D quantum clock model, which

shares features with the 3D classical clock model. The clock model is generated by

adding anisotropy to Hamiltonian for a planar phase, which can take values between

[0, 2π}. A simple and common form of interaction used for such a system on a lattice

is cos(θi − θj), where i and j are neighboring sites on the lattice. The field theory

description of the phase transition in such a system can be written in terms of a

phase φ, with a free energy term having a leading piece φ2. The anisotropy can be

represented by cos(qφ), where q is an integer and is the number of favored directions.
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Figure 3·1: Histograms for the magnetization as a function of tuning
parameter s. The critical value is sc = 0.2402(1). These simulations
were carried out on a 48×48 square lattice.

Under renormalization, it has been found that for some values of q, the anisotropy

flows to zero, implying that the long distance behavior is unchanged.

In the context of anisotropy, we must also discuss dangerously irrelevant operators

as these play a crucial role at the phase transition. Before this, we briefly review

general relevant and irrelevant operators. Renormalization group (RG) flows are

controlled by relevant operators, whose coefficients must be explicitly tunes to zero

to reach a critical point. For irrelevant operators, their coefficient flows to zero under

the RG flow and thus they do not need to be explicitly tuned. If multiple relevant

operators are present and a flow to a critical point is desired, the coefficients of all

the relevant operators must be tuned as even a single untuned relevant operator leads

to a flow away from the critical point. Depending on the coefficients, the flow forms

a curve in coefficient space and this curve has a minimum distance to the critical
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point we desire. Following this curve either leads to a runaway flow to infinities or,

in rare cases, to a new fixed point. The only way to reduce the distance of this curve

to the fixed point is by tuning the coefficient of the responsible relevant operator.

Now we turn to the intriguing case of the dangerously irrelevant operator. This is a

misnomer as the operator is actually relevant on one side of the transition. This is a

consequence of the same tuning parameter controlling the coefficients of two different

relevant operators. One of the operators is tuned intentionally, making the other a

dangerously irrelevant operator. For the quantum clock model, the anisotropy acts as

a such an operator. At the critical point, the global order parameter does not show

the effect of anisotropy, and retains the U(1) symmetry. This can be seen in Fig. 3·1,

where the histogram for the global magnetization vector M is plotted for different

values of the tuning parameter s. We can see that when the magnetization begins to

reach a non-zero value, in other words when the transition is complete, the circular

symmetry starts to be affected by the anisotropy. The details of the model and other

results are provided in the following sections.

3.2 Quantum Clock Model

Here we would like to study a q-state quantum clock model on a square lattice with

periodic boundary conditions, defined using the Hamiltonian

H = −s
∑
〈i,j〉

cos(θi − θj)−
1− s
q

∑
i

T xi , (3.1)

where θi = 2π
q
k with k chosen from the set {0, ..., q − 1} and can be thought of

as the angle of the 2D magnetization vector given by ~Mi = (cos θi, sin θi). The

intersite interaction and the planar magnetization vector are chosen to be identical

to the XY model, the only difference being the θ is now a discrete variable instead

of being a continuous phase between 0 and 2π. T xi is the equivalent of a transverse
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field in the quantum Ising model and can be represented as a q × q matrix with

matrix elements such that 〈θi|T xi |θ′i〉 = 1 if θi 6= θ′i and zero otherwise. We make this

particular choice for the quantum fluctuations as it allows us to efficiently simulate the

system using quantum Monte Carlo. Using the quantum to classical mapping (Suzuki,

1976), this 2D quantum clock model maps to a 3D anisotropic classical model in the

limit of infinite number of layers in the imaginary time dimension. To make all the

interactions in the classical version of the form cos(θi − θj), we would have to use

a transverse field term whose matrix elements are similar to those of the transfer

matrix, i.e. 〈θi|T xi |θi + 1〉 > 〈θi|T xi |θi + 2〉 > .... Even though the interactions along

all directions would be similar using this sort of transverse field, the system may

show different thermodynamic behavior than the 3D isotropic classical version due

to the requirement of infinite number of slices in imaginary time. This would not be

expected for our system as the order parameter is made out of the clock degrees of

freedom and does not couple to the lattice directly. An easy choice of a transverse field

operator which approximates the feature mentioned above would be 〈θi|T xi |θ′i〉 6= 0

only if |θi− θj| = 1. Although this choice is more clock like than our definition of the

transverse field operator which connects all states, we continue to use our definition

as it recreates the physics of the 3D classical clock model even though the transverse

field generates interactions in the extended imaginary time which are significantly

different from the 3D clock model. For s = 1, the ground state is completely ordered

with a Zq symmetry and for s = 0 it is a paramagnetic state with each “spin” in a

uniform superposition and no correlations between spins. The transverse field term

has a 1
q

suppression due to the O(q) number of non-zero matrix elements. All the

off-diagonal terms drive the system out of a ferromagnetic state and it was found that

without this suppressing factor, the critical point for large q approached s = 1 as very

strong ferromagnetic interactions would be required to stabilize the ordered phase.
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We can develop an approximate understanding of the q = 3 case using the quantum

to classical mapping. This mapping extends the effect of a quantum fluctuation to

a classical bond between copies of the system in imaginary time. For q = 3, we

observe that T xi has the same matrix elements as the Potts interaction δθi,θ′i and so

does cos(θi− θj), which implies that it maps exactly to an anisotropic Potts model in

3D. This system would behave similar to the isotropic Potts model if the anisotropy

is irrelevant at the critical point. We find evidence for a first order transition in

agreement with the 3D isotropic Potts model (Janke and Villanova, 1997) using the

Binder Cumulant for the q = 3 quantum clock model (Fig. 3·2). We define the Binder

Cumulant using the total magnetization ( ~M =
∑

i
~Mi,M = | ~M |) as

Um =

(
2− 〈M

4〉
〈M2〉2

)
(3.2)

and use it to identify the critical point (sc). For a first order transition, it is known

(Binder, 1987) that the Binder Cumulant shows a negative peak which diverges as

Ld, where L is the system size and d the dimension of the lattice. Fig. 3·2 illustrates

Um versus s for a few system sizes. The inset shows the scaling of the negative peak

and we find good agreement with L2. For q > 3, the mapping to the anisotropic

Potts model only holds in imaginary time and we cannot gain intuition from the 3D

classical Potts model. For q = 5, 6, we see that the system shows a continuous phase

transition (Figs. 3·4, 3·5), reflected in the monotonic behavior of Um, whereas for

q = 4, we see that Um begins to develop a negative peak only for large system sizes

(Fig. 3·3). This implies the presence of a weak first order transition emerging for

systems larger than 16×16 approximately.

The 2D quantum clock model for q > 3 can map to an anisotropic classical clock

model in 3D in the strong anisotropy limit using a more complicated form of the

transverse field as discussed above. Using this form for the quantum fluctuations
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we can approximate the 3D classical clock and may expect to find that the quantum

phase transition and the classical one driven by temperature have the same universal-

ity class. In the following section, we find that even the simpler form of the quantum

term used in this work generates a quantum phase transition similar to the classical

clock model which has an emergent U(1) symmetry for q ≥ 5 (Lou et al., 2007). This

suggests that the exact kinetic form of the transverse field term does not play a major

role and perhaps the anisotropies generated are not relevant and leave the thermo-

dynamic behavior unchanged. All of our data is generated using Stochastic Series

Expansion Quantum Monte Carlo (SSEQMC), which uses Monte Carlo sampling to

estimate the path integral at a particular temperature (Sandvik, 1999). Local and

cluster updates were used on the spacetime configurations to maximize ergodicity

and get accurate estimates. We choose a temperature which is low enough for the

system to be in its ground state. All of the results presented in the next section are

for q = 5, 6, although we believe that the arguments presented hold for general q > 4.

The quantum clock model shows an emergent U(1), or circular symmetry of the

magnetization vector, at the quantum phase transition. The critical point separates

the paramagnetic phase from the ferromagnetic phase, where all the spins point along

a particular direction chosen out of q choices. This implies that the magnetization

has a q-fold, or Zq, symmetry and unit magnitude. Slightly above the critical point,

the magnetization develops finite magnitude but retains a circular symmetry in its

direction. This phenomenon has already been explored in the classical clock model

in 3D (Lou et al., 2007) by investigating histograms of the magnetization vector.

We quantitatively analyze the emergent symmetry using the Binder Cumulant of the

magnetization defined previously and a U(1) order parameter defined as

φq = 〈cos(qθ)〉 , (3.3)
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Figure 3·2: Binder Cumulant Um for q = 3. The negative peak
shows a potential first order transition. The inset shows the scaling
of the negative peak value with 1/L fit to the form f(L) = a/Lb with
b = 1.95(4).

where θ is the orientation of the thermodynamic magnetization ~M . In the ferro-

magnetic phase θ can only take the values of 2πi
q

with i being an integer in the set

{0, ..., q− 1} and under this distribution of θ, φq evaluates to unity. If ~M is circularly

symmetric, θ is chosen from a uniform distribution and φq vanishes. Note that this

quantity is not sensitive to the magnitude of the magnetization, only its orientation.

The magnitude can be probed using Um which vanishes in the paramagnetic phase

and is unity when the magnetization develops a finite value with small fluctuations

around this value. Using φq and Um, we can investigate four different regions which

we find in our phase diagram. Two of these regions correspond to the paramagnetic

phase (Um = 0, φq = 0) and the ferromagnetic phase (Um = 1, φq = 1) and are
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Figure 3·3: Binder Cumulant Um for q = 4 shows a weak first order
transition. The negative peak appears at sizes larger than 16x16.

stable fixed points when viewed from a renormalization group (RG) perspective. The

other two regions are found in a vanishingly small vicinity of the critical point and

correspond to the unstable critical point Um = c, φq = 0 where the magnetization

develops power law correlations and the unstable U(1) symmetric point Um = 1,

φq = 0. The constant c is characterized by the nature of critical fluctuations and is

a universal number which we will discuss in detail later in this section. The U(1)

symmetric point has a finite magnetization magnitude as Um = 1. We identify these

points on a RG flow diagram (Fig. 3·6) of φq versus Um generated using SSEQMC for

q = 6. Each trajectory in this diagram is at a particular value of s and the system size

increases along the trajectory with the smallest system size being 3×3. The critical

point is found to be at sc = 0.2402(1) using finite size scaling and we see that all
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Figure 3·4: Binder Cumulant Um for q = 5. The monotonic behavior
of Um is evidence of a continuous transition.

trajectories with s < sc flow to the paramagnetic fixed point and those with s > sc

flow to the ferromagnetic one. Note that the trajectories for s slightly greater than sc

flow towards the critical point first and then to the U(1) symmetric point and finally

to the ferromagnetic fixed point for large enough system sizes. For smaller ε = s− sc,

we need to go to larger sizes to see the deviation from U(1) symmetry. This can be

interpreted as another length scale becoming important in this system, which is the

length scale at which the U(1) symmetry breaks. This length scale also diverges as

we approach the critical point as seen in the RG flow diagram. This phenomenon

is explained by a dangerously irrelevant operator (José et al., 1977; Oshikawa, 2000)

which breaks the U(1) symmetry, i.e, it is irrelevant at the critical point but leads to

a flow away from the U(1) symmetric line φq = 0 for any φq > 0. If we consider the
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Figure 3·5: Binder Cumulant Um for q = 6. The monotonic behavior
of Um is evidence of a continuous transition similar to the q = 5 case
and the crossing points for different sizes can be seen here.

2D XY model, where the θi themselves are U(1) symmetric, we have φq = 0 for the

entire phase diagram due to the microscopic symmetry and the dangerously irrelevant

operator does not play a role. Using this flow diagram we can understand the critical

behavior around both unstable points. This has been done for the 3D XY model

(Shao et al., 2019) where different scaling exponents were found in the vicinity of the

unstable points corresponding to the XY and Zq transitions along with the length

scale at which the crossover between these two behaviors was observed.

The RG flow diagram shows us that the critical point hosts a U(1) symmetric state

and the transition can be seen as that of a paramagnet to an ordered state with U(1)

symmetry. A similar transition is shown by the 3D XY model, where the microscopic
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phases are U(1) symmetric and the Hamiltonian is the same as a 3D classical clock

model. This leads us to expect that the universality class of the 2D quantum clock

model would be the same as the 3D XY model due to the nature of the critical point.

We can verify this by checking for consistency between the critical exponents of both

models. These exponents are calculated using the method of flowing Binder Cumulant

crossing points (Luck, 1985) to study the scaling behavior. The critical exponent 1/ν

for the 3D XY transition is 1.489(1) and we use this value along with the leading

finite size correction exponent ω = 0.8 (Campostrini et al., 2001) to fit the flowing

exponent for q = 5, 6 to the form 1.489+aL−0.8 and find acceptable fits (Fig. 3·7). We

can repeat the same process for the spin correlation exponent η and we find that we

are unable to fit our data to the expected value of 0.0380(4) (Campostrini et al., 2001)

and instead find η = 0.07(1) for both q = 5 and 6 (Fig. 3·8) using a general fitting

function of the form η(L) = η(∞) + aL−b. This may be caused by non-monotonic

behavior at large sizes which we are unable to access with our simulations or because

we are extracting 1 + η from the scaling of 〈M2〉 where η is small compared to unity.

The critical fluctuations can be characterized by the ratio 〈M4〉
〈M2〉2 , which is used in the

Binder Cumulant, and is a universal number for the 3D XY universality class, up to

a factor dependent on the spatial anisotropy. We find this ratio to be 0.532(1) for

q = 6 and 0.524(3) for q=5, which is particular to the boundary conditions used in

our simulation but carries universal information about the critical fluctuations. We

also find that the U(1) symmetry breaking observable φq has a scaling dimension

of ∆φ = 1.4(4) for q = 5 and ∆φ = 2.3(3) for q = 6 (Fig. 3·9), showing that it is

irrelevant at the critical point and consistent with the scaling dimensions observed in

the 3D classical clock (Lou et al., 2007). We extract this exponent by studying the

behavior of the thermodynamic quantity φq at the Binder Cumulant crossing point

as a function of size. Using data from pairs of sizes (L, 2L), we estimate a running
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Figure 3·6: Flow diagram for q = 6 (φq vs Um) showing flows ap-
proaching the XY fixed point followed by the Zq fixed point. The stable
point (0,0) is marked here along with the unstable points (0.532,0) and
(1,0).

exponent ∆φ(L) and extrapolate it to ∆φ(∞) which gives us the thermodynamic

value.

Emergent symmetry has been known to coexist with two length scales in an order

to order transition in quantum magnets at a deconfined quantum critical point (Shao

et al., 2016). Our system possesses an emergent symmetry in a simpler set up and

some semblance of two length scales, although we do not see anomalous scaling at the

critical point as seen at the deconfined point. One of the most direct probes of the

two length scales is the domain wall energy. It was predicted (Senthil et al., 2004) and

found numerically (Shao et al., 2016) that the domain wall energy for a 2D system
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with two length scales ξ and ξ′ follows

∆E ∼ (ξξ′) (3.4)

for the deconfined quantum critical (DQC) point. As discussed in Ref. (Shao et al.,

2016), the second length scale can correspond to either a dangerously irrelevant op-

erator (Léonard and Delamotte, 2015) in general or the size of a deconfined spinon in

the particular case of deconfined quantum criticality. It has been found that the clas-

sical 3D clock model shows a length scale associated with the dangerously irrelevant

operator (Shao et al., 2016) which does not lead to strong corrections of the critical

exponents as seen at the DQC point. We use the domain wall energy to investigate

which category the quantum clock model falls into. Following the treatment in Ref.

(Shao et al., 2016), we can assume in general that ξ ∼ δL1/ν and ξ′ ∼ δL1/ν′ . It

was found that at the DQC point the length scale ξ′, which is associated with the

deconfined spinon, saturates to system size for a finite system while the conventional

diverging correlation length saturates at ξ ∝ Lν/ν
′

with ν/ν ′ < 1 for the DQC point.

This leads to ∆E scaling as L1+ν/ν′ , compared to the conventional scaling seen for

the 3D clock model of L2 (Shao et al., 2016).

The domain wall energy is calculated by applying open boundary conditions on

the 2D lattice which are inconsistent with the ordered state and measuring the excess

energy over the ground state with consistent boundary conditions. This quantity

is determined using QMC simulations carried out at the critical point, where the

correlation lengths begin to diverge and we can extract the scaling exponent from

the finite size scaling. For the quantum clock model, we fixed all θi = 0 on the left

boundary and all θi = π on the right boundary while maintaining periodic boundary

conditions for the top and bottom boundaries. These conditions allow for a maximum

twist for q = 6 and would accommodate three domain walls. As we are only interested
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Figure 3·7: ν calculated using the Binder Cumulant crossing method
as a function of 1/L. Fit to f(x) = aL−ω + 1/ν(∞) with values for ω
and 1/ν(∞) taken to be the 3D XY values.

in looking at the domain wall energy scaling, the number of domain walls we engineer

in our system is irrelevant and the largest number of domain walls allows us to get

the largest energy with relatively small error bars. The excess energy is found to

scale with ∆dw = 2.27(6) for q = 5 and ∆dw = 2.17(5) for q = 6 (Fig. 3·10) whereas

the conventional finite-size scaling at a continuous phase transition would suggest

that both ξ and ξ′ must be replaced with L, leading to an exponent of 2. This

discrepancy may once again be caused by non-monotonic behavior or because we

have used ω = 0.8 following the 3D classical clock model (Shao et al., 2016) instead

of the correct irrelevant exponent.

We see no definitive signatures of anomalous scaling here and conclude that we
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Figure 3·8: 1 + η calculated using the Binder Cumulant crossing
method as a function of 1/L. Fit to f(x) = a/Lb + c leads to
η(∞) = 0.07(1) for q = 5 and 6.

need deconfined quantum criticality or an order to order transition to see this effect.

3.3 Robustness and variants

As discussed in the previous section, there are multiple ways of encoding the anisotropy.

The model described above is a hard constraint, where a phase on a lattice site can

only take q discrete values. We will call this limit the hard clock. This can be

contrasted with a “soft” clock model, where the phases are still permitted to take

continuous values, along with a potential of the form cos qθ. This potential forces a

preference towards q distinct states. Both these formulations have been checked for

the 3D classical clock model and found to be consistent with the predictions from
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RG. This method is used to investigate the lowest q at which emergent symmetry can

be theoretically expected, which is q = 4. In the formulation of the hard clock, the

q = 4 case maps on to disconnected copies of the Ising model, leading to a typical

continuous phase transition. This can be seen in the following manner. The clock

angle θ can be relabeled in terms of the spin-1/2 variables σ and τ with 0 denoting

spin down and 1 denoting spin up as follows:

θ στ
0 00
π/2 01
π 11

3π/2 10

Using this representation, one can see that the p = 0 transverse field operator can
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be written as σx ⊗ Iτ + τx ⊗ Iσ where Iσ/τ is the identity operator for a particular

species. Note also that in this language, the matrix elements which connect θ and

θ′ which are separated by π corresponds to an operator of the form σx ⊗ τx. Using

these arguments, we can rewrite the q = 4 quantum clock Hamiltonian in terms of

the Ising variables as

H = −s
2

∑
〈i,j〉

(σzi σ
z
j + τ zi τ

z
j )− 1− s

4

∑
i

(σxi + τxi + σxi τ
x
i ). (3.5)

From the Hamiltonian above we see the correspondence to two TFI models σ and τ

which are completely disconnected and should reproduce the 2D TFIM continuous

transition. As the hard clock fails to describe the U(1) transition, we encode a
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Figure 3·11: sc calculated using the Binder Cumulant crossing method
as a function of 1/L. Fit to f(x) = aL−ω + sc(∞) leads to sc(∞) =
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quantum soft clock by using an 8-state quantum hard clock model and elevating 4

states by adding a potential term, leading to the Hamiltonian,

H = −s
∑
〈i,j〉

cos

(
2π

q
(θi − θj)

)
− sV

∑
i

(θi mod 2)− 1− s
q

∑
i

T xi . (3.6)

For this Hamiltonian, q = 8 shows a weak dependence for the scaling dimension

of the dangerously irrelevant operator at the critical point, implying that it is either

weakly relevant or irrelevant. This is consistent with field theory predictions and

numerical investigations, which show that ∆u ≈ 0.11. In this way we see that the

soft clock recreates the anisotropy with q = 4.
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3.4 Details of the Monte Carlo method

The design of the quantum Monte Carlo algorithm for this model follows in a manner

similar to the transverse field Ising model(TFIM). We use SSEQMC and sample the

operator string using two stage updates, the first to switch diagonal operators and

the second to move in the space of off-diagonal operators. Following the technique

in the TFIM, we add in an identity operator to the Hamiltonian which facilitates

exchanges between diagonal and off-diagonal operators. In the case of the TFIM,

we had only one diagonal operator, which was the ferromagnetic coupling. By using

−(σzi σ
z
j + 1), we ensured that the antiferromagnetic configuration has a zero matrix

element and does not need to be considered. The same must be done to ensure that

all ferromagnetic matrix elements have the same sign to avoid the sign problem. For

a q-state clock model, it means that − cos(θi − θj) must be modified so that all the

values it can evaluate to have the same sign. This is done by using −(cos(θi−θj)+1),



67

Im
a

g
in

a
ry

 t
im

e

(a)
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a particular imaginary time string. Filled squares denote the transverse
field operator and and the unfilled squares denote the identity operator.
Rectangles are ferromagnetic operators.

and now for the q values that |θi−θj| can take, the ferromagnetic term is non-positive.

The TFIM algorithm builds clusters which terminate at the off-diagonal or identity

operators and we do the same for the clock model. These clusters can be updated

by choosing a global q to shift the states of all the sites in that cluster. Unlike

the TFIM, where the cluster spins can be only one of two values, here we have q

possibilities, with complicated patterns which can be formed even within clusters.

These patterns cannot be modified easily by the global cluster updates, especially

for the large clusters which develop at the onset of order. This leads to reduced

ergodicity and we use local updates to partially remedy this problem. These local

updates work by picking a segment in imaginary time, between two operators which

can switch between diagonal and off-digonal matrix elements. These are the identity

and the transverse field operators. We first build a string between two consecutive

operators of this form, including ferromagnetic operators which may radiate out of

the string. Once this is done, a color q is chosen to switch the state in the string with

a probability which is consistent with the matrix elements of all operators affected.

This creates local differences between spatial regions which may be part of the same

cluster. Note that this technique also fails in the ferromagnetic phase as the strings
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become very long and the probability to choose a different color for the string becomes

small.
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Chapter 4

Relationship to Coupled Ising models and

Restricted Dynamics

4.1 Fluctuation Coupled Ising Models and Fragmentation

We will introduce the shattering of the Hilbert space and its consequences in the

context of a coupled Ising model made out of two Ising species, σ and τ , with the

following Hamiltonian:

H = −s
2

∑
〈i,j〉

(
σzi σ

z
j + τ zi τ

z
j

)
− (1− s)

∑
i

σxi τ
x
i . (4.1)

Here, 〈i, j〉 refers to nearest neighbors and s is the tuning parameter used to drive

the ground state from a paramagnet (s = 0) to a ferromagnet (s = 1). This model

can also be written using just a single species (σ) which lives on a larger lattice which

is two copies of the original lattices connected in a bilayer fashion.

4.1.1 Arbitrary Lattice

We begin by considering a system which lives on an arbitrary lattice in arbitrary

dimension and examine the spin degrees of freedom. In the rest of this paper, we

shall use 0 to denote the state σz(τ z) = −1 and 1 to denote σz(τ z) = +1.

Let us label the four possible states in the z-basis on a single site as {00, 01, 10, 11}

where the first number denotes the state of the σ spin (0 or 1) and the second denotes

the τ spin. As the only quantum fluctuation allowed by our Hamiltonian is σxi τ
x
i ,
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Figure 4·1: The four states at a particular site break into two non-
communicating axes as shown above, leading to the Hilbert space break-
ing into many distinct axis arrangements.

which acts by flipping the state of both σ and τ simultaneously, the four states

described above break into two sets (00, 11) and (01, 10) such that states within a set

can transform into one another through σxi τ
x
i but states from different sets cannot be

connected by any operator in the Hamiltonian. An equivalent way of seeing this is by

noticing that σzi τ
z
i commutes with the Hamiltonian for all i, implying that we have

a local conserved quantity. This quantity will be used to label the shattered blocks

of Hilbert space. We will represent the local splitting pictorially using vertical and

horizontal axes (as shown in Fig 4·1) where the vertical axis corresponds to the set

(00, 11) and the horizontal axis to (01, 10). As this decomposition can be done for

every site on the lattice and assuming that the lattice has N sites, the Hamiltonian

then breaks into 2N blocks, each of which is a 2N × 2N matrix. In the language of
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Figure 4·2: An axis arrangement for the square lattice with interacting
sites connected by dotted lines.

eigenvalues of σzi τ
z
i , each block can be represented as a set of 1’s and -1’s which denote

the value of this operator for each site and there are 2N sequences of these for N sites.

Each block in the Hamiltonian now represents a particular axis arrangement (shown

for 1D and 2D lattices in Figs 4·1, 4·2).

We shall describe this phenomenon as the fragmentation or shattering of Hilbert

space. Both of these terms have been used in recent work in the context of the eigen-

state thermalization hypothesis (ETH) (Sala et al., 2019; Khemani and Nandkishore,

2019) and a similar phenomenon has been studied in disordered Floquet circuits com-

posed of Clifford gates (Chandran and Laumann, 2015). This phenomenon has also

been seen numerically for quantum dimer models with restricted dynamics but a sim-

ilar geometric way to understand the same has not been identified in that context

(Sikora et al., 2011).

The classical term in our Hamiltonian allows us to treat adjacent sites with states

on different axes as effectively non-interacting. For example, consider the state 00 on

site i and the state 11 on site j, where i and j are nearest neighbors. The energy

cost of such an arrangement due to the classical term −(σzi σ
z
j + τ zi τ

z
j ) is -2 (in units
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of the ferromagnetic coupling). The same argument can be made for set of states

(01, 10). If site j hosts one of the states from the horizontal axis, i.e. 01 or 10, the

energy associated with the arrangement of states on i and j will always be 0, as one

of the bonds (either σσ or ττ) is always broken while the other is always satisfied.

This implies that, from energy considerations, states 01 and 10 are equivalent if site

i hosts 00. This argument can be repeated for all combinations of states as long as

the states on sites i and j belong to different axes. From this analysis it follows that,

if nearest neighbor sites i and j host the same axes, then they have an Ising bond of

strength s between them, else, they are non-interacting. If we now consider a typical

axis arrangement (corresponding to a block) as shown in Fig. 4·2 for a 2D lattice,

we see that the system has essentially broken into several smaller Ising models which

co-exist on the lattice. For simple regular lattices, such as a 1D chain, square or

cubic lattice with periodic conditions, the axis arrangements can be related to the

partitions of natural numbers (Andrews, 1994; Sándor, 2004). This connection will

be later illustrated using a periodic chain.

One of the key features of the fragmentation of real space into components is that

the correlation length in a particular block in bounded by the spatial extent of the

largest clusters in the corresponding axis arrangement. This feature depends crucially

on the restricted dynamics from the σxi τ
x
i and the classical term allowing a degeneracy

in states. If the classical term were to be augmented by adding an interaction of the

form −σzi τ zj , the non-interacting nature would be lost as the state 00 on site i would

now prefer 10 on site j over 01. Due to this term, each spin species has a global pattern

specific to which sector the state belongs to and fluctuations would occur around this

pattern in the large s limit. The maximal correlation length in every sector grows to

system size in this limit although the details of this growth depend on the structure of

the particular sector. This illustrates that although the quantum term determines the
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sector structure, interacting units within a sector may be controlled by the choice of

classical terms. Careful choice of tuning parameters can also create a scenario where

there are two length scales, one associated with the growth of correlation within a

component and the other with the growth across components. If we were to require

that the symmetry in σ → τ be maintained, an additional term would be have to

be added to ensure that the state 00 does not favor one of 01 or 10, and the physics

would again be the same as the Hamiltonian in Eq. (4.1).

As an axis arrangement can be thought of as a configuration where each site

is assigned either a vertical or a horizontal axis with probability half it can also

be written in terms of a percolation problem where a particular site is occupied

if the axis assigned to it is vertical or left empty if the axis is horizontal. If the

percolation threshold for the particular lattice is below 1/2, most axis arrangements

will form a giant component and this may have consequences on the correlation

length as far above the percolation threshold, almost all axis arrangements will now

have diverging length scales, leading to a continuous transition. The universality

class for the transition may relate to those of diluted Ising models which are above

the percolation threshold, which have been studied in the context of thermal and

quantum phase transitions (Heuer, 1993; Senthil and Sachdev, 1996; Sandvik, 2006).

We are unable to study this in the context of the periodic chain as the percolation

threshold in 1D is unity, which means none of the axis arrangements will percolate

except the two axis arrangements which correspond to all sites having the same choice

of axis. This feature also extends to the dynamics of our system. As the dynamics

generated by σxi τ
x
i cannot take a state out of its corresponding axis arrangement,

the system remains broken into a sum of smaller pieces. In 2D and higher, these

broken pieces would in general form non-integrable pieces which thermalize within

their boundaries but not with the entire system. This implies that the system would
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Figure 4·3: Axis arrangements sorted by energy with reference blocks
making up the lowest energy region and energy increasing bottom to
top.

not reach a thermal distribution and not show characteristics such as volume law

entanglement entropy which would be expected of thermalizing systems.

4.1.2 Periodic Chain

Now we specialize to the periodic chain and consider the eigenstates and eigenenergies

for various s. In the ferromagnetic limit (s = 1), the lowest energy belongs to two

blocks, one with all axes vertical and the other with all axes horizontal. We shall

call these two blocks as the reference blocks for this model, as they are the easiest

to analyze and map exactly to the simple transverse field Ising chain. These blocks

have N activated bonds, whereas all other blocks have at least one pair of nearest

neighbor sites with differing axes, leading to loss of the energy which could potentially

be gained from that Ising bond. The first excited level in the ferromagnetic limit is

made out of all blocks with axis arrangements which break up into two pieces, one

with all axes vertical and the other with all axes horizontal, as these arrangements

have N − 2 activated bonds. In the limit of s = 0, all the Ising bonds are switched

off and all 2N blocks are degenerate. The axis arrangement of any block can be seen
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as a sum of independent Ising chains of various lengths as sites with differing axes

are non-interacting (Fig 4·3). As the energy density of a longer Ising chain is always

larger in magnitude than a shorter chain for all s other than s = 0 and s = 1, the

reference blocks, which comprise of a single periodic chain of length N , always form

the lowest energy manifold.

As each block can be made up of many smaller chains, the energy spectrum for

this Hamiltonian hosts a large amount of degeneracy. This can be understood by

recognizing that many blocks share the same number and sizes of chains, and each

block carries a different ordering of the chains. As the energy of a block is simply the

sum of the energies of individual chains, the arrangement of chains that makes up a
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particular block does not play a role in calculating the energy; only the number and

sizes of chains control the energy. Following this line of thought, we can now map

our energy spectrum to the sorted partitions of the natural number N , where each

partition is defined as a set of smaller pieces whose lengths sum to N . For example

the sorted partitions for N = 4 are:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 (4.2)

It was shown (Hardy, 1999) that the number of partitions p(N) of a natural number

N asymptotically behaves as log p(N) ≈ C
√
N with C = π

√
2/3. Due to periodic

boundary conditions, the only allowed partitions for the axis arrangements are those

which have an even number of pieces. It follows that the number of energy levels in

addition to the reference level are the number of even partitions of the number N . We

observe that this number quickly approaches half the asymptotic value for N ≥ 10.

If we now consider a particular block and study the growth of its correlation length

as we change s from the paramagnetic regime to the ferromagnetic regime, we would

find that the correlation length grows until it reaches an upper bound which must

be smaller than the largest piece in the partition corresponding to that block. If the

largest piece is much smaller than system size the ground state of this block can never

develop long range order. The statistics of different blocks along with their energies

now controls how much they contribute to the ground state of the total system in the

presence of a temperature or quantum fluctuation which allows them to mix.

An added level of complexity is brought in by observing that each partition of the

number N corresponds to a different number of axis arrangements, i.e, blocks. We

find numerically that the average size, 〈n〉, of the largest piece in the axis arrangement

corresponding to a random block follows the relation 〈n〉 = a+ b log(n) (Fig 4·4). We

also study the probability distribution of the size of the largest piece in a random



77

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

E
-E

0

s

0.0

0.5

1.0

1.5

2.0

 0.4  0.45  0.5  0.55  0.6

Figure 4·5: Energy levels for the Hamiltonian defined in Eq. (4.1), as
a function of tuning parameter s, seen to converge in s = 0 limit and
approach the spectrum of the classical Ising chain in s = 1 limit. Inset:
The level diagram around s = 0.5 shows a minimum gap of ≈ 0.34.

block chosen with uniform probability and find exponential tails for p(n) for n > 〈n〉

(shown in inset of Fig 4·4 for a 60 site chain). This suggests that, if the system

is allowed to choose a block at random, the largest piece in the chosen block will

be much smaller than system size with a probability → 1, thus leading to a severe

limitation on the growth of correlation length.

The probability distribution with which the system samples different blocks de-

pends on the terms connecting different blocks and the relative ground state energies

of different blocks. As discussed above the ground state of the entire system is always

made out of the two blocks which have all axes vertical or all axes horizontal. The

opposite limit is again made up of just two blocks, which are the blocks where all
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axes are anti-aligned with their neighbors (Fig 4·3). Each of these breaks into N

disconnected spins, as no nearest neighbor spins have a ferromagnetic bond between

them. This implies that every spin is polarized in the x-direction due to the σxτx

term with an energy of −s, making the total energy of the state −Ns. We can assume

that the ground state energy for the reference blocks can be written as −Nε(N, s)

where ε(N, s) is the energy density for a periodic chain of length N at tuning param-

eter value s. These two extremes set the range of energies which can be occupied by

all other blocks. Another general trend to be expected from the lowering of energy

due to larger system size would be to have partitions with the largest pieces occupy

lower energy levels (Fig. 4·3). As we have seen from the distribution of partitions,

these levels would contain a relatively small number of blocks due to the large pieces

they must contain. Also, all the energies must converge in the s = 0 limit, as the

ferromagnetic term switches off, leaving all blocks equivalent in energy.

The above gives us a fair idea of the energy level diagram and we present a detailed

study of the N = 10 case in Fig. 4·5, obtained using Lanczos diagonalization, which

captures the essential features. An important region of the energy level diagram is

s ≈ 0.5 as the simple Ising chain undergoes a continuous quantum phase transition at

this point. In an Ising chain, the correlation length grows continuously with increasing

s for s < 0.5 and at the transition the correlation length reaches the system size. If

the gap to a large number of blocks vanishes at this point, the correlation length

would acquire large contributions from the other blocks in the presence of arbitrarily

small coupling across blocks, which would lead to a capping on the correlation length.

As the gap must once again open in the ferromagnetic regime, the system will drop

back into the fully polarized state with large correlation length. This mechanism can

create a jump in the correlation length, which is a hallmark of a first order phase

transition. This is a heuristic argument which does not take into account the nature



79

of the coupling to other blocks. Using our Lanczos diagonalization analysis, we find

that this gap converges to a finite value with increasing size. This is expected for

higher dimensions as well, as the lowest block above the ground state block must

necessarily have at least one missing ferromagnetic bond which contributes a finite

amount to the energy.

4.1.3 Fluctuations between blocks and block mixing

One of the easier ways to allow the system to access all possible blocks would be to

couple it to a thermal bath which provides an inverse temperature β. Assuming that

the ground state energies of all the blocks is O(N) (which we see is an upper bound

from the energy level diagram), the contribution of the blocks with relatively small

pieces or “restricted” blocks (Zr) in the partition function is Zr = e−βEDr, where

Dr is the degeneracy of the blocks. As we have seen that this degeneracy→ 2N and

E ∝ N , a finite β is not sufficient to suppress these levels, and there can exist a range

of temperatures where these levels can mediate a transition with limited correlation

length, i.e, a first order transition. Finite temperature would allow thermal fluctua-

tions which can jump across blocks and in this way wash out the block structure as

well. This cannot be studied in our analysis of the 1D chain as it is known that any

non-zero temperature leads to disorder in the Ising chain and the phase transition

is thus completely washed out. For higher dimensional systems this mechanism can

lead to interesting crossover physics between the continuous quantum phase transi-

tion and the thermal phase transition of the classical system expected at any finite

temperature. A coupling across blocks can also be achieved by a weak global trans-

verse field and a perturbation theory approach may be used to study this. More

powerful numerical results, which layout the entire phase diagram in the presence of

a transverse field, are presented in the following section.
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4.2 Perturbations and Ashkin-Teller Criticality

We now connect the different blocks using a weak perturbation which allows axis

flipping. In spin language this corresponds to a global transverse field, leading to a

Hamiltonian of the form

H =
−s
2

∑
〈i,j〉

(
σzi σ

z
j + τ zi τ

z
j

)
− (1− s)

∑
i

[
pσxi τ

x
i + (1− p)(σxi + τxi )

]
.

(4.3)

The σx(τx) operator switches 00 → 10 (00 → 01), effectively changing the axis at

that particular site. In the weak perturbative limit of (1 − p) � 1, this can be seen

as connecting blocks which only differ in a few axis arrangements, i.e those which

have similarly sized pieces in a similar arrangement. For smaller p, blocks which have

pieces of substantially different sizes would begin to couple as well, which would imply

that the bound on the correlation length would weaken as the system can now build

in longer correlations through a combination of blocks for the same value of s. In the

opposite limit of p→ 0, blocks are strongly coupled, and the system can also be seen

as two copies of transverse field Ising models. This suggests that the system would

undergo a continuous transition, which would be in the Ising universality class of the

appropriate dimension.

For p = 1, the ground state sector is exactly a transverse field Ising model on

the appropriate lattice. In this limit, for all s ∈ [0, 1], Mστ = 1
N

∑
i σ

z
i τ

z
i = ±1 as

the axes are perfectly ordered implying all σzi τ
z
i are either +1 or -1 for the horizontal

or vertical axes. For s → 1, σz and τ z are each disordered and with reducing s,

they undergo an Ising transition where they develop long range order. For p <

1, at s = 0 the paramagnet phase has no long range order in axis arrangements

or either of the spin species as the perturbation allows complete access to Hilbert
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space. The conditions describe three phases, 1) complete paramagnetic phase with

〈M2
στ 〉 = 〈M2

σ〉 = 〈M2
τ 〉 = 0, 2) axis ordering with 〈M2

στ 〉 6= 0, 〈M2
σ〉 = 〈M2

τ 〉 = 0,

and 3) ferromagnet with 〈M2
στ 〉 6= 0, 〈M2

σ〉 = 〈M2
τ 〉 6= 0. These three phases are also

described by the Ashkin-Teller (AT) model (Delfino and Grinza, 2004), where phase

2 is called the polarization ordered phase. The Hamiltonian for the AT model is

H = −J
∑
〈i,j〉

σzi σ
z
j − J

∑
〈i,j〉

τ zi τ
z
j −K

∑
〈i,j〉

σzi τ
z
i σ

z
j τ

z
j , (4.4)

and the phase diagram as a function of J
T

and K
T

contains the above mentioned phases.

The arguments presented until this point in this section are valid for general lattices

in all dimensions.

In 2D, the AT model is fairly well studied from a theoretical viewpoint (Delfino

and Grinza, 2004). It was found that for K > J and J > 0, the system passes

through two phase transitions; from the paramagnet to polarized state and from

the polarized state to the ferromagnet. Both these transitions are Ising-like as a Z2

symmetry is broken each time. At K = J , the polarized state vanishes, and we

have a direct transition from the paramagnet to the ferromagnet. The universality

class at this point is that of the q = 4 Potts model in 2D. For 0 < K < J , the

system interpolates smoothly between two disconnected Ising models (K = 0) and

the q = 4 Potts model. Along this interpolation, some of the critical exponents, such

as the scaling dimensions of the polarization operator and the energy density, vary

smoothly (Cardy, 1987). This is expected as the energy density coupling between the

two species caused by the four spin term is marginal in 2D and allows a smooth flow

under a conformal field theory description (Gorbenko et al., 2018).

We check for a similar behavior in the coupled quantum Ising model on a periodic

chain, which is expected to map to the AT model through the d-dimensional quantum

to d+1-dimensional classical mapping as σx corresponds to an energy term of the form



82

0.0

0.2

0.4

0.6

0.8

1.0

0.41 0.43 0.45 0.47 0.49 0.51

U

s

UP, L=20
UP, L=40
UM, L=20
UM, L=40

Figure 4·6: Binder cumulant as a function of s with crossing points
showing approximate locations of the two transitions at p = 0.95. P
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σzi σ
z
i+1 in the imaginary time direction when written in the path integral language. We

use stochastic series (SSE) expansion quantum Monte Carlo (QMC) (Sandvik, 1999)

as it is a powerful and unbiased method of extracting thermodynamic expectation

values for such systems.

The p = 0 limit corresponds to the K = 0 limit of the AT model and describes

decoupled Ising models. The p = 1 limit has no paramagnetic phase and at some in-

termediate pP , we would expect q = 4 Potts criticality. For p < pP , the system would

trace out the line of continuously varying exponents and for 1 > p > pP , it would

host all three phases along with two Ising transitions; one between the paramagnetic
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and polarized phases and the other between the polarized and ferromagnetic phases.

To investigate these phase transitions, we define a Binder cumulant (Binder, 1981)

with coefficients corresponding to Z2 symmetry breaking, as

UM =
3

2

(
1− 1

3

〈M4〉
〈M2〉2

)
, (4.5)

where M can denote either Mστ ,Mσ or Mτ . In the regime where we have two Ising

phase transitions, the Binder cumulant is by this definition zero in the paramagnetic

phase and unity in the ordered phase, for whichever order parameter is considered.

There is a sharp transition in UM at the phase transition for large sizes and we need

to study only one of Mσ or Mτ as they are identical. By tracking UMστ and UMσ , we

notice two transitions for p = 0.95 (Fig. 4·6) at distinct values of s. This is expected

for values of p close to 1 until a point at which the q = 4 Potts point is realized. The

scaling dimension of the spin operator is fixed at ∆σ = 1/8 (which is the 2D Ising

value) along the critical line joining the p = 0 and p = pP , whereas the polarization

operator has ∆στ = ∆σ + ∆τ at the decoupled point and ∆στ = ∆σ = ∆τ at the

Potts point. The critical exponent ν varies from 1 (Ising value) to 3/2 (Potts value)

along this line. From our simulations and finite size scaling analysis following the

method presented in Ref. (Luck, 1985), we observe that, at p = 0.75, ν = 1.41(5) and

∆στ = 0.13(1), indicating that this point is quite close to the Potts point (as can be

seen in our approximate phase diagram, Fig. 4·7). The value of ν may be somewhat

affected by logarithmic corrections expected in the exponents at the Potts point. The

same extrapolation at p = 0.50 gives us ν = 1.21(1) and ∆στ = 0.17(1), which are

values between the two extremes. This analysis shows us in a conclusive manner that

the system flows to the AT universality class in the thermodynamic limit.
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4.3 Relation to Pseudo-first Order Behavior

The Binder cumulant is used in general to identify the nature of a phase transition

and the critical exponent ν for the correlation length (extracted from the slope).

Non-monotonic behavior in the Binder cumulant involving a minima is usually taken

as a signature of a first-order transition, although this can only be confirmed by

checking that the value of this negative peak diverges as Ld (Binder, 1987). A dip

in the Binder cumulant has been misinterpreted to signal a first order transition

for the frustrated J1-J2 Ising model on the square lattice where nearest neighbors
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interact with a ferromagnetic bond of strength J1 and next nearest neighbors with an

antiferromagnetic bond of strength J2 (Jin et al., 2012). In this model there exists a

phase transition between a Z4 symmetric striped phase and a paramagnetic phase with

increasing temperature. The dip was taken to represent a first order transition until

a detailed numerical study by Jin et al. (Jin et al., 2012) showed that the cumulant

dip mapped onto the q = 4 Potts model, which also shows non-monotonicity with a

negative dip which does not diverge. The reason for this behavior was traced to the

shape of the distribution at the critical point for these models (Sandvik, 2010b) and

it was noticed that phase coexistence was not seen, which would be a characteristic

of a first order transition.

Here we present the same kind of analysis for our model and argue that the

negative peak arises from an inappropriate definition of the Binder cumulant when

investigating multiple phase transitions. The Binder cumulant may evaluate to differ-

ent values in different phases and if the phases are not well understood, this behavior

can be interpreted as arising from a first order transition. Even at special points

such as the Potts point (K = 1 point in the AT model), which is known to har-

bor a continuous phase transition between trivial paramagnetic and ferromagnetic

phases, remnants of the polarization ordered phase cause non-monotonic behavior in

the Binder cumulant. We will explicitly observe this kind of remnant here.

If we consider the p = 0.95 phase transitions presented in the previous sections,

we see that in the paramagnetic phase, the Binder cumulant can be defined as

UM = 2− 〈M
4〉

〈M2〉2
, (4.6)

instead of the definition used in Eq. (4.5), because the magnetization can now be

defined as a vector M=Mxx̂ + Myŷ, where Mx(My) is the magnetization along the

vertical (horizontal) axis. This definition leads to UM = 0 for the paramagnetic phase
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and UM = 1 for the ferromagnetic phase and is used for decoupled Ising systems as

well as systems with XY symmetry. Importantly, however, this definition of UM

evaluates to −1 in the polarization ordered phase as a global axis is chosen and only

constrained Ising like fluctuations are allowed along this axis forcing 〈M4〉/〈M2〉2=3,

which can be calculated assuming Gaussian probability distributions arising from the

central limit theorem. If we use Eq. (4.6) for the entire range of s at p = 0.95, in

the thermodynamic limit, we would expect a region where UM = 0, a region with

UM = −1 and a region with UM = 1. A schematic of this is shown in the inset

of Fig. 4·8. For small sizes UM changes gradually and these values are not reached

exactly.

From Fig. 4·6 and further extrapolations, we note that the paramagnetic to po-

larization ordered transition occurs at s = 0.44(1) and the polarization ordered to

ferromagnetic one occurs at s = 0.497(1). Following the behavior of UM as defined

above, we find a non-monotonicity in the polarized phase where the dip extrapolates

to −1 (Fig. 4·8). We also study the histograms of the order parameter M and clearly

see the aligning of the polarization in Fig. 4·9.

These histograms are similar to those seen at the Potts point in the J1-J2 model.

We have checked this in the more natural formulation of the q = 4 Potts model on a

2D square lattice, with a Hamiltonian given by

H = −
∑
〈i,j〉

δqi,qj = −
∑
〈i,j〉

cos(θi − θj), (4.7)

where qi ∈ {0, 1, 2, 3} are the possible states and which can be represented as unit

vectors forming a regular tetrahedron, implying the equivalence of the two terms in

Eq. (4.7) up to a global shift in the baseline for energy. As mentioned above, if the fluc-

tuations in the thermodynamic magnetization are Ising like then r = 〈M4〉/〈M2〉2 = 3

and if they are completely paramagnetic r = 5/3, which can be seen by evaluating
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Gaussian integrals over the unit vectors chosen from a tetrahedron and which lie in

3D space. In the ordered phase the fluctuations are small compared to the mean and

r = 1. In the case of a typical continuous transition, r would vary monotonically from

1 to 5/3 from the ordered to paramagnetic phases. This is not the case for the Potts

model, as seen from our simulations in Fig. 4·10, and we find a peak which grows for

larger sizes. The peak appears to diverge logarithmically in the range which we have

studied, but we would expect this value to converge eventually (perhaps at r = 3, as

shown in the inset of Fig. 4·10) as we are studying a continuous phase transition. This

implies remnant effects of a polarization phase which cannot be explicitly realized in

this formulation of the Potts model. These effects persist up to the largest lattice
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sizes (3072×3072) we were able to study and may be suppressed at even larger scales,

in which case the origin of the new length scale would be of interest.

4.4 Using symmetries to design ergodic updates

In the case of coupled Ising models studied here, a set of symmetries are used while

designing updates for the Monte Carlo simulation. These are the Z2 symmetries

associated with each spin species (σz → −σz, τ z → −τ z) and the combined flip

σzτ z → −σzτ z. To make use of these in the spacetime configurations which the QMC

simulation samples, we introduce identity operators which do not change the physics

of the system. These can be represented as Iσx ,Iτx and Iσxτx , where the subscript

denotes the off-diagonal operator it is exchanged with during simulation. These op-

erators are added into the Hamiltonian with the same weight as their counterparts,

this is done to ensure that an update can be done which switches the operator with-

out changing the probability of the configuration. Due to his freedom of switching

the off-diagonal operators, the spacetime string breaks up into clusters which can be
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flipped under the symmetries mentioned above. This update also flips the spins in

the spacetime region spanned by each cluster.

We can break the update into steps that interact with different types of clusters.

We use an update which builds clusters only using the σ degrees of freedom, and flip

them with a probability half, leaving the τ spin states intact. An identical update is

also performed using only the τ spins, as the system is symmetric in the two species.

In addition to these two independent cluster updates, we have a combined one which

builds clusters by using ferromagnetic bonds of both species, but the identity and

off-diagonal terms corresponding to στ only. This cluster allows a combined flip for

both species and incorporates the exact Ising symmetry of merging both species into
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a single spin which is achieved in the p = 1 limit. For each of the updates described

above, the space time string is broken into distinct clusters, such that the clusters

span the entire configuration. As we have considered p close to unity in this chapter,

the number of σx or τx operators is expected to be small compared to the number of

σxτx. This implies that the cluster breaking operators for the σ or τ updates is small,

leading to larger clusters than the ones generated by the στ update. In addition to

this, cluster sizes are also controlled by the strength of the ferromagnetic order (s).

For large s, the number of cluster breaks are suppressed due to the large number of

ferromagnetic operators and the interconnected clusters which these create. Cluster

size can be directly calculated by tracking the number of vertices (or equivalently

operators) in a particular cluster. In the extreme paramagnetic limit, this reduces to

just two vertices per cluster, due to the complete absence of ferromagnetic operators.

In this limit a cluster just consists of two cluster breaking operators, which terminate
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both ends. Fig. 4·11 shows the cluster size C as a function of s for sizes L=20,40 and

60, and we can see a sharp increase in size independent of system size, close to the

critical value of s. The cluster size is normalized by the maximum size of space time

and we see that at the phase transition, the clusters reach a size which is macroscopic

similar to the magnetization.
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Chapter 5

Obstacles to Adiabatic Quantum

Computing

5.1 Quantum adiabatic annealing algorithm: outline and gen-

eral considerations

The quantum adiabatic annealing (QAA) algorithm was introduced as a method to

solve computational problems in Refs. (Farhi et al., 2000; Farhi et al., 2001). It

exploits long-range quantum coherence in a time dependent quantum system whose

defining Hamiltonian interpolates adiabatically between two limits. The goal is to

use QAA to reach the ground state of a complicated classical Hamiltonian H, which

encodes the solution of the computational problem at hand, by adiabatically deform-

ing the quantum ground state of a “simpler” initial Hamiltonian, which is easy to

prepare.

Concretely, a computational problem on N Boolean variables is mapped to a

Hamiltonian H that describes interactions between N classical Ising spin degrees of

freedom σzi = |↑〉 , |↓〉 for i = 1, . . . , N . The spin-up state σzi = |↑〉 can be chosen to

represent bit state xi = 1 and the spin-down state σzi = |↓〉 the bit state xi = 0. The

mapping is such that the bit assignment that corresponds to the ground-state spin

configuration of H encodes the solution of the computational problem. (Here we will

mainly concern ourselves with a class of problems that have a single solution, such

that the ground state of H is non-degenerate.)
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In the QAA algorithm, the classical spins (bits) are represented by quantum spin-

1/2 degrees of freedom. The QAA protocol is typically carried out at zero temperature

and proceeds by preparing the system in a uniform superposition of all σzi eigenstates

by applying a strong transverse field (σzi is a Pauli matrix that defines a local quan-

tization axis for the i-th spin). Annealing is implemented by adiabatically “turning

off” the transverse field while “turning on” the Hamiltonian H. This process defines

a time-dependent Hamiltonian

Ha = (1− s)H − sV , (5.1)

where V =
∑N

i=1 σ
x
i is the transverse field term and s = f(t) is a time-dependent

parameter. The protocol usually starts with f(0) = 1 to ensure that the system is

in the transverse-field ground state, where each spin is polarized along the x-axis,

and ends with f(Tf ) = 0, which recovers the target Hamiltonian at time Tf . The

quantum adiabatic theorem (Wannier, 1965; Kato, 1950) guarantees that the system

remains in its instantaneous ground state if f(t) varies “slowly enough” with time.

To be more specific, it says that the total duration Tf of the protocol should satisfy

Tf � ~
maxs|V10(s)|

(∆Emin)2
, (5.2)

where Vm0 = 〈0|∂Ha/∂s|m〉 in the eigenbasis spanned by |m〉, m = 1, . . . , 2N − 1,

and ∆Emin is the minimum gap between the ground state and the first excited state

encountered during the entire protocol.

Generally, Vm0 is proportional to system size for a local Hamiltonian and the

scaling of Tf is controlled by the scaling of the minimum gap. This implies that if the

system passes through a phase transition where the gap vanishes, the time to solution

using a quantum annealing protocol can be polynomial or exponential in system size

depending on the behavior of the minimum gap with system size. Continuous phase
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Figure 5·1: Cartoon phase diagrams in the temperature-transverse
field parameter space for two scenarios that may occur in the applica-
tion of the SA and QAA algorithms to the solution of computational
problems. In the scenario of panel (a), SA meets a transition to a glassy
phase at T = Tg, whereas QAA encounters a first-order quantum phase
transition at h = hg. Dashed line indicates a putative phase bound-
ary that terminates at the two critical points on the axes. Panel (b)
depicts the case where there is no bulk classical thermodynamic phase
transition to a glass phase, but the obstruction of a first-order quantum
phase transition nevertheless remains.

transitions have a scale-invariant critical point, which implies that the gap must have a

polynomial dependence on system size (Sondhi et al., 1997). First-order transitions,

on the other hand, manifest themselves in finite-size systems via gaps that vanish

exponentially with system size, although there are pathological cases where the gap

closing is only polynomial (Laumann et al., 2012). It is therefore highly probable that

the QAA algorithm fails to find the solution when the annealing protocol described

by Ha leads through a first-order transition in the thermodynamic limit.

In what follows, we will rewrite Ha as

Ha = JH − hV , (5.3)

allowing J and h to take arbitrary positive values, to conform with common notation

in the literature.

Since H is classical, one may also consider using simulated annealing (SA) to reach



95

its ground state. In this protocol, h = 0 and one slowly varies the temperature T from

T = ∞ to T = 0. Local thermal dynamics, implemented via, e.g., the Metropolis

algorithm, progressively lead toward lower-energy configurations. SA, and in fact any

local classical algorithm, fails whenever a first-order transition into a glass phase is

encountered upon reducing the temperature. This is true regardless of the hardness

of the computational problem encoded by H (Ricci-Tersenghi et al., 2001; Ricci-

Tersenghi, 2010).

When SA and QAA are taken on equal footing as methods for the solution of a

given problem, they give rise to a phase diagram as a function of T and h, whose

origin represents the solution of the problem. Fig. 5·1 shows two distinct scenarios

for this phase diagram. In the first scenario, the solution is separated from both the

classical high-T paramagnet and the strong-field quantum paramagnet, i.e., the initial

states of the SA and QAA protocols, respectively, by first-order transitions. This is

a commonly encountered scenario for computational problems, such as satisfiability

or coloring, and is illustrated in Fig. 5·1(a). For example, the 3-regular 3-XORSAT

problem, as it was formulated and studied in Ref. (Farhi et al., 2012) and also briefly

introduced below, belongs to this category.

In this work, we will use a lattice reformulation of computational problems that

lacks the classical transition to a glassy phase. This formulation introduces an al-

ternative scenario to the aforementioned one and raises the question of whether the

quantum phase transition is absent as well in this case, i.e., whether the two transi-

tions are somehow linked. Below we will provide evidence for a negative answer to this

question: our results suggest that the quantum phase transition remains present and

first-order, and hence most probably accompanied by exponentially vanishing gaps

in progressively larger finite-size systems, even in the absence of a thermodynamic

classical transition to a glassy phase.
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5.2 k-regular k-XORSAT and lattice embedding

5.2.1 The XORSAT problem

In this section, we describe the mapping of the the k-regular k-XORSAT prob-

lem (Johnson and Garey, 1979) to a spin Hamiltonian. We choose XORSAT because

it is a prototypical problem in both physics and theoretical computer science. Even

though XORSAT can be solved in polynomial time with Gaussian elimination, it

nevertheless has evaded efficient solution with any local algorithm, including vari-

ants of the Davis-Putnam algorithm (Haanpää et al., 2006), message-passing meth-

ods (Jia et al., 2005), stochastic search (Guidetti and Young, 2011), simulated an-

nealing (Ricci-Tersenghi et al., 2001), and quantum adiabatic annealing (Farhi et al.,

2012).

Here we focus on the k-regular variant of k-XORSAT. This constraint satisfaction

problem is defined on N Boolean variables subject to N clauses, where each clause

takes in k bits and each bit participates in k clauses. The solution to the problem is

a bit assignment that satisfies all clauses. An XORSAT clause evaluates to 0 (false)

or 1 (true) if the sum of the bits in the clause modulo 2 is 0 or 1, respectively. In spin

language, this can be interpreted as requiring the product of the spins in a particular

clause to be positive or negative and associating an energy cost to the unfavorable

outcome. For example, the spin Hamiltonian can be written as

H = −
N∑
j=1

∏
i∈cj

σzi , (5.4)

where cj is the set of the k indices of the spins that participate in the j-th clause,

for k odd. Since clauses are not constrained to connect nearby spins only, this spin

Hamiltonian is best represented as a bipartite k-regular graph, where one independent

set of vertices represents the spins and the other the clauses. A random instance of
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this problem is thus a randomly generated bipartite k-regular graph. A solution of

an instance (if it exists) is given by a corresponding ground state of H.

Numerical examination of the QAA algorithm for Hamiltonian (5.4) restricted to

k = 3 and to instances with unique ground states showed that the minimum gap closes

exponentially with system size, indicating a first-order transition at a particular value

of the transverse field in the thermodynamic limit (Farhi et al., 2012). This finding

implies that QAA takes an exponentially long time to find the solution in this formu-

lation of 3-regular 3-XORSAT. On the other hand, application of the SA algorithm

to the XORSAT problem reveals a random first-order transition into a glassy phase

at some characteristic temperature — see, e.g., Ref. (Ricci-Tersenghi et al., 2001).

These results suggest that the solutions of XORSAT instances reside deep inside a

glass phase and are inaccessible to both classical local search algorithms and QAA,

despite the fact that XORSAT is computationally tractable (i.e., in complexity class

P).

5.2.2 Lattice embedding

In an attempt to avoid the aforementioned obstructions to the solution of XORSAT,

here we introduce a lattice embedding of the problem that circumvents the classical

thermodynamic transition. The idea is based on previous works by some of us (Cha-

mon et al., 2017; Zhang et al., 2018). Note that this lattice embedding does not enable

an efficient solution of the problem via SA, despite the absence of the glass transition,

as the dynamics instead becomes glassy upon approaching T = 0. The rationale for

this reformulation is rather to see whether the avoidance of the thermodynamic glass

transition and hence the absence of a finite-T classical glass phase has any effect on

the quantum axis.

The lattice embedding is achieved by drawing each variable and each clause as a

bit line or “bus” and laying all lines on a 2D plane, with vertical lines corresponding to
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clauses and horizontal ones to variables, as shown in Fig. 5·2. Each variable (clause)

corresponds to a horizontal (vertical) Ising spin chain and the intersection between

variable chains and clause chains is mediated by CNOT or SWAP gates. If the y-th

variable participates in the x-th clause, then a CNOT gate is placed at the intersection

of the x-th vertical line with the y-th horizontal line, else a SWAP gate is placed to

ensure that the bit and clause do not couple.

Each gate has two inputs (i1 and i2) and two outputs (o1 and o2). The gate

constraints can be written in spin language as

H0
x,y = −σzx,y;i1

σzx,y;o1
− σzx,y;i2

σzx,y;o2
(5.5a)

for a SWAP gate and

H1
x,y = −σzx,y;i1

σzx,y;o1
+ σzx,y;i1

σzx,y;i2
σzx,y;o2

(5.5b)

for a CNOT, where the subscripts x and y specify the position of each gate. To

accommodate the y-th variable to appear negated in the x-th clause, we can simply

change the sign of the second term in (5.5b). Here we will deal only with mono-

tone instances where no variables appear negated, and hence no such change will be

necessary.

Inter-site ferromagnetic bonds of strength J are placed between the outputs of

a gate and the inputs of nearest-neighboring gates. This construction ensures that

when all ferromagnetic bonds are satisfied by a spin configuration, the corresponding

bit assignment satisfies all clauses and is the solution to the problem. The overall
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spin Hamiltonian is

H = −
∑

〈x,y;x′,y′〉

∑
v=1,2

σzx,y;ovσ
z
x′,y′;iv + g

∑
x,y

HAx,y
x,y (5.5c)

−
∑
x

(σzx,0;o2
σzx,∂y=0

+ σzx,N ;i2
σzx,∂y=N ) (5.5d)

+ g
∑
x

(σzx,∂y=0
± σzx,∂y=N ) . (5.5e)

The sums are over x, y = 1, . . . , N , so that a problem instance with N variables maps

to a lattice with N2 sites with a gate at each site, 〈. . .〉 denotes neighboring positions

on the lattice, v is the orientation of the bond labeled as 1 (2) for horizontal (vertical),

and g is a constant that offsets the energy cost of the gate and boundary terms with

respect to the bond terms.

The first line of Eq. (5.5c) defines the interactions in the bulk. A is the biadjacency

matrix of the bipartite k-regular graph that defines the problem instance, as described

above. When Ax,y = 1, a CNOT gate is placed at position (x, y), otherwise a SWAP

is placed there instead, as sketched in Fig. 5·2. Note that in our convention indexing

proceeds from left to right and top to bottom. We consider the limit g → ∞, so

that outputs are essentially “dummy” spins, whose state is completely controlled by

the gate inputs. When the ground state of H is reached, the solution appears on

the left and right boundaries of the lattice, which are left free. The requirement that

clauses sum modulo 2 to 0 or 1 is enforced by the term on the last line, which acts

only on the top and bottom rows of boundary spins and whose relative sign between

top and bottom depends on whether k is odd or even. For example, for k = 2 we

choose + (all-zeros state in bottom row) to ensure that all clauses sum modulo 2

to 0, whereas for k = 3 we choose − (all-ones state in bottom row), which requires

all clauses to sum modulo 2 to 1. When g → ∞ this interaction becomes a hard

constraint. This clause constraint is then propagated to the bulk by the terms in
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Figure 5·2: (a) Lattice representation of 3-regular 3-XORSAT in-
stance with 8 variables and 8 clauses as a 8 × 8 lattice of CNOT and
SWAP gates. There are 4 bits coupled by a gate at each position of
the lattice, as shown in (b). The variable bits xi record the solution
of the problem upon termination of a protocol that reaches the ground
state. Upper and lower boundary states are forced by a strong field
that favors the uniform bit states shown. (b) Sketch of couplings be-
tween bits in each of the gates. Lines denote ferromagnetic bonds in
the spin representation and grey triangle represents the 3-spin term in
Eq. (5.5b). The formula for the 3-XORSAT instance shown here is
(x2⊕ x3⊕ x6)∧ (x5⊕ x7⊕ x8)∧ (x1⊕ x2⊕ x6)∧ (x3⊕ x4⊕ x7)∧ (x1⊕
x5 ⊕ x8) ∧ (x3 ⊕ x4 ⊕ x6) ∧ (x1 ⊕ x2 ⊕ x8) ∧ (x4 ⊕ x5 ⊕ x7).

Eqs. (5.5d) and (5.5e), which define the interaction between spins at the top (∂y=0)

and bottom (∂y=N) boundaries and bulk gate spins.

Here we restrict our analysis to instances of k-regular k-XORSAT which have

all the minimum nonzero number of solutions. For k = 3, generic problems with a

unique solution exist. For all such problems, a spin reversal transformation exists

which maps the solution to the all spins down state (Farhi et al., 2012) and we shall

assume that our system has already undergone this transformation. We will focus on

these problems below, as they are a finite fraction of all 3-XORSAT instances and are
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thus good representatives of the full ensemble (Jörg et al., 2010). For k = 2, there

are always two solutions, one of which corresponds to the all-down state.

We generate 3-regular 3-XORSAT instances with unique solutions by first gener-

ating a random bipartite 3-regular graph and retaining only those instances which

have an odd determinant, as this condition enforces a unique solution (Yang, 2013).

We also ensure that the generated graph is connected. We then use the biadjacency

matrix of this graph to define the lattice embedding. For the k-regular variants of

XORSAT, the finite lattices are by definition square. Varying the clause-to-variable

ratio amounts simply to changing the lattice aspect ratio.

5.3 Analytic results: limiting cases and weak-field perturba-

tion theory

5.3.1 Dilute constraint limit and 2-XORSAT

In the lattice setup, if we only have SWAP gates at all the intersections between

clauses and bits, then we recreate disconnected transverse field Ising chains. This can

be seen by considering the action of the SWAP gate as given in Eq. (5.5a), where

we see that spins are only coupled along either the horizontal or vertical directions.

Considering also the transverse-field term, and remembering that input and output

spins of gates are locked when g →∞, the Hamiltonian for a decoupled chain reduces

to

Ha = −J
N∑
i=1

σzi σ
z
i+1 − h

N∑
i=1

σxi , (5.6)

where i now denotes the coordinate along the chain. This is simply the transverse-field

Ising (TFI) chain, which is known to have a continuous phase transition at h = J and

a critical behavior which is well understood (Pfeuty, 1970). This would then imply

that in the limit of zero CNOT gates on the lattice, we would have a second-order

transition characterized by the TFI chain universality class.
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The lattices that arise in our embedding of k-regular k-XORSAT have k CNOTs

in each vertical and horizontal line. This leads to a CNOT density k
N

. For N � k, the

system reduces to independent TFI chains coupled at a vanishing number of points.

Two possibilities arise for a potential phase transition that the system may undergo

as a function of h. The first is that the phase transition remains continuous as for

decoupled TFI chains when the density of “impurities” is vanishing. The second

possibility is that this vanishing number of impurities drastically changes the nature

of the phase transition from continuous to first-order. In the first case, we would be

left with a lattice which is able to solve the computational problem in polynomial

time. In the second case, the lattice would require exponential time and would be

an example of a system where adding a vanishing number of impurities changes the

order of the transition. An example of this behavior occurs in the polymerization of

rubber (Flory and Rehner Jr, 1943), where the process of vulcanization leads to a

vanishing number of cross-links between polymers, which in turn changes the state of

rubber from liquid to solid.

Let us examine the k = 2 case. Each instance contains a periodic Ising chain,

as it corresponds to a series of ferromagnetic bonds between spins, where each spin

participates in only two bonds, as illustrated in Fig. 5·3(a). This lattice can be

reconfigured as an Ising chain with offshoots, as shown in Fig. 5·3(b), using the

following “unraveling” procedure. First, pick an arbitrary CNOT and an arbitrary

direction (vertical or horizontal), then draw a link between the starting CNOT and

its neighbor in that direction. As there is only one neighbor in either direction, there

is no ambiguity in this step. Now rename the neighbor as the starting site and follow

the same procedure using the direction perpendicular to the current direction. This

process creates a unique loop with spin chains branching out at the locations with

CNOTs. This equivalence is valid as SWAP gates only braid chains over each other
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without interactions. Taking the limit of large size, we would expect the average

separations between CNOTs to be of order N and the fluctuations about this should

be statistically small.

Examining the energetics of domain walls in this system illustrates why SA is

expected to be efficient in reaching the solution in this case. Let us consider a config-

uration of this system with a number of domain walls which would correspond to a

typical state encountered at finite temperature, as seen in Fig. 5·3(b). If we translate

a domain wall through a CNOT, it generates two domain walls on the other side, one

of which can be healed by translating it out to the boundary, while the other can

travel around the ring until it meets another domain wall, with which it can mutually

annihilate. In this way, domain walls can be healed all the way to a state without

domain walls, i.e. the ground state, in a smooth sequence of steps that monotonically

reduce energy other than the one additional bond that must be broken when passing

through a CNOT. In Sec. 5.4, we will show that 2-XORSAT is also efficiently solved

with QAA.

We now apply the same argumentation to the lattice representation of the k = 3

case. We decompose the lattice into a loop using the unraveling procedure. Fig. 5·4

shows a realization of 3-regular 3-XORSAT with the same backbone structure as

Fig. 5·3. The additional CNOT gates now provide frustrating interactions which force

the backbone chain to have all spins pointing down and spin inversion symmetry for

that section of the lattice is lost. We can look at this in detail using the particular

cross-connecting CNOT shown in Fig. 5·4 (highlighted in red) for the classical ground

state where all bonds must be satisfied. If we assume that the spins lying in the blue

chain are +1, then spin A3 would be forced to -1, implying B1 has to be -1. From

this it follows that B2 must be +1, as B3 is +1 due to a direct connection to the

boundary. This would then force B4 and as a result C2 to be +1. And as C3 is +1
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Figure 5·3: (a) “Backbone” loop for a k = 2 instance of k-regular
k-XORSAT in the lattice representation. SWAP gates are omitted and
CNOT gates are denoted by × symbols. Arrows indicate the “unravel-
ing” procedure described in the text. (b) The corresponding unraveled
loop picture with spin chains radiating out of CNOT gates. Domain
walls are sketched as | symbols and their movement, indicated by the
arrows, heals broken bonds and reduces energy.

due to the boundary, C1 must both be -1 creating a contradiction as C1 belongs in

the blue chain and must be +1. In terms of the ring structure in Fig. 5·4(b), this

would mean cross-connections between various offshoots, which would destroy the

one-dimensional nature of the chain.

The convoluted loop structure of k = 3 instances implies that domain wall move-

ment now becomes highly non-trivial: we cannot simply heal domain walls by moving

them to the boundary, but must instead translate them to the next CNOT, where

they can perhaps annihilate by merging with another domain wall. However, moving

a domain wall around the ring now produces a large number of domain walls, as each

CNOT results in branching. Each of the resulting defects can be healed only after

traversing half the ring on average. This illustrates why SA will fail to solve this

problem efficiently, even though our lattice formulation can be shown to feature no
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Figure 5·4: (a) Lattice representation of 3-regular 3-XORSAT in-
stance with the same backbone as the one shown in Fig. 5·3(a). The
backbone cannot independently fluctuate between positive and nega-
tive values, due to constraining couplings to spins outside the backbone
(example shown in red), and hence the backbone cannot be isolated as
in the k = 2 case. (b) Loop equivalent for the k = 3 realization,
with arrows showing domain wall movement that in this case involves
branching of domain walls at CNOT gates.

thermodynamic glass transition (Chamon et al., 2017; Zhang et al., 2018) and is also

found to be similar to the vertex models proposed in Ref. (Chamon et al., 2017) (see

also Appendix 5.5).

5.3.2 Weak-field perturbation theory: absence of gap collapse

Altshuler et al. (Altshuler et al., 2010) pinpointed a potential setback inherent in the

QAA protocol. Perturbative analysis showed that generic classical Hamiltonians set

up to solve computational problems may give rise to an avoided level crossing when

an arbitrarily small transverse field is added. This implies an exponential reduction

in annealing velocity, in order to maintain fidelity with the target ground state. In

order to fully address the potential issue of avoided level crossings and to show that

it is not present in our lattice formulation, we will now present a full perturbative
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Figure 5·5: (a) Sketch of y-bond connecting the spins of two gates.
The state of this bond only affects the four perturbation correction
terms corresponding to the spins shown as filled circles. (b) Flipping
the control spin (X) of a CNOT gate switches the state of the bonds
marked with a cut. Along the vertical line, either the upper or lower
bond can be broken (upper bond shown here).

treatment of the general k-regular k-XORSAT problem. A similar analysis appears

in Ref. (Knysh and Smelyanskiy, 2010).

Consider the spectrum of a classical spin model that represents a computational

problem. We again restrict ourselves to instances with a unique solution. The ground

state of the model is therefore unique. The first excited state is degenerate and is

made out of all those configurations that differ from the ground state in the status of

a single bond. At h = 0, the corresponding energy levels have a difference of J from

the ground-state level. Altshuler et al. show that perturbative corrections to the gap

between the ground state and the first excited state for small h should depend on

system size in the general case, an argument resulting from the disorder present in

most spin representations of computational problems. This leads to a second-order

correction proportional to Nh2, where N is the system size. They conclude that for

arbitrarily small h there exists N such that the correction surpasses J , leading to an

avoided level crossing.

Contrary to the above argument, we will show that there are no vanishing gaps in
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the weak-field limit for k-regular k-XORSAT. First, let us define a bond to have two

states, the set state where it is satisfied and the broken state, and the two inputs of

a gate to be degrees of freedom (as mentioned in the previous section, the outputs of

the gates are completely determined by the inputs, so they are not degrees of freedom,

and thus will be ignored). Each gate has four bonds radiating out. Flipping either of

the two input spins of a SWAP gate flips the states of two bonds, irrespective of what

their states are and irrespective of what the state of the spin was. For the CNOT

gate, flipping the carry input (C) switches the state of two bonds, but flipping the

control input (X) switches the state of three bonds, again irrespective of the initial bit

states (Fig. 5·5). Flipping a boundary spin switches the state of only one bond. The

important thing to note here is that the cost induced due to a flip does not depend

on the states of spins. Therefore, perturbation theory on the ground state creates N

corrections, but none of these depend on the ground-state configuration.

First, consider that all excited-state levels are non-degenerate. This situation is

artificial and we treat it only because it simplifies the discussion of the physically rel-

evant case of highly degenerate excitation manifolds discussed below. The excitation

energy Eflip
i of the state created due to a single spin flip at site i is one of J, 2J, 3J ,

depending on whether it belongs to the boundary, a SWAP gate or a CNOT gate

respectively. The second-order perturbation correction to the ground-state energy is

∆E(0) =
N∑
i=1

h2

Eflip
i

∝ Nh2

J
, (5.7)

so far in accordance with the Altshuler et al. argument. Any term in this sum is

determined only by the state of the four bonds radiating out of a particular point

on the lattice and the gate corresponding to that point. Each lattice point carries

two spins, implying that the status of a particular bond, which can only control two

lattice points, is relevant only to at most four terms in this sum. As the only difference
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between the ground state and one of the first excited states is the status of one bond,

only four or lesser number of terms in the perturbation corrections for both states

can differ. It follows that the change in the gap due to these corrections is

|∆E(0) −∆E(1)| ∝ h2/J , (5.8)

which is independent of system size, similar to the clean TFI model (Suzuki et al.,

2012).

We now take into account the mixing of the degenerate first-excited states amongst

themselves due to the transverse field. This typically results in the degenerate levels

spreading over a band of width ∝ h and is, once again, independent of system size.

After first-order degenerate perturbation theory, the states that result from the mixing

of the first-excited configurations at zero field are

|Ẽ(l)〉 =
∑
i

α
(l)
i |E

(1)
i 〉 , (5.9)

where |E(1)
i 〉 is a first-excited configuration with energy E(1). The states |Ẽ(l)〉 are

then used to perform higher-order perturbation theory. Second-order corrections look

like

∆Ẽ(l) = h2
∑
i,j

∑
m

α
(l)
i α

(l)
j

|E(1) − Em|
〈E(1)

i |V |m〉 〈m|V |E
(1)
j 〉 , (5.10)

where m runs over states that are necessarily not |E(1)
i 〉. Of the “diagonal” terms

| 〈E(1)
i |V |m〉 |2, at most four are nonzero, by the same reasoning we employed above.

For the terms with i 6= j, if |E(1)
i 〉 has a frustrated bond in the bulk, there is no way

to connect it to |E(1)
j 〉 via V using states |m〉 within the first level. On the other

hand, when |E(1)
i 〉 contains a frustrated boundary bond, we can connect to all other

such singly excited states. However, these second-order processes are equally possible

for all states, regardless of gate configuration, and hence this correction amounts to



109

a uniform shift of all levels. The above means that the relative shift of a first-excited

state level with respect to the ground-state level is going to be bounded in the same

way as it was for just one spin configuration in the first level. The same argumentation

extends to higher corrections straightforwardly. We therefore conclude that there is

no perturbative gap collapse in the weak-field limit for the models we study here.

We remark that the arguments presented above also extend to the random graph

spin model for 3-regular 3-XORSAT studied in Ref. (Farhi et al., 2012), and evidence

for this can be seen in the duality of h↔ J that that model possesses. This duality

implies that the spectrum is identical for h ↔ J , and as the strong transverse field

limit has a well defined gap, the ferromagnetic limit does too.

5.4 Numerical results

In this Section, we apply the QAA protocol to the lattice models for k-regular k-

XORSAT we introduced above. We simulate QAA via projector Quantum Monte

Carlo (QMC) simulations to investigate the transitions encountered upon varying the

transverse field. Our calculations are set up following the style of simulations for TFI

models (Sandvik, 2003; Liu et al., 2013) due to the similarity in the Hamiltonians

and they are able to access ground state expectation values for various observables.

It is known that for glassy systems or at first-order transitions, this style of QMC

suffers from long equilibration times and non-ergodic behavior (Brady and van Dam,

2016). Cluster updates using larger objects made out of multiple spins, which have

been found to be useful for particular frustrated Ising antiferromagnets (Biswas and

Damle, 2018), were found to be rejection-prone for our 3-XORSAT model due to the

three-body terms that make up CNOTs. This limits the sizes of the lattices we can

simulate and also how deep our simulations can reach into the ferromagnetic phase.

We use a variety of local and replica exchange updates (Hukushima and Nemoto,
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1996; Takahashi and Hukushima, 2019) to speed up the algorithm. Details of the

implementation of the replica exchange method can be found in Ref. (Takahashi and

Hukushima, 2019), where it has been applied to a similar model. We will study our

models in the context of continuous and first-order phase transitions, which show a

diverging and a finite correlation length, respectively. The energy gap is expected to

close for both types of transitions, but the scaling of the minimum gap with system

size differs, closing as ∼ N−γ for the former and ∼ e−N
γ

for the latter (γ > 0).

The lattice models of k-regular k-XORSAT with a transverse field, defined by

Eqs. (5.3) and (5.5), show two phases: a disordered phase in the limit of strong

transverse field and an ordered phase in the ferromagnetic (or classical) limit. To

simplify our analysis, we set h = 1 and vary J through the transition between the

two phases. To find the critical value of the ferromagnetic coupling Jc and the nature

of the phase transition, we use the Binder cumulant (Binder, 1981)

Um =
3

2

(
1− 1

3

〈M4
z 〉

〈M2
z 〉2

)
, (5.11)

where Mz is the magnetization of the system in the z direction. In the strong trans-

verse field limit, the system is magnetized along the x axis, which implies that Mz = 0,

whereas in the ferromagnetic limit all spins are aligned, leading to a saturation of mag-

netization. Um is defined such that it evaluates to zero in the disordered phase and

unity in the ordered one. At the phase transition, Um goes from 0 to 1 within a

window of J that gets narrower as system size increases. For a continuous transi-

tion, the behavior is monotonically increasing in most cases, although exceptions are

known (Jin et al., 2012), and for a first-order transition Um has a negative peak at

the critical point which diverges with system size as Ld, where d is the dimensionality

of the system (Binder, 1987).

The Binder cumulant is chosen here to be sensitive to Z2 symmetry breaking,
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0

0

Figure 5·6: Illustration of two TFI chains coupled at their center by
a CNOT gate. The boundary spins of the vertical chain are fixed.

which would be the symmetry usually studied in Ising systems. For the k = 3 case,

the boundary conditions enforce a single solution, meaning that the system is not

doubly degenerate and in this case, Um shows a non-zero value on the disordered

side before the transition (seen in Fig. 5·9), as the histogram favors net negative

magnetization. This anomaly is also seen in the transverse field Ising chain with

fixed boundary conditions similar to the ones studied.

We begin our study of the effectiveness of QAA on 2-regular 2-XORSAT by first

applying the algorithm to the building block of this system: a single CNOT gate cou-

pling long spin chains, as shown in Fig. 5·6. The CNOT coupling is expected to result

in no drastic change to the continuous phase transition of the two chains, as it is a

single defect in a large system. Numerical evidence for this is shown in Fig. 5·7. Even

for large systems of two chains intersecting, the magnetization histogram shows no co-

existence of phases, indicative of a second-order transition. For first-order transitions,

on the other hand, the same histogram would show a bimodal distribution, indicative

of phase coexistence (Binder, 1987). We expect the same conclusion to extend to the

case of a large number of these “cross”-linked chains connected horizontally when the

separation between CNOT gates is large, which is the case for k = 2, as shown in

Fig. 5·3. It is seen that CNOTs interact only along a linear chain and correlation
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Figure 5·7: Magnetization histograms for the transverse field sys-
tem shown in Fig. 5·6 with 81 spins per chain (crosses) and 321 spins
per chain (stars), as obtained from QMC calculations at h = 1. As
J increases (a-f), the average magnetization switches values without
developing a strong double peak structure even for large size.

length growth is controlled by the physics of the TFI chains connecting them. We

therefore expect a continuous phase transition at h ∼ J .

We analyze 2-XORSAT instances by studying the behavior of Um and the evolution

of the magnetization histograms – see Fig. 5·8. 20 realizations are used for each size

and the critical value of J is found to be close to unity, which matches the decoupled

TFI chain value. For k = 2, the two ground states correspond to the configuration

with all spins pointing down and the configuration with all bit line spins pointing up

and a complicated ordering of the clause spins which is consistent with the solution

and realization dependent. Due to the non-trivial structure of the ground states, Um
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Figure 5·8: (a-f) Magnetization histograms for a single realization of
the 2-XORSAT lattice with size 6 × 6 (crosses) and another with size
16×16 (stars) for increasing J . The slight asymmetry in the two peaks
of the histograms may be caused by non-ergodicity issues in the QMC
simulation. (g) Binder cumulant for 20 realizations of size 16× 16. In
all panels h = 1.

has to be defined using only the variable spins, as they form a spin-symmetric subset.

This implies that the order parameter we use for Um is the average z-magnetization

squared of only the row spins i1 and o1 at each (x, y) position, which make up half

of the total spins. For all the realizations of all lattice sizes, we found that Um

never becomes negative and the magnetization histograms show no sign of phase

coexistence, indicating a continuous transition, as seen in Fig. 5·8.

The QAA protocol for 3-regular 3-XORSAT proceeds in the same vein as for k = 2.

Using QMC simulations, we study the Binder cumulant using the full magnetization

(as k = 3 has only one ground state) as a function of ferromagnetic coupling J

for lattice sizes ranging from 6 × 6 to 16 × 16. For each lattice size, we study 20

realizations of the 3-regular 3-XORSAT on the lattice with unique solutions. We

find that for most of the realizations and for all sizes the Binder cumulant shows a

negative peak. This can be seen in Fig. 5·9(g) for all realizations of a 16× 16 lattice.

Due to lack of ergodicity typically seen at first order phase transitions, we had to

reject a large number of QMC simulations, retaining only those where both phases
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Figure 5·9: (a-f) Magnetization histograms for a single realization of
the 3-regular 3-XORSAT lattice with size 6 × 6 (crosses) and another
with size 16 × 16 (stars) for increasing J . (g) Binder cumulant for 20
realizations of size 16× 16. In all panels h = 1.

are represented as some simulations are not able to break out of the paramagnetic

phase. This in itself only indicates that we may have a first-order transition but

does not say so definitively. Showing that the negative peak in the Binder cumulant

scales as number of sites is taken to be definite proof that the system is undergoing

a first-order transition but we are unable to perform this analysis due to insufficient

data quality and range of sizes. We omit error bars in Figs. 5·8(g) and 5·9(g) for

clarity and as the error bars are small compared to the spread of the Binder cumulant

values for different realizations.

Fig. 5·9 shows the evolution of the histogram as a function of J for the 3-regular

3-XORSAT including the value of J at which Um is found to be minimum. The his-

togram indicates that there is a coexistence of phases which sharpens with increasing

size and the phase transition can potentially develop into a first-order transition in

the thermodynamic limit. Our system sizes and data quality limit our analysis, but

for the system sizes we can access the first order nature appears to persist to the

largest system size (Fig. 5·9). It is important to stress here that although the den-

sity of gates is vanishing in the thermodynamic limit, they are placed in a correlated
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Figure 5·10: Illustration of the mapping of the lattice formulation of
k-XORSAT onto the general vertex model framework for computational
problems introduced in (Chamon et al., 2017), here shown for a 4 × 4
lattice. The grey shaded area is the placeholder in which a lattice
like the one shown in Fig. 5·2(a) plugs into after a π/4 rotation. In
this embedding, clause bits (blue) are fixed and variable bits (red) are
left free at both left and right boundaries, whereas all bit lines are
“reflected” at the top and bottom boundaries (dashed lines).

manner, and can hence define the criticality of this model.

5.5 Mapping to the vertex model

Here we comment on the limitation of using thermal annealing to reach the ground

state of 3-regular 3-XORSAT in spite of the absence of a bulk thermodynamic phase

transition (Chamon et al., 2017). The simplest way to understand the slow ther-

mal relaxation into the ground state of the XORSAT model is to use the recipe of

Ref. (Chamon et al., 2017) to embed XORSAT into the alternative spin model shown

in Fig. 5·10. In this model, only half the boundary spins are fixed in each bound-

ary, corresponding to the clause spins being fixed by a strong field in Eq. (5.5e),

with the free bits (spins) on the rest of the boundaries. Reaching the ground state

of this model through thermal annealing requires that information propagates be-

tween the boundaries until all free spins on both boundaries are fixed. This “mixed
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boundary condition” case in which only partial initial information is available on the

input/output boundaries was already studied in Ref. (Chamon et al., 2017). There

it was found that thermal annealing is ineffective in reconciling the non-local in-

formation between the two boundaries, explaining the slow relaxation of the lattice

embedding of 3-regular 3-XORSAT.
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Chapter 6

Conclusions

In this thesis, we have presented a method of QMC simulations for spin systems

and discussed implementations in specific models. Using these simulations we have

investigated the features of quantum phase transitions.

We began with an investigation of 1+1D quantum phase transitions in the context

of quantum field theory and emergent symmetry. We reformulated the results of

conformal field theory (CFT) in terms of operators on the lattice which are accessible

through our simulations. Using this, we showed how one may investigate the presence

of a CFT and emergent symmetry through QMC simulations.

We follow this with an extension to emergent symmetry in 2+1D, where we show

valuable numerical evidence for a quantum clock model. Here we have presented a

clock model on a square lattice which shows a thermodynamic phase transition with

a U(1) emergent symmetry in the presence of simple quantum fluctuations. The U(1)

symmetry breaking to Zq order is controlled by a dangerously irrelevant operator

which leads to a second diverging length scale at the critical point. However, merely

the presence of two length scales does not recreate anomalous scaling exponents at the

critical point as seen at the deconfined critical point. Further investigation around

the U(1) symmetric unstable fixed point is required to extract the scaling behavior

in the intermediate region of the RG diagram. To create a stronger similarity with

deconfined criticality, we can add terms in the Hamiltonian which force an order to

order transition. In future work, we plan to investigate a Heisenberg type kinetic
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term of the form T+
i T

−
j , where i and j are nearest neighbors and T±i |θi〉 = |θi ± 1〉,

which may force an order similar to the Valence Bond Solid seen in the so-called JQ

model at the deconfined quantum critical point. The q = 4 case is found to show an

interesting tunability from a first order to a continuous transition. This model can

be considered more carefully from the perspective of two coupled Ising models with

different strengths of coupling and will be discussed in future work. The quantum

clock model and the phenomena observed at its critical point may find applications

in quantum phase transitions seen in Josephson Junction arrays as these arrays are

described by the XY model and strong quantum effects are not well understood

around the superconductor to insulator transition.

Investigations of the quantum clock model led to a natural extension of coupled

transverse field Ising models, where we found the intriguing dynamical features arising

from fragmented Hilbert spaces. The coupled Ising model discussed here is a tractable

system which can source interesting dynamical behavior with excitations showing a

restricted extent in space. Due to the intricate structure of non-interacting blocks

which this system breaks into, curious features may be manifest in the crossover

between quantum and thermal phase transitions, and we intend to study this in

future work. Upon the addition of perturbations it is expected that the system

regains ergodicity in a manner which depends on the particular perturbation used.

There has been a recent numerical study (Zhao et al., 2019) which suggests that long

time scales persist even in the case of a 1D version of our model in the limit of weak

global transverse fields creating a coupling across blocks. In the presence of the same

term, we have verified here that the system encodes a quantum realization of the

AT model in a Hamiltonian made out of only two body terms explicitly for 1D and

expect the same in higher dimensions. We have also identified a reason for pseudo-

first order behavior which is seen in the q = 4 Potts model in 2D which corresponds
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to a tricritical point with q ≤ 4 corresponding to continuous transitions and q > 4

being first order transitions. This could help explain the microscopic origin of the

weak first order transitions in the 1D quantum or 2D classical Potts model, which

has been studied from the perspective of complex conformal field theories (Gorbenko

et al., 2018). By switching off the matrix element of the transverse field in the

Potts model which connects odd and even colors, all even color Potts models can be

driven to exactly the limit described here. The classical Potts model has also been

independently studied in terms of restricted partitions (Wu et al., 1996). Spin liquids

with restricted dynamics have already been found to have similar features (Sikora

et al., 2011), and we plan to develop a better understanding for this in analogy with

our model in future work.

Transverse field Ising models also play a key role in adiabatic quantum computing

(AQC), and we have also applied the QMC method to investigate the features of a

simple system to test its viability for AQC. We introduced a statistical mechanics

representation of the XORSAT problem that recasts each instance as a planar grid

of reversible gates acting on bits that represent the Boolean variables of the problem.

The reason we chose this particular embedding of XORSAT is that it lacks a classical

thermodynamic phase transition. We studied this system with quantum annealing

and showed that it does not suffer from the perturbation theory collapse found by

Altshuler et al. (Altshuler et al., 2010) at small transverse field strengths. We found

that 3-regular 3-XORSAT displays a first-order transition at intermediate values of

the transverse field, implying that quantum annealing leads to a time-to-solution

that scales exponentially with the size of the system. Our results also suggest that

the physics of the phase transition is determined not only by the density of CNOT

defects, but also by their correlations. Taken together, these results on this alternative

embedding of XORSAT reinforce the conclusion that both thermal and quantum
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annealing, which are intrinsically local approaches, can be inefficient in solving even

simple problems (in computational complexity class P).
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Appendix A

Other Numerical Methods

A.1 Exact Diagonalization

One of the most reliable techniques to study the physics of quantum systems made

up of a small number of interacting bodies is exact diagonalization (ED), where the

Hamiltonian is represented in a basis of choice, numerically diagonalized and all the

features of interest calculated from the eigenvectors and eigenvalues. This method is

often used when details of the entire eigenspectrum are desired, e.g. when studying

the time evolution of quantum systems. In this thesis, exact diagonalization has

mostly been used only to benchmark QMC simulations, by comparing the results

from both methods to ensure accuracy of the QMC method. Once this benchmarking

is done, the QMC simulations can be used to study larger system sizes.

Here we describe the ED method for a simple transverse field Ising model on a

periodic chain, which is given by the following Hamiltonian:

H = −J
∑
i

σzi σ
z
i+1 − h

∑
i

σxi . (A.1)

We first choose a basis where each σzi is diagonal and the spin on a particular site

can take two values, labeled as 0 and 1. A particular product state can be written

as a sequence of 0’s and 1’s. For an N -site system, this can be compressed to an

integer whose bit-representation is the particular sequence. The space of all product

states now spans an orthonormal vector space with 2N dimensions. The Hamiltonian
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can be written as a matrix in this space. The first operator in the Hamiltonian only

contributes to the diagonal terms in the Hamiltonian, and can be evaluated by just

counting the number of neighbors which have the same spin state, e.g. the state

with all 0’s has a matrix element of −JN . Off-diagonal matrix elements can have a

non-zero value of −h only when a single site has a differing spin value for the two

states making up the matrix element. This is a consequence of the σxi operator, which

acts on a single site and flips its spin state. All other matrix elements vanish for this

Hamiltonian. To get the features of this system, we can now numerically diagonalize

this matrix using standard libraries such as LAPACK.

A.2 Parallel Tempering

One of the major road blocks which Monte Carlo simulations can suffer from is lack of

ergodicity. This implies that one must wait a long time before the results of a Monte

Carlo simulation can be trusted. In many cases the efficiency (or degree of ergodicity)

can depend on the parameters used in the simulation. Certain regions in parameter

space may be easier to sample than others. If the area of interest happens to fall in

one of the hard regions, one can allow the simulation to move temporarily into an

easy region so that the ergodicity allows for fast mixing. One of the ways of doing

this, which we have used in this thesis, is called parallel tempering. This is usually

done in the context of classical systems in the presence of temperature. This can be

illustrated in a simple manner using the classical Ising model on a square lattice. A

simple updating scheme for the Ising model is the Metropolis single spin flip. This

works well in the paramagnetic phase, i.e. high temperature, but has poor ergodicity

close to criticality and in the ordered phase. One can implement parallel tempering

in this system by running simultaneous simulations at different temperatures and

allowing simulations to exchange configurations between themselves. This allows a
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simulation which is sampling configurations that are closely related to jump to a

set of configurations which are different but have a similar weight in the probability

distribution function. As the probability of a particular configuration changes with

temperature, one must be careful about the acceptance probabilities when exchanging

configurations between a pair of simulation threads. For the simple case of two

threads, let us call them A and B, exchanging configurations CA and CB, the detailed

balance condition implies

PA(CA → CB)

PA(CB → CA)
=
PA(CB)

PA(CA)
, (A.2)

and similarly for PB. Taking a quotient of the forms of the above equations for PA

and PB, we get

PA(CA → CB)PB(CB → CA)

PA(CB → CA)PB(CA → CB)
=
PA(CB)PB(CA)

PA(CA)PB(CB)
. (A.3)

Now, one can use the usual Metropolis method where the smaller of the conditional

probabilities is set to one. In this way, the probability of swapping the configurations

is found and this method maintains detailed balance across simulation threads. A

simple way to test if parallel tempering is leading to an efficient mixing of config-

urations, is to track the movement of a particular thread as it is exchanged across

simulations. If the thread moves across all simulations in the parameter range, one

can be sure that the exchange rates are sufficiently high. The success of parallel tem-

pering depends strongly on the density of threads in a particular parameter range,

e.g. if the parameter values for different simulations are separated by a large gap,

the exchange rate reduces. The required gaps vary with the rate of change of free

energy with the parameters and as such, one must use a high density of threads close

to critical points.
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