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ABSTRACT 

Urbanization alters surface energy and biogenic carbon (C) exchange processes 

which can exacerbate increases in near-surface temperature and complicate municipal-

scale efforts to address the local causes and impacts of climate change. This dissertation 

integrates field- and remote-sensing datasets to evaluate the magnitude of and spatial 

patterns in albedo and biogenic C fluxes in the urban landscape, focusing on the region of 

Greater Boston, Massachusetts. 

Using surface reflectance measurements from the Landsat and MODIS satellites, 

we show mean albedo in the Boston metropolitan region was significantly lower in core 

population centers than nearby rural areas, corresponding to reduced tree cover, greater 

impervious surface area, and higher surface temperatures. These results establish albedo 

decline as a gradient in landscape-scale features of urbanization, and offer context for 

efforts to mitigate extreme urban temperatures through raising the albedo of built surfaces. 

Pairing field measurements of tree growth with LiDAR-based data on tree biomass 

and canopy cover, we estimate the distribution of annual woody biomass C uptake in the 

city of Boston. A substantial portion of tree C uptake occurred in densely developed 

residential areas dominated by open-grown trees as well as remnant forest fragments. Our 



	

	 ix 

results show that estimates based on rural tree growth may under-predict C uptake by up 

to approximately 50%, and quantifies the scope for policy interventions aimed toward 

increasing ecosystem services output from the urban forest. 

Fusing measurements of soil respiration and net vegetation productivity in lawns 

and trees with high-resolution land surface data, we develop an improved estimate of 

annual biogenic net carbon fluxes in Boston at a 30 m resolution. We find forested areas 

of the city may be a modest net sink for C (median 2.7 GgC yr-1), but also estimate 

substantial C flux from intensively managed landscapes in residential areas. Estimated city-

wide biogenic C was relatively small (median 600 MgC yr-1), potentially offsetting less 

than 1% of estimated annual fossil fuel emissions. Our results imply net biogenic C flux 

likely will contribute little towards efforts to reduce local net greenhouse gas emissions, 

but may significantly influence urban atmospheric CO2 concentrations at certain times and 

places.   



	

	 x 

TABLE OF CONTENTS 

 
ACKNOWLEDGMENTS ............................................................................................... v	

ABSTRACT ................................................................................................................ viii	

TABLE OF CONTENTS ................................................................................................ x	

LIST OF TABLES ...................................................................................................... xiii	

LIST OF FIGURES ..................................................................................................... xvii	

LIST OF ABBREVIATIONS ...................................................................................... xxii	

CHAPTER ONE: Introduction and Overview .................................................................. 1	

1.1 Dissertation Structure and Objectives ..................................................................... 7	

CHAPTER TWO: Albedo, land cover, and daytime surface temperature variation across 

an urbanized landscape .................................................................................................. 11	

Abstract ..................................................................................................................... 11	

1.	 Introduction ....................................................................................................... 12	

2.	 Materials and Methods ....................................................................................... 17	

2.1 Data processing ................................................................................................ 18	

2.2 Statistical analysis ............................................................................................ 21	

3.	 Results and Discussion....................................................................................... 23	

3.1 Albedo distribution and effect of LULC class .................................................. 23	

3.2 Albedo trends with land cover characteristics ................................................... 25	

3.3 Data quality assessment ................................................................................... 29	



	

	 xi 

3.4 Regional effects of albedo on surface energy balance and LST......................... 30	

3.5 Effect of spatial scale in analysis ...................................................................... 34	

4.	 Conclusions ....................................................................................................... 36	

Acknowledgments ..................................................................................................... 40	

Supplemental Information for Albedo, land cover, and daytime surface temperature 

variation across and urbanized landscape ................................................................. 49	

CHAPTER THREE: Current and future biomass carbon uptake in                 Boston’s 

urban forest ................................................................................................................... 60	

Abstract ................................................................................................................. 60	

1.	 Introduction ....................................................................................................... 61	

2.	 Methods ............................................................................................................. 66	

2.1 Study area geodata ........................................................................................... 66	

2.2 Tree growth data .............................................................................................. 67	

2.3 Growth modeling ............................................................................................. 68	

2.4 Policy Projections ............................................................................................ 69	

2.5 Statistical analysis ............................................................................................ 70	

3	 Results and Discussion....................................................................................... 71	

3.1 Urban forest structure and distribution ............................................................. 71	

3.2 Biomass gain in urban growth contexts ............................................................ 72	

3.3 Effect of biomass density areal basis ................................................................ 74	

3.4 Estimates of annual biomass C uptake .............................................................. 75	

3.5 Policy effects on ecosystem function ................................................................ 76	



	

	 xii 

4	 Conclusions ....................................................................................................... 79	

Acknowledgments ..................................................................................................... 82	

Supplemental Information for Current and future biomass carbon uptake in Boston’s 

urban forest ............................................................................................................... 90	

CHAPTER FOUR: Annual biogenic C exchange in an urban landscape ...................... 106	

Abstract ............................................................................................................... 106	

1	 Introduction ..................................................................................................... 107	

2	 Methods ........................................................................................................... 110	

2.1 Data sources and processing ........................................................................... 110	

2.2 Carbon flux modeling .................................................................................... 111	

2.3 Statistical analysis .......................................................................................... 115	

3	 Results ............................................................................................................. 115	

4	 Discussion ....................................................................................................... 119	

Acknowledgments ................................................................................................... 128	

Supplemental Information for Annual biogenic C exchange in an urban landscape . 134	

CHAPTER FIVE: Conclusions .................................................................................... 146	

5.1 Summary of work .......................................................................................... 147	

5.2 Directions for future work .............................................................................. 150	

BIBLIOGRAPHY ....................................................................................................... 155	

CURRICULUM VITAE .............................................................................................. 181	

 
  



	

	 xiii 

LIST OF TABLES 

Table 2.1: Day-of-year for scenes used in 30 m summer albedo. ................................... 47	

Table 2.2: Results of spatial autoregressive GAM analysis of albedo versus land cover 

metrics (aggregated to 500 m). Mean modeled effect for each development intensity 

interval shown with central 95th percentile spread. ................................................ 48	

Table 2.S1: Within-pixel measures of variability (median ± 95% confidence interval) in 

white-sky albedo based on bootstrap resampling of 1,000 randomly selected pixels 

per LULC category. Column headings refer to the median number of separate 

observations represented, standard deviation, standard error of mean, median value, 

spread of central 95% of sample, and difference from the single-scene July 26, 2006 

observation benchmark. ......................................................................................... 52	

Table 2.S2: Median albedo (central 95-percentile) in single-day albedo data for bootstrap 

resampling of 1,000 randomly selected pixels per LULC category. ........................ 53	

Table 2.S3: Fractional area of selected land-use/cover classes, presented with mean 

values for other land surface parameters at town scale for selected towns in the 

Boston study area (land cover metrics filtered for open water pixels prior to 

calculation of town-scale means). Abbreviations: IS, Impervious Surface %; LST, 

Land Surface Temperature; VL- L- M- H-DR, Very Low- Low- Medium- High- 

Density Residential; Ind., Industrial; Comm., Commercial; Trans., Transportation. 54	

Table 3.1: Estimated city-wide annual biomass C uptake, and distribution of median per-

pixel rate of C uptake (central 95%). Relative areas of LULC types are Forest: 8%; 



	

	 xiv 

Developed: 38%; HD Resid.: 39%; LD Resid. 2%; Other Veg.: 11%; Water: 2%; 

Total area: 12,455 ha (See Table 3.S5). .................................................................. 89	

Table 3.S1: LULC cover classes used in this study (MassGIS, 2005). ......................... 100	

Table 3.S2: Model summaries for stem- and areal-basis growth rate. Values in 

parentheses show coefficient standard error. RSD indicates model residual standard 

deviance. * significant at p<0.05, ** significant at p<0.01, *** significant at 

p<0.001 by Chi-squared test versus model excluding the term. Significance of 

coefficients for Urban Forest plot annual growth tested via Student's t test (H0: 

Bi=0), and RSD is indicated for model fit determined using mean model 

coefficients. Model intercepts were not evaluated for significant difference from 

zero. Random effects for stem annual growth were: Urban Forest – Plot, Stem ID 

(intercept + DBH slope); Street Trees – Taxon (intercept + DBH slope); Rural 

Forest – Plot, taxon, sample year (intercept). Radom effects for plot annual growth: 

Urban forest – none; Rural Forest – Plot, Sample year (intercept). ....................... 101	

Table 3.S3: Rural and Urban Forest taxa present in stem DBH samples. All equations 

taken from Chojnacky et al. (2014) unless noted. Numbers in parentheses for Urban 

Forest indicate number of increment cores represented. Specific gravity (spg) in g 

cm-3. .................................................................................................................... 102	

Table 3.S4: Street Tree taxa present in Street Tree sample, number of stems represented, 

and biomass allometric equations applied. Allometric equations taken from 

MacPherson et al. (2016), wood density from Zanne et al. (2009). ....................... 103	

Table 3.S5: Land cover configuration in the Boston study area. .................................. 105	



	

	 xv 

Table 4.1: Estimated map-wide biogenic C flux strength by LULC in Boston (median 

and central 95%). All figures in MgC ha-1 yr-1, representing the sum of C flux for 

pixels of a given LULC divided by LULC area, summarized across model 

realizations. Negative values indicate flux of C from atmosphere, positive values 

represent flux of C to atmosphere......................................................................... 133	

Table 4.S1: Total area (ha) of different cover types in the LULC classes used in this 

study. Fraction of total study area shown in parentheses. Tree biomass not shown.

 ............................................................................................................................ 141	

Table 4.S2: Factors used to calculate components of biomass growth in open-grown and 

street tree records used in annual growth simulations (see Trlica et al. [2020]). 

Taxon-specific allometric equations (Northeast region) for aboveground wood 

volume, foliar biomass and factors for foliar dry weight (dw) were taken from 

McPherson et al. (2016), and wood density factors were taken from Zanne et al. 

(2009), except where noted. Root biomass was set to default of 0.28 of predicted 

aboveground biomass, following McPherson et al. (2016). Aboveground biomass 

was calculated via wood volume, predicted as volume (m3) = B0*DBHB1, with DBH 

in cm, except where noted. ................................................................................... 142	

Table 4.S3: Total city-wide C flux by LULC (median and central 95% of estimates), 

GgC yr-1. Negative values indicate net C sink, positive values indicate net C source.

 ............................................................................................................................ 144	

Table 4.S4: Summary of metrics comparing forest biogenic C dynamics in >85% canopy 

covered pixels in Boston study region compared (by LULC and for Total map area), 



	

	 xvi 

and results of 15 years of field monitoring at Harvard Forest (HF) EMS site. Street 

refers to pixels modeled using alternative urban-specific allometric equations. 

Figures indicate median and central 95% of data except for HF, which shows mean 

and total range of reported observations. .............................................................. 145	

 
  



	

	 xvii 

LIST OF FIGURES 

Figure 2.1: Data sources used in this study: A) Albedo (showing Massachusetts state 

outline and Interstate 495 study area boundary); B) Town municipal boundaries; C) 

Census-designated places (CDP); D) Tree canopy fraction (%); E) Impervious cover 

fraction (%); F) Population density (km-2); G) Mean summer land surface 

temperature (°C). ................................................................................................... 41	

Figure 2.2: Land cover features inside approximate MODIS 500 m pixel boundaries re-

projected to UTM 19N (green box) in Watertown-Newton, MA (clockwise from top

 .............................................................................................................................. 42	

Figure 2.3: Distributions of 30 m pixel values for albedo (top) and canopy fraction 

(bottom) across the most common land-use/-cover classes in the study area 

(Cropland, Forest, Forested wetland, Very low density residential, Low density 

residential, Medium density residential, High density residential, Multi-family 

residential, Commercial Industrial, Transportation, Water), representing 

approximately 84% of total area. Bar widths show relative frequency of class, dotted 

lines show medians for whole study area; pixels more than 1.5 times interquartile 

range beyond 1st and 3rd quartiles not shown. ......................................................... 43	

Figure 2.4: Scatterplots of 30 m Landsat albedo values spatially aggregated to an 

approximate 500 m MODIS grid (excluding pixels classed as water), versus 

(clockwise from top left) canopy fraction, impervious fraction, land surface 

temperature (°C), and population density (km-2, log scale). Shading shows pixel 

density; solid lines show cubic regression splines without spatial autoregressive 



	

	 xviii 

term; dotted lines show 95% confidence interval along a moving window; blue lines 

indicate pivot points along land cover metric according to GAM analysis accounting 

for spatial autocorrelation. Blue background dots show comparable 30 m pixel 

scatters with scales clipped to include central 99% of values. ................................. 44	

Figure 2.5: Mean albedo versus (left) impervious fraction and (right) tree canopy 

fraction, Landsat 30 m data aggregated by town (selected towns labeled, open water 

pixels excluded). Color ramp corresponds to mean mid-morning land surface 

temperature, dot size corresponds to mean population density. ............................... 45	

Figure 2.6: (L) Orthophoto Waltham (R) and Weston (L) Massachusetts approximately 

64 km2 (photo courtesy of Google Earth); (R) Unsupervised classification results for 

(a) 30 m albedo; (b) 500 m albedo; (c) 30 m LST; and (d) 500 m LST for the same 

region (excluding water). Scale bars show mean values for each cluster class (LST 

in °C). .................................................................................................................... 46	

Figure 2.S1: Scatterplots of 30 m values of albedo vs. (clockwise from top left) canopy 

fraction, impervious fraction, surface temperature (°C) and population density (km-2, 

log scale).  Shading indicates pixel density; solid lines indicate fitted cubic 

regression spline; dotted lines show 95% confidence interval of the albedo mean 

along a moving window. Scales are clipped to include central 99% of albedo values.

 .............................................................................................................................. 56	

Figure 2.S2: Geary’s c autocorrelation indices for albedo (left) and LST (right) for the 

full study area and scenes limited to the municipal boundaries of urban Boston and 

rural Berlin. ........................................................................................................... 57	



	

	 xix 

Figure 2.S3: Scatterplots of 500 m MODIS composite summertime albedo (excluding 

pixels with >10% area water), versus (clockwise from top left) canopy fraction, 

impervious fraction, land surface temperature (°C), and population density (km-2, 

log scale), aggregated to the 500 m grid. Shading indicates pixel density; solid lines 

indicates fitted cubic regression spline prediction; dotted lines show 95% confidence 

interval of the albedo mean along a moving window. Blue background dots show 

comparable 30 m pixel scatters with scales clipped to include central 99% of values.

 .............................................................................................................................. 58	

Figure 2.S4: Mean albedo versus (left) impervious fraction and (right) tree canopy 

fraction, MODIS 500 m data aggregated by town (selected towns labeled, pixels 

>10% water area excluded). Color ramp corresponds to mean surface temperature, 

dot size corresponds to mean population density. ................................................... 59	

Figure 3.1: Boston study area showing canopy distribution (green) and study area outline 

(image courtesy of Google Earth). ......................................................................... 83	

Figure 3.2: Land-use/land-cover and distribution of canopy area by distance from canopy 

edge in Boston study area. ..................................................................................... 84	

Figure 3.3: Stem DBH and DBH increment for Rural Forest (L), Urban Forest (C) and 

Street Tree (R) contexts. Thick dashed lines show predicted mean response with 

fixed effects, thin dashed lines show central 95% of predictions given model error.

 .............................................................................................................................. 85	

Figure 3.4: (A) Distribution of vegetation and cover in the study area; (B) Aerial photo 

of inset area in South End neighborhood (courtesy of USDA National Agriculture 



	

	 xx 

Imagery Program); (C) Vegetation and cover type in inset: Canopy over pervious, 

canopy over impervious, non-vegetated impervious, non-vegetated pervious, 

vegetated pervious (non-canopy), and open water. Text figures correspond to 

features of inset area. ............................................................................................. 86	

Figure 3.5: Pixel median biomass C uptake rate (MgC ha-1 yr-1) for Hybrid Urban model 

(dark) and Rural Forest model, canopy basis (light). Box width is proportional to 

total area and show central 50% of data in each LULC category (other data not 

shown). .................................................................................................................. 87	

Figure 3.6: Median projections of annual net C uptake (top), total tree biomass (middle) 

and change in canopy area from 2006–2040 (bottom) in non-forested Developed, 

HD Residential, and LD residential pixels. Scenarios tested were Business-as-usual 

(BAU), Preserve Largest (PL) and Street Tree Planting (STP) from 2006–2040. .... 88	

Figure 3.S1: Example of identified plantable space (purple) along residential roads 

(gray), with space allowed for 4m buffer to nearest existing tree canopy (light 

green). ................................................................................................................... 99	

Figure 4.1: Median pixel estimate for NEE in city of Boston, MgC ha-1 yr-1. Negative 

values indicate net C uptake, positive values indicate net C emissions. Pixel size is 

30 m. ................................................................................................................... 130	

Figure 4.2: Distribution of per-pixel median estimated NEE (MgC ha-1 yr-1). Inset shows 

relative areas of different LULC classes, and boxplot widths are also proportional to 

areas (Water values not shown). ........................................................................... 131	



	

	 xxi 

Figure 4.3: Median pixel Landsat July EVI (2010–2012) versus median pixel NEE 

estimate (MgC ha-1 yr-1), by LULC. Color shading indicates concentration of pixel 

frequency. GAM prediction line shown in red. Bottom right shows histogram of 

pixel median NEE estimates for all LULC classes................................................ 132	

 
  



	

	 xxii 

LIST OF ABBREVIATIONS 

ANPP ................................................................... Aboveground Net Primary Productivity 

AGWI ............................................................................. Aboveground Woody Increment 

BAU ...................................................................................................... Business-as-usual 

BRDF ..................................................... Bi-directional Reflectance Distribution Function 

C ............................................................................................................................ carbon 

CO2 ............................................................................................................ carbon dioxide 

CDP ........................................................................................... Census Designated Place 

d .................................................................................................................................. day 

DBH ..........................................................................................Diameter at Breast Height 

ETM+ ................................................................................... Enhanced Thematic Mapper 

EVI ........................................................................................ Enhanced Vegetation Index 

GAM ..................................................................................... Generalized Additive Model 

g ................................................................................................................................ gram 

Gg ...................................................................................................................... gigagram 

GPP ........................................................................................ Gross Primary Productivity 

h ............................................................................................................................. hectare 

kg ........................................................................................................................ kilogram 

km ...................................................................................................................... kilometer 

km2.......................................................................................................... square kilometer 

LST ..........................................................................................Land Surface Temperature 

LULC .............................................................................................. Land Use/Land Cover 



	

	 xxiii 

m .............................................................................................................................. meter 

m2 ................................................................................................................. square meter 

m3 ................................................................................................................... cubic meter 

Mg ............................................................................................... megagram/metric tonne 

MODIS ................................................. Moderate Resolution Imaging Spectroradiometer 

NDVI ................................................................. Normalized Difference Vegetation Index 

NEE ............................................................................................ Net ecosystem exchange 

NPP ............................................................................................ Net primary productivity 

PL ............................................................................................................ Preserve largest 

Rs .............................................................................................................. Soil respiration 

RSD ........................................................................................ Residual standard deviance 

SD ........................................................................................................ Standard deviation 

SOC .................................................................................................... Soil organic carbon 

spg ........................................................................................................... Specific gravity 

STP ......................................................................................................Street tree planting 

TM ........................................................................................................ Thematic Mapper 

W ............................................................................................................................... watt 

yr................................................................................................................................ year 

 



	

	 1	

CHAPTER ONE: Introduction and Overview 

 

Driven by population movements and economic development, urban land cover 

could by 2030 expand to triple its worldwide extent in 2000, posing multiple interrelated 

challenges for maintaining environmental quality and human well-being (Seto et al., 2012). 

Expansion of developed land cover is often the result of conversion of surrounding forest 

and cropland (DeFries et al., 2010; Olofsson et al., 2016), and can diminish the regional 

biogenic carbon sink (Hutyra et al., 2011; Imhoff et al., 2004; Zhao et al., 2012). Urban 

areas are also the demand sink for much of the world’s materials and energy consumption 

and are host to concentrated outflows of greenhouse gases and other waste products 

(Dhakal, 2010; Kennedy et al., 2009). A better understanding of the changes in landscape-

scale ecosystem function in urbanized areas is vital to predicting and managing the local 

and global environmental consequences of urbanization, and to supporting the health and 

well-being of the billions of people who will call cities home in the 21st century (Groffman 

et al., 2017) 

Urbanization is a specific change in the terrestrial ecosphere occurring as part of 

the broader shift into the Anthropocene era, in which human activity has begun to affect 

the planet on geologic spatial and temporal scales (Zalasiewicz et al., 2010). As hybrid 

systems combining human artifacts and semi-spontaneous biophysical systems, urban 

areas can be conceptualized as “socio-ecological” systems that function in some cases 

radically differently from ecosystems under less intensive human impact (Golubiewski, 

2012). Cities, for instance, host novel eco-evolutionary communities of species, experience 
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altered weather patterns compared to surrounding rural areas, meld human and non-human 

materials and energy flows and regulatory processes, and may exhibit bioclimatic 

variability and a high degree of internal spatial heterogeneity, as well as cross-city 

homogeneity in certain landscape patterns and management routines (Alberti, 2015; 

Arnfield, 2003; Bai, 2016; Ossola and Hopton, 2018a; Polsky et al., 2014). Urban areas, in 

short, represent the replacement of less human-impacted ecosystems with ecosystems 

profoundly shaped by human activities and preferences. The ecosystem functions of urban 

areas are as a result both comparable to and critically different from rural and less human-

dominated ecosystems. It is the goal of this dissertation to elucidate some of these 

functional shifts in the urban landscape, and better predict their implications for the future 

well-being of urban dwellers and the quality of their environment. 

The first ecosystem function considered is surface energy exchange, and its 

influence on near-surface temperatures in urban landscapes. Conversion from vegetated 

surface to densely built impervious cover in cities is responsible for creating a suite of 

localized climate shifts, including generally warmer near-surface temperatures, termed the 

urban heat island (UHI) effect and noted nearly universally in cities (Rizwan et al., 2008). 

The UHI effect has been associated with wide-ranging changes in local weather patterns 

and plant phenology (Dixon and Mote, 2003; Melaas et al., 2016), and may offer a preview 

of future climate under more severe anthropogenic disruption (Meehl and Tebaldi, 2004). 

The local and regional climate impact of urban land conversion partly flows from alteration 

in the effective surface albedo (fraction of solar shortwave radiative energy reflected) due 

to both the introduction of darker building and road materials along with the effect of the 
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complex vertical topography of the “urban canopy” in built-up cover (Fortuniak, 2008). 

Beside the immediate local effects of the UHI, albedo changes could be an important 

component of the total climate forcing effect of current and future urban land cover 

expansion (Bounoua et al., 2015; Reinmann et al., 2016). Conversely, the potential to 

counteract global and UHI temperature effects by albedo manipulation has been the subject 

of widespread discussion and numeric modeling studies (e.g. Akbari et al., 2012; Li et al., 

2014; Vahmani and Ban-Weiss, 2016). However, though albedo is treated in numeric 

models of global and urban climate (Cheng and Byun, 2008; Falasca et al., 2016; Hafner 

and Kidder, 1999), few studies have empirically assessed the variability of land surface 

albedo across an urban-rural gradient, or examined the relationship of albedo to other land 

cover characteristics at spatial resolution below 500 m. Some 30 m-resolution work 

characterizing urban albedo has been conducted (Brest, 1987; Haashemi et al., 2016; 

Mackey et al., 2012), but to date no study had been made of the spatial variability of albedo, 

its potential controlling features in other land cover metrics, or its potential impact on 

surface temperature. A greater understanding of albedo variation across urban landscapes, 

and the land cover factors influencing albedo, could aid progress in estimating ongoing and 

future large-scale climate impacts due to expansion of urban centers (Barnes and Roy, 

2010; Bounoua et al., 2015) and better inform studies on the possible effects of wide-scale 

urban albedo modification (Akbari et al., 2012).  

The next ecosystem function to be considered uptake of atmospheric C to long-

lived urban tree biomass, and the potential for policy-directed changes in tree C uptake and 

canopy cover. Though conversion of land from native vegetation cover to built-up 
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development predictably lowers the overall vegetation density, developed areas may still 

retain and provide living space for considerable biomass (Hutyra et al., 2011; Raciti et al., 

2012a) and corresponding capacity for biogenic C drawdown, potentially near to the 

undisturbed background in low-density development (Zhao et al., 2012). Many conditions 

that affect plant growth such as air quality, temperature, water availability, and nutrient 

availability and deposition can vary in urban areas in ways that both enhance (O’Brien et 

al., 2012) and degrade (Quigley, 2004) the relative growth rate of plants under urban 

conditions. Urban heat island temperature alterations can further affect tree growth rates 

(Searle et al., 2012) and the length of the growing season (Melaas et al., 2016). Moreover, 

vegetation density and net primary productivity (NPP) in developed areas can vary both 

positively and negatively relative to the local rural background depending on region and 

seasonal timing due to urban influences like supplemental irrigation and UHI effects on 

growing season length (Imhoff et al., 2004), and in combination with the effects of global 

climate change (Pretzsch et al., 2017). Field and experimental research in several urbanized 

regions has shown that, even under the combined influence of the many critical growth 

factors altered by the urban environment, tree productivity may often be enhanced (Briber 

et al., 2015; Gregg et al., 2003; Takagi and Gyokusen, 2004). Potentially corroborating 

these field findings, recent work based on MODIS observations of urbanized regions in 

China have suggested a nearly ubiquitous increase in Enhanced Vegetation Index (EVI) in 

developed areas over what would be expected based on vegetation areal losses due to 

development (Zhao et al., 2016). Reinmann and Hutyra’s (2017) study based on field 

observations in the Boston area has suggested that the creation of broken canopy edges 
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with development may impact biomass density and C uptake potential along these edge 

gradients due to greater light availability and temperature variability. It is thus becoming 

clear that the approaches of either treating urban regions as devoid of significant biomass 

(Kennedy et al., 2012; Running and Zhao, 2015) or as analogous to patches of undisturbed-

forest-in-miniature (Reinmann et al., 2016) are likely insufficient to accurately assess the 

ecosystem function of vegetation in cities. Resolving uncertainty about underlying 

ecosystem processes like urban vegetation growth is critical to better understanding the 

spatial patterning of ecosystem services in cities, now widely considered a priority in both 

the science of urban ecology and in urban environmental policy (Niemelä, 2014). 

The third ecosystem function to be considered was net biogenic C exchange and 

sequestration processes at work across the urban surface. Urban areas are host to large but 

variable fossil CO2 emissions fluxes as well as biologically productive vegetation  

(Crawford et al., 2011; Velasco and Roth, 2010). Cities are leading the way in efforts to 

reduce carbon emissions, yet effective emissions policies will require increasingly 

sophisticated means of monitoring and attributing urban C flux components resolved in 

both space and time (Gately and Hutyra, 2017; Hutyra et al., 2014; Pataki et al., 2006). 

There is also an abiding interest among urban policymakers in offsetting local fossil C 

emissions to help meet climate change mitigation goals, including through local forest C 

uptake (Poudyal et al., 2010). However, both fossil C emission and biological C exchange 

processes in the urban landscape vary strongly across short spatial and temporal scales, 

posing challenges for accurately measuring, modeling, or attributing fluxes in the urban 

atmosphere. Moreover, though biogeochemical processes are an important aspect of the 
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land-atmosphere C exchange in urbanized landscapes (Hardiman et al., 2017), lessons 

drawn from research in less intensively impacted areas may not map neatly onto seemingly 

comparable processes at work in cities. Effectively monitoring emissions from cities will 

require the modification of existing approaches and development of new techniques that 

can accurately parse in space and in time not only fossil C emissions sources, but also 

biological uptake and release processes, as well as account for the unique conditions, 

heterogeneity, and human interventions that prevail in the urban ecosystem. A variety of 

approaches have been used to measure and attribute fossil and biogenic C flux in urban 

environments, including eddy covariance measurement campaigns (Velasco and Roth, 

2010), bottom-up inventorying (Gately et al., 2013; Raciti et al., 2012a; Strohbach et al., 

2012) and atmospheric inversion modeling (McKain et al., 2012; Sargent et al., 2018), but 

all face difficulties in accurately estimating any spatially and/or temporally resolved 

biogenic C flux contributions to overall C exchange. Hardiman et al. (2017) modeled 

biogenic C exchange in the urbanized Boston region while taking into consideration factors 

such as impervious cover (Raciti et al., 2012b) and localized UHI temperature effects 

(Wang et al., 2017), but it remains unclear how well approaches based on coarse spatial 

resolution and calibrations derived from rural forest monitoring can be cleanly applied to 

urban landscapes. Adding increasing complexity, recent research in the Boston 

metropolitan region has shown that human modifications to N and organic matter 

deposition in urban soils may significantly alter the pattern and scale of organic matter 

distribution and the rate of soil C respiration (Decina et al., 2016; Templer et al., 2015). 

Other urban biogenic C budgets, where they have been attempted, lack either spatial or 



	

	 7	

temporal resolution and have not taken edge- and management-related effects on plant 

productivity and ecosystem respiration into account (Nowak et al., 2013). 

 

1.1 Dissertation Structure and Objectives 

To address some of these key gaps in our understanding of urban ecosystem 

function, the research of this dissertation seeks to examine metrics of selected ecosystem 

functions across a highly urbanized landscape. Treating the city foremost as an ecosystem, 

these studies work to resolve and describe variation in functional indicators in space 

through a combination of publicly available geospatial data sets and field measurements 

taken as parts of other studies.  

In Chapter 2 we quantified the variation of albedo across an urbanized region using 

remote sensing data, and explored its relationship to land surface temperature and other 

land cover metrics (Trlica et al., 2017). This study focused on the contiguous area of 

municipalities between Interstate 495 and Boston, Massachusetts, USA. A 30 m Landsat-

based surface albedo map (Shuai et al., 2011) and land surface temperature map (Sobrino 

et al., 2004) prepared by our co-authors was combined with geospatial data on tree canopy 

fraction, impervious surface fraction, daytime population density (1 km), land-use/land-

cover (LULC) classification, and town municipal boundaries. Data were filtered to remove 

“Water” classed pixels and were examined at several spatial scales, with coarser analysis 

performed by aggregating the 30 m data to 1) the approximate boundaries of the MODIS 

500 m grid, and 2) the boundaries of the municipalities that made up the study area. 

Generalized additive modeling of the relationship between albedo and the other surface 
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parameters at 30 m showed weak correlation due to intrinsically high heterogeneity in the 

landscape. Aggregating data to 500 m showed clear trends of lower albedo at the upper end 

of the range of indicators of urbanization (reduced canopy, increased impervious cover, 

and increased population density). Aggregated to town-boundaries, there were strong linear 

associations between reduced albedo in the most densely populated, impervious, and 

devegetated parts of the metropolitan region. In contrast to the 30 m albedo data, the 

independent 500 m MODIS observations still apparently contained significant signal from 

nearby open water even after carefully excluding pixels with partial water exposure. 

Overall, the most intensively urbanized parts of the Boston metropolitan region had albedo 

that was 0.035 lower than the most rural segments, and was associated with mid-morning 

surface temperature increases 12.6 degrees higher. This study provides important empirical 

boundaries for the albedo of highly developed landscapes, and verifies the general 

supposition that greater sunlight absorption in urban areas is likely a partial cause of the 

local urban heat island. 

In Chapter 3 we estimated annual carbon uptake to long-lived woody tissues across 

the highly urbanized landscape of Boston on a spatially explicit basis, as well as the future 

consequences of differing municipal policy affecting tree mortality and planting through 

2040 (Trlica et al., 2020). Using a previously developed 1 m-map of tree canopy and 

biomass (Raciti et al., 2014), and local field measurements of tree growth rates in a variety 

of contexts, this work estimated C uptake at a 30 m grid resolution while also accounting 

for empirical forest edge growth enhancement and the faster growth rates measured in 

open-grown street trees. Our results showed that when modeled based on local growth 
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measurements, urban forest C uptake was approximately double the estimate based on 

growth rates derived from rural forest measurements. High-density residential 

neighborhoods hosted a large fraction of the total biomass and annual C uptake of the city. 

Another large portion of annual C uptake took place in smaller areas of forest fragments 

which tended to have higher C uptake rate per m2, though some non-forest areas contained 

comparable tree C uptake rates. A large majority of canopy area within the Boston city 

limits was within 10 m of a canopy edge, and thus subject to potentially higher growth 

rates. Overall C uptake to long-lived biomass was a small fraction of estimated annual 

fossil C emissions. However, policy was capable of maximizing differing ecosystem 

functions, with greater overall standing biomass and canopy expansion by 2040 under a 

policy of reducing large-tree mortality, versus greater annual C uptake rate achievable by 

expanding street tree planting in available road buffer areas. Our results showed that a large 

fraction of urban forest C uptake likely takes place in the scattered canopy setting of 

residential neighborhoods. Our study further implied that “green infrastructure” policy 

focused exclusively on ecosystem function in parks, forests, and other recognizable green 

spaces is likely to be limited in in effect compared to policy that deals with urban trees in 

non-forest locales. 

In Chapter 4 we followed up on the work of Chapter 3 in constructing a model of 

total photosynthetic C uptake in both trees and turf grass, as well as an estimate for 

management-sensitive rates of soil respiration, to estimate net ecosystem exchange (NEE) 

at 30 m resolution across the city of Boston. Net C uptake in tree woody biomass, roots, 

and leaves was estimated via urban-specific allometric equations, while uptake to turfgrass 
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lawns was modeled based on measured carbon exchange reported for other studies of in 

turfgrass systems. Soil respiration was estimated following the work of Decina et al., 

(2016) the same region, using high-resolution data on land-use/land-cover and other 

surface characteristics to allocate soil respiration efflux factors. We estimated an 

insignificant NEE C sink for the city as a whole. Forest-classed areas acted as a net C sink 

while residential areas acted as a net C source. This partitioning was largely due to the high 

efflux of C with soil respiration from landscaped areas or residential zones. Non-residential 

developed areas were predicted to host relatively low biogenic C fluxes in general. On a 

spatial basis, estimated NEE was not reliably related to satellite metrics of vegetation cover 

(EVI), even when accounting for land-use/land-cover. This lack of relationship was due in 

part to both significant and spatially heterogeneous differences in plant productivity and 

soil respiration flowing from altered urban ecosystem function that were not directly 

revealed by vegetation density alone. Our work implied that urban policy geared towards 

maximizing local biogenic carbon sequestration is unlikely to play a significant role in 

offsetting current local fossil fuel C emissions without significantly increasing the amount 

of Forest-classed land cover. 

Together these studies advance our understanding of ecosystem function in the 

highly modified conditions characteristic of today’s urban regions. These studies also 

provide empirical grounding for understanding the spatial arrangement of key ecosystem 

function in the city, and highlight remaining needs for data and analysis to better inform 

decisions touching on the management of these ecosystems to promote the well-being of 

their inhabitants.  
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CHAPTER TWO: Albedo, land cover, and daytime surface temperature variation 

across an urbanized landscape 

Abstract 

Land surface albedo is a key parameter controlling the local energy budget, and 

altering the albedo of built surfaces has been proposed as a tool to mitigate high near-

surface temperatures in the Urban Heat Island. However, most research on albedo in 

urban landscapes has used coarse-resolution data, and few studies have attempted to 

relate albedo to other urban land cover characteristics. This study provides an empirical 

description of urban summertime albedo using 30 m remote sensing measurements in the 

metropolitan area around Boston, Massachusetts, relating albedo to metrics of impervious 

cover fraction, tree canopy coverage, population density, and land surface temperature 

(LST). At 30 m spatial resolution, median albedo over the study area (excluding open 

water) was 0.152 (0.112–0.187). Trends of lower albedo with increasing urbanization 

metrics and temperature emerged only after aggregating data to 500 m or the boundaries 

of individual towns, at which scale a -0.01 change in albedo was associated with a 29 

(25–35)% decrease in canopy cover, a 27 (24–30)% increase in impervious cover, and an 

increase in population from 11–386 km-2. The most intensively urbanized towns in the 

region showed albedo up to 0.035 lower than the least urbanized towns, and mean mid-

morning LST 12.6°C higher. Trends in albedo derived from 500 m MODIS 

measurements were comparable, but indicated a strong contribution of open water at this 

coarser resolution. These results reveal linkages between albedo and urban land cover 
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character, and offer empirical context for climate resilient planning and future landscape 

functional changes with urbanization.  

1. Introduction 

By 2030, urban land cover could expand to triple its extent in 2000, posing multiple 

interrelated challenges for maintaining environmental quality and human well-being (Seto 

et al., 2012). Expansion of developed land cover may result in surrounding forest lost 

(DeFries et al., 2010; Olofsson et al., 2016), diminish the regional biogenic carbon sink 

(Hutyra et al., 2011; Imhoff et al., 2004), and enhance flooding and stream nitrogen export 

(Benson-Lira et al., 2016; Groffman et al., 2004). Conversion from vegetated surface to 

densely built impervious cover is responsible for creating a suite of localized climate shifts 

termed the urban heat island (UHI) effect, noted nearly universally in cities (Arnfield, 

2003; Rizwan et al., 2008). The UHI effect has been associated with wide-ranging changes 

in local weather patterns and plant phenology (Dixon and Mote, 2003; Krehbiel and 

Henebry, 2016; Melaas et al., 2016; Zhang et al., 2004), increased hazards to health and 

quality of life for urban residents (Johnson and Wilson, 2009; Patz et al., 2005), and may 

offer a preview of future climate under more severe anthropogenic disruption (Meehl and 

Tebaldi, 2004). The simultaneous expansion of urban land and the ongoing effects of global 

climate change stands to further expand UHI areas and the number of people affected by 

extreme temperatures (Georgescu et al., 2012).  

The local and regional climate impact of urban land conversion partly flows from 

alteration in the effective surface albedo (fraction of shortwave radiative energy reflected) 

due to both the introduction of darker building and road materials along with the effect of 
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the complex vertical topography of the “urban canopy” in built-up cover (Fortuniak, 2008; 

Kondo et al., 2001). Effective surface albedo can vary at fine spatial scales across the urban 

landscape as a consequence of the differential influences of cover features like buildings, 

roads, parks, and urban forests. Decreases in albedo increase radiative energy absorption 

by the urban land surface, contributing to increases in air and surface temperature that 

characterize the UHI (Peng et al., 2012; Taha, 1997; Zhou et al., 2014). Beside the 

immediate local effects of the UHI, changes in land surface albedo with urban development 

may alter the regional surface energy balance and climate more broadly (Barnes and Roy, 

2010), and could be an important component of the total climate forcing effect of current 

and future urban land cover (Bounoua et al., 2015; Reinmann et al., 2016). Conversely, the 

potential to counteract global and UHI temperature effects by albedo manipulation, for 

instance through using more reflective materials on roofs, has been the subject of 

widespread discussion and numeric modeling studies (Akbari et al., 2012; Jacobson and 

Ten Hoeve, 2012; Li et al., 2014; Vahmani and Ban-Weiss, 2016). 

Numeric models of global and urban climate have incorporated albedo variation 

using coarse-scale remote sensing measurements (Hafner and Kidder, 1999), by assuming 

generalized albedo values for different cover categories (Argüeso et al., 2014; Cheng and 

Byun, 2008), by explicitly modeling solar energy absorption and exchange in the “urban 

canopy” (Oleson et al., 2008), or a combination of these approaches (Ban-Weiss et al., 

2015; Georgescu et al., 2012; Li et al., 2014; Taha, 2008). Studies of the UHI using remote 

sensing data at <3 m resolution is becoming increasingly possible (Zhang et al., 2016), and 

retrieval of urban albedo is possible at similar resolution (Kaplan et al., 2016). 
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Incorporation of high-resolution albedo and other land cover data, such as vegetated and 

impervious fractional coverage, into urban surface energy exchange models has been 

shown to improve agreement with observed surface temperature and evapotranspiration 

flux (Vahmani and Hogue, 2014), and current large-eddy models rely on land cover 

parameters, including albedo, specified at high spatial resolution (Falasca et al., 2016). 

Recent work has used very high-resolution remote sensing data to characterize albedo 

variation among different roof styles to improve urban climate model accuracy (Ban-Weiss 

et al., 2015).  

However, few studies have empirically assessed the variability of land surface 

albedo across an urban-rural gradient, or examined the relationship of albedo to other land 

cover characteristics at spatial resolution below 500 m, the scale at which urban land 

variability and land conversion tends to occur. Point measurements from tower or aerial 

observations over urbanized landscapes often show lower values in more densely 

developed locations (Christen and Vogt, 2004; Taha, 1997). Remote sensing-based 

descriptions of urban albedo have characterized albedo for different LULC classes or 

identified similar broad declines in albedo in “urban” areas using coarse spatial resolution 

data, but may also obscure variability across urban areas and details of urban land cover 

changes over time. Land cover variation often occurs at scales smaller than the 500 m to 

km range examined in many urban remote sensing studies (Jin and Roy, 2005; Zhou et al., 

2014). Higher-resolution studies of urban land cover and surface temperature, often using 

remote sensing data at 30 m or less resolution, have often not considered albedo (e.g. 

(Connors et al., 2013; Herold et al., 2005; F. Kong et al., 2014; Zhang et al., 2016). Early 
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high-resolution work characterizing urban albedo by Brest (1987) used Landsat 30 m 

reflectance to approximate broadband albedo (assuming a simplified Lambertian bi-

directional reflectance distribution function, BRDF) in several land cover categories for 

Hartford, Connecticut. Other studies have examined albedo at high resolution only as it 

related directly to LST. For instance, a study in Phoenix, Arizona found negative 

correlation between broadband (Lambertian) albedo and nighttime LST based on 7 m 

observations, but the linkages between albedo and other land cover metrics were not 

considered (Jenerette et al., 2016). Mackey et al. (2012) used Landsat 30 m surface 

reflectance (without specifying surface BRDFs) to estimate broadband shortwave albedo 

across the Chicago area, finding land surface temperature reductions with greater NDVI 

and higher albedo, but also did not evaluate albedo covariance with other land cover 

metrics. Haashemi et al. (2016) found comparable results for LST in Tehran, Iran, using 

similar Landsat-based albedo estimates. Small (2006) used spectral mixture analysis of 

Landsat 30 m multispectral data over several cities to describe urban surfaces using the 

fraction of vegetation, high-albedo “substrate” (soil, pavement, rock), and a “dark” end-

member classes. While this work showed a clear inverse relationship of temperature with 

vegetation fraction, the separate effects of albedo on LST could not be determined as the 

substrate and dark end-members convolved the underlying albedo signature, as well as 

potentially combining in the dark end-members the effects of several cover types 

(absorptive surfaces, shadows, water) with radically different biophysical properties. 

There is little empirical work available to guide estimates in how albedo may 

change with urban expansion, and there has been little investigation into the nature of the 
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spatial correspondence of albedo to other land cover metrics. The lack of high-resolution 

study into the nature of albedo variation across urbanized areas hinders progress in 

understanding the landscape functional changes produced by urbanization and in modeling 

surface energy balance shifts under expanded urban land cover. For instance, (Reinmann 

et al., 2016) used 500 m MODIS broadband shortwave albedo observations to predict 

future regional-scale changes in surface energy balance in Massachusetts, USA, due to 

urban expansion, but projections based on these estimates might have been affected by 

ambiguities in associating albedo values with different settlement density as well as 

artifacts in the albedo observations over the urban surface on the order of tens of meters. 

A greater understanding of albedo variation across urban landscapes, and the land cover 

factors influencing albedo, could aid progress in estimating ongoing and future large-scale 

climate impacts due to expansion of urban centers (Barnes and Roy, 2010; Bounoua et al., 

2015) and better inform studies on the possible effects of wide-scale urban albedo 

modification (Akbari et al., 2012). Improved understanding the distribution in albedo 

across urban regions may also on a more local basis improve the ability to to target and 

scale feasible approaches for surface modifications to mitigate UHI impacts.  

The goal of this study was to improve upon previous course-resolution studies of 

urban albedo with high-resolution geospatial data to quantify urban summertime albedo at 

30 m resolution, and to relate these albedo measures to descriptive metrics of urban land 

cover character (canopy cover, impervious fraction, and population density) and mid-

morning summertime LST. The results of this study provide an empirically driven picture 

of urban albedo based on high-resolution data, as well as an empirical model of drivers of 
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albedo variation in urban land cover and its relation to one aspect of land surface 

temperature variations. 

 

2. Materials and Methods 

The study region was defined as the contiguous area of town boundaries for all 

municipalities between downtown Boston, Massachusetts, USA, and the Interstate 495 

highway that circumscribes the central city at a distance of approximately 50 kilometers 

(Figure 2.1), a landscape that has experienced considerable forest clearance with expansion 

of low density development on the periphery of the older urban centers (Olofsson et al., 

2016). The study area covered approximately 6,600 km2 containing 4.2 million residents 

in the 2010 census, and encompassed the broad range of biological and physical surface 

features commonly present in this heavily settled region of southern New England. 

Geospatial data products included in the analysis were surface albedo, tree canopy 

fraction, impervious surface fraction, daytime population density, land surface 

temperature, land-use/land-cover (LULC) classification, census designated places (CDP), 

and town municipal boundaries. All geospatial data was projected to the local UTM 

coordinate system and resampled to a common raster grid with 30 m resolution to match 

the resolution of the albedo measurements.   

Given the large seasonal changes in tree canopy cover that occur in this temperate 

urban environment (Melaas et al., 2016), data on surface features were combined only from 

daytime measurements made between June 1–August 31 to focus on a period of stable plant 

phenology combining the effects of maximum leaf extent and minimal snow cover, while 
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also capturing the maximum summertime surface temperature anomaly associated with the 

UHI (Hu and Brunsell, 2013).  

2.1 Data processing 

Albedo measurements were retrieved for scenes covering the study area for June 

1–August 31 (DOY 152–243) from 2003–2008 (Table 2.1). Surface shortwave broadband 

albedo were downscaled to 30 m resolution by synthesis of Landsat 7 ETM+ top-of-

atmosphere reflectance observations occurring at approximately 10:20 local time 

(following Shuai et al. [2011]) and the V005 16-day MODIS BRDF product (Schaaf et al., 

2002). Radiometric data for each Landsat scene were processed for calibration and 

atmospheric correction using the Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) (Masek et al., 2006) (excluding scenes with >80% cloud cover) and 

then screened for clouds using Fmask (Zhu et al., 2015). Both “white-sky”/bihemispherical 

and “black-sky”/directional hemispherical (with solar zenith angle at the time of overflight) 

were calculated for each pixel using the MODIS BRDF parameters. Albedo values for the 

Landsat shortwave narrow bands were converted to “broadband” (0.4–2.5 µm) values using 

the conversion coefficients of (Liang, 2001). Final broadband albedo retrievals were 

filtered to include values based only the highest two quality classes of concurrent MODIS 

BRDF retrievals. Albedo values under both white- and black-sky assumptions were 

combined using the median value for each pixel across all view dates to minimize the effect 

of extreme outliers (such as from incorrectly unfiltered cloud or cloud shadow pixels). A 

final “actual” albedo value per pixel under typical summer solar diffuse fraction 

illumination conditions for the Boston region was calculated as a function of black- and 
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white-sky values (Shuai et al., 2011), weighed assuming a diffuse fraction of 0.558, the 

long-term average of June–August 2002–2008 solar illumination observations at Logan 

Airport (NSRDB, 2010). The six-year summer-only compositing window was used to 

collect enough measurements per pixel to obtain a reliable albedo estimate while being 

minimally vulnerable to major changes in land cover character due to land conversion or 

large phenotypic variation across seasons. A similar broadband “actual” albedo of the study 

area was produced using the MODIS 500 m V005 16-day albedo MD343A3 data product 

(Schaaf and Wang, 2015) with scenes from the same June–August 2003–2008 window as 

the Landsat albedo data, projected into the local UTM system and retaining only values 

using the two highest quality classes of BRDF retrievals. MODIS 500 m albedo data were 

filtered to exclude pixels with >10% areal coverage of open water using the LULC data 

layer. Analysis of the precision of individual albedo estimates across Landsat acquisition 

dates is presented in Supplemental Information. 

Tree canopy fraction corresponding approximately to the year 2010 was obtained 

from the 30 m National Land Cover Database tree canopy product (Homer et al., 2015). 

Canopy fraction was used in preference to a vegetation index (e.g. NDVI) because 

fractional vegetation cover has been shown to correspond empirically and functionally 

more directly to temperature effects in the UHI (Weng et al., 2004). Impervious surface 

cover classification (as binary impervious/non-impervious) generated from 

orthophotography data was aggregated to 30 m pixels from a 1 m grid by mean value per 

pixel in the reference grid (MassGIS, 2005). Daytime population density on a 1 km grid 

was downscaled by nearest neighbor to the 30 m reference grid (Bright et al., 2013). Land 
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surface temperature was derived from mid-morning summertime observations from 

Landsat 5 TM (120 m) and Landsat 7 ETM+ (60 m) thermal infrared measurements that 

were corrected for atmospheric effects using MODTRAN (Barsi et al., 2005), after cloud 

masking using Fmask (Zhu et al., 2015). Downscaling to 30 m was performed by 

calculating LST using emissivity values based on surface reflectance data indicating 

fractional cover of soil, vegetation, and impervious cover at 30 m (Sobrino et al., 2004) 

similar to Melaas et al. (2016), averaged using mean pixel values across all valid retrievals. 

A thematic land-use/land-cover (LULC) map based on 2005 aerial orthophotography was 

rendered as a 30 m raster and aligned with the albedo reference grid, with land cover 

classed according to maximum combined LULC category area per pixel (MassGIS, 2005). 

Inside the study area the boundaries of the towns making up the study area and the Census-

Designated Places (CDP), identified by the Census as named settled development 

concentrations, were rendered as 30 m rasters aligned with the reference grid (MassGIS, 

2005; U.S. Census, 2010). All rasters were registered to features in the albedo layer using 

an automated 0th order polynomial transformation in ArcMap and inspected visually for fit. 

Approximately 7.3M pixels on the 30 m grid were included in the study area. 

Conversion of the LULC delineation map to raster, data registration, and some 

figure production was conducted in ArcMap (ESRI, 2014). All other data processing and 

analysis was performed using the R software application (R Core Team, 2014) and the 

packages mgcv (Wood, 2011), raster (Hijmans, 2017), regeos (Bivand and Rundel, 2015) 

and rgdal (Bivand et al., 2015) 
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2.2 Statistical analysis 

Due to heteroscedacity of the data distributions, results are presented with 95% 

central quantile spreads (2.5–97.5th percentile) based on the mean of bootstrap resampling 

(1,000 resamples). A generalized additive modeling (GAM) approach using a cubic 

regression spline algorithm was used to fit models for the relationship between albedo and 

the other surface parameters on a pixel-by-pixel basis (Faraway, 2006). Population density 

was log-transformed before analysis to correct for non-normal distribution after adding 0.5 

to represent values of 0. Spatial autocorrelation in the raster data was evaluated at scale 

lags of 30–1200 m using the Geary’s c statistic, applying a Rook’s Rule spatial weighting. 

An additional spatial autoregressive parameter in each GAM was included as the 

interaction of the pixel coordinates to explicitly model the spatial dependency of the 

dependent variable. For analysis, GAM pivot points were identified by changes in the sign 

of the modeled effect. Albedo, temperature, and other land cover characteristics were also 

examined according to their LULC delineations and position relative to CDP boundaries. 

Data at 30 m were filtered to remove “Water” classed pixels (approximately 267,000 

pixels, 3.7% of the study area) prior to spatial aggregation to reduce the influence of the 

relatively low-albedo water pixels. This approach allowed a focus on the influence of non-

water land cover features on albedo, which have been presumably more subject to shorter-

term alteration with human development activities (approximately 7.1M valid pixels). 

Univariate relationships between albedo and the other land cover metrics at the town scale 

were examined using an orthogonal distance regression approach to account for error in 

both variables, presenting both the mean regression coefficients and their confidence 
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intervals determined based on 1,000 bootstrap resamples, and R2 values for the line of best 

fit estimated based on deviation in the y-direction only.  

Univariate trends across isolated metrics of surface characteristics or land cover 

may not adequately capture the nature of interactions among of cover characteristics, which 

are often strongly covariant (Li and Weng, 2005; Nowak and Greenfield, 2012; Wu, 2004; 

Zheng et al., 2014), nor allow a consideration of the effect of spatial co-location of surface 

features in influencing the albedo signature. Spatial autocorrelation of urban surface 

features and temperature anomalies may also be very strong at high spatial resolutions, 

obscuring relationships among cover properties that may only emerge at a scale of 

hundreds to thousands of meters (Song et al., 2014). To examine broader scale patterns in 

albedo and the other land cover metrics, data were examined at several spatial scales, with 

coarser analysis performed by aggregating the 30 m using the mean of values of pixels 

contained within 1) the approximate boundaries of the MODIS 500 m albedo pixels 

projected to the local UTM system, and 2) within the boundaries of the towns that made 

up the study area. Analysis at the scale of the MODIS 500 m albedo data allowed a direct 

comparison of albedo trends between the 30 m Landsat and 500 m MODIS albedo data 

sets (though it has been noted that the MODIS 500 m BRDF/Albedo product in practice 

incorporates signal from a somewhat larger area encompassing adjacent pixels 

(Campagnolo et al., 2016). The boundaries of the towns constituting the study area, while 

somewhat arbitrary with respect to land cover features, are at a scale likely to reduce the 

effects of spatial autocorrelation due to scale mismatch between the observations and 

underlying phenomena, as well as better capture some of the effects of pixel proximity, 
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zoning similarities, and development history, showing broader region-wide patterns in the 

spatial distribution of land cover and LST features. Spatial clustering patterns of both 

albedo and LST were also examined by performing separate k-means unsupervised 

classification, with five final categories, on the albedo and LST data at both the 30 m and 

500 m scales. 

Many of the differences and trends explored in this study were small, at the scale 

of approximately 1% within a highly variable classes of urban landscape. The stated 

accuracy of the underlying MODIS albedo/BRDF retrievals used to estimate the 30 m 

albedo values used in this study is globally ±5%. Studies have shown root mean-square 

error in BRDF retrievals of 1–2%, particularly in snow-free regions and where multiple 

high-quality BRDF retrievals are available (Shuai et al., 2008). Similarly, the accuracy of 

the MODIS retrievals against tower-based albedo measurements in relatively homogenous 

natural sites in North America were near 1% (Román et al., 2013). Therefore, though 

accuracy of below approximately 1% has been demonstrated in the MODIS BRDF product, 

the small scale of the albedo differences in this study, compared to the stated 5% accuracy 

of the data products on which it relies, a specific assessment of the precision of these data 

was performed to evaluate their appropriateness for detecting such low magnitude 

differences.  

 

3. Results and Discussion 

3.1 Albedo distribution and effect of LULC class 

Based on 30-m estimates, the median summer albedo in the greater Boston study 



	 24	

area was 0.151 (0.053–0.187) with an overall range of 0.007–0.851 and a negative skew. 

Median albedo excluding water pixels was 0.152 (0.112–0.187). This albedo estimate was 

comparable to the urban average value of 0.112 reported for 1 km albedo estimates from 

measurements by the Advanced Very High Resolution Radiometer (Strugnell and Lucht, 

2001), and 0.157 for U.S.-average albedo values in urban cover based on 500 m MODIS 

readings (Barnes and Roy, 2010). Median albedo for the study area was also similar to 

aerial measurements over other temperate-zone cities such as 0.12–0.20 for Los Angeles; 

0.12–0.13 for Hamilton, Ontario; 0.13–0.15 for Vancouver, British Columbia; and 0.16 for 

Munich, Germany, but differed substantially from cities such as Lagos, Nigeria, with 

albedo of 0.45 (Taha, 1997). Median albedo for the Boston study area was also somewhat 

lower than recent Landsat-reflectance based values of 0.21–0.24 reported for the semi-arid 

city of Tehran, Iran (Haashemi et al., 2016), and the 0.152–0.181 reported for mesic 

Chicago, Illinois (Mackey et al., 2012), but higher than Landsat-based summertime values 

of 0.105–0.147 reported for the urban core of mesic Hartford, Connecticut (Brest, 1987). 

The higher resolution of the 30 m albedo data captured considerably more of the intrinsic 

albedo variability due to short-scale differences in land cover compared to the coarser-

resolution MODIS 500 m dataset (Figure 2.2).   

The range of observed albedo by land cover category showed large variability, with 

median albedos within -12 to +14% of the whole-area median among 11 common land 

cover types (occupying approximately 80% of the study area) (Figure 2.3). The exception 

was open water, which showed a low median albedo at 0.031 (0.016–0.151). Three 

common “non-developed” LULC classes (Forest, Forested Wetland, and Cropland) had 
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median albedo slightly higher than the whole-area median albedo, while the ranges of 

albedo in selected “developed” use classes did not differ greatly from the whole-area 

median. Median albedo declined 0.017 from the least- to most-dense residential classes, 

but albedo distributions in other types of non-residential developed land were comparable 

to one another. The small differences in albedo between LULC classes were not generally 

paralleled in the other land cover metrics (e.g. canopy fraction), which showed more 

distinct differences between use classes. Canopy fraction, for instance, was highest in 

forested LULC types, near the whole-area mean in the lowest residential density classes, 

and declined with higher residential densities towards values similar to other developed 

classes. The large overlap in the range of albedo between LULC classes may be due to the 

variable biophysical character of land cover present in these broad categories, variable 

effects of shadowing with built-up surface texture, and the potentially variant spatial scale 

of clustering or dispersion within the same or similar LULC categories. For instance, pixels 

in the same LULC category associated with high urbanization intensity might include 

discontinuous areas containing dark or highly reflective roofs, parking lots, and small areas 

of tree and grass plantings that are integrated into a single albedo value in coarser 500 m 

measurements (Figure 2.2). Differences in albedo were negligible between pixels within 

CDP boundaries (median 0.149, 0.069–0.187) and pixels outside CDP boundaries (median 

0.153, 0.044–0.187), which may also reflect the same integration of albedo values from 

widely differing land cover character inside and outside of designated built-up areas. 

3.2 Albedo trends with land cover characteristics 

At 30 m resolution, even after exclusion of low-albedo open water pixels, 
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variability was very high and relationships between albedo and other land cover metrics 

were ambiguous and weak (Figure 2.S1). A GAM including a spatial autocorrelation term 

for 30 m albedo predicted by canopy, impervious fraction and population density explained 

11.1% of total deviance with all terms significant (p< 0.01), while a model including only 

the spatial autoregressive term explained 6.5%. However, when data were aggregated to a 

coarser 500 m spatial grid (consistent with MODIS pixel size, but excluding water), 

somewhat clearer trends toward lower albedo with greater indicators of urbanization 

intensity emerged (Figure 2.4). A spatial autoregressive GAM for the combined effect of 

canopy, impervious fraction, and population density on albedo explained 36.3% of 

deviance (p<0.01 for all terms), while a model including only the spatial autoregressive 

terms explained 22%. Univariate GAM analysis including spatial autocorrelation showed 

small but significant effects across urbanization metrics (Table 2.2). None of the land cover 

metrics individually or together had a determinative influence over albedo independent of 

landscape position, but models all predicted lower albedo with greater indicators of 

urbanization (i.e. higher impervious fraction, lower canopy fraction, higher population 

density). Modeled effects were modest in the low and medium-intensity development 

ranges, but were considerably greater in magnitude at the upper extremes of development 

intensity. The models also predicted lower albedo with impervious fraction below 1% and 

population density below 2 km-2 (possibly wetlands or other uninhabited areas), and 

increased albedo with high canopy fraction (possibly intact forests with low levels of 

development).  

The best fit spatial autoregressive GAM for albedo predicted by LST at 500 m 
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aggregation (31% deviance explained) showed a negative effect on albedo in pixels with 

LST below 25.6 °C (mean effect -0.004 [-0.027–0.000]), a slight positive relationship in 

pixels with LST of 25.6–31.3 °C (mean effect 0.001 [0.000–0.002]), and a negative 

association above 31.3°C (mean -0.004 [-0.015–0.000]) (Figure 2.4). The association of 

lower-albedo pixels seen at 30 m and 500 m with both unusually high and unusually low 

LST pixels could be due to several factors. Pixels with low LST and low albedo may 

include areas with more shadow or partial exposure to open water, or may be due to the 

presence of low-albedo but high-thermal admittance materials like stone or asphalt building 

materials that had not warmed at their surfaces significantly by mid-morning. Higher-LST 

pixels may represent low-albedo/low-admittance materials such as soil that developed 

higher surface temperature by mid-morning. Some of the extremely high LST values 

retrieved may also be partly an artifact of the method used in this study, which relies on 

atmospheric corrections that may result in over-estimation of true LST during summer 

months when atmospheric water content is high (Windahl and de Beurs, 2016).  

Further aggregating the 30 m pixels to town boundaries (water pixels excluded), 

with a median area of 40 km2 (8–111 km2), showed even more distinct relationships 

between albedo and the other urban biophysical metrics compared to the data aggregated 

to a 500 m grid (Figure 2.5). Mean albedo at the town scale fell within the range of 0.162 

(0.130–0.191) (Berlin, most rural) and 0.125 (0.095–0.175) (Somerville, most urban), with 

an overall central 95-percentile range of town mean albedo of 0.134–0.160. Orthogonal 

distance regression showed a positive trend in albedo with canopy cover                                      

(β = 0.34±0.05×10-3, R2 = 0.62), and negative trends with impervious fraction                            
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(β = -0.37±0.04×10-3, R2 = 0.70), log-population density (β = -2.84±0.82×10-3, R2 = 0.41), 

and surface temperature (β = -1.86±0.26×10-3, R2 = 0.65). The strength of these correlations 

is consistent with the trends identified in the 500 m aggregate analysis showing generally 

lower albedo with increasing metrics of urbanization intensity. The most intensely 

urbanized core areas (e.g. Somerville, Cambridge, and Chelsea) had the lowest aggregate 

mean albedo and canopy cover, with the highest mean impervious cover, population 

density, and surface temperature. In contrast, low-density rural towns (e.g. Berlin, 

Rockport, and Dover) tended to have higher albedo, lower impervious cover, greater 

canopy fraction, and lower surface temperature. Landscape position alone (particularly 

distance from the coast) did not determine these town-scale features, as relatively densely 

built-up towns at the periphery of the study area (e.g. Lowell and Lawrence) were similar 

in terms of albedo and other surface characteristics to comparably urbanized towns inside 

the central urban core. At the town scale within the range of mean measured albedo (0.125–

0.162) a 0.01 decrease in mean albedo was associated with an approximately 29 (25–35)% 

decrease in canopy cover, a 27 (24–30)% increase in impervious cover, and a 5.4 (4.7–

6.3)°C increase in average summer mid-morning surface temperature. An increase of 

population density from approximately 11 km-2 to 386 km-2 (i.e. from 29–1,000 persons 

mile-2, the U.S. census lower boundary for urban-classified areas) was also associated with 

an approximate 0.01±0.006 decline in mean albedo. Maximum mean albedo differences of 

approximately 0.035 (0.030–0.039) between towns in this study were associated with mean 

surface temperature differences of approximately 12.7 (11.9–13.7) °C, considerably larger 

than the average 3.4 °C surface temperature decrease measured in one neighborhood in 
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Chicago following an overall albedo change of +0.07, but also related to much more 

dramatic differences in land cover character between the constituent towns (Mackey et al., 

2012). Some of the differences in albedo previously reported across other large urban 

basins (e.g. Brest, [1987]; Hafner and Kidder [1999]) may have been similarly due to 

comparable underlying effects of gradients in land cover character and spatial co-

occurrence measured in this study. Other studies have demonstrated a cooling effect with 

greater tree cover and a warming effect with greater impervious cover in urbanized areas 

in this bioclimatic region (Rogan et al., 2013) and elsewhere (Estoque et al., 2017; Small, 

2006), but the results of this study provide evidence of an embedded albedo component to 

the surface temperature consequences of these gradients in urbanization intensity. 

3.3 Data quality assessment 

While it was not possible to judge retrieval accuracy against an independent data 

source (e.g. tower albedo measurements) in this study, the precision of individual retrievals 

at each pixel location in the combined multi-year data appeared to be considerably higher 

than the stated error of the MODIS albedo/BRDF product (Table 2.S2). Data coverage at 

each pixel location was generally high, with a median of 13 (8–25) good-quality retrievals 

at each pixel. Overall dispersion at the 30 m pixel level showed a median standard deviation 

of 0.014 (0.007–0.035), considerably lower than the stated ±0.05 accuracy standard set for 

the MODIS BRDF/Albedo retrievals but generally in accord with the RMSE of high-

quality retrievals over a variety of snow-free landscape types (Shuai et al., 2008). The 

median standard error of the mean for retrievals was 0.004 (0.002–0.010), indicating that 

the precision of the estimate of the mean albedo retrieval at most locations would be below 
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±0.01. Measures of precision were also consistent across LULC category, indicating 

dispersion of well below ±0.05 in individual categories. The difference between the within-

pixel median value for all included data and a single-day relatively cloud-free albedo 

retrieval (26 July 2006) were also near zero, and did not vary greatly by LULC type. 

Differences between the multi-year average albedo and single-day clear scenes was 

minimal, but may have indicated a slightly lower albedo overall in the early part of the 

season (Table 2.S3). Trends in albedo with other land cover metrics were similar between 

the multi-year average and the selected single-date data when aggregated to both 500 m 

and to the town boundaries (see Supplemental). 

Results of this error sensitivity analysis show that variability across scenes was 

generally lower than 0.01 and did not show systematic changes in albedo, or its relationship 

to other land cover metrics, across the temporal range of observations or among different 

LULC types. The narrow range of albedo retrieval at each pixel location, the small 

differences in retrievals between acquisition dates, the large number of available pixels, 

and the restriction of albedo retrievals to snow-free areas with higher-quality concurrent 

BRDFs argue that the trends and differences identified in this study, though within the 

stated global accuracy of 0.05 for the MODIS albedo/BRDF product, are nevertheless 

likely to be robust. 

3.4 Regional effects of albedo on surface energy balance and LST 

Differences in albedo between LULC categories at the 30 m pixel scale were 

relatively weak, but mean albedo at the town scale was associated with broad differences 

in the distribution of LULC fractions, with higher fraction of “undeveloped” LULC types 
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in rural low-density towns and higher fraction of “developed” LULC types in more 

intensively urbanized towns (Table 2.S1). In contrast, the water areal fraction (%) at the 

town scale did not show a clear urban-rural gradient and had differing effects on albedo 

and surface temperature, where a weak negative trend in mean albedo (including water) 

with greater fraction of water coverage (β = -1.06±0.52×10-3, R2 = 0.16) showed no 

corresponding link between water cover fraction and mean surface temperature                       

(β = -0.03±1.64×103, R2 = 0.00). This lack of trend between water fraction and surface 

temperature is in contrast to studies identifying both positive and negative UHI temperature 

relationships to the areal fraction of open water (F. Kong et al., 2014; Steeneveld et al., 

2014; Sun and Chen, 2012; Weng et al., 2004). While open water fraction in the 

metropolitan Boston study area did affect town-scale mean albedo, it did not appear to 

exert a strong influence on town-scale mean LST.  

A spatial autoregressive GAM of the relationship of 30 m LST to albedo, canopy 

cover, and impervious fraction (excluding water pixels) predicted 75.9% of deviance 

(27.2% of deviance in spatial autoregression only). The modeled effect on LST was 

generally negative for canopy cover, positive for impervious fraction, and variable for 

albedo, with negative effects at the extremely low and moderately high values, and little 

effect near the overall average albedo, (not shown). The total range of the potential modeled 

effect was highest for albedo (-6.9–6.1 °C), followed by impervious fraction (-1.0–5.4 °C) 

and canopy (-2.9–3.1 °C). However, the median effect for albedo was negligible at 0.1 (-

0.6–0.3) °C, compared to -1.0 (-1.0–5.1) °C for impervious fraction and 0.3 (-2.6–2.9) °C 

for canopy fraction. Therefore, though a few exceptional pixels with very high and very 
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low albedo showed a strong influence on the modeled LST, for most pixels at 30 m 

impervious fraction and canopy showed the strongest influence in the simultaneous model. 

These results were similar to findings in other remote-sensing based studies showing a 

positive effect on impervious cover on urban daytime LST with a negative effect of canopy 

cover and weak effect of albedo (Chen et al., 2006; Haashemi et al., 2016; Jenerette et al., 

2016; F. Kong et al., 2014; Zhang et al., 2016). These results further support analysis of 

the 500 m aggregated data showing that both low and high albedo corresponded with low 

LST (possibly due to effects of thermal admittance), but also show a limited effect of 

increasing LST in the <0.01% of pixels with albedo above approximately 0.50. Cluster 

analysis based on k-means unsupervised classification showed that at both 30- and 500 m 

coherent areas of higher temperature tended to associate with areas of lower albedo, though 

coherence in LST was apparently higher than albedo at either scale, probably due to the 

greater scale length of the LST measurement and the UHI temperature anomaly (see 

discussion below) (Figure 2.6). 

Though the absolute albedo differences at the town scale in this study were small 

compared to the fine-scale variability in albedo across the study area, these differences 

have potentially important implications for regional energy balance and climate. Assuming 

a 24-hour average June–August solar irradiance of 219.4 W m-2 for the region (as measured 

2002–2008 at Boston Logan Airport), the mean albedo difference between the five most 

densely populated towns (with a combined 2010 population of approximately 875,000) and 

that of the 20 least densely populated towns resulted in an average of 4.7 (3.4–5.9) W m-2 

increase in solar energy input, concentrated in the relatively small area of the most 
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intensively urbanized segments of this study area. The additional shortwave radiative 

forcing due to albedo change in the most intensively urbanized areas in this study was 

smaller than values of up to 51 W m-2 reported during peak daytime irradiance for Basel, 

Switzerland (Christen and Vogt, 2004), was comparable to modeled decreases in continent-

scale shortwave forcing achievable by urban albedo modification (Menon et al., 2010),  and 

was considerably greater than the current radiative forcing estimated for albedo shifts with 

historic land use change (-0.367–0.334 W m-2) over broader ecoregions of the U.S. (Barnes 

and Roy, 2010). Mean LST was also elevated by 10.5 (9.6–11.6) °C in these most 

urbanized towns compared to the same rural background, though with the caveat that the 

LST retrievals for the study period may have a positive bias (Windahl and de Beurs, 2016).  

Near-surface air temperature is of greater importance than LST in terms of human health 

and comfort, which in the case of Boston have been reported from 0.13 °C (spring daytime) 

up to 2.9 °C (summer nighttime) higher in urban areas compared to rural (Wang et al., 

2017). The relationship between LST and near-surface air temperature in the UHI is 

complex, and can vary greatly depending on diurnal and seasonal timing and on 

characteristics of the underlying land surface fabric (Krehbiel and Henebry, 2016; Wang 

et al., 2017). Given these complexities, the specific contribution of albedo changes to land- 

or near-surface temperature differences across this region cannot be precisely modeled with 

the data prepared for this study. However, the spatial coincidence of lower albedo and 

higher LST imply that an increase in shortwave energy absorption could form a portion of 

the measured increases in LST due to the small-scale decreases in albedo with increased 

urbanization intensity, which may further help to drive higher near-surface air 
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temperatures. These results also demonstrate a clear tradeoff between canopy and 

impervious cover at the town-scale, with albedo as a co-factor in this tradeoff. These 

correlated trends in land cover properties corresponded to a gradient of potential albedo-

related radiative forcing with the potential to affect surface temperature.  

3.5 Effect of spatial scale in analysis 

Positive spatial autocorrelation as measured by Geary’s c across the full study area 

was very high at short spatial lags (30 m) in both the albedo (0.10) and surface temperature 

data (0.02) (where values closer to 0 indicate increasing correlation), but differed in rate of 

decrease with increasing lag (Figure 2.S2). At a scale of 480 m (approximately the scale of 

MODIS pixels) albedo had Geary’s c of 0.71, increasing to 0.84 at 1200 m lag, while in 

contrast surface temperature had Geary’s c of 0.42 at 480 m, increasing to 0.55 at 1200 m. 

The sharp decline in autocorrelation of the albedo data with increasing spatial lag (scale) 

partly explains the reduced variability and more discernible land cover and surface 

temperature trends when the data were aggregated to the coarser 500 m and town-scale 

units for analysis, with highly similar neighboring pixels aggregated into less variable and 

less autocorrelated spatial units. The scale of clustering in albedo features was apparently 

somewhat greater than the 30 m measurement scale, but was in large part smaller than the 

500 m and larger aggregations scales. Autocorrelation in LST was higher than albedo, and 

the slower decline in autocorrelation in LST with increasing spatial lag may reflect both 

the larger measurement scale of the thermal infrared observations (60- and 120 m), as well 

as the larger length scale of transitions between temperature features compared to shorter-

scale features in albedo. Spatial autocorrelation may also have decayed more quickly with 
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lag in more homogenous rural segments of the study area compared to more intensively 

developed segments. For instance, in rural Berlin the Geary’s c metrics had reached a 

plateau of relatively low autocorrelation by lags of 0.90 and 0.73 at lag of 450 m for albedo 

and LST, respectively, while at the same positions the respective Geary’s c values for 

Boston were 0.72 and 0.38. Other studies of the UHI have noted high spatial 

autocorrelation in features of urban land cover and surface temperatures in 30 m data, with 

clearest trends between cover metrics tending to emerge at aggregation scales                   

(200–700 m) that were variable but higher than the native Landsat resolution (Estoque et 

al., 2017; Song et al., 2014). The aggregation of fine-scale measurements into larger spatial 

blocks reduced overall variability, helping to highlight trends among the land cover 

metrics, but also creates the potential for ambiguity in interpretation due to the Modifiable 

Areal Unit Problem (Jelinski and Wu, 1996) given the arbitrary boundaries of the units of 

spatial aggregation. Fully addressing this problem is beyond the scope of the current work, 

but the analysis of trends across multiple aggregation scales and quantification of spatial 

autocorrelation provide some insight into the potential impact of this problem on the 

conclusions of this study. 

Variability in albedo across all land cover metrics was considerably lower in both 

the 500 m aggregated Landsat data and the MODIS 500 m data compared to the 

unaggregated 30 m data, likely due to the averaging of variable but spatially autocorrelated 

30 m albedo and other land cover metrics into the larger pixel signal, particularly in the 

more urbanized regions where autocorrelation was higher. Albedo measured in the 500 m 

MODIS data showed comparable trends of increasing metrics of urbanization intensity to 
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the 30 m Landsat-derived data aggregated to 500 m, but were displaced in albedo by about 

-0.017, possibly due to signal contamination with proximity to low-albedo adjacent water 

or to instrument calibration differences (Figure 2.S3). However, because of the effect of 

open water on the albedo signature and the scale mismatch between LULC patches and the 

MODIS 500 m albedo data, it was necessary to first exclude pixels with significant 

exposure to open water (>10% coverage per pixel) for analysis of the MODIS 500 m data 

to be comparable to the aggregated Landsat 30 m data. This filtration resulted in the 

elimination of albedo data over extensive margins of urbanized land along coastal and 

inland water margins where a significant fraction of the densest urban development was 

located. Even after exclusion of these potentially affected pixels, 500 m MODIS data 

aggregated at the town scale showed that small coastal towns and towns near large lakes 

or rivers displayed unrealistically low albedo signatures given their other metrics of 

development intensity, compared to the relationships shown based on the 30 m Landsat 

observations (Figure 2.S4). Given the likely incorporation of adjacent water cover into 

pixels along water margins due to variability of the effective resolution of the MODIS 500 

m BRDF/albedo data (Campagnolo et al., 2016), the unusually low albedo seen in coastal 

towns in the region shown in the MODIS 500 m albedo data is likely due to this 

unaccounted-for water signal. 

4. Conclusions 

This study addresses an empirical gap in knowledge on the variation in surface 

albedo across heterogeneous urban areas, the relationship of albedo to other urban land 

cover characteristics, and the potential link between lower albedo and increased 
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temperature across an urbanized landscape. Our results demonstrate that mean albedo was 

reduced by up to 0.035 (0.030–0.039), to a minimum of 0.125, in more densely developed 

areas with lower tree canopy cover, higher impervious fraction, and greater population 

density, with the most distinct albedo effects at the extreme end of the development 

intensity spectrum. These differences in land cover character and albedo were also 

associated with a shift towards higher coverage of more intensively constructed urban 

LULC cover types and reduction in more highly vegetated cover classes. Areas with lower 

albedo also showed higher mean mid-morning LST (up to 10.5 °C warmer than the rural 

background). The measured albedo gradient was also associated with gradients in canopy, 

impervious fraction, and population density, each with possible correlation with or 

influence over latent cooling, convective heat transfer, and longwave radiation absorption 

and release processes. Our results provide empirical constraint on albedo as part of the suite 

of covarying land cover characteristics that together are associated with increased 

summertime LST and increasing urbanization in our study region. 

Results of analysis of the 30 m data aggregated based on town boundaries and 500-

m MODIS pixel footprints demonstrate that the scale of spatial patterning in the albedo 

and land cover metrics used in this study was generally larger than the 30 m Landsat 

resolution, and clear patterns in albedo and land cover quality did not emerge in direct 

analysis of the high-resolution data. This scale sensitivity may have been partly due to high 

variability and spatial autocorrelation in albedo and LST at scales of below roughly 500 m, 

suggesting that a larger aggregated scale was most appropriate to reveal the linkages 

between land cover properties, albedo, and land surface temperatures patterns. In contrast, 
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a priori LULC categories and broad-scale statistical indicators of “settled area” like the 

CDP boundaries explained less variation in albedo, as predefined cover categories captured 

only some degree of the spatial cohesion of these features and included a wide range of 

underlying biophysical cover conditions.  

A key influence on surface albedo was the presence of open water. Given that urban 

areas are very often located near surface water features, controlling for the influence of 

open water will be critical in accurately assessing the albedo of urban land cover. Though 

a larger spatial lens was needed to detect linkages between the land cover metrics, albedo, 

and surface temperature, high-resolution data were needed to provide sufficient control 

over which pixel populations were included (i.e. excluding open water pixels) in the 

aggregate statistical analysis. Courser data, such as MODIS (500 m), are at risk of 

confounding the low-albedo features like open water with other lower-albedo urban land 

cover features. 

Urban microclimate models use a variety of approaches to parameterize albedo in 

order to simulate energy exchange at the land surface. Our results indicate that 

parameterizing albedo in urban climate modeling using generalized values for different 

LULC classes can result in considerable error given the wide range of albedo values 

measured between classes. The net change in albedo in the most intensively urbanized 

areas may be considerably smaller and more varied over space than has been assumed in 

some numerical modeling approaches for urban climate (e.g. Falasca et al., 2016). Analysis 

of trends between albedo and other land cover metrics in the study area show that on a 

regional basis (several km scale) albedo gradients across an urban-rural gradient may be 
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broadly predicted, opening the potential for further study on the implications for surface 

energy balance of urban land expansion (Reinmann et al., 2016). Further work will be 

necessary to investigate the generality of these albedo/land-cover relationships in other 

urbanized regions with varying development histories, land use patterns, and local 

ecological and climatic context. 

Though urban land cover is concentrated over 1–2% of the earth’s land surface, if 

lower albedo is a feature of urban land more generally, albedo shifts with urbanization may 

form meaningful a component of both local and global climate forcing (Akbari et al., 2009). 

The potential exists for local UHI temperature mitigation through albedo manipulation (e.g. 

“cool roofs”, Li et al., 2014), with the prospect for relatively large regional cooling effects, 

but with potential tradeoffs such as increased wintertime heating demand and reduced 

precipitation (Georgescu et al., 2014). In the case of the Boston area, the findings of this 

study provide context for the feasibility, targeting and scaling of albedo manipulation. 

Urban-rural albedo decline in the study area was of a similar order to albedo increases that 

have been achieved through use of reflective building materials elsewhere (Mackey et al., 

2012) and with surface albedo measurably lower than some of the highly reflecting 

coatings that might be deployed on exposed surfaces like roofs (Rosenfeld et al., 1995). 

These findings also suggest that meaningful albedo increases would likely be more easily 

achieved in the most densely developed urban areas.  

This study provides a potential empirical constraint for the radiative description of 

urban surfaces for numerical studies of surface energy flux or for urban climate models 

that simulate energy exchange in the complex urban canopy (Frey and Parlow, 2009; 
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Groleau and Mestayer, 2013; Krayenhoff and Voogt, 2010; Oleson et al., 2008). The 

interacting effects of climate change and the UHI phenomenon, and the risk posed by rising 

temperatures in urban environments and altered surface energy balance with urban 

expansion more broadly, underscores the need for a greater understanding of the albedo 

drivers behind this land cover change process, and the scope for albedo modification as a 

future mitigation tool. 
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Figure 2.1: Data sources used in this study: A) Albedo (showing Massachusetts state 
outline and Interstate 495 study area boundary); B) Town municipal boundaries; C) 
Census-designated places (CDP); D) Tree canopy fraction (%); E) Impervious cover 
fraction (%); F) Population density (km-2); G) Mean summer land surface temperature (°C). 
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Figure 2.2: Land cover features inside approximate MODIS 500 m pixel boundaries re-
projected to UTM 19N (green box) in Watertown-Newton, MA (clockwise from top  
left): Landsat-derived 30 m albedo (July–August 2003–2008); MODIS 500 m albedo 
(July–August 2003–2008); land-use/-cover classification map (ca. 2005), and; high-
resolution orthophoto (ca. 2005). 
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Figure 2.3: Distributions of 30 m pixel values for albedo (top) and canopy fraction 
(bottom) across the most common land-use/-cover classes in the study area (Cropland, 
Forest, Forested wetland, Very low density residential, Low density residential, Medium 
density residential, High density residential, Multi-family residential, Commercial 
Industrial, Transportation, Water), representing approximately 84% of total area. Bar 
widths show relative frequency of class, dotted lines show medians for whole study area; 
pixels more than 1.5 times interquartile range beyond 1st and 3rd quartiles not shown. 
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Figure 2.4: Scatterplots of 30 m Landsat albedo values spatially aggregated to an 
approximate 500 m MODIS grid (excluding pixels classed as water), versus (clockwise 
from top left) canopy fraction, impervious fraction, land surface temperature (°C), and 
population density (km-2, log scale). Shading shows pixel density; solid lines show cubic 
regression splines without spatial autoregressive term; dotted lines show 95% confidence 
interval along a moving window; blue lines indicate pivot points along land cover metric 
according to GAM analysis accounting for spatial autocorrelation. Blue background dots 
show comparable 30 m pixel scatters with scales clipped to include central 99% of values. 
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Figure 2.5: Mean albedo versus (left) impervious fraction and (right) tree canopy fraction, 
Landsat 30 m data aggregated by town (selected towns labeled, open water pixels 
excluded). Color ramp corresponds to mean mid-morning land surface temperature, dot 
size corresponds to mean population density. 
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Figure 2.6: (L) Orthophoto Waltham (R) and Weston (L) Massachusetts approximately 
64 km2 (photo courtesy of Google Earth); (R) Unsupervised classification results for (a) 
30 m albedo; (b) 500 m albedo; (c) 30 m LST; and (d) 500 m LST for the same region 

(excluding water). Scale bars show mean values for each cluster class (LST in °C). 
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Table 2.1: Day-of-year for scenes used in 30 m summer albedo.  
 

Year Landsat 7 ETM+ 
Path 12, Row 30 

2003 231 
2004 170, 186, 202, 218 
2005 156, 204 
2006 191, 207, 223 
2007 162, 178, 194, 210, 226, 242 
2008 165, 197, 213, 229 

Path 12, Row 31 
2003 199, 215, 231 
2004 154, 186, 202  
2005 156, 204 
2006 191, 207, 223 
2007 162, 178, 194, 210, 226, 242 
2008 165, 181, 197, 213, 229 

  



	 48	

Table 2.2: Results of spatial autoregressive GAM analysis of albedo versus land cover 
metrics (aggregated to 500 m). Mean modeled effect for each development intensity 
interval shown with central 95th percentile spread. 
 

Land cover 
metric 

 Development Intensity  
 

Low Medium High Deviance 
explained 

Canopy % 

Threshold 0–32% 32–66% 66–100% 

33.1% 
Effect 

-0.007 
(-0.023–
0.000) 

0.001 
(0.001–
0.001) 

0.003 
(0.001–
0.008) 

Impervious % 

Threshold 0–1% 1–23% 23–100% 

27.4% 
Effect 

-0.001 
(-0.002–
0.000) 

0.002 
(0.000–
0.003) 

-0.005 
(-0.017–
0.000) 

Population 
density 

Threshold 0–2 km-2 2–365 km-2 >365 km-2 

26.9% 
Effect 

-0.003 
(-0.004–
0.000) 

0.002 
(0.000–
0.003) 

-0.004 
(-0.015–
0.000) 
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Supplemental Information for Albedo, land cover, and daytime surface temperature 

variation across and urbanized landscape 

 
This Supplemental Information contains tables and figures referred to but not 

presented in the article text, as well as the methodology and results of the Albedo Data 

Quality Assessment  

 

2.S1. Albedo Data Quality Assessment 

Albedo in this study was analyzed as the median value of several year’s worth of 

summertime albedo retrievals at each pixel location, such that multiple retrievals per pixel 

are available to measure the dispersion of albedo estimates at each location. Though these 

retrievals incorporated interannual land cover changes, transient atmospheric effects, and 

random or systematic instrument error, their dispersion can be used to indicate the precision 

of the albedo retrievals and the effect of LULC type on retrieval. Within-pixel dispersion, 

while not a direct measure of accuracy in retrievals against another measurement source, 

can provide a sense of the reliability and internal consistency of these retrievals and indicate 

potential for systematic uncertainties. To assess within-pixel dispersion, we evaluated 

several metrics of dispersion within the population of all available high-quality albedo 

retrievals (standard deviation, standard error of mean, and width of the central 95% of data) 

for the most prominent LULC types at every pixel location for the range of June–August, 

2003–2008. The median within-pixel value was also compared to the value retrieved in a 

single mid-range scene (26 July 2006) to gauge the bulk deviation of the mulit-year average 

from a particular one-time retrieval.  
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In constructing an average albedo dataset, there was also the potential for error to 

be introduced in combining retrievals that differed between scenes (e.g. land cover change) 

or took place at differing phenological stages (though all data was restricted to retrievals 

based on high-quality summertime observations). To examine these inter-temporal effects, 

three single-day scenes with high retrieval quality and low cloud contamination from 

across the annual and seasonal window were analyzed for comparison to the multi-year 

combined albedo. Selected scenes were 5 June 2005 (DOY 156), 26 July 2006 (DOY 207), 

and 30 August 2007 (DOY 242).  

Table 2.S1 shows the bootstrap median estimate 95% confidence intervals for 

several metrics of within-pixel variance for all white-sky retrievals based on MODIS and 

Landsat ETM+ observations from 2003–2008 (July 1–August 31), as well as the median 

within-pixel difference between the multi-year composite average and a relatively cloud-

free single-day retrieval from near the middle of seasonal observation range (July 26, 

2006).  Land-use specific figures were determined from a random sample of 1,000 pixels 

within each category, while whole-area metrics were determined from all available pixels.  

Albedo in the single-date scenes was somewhat lower for 5 June (median 0.141 

[0.038–0.177]) and 30 August (median 0.147 (0.058–0.187)), but nearly identical to mid-

summer observations from 26 July (median 0.151 (0.067–0.184)). All scenes showed 

albedo distributions with a similar negative skew to the multi-year composite. Albedo by 

LULC type at both dates was comparable to results for the multi-year composite, with 

extremely low values for open water but generally overlapping ranges for other cover 

types. Temporal differences between albedo retrievals were of a similar range across LULC 
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types, and were with a few exceptions well below 0.01. Aggregating single-day retrievals 

to the MODIS 500 m scale yielded similar shapes for the generalized additive models for 

both dates and the multi-year combined data (not shown). Orthogonal distance regression 

of town-scale data derived from the June 5, 2005, observations showed somewhat lower 

coefficients, but results were comparable to those shown in analysis of the multi-year 

composite for canopy (β = 0.26±0.05×10-3, R2 = 0.35), impervious fraction                                

(β = -0.21±0.06×10-3, R2 = 0.24), log-population density (β = -1.48±0.95×10-3, R2 = 0.09) 

and surface temperature (β = -1.04±0.32×10-3, R2 = 0.21), but with lower R2 values overall. 

Coefficient values were also comparable in the August 30 albedo retrievals but somewhat 

closer to the multi-year average figures (0.31±0.07×10-3, -0.38±0.04×10-3,                                     

-3.81±0.76×10-3 and -1.88±0.29×10-3), and with generally higher R2 values (0.47, 0.67, 

0.52, and 0.61) for canopy, impervious fraction, log-population density, and surface 

temperature, respectively.  
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Table 2.S1: Within-pixel measures of variability (median ± 95% confidence interval) in 
white-sky albedo based on bootstrap resampling of 1,000 randomly selected pixels per 
LULC category. Column headings refer to the median number of separate observations 
represented, standard deviation, standard error of mean, median value, spread of central 
95% of sample, and difference from the single-scene July 26, 2006 observation 
benchmark. 
 

Land 
Use/Cover # Obs. SD St. Err. 

Mean Median 
Spread of 

central 
95% 

Difference 
from 

26 July 

Cropland 12 0.018 
(±0.001) 

0.005 
(±0.000) 

0.178 
(±0.002) 

0.055 
(±0.004) 

0.001 
(±0.002) 

Forest 13 0.013 
(±0.001) 

0.004 
(±0.000) 

0.162 
(±0.003) 

0.041 
(±0.002) 

0.002 
(±0.001) 

F. Wetland 13 0.014 
(±0.001) 

0.004 
(±0.000) 

0.165 
(±0.002) 

0.045 
(±0.002) 

0.002 
(±0.001) 

VLD Resid. 12.4 0.013 
(±0.001) 

0.004 
(±0.000) 

0.159 
(±0.002) 

0.040 
(±0.002) 

0.000 
(±0.001) 

LD Resid. 12.6 0.012 
(±0.001) 

0.003 
(±0.000) 

0.155 
(±0.001) 

0.038 
(±0.003) 

0.000 
(±0.000) 

MD Resid. 13 0.012 
(±0.001) 

0.003 
(±0.000) 

0.152 
(±0.001) 

0.038 
(±0.002) 

0.000 
(±0.001) 

HD Resid. 13 0.012 
(±0.001) 

0.003 
(±0.000) 

0.150 
(±0.001) 

0.038 
(±0.002) 

0.002 
(±0.001) 

MF Resid. 13 0.012 
(±0.001) 

0.003 
(±0.000) 

0.143 
(±0.002) 

0.038 
(±0.003) 

-0.002 
(±0.001) 

Commercial 12 0.013 
(±0.001) 

0.004 
(±0.000) 

0.139 
(±0.004) 

0.042 
(±0.003) 

-0.003 
(±0.001) 

Industrial 12 0.015 
(±0.001) 

0.004 
(±0.000) 

0.150 
(±0.004) 

0.045 
(±0.003) 

-0.003 
(±0.002) 

Transport. 12.3 0.013 
(±0.001) 

0.004 
(±0.000) 

0.147 
(±0.002) 

0.042 
(±0.003) 

-0.005 
(±0.001) 

Water 13 0.016 
(±0.001) 

0.004 
(±0.000) 

0.033 
(±0.004) 

0.048 
(±0.002) 

-0.011 
(±0.001) 

Whole area* 13 
(8–25) 

0.014 
(0.007–
0.035) 

0.004 
(0.002–
0.010) 

0.158 
(0.057–
0.194) 

0.042      
(0.019–
0.113) 

-0.000 
(-0.023–
0.015) 

* Whole area statistics based on all available pixels 
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Table 2.S2: Median albedo (central 95-percentile) in single-day albedo data for bootstrap 
resampling of 1,000 randomly selected pixels per LULC category. 
 

Land 
Use/Cover 

2003–2008 
average 5 June 2005 26 July 2006 30 Aug. 2007 

Cropland 0.173  
(0.141–0.202) 

0.161 
(0.116–0.200) 

0.171 
(0.137–0.204) 

0.172 
(0.139–0.218) 

Forest 0.156 
(0.122–0.18) 

0.144 
(0.113–0.171) 

0.154 
(0.122–0.175) 

0.149 
(0.116–0.173) 

F. Wetland 0.159 
(0.120–0.178) 

0.143 
(0.106–0.164) 

0.156 
(0.117–0.177) 

0.154 
(0.116–0.173) 

VLD Resid. 0.155  
(0.129–0.182) 

0.147  
(0.123–0.176) 

0.156  
(0.128–0.184) 

0.151  
(0.12–0.182) 

LD Resid. 0.149 
(0.128–0.173) 

0.144 
(0.122–0.169) 

0.150 
(0.127–0.177) 

0.146  
(0.121–0.173) 

MD Resid. 0.145  
(0.127–0.168) 

0.141 
(0.121–0.163) 

0.145 
(0.125–0.17) 

0.142  
(0.117–0.167) 

HD Resid. 0.143  
(0.125–0.165) 

0.138 
(0.119–0.157) 

0.142 
(0.121–0.166) 

0.138  
(0.118–0.165) 

MF Resid. 0.133  
(0.102–0.164) 

0.129 
(0.103–0.161) 

0.135 
(0.099–0.166) 

0.128  
(0.094–0.164) 

Commercial 0.132  
(0.09–0.214) 

0.129 
(0.091–0.204) 

0.135 
(0.087–0.171) 

0.129  
(0.077–0.218) 

Industrial 0.139  
(0.083–0.259) 

0.137 
(0.089–0.249) 

0.140 
(0.085–0.182) 

0.139  
(0.077–0.269) 

Transportation 0.139  
(0.091–0.194) 

0.131 
(0.093–0.183) 

0.143 
(0.092–0.183) 

0.140  
(0.083–0.188) 

Water 0.024 
(0.015–0.121) 

0.019 
(0.011–0.109) 

0.040 
(0.022–0.15) 

0.025  
(0.008–0.139) 

Whole area* 0.151 
(0.049–0.187) 

0.141 
(0.038–0.177) 

0.151 
(0.067–0.184) 

0.147 
(0.058–0.187) 

* Whole area statistics based on all available pixels 
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Table 2.S3: Fractional area of selected land-use/cover classes, presented with mean values 
for other land surface parameters at town scale for selected towns in the Boston study area 
(land cover metrics filtered for open water pixels prior to calculation of town-scale means). 
Abbreviations: IS, Impervious Surface %; LST, Land Surface Temperature; VL- L- M- H-
DR, Very Low- Low- Medium- High- Density Residential; Ind., Industrial; Comm., 
Commercial; Trans., Transportation. 
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Figure 2.S1: Scatterplots of 30 m values of albedo vs. (clockwise from top left) canopy 
fraction, impervious fraction, surface temperature (°C) and population density (km-2, log 
scale).  Shading indicates pixel density; solid lines indicate fitted cubic regression spline; 
dotted lines show 95% confidence interval of the albedo mean along a moving window. 
Scales are clipped to include central 99% of albedo values. 
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Figure 2.S2: Geary’s c autocorrelation indices for albedo (left) and LST (right) for the 
full study area and scenes limited to the municipal boundaries of urban Boston and rural 
Berlin. 
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Figure 2.S3: Scatterplots of 500 m MODIS composite summertime albedo (excluding 
pixels with >10% area water), versus (clockwise from top left) canopy fraction, impervious 
fraction, land surface temperature (°C), and population density (km-2, log scale), 
aggregated to the 500 m grid. Shading indicates pixel density; solid lines indicates fitted 
cubic regression spline prediction; dotted lines show 95% confidence interval of the albedo 
mean along a moving window. Blue background dots show comparable 30 m pixel scatters 
with scales clipped to include central 99% of values. 
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Figure 2.S4: Mean albedo versus (left) impervious fraction and (right) tree canopy 
fraction, MODIS 500 m data aggregated by town (selected towns labeled, pixels >10% 
water area excluded). Color ramp corresponds to mean surface temperature, dot size 
corresponds to mean population density. 
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CHAPTER THREE: Current and future biomass carbon uptake in                 

Boston’s urban forest 

Abstract 

Ecosystem services provided by urban forests are increasingly included in 

municipal-level responses to climate change. However, the ecosystem functions that 

generate these services, such as biomass carbon (C) uptake, can differ substantially from 

nearby rural forest. In particular, the scaled effect of canopy spatial configuration on tree 

growth in cities is uncertain, as is the scope for medium-term policy intervention. This 

study integrates high spatial resolution data on tree canopy and biomass in the city of 

Boston, Massachusetts, with local measurements of tree growth rates to estimate the 

magnitude and distribution of annual biomass C uptake. We further project C uptake, 

biomass, and canopy cover change to 2040 under alternative policy scenarios affecting the 

planting and preservation of urban trees. Our analysis shows that 85% of tree canopy area 

was within 10 m of an edge, indicating essentially open growing conditions. Using growth 

models accounting for canopy edge effects and growth context, Boston’s current biomass 

C uptake may be approximately double (median 10.9 GgC yr-1, 0.5 MgC ha-1 yr-1) the 

estimates based on rural forest growth, much of it occurring in high-density residential 

areas. Total annual C uptake to long-term biomass storage was equivalent to <1% of 

estimated annual fossil CO2 emissions for the city. In built-up areas, reducing mortality in 

larger trees resulted in the highest predicted increase in canopy cover (+25%) and biomass 

C stocks (236 GgC) by 2040, while planting trees in available road margins resulted in the 

greatest predicted annual C uptake (7.1 GgC yr-1). This study highlights the importance of 
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accounting for the altered ecosystem structure and function in urban areas in evaluating 

ecosystem services. Effective municipal climate responses should consider the substantial 

fraction of total services performed by trees in developed areas, which may produce strong 

but localized atmospheric C sinks. 

 

1. Introduction 

As urban populations expand worldwide, pressure is rising on local ecosystem 

services to both provide a livable environment in cities and to address the drivers and 

effects of global climate change (Seto et al., 2012). Urban vegetation performs a suite of 

these ecosystem services, including key regulatory functions like carbon (C) uptake and 

storage, moderation of temperature extremes (McDonald et al., 2019), and potentially air 

pollution mitigation through ozone and particulate matter capture (Roy et al., 2012). 

Municipal authorities are increasingly assuming a role in mounting a social response to 

climate change (Castán Broto, 2017), and policy-makers and researchers show growing 

interest in better quantifying and managing the multiple ecosystem services provided by 

green spaces and urban vegetation (Kremer et al., 2016; Lovell and Taylor, 2013; Niemelä, 

2014). Toward this end, researchers have recently called for more intensive study of these 

novel and heterogeneous socio-ecological systems and their spatiotemporal organization, 

both in their own right and in the interest of maintaining the well-being of growing and at-

risk urban populations (Alberti, 2015; Groffman et al., 2017; Hutyra et al., 2014; Zhou et 

al., 2019). 
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Services related to urban vegetation and their role in climate change adaptation and 

emissions mitigation have attracted particular policy interest (Gómez-Baggethun and 

Barton, 2013; Larondelle and Haase, 2013; Lovell and Taylor, 2013). In line with several 

other cities and municipal alliances like the C40 coalition developing climate responses 

(Broto and Bulkeley, 2013), Boston, for example, has included the expansion of green 

spaces and tree canopy cover as strategies in its climate adaptation and emissions 

reductions plans (Walsh, 2014). However, despite prominent campaigns in several US 

cities to plant additional urban trees, canopy cover has declined in many urban areas 

(Nowak and Greenfield, 2012). And in the wake of broad-scale tree planting and other 

“urban greening” proposals, researchers have highlighted persistent uncertainties in 

estimating the amount and value of services, the quality and specificity of data and 

modeling used to estimate services, potential tradeoffs with other disservices such as 

increased water consumption and allergen production, and the capacity of vegetation C 

uptake to meaningfully offset comparatively large local fossil C emissions (Pataki, 2013; 

Pataki et al., 2011; Pincetl et al., 2013). There is moreover little support, beyond fairly 

generalized models such as UFORE/i-Tree Eco (Nowak et al., 2008), to help urban 

decision makers assess current forest services, predict the impacts of urban greening 

policies on net greenhouse gas emissions, or optimize the production of multiple services 

against their tradeoffs and costs (Escobedo et al., 2011). 

Ecosystem services are a product of ecosystem functions, like evapotranspiration 

or C uptake, that serve human wellbeing, and as such take place in a specific spatiotemporal 

setting (Escobedo et al., 2011). Many of the services performed by urban ecosystems 
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relevant in climate change mitigation and resiliency planning are related to the amount of 

live tree biomass present, its rate of growth, and canopy cover and volume (Nowak et al., 

2008; Ziter et al., 2019). These services are generated within heterogeneous forest or 

“savannah-like” ecosystems, the structure and function of which are determined by 

biophysical setting, human socioeconomic spatial patterns, and inherited legacies of 

historic and ongoing human activity (Dobbs et al., 2017; Ossola and Hopton, 2018b; 

Roman et al., 2018). Given its complexity and recency as a study domain, our 

understanding of urban forest function and its spatial distribution contains considerable 

uncertainty, reflected in results from urban studies that contradict expectations derived 

from rural analogues. Despite some ambiguity in definition, “urban” ecosystems can 

contain substantial biomass concentrations, varying widely with land cover and use 

(Davies et al., 2011; Raciti et al., 2012c; Rao et al., 2013a). Tree canopy morphology may 

differ notably in the same species grown in different cities and between urban- and rural-

grown individuals (McPherson and Peper, 2012). Growth rates in street- and park trees can 

exceed or fall short of comparable trees in nearby rural settings (Briber et al., 2015; Gregg 

et al., 2003; Pretzsch et al., 2017; Searle et al., 2012), while mortality rates tend to be higher 

in smaller diameter- and street trees (Roman et al., 2014; Smith et al., 2019). Tree growth 

in remnant urban forest fragments can be significantly enhanced near canopy edges 

(Reinmann and Hutyra, 2017). Growing seasons under the influence of the urban heat 

island effect may be longer than nearby rural areas (Melaas et al., 2016).  

Existing studies of urban forest growth and C uptake contain uncertainties in 

accounting for local urban-specific growth rates and the spatial arrangement or extent of 



	 64	

tree cover. Several studies estimating services from urban trees have used the Urban Forest 

Effects (UFORE) model (Nowak et al., 2008), scaling plot-level tree measurements to the 

broader urban landscape using spatial proxies like mapped land use/cover classes and 

applying generic corrections for urban-related growth effects (Escobedo and Nowak, 2009; 

Nowak et al., 2013; Strohbach et al., 2012). A study of tree C storage and sequestration in 

Los Angeles and Sacramento scaled plot-level biomass inventories to canopy coverage as 

determined from 2.4 m resolution satellite observations, but lacked error estimation and 

relied upon generalized growth projections to determine annual C uptake (McPherson et 

al., 2013). Other studies have only partially estimated C storage and uptake via inventory 

of sub-populations of urban trees such as street trees or greenspaces (Brack, 2002; Russo 

et al., 2014; van Doorn and McPherson, 2018). As part of their CO2 emissions inventory 

for Salt Lake City Pataki et al. (2009) used a simple age cohort-based growth model for 

tree biomass C uptake derived from local tree inventory data, with forest extent determined 

from 30 m spatial resolution Landsat imagery. Other research has estimated temporal 

change in urban C storage with historical land conversion (Hutyra et al., 2011), and 

projected future functional shifts under varying mortality and recruitment scenarios for 

specific tree sub-populations (Smith et al., 2019). 

Working from a photosynthetic light-use efficiency framework, several other 

studies have attempted to model urban vegetation C uptake based in part on light 

absorption: Miller et al. (2018) estimated gross primary productivity (a C flux not 

accounting for plant respiration losses) across the city of Minneapolis, Minnesota, based 

on limited sapflow and eddy covariance measurements corresponding to broad vegetation 
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functional groups (e.g. deciduous trees, turfgrass). They then scaled results spatially based 

on high-resolution classification maps of vegetation and land cover. Urban 

micrometeorological studies have partitioned C fluxes limited to the vicinity of 

measurement towers into vegetation components by adjusting for photosynthetic light 

absorption (Bellucco et al., 2017; Crawford et al., 2011). Urban vegetation C uptake has 

been estimated across urbanized areas via light-use models driven by coarse-scale remote-

sensing data, but without reference to local observations of vegetation C uptake (Hardiman 

et al., 2017; Imhoff et al., 2004). However, a complete and adequately spatially resolved 

understanding of urban ecosystem function, incorporating empirical measures of urban 

forest extent, productivity, and structure, remains elusive. In addition, this knowledge gap 

impedes a clear understanding of the potential to optimize urban ecosystem functions via 

policy.  

Effective municipal climate preparedness and protection of urban environmental 

quality requires a more precise understanding of the local ecosystem functions like C 

storage and canopy coverage that drive critical services provision. Improved estimates of 

urban ecosystem function require knowledge of the spatial distribution and growth 

dynamics of the urban forest. This study combines local observations of tree growth and 

its relationship to canopy fragmentation with high-resolution maps of biomass and canopy 

distribution to estimate annual long-lived biomass C uptake in the urban landscape of 

Boston, Massachusetts. For contrast to estimates grounded in rural forest ecosystem 

function, we compare our urban-specific results to estimates based on tree growth 

measured in nearby rural forests. We finally simulate three policies differentially affecting 
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the recruitment and mortality of urban trees to predict future potential trajectories of C 

uptake, biomass, and canopy cover change through 2040. Improving estimates of these 

indicators will deepen our understanding urban ecosystem functioning, and highlight the 

potential effects of green infrastructure policies on climate mitigation and preparedness, 

with the city of Boston as a specific test case. 

 

2. Methods 

2.1 Study area geodata 

To develop our estimate of biomass C storage in Boston’s urban trees, we employed 

a 1 m resolution gridded map of aboveground woody biomass and canopy presence for the 

municipal boundaries of Boston, Massachusetts, prepared using satellite multispectral and 

aerial LIDAR observations in the summer of 2006–2007 (Figure 3.1) (Raciti et al., 2014). 

We classified canopy pixels according to their pixel buffer distance from canopy patch 

edges using the Expand tool in ArcMap 10.4 (ESRI, 2014), with all pixels within 10 pixels 

(approximately 10 m) of a canopy edge classified as “edge” canopy. We combined 

biomass, canopy, and canopy edge maps with 1 m maps of land-use/land-cover (LULC) 

classification and impervious surface presence/absence prepared from aerial photographs 

(MassGIS, 2005). The LULC categories were Forest, Developed (non-residential), High 

Density Residential, Low Density Residential, Other Vegetated, and Water, simplified 

from the LULC classification scheme used by MassGIS (2005) (Table 3.S1). To represent 

tree-scale and larger ecosystem dynamics, we then aggregated the data to generate 30 m 

spatial resolution gridded maps of total biomass, fractional canopy and canopy edge area, 
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fractional impervious area, and LULC classification by greatest combined class area per 

pixel. We also examined the sensitivity of estimates to differing spatial methods for 

evaluating pixel-level biomass density. We calculated biomass density at the 30 m pixel 

scale (MgC ha-1) as (1) the biomass C present versus pixel area under tree canopy (canopy 

basis) (e.g. Nowak et al., 2013); (2) biomass C versus total pixel area (ground basis) (e.g. 

Ouimette et al., 2018); and (3) biomass C versus non-paved pixel area (pervious basis).  

2.2 Tree growth data 

A linear mixed-model framework was used to estimate the relationship between 

stem diameter at breast height (DBH, cm) and growth rate (cm tree-1 yr-1) for measurements 

of trees growing in rural forests (Rural Forest), urban forest fragments (Urban Forest), and 

open-grown street, park, and backyard trees (Street Tree) (Table 3.S2). The Rural Forest 

growth model was based on repeated stem DBH measurements (n = 6,710 stems) from 

2003–2015 in plots monitored under the USDA’s Forest Inventory Analysis (FIA) program 

(USDA, 2019). The Urban Forest model was based on measurements in 2015 from eight 

forested test plots (n = 425 stems) located in nearby suburbs of Boston, subdivided based 

on their distance from long-lived canopy edges (<10m, 10–20 m, 20–30 m) (Reinmann and 

Hutyra, 2017). Rate of DBH change for Urban Forest was determined based on increment 

cores taken from a subset of stems in each plot (n = 195 cores). The Street Tree growth 

model was based on repeated measurements of stem DBH obtained for healthy live trees 

(n = 2,592 stems) growing along public rights-of-way in several zones across the city of 

Boston in 2006 and 2014 (Smith et al., 2019). Complete data collection protocols and 

discussion of model construction are available in the Supplemental. 
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2.3 Growth modeling 

We used stem growth rates taken from the Rural Forest and Urban Forest models 

with the measured DBH of living stems present, via allometric equations, to determine the 

relationship between areal aboveground woody biomass density per test plot (MgC ha-1) 

and its corresponding relative biomass gain rate (MgC yr-1 per MgC-biomass) (Tables 3.S2 

and 3.S3; See Supplemental for allometric equations used and discussion of areal-basis 

growth model estimation). We then used the areal-basis growth models to predict annual 

rate of C gain in aboveground woody biomass for each 30 m map pixel by estimating 

relative biomass gain rate based on pixel biomass density, then multiplying the predicted 

biomass gain rate by pixel tree biomass C (MgC) to determine pixel annual biomass C gain 

(MgC pixel-1 yr-1), with 1,000 bootstrap resamples of coefficients in the areal-basis models 

to estimate error. For the Urban Forest model, growth factors and biomass gain were 

estimated for the canopy edge (<10m) and interior (10–30 m) biomass component of each 

pixel separately, using only the per-ha-canopy areal basis for biomass density.  

Because of the sampling design of the Street Tree observations it was not possible 

to directly estimate an areal-basis model for biomass growth. As an alternative, for each 

pixel a collection of trees was simulated by randomly drawing (with replacement) a 

selection of stems from the Street Tree DBH measurements taken in the city of Boston 

(2,592 tree records) to approximate total pixel biomass. Tree number was not fixed but tree 

collections were constrained to a maximum basal area of 40 m2 ha-1. This simulation 

method was repeated to obtain 100 valid collections per pixel, recording DBH and taxon 

for each tree in each collection. (See Supplemental on simulation of pixel-level stem 
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collections). The Street Tree stem growth model was then applied to a randomly chosen 

pixel stem collection, using urban-specific allometric equations to estimate biomass change 

(McPherson et al., 2016) (Table 3.S4). This estimation approach was repeated for every 

pixel with 1,000 bootstrap resamples of the simulated stem collections and coefficients of 

the stem growth model, with the same growth model applied to all pixels in each resample. 

To complete the map-wide estimate of annual biomass C uptake, a composite “Hybrid 

Urban” estimate was generated by combining outputs of the Urban Forest model in pixels 

classed as “Forest” or containing >111 MgC ha-1 biomass with outputs of the Street Tree 

model for all other non-forest pixel types. This cutoff corresponded approximately to the 

biomass density of local rural forests (Fahey et al., 2005; Magill et al., 2004), and the 

threshold past which estimation based on the Street Tree simulation approach became 

computationally impractical. The Hybrid Urban results were contrasted to the annual 

biomass C uptake estimated using the Rural Forest model under both the canopy basis and 

ground basis for calculating biomass density. 

2.4 Policy Projections 

Three alternate scenarios for policies affecting urban ecosystem function were 

projected for 2006–2040 based on the simulated collections of street tree stems contained 

in Developed, HD Residential, and LD Residential pixels with <111 MgC ha-1 (77,955 

pixels total). The three scenarios were: 1) Business as Usual (BAU) in which the 2006–

2007 pixel simulations were projected to 2040 under assumptions of mortality risk and 

stem growth rate described above; 2) Preserve Largest (PL), in which mortality for all trees 

>40 cm DBH was reduced by 50% relative to their measured size-based annual mortality 
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risk (Smith et al., 2019); and 3) Street Tree Planting (STP) in which approximately 170,000 

small (5 cm DBH) street trees were added to the map total over the first 10 projection years, 

the maximum plausible ceiling of new trees that could be added based on the total non-

canopied area available adjacent to Boston’s surface streets. (See Supplemental for 

discussion of identifying plantable road buffer space). 

For each pixel a randomly selected simulated stem collection was subjected to 

annual size-based mortality risk (Smith et al., 2019) and predicted growth rate based on the 

Street Tree growth model. In pixels that simulated a tree mortality, or pixels under the STP 

scenario that simulated a new tree planting, new or replacement trees were simulated with 

5 cm DBH and a taxon randomly selected from a stem record in the Street Tree survey. 

The trajectory of annual biomass growth, total biomass, stem number, and canopy area was 

projected for each policy for each scenario year. Each scenario timeline was run with 100 

bootstrap resamples of the stem growth model coefficients applied uniformly across 

scenarios to provide an uncertainty distribution for each metric while remaining 

computationally tractable (See Supplemental for discussion of on procedures used for 

policy projection).  

 

2.5 Statistical analysis 

We evaluated the significance of fixed effects in mixed models using a drop-one 

Chi-square test, with final models including the lowest-order polynomial with all terms 

significant (p < 0.05) (Zurr et al., 2011). Random effects for available covariates were fit 

for intercepts, as well as for slope terms whenever possible (Table 3.S2). All data 
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processing was performed in ArcMap 10.4 (ESRI, 2014) and in the R software package (R 

Core Team, 2017) including the packages lme4 (Bates et al., 2015), raster (Hijmans, 2017), 

data.table (Dowle and Srinivasan, 2017), and rgdal (Bivand et al., 2017). Due to skewed 

distributions, median values were reported with upper and lower limits of the central 95% 

of values, and growth models were reported with Residual Standard Deviance (RSD) as an 

indicator of fit. 

 

3 Results and Discussion 

3.1 Urban forest structure and distribution 

Between LULC types there were distinct differences in the distribution of canopy 

area, degree of canopy fragmentation, and tree biomass, all of which can be expected to 

influence the annual rate of long-term C uptake to biomass. Canopy covered 25% of the 

total study area, of which 85% was within 10 m of an edge, the approximate equivalent of 

the width of 1–2 mature tree crowns (Pretzsch et al., 2015) (Figure 3.2). Developed and 

High-Density Residential areas covered 38% and 39% of the study area, respectively, 

containing 15% and 46% of total canopy area, of which 97% and 98% was within 10 m of 

an edge (Table 3.S5). Areas classed Forest occupied only 8% of the study area, but 

contained 26% of the total urban canopy and 32% of total biomass, of which only 50% was 

within 10 m of an edge.  

The distribution of biomass and canopy coverage implies that while small tracts of 

Forest-classed land in Boston provide a disproportionate share of services related to canopy 

and biomass, trees present in the more extensive areas of human-dominated land cover also 
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make a large contribution. Unlike in Forest-classed land, however, trees distributed in these 

developed and residential areas are likely to function nearly entirely under scattered open-

grown condition. Additionally, 50% of biomass in even relatively intact Forest areas still 

may be under the influence of canopy edge effects. The co-occurrence of both fragments 

of clustered forest with extensive canopy edges and open-canopy scattered trees suggests 

that both types of growing contexts need to be accounted for in estimating urban forest 

ecosystem function. 

3.2 Biomass gain in urban growth contexts 

Local stem growth measurements showed growing context had an effect on annual 

rate of biomass gain per stem, indicating that urban trees may be expected to exhibit 

different C uptake dynamics depending on setting, and differing from local closed-canopy 

rural forests. Tree stem growth rate was highest and most variable in Street Trees, with 

median annual growth rate of 0.73 (-0.49–2.22) cm tree-1 yr-1 corresponding to median 

DBH of 25.9 (7.6–71.1) cm. The best-fit mixed model for Street Tree stem growth (RSD 

= 0.59) showed a significant decline in annual DBH increment with increasing DBH 

(Figure 3.3; Table 3.S2). In Urban Forest trees, median DBH increment of edge (<10 m) 

and interior stems was 0.45 (0.09–1.10) and 0.30 (0.06–0.71) cm tree-1 yr-1, corresponding 

to median DBH of 18.7 (6.3–64.1) cm and 18.8 (7.3–40.7) cm, respectively. The Urban 

Forest model (RSD = 0.08) predicted faster stem growth than the Rural Forest model, and 

included a significant predicted increase in growth in stems growing within 10 m of a 

canopy edge. Growth rates in Street Trees and Urban Forest stems were comparable to the 

range observed for other trees growing along streets and in green spaces in Bolzano, Italy, 
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(Russo et al., 2014); Leipzig, Germany (Strohbach et al., 2012); and Boston, USA (Briber 

et al., 2015). 

In contrast to the urban-specific growth models, the Rural Forest model (RSD = 

0.19) predicted slower stem growth than Urban Forest or Street Trees, with median growth 

rate of 0.20 (0–0.64) cm tree-1 yr-1, corresponding to median DBH 22.6 (13.0–52.1) cm. 

The range and median of stem DBH in each growth context were similar, except for a lack 

of trees 5–12 cm DBH range in the Rural Forest due to sampling design. Unlike the Rural- 

and Urban Forest samples, the Street Tree sample included few conifers and a relatively 

large fraction of non-local taxa, including members of Ginkgo, Gleditsia, Pyrus, Tilia and 

Zelkova (Table 3.S4).  

Projecting modeled stem growth rates for stems ≥5 cm DBH, median areal-basis 

growth rate in Urban Forest plots was 0.035 (-0.009–0.062) MgC yr-1 per MgC-biomass in 

edge subplots (<10 m) and 0.024 (-0.010–0.054) MgC yr-1 per MgC-biomass in interior 

subplots (10–30 m) (Table 3.S2). These growth rates corresponded to plot biomass density 

of 103.7 (87.8–292.4) and 87.5 (53.8–167.0) MgC ha-1 in edge and interior subplots, 

respectively, based on the total biomass in stems ≥5 cm DBH measured in 2015 in each 

plot. Both edge and interior subplots showed a significant negative effect of biomass 

density on areal-basis growth rate, with a significantly lower intercept for interior plots. In 

Rural Forest plots, areal-basis biomass growth rate was 0.018 (0.004–0.069) MgC yr-1 per 

MgC-biomass with median plot biomass density of 86.4 (33.6–193.0) MgC ha-1. Rural 

Forest plots showed a significant negative effect in log-biomass growth rate with increasing 

plot biomass density.  
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3.3 Effect of biomass density areal basis 

This study used areal biomass density (MgC ha-1) to predict local C uptake rate to 

long-lived biomass. In non-urban forest ecosystems this areal biomass density is in part a 

product of stand age and successional status, which are also predictive of the rate of net 

biomass gain in the stand (Ryan et al., 1997). In the scattered canopy and mixed impervious 

cover of Boston’s urban forest, however, the areal basis used in determining biomass 

density for any given pixel faced potential ambiguity, making the calculated C uptake 

sensitive to the areal standard chosen. An example of typical discontinuous urban canopy 

in the study area shows that at moderate levels of both canopy and impervious cover, 

estimates of biomass density in a given area varied from 22.4 MgC per ha-ground to 89.0 

MgC per ha-canopy to 179.3 MgC per ha-pervious (Figure 3.4). In the same sample area 

mean Landsat 30 m NDVI was 0.40 (0.22–0.57), comparable to partially vegetated areas, 

though the area contains appreciable biomass. The comparatively low biomass density on 

a per-ha-ground basis stood in contrast to the per-ha-pervious density basis, showing 

unrealistically high biomass density probably resulting from large areas of tree biomass 

growing over impervious cover. 

Because of this areal-basis ambiguity, Rural Forest results using the ground-basis 

(raw pixel area) for biomass density gave a higher total estimate for biomass C uptake than 

canopy-basis calculations (Table 3.1). This result, while closer to the Hybrid Forest model 

accounting for urban growth rates and growing context, likely does not reflect underlying 

urban-affected ecosystem dynamics but is rather an artifact of the calculation basis. The 

lower biomass density calculated on the ground-basis would tend to generate higher 
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predicted rates of relative biomass gain per pixel, with growth parameters more akin to an 

early stage of forest succession containing more, smaller, faster-growing trees rather than 

reflecting the true condition of fewer, discontinuous, larger trees. 

3.4 Estimates of annual biomass C uptake  

Applying the combined Hybrid Urban model to tree biomass distribution across the 

city of Boston, we estimated considerably higher annual tree biomass C uptake compared 

to estimates based on rural growth rates (Rural Forest). The Hybrid Urban model estimated 

C uptake to long-lived biomass of 10.9 (6.7–16.2) GgC yr-1, with a median uptake rate per 

pixel of 0.5 (0–3.1) MgC ha-1 yr-1 across the study area (Table 3.1). The largest total 

biomass gains accrued to the Forest, Developed, and HD Residential land use types. By 

comparison, applying Rural Forest growth factors to per-ha-canopy biomass density 

showed lower biomass gain in all land use categories, with a median total of                             

4.8 (3.6–6.4) GgC yr-1 and a greater relative fraction of total biomass gain accruing to 

Forest-classed areas. This reduced estimate of C uptake, particularly in non-Forest cover 

types, is partly the result of lower per-stem and per-area biomass gain in Rural Forest 

context than in Urban Forest or Street Trees. In contrast to C uptake on the basis of ground 

area, aggregating to the total amount of canopy area city-wide shows annual biomass 

uptake figures were 3.5 (2.1–5.2) MgC per ha-canopy in the Hybrid Urban compared to                   

1.5 (1.1–2.0) MgC per ha-canopy in the Rural Forest model. The Hybrid Urban results are 

somewhat lower than tree C uptake per ha-canopy estimated in Los Angeles and 

Sacramento (McPherson et al., 2013), but may reflect the effects of different species 

present, growing season length, and climatic conditions. The California study does, 
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however, confirm the relatively high C uptake potential of trees present in mature 

residential neighborhoods. In contrast, the C uptake estimates from this study are generally 

higher than the estimate reported for the city of Boston developed under the UFORE 

method of 2.3 (1.8–2.8) MgC per ha-canopy (Nowak et al., 2013). The Rural Forest model 

applied to per-ha-ground biomass density produced somewhat higher map-wide total C 

uptake estimates (Table 3.1) and higher estimates of C uptake per pixel (not shown), but 

this was likely an artifact of the biomass density calculation. 

The distribution of pixel median estimates was higher in every LULC category 

under the Hybrid Urban model (Figure 3.5). Much of the variation among LULC categories 

in per-pixel median C uptake was a result of the underlying distributions of pixel biomass. 

However, persistently higher growth rates modeled for street trees and urban forest 

fragments in the Hybrid Urban model also contributed to both greater overall spread in per-

pixel estimates and higher median biomass C uptake in each LULC category. Much of the 

HD- and LD Residential pixel population had estimated C uptake at least as large as Forest-

classed pixels, even after accounting for higher growth in forest edge biomass. The 

potential for large biomass C uptake rates in some high-biomass non-forest pixels implies 

that parts of urban Boston not recognized as forested may be responsible for as at least as 

much C uptake per ha as local urban forest fragments. 

3.5 Policy effects on ecosystem function 

Policies for preserving larger trees (PL) and for expanding street trees numbers in 

plantable roadside areas (STP) resulted in differential gains in biomass C uptake, total 

biomass, and canopy cover by 2040 relative to Business-as-usual BAU, had these different 
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policies been implemented starting in 2006 (Figure 3.6). Median projected annual C uptake 

by 2040 was highest under STP at 7.1 (3.6–11.8) GgC yr-1 and rose relatively rapidly over 

the initial 10 years of simulated tree planting, but also continued to rise under PL up to       

6.7 (2.8–14.1) GgC yr-1, compared to BAU which declined slowly to                                           

5.9 (2.9–10.4) GgC yr-1. In contrast, projected biomass and change in canopy cover change 

relative to 2006 both rose most mostly rapidly under PL, reaching a median of 236           

(148–343) GgC and +25% (-6–54%), compared to more modest increases under STP to 

191 (129–257) GgC and +15% (-8–37%) by 2040, respectively. Under BAU by 

comparison, 2040 median projected biomass remained roughly stable at 173 (117–235) 

GgC, and showed a median stable canopy cover change of 0% (-20–20%). The variability 

in the projected results reflects the stochastic occurrence of individual tree mortalities in 

each pixel simulation, variability in the simulated collections of tree stems present at the 

pixel level, and estimation error in the underlying Street Tree growth model. 

Differential changes in urban forest demographics likely caused these divergent 

policy effects on the ecosystem functional metrics. Under the PL policy, simulator results 

from 2006–2040 showed the cumulative sum of mortality events was lower                           

(487 ´ 103 [473–508 ´ 103]) and final 2040 city-wide number of living trees was somewhat 

higher (552 ´ 103 [550–554 ´ 103]) compared to BAU mortalities                                                

(583 ´ 103 [578–592 ´ 103]), and final number (546 ´ 103 [545–548 ´ 103]). These results 

likely reflect the reduction in tree mortality and higher equilibrium tree population 

expected under PL as the simulated tree populations matured into larger DBH classes >40 

cm with lower mortality as a result of the policy. Since the policy simulations all assumed 
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complete replacement of dead trees with new small trees, total mortalities could be 

comparable to total living trees as the result of this ongoing turnover in the tree population 

(Supplemental). The greater percentage of high-biomass/high-canopy area trees under PL 

is therefore likely the cause of the greater projected gains in 2040 biomass and relative 

canopy change. In contrast, under the STP policy median tree number expanded to               

666 ´ 103 (665–668 ´ 103) with 126 ´ 103 (125–126 ´ 103) new live stems installed in 

suitable areas of road buffer. Though these greater stem numbers lifted total mortalities 

under STP (700 ´ 103 [694–708 ´ 103]), the addition of new growing biomass also caused 

median annual biomass C uptake by 2040 to exceed median uptake under PL. However, 

the addition of smaller trees under STP was not sufficient to surpass the median projected 

gains in live biomass and canopy cover predicted with the shift to a higher fraction of larger 

trees under PL. Overall stability, or potential loss, in canopy cover and biomass C uptake 

in the absence of these policy interventions under BAU, even with prompt and complete 

replanting of mortalities, could be a product of mortality losses of vulnerable larger trees 

causing a demographic shift towards smaller more recently planted stems (Smith et al., 

2019).  

Our assumption of no canopy overlap or other interferences on canopy area growth 

may tend to overestimate canopy cover at higher biomass or building density and at the 

extreme upper end of the range of individual stem DBH. The prediction of a continued 

strong upward trend in growth in canopy area under PL may as a consequence somewhat 

overestimate the potential for continuous expansion in canopy cover as the result of 

continuous canopy growth in large-diameter trees across the city. Similarly with annual C 
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uptake and total biomass, there is likely an upper limit to the size and growth rate of large 

urban trees such that continued positive trends in these metrics under PL may not be 

maintained over a sufficiently long time scale. Conversely, the positive functional trends 

under STP represent the outcomes of an aggressive program of tree expansion, 

simultaneous with the relatively rapid and complete replacement of ongoing tree 

mortalities. However, the practical implementation of and scope for urban tree planting 

programs in Boston and elsewhere remain uncertain and the topic of study (Danford et al., 

2014; O’Neil-Dunne, 2017). The functional trends under PL and STP may therefore 

represent the upper envelope for the magnitude of impacts under policies similar to these. 

While marginal adjustments to the assumptions of the projections might alter the relative 

performances of PL and STP, the simulation results do suggest, however, that either policy 

intervention would lead to greater values in these ecosystem functional metrics relative to 

BAU over time. 

4 Conclusions 

The results of this study highlight the impact that altered ecosystem functions in 

urbanized landscapes might have on some of the services performed by urban vegetation. 

Scaling up local measurements of stem growth rate with reference to canopy configuration, 

we find that estimated biomass C uptake in the city of Boston could be substantially greater 

than estimates treating tree growth as similar to rural forest analogues. Accounting for this 

urban growth context in C uptake requires putting traditional ecosystem metrics like 

biomass density and canopy edge configuration into its realistic spatial context, given the 

heterogeneity and fragmented nature of the urban forest. These differences in function have 
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implications for municipal policy toward managing and optimizing their services. 

Projecting different urban tree policies through 2040, we find that preserving larger trees 

may tend to maximize the functions of canopy cover and biomass C storage, while new 

tree planting may help maximize biomass C uptake capacity. The present uncertainties in 

quantifying urban ecosystem function or in predicting responses to policy call for more 

complete and frequent monitoring of basic indicators of urban forest function, such as 

regular urban street tree census and aerial observations of canopy extent (O’Neil-Dunne, 

2017). 

Though remaining forest fragments in Boston contained a relatively large fraction 

of total biomass and canopy coverage given their small areas, the bulk of urban tree 

biomass was present in densely developed residential areas. As such, this type of land 

cover/use is likely to host to a significant portion of some of the ecosystem services 

provided by the city’s urban trees. The large extent of this open-canopy “urban savannah” 

dominated by trees in planters, private yards, and along streets implies that municipal-scale 

policy focused only on identifiable green spaces like parks and preserves will fail to address 

services provision by a large portion of urban tree biomass and canopy extent—particularly 

services like temperature moderation whose value is limited by proximity to people (Ziter 

et al., 2019). The results of our policy projections offer hope that optimizing local 

ecosystem services could be achieved by addressing uniquely urban factors of tree growth 

and demographics, such as heightened mortality, uneven stand age structure, and simple 

lack of trees in available growing space. In addition, the finding of potentially declining 

functional indicators under a “Business-as-Usual” policy prescription also underlines the 
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reality that urban forests are dynamic systems, facing both the combined effects of 

changing global climate and intensifying local urban climate effects. Even maintaining 

present services may require active social intervention over the next few decades. 

Our study suggests that though biogenic C uptake in some parts of the city may be 

comparable to rates in intact forest, these localized C sinks do not in sum amount to a large 

overall offset to Boston’s CO2 emissions, with annual tree CO2-equivalent uptake at a 

maximum of 0.8% of the total 6.9 million tonnes of CO2-eq emissions for the city in 2016 

(City of Boston, 2016). On the other hand, cities that have made emissions reductions 

pledges also face the need to monitor progress towards these goals. Unfortunately, 

atmospheric methods under development for monitoring regional urban CO2 emissions still 

face considerable ambiguity during the growing season due to interference from poorly 

quantified and spatially resolved urban biogenic C fluxes (Sargent et al., 2018). Resolving 

and contextualizing these potent but spatiotemporally localized sinks (Hardiman et al., 

2017; Miller et al., 2018), could directly benefit these emissions monitoring efforts. A more 

complete accounting of urban biogenic C flux would estimate not only short- and long-

term C uptake by tree tissues but also non-tree vegetation C uptake, while incorporating 

auto- and heterotrophic respiration C release processes that also vary in time and space and 

in response to specific urban conditions (Decina et al., 2016; Wang et al., 2017). Future 

research should quantify these important urban biogenic C flux components and their 

relationships with urban forest ecosystem services more broadly to provide an improved 

spatiotemporal picture of urban biogeochemical C cycling—one that will advance our 
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capacity to monitor anthropogenic C emissions and better assess progress in mounting 

municipal-scale climate change responses. 
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Figure 3.1: Boston study area showing canopy distribution (green) and study area outline 
(image courtesy of Google Earth). 
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Figure 3.2: Land-use/land-cover and distribution of canopy area by distance from canopy 
edge in Boston study area. 
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Figure 3.3: Stem DBH and DBH increment for Rural Forest (L), Urban Forest (C) and 
Street Tree (R) contexts. Thick dashed lines show predicted mean response with fixed 
effects, thin dashed lines show central 95% of predictions given model error.  
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Figure 3.4: (A) Distribution of vegetation and cover in the study area; (B) Aerial photo of 
inset area in South End neighborhood (courtesy of USDA National Agriculture Imagery 
Program); (C) Vegetation and cover type in inset: Canopy over pervious, canopy over 
impervious, non-vegetated impervious, non-vegetated pervious, vegetated pervious (non-
canopy), and open water. Text figures correspond to features of inset area. 
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Figure 3.5: Pixel median biomass C uptake rate (MgC ha-1 yr-1) for Hybrid Urban model 
(dark) and Rural Forest model, canopy basis (light). Box width is proportional to total area 
and show central 50% of data in each LULC category (other data not shown). 
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Figure 3.6: Median projections of annual net C uptake (top), total tree biomass (middle) 
and change in canopy area from 2006–2040 (bottom) in non-forested Developed, HD 
Residential, and LD residential pixels. Scenarios tested were Business-as-usual (BAU), 
Preserve Largest (PL) and Street Tree Planting (STP) from 2006–2040.  
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Table 3.1: Estimated city-wide annual biomass C uptake, and distribution of median per-
pixel rate of C uptake (central 95%). Relative areas of LULC types are Forest: 8%; 
Developed: 38%; HD Resid.: 39%; LD Resid. 2%; Other Veg.: 11%; Water: 2%; Total 
area: 12,455 ha (See Table 3.S5). 
 

Land use/cover 
Biomass C uptake (GgC yr-1) Median pixel C uptake 

(MgC ha-1 yr-1) 

Hybrid Urban Rural Forest, 
canopy basis 

Rural Forest, 
ground basis Hybrid Urban Rural Forest, 

canopy basis 

Forest 2.2 (1.0–5.0) 1.2 (0.9–1.7) 1.4 (1.1–1.9) 2.2 (0.6–3.5) 1.3 (0.3–1.6) 

Developed 1.8 (1.0–2.5) 0.7 (0.5–0.9) 1.1 (0.9–1.4) 0.1 (0–2.1) 0 (0–1.0) 

HD Resid. 5.3 (2.9–7.8) 2.2 (1.7–3.0) 3.5 (2.8–4.3) 0.9 (0–2.7) 0.4 (0–1.3) 

LD Resid. 0.4 (0.2–0.6) 0.2 (0.1–0.2) 0.2 (0.2–0.3) 1.5 (0.2–3.5) 0.7 (0–1.4) 

Other Veg. 1.0 (0.6–1.4) 0.4 (0.3–0.5) 0.6 (0.5–0.8) 0.3 (0–3.2) 0.1 (0–1.3) 

Water 0.1 (0–0.1) 0 (0–0) 0 (0–0.1) 0 (0–2.5) 0 (0–0.1) 

Total 10.9 (6.7–16.2) 4.8 (3.6–6.4) 7.0 (5.6–8.7) 0.5 (0–3.1) 0.2 (0–1.5) 
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Supplemental Information for Current and future biomass carbon uptake in Boston’s 

urban forest 

3.S1 Field data for tree growth rates and growth model development 

Growth estimates for typical non-urban forests (Rural Forest) were based on 

repeated stem DBH measurements from 2003–2015 in plots monitored under the USDA’s 

Forest Inventory Analysis (FIA) program (USDA, 2019). Plots were selected from 

locations east of Interstate 495 and within 100 km of the metropolitan core of Boston, 

excluding the Cape Cod region due to its significantly different soil makeup (high sand 

content) and forest type (Pinaceae dominated). Stem DBH within up to four circular 14.6 

m diameter subplots in each plot in successive measurement periods was recorded for every 

healthy live tree ≥12.7 cm DBH, excluding stems in subplots with <5 stems surviving 

across both intervals (n = 6,710 stems). Biomass change rate at the plot level was calculated 

as biomass change in hardwood taxa relative to total plot biomass, excluding plots with 

<25% total hardwood biomass (n = 297 paired plot measurements). In Rural Forest live 

biomass density and the annualized rate of biomass change was directly estimated for each 

plot using taxa-specific allometric equations applied to starting DBH and annualized DBH 

change measures in each plot (Chojnacky et al., 2014; Jenkins et al., 2003) (Table 3.S3). 

To represent growing conditions in urban forest fragments (Urban Forest) we used 

observations from eight forest-edge test plots located in nearby suburbs of Boston, MA, 

subdivided based on the distance from long-lived canopy edges (<10m, 10–20 m, 20–30 

m) (Reinmann and Hutyra, 2017). Stem DBH and distance from canopy edge were 

recorded in 2016 for all live stems ≥5 cm DBH (n = 425 stems). As repeated DBH 
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measurements were not available in the Urban Forest plots, rate of stem DBH change was 

estimated using increment cores extracted from a subset of tree stems in each plot (n = 195 

cores). Average annualized DBH change across five successive intervals (beginning 2011, 

2006, 2001, 1996, and 1989–1991) of approximately five years duration were determined 

for each core and compared to the starting DBH of each interval to estimate the relationship 

between DBH and annualized DBH change in stems growing in both edge (<10 m) and 

interior (10–30 m) plot segments (n = 900 stem increment intervals). This five-year interval 

was selected for consistency with measurement intervals in the other growth contexts in 

this study. In Urban Forest, the areal-basis rate of biomass change with respect to subplot 

biomass density and edge position (<10 m vs. 10–30 m) was projected for the complete 

stem record measured in 2015 using the Urban Forest stem growth model and allometric 

equations used for Rural Forest, with 1,000 bootstrap resamples of the stem model 

coefficients to provide a sampling distribution for areal-basis model coefficients. (Table 

3.S3). A single set of areal-basis growth model coefficients was randomly selected from 

their respective distributions in each model realization to provide a sampling distribution 

of coefficients under Urban Forest conditions.  

To represent conditions for open-grown street, park, and backyard trees (Street 

Trees), successive measurements of stem DBH were obtained for healthy live trees (n = 

2,592) growing along public rights-of-way in several measurement zones across the city of 

Boston in 2006 and 2014 (Smith et al., 2019). A small number of negative growth estimates 

are present in this data set, possibly an artifact of ambiguities in replicating measurement 

height between the two sampling events or occasional errors by volunteers. The 



	 92	

relationship between DBH and annualized DBH change was estimated and the model 

coefficients with sampling distributions were recorded (Table 3.S3). For developing the 

Street Tree model of stem growth rate, related street tree taxa were grouped and taxonomic 

groups were used to account for the random effect of taxon. Urban-specific wood volume 

and density allometric equations were applied to related taxa where possible (Table 3.S4). 

Wood density for all “Urban General Broadleaf” classed stems was set at 549 kg m-3, the 

weighted mean of wood densities for each of the constituent taxa included under this 

heading from the Street Tree growth records (Chave et al., 2009; Zanne et al., 2009). Unlike 

for the Rural Forest and Urban Forest samples, it was not possibly to directly estimate 

areal-basis growth models given the spatial distribution of the Street Tree stem 

measurements (See below for discussion of biomass simulation method).  

Model terms were selected parsimoniously to include only significant terms that 

improved model fit compared to simpler models. Higher order polynomial terms were 

tested and included only when all coefficients were significant (p < 0.05). Random effects 

(slopes and intercepts) were included where possible to maximize variance accounted for 

while achieving adequate model convergence. Areal-basis growth model error did not 

incorporate (unknown) source of error inherent in application of allometric equations for 

biomass, nor error in estimations of standing biomass at the map level. To prevent 

application of unrealistically high or low growth factors to map pixels with extreme 

biomass density values, the predicted pixel-level growth factors in any given realization of 

the Urban Forest model were restricted to within one standard deviation of the mean of the 

projected maximum and minimum subplot-level growth with respect to edge distance 
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(0.005–0.087 MgC yr-1 per MgC-biomass for edge biomass, 0.006–0.049 MgC yr-1 per 

MgC-biomass for interior biomass). Biomass density for use in predicting pixel annual 

biomass grown under the Urban Forest model was determined on the canopy-area basis. 

Growth factors using the Rural Forest model were similarly restricted to within the 

minimum and maximum observed subplot-level growth rate (0.002–0.131 MgC yr-1 per 

MgC-biomass). 
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3.S2 Street tree biomass simulator and growth estimation 

Biomass in each 30 m pixel was simulated as a collection of stems randomly drawn 

with replacement from the 2,592 surviving street trees surveyed in 2006 and 2014 (Table 

S4). The total biomass of each stem collection was estimated as the sum of stem biomass 

calculated using taxa-specific urban tree growth allometric equations (McPherson et al., 

2016). Simulations of per-pixel number, taxa, and DBH of selected stems in each collection 

were recorded only when total predicted aboveground biomass was within the smaller of 

10% or 100 kg of the pixel biomass, and when total basal area per pixel (determined on 

basis of pixel area under tree canopy) was below 40 m2 ha-1, the highest subplot basal area 

observed in the Urban Forest sample (Reinmann and Hutyra, 2017). Simulation in each 

pixel was attempted until 100 successful tree collections were recorded or until simulation 

was deemed impossible. In the final Hybrid Urban model results, biomass growth estimates 

derived from the Urban Forest model were substituted for any non-forest pixels >20,000 

kg biomass (>111 MgC ha-1) and for any non-forest pixels that failed to identify at least 40 

successful street tree collections.  
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3.S3 Policy projections 2006–2040 

Every map pixel <20,000 kg biomass (<111 MgC ha-1) and classed as Developed, 

HD Residential, and LD residential was subjected to projection of policy effects on urban 

forest function. In every iteration of a given scenario projection, one of the simulated Street 

Tree stem collections was randomly drawn for each pixel from the central 95% of 

simulated biomass and a set of Street Tree growth model coefficients was randomly drawn 

from their respective error distributions. Each pixel stem collection was then subjected to 

annual growth according to the selected Street Tree model of size-to-growth rate and to a 

predicted annual mortality risk % (R) based on stem DBH (Smith et al., 2019): 

(1) R = 0.0008133 ´ DBH2 - 0.0642407 ´ DBH + 4.0614503 

Trees that simulated a mortality in each pixel simulation were projected to be 

replaced with 5 cm DBH saplings of a genus randomly selected from the Street Tree record, 

with a randomly assigned replanting delay of 0–2 years. For each year in the simulation 

from 2006–2040, total biomass, biomass gain and canopy area were calculated. Biomass 

and biomass gain in each simulation year were calculated similar to described for the Street 

Tree biomass simulator approach. Canopy area per pixel was calculated as the sum of per-

stem canopy area assuming circular canopy geometry and estimating canopy diameter from 

DBH in each surviving stem using the taxa-specific urban allometric equations for open 

grown trees in MacPherson et al. (2016). This approach assumed no canopy overlap and 

no growth inhibitions due to nearby buildings, other trees, pruning, or other effects. As the 

absolute value of the canopy area prediction likely represented the maximum case, we 

normalized within-scenario canopy coverage predicted for 2006 to evaluate the potential 
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for relative canopy area change across the simulation window, rather than absolute canopy 

area. In each pixel for each simulator year C uptake, total biomass, canopy area, live stem 

number, mortalities, and stem additions was recorded. Projections for each pixel were 

repeated 100 times per scenario, with a randomly chosen pixel stem collection and applying 

a consistent set of randomly selected stem growth model coefficients to each pixel in all 

three scenarios. 
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3.S4 Identifying plantable road buffer area 

For the Street Tree Planting (STP) scenario, we determined plantable area as follows using 

ArcMap 10.4: A shapefile for all road centerlines for the city of Boston (MassGIS, 2005) 

was buffered at 6 and 4 m for roads of class 5, representing small residential roads, and at 

10 and 8 m for roads of class 2, 3, and 4, representing larger arterials and multi-lane roads. 

Roads of class 1 (representing large divided state and federal highways) and class 6 

(representing driveways, paths, and alleyways) were excluded from the analysis. Plantable 

space polygons were defined as the 2 m-wide strip between the inner and outer road 

centerline buffers, and then converted to a 1 m raster on the same grid as the 1 m canopy 

cover raster. The tree canopy raster was buffered by 4 pixels (approximately 4 m) using 

the Expand function and overlaid on the 1 m plantable space and LULC rasters. Plantable 

space pixels were eliminated that were either within the 4 m buffer of existing tree canopy 

or were not classified as Developed, HD Residential, or LD Residential. Plantable space 

pixels were then converted back to simplified polygons, and polygons < 2 m2 in area were 

eliminated as too constricted to allow new planting (Figure 3.S1). The amount of new tree 

stems that could be added to each plantable space polygon was calculated as 1 + the 

perimeter of the polygon divided by eight, rounded down to the nearest integer, or roughly 

the number of stems plantable every 8 m along the linear distance of the buffer strip, 

starting at the end of the polygon. This calculation maintains an approximate 8 m minimum 

separation between new trees stems and a minimum 4 m radius to any existing tree canopy 

(Pretzsch et al., 2015). The total number of new potentially plantable street tree stems for 

the whole city was determined as 170,147, corresponding to 1,197 km of available 
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plantable road buffer space. This estimate is comparable to but somewhat higher than the 

projection of approximately 120,000 available street margin planting areas based on tree 

survey data from 2006 (Danford et al., 2014), though our estimate assumed greater tree 

spacing and allowed for buffering distance from existing tree canopy. During policy 

simulation of the STP scenario each pixel was randomly assigned a new planting based on 

results of a binomial draw each year during the first 10 simulation years, with the likelihood 

of a new stem appearing set to the likelihood required to produce 170,147 new stem 

appearances in aggregate across all simulated pixels. New street tree stems consisted of an 

additional 5 cm DBH stem appearing of with a taxon randomly drawn with replacement 

from the Street Tree data set.  After a new stem appeared in a pixel simulation, that stem 

was subjected to predicted biomass and canopy growth and mortality risk similar to other 

stems in each pixel collection. 
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Figure 3.S1: Example of identified plantable space (purple) along residential roads (gray), 
with space allowed for 4m buffer to nearest existing tree canopy (light green). 
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Table 3.S1: LULC cover classes used in this study (MassGIS, 2005). 
 

LULC Constituent Classes Key Characteristics 

Developed 

Mining, Spectator Recreation, 
Commercial, Industrial, 
Transitional, Transportation, 
Waste Disposal, Marina, Urban 
Public/Institutional, Nursery, 
Junkyard 

Non-residential, dominated by 
built or disturbed cover 

HD Residential Multi-family Residential, High 
Density Residential 

Residential, apartment buildings 
or free-standing houses on small 
lots <1,000 m2 

LD Residential 
Medium Density Residential, Low 
Density Residential, Very Low 
Density Residential 

Residential, free-standing houses 
on lots up to >4,000 m2  

Forest Forest, Forested Wetland Coniferous and deciduous forests, 
tree canopy >50% 

Other 
Vegetated 

Cropland, Pasture, Non-forested 
Wetland, Open Land, Participation 
Recreation, Water-based 
Recreation, Saltwater Wetland, 
Saltwater Sandy Beach, Golf 
Course, Brushland/Successional 

Non-forest, dominated by pervious 
and vegetated cover 

Water Water Open water 
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Table 3.S2: Model summaries for stem- and areal-basis growth rate. Values in parentheses 
show coefficient standard error. RSD indicates model residual standard deviance. * 
significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001 by Chi-squared 
test versus model excluding the term. Significance of coefficients for Urban Forest plot 
annual growth tested via Student's t test (H0: Bi=0), and RSD is indicated for model fit 
determined using mean model coefficients. Model intercepts were not evaluated for 
significant difference from zero. Random effects for stem annual growth were: Urban 
Forest – Plot, Stem ID (intercept + DBH slope); Street Trees – Taxon (intercept + DBH 
slope); Rural Forest – Plot, taxon, sample year (intercept). Radom effects for plot annual 
growth: Urban forest – none; Rural Forest – Plot, Sample year (intercept). 
 

Model N Model 
Coefficients Formula RSD 

Stem annual growth: DBH increment (cm tree-1 yr-1) ~ starting DBH (cm) 

Urban 
Forest 900 

B0: 0.744 
(0.034);  

DBH-incr. ~ 
B0+B1*DBH+B2(interior)+B3(DBH*interior

) 
0.08 

B1: -0.014*** 
(0.003);  

B2: -0.261 
(0.050)***;  
B3: 0.005 
(0.002)* 

Street 
Trees 2,592 

B0: 1.234 
(0.008);  

DBH-incr. ~ B0+B1*DBH+B2*DBH2 0.587 B1: -0.020 
(0.004)**;  

B2: 1.33 E-04  
(3.37 E-05)*** 

Rural 
Forest 6,710 

B0: 0.096 
(0.022);  

DBH-incr. ~ B0+B1*DBH 0.194 
B1: 0.006 

(0.0003)*** 

Plot annual growth: Relative growth (MgC yr-1 per MgC-biomass) ~ biomass density (MgC ha-1) 

Urban 
Forest 24 

B0: 0.056 
(0.012);  

Rel. growth ~ B0+B1*Density+B2(interior) 0.01 B1: -1.69 E-04  
(4.93 E-05)***; 

B2: -0.016 
(0.008)*** 

Rural 
Forest 297 

B0: -3.325 
(0.098);  

Log(Rel. growth) ~ B0+B1*Density 0.225 
B1: -0.008 
(0.001)*** 
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Table 3.S3: Rural and Urban Forest taxa present in stem DBH samples. All equations taken 
from Chojnacky et al. (2014) unless noted. Numbers in parentheses for Urban Forest 
indicate number of increment cores represented. Specific gravity (spg) in g cm-3. 
 
Taxon N Allometric equation 
Rural forest 
Acer rubrum 2,153 Aceraceae, <0.50 spg 
Acer saccharum 78 Aceraceae, >=0.50 spg 
Betula alleghaniensis 115 Betulaceae, 0.50-0.59 spg 
Betula lenta 206 Betulaceae, >0.60 spg 
Betula papyrifera 98 Betulaceae, 0.40-0.49 spg 
Fraxinus americana 101 Oleaceae, <0.55 spg 
Pinus rigida 23 Pinus, >=0.45 spg 
Pinus strobus 1,447 Pinus, <0.45 spg 
Prunus serotina 78 Rosaceae 
Quercus alba 296 Fagaceae, deciduous 
Quercus coccinea 209 Fagaceae, deciduous 
Quercus rubra 665 Fagaceae, deciduous 
Quercus velutina 344 Fagaceae, deciduous 
Tsuga canadensis 388 Tsuga, <0.40 spg 
Other spp. 509 Mixed Hardwood (Jenkins et al., 2003) 
Urban Forest 
Acer rubrum 27 (2) Aceraceae, <0.50 spg 
Acer saccharum 1 Aceraceae, >=0.50 spg 
Betula pendula 2 Betulaceae, 0.40-0.49 spg 
Betula populifolia 12 Betulaceae, 0.40-0.49 spg 
Fraxinus americana 3 Oleaceae, <0.55 spg 
Juniperus virginiana 56 Cupressaceae, >=0.40 spg 
Pinus rigida 21 (7) Pinus, >=0.45 spg 
Pinus strobus 47 (16) Pinus, <0.45 spg 
Prunus serotina 20 Rosaceae 
Quercus alba 8 (3) Fagaceae, deciduous 
Quercus coccinea 35 (33) Fagaceae, deciduous 
Quercus rubra 39 (29) Fagaceae, deciduous 
Quercus velutina 144 (105) Fagaceae, deciduous 
Tsuga canadensis 1 Tsuga, <0.40 spg 
Other spp. 9 Mixed Hardwood (Jenkins et al., 2003) 
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Table 3.S4: Street Tree taxa present in Street Tree sample, number of stems represented, 
and biomass allometric equations applied. Allometric equations taken from MacPherson et 
al. (2016), wood density from Zanne et al. (2009). 
 

Taxon N Category for 
random effect 

Wood volume 
allometry 

Wood density  
(kg m-3) 

Acer campestre 29 Sapindaceae Acer platanoides 520 
Acer platanoides 575 Sapindaceae Acer platanoides 520 
Acer pseudoplatanus 1 Sapindaceae Acer platanoides 520 
Acer rubrum 79 Sapindaceae Acer platanoides 520 
Acer saccharum 13 Sapindaceae Acer platanoides 520 
Aesculus 
hippocastanum 3 Sapindaceae Urban General 

Broadleaf 549 

Carya ovata 1 Fagales Urban General 
Broadleaf 549 

Catalpa spp. 1 Other Urban General 
Broadleaf 549 

Celtis occidentalis 2 Other Urban General 
Broadleaf 549 

Crataegus spp. 1 Malus Urban General 
Broadleaf 549 

Fagus grandifolia 3 Fagales Urban General 
Broadleaf 549 

Fraxinus spp. 19 Fraxinus Fraxinus 
pennsylvanica 530 

Fraxinus 
pennsylvanica 168 Fraxinus Fraxinus 

pennsylvanica 530 

Ginkgo biloba 55 Ginkgo Urban General 
Broadleaf 549 

Gleditsia triacanthos 319 Fabaceae Gleditsia 
triacanthos 600 

Koelreuteria 
amurensis 1 Sapindaceae Urban General 

Broadleaf 549 

Koelreuteria paniculata 1 Sapindaceae Urban General 
Broadleaf 549 

Liquidambar spp. 1 Other Liquidambar 
styraciflua 460 

Liquidambar 
styraciflua 4 Other Liquidambar 

styraciflua 460 

Maackia amurensis 3 Fabaceae Urban General 
Broadleaf 549 

Magnolia spp. 1 Other Magnolia 
grandiflora 460 

Malus spp. 46 Malus Urban General 
Broadleaf 549 

Pinus resinosa 1 Other Urban General 
Conifer 410 

Platanus x acerifolia 124 Platanus Platanus hybrida 500 

Prunus spp. 60 Prunus Urban General 
Broadleaf 549 
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Pyrus spp. 81 Pyrus Urban General 
Broadleaf 549 

Quercus macrocarpa 7 Fagales Urban General 
Broadleaf 549 

Quercus michauxii 1 Fagales Urban General 
Broadleaf 549 

Quercus palustris 23 Fagales Urban General 
Broadleaf 549 

Quercus rubra 62 Fagales Urban General 
Broadleaf 549 

Robinia pseudoacacia 1 Fabaceae Urban General 
Broadleaf 549 

Sophora japonica 1 Other Urban General 
Broadleaf 549 

Syringa reticulata 11 Other Urban General 
Broadleaf 549 

Tilia americana 16 Tilia Tilia cordata 549 
Tilia cordata 629 Tilia Tilia cordata 420 

Ulmus spp. 60 Ulmus Urban General 
Broadleaf 549 

Ulmus crassifolia 2 Ulmus Urban General 
Broadleaf 549 

Unknown spp. 1 Other Urban General 
Broadleaf 549 

Zelkova spp. 186 Zelkova Zelkova serrata 520 
 

  



	 105	

Table 3.S5: Land cover configuration in the Boston study area. 
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CHAPTER FOUR: Annual biogenic C exchange in an urban landscape 

Abstract 

Urban municipalities are setting greenhouse gas emissions reductions goals as 

aspects of climate policy, but current techniques for monitoring anthropogenic carbon 

dioxide (CO2) emissions are complicated by biogenic C exchange processes that differ 

from rural counterparts and are at present poorly constrained in time and space. This study 

uses high-resolution data on land cover characteristics in the city of Boston, Massachusetts, 

to spatially model estimates of annual C fluxes from soil respiration and net vegetation 

photosynthesis. We find a median of approximately 38.4 GgC yr-1 in photosynthetic uptake 

of C by urban trees and turfgrass lawn areas, even in residential areas not obviously 

identifiable as “green spaces”. However, high soil respiration C rate (median 38.0             

GgC yr-1), much of it from intensively managed landscaping, matched nearly the entire 

annual vegetation C sink, resulting in a non-significant median NEE of 0.6 GgC yr-1 city-

wide. Urban forest fragments were estimated to remain a net C sink, but overall biogenic 

C uptake was predicted to offset only approximately 0.05% of the estimated 1290             

GgC yr-1 fossil C directly emitted in the city. These results suggest that climate mitigation 

efforts for large cities like Boston need to focus on direct fossil C emissions reductions, as 

urban biogenic C uptake will not offer a natural solution to meaningfully offset emissions 

in the city. Our work highlights the need for additional research to better quantify the 

distribution and timing of these fluxes both to better understand urban biogeochemical 

cycling, and to improve our ability to resolve and track urban fossil C emissions. 
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1 Introduction 

Cities produce an estimated 70% of global greenhouse gas emissions (UN, 2012), 

but also are increasingly leading the way in developing policies for managing the local 

causes and consequences of climate change (Broto and Bulkeley, 2013; Kennedy et al., 

2009; Moran et al., 2018). Recognizing the role played by urban areas in global climate 

change, a number of cities in the U.S. and abroad have pledged to reach net carbon 

neutrality within the next few decades (Pichler et al., 2017). In parallel with these reduction 

goals, there is a need for effective and routine means of inventorying city-scale emissions 

and verifying reductions progress (Gurney et al., 2015). Research is underway in several 

U.S. cities to develop methods for monitoring and attributing fossil fuel CO2 emissions in 

both time and space (Feng et al., 2016; McKain et al., 2012; Nathan et al., 2018; Sargent 

et al., 2018). A variety of approaches have been used to measure and attribute CO2 flux in 

urban environments, including eddy covariance (Crawford et al., 2011; Crawford and 

Christen, 2015; Velasco et al., 2014) and bottom-up emissions inventorying (Gately and 

Hutyra, 2017; Gurney et al., 2009). A suite of top-down inverse atmospheric methods are 

also available based on ground-, aircraft-, and satellite-based measurements of localized 

gas concentrations over cities (Lauvaux et al., 2016; Mays et al., 2009; Newman et al., 

2013; Sargent et al., 2018; Wu et al., 2018). 

Monitoring urban fossil CO2 emissions through atmospheric observations is 

complicated by the influence of heterogeneous and poorly constrained urban biogenic C 

fluxes to and from soil and vegetation (Hutyra et al., 2014). The effect of biogenic CO2 

fluxes on atmospheric CO2 levels tends to be largest during the growing season, when plant 
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photosynthesis and soil respiration are at their maximum (Sargent et al., 2018; Turnbull et 

al., 2015; Velasco and Roth, 2010). Complicating matters, biogenic C flux processes in 

urban areas appear to differ from their rural counterparts: Photosynthetic C uptake in urban 

trees is influenced by altered growing conditions such as increased temperature (Rizwan et 

al., 2008), changes in growing season length (Melaas et al., 2016), fertilizer, nutrient and 

pollutant deposition (Decina et al., 2018; Ollinger et al., 2002), and human interventions 

like tree planting and removal of trees and organic matter (Smith et al., 2019; Templer et 

al., 2015). Open-grown urban trees have been reported to have enhanced growth rates 

(Briber et al., 2015; Gregg et al., 2003; O’Brien et al., 2012; Takagi and Gyokusen, 2004), 

and mortality rates (Roman et al., 2014; Smith et al., 2019) compared to rural trees. Forest 

fragmentation edges also affects ecosystem carbon dynamics (Reinmann and Hutyra, 2017; 

Smith et al., 2019). The introduction of managed turfgrass lawns alters biogenic C cycling 

and belowground C storage compared to local native grasslands (Golubiewski, 2006). 

Studies of soil respiration in urban backyards suggest that highly managed soils can 

produce considerably greater C flux than unmanaged soils, in places comparable in 

magnitude to local fossil C fluxes (Decina et al., 2016).  

Previous studies on urban biogenic C fluxes have made indirect estimates based on 

measures of land cover properties and function, by extrapolation of limited in-situ field 

sampling, or some combination of these methods. Hardiman et al. (2017) estimated hourly 

net biogenic C flux in the urbanized regions of Massachusetts using an approach derived 

from the Vegetation Photosynthesis and Respiration Model (VPRM) (Mahadevan et al., 

2008). This approach employed an empirical model based on light-use efficiency and 
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informed via time series of remotely sensed data on vegetation and temperature. Their work 

accounted for pavement and urban heat island effects on plant C uptake and respiration 

across the growing season (Wang et al., 2017). However, the coarse spatial resolution (500 

m) of the UrbanVPRM approach did not permit adjustment for patch-scale productivity 

effects noted in local field studies (Reinmann and Hutyra, 2017). The UrbanVPRM was 

also parameterized based on C flux measurements taken in rural forests. Other studies have 

estimated components of urban biogenic C flux but not the net of uptake and emissions. 

Miller et al. (2018) modeled gross primary productivity (GPP) via scaling estimates of 

plant productivity based on light-use efficiency in a neighborhood of Minneapolis, 

Minnesota. Using a combination of satellite land cover data, tree sapflow, and eddy 

covariance measurement of lawn C flux, they were able to assess the spatial distribution of 

vegetation photosynthetic C uptake, but did not attempt to model soil respiration C efflux. 

Several additional studies have also estimated photosynthetic C uptake in urbanized 

regions taking a light-use efficiency approach based on satellite vegetation index data, but 

have generally applied rural-derived photosynthesis parameters and used land cover data 

with coarse (1 km) landscape- and continent-scale resolution (Imhoff et al., 2004; Zhao et 

al., 2016, 2012, 2007). A streamlined modeling process (UFORE), has been applied to 

estimate tree biomass and C uptake rate with measurable error in several North American 

and European cities (Nowak et al., 2013; Strohbach et al., 2012), but uses multiple 

simplifying assumptions for the sake of generalizability across urban areas. Other studies 

have paired remotely sensed land surface observations with simultaneous field sampling to 

inventory urban biomass C (Davies et al., 2011; Raciti et al., 2014; Rao et al., 2013a) and 
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its dynamics with land conversion (Hutyra et al., 2011). However, no study we are aware 

of has attempted to estimate the distribution of both C uptake of vegetation and soil 

respiration C release in these landscapes using higher-resolution land cover character and 

emissions factors derived from field measurements in an urban context. 

The presence of potentially large but poorly characterized biogenic C fluxes leaves 

significant uncertainty in estimating urban biogenic C flux across space and time. 

Uncertainty about the influence of biogenic C fluxes on urban atmospheric CO2 

concentrations injects uncertainty into efforts to accurately monitor urban fossil C fluxes. 

Our lack of granularity in the distribution of biogenic C fluxes also obscures important 

processes of energy and biogeochemical cycles operating in urban ecosystems. This study 

combines data on land cover characteristics in the city in Boston, Massachusetts, with 

urban-specific models of biogenic C flux processes to spatially resolve annual estimates of 

biogenic C fluxes and net ecosystem exchange (NEE) at a 30 m resolution. Finally, we 

evaluate biogenic C fluxes in their land use- and cover context, and compare them against 

satellite measures of vegetation cover and local estimates of fossil fuel C flux. 

 
2 Methods 

2.1 Data sources and processing 

The study area was the city limits of Boston, Massachusetts, excluding sparsely 

inhabited offshore islands (see Trlica et al., 2020). Geospatial data at 1 m surface resolution 

for presence of impervious cover (MassGIS, 2005), tree biomass and canopy extent (Raciti 

et al., 2014) were combined to classify cells as either tree canopy, open impervious, open 
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non-photosynthetic pervious (“barren”, NDVI<0.25), or “turfgrass” (non-canopy, 

NDVI³0.25). Cover data at 1 m were aggregated to 30 m cells coincident with the local 

Landsat grid. A map of land use/land cover classification (MassGIS, 2005) was also 

rendered to the same 30 m grid by maximum combined area (ESRI, 2014). Each 30 m grid 

cell was processed to determine the following cover characteristics: Simplified LULC class 

(Trlica et al., 2020), fraction impervious cover, fraction tree canopy (including fraction of 

sub-canopy area with pervious cover), fraction barren, fraction turfgrass, and total tree 

biomass (Table 4.S1). These metrics were combined with data from Landsat 5 TM and 

Landsat 7 ETM+ from the month of July in 2010–2012 (Dwyer et al., 2018), which were 

processed to produce a median EVI summer greenness estimate for each 30 m grid cell 

(Huete et al., 2002). 

2.2 Carbon flux modeling 

An estimate of annual net ecosystem exchange (NEE) for 30 m grid cells was 

calculated by combining estimates of soil respiration flux to the atmosphere (by convention 

denoted as positive sign). Estimated photosynthetic capture and biomass incorporation of 

C from the atmosphere (negative sign convention), included productivity in both woody 

(tree) and herbaceous (turfgrass) plants. Total annual net primary production (NPP) in 

herbaceous vegetation and trees was modeled to include to the extent possible all net 

biomass C increment in aboveground leaves and stems and belowground root growth. 

These estimates excluded intra-annual herbivore losses, and did not consider the longevity 

or depositional fate of the biomass once produced, much of which may be collected, 

moved, processed, and quickly re-oxidized (Falk, 1976; Templer et al., 2015). No life cycle 
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of biomass C components was conducted in this study. Flux components were estimated 

for each pixel by sampling each flux factor at random from its respective sample 

distribution, applying a consistent set of factors across the map pixels for each model 

realization and repeating the process 1,000 times. 

Soil respiration (RS) rates were modeled using the results of Decina et al. (2016) 

according to pixel non-impervious area, soil management, and land use context. In each 30 

m grid cell, total soil respiration was calculated as the sum of respiration from three types 

of non-impervious cover classed as either “turfgrass”, “landscaped” or “forest”. An 

empirically derived soil flux factor of 0.840 (SD 0.002), 1.239 (SD 0.002), and 0.472 (SD 

0.001) kgC m-2 yr-1, respectively, was applied to each cover class. Season-total mean soil 

flux factors and uncertainty were estimated by fitting a cubic spline GAM to the measured 

time series of RS in each land cover context (from Decina et al., 2016), then randomly 

resampling from the predicted GAM error distribution in each daily bin. Soil flux factors 

were applied to pixel pervious area according to LULC class: In Forest classed pixels, the 

Rs in non-impervious cover was modeled entirely using the forest soil flux factor. In 

residential pixel classes (HD Resid. and LD Resid.), the turfgrass soil flux factor was 

applied to the fractional turfgrass area. The landscaped soil flux factor was applied to the 

fractional barren area. In the sub-canopy pervious area 50% of the area was modeled with 

the turfgrass soil flux factor the other 50% with the landscaped soil flux factor. This 

application scheme for soil flux factors was similar to the calculations performed for 

residential areas in Decina et al. (2016). This scheme assumed non-photosynthetic pervious 

area to be better described as primarily under active landscaping management rather than 
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left as bare soil, while also assuming an even lawn/landscaped division for un-observed 

pervious area beneath tree canopy. For Developed and Other Vegetated classed pixels, the 

fractional barren area (including areas such as cleared industrial land and sand beaches) 

was applied an emissions factor of 0 kgC m-2 yr-1. Emissions factors for tufgrass- and sub-

canopy pervious areas were applied similarly to residential classes. In all cases, impervious 

cover and open water was treated as having Rs flux of 0 kgC m-2 yr-1. 

Turfgrass net productivity was estimated by applying an annual C uptake factor to 

fractional lawn area. This factor was centered at a mean of 0.903 kgC m-2 yr-1 (SD 0.161), 

representing a conservative estimate of C uptake based reported GPP from eddy covariance 

monitoring of nominally managed turfgrass in Minnesota (Hiller et al., 2011; Miller et al., 

2018). We further assumed a 62% ratio of NPP:GPP in turfgrass systems (Falk, 1980), and 

active growing season length of 240 days for the region (Peters and McFadden, 2012). 

Combined with the mean turfgrass Rs factor, this approach results in a central net estimate 

of C drawdown on the order of 0.1 kgC m-2 yr-1, comparable to annual NEE measured in 

other studies of turfgrass C balance and productivity (Hiller et al., 2011; Peters and 

McFadden, 2012; see Supplemental for more complete discussion). Short-lived root 

growth and aboveground biomass clipping and removal were included in the total NPP 

estimate, which may represent a substantial fraction of annual production in turfgrass 

systems (Falk, 1980; Kaye et al., 2005). Changes in long-term total soil organic carbon 

storage were not included in total C drawdown in turfgrass since these fluxes are usually 

small and variable on an annual scale (Qian and Follett, 2012), and to remain consistent 

with the tree C fluxes accounted for in this study. 
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Annual NPP for trees was calculated as separate fluxes for C uptake via 

aboveground woody biomass increment, belowground coarse root increment, and annual 

(deciduous) foliar biomass production. Estimating production of fixed C via aboveground 

woody biomass increment followed Trlica et al. (2020) using estimated C drawdown to 

woody biomass growth based on local tree growth measurements scaled spatially with 

maps of canopy and biomass in the Boston area. For the component of NPP allocated to 

aboveground woody biomass in open- and street grown trees, allometric equations for 

wood volume (m3) increment based on DBH change and were paired when possible with 

species-specific factors for wood density (kg m-3) to estimate aboveground incremental 

biomass gain (Table 4.S2; McPherson et al., 2016). To estimate the equivalent NPP C flux 

to aboveground woody biomass for trees in Forest classed pixels, rural-derived species-

specific allometric equations (Chojnacky et al., 2014; Jenkins et al., 2003) for aboveground 

biomass were bootstrapped 1,000 times to estimate plot-basis C uptake rate (kgC m-2-

canopy yr-1) from their constituent stem biomass increments (see Trlica et al., 2020). The 

component of annual NPP C allocated to leaf production was estimated based on the total 

dry biomass of leaves per stem, estimated via allometric relationships with tree DBH, 

acting as a proxy for total leaf litter production (see Supplemental). For open- and street 

grown trees, species- and region-specific allometric equations for urban trees were used 

when available to predict the total foliar area (m2), then species-specific factors for foliar 

dry weight (kg m-2) were applied to estimate total annual foliar biomass production (Table 

4.S2). For trees in Forest classed pixels trees, we used species-specific allometric equations 

for rural trees (Jenkins et al., 2003) to directly estimate foliar biomass via fraction of 
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aboveground biomass. Foliar biomass C uptake on a plot-basis was predicted iteratively 

simultaneous with aboveground woody biomass in Forest-grown trees. Annual NPP 

allocated to coarse root growth was estimated as the annual increment in belowground 

coarse root biomass, predicted via allometry to determine the ratio of belowground coarse 

root biomass to aboveground biomass. For open-grown and street trees this ratio was set to 

a fixed factor of 0.28 times the aboveground biomass (MacPherson et al., 2016), while for 

urban forest-grown trees this ratio was predicted based on species-specific allometries for 

rural trees (Jenkins et al., 2003). 

2.3 Statistical analysis 

All processing and analyses were performed in the R software package (R Core 

Team, 2017) with the libraries raster (Hijmans, 2017) and data.table (Dowle and 

Srinivasan, 2017). To identify trends we fit Generalized Additive Models (GAM) based on 

cubic regression splines using the mgcv (Wood, 2011) library. We examined the 

relationship of NEE to corresponding metrics of Landsat multi-year summertime 

composite EVI and to LULC via GAM trend fits to examine the spatial correlates for 

biogenic C flux across the city. Unless noted, summary figures are reported as median 

values with the central 95% of estimates. 

 

3 Results 

Net biogenic ecosystem exchange (NEE) of C for the city of Boston was estimated 

as a small net sink -0.6 (-13.9 – 7.3) GgC yr-1 (Table 4.S3). The range of median per-pixel 

estimates for NEE was -10.6–12.2 MgC ha-1 yr-1, with a median of 0.0 (-4.1–3.3)              
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MgC ha-1 yr-1 (Figure 4.1). Residential LULC classes were estimated to be net biogenic C 

sources of 1.49 (0.32 – 2.31) MgC ha-1 yr-1, while forest fragments and large parks tended 

to act as net biogenic C sinks of -2.68 (-11.17 – 0.74) MgC ha-1 yr-1 (Table 4.1). Normalized 

across the city, we estimated a very low non-significant annual net sink of -0.05 (-1.13 – 

0.59) MgC ha-1 yr-1. Differences in NEE between LULC classes were related to broad 

differences in underlying distributions of available pervious soil, turfgrass area, and tree 

biomass (Table 4.S1). 

The most potent net sink was estimated in Forest-classed land, with smaller 

contributions from Other Vegetated land and possibly Developed land. Forest and Other 

Vegetated cover types made up a relatively small fraction of the total urban area, but their 

larger proportion of tree and turfgrass cover resulted in a relatively large net sink city-wide. 

Somewhat surprisingly, Developed land cover was also predicted to be a small but non-

significant total net C sink. The net sink in Developed land may have been due to a C sink 

effect operating in a minority of pixels in which some presence of net C uptake (presumably 

primarily tree NPP), paired with low soil efflux rate due to a high degree of impervious 

cover. This effect may also be related to the modeling assumption of 0 kgC m-2 yr-1 RS 

efflux from non-vegetated (“barren”) soil in Developed areas. The relatively large area of 

Developed land cover in the city of Boston thus permitted this small minority of net-C-sink 

pixels to sum to a modest potential sink overall. In contrast, the two extensive Residential 

land cover classes were estimated as relatively strong net biogenic C sources, hosting NEE 

fluxes that offset nearly the net annual C sink generated in the other classes.  
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The net C sinks estimated in Forest LULC was due primarily to high tree net C 

uptake occurring within large areas of unmanaged soil with relatively low soil C efflux 

rates. Metrics of modeled tree NPP components in densely forested pixels showed general 

agreement with field measurements made in undisturbed forest (see Supplemental). 

Developed areas were predicted to be relatively biologically inert, with comparatively low 

component C fluxes and a non-significant net C sink, due to low vegetation abundance and 

high degree of impervious cover. In contrast, while the median estimate of NEE for Other 

Vegetated areas was predicted as a small non-significant negative C flux, in this LULC 

relatively large C uptake (primarily turfgrass NPP) tended to be balanced by relatively 

large soil C fluxes in managed lawn and landscaped soils with moderate- to high soil 

respiration efflux rates. The unexpectedly strong net C release in the HD- and LD 

Residential classes was mainly a product of moderate C uptake (primarily tree NPP, but 

including some turfgrass NPP) being paired with even more intense soil respiration C 

efflux from the large area of available highly-managed landscaped and lawn soils.  

Forest-class areas showed relatively strong C uptake due to correspondingly high 

levels of tree NPP, but Residential-class neighborhoods also showed moderate tree NPP C 

uptake due to elevated open-grown tree productivity paired with moderate biomass density 

in these areas (Trlica et al., 2020). Turfgrass NPP C uptake tended to be stronger in LD 

Residential and Other Vegetation categories, classes that also contained a greater fraction 

of open lawn areas (Table 4.S1). Soil respiration flux strength was negligible in Developed 

LULC, moderate in Forest, and relatively high in Other Vegetated, HD- and LD 

Residential. This separation was due to the low availability of pervious soil in Developed 
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areas, compared to Forest LULC with little impervious cover but with relatively low soil 

respiration rate. In HD Residential areas, higher soil respiration factors per m2 (landscaped 

and lawn) tended to potentially be mitigated by the lower availability of open pervious soil, 

while these constraints were reduced in LD Residential and Other Vegetated LULC, 

resulting in their relatively high soil respiration flux.  

Variability in the estimates of city-wide NEE was due mainly to uncertainty in the 

underlying models used for estimating component C fluxes. In contrast, variability in pixel-

median estimates of NEE was wider and driven mainly by underlying land cover 

heterogeneity at the sub-pixel scale (Figure 4.1). Median estimated NEE at the pixel level 

showed a high degree of variability across short spatial scales, but also displayed some 

coherent patches of net C sinks (e.g. large parks), net C sources (e.g. LD-Residential 

dominated neighborhoods in southeast Boston), and large areas of net 0 C exchange (e.g. 

downtown financial district). Developed pixels tended towards low median NEE, with 77% 

operating as modest net C sinks (no greater than -1.0 MgC ha-1 yr-1) (Figure 4.2). Other 

Vegetated pixels showed a range of NEE extending into both relatively large sources and 

sinks of C (-8.6 to 5.4 MgC ha-1 yr-1), while 62% were modest sinks due to the balancing 

effect of moderate soil respiration sources paired with turfgrass NPP-driven sinks. In HD- 

and LD-Residential 67% pixels were net C sources, with 1% of pixels acting as relatively 

potent biogenic C sources (at least 5 MgC ha-1 yr-1). Even Forest pixels, where the 92% of 

pixels were net C sinks, showed a range extending from large net sinks to net sources            

(-10.1 to 5.5 MgC ha-1 yr-1) depending on underlying cover and vegetation.  
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Biogenic C fluxes showed ambiguous relationships to traditional remotely sensed 

measures of vegetation at 30 m. Pixel median NPP (including tree and turfgrass NPP) was 

positively correlated with median summertime Landsat EVI. For each class GAM 

explained 5.6%, 54.1%, 41.1%, 35.5%, and 35.2% for Forest, Developed, HD Residential, 

LD Residential, and Other Vegetated LULC of deviance, respectively (not shown). Pixel 

median NEE estimates were not well predicted by EVI, though different land cover classes 

did cluster along different ranges of EVI and median NEE (Figure 4.3). GAM fits to the 

relationship explained a maximum of 9.1% of deviance in NEE. This lack of correlation 

between NEE and EVI is likely due in part to the wide range of variability in urban 

vegetation productivity and open sub-canopy pervious surface present at any given level 

of EVI. This lack of correlation is also likely a product of the lack of a clear radiometric 

signal associated with fine-scale management-related influences on Rs processes.  

4 Discussion 

Total scope 1 fossil fuel C flux was recently estimated at approximately 1290 GgC 

yr-1 for the Boston study domain (Gately and Hutyra, 2017). We estimate that NEE in the 

same area would only offset a maximum of approximately 1.1% of fossil C emissions 

annually (assuming 95th percentile of estimated NEE), with a median estimate of 

approximately 0.05%. However, though city-wide NEE flux on an annual basis may be 

much smaller than fossil fuel C emissions, on a finer spatial and temporal scale the 

component biogenic fluxes may be comparable in magnitude to co-located fossil fuel C 

flux contributions to the local atmosphere (Hardiman et al., 2017; Sargent et al., 2018). In 

this study, each 30 m pixel incorporated a range of constituent NEE C fluxes. The fluxes 
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vary temporally versus one another depending on the timing of seasonal conditions like 

temperature, moisture, light availability, and plant phenology (Kozlowski, 1992; 

Mahadevan et al., 2008; Melaas et al., 2016). Soil respiration is influenced by temperature 

and moisture changes, while in trees the timing of C-exchanging processes like leaf 

emergence, photosynthesis, and woody biomass production respond to seasonal cues in 

temperature, moisture, and light availability, and can also vary temporarily relative to one 

another (Curtis et al., 2005; Gough et al., 2008; Klein and Hoch, 2015; Paembonan et al., 

1992). Our results therefore imply geographically concentrated area like Boston could act 

as spatially heterogenous sources or sinks of atmospheric C at varying periods of the year. 

These spatio-temporally bounded fluxes create very large uncertainties in summertime 

atmospheric inversion (Sargent et al., 2018), even if annual integrated NEE flux is locally 

low. Our results also offer a counterpoint to that reported in Decina et al., (2016), who 

showed that across a transect of urbanization intensity in the Boston region, soil respiration 

flux could reach as high as co-located fossil C fluxes in moderate-density areas. Our results 

imply that Rs C fluxes in these same types of residential settings may also be as large or 

larger than local vegetation C drawdown. 

Components of urban biogenic C flux have been estimated or used in other studies, 

but to our knowledge no other study has estimated complete urban biogenic C fluxes. 

Across 28 North American cities, Nowak et al. (2013) using the UFORE forest productivity 

model estimated tree C uptake of roughly <0.1–0.9 MgC ha-1 yr-1 to long-lived biomass 

(adjusting for city-wide tree canopy cover), with an estimate of approximately 0.5 MgC 

ha-1 yr-1 for Boston. Similarly, in estimating changes in the strength of the C sink due to 
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forest NPP in Massachusetts, Reinmann et al. (2016) assumed a C uptake rate of up to 

approximately 0.5 MgC ha-1 yr-1 for core city areas with canopy cover of 25%, based on 

growth trends measured in local FIA plots. Our median estimate was considerably higher 

at approximately 2.1 MgC ha-1 yr-1, but our study included long-lived aboveground 

biomass and estimates for foliage and coarse root growth. The fraction of per-pixel flux of 

C to production of foliar biomass was estimated at median of 41% (20–62%) of total net 

tree photosynthetic C uptake. We also modeled C uptake based on higher local 

measurements of growth in open- and edge-grown trees rather than using models of growth 

based on rural forests. Churkina (2016) used an estimated NEE net C drawdown of -3.19 

to -3.35 MgC ha-1 yr-1 as a component of their global modeling study on C flux in urban 

areas, but these factors were based on stereotyped values of urban vegetation and soil 

fraction and used GPP and ecosystem respiration estimates derived from measurements of 

rural humid deciduous forests. Pataki et al. (2011) made a simplified prediction that in a 

city like Los Angeles with productive but limited vegetation cover the magnitude of C 

uptake compared to local fossil fuel C emissions would be close to negligible. Our 

estimates accord with their prediction, but add critical detail and nuance. The inclusion of 

Rs C efflux shows that true net biogenic C sequestration is likely considerably smaller than 

vegetation NPP, but we find very large spatial variation across the city that likely changes 

depending on time of day and season.  

Crawford and Christen (2015) estimated the vegetation and soil C flux components 

of C flux measured via eddy covariance over a residential neighborhood in Vancouver, 

British Columbia. Using a light-use efficiency approach, they estimated approximately 4.6 
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MgC ha-1 yr-1 gross C assimilation via photosynthesis in trees and turfgrass, and 3.5 MgC 

ha-1 yr-1 in ecosystem respiration (implying NEE of 1.1 MgC ha-1 yr-1). Based on these 

observations, Kellett et al. (2013) similarly estimated NEE of 1.6 MgC MgC ha-1 yr-1 in 

this area, of which up to about 50% were expected to be exported as green waste. Our 

estimated vegetation NPP of approximately 3 MgC ha-1 yr-1 across the city imply gross C 

assimilation somewhat higher than reported in Vancouver, assuming a reasonable fraction 

of C loss as vegetation respiration (DeLucia et al., 2007; Falk, 1980). However, our 

estimated Rs rates were likely also higher than the soil component of ecosystem respiration 

estimated in Crawford and Christen (2015), which were based in part on soil respiration 

flux measurements from local lawn areas. Soil management preferences may differ 

between Vancouver and Boston, and soil temperature is likely considerably lower in 

Boston. It is also possible that flux partitioning based on soil respiration rates measured in 

Vancouver lawns did not capture higher respiration rates in landscaped areas, as was seen 

in Decina et al. (2016), and as was possibly implied by high nighttime biogenic C fluxes 

measured in Crawford and Cristen (2015). 

Hardiman et al., (2017) estimated biogenic C fluxes using the satellite-driven 

UrbanVPRM model for the greater Boston area to be -10.3 MgC ha-1 yr-1 in gross C uptake 

and 8.9 MgC ha-1 yr-1 in ecosystem respiration (implying NEE of approximately -1.4 MgC 

ha-1 yr-1). In contrast, our study did not predict a significant NEE C sink. This difference 

may be related to difference in study domain, which in Hardiman et al. (2017) included 

considerable sub- and ex-urban area outside of Boston’s city limits presumably with greater 

vegetation and soil cover. It is not straightforward to compare our estimate of Rs to their 
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ecosystem respiration totals, however we note their modeled soil respiration was not based 

on local flux measurements and did not attempt to model respiration sensitivity to soil 

management context. In addition, NPP C uptake in Hardiman et al., (2017) was modeled 

based on New England rural forests, and did not capture differential turfgrass NPP or the 

effect of urban tree growth rates; all green vegetation was presumed to behave as trees. 

They estimated 75% less tree biomass in the most urbanized sub-region of their study 

(including Boston), but estimated gross C uptake was only reduced by 32%. It is unclear 

to what extent the vegetation C assimilation rates predicted by Hardiman et al. (2017) via 

satellite EVI were related to a previously noted enhancement of EVI in urbanized areas 

(Jia et al., 2018), or to the contribution of turfgrass to the overall EVI signal.  

In the urban ecosystem of this study, 30 m pixel-sized areas showed wide variability 

in NPP related to the presence of different vegetation types and biomass densities at the 

sub-30 m scale. Variable NPP rates were further combined with a high degree of spatial 

heterogeneity of Rs, the controls of which (such as impervious cover distribution or soil 

management tendencies) may not have an obvious radiometric signature. These sub-pixels 

effects on biogenic C flux processes are not likely readily captured in simple satellite 

vegetation or regional temperature (Hardiman et al., 2017). The lack of clear correlation 

between satellite remote-sensing based measures of vegetation function, broad soil 

respiration controlling factors like temperature, and pixel median NEE estimates urges 

caution in applying these models in the unique, fragmented, and heterogeneous growing 

environment of urban areas.  
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Terrestrial ecosystems in long-timescale equilibrium should maintain an 

approximately steady stock of carbon in soil and biomass, with NPP and Rs in balance after 

sufficient time post-disturbance (Odum, 1969). The considerable positive and negative 

mismatches we estimate in parts of the urban landscape imply that this equilibrium is not 

maintained in the urban biogenic C cycle. In Forest areas, a predicted net C uptake may 

imply that these comparatively “young” systems are still in a phase of C acquisition. Other 

areas, such as Developed areas, support little open soil or vegetation, and appear to have 

an impoverished C cycle in general. However, in residential areas, the effect of human 

activities, including the import or export of nutrient or additional organic C (Templer et 

al., 2015), may help fuel ongoing soil C flux in excess of local vegetation C fixation 

(Decina et al., 2016).  

Studies of ecosystem C dynamics in rural forests offer instructive contrasts to our 

results. Gough et al. (2008) reported tree NPP of approximately 6-7 MgC ha-1 yr-1 in a 

mixed deciduous forest in Michigan, comparable to our Forest NPP estimates, though the 

Michigan values include a 41% component of fine root turnover (not estimated in this 

study). Soil respiration averaged approximately 5 MgC ha-1 yr-1, comparable to our Forest 

estimates but somewhat lower than areas like LD Residential and Other Vegetated 

containing a greater fraction of managed soils. Reported NEE in their study was 

approximately -1.5 MgC ha-1 yr-1. The contrast with our results may reflect a combination 

of lower soil respiration C efflux in the Michigan study, generally lower biomass and NPP 

per ha in our study domain, and the exclusion of C allocation to fine root turnover in our 

study. Showing similar findings, a study of a mixed deciduous forest at the Bartlett 
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experimental forest in New Hampshire reported approximately 6.2 MgC ha-1 yr-1 in NPP 

(with 44% as belowground NPP, including fine root turnover), heterotrophic soil 

respiration (above and belowground) of approximately 5 MgC ha-1 yr-1, and NEE of 1.2–

1.3 MgC ha-1 yr-1 (Ouimette et al., 2018). Reports from the nearby Hubbard Brook 

experimental forest in New Hampshire reported similar findings, with estimated 

aboveground NPP of approximately 4 MgC ha-1 yr-1, belowground NPP of 1.8 MgC ha-1 

yr-1, and soil respiration of approximately 4.7 (heterotrophic component) to 11.3 (roots + 

heterotrophs) MgC ha-1 yr-1 (Fahey et al., 2005). In contrast to other rural forests under 

study, the NEE for this site was estimated as essentially 0 MgC ha-1 yr-1, possibly due to a 

variety of site-specific factors. In the mixed deciduous forest of the Harvard Forest located 

100 km from Boston, NEE measured by eddy covariance ranged from -1.0 to -4.7 MgC ha-

1 yr-1 (mean -2.5 MgC ha-1 yr-1), aboveground woody increment (excluding mortalities) 

was 1.0 to 2.5 MgC ha-1 yr-1, and total ecosystem respiration (soil + aboveground 

autotrophic tissues) ranged from 10–13 MgC ha-1 yr-1 (Urbanski et al., 2007). Rural forests 

show somewhat lower soil respiration and higher NPP, tending towards a significant NEE 

C sink of several MgC ha-1 yr-1. Though most of the Boston study area supports less dense 

tree biomass than nearby rural forests, it is also possible that our tree NPP values were 

underestimated as a result omitting fine root turnover fluxes. Our soil respiration estimates 

in some LULC classes may be higher as a result of enhanced heterotrophic C efflux with 

greater nutrient and organic matter input in urban soils. The net result of these broad 

differences likely explains the lack of a clear NEE C drawdown in our model of Boston’s 
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biogenic C fluxes. It remains unclear if the addition of fine root NPP to our model would 

meaningfully change our estimated city-wide NEE C sink. 

At present, more is understood about biological C exchange processes in 

surrounding rural forests than in urbanized areas (Hutyra et al., 2014). However, in 

constructing a larger urban biogenic C budget, we acknowledge the logical difficulties 

accounting for C fluxes due to organic materials of possibly unknown outside origin (for 

instance, imported mulch and compost), or from biomass produced in the city but them 

moved elsewhere (for instance, exported leaf litter and woody debris [Templer et al., 

2015]). In our approach, we have attempted only to spatially model the average annual C 

fluxes across this dynamic landscape. Our results imply that the city is not likely to be 

taking up C on net through photosynthesis, but we cannot ascertain whether or not total 

ecosystem C stocks are changing as a result of direct organic matter importation or broad-

scale changes in soil carbon stocks. A comparison of scope 1 fossil C emissions across the 

same area with our results implies that net biological C uptake is unlikely to significantly 

offset anthropogenic emissions, unless soil respiration processes are left entirely out of the 

accounting. Even under such an erroneous assumption, local long-term tree biomass C 

uptake is not likely to offset more than roughly 1% of annual emissions (Trlica et al., 2020). 

In the approximately 60% of the city of Boston outside of densely developed non-

residential areas, biogenic C fluxes to and from the atmosphere from these areas could 

complicate the interpretation of locally measured atmospheric CO2 mixing ratios used for 

surface network- (Sargent et al., 2018) or satellite-based atmospheric inversions (Wu et al., 

2018). Uncertainties in urban biogenic C fluxes could be reduced with improved local data 
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such as regular aerial surveys of canopy extent and height via leaf-on LiDAR and multi-

spectral photography. Further high resolution (<10 m) regular monitoring of impervious 

surface extent and land development (or abandonment) would allow researchers to better 

discern the fine-scale processes that drive urban-specific biogenic C fluxes (Trlica et al, 

2020; Decina et al., 2016). Regular measurements of growth and mortality in city-owned 

street trees would provide an independent source of information on C uptake in the urban 

forest. We also note a paucity of studies on the productivity and C dynamics of urban 

turfgrass lawns, particularly in the New England region. Additional information on land 

management practices or economic data on organic waste management could also enhance 

our ability to estimate lateral movements of biogenic C across the urban landscape and 

estimate C efflux from managed soils (Decina et al., 2016; Short Gianotti et al., 2016; 

Templer et al., 2015). More intensive study of the underlying processes of plant 

productivity and ecosystem respiration, particularly at the field scale through vegetation 

and soil monitoring, would also improve our understanding and capacity to estimate these 

biogenic C fluxes in time and space. 

Cities can potentially manage their urban ecosystems to increase C uptake, for 

instance by maintaining and enhancing tree cover in street plantings and greenspaces, 

increasing tree cover in non-forested open space such as golf courses and playing fields to 

greater tree cover, and incentivizing landowner tree preservation (Trlica et al., 2020). 

However, reducing soil respiration C efflux is less straightforward, as decisions on soil 

management and reduction of organic inputs is implemented by individual actors and 

households. Further, reductions in mulch application may raise environmental impacts 
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related to irrigation requirements or seedling establishment success (Chalker-Scott, 2007) 

Strategies to offset fossil C emissions via net biogenic C uptake are unlikely to be very 

effective, given the high rates of RS in our study area, and the necessarily physical space 

requirements for trees in dense urban neighborhoods. We note, however, that the potential 

public benefits of urban ecosystem services beside C sequestration are manifold, including 

moderating excessive temperatures, improving air quality, increasing soil water 

infiltration, reducing noise, supporting biodiversity, and providing social and 

psychological benefits (Gómez-Baggethun and Barton, 2013; Lovell and Taylor, 2013; 

Roy et al., 2012). Advancement of the goals of enhanced urban “green infrastructure” will 

require improvement in our understanding of ecosystem functions in their specific contexts 

and locations, and the ecosystem services and disservices they produce (Escobedo et al., 

2011; Pataki et al., 2011). A better understanding of these processes will also support of 

the goal of accurately monitoring and reducing fossil C emissions, where the bulk of public 

effort must be focused. 
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Figure 4.1: Median pixel estimate for NEE in city of Boston, MgC ha-1 yr-1. Negative 
values indicate net C uptake, positive values indicate net C emissions. Pixel size is 30 m. 
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Figure 4.2: Distribution of per-pixel median estimated NEE (MgC ha-1 yr-1). Inset shows 
relative areas of different LULC classes, and boxplot widths are also proportional to areas 
(Water values not shown). 
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Figure 4.3: Median pixel Landsat July EVI (2010–2012) versus median pixel NEE 
estimate (MgC ha-1 yr-1), by LULC. Color shading indicates concentration of pixel 
frequency. GAM prediction line shown in red. Bottom right shows histogram of pixel 
median NEE estimates for all LULC classes. 
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Table 4.1: Estimated map-wide biogenic C flux strength by LULC in Boston (median and 
central 95%). All figures in MgC ha-1 yr-1, representing the sum of C flux for pixels of a 
given LULC divided by LULC area, summarized across model realizations. Negative 
values indicate flux of C from atmosphere, positive values represent flux of C to 
atmosphere. 
 

LULC Tree NPP Turfgrass NPP Soil Respiration NEE 

Forest -6.09 
(-2.62– -14.82) 

-1.13 
(-0.74 – -1.53) 

4.54 
(4.52 – 4.57) 

-2.68 
(-11.17 – 0.74) 

Developed -0.84 
(-0.74 – -1.00) 

-0.49 
(-0.32 – -0.66) 

1.17 
(1.17 – 1.18) 

-0.16 
(-0.37 – 0.04) 

HD Resid. -2.54 
(-2.15 – -3.10) 

-0.81 
(-0.53 – -1.10) 

3.97 
(3.96 – 3.99) 

0.64 
(0.01 – 1.09) 

LD Resid. -3.79 
(-3.04 – -4.89) 

-1.49 
(-0.98 – -2.02) 

6.76 
(6.74 – 6.78) 

1.49 
(0.32 – 2.31) 

Other Veg. -1.79 
(-1.40 – -2.37) 

-3.81 
(-2.50 – -5.17) 

5.31 
(5.29 – 5.33) 

-0.32 
(-1.71 – 1.10) 

Total -2.09 
(-1.57 – -3.12) 

-1.03 
(-0.68 – -1.40) 

3.09 
(3.08 – 3.10) 

-0.05 
(-1.13 – 0.59) 

 
  



	 134	

Supplemental Information for Annual biogenic C exchange in an urban landscape 

 

4.S1 Carbon uptake and allocation in trees 

We compared metrics of biogenic C dynamics modeled in this study to in pixels 

with near-complete (85% or greater) canopy coverage to comparable annual measurements 

from 2000–2014 taken at the Harvard Forest (HF) Environmental Measurement Station 

(EMS) (Table 4.S4). These highly canopied pixels tended to have somewhat higher median 

biomass density (139 MgC ha-1 compared to 100–127 MgC ha-1 at HF), and higher 

estimated annual aboveground woody biomass increment (AGWI; 2.4 MgC ha-1 yr-1 versus 

1.4–1.8 MgC ha-1 yr-1 at HF). This higher predicted AGWI in Boston is likely the result of 

modeling based on faster measured rates of growth in Boston’s urban trees compared to 

nearby rural trees (Trlica et al, 2020). Similarly, aboveground NPP (the sum of AGWI and 

annual foliar biomass production, measured as litterfall at HF) was also higher in the full-

canopy pixels than HF. The ratio of AGWI to ANPP (the sum of AGWI and foliar biomass 

production, which was measured as litterfall in HF) was somewhat lower in the modeled 

Boston pixel than at HF (0.39 AGWI:ANPP, versus 0.44–0.52 in HF), suggesting that the 

method of predicting annual foliar biomass production in mostly forested urban pixels 

based on allometric equations for foliar biomass resulted in somewhat higher estimates of 

ANPP overall, though the empirical and modeled ratios are comparable. In contrast, similar 

comparison of HF measurements to Boston pixels with more scattered tree canopy and 

modeled using a different approach and urban-specific allometric equations (“Street tree” 

pixels) showed lower biomass density, NPP, and AGWI, but comparable AGWI:ANPP 
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ratios. This Street tree modeling approach was applied to the majority of pixels in the study 

area, and these results more broadly indicate that allometric predictions were generally in 

line with tree C allocations observed in the non-urban HF context. 

Trees fix carbon during photosynthesis and allocate these compounds to support 

growth or maintenance respiration in different tissues and at potentially different times 

(Amthor and Baldocchi, 2001; Gough et al., 2008), storing some as non-structural 

carbohydrates (NSC) (Kozlowski, 1992). These NSCs may be built up in the prior year and 

stored to fuel spring leaf growth, temporarily exceeding immediate new C fixation, though 

NSC reserves to do not appear to fluctuate greatly over the growing season, implying that 

respiration overshoot is temporary in the early growing season (Körner, 2003). At the end 

of the growing season, up to 16–26% of foliar C may be reabsorbed prior to leaf fall (Fahey 

et al., 2005), presumably to be stored as NSC reserves. On longer time scales, tree 

respiration, including respiration to fuel growth, is limited by gross carbon uptake (GPP) 

(Arneth et al., 1998; DeLucia et al., 2007). Aside from some transient early-season pulses 

and other temporary asymmetries between C assimilation and growth, release or export, 

growth-related respiration also appears to be linked relatively tightly to current NPP (Klein 

and Hoch, 2015), while maintenance respiration remains relatively constant though 

responsive to temperature, implying that reasonably constant fraction of C uptake is 

partitioned to new tissue growth during the growing season (Paembonan et al., 1992; Piao 

et al., 2010). 

The fraction of leaf biomass to total tree mass for woody angiosperms is typically 

well below 0.3, and below 0.03 for full grown trees (Poorter et al., 2012), implying that 
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estimates of annual biomass increment determined from allometric functions relating 

aboveground biomass to DBH will be dominated by woody biomass increment. However, 

allocation of a single year’s C uptake to foliage, flowers, and seeds has been measured in 

the region of 60% of NPP allocation to woody biomass growth in the Bartlett experimental 

forest in New Hampshire (Ouimette et al., 2018), approximately 86% of annual 

aboveground woody increment in a forest in Michigan (Gough et al., 2008), and up to 60–

90% of aboveground woody increment in Hubbard Brook Forest (Fahey et al., 2005). At 

Harvard Forest, and in our predictions for Boston based on stem-level allometries, 

somewhat more aboveground production was annually allocated to foliar biomass than 

woody biomass (Table 4.S3). In all cases, empirical study suggests that both foliar biomass 

production and woody biomass increment are both large and roughly comparable fractions 

of annual aboveground productivity. 

Many forest studies have used fine litterfall to measure C assimilation allocated to 

annual foliar biomass production (Fahey et al., 2005; Gough et al., 2008; Klein and Hoch, 

2015). In this study we estimated annual foliar biomass production via allometric 

predictions using stem DBH, either predicting leaf area or leaf biomass fraction (Jenkins 

et al., 2003; McPherson et al., 2016). As outlined above, the live foliar biomass in any one 

year may be expected to include C fixed in the previous year, and some amount of live 

foliar biomass C may be reabsorbed prior to leaf fall at the end of the growing season. 

However, as indicated above, we expect that over multi-year time scales these processes 

are in general equilibrium. Given that the allometric approach on a per-stem basis predicts 

C assimilation to foliar biomass roughly comparable to field measurements in rural forests, 
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we have used predicted live-leaf foliar biomass as a proxy for C assimilation to foliage in 

our tree growth model. 

4.S2 Carbon uptake and allocation in turfgrass 

A fraction of total urban vegetation area and C exchange can be expected to take 

place in managed grass turf or lawn areas, which form a variable portion of urban 

vegetation in the landscape (Kremer et al., 2016). These areas often receive irrigation and 

fertilizer inputs as well as regular disturbances in the form of soil aeration and maintenance 

clipping and removal of aboveground biomass (Qian and Follett, 2012). The main pools of 

C in turf systems include clipped and removed aboveground biomass, an equilibrium 

“stubble” pool of aboveground living and dead biomass with high rate of turnover, 

belowground root biomass, and the associated soil organic carbon pool (Falk, 1976).  

The intensive management of urban turf grass complicates any assessment of the 

spatiotemporal distribution of its biogenic C fluxes. Under regular maintenance the 

aboveground pool can be expected to be occasionally removed and redistributed into other 

human-mediated C flows such as waste management or composting that likely result in 

relatively rapid re-release as CO2 (Kellett et al., 2013). However, this aboveground growth 

increment still represents an annual net uptake atmospheric of C to new biomass similar to 

annual woody biomass and leaf production in urban trees. Like urban tree litter, clipped 

aboveground vegetation in turf systems is also likely to be largely removed and processed 

or released in disjunct times and locations (Templer et al., 2015). Both tree leaf litter and 

lawn clippings represent a net biogenic capture of C which on an annual basis is 

presumably retained for some period before re-release. As such, we estimate net C uptake 
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based on the net production of aboveground biomass in both turf grass and urban trees, 

irrespective of the relative longevity or depositional fate of this biomass.  

Several studies have focused on C uptake and storage of SOC in turf grass. Studies 

have reported consistent gains to SOC in turf grass systems of 0.03 up to 0.14 kgC m-2 yr-

1 within the first several years of conversion, but which are sensitive to local climate and 

intensive management such as in residential lawns and golf courses (Pouyat et al., 2006; 

Qian et al., 2010; Qian and Follett, 2012). Addition of compost can increase long-term turf 

grass SOC stocks (Beesley, 2012), though it is unclear how SOC change with direct C 

inputs should be counted in terms of in-situ C fixation and release. The aboveground 

biomass C pool and net C allocation to aboveground tissues may often amount to a small 

fraction of belowground C storage and allocation, including SOC (L. Kong et al., 2014).  

Studies have also demonstrated that turfgrasses can be a net source or sink of C 

dependent on seasonal soil temperature and precipitation (Hiller et al., 2011; Zhou et al., 

2012). However, only a handful of studies have directly measured annual net C uptake and 

its specific allocation in urban turf grass tissues, demonstrating considerable variability 

between sites and typically focused on the aboveground portion of NPP only. Falk (1980) 

reported NPP (assuming 44% C per dry gram biomass) of approximately 0.73 kgC m-2 yr-

1 in irrigated and fertilized and un-irrigated/fertilized lawns in suburban Washington DC, 

accounting for allocation to both belowground root and aboveground clipping- and stubble 

C pools. Kaye et al. (2005) measured aboveground NPP of approximately 0.2 kgC m-2 yr-

1 in herbaceous lawn vegetation under nominal irrigation, fertilization, and clipping in Ft. 

Collins, Colorado.. Golubiewski (2006) studied vegetation C storage in residential yards 
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in the Front Range region of Colorado, finding a mean of 0.14 kgC m-2 yr-1aboveground 

production in clippings and stubble, with greater production under more intensive 

management. Milesi et al. (2005) compiled field studies of urban turf grass showing 

approximately 0.05–0.25 kgC m-2 yr-1in total aboveground biomass productivity. 

Aboveground NPP in minimally managed turf in tropical Singapore was measured up to 

0.38 kgC m-2 yr-1, assuming no dormancy period (Ng et al., 2015). Wilsey and Polley 

(2006) measured peak aboveground productivity of 0.27 kgC m-2 yr-1 in Texas grasslands 

dominated by introduced C4 grass species. Treating removed aboveground biomass as an 

annual C source, Jo and McPherson (1995) estimated net annual C uptake in above- and 

below-ground biomass in urban turf in Chicago at approximately 0.09 kgC m-2 yr-1.  

Other studies have examined gas flux to infer net productivity in urban turf grass. 

Miller et al., (2018) used eddy covariance measures in non-irrigated or fertilized lawn and 

an intensively managed golf course in Minneapolis, Minnesota, to estimate mid-summer 

mean gross primary production (GPP) of 6–12 gC m- 2 d-1. Assuming NPP is 62% of GPP 

in managed lawn systems (Falk, 1980) and a 240 day growing season (Peters and 

McFadden, 2012), this figure implies a maximum net above- and belowground production 

of approximately 0.9–1.8 kgC m-2 yr-1but the authors also cite measured annual C flux in 

the lawn site of 0.09 (net source) to -0.07 kgC m-2 yr-1due in part to rapid losses of lawn 

clippings left to decay on site (Hiller et al., 2011). Peters and McFadden (2012) reporting 

on the same site showed growing season (April–November) net ecosystem C uptake of 

0.21 kgC m-2 yr-1in irrigated golf course and 0.12 kgC m-2 yr-1in non-irrigated lawn. Wu 

and Bauer (2012) used high-resolution satellite imagery over Roseville, Minnesota, in 
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concert with a light use efficiency model to estimate similar net primary productivity 

(above- and belowground) of 0.77 kgC m-2 yr-1for nominal lawn grass and 1.1 kgC m-2 yr-

1 for golf course grass. Sod grown under warmer conditions in Georgia showed somewhat 

stronger annual net ecosystem uptake of 0.31–0.52 kgC m-2 yr-1based on eddy covariance 

measurements (Pahari et al., 2018). Christen et al. (2011) estimated soil and lawn 

vegetation respiration of 0.28 kgC m-2 yr-1 in Vancouver, British Columbia, considerably 

lower than the approximately 0.82 kgC m-2 yr-1 reported in urban and suburban lawns in 

the Boston region (Decina et al., 2016). 

This study did not attempt to estimate annual C flux due to changes in SOC stock, 

which may be considerable in the first several years after lawn establishment (Qian et al., 

2010) but on an annual basis tend to be very small in urban soils compared to C allocation 

to plant tissues (Qian and Follett, 2012). We infer from the previous atmospheric and field 

studies of lawn C uptake that a large fraction of annual NPP in these systems is allocated 

belowground, but that relatively high soil respiration rates tend to lead to overall smaller 

NEE than forest systems. We assumed mean turfgrass NPP (above- and belowground) of 

0.903 (SD 0.161) to roughly accord with the findings of Miller et al. (2018) on GPP, Hiller 

et al. (2011) on NEE, and Decina et al. (2016) on lawn soil respiration rate (see Methods). 
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Table 4.S1: Total area (ha) of different cover types in the LULC classes used in this study. 
Fraction of total study area shown in parentheses. Tree biomass not shown. 
 

LULC Area Canopy Impervious 
Pervious classes 

Turfgrass Sub-canopy Barren 

Forest 1020 805 101 128 794 20 

Developed 4710 484 3688 258 311 437 

HD Resid. 4827 1454 2949 436 969 460 

LD Resid. 245 110 81 41 94 29 

Other Veg. 1315 274 284 553 224 263 

Water 247 29 10 -- -- -- 

Total 12455 3164 (25%) 7143 (57%) 1420 (11%) 2392 (19%) 1209 (10%) 
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Table 4.S2: Factors used to calculate components of biomass growth in open-grown and 
street tree records used in annual growth simulations (see Trlica et al. [2020]). Taxon-
specific allometric equations (Northeast region) for aboveground wood volume, foliar 
biomass and factors for foliar dry weight (dw) were taken from McPherson et al. (2016), 
and wood density factors were taken from Zanne et al. (2009), except where noted. Root 
biomass was set to default of 0.28 of predicted aboveground biomass, following 
McPherson et al. (2016). Aboveground biomass was calculated via wood volume, 
predicted as volume (m3) = B0*DBHB1, with DBH in cm, except where noted. 
 

Taxon 
# in 

record 
Leaf dw 
(g m-2) 

Wood 
density 
(kg m-3) 

Wood Volume 
B0 

Wood Volume  
B1 

Acer campestred,e 29 102.03a 508a 0.000284 2.310647 

Acer platanoides 575 62.05 520 0.001942 1.785 
Acer 
pseudoplatanusd,e 1 102.03a 508a 0.000284 2.310647 

Acer rubrumc 79 72.68 490 0.1970 2.1933 

Acer saccharumd 13 80.77 560 0.000284 2.310647 
Aesculus 
hippocastanumd 3 85.38 500b 0.000284 2.310647 

Carya ovatad,e 1 102.03a 640 0.000284 2.310647 

Catalpad,e 1 102.03a 380b 0.000284 2.310647 

Celtis occidentalise 2 102.03a 490 0.001416 1.928 

Crataegus spp.d,e 1 102.03a 520b 0.000284 2.310647 

Fagus grandifoliac,e 3 102.03a 585b 0.1957 2.3916 
Fraxinus 
pennsylvanica 187 109.44 530 0.000589 2.206 

Ginkgo bilobad 55 130.59 520b 0.000284 2.310647 

Gleditsia triacanthose 319 124.66 600 0.000506 2.22 
Koelreuteria 
amurensisd,e 1 102.03a 508a 0.000284 2.310647 

Koelreuteria 
paniculatad,e 1 102.03a 620b 0.000284 2.310647 

Liquidambar 
styraciflua 5 93.78 460 7.99E-05 2.560469 

Maackia amurensisd,e 3 102.03a 508a 0.000284 2.310647 

Magnoliad,e 1 102.03a 508a 0.000284 2.310647 

Malus sppd 46 109.68 610b 0.000284 2.310647 

Platanus acerifolia 124 110.02 500 5.90E-05 2.673578 

Prunus serrulatad 60 99.32 560b 0.000284 2.310647 

Pyrus calleryanad 81 130.15 600b 0.000284 2.310647 
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Quercus 
macrocarpae 7 102.03a 580 0.000243 2.415 

Quercus michauxiid,e 1 102.03a 600 0.000284 2.310647 

Quercus palustrisd 23 88.17 580 0.000284 2.310647 

Quercus rubrad 62 96.79 560 0.000284 2.310647 
Robinia 
pseudoacaciad,e 1 102.03a 660 0.000284 2.310647 

Sophora japonicad,e 1 102.03a 508a 0.000284 2.310647 

Syringa reticulatad 11 102.03a 508a 0.000284 2.310647 

Tilia americanad,e 16 141.78 320 0.000284 2.310647 

Tilia cordata 629 141.78 420 0.000936 2.042 

Ulmusd,e 55 99.77 460b 0.000284 2.310647 

Ulmus crassifoliad,e 2 102.03a 590 0.000284 2.310647 

Ulmus europeand,e 5 102.03a 508a 0.000284 2.310647 

Unknown sppd,e 1 102.03a 508a 0.000284 2.310647 

Zelkova serrata 186 73.05 520 5.02E-05 2.674757 
a uses default wood density value equal to the weighted average of taxa with known foliar 
weight or wood density.  
b taken from McPherson et al. (2016), Table 11. 
c uses direct aboveground biomass equation taken from MacPherson et al. (2016), Table 8 
– volume and biomass equations from rural: Biomass (kg) = B0*DBHB1, DBH in cm. 
d uses aboveground wood volume equation for Urban General Broadleaf (McPherson et 
al., 2016). 
e foliar biomass predicted based on foliar biomass fraction (foliar biomass:aboveground 
biomass) calculated from empirical equation fit from foliar- and aboveground biomass 
predicted for other trees in the data set with foliar biomass allometries: log(y) = B0 + 
B1*log(x) where x = predicted aboveground biomass and y = foliar biomass, B0 = -1.539, 
and B1 = -0.287 
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Table 4.S3: Total city-wide C flux by LULC (median and central 95% of estimates), GgC 
yr-1. Negative values indicate net C sink, positive values indicate net C source. 
 

LULC Tree NPP Turfgrass NPP Soil Respiration NEE 

Forest -6.2 (-2.7 – 15) -1.1 (-0.7 – -1.5) 4.6 (4.6 – 4.6) -2.7 (-11.3 – 0.7) 

Developed -3.9 (-3.5 – -4.7) -2.3 (-1.5 – -3.1) 5.5 (5.4 – 5.5) -0.7 (-1.7 – 0.2) 

HD Resid. -12.2 (-10.4 – -15) -3.9 (-2.6 – -5.3) 19.2 (19.1 – 19.3) 3.1 (0 – 5.3) 

LD Resid. -0.9 (-0.7 – -1.2) -0.4 (-0.2 – -0.5) 1.6 (1.6 – 1.6) 0.4 (0.1 – 0.6) 

Other Veg. -2.3 (-1.8 – -3.1) -4.9 (-3.2 – -6.6) 6.8 (6.8 – 6.9) -0.4 (-2.2 – 1.4) 

Total -25.7 (-19.3 – -38.4) -12.7 (-8.3 – -17.2) 38 (37.8 – 38.1) -0.6 (-13.9 – 7.3) 
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Table 4.S4: Summary of metrics comparing forest biogenic C dynamics in >85% canopy 
covered pixels in Boston study region compared (by LULC and for Total map area), and 
results of 15 years of field monitoring at Harvard Forest (HF) EMS site. Street refers to 
pixels modeled using alternative urban-specific allometric equations. Figures indicate 
median and central 95% of data except for HF, which shows mean and total range of 
reported observations. 
 

LULC 
Aboveground 

Biomass 
(MgC ha-1) 

Aboveground 
NPP 

(MgC ha-1 yr-1) 

Aboveground 
Woody 

Increment 
(MgC ha-1 yr-1) 

AGWI:ANPP 

Forest 141.9 (74.1–221.1) 5.7 (3.9–9.7) 2.2 (1.1–3.5) 0.37 (0.27–0.49) 

Developed 132.6 (59.8–204.4) 8.0 (4.0–11.0) 3.2 (1.7–3.9) 0.38 (0.3–0.54) 

HD Resid. 136.0 (90.5–191.0) 8.9 (5.7–11.4) 3.3 (2.2–4) 0.37 (0.31–0.53) 

LD Resid. 132.5 (92.0–186.0) 8.5 (5.3–0.9) 3.3 (2.2–3.9) 0.38 (0.31–0.53) 

Other Veg. 135.1 (61–198.6) 7.9 (4.4–10.9) 3.1 (1.7–3.9) 0.37 (0.3–0.53) 

Total 138.9 (69.1–218.1) 6.2 (3.9–10.6) 2.4 (1.1–3.8) 0.37 (0.270.53) 

Street 8.2 (0–89.4) 0.7 (0–5.5) 0.4 (0–2.6) 0.54 (0.37–0.76) 

HF 110.1 (118.0–127.0) 3.4 (3.1–3.8) 1.7 (1.4–2.0) 0.50 (0.44–0.52) 
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CHAPTER FIVE: Conclusions 

The preceding chapters are either already published in the peer-reviewed literature 

(Chapter 2), are provisionally accepted for publication (Chapter 3), or are in the process of 

being set into manuscript form for submission for peer review (Chapter 4). Each 

dissertation chapter presents either the original text of the published or submitted work or 

a reasonable facsimile to the work that will be submitted, including figures, tables, and 

supplemental information. Figures, tables, and supplemental information have been 

renumbered from their originals to better organize them within this document. For 

manuscripts either in review or yet to be submitted, the final published material will 

supersede results and discussions included in the current dissertation. 

To put this work in context, we note that urban landscapes are some of the only 

ecosystems — along with perhaps cultivated agricultural land (Tilman et al., 2001) and 

desertified land (Zeng and Yoon, 2009) — expected to grow in extent over the coming 

decades (Seto et al., 2012). Fitting with the advent of the Anthropocene era, these sorts of 

human-defined and human-managed ecosystem will come to occupy an increasingly 

important role in the workings of the earth system. This transition to human-mediated 

landscapes is also occurring within the context of the increasingly dramatic effects of 

human activity on the earth’s climate. Managing the simultaneous shift to an urbanized 

world of increasingly human-mediated landscapes, while preparing for and mitigating the 

effects of anthropogenic climate change for the people in those landscapes, will be one of 

the defining social problems of the 21st century.  
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Municipal authorities have begun to consider policy responses to climate change 

mitigation and adaptation within the context of their urban landscapes (Broto and Bulkeley, 

2013), including not only reduction in local climate changing emissions but also optimizing 

activity patterns, the built environment, or the local production of “green infrastructure” 

services to act as a buffer for climate change effects. However, considerable ignorance 

remains about the workings of urban ecosystems (Groffman et al., 2017; Hutyra et al., 

2014). Dependence upon imperfectly understood socio-ecological systems that may 

respond unpredictably to policy intervention or to future change bodes ill for mounting a 

successful response to the challenges ahead. To address these shortcomings in our 

knowledge, the theme of the preceding work has been to examine selected landscape-scale 

ecosystem functions of an urban ecosystem that may prove relevant to climate change 

responses at the city scale.  

5.1 Summary of work 

This research quantifies albedo variation across the urbanized Boston metropolitan 

region at a 30 m resolution estimated via a Landsat-MODIS data fusion approach (Shuai 

et al., 2011), capturing the spatial covariation of albedo with other prominent land cover 

characteristics. Our work implies that attempting to quantify albedo as a feature of urban 

land cover via low-resolution MODIS-only data is likely to contain significant artifacts due 

to adjacent open water features that are not straightforward to correct. In accord with 

general intuition about drivers of the urban heat island effect, we show lower albedo with 

increasing urbanization intensity, though the effect is mainly present at the scale of large 

landscape areas and is not large relative to variation in metrics like fraction of impervious 
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cover or tree canopy. These results empirically validate the idea that extreme urban 

summertime temperatures might in principle be moderated by artificially raising the albedo 

of built surfaces (Mackey et al., 2012). However, our findings also raise the question as to 

whether or not this decline in albedo is a common gradient of land cover character in 

urbanized areas more generally, given the high variability noted in the handful of studies 

that have measured urban surface albedos in other areas (Taha, 1997). Moreover, in 

providing a preliminary empirical boundary on the albedo of urban landcover and its 

variability from nearby rural areas, our finding also argues for deeper research into the 

appropriateness of modeling assumptions used in urban climate numerical models 

(Vahmani and Ban-Weiss, 2016).  

Recent research suggests that urban areas may be host to substantial amounts of 

forest biomass (Raciti et al., 2012a; Rao et al., 2013b), and that tree growth in the city may 

be enhanced under some urban growing conditions and with enhanced light availability 

(Briber et al., 2015; Reinmann and Hutyra, 2017; Smith et al., 2019). Our work shows that 

trees in the city of Boston may assimilate up to approximately 50% more C annually than 

expected under assumptions of rural growth rates, much of it taking place in otherwise 

densely developed residential areas in addition to the expected uptake in remaining forest 

fragments. Our future projections of urban forest function under alternate tree management 

policy further suggest that different prescriptions may maximize some functions over 

others. Limiting mortality in the rarer large trees may tend to preserve or even expand 

canopy cover and standing biomass, which could better aid in temperature moderation as 

well as other desirable services. Alternatively, expanded tree planting in available road 
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buffers may tend to maximize total C uptake potential. In all cases, a policy of non-

intervention under current trends suggests that some ecosystem functions like canopy cover 

may decline over time. Recent shortcomings in Boston in increasing tree cover through 

new planting highlight the potential difficulties in meeting goals related to optimizing 

ecosystem services in the city. Our work provides a Boston-specific estimate of the 

potential scope for interventions along these lines, and emphasizes the importance of 

prioritizing these efforts towards meeting local climate and quality of life protections. At 

the same time, our results suggest that the potential for significant offsetting of local fossil 

fuel emissions via local tree C uptake may be minimal, given the scale of ongoing 

emissions. Furthermore, our work sheds light on a persistent difficulty with estimating 

ecosystem functions related to forests as a municipal asset, namely the lack of a coherent 

monitoring system for the urban forest. Data on canopy extent or standing biomass at 

sufficient spatial resolution, or regular surveys of tree growth, health, and location, are 

decidedly bespoke and infrequently collected in Boston and in many other cities. 

As urban municipalities have begun to take local steps to prepare for and mitigate 

climate change effects, interest in finding potential pathways for reducing local CO2 

emissions have grown. In service of these goals, research is actively underway towards 

more precisely and routinely monitoring ongoing CO2 emissions from the urban surface 

(Gurney et al., 2015; Sargent et al., 2018). A key remaining difficulty in monitoring urban 

CO2 emissions is the disentanglement of biogenic C fluxes co-occurring with fossil CO2 

emissions, particularly during the growing season in temperate areas. Our work and other 

recent research has furthermore suggested that some biogenic fluxes, such as soil 
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respiration from highly-managed areas, may locally exceed fossil C emissions in certain 

places and times (Decina et al., 2016). Our research, scaling up 1 m data on soil cover and 

land use, as well as predictions of tree and lawn C uptake, shows that high soil respiration 

may essentially negate any net C uptake to vegetation in the city on an annual basis. At the 

same time, the size of these fluxes and their potential for temporal offset from one another 

suggests that the localized C fluxes (both to and from the atmosphere) may be substantial, 

and capable of obscuring the atmospheric signal of fossil C release. Rounding out the 

picture of the preceding chapter, our results further argue that local biogenic C uptake is 

unlikely to provide a substantial C offset opportunity compared to the scale of local fossil 

C emissions, on the order of at most a few percent per year even if discounting the net C 

efflux from soil respiration. The essentially balanced biogenic C flux of Boston’s urban 

ecosystem more concretely underlines the need to address local greenhouse gas emissions 

abatement from the direction of energy efficiency in housing and transportation, rather than 

reliance on biogenic C offsetting. We acknowledge, however, the paucity of local and 

measurements of many of the critical components of biogenic C flux in the city, and offer 

our C budget as a first attempt at an estimation of scale. 

5.2 Directions for future work 

The research of this dissertation specifically targets Boston and its surrounding 

region as a case study of urban ecosystems more generally. This region, however, is hardly 

to be taken as an exhaustive exemplar of all the potential variation in urban ecosystems or 

the factors that may critically influence their function, including biophysical setting, land 

use modalities and policy, or development history (Ossola and Hopton, 2018a). In many 
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ways this work was conceived out of the necessities of data availability, as an unusual 

amount of prior research has occurred at Boston-area institutions, leaving behind an 

unusual depth of empirical data on the area, including field and remote sensing data (e.g. 

Decina et al., 2016; Raciti et al., 2014; Reinmann and Hutyra, 2017; Smith et al., 2019). 

Research into “natural” (less directly human influenced) ecosystems in North 

America has benefitted greatly from the availability of data from long-term and 

comparative research, such as through the Long-Term Ecological Research (LTER), 

Ameriflux, and NEON research networks (Hargrove et al., 2003; Hobbie et al., 2003; 

Schimel et al., 2007). The two LTER urban sites in Phoenix, Arizona, and Baltimore, 

Maryland, have produced a wealth of insight over the years on the commonalities and 

differences between these urban ecosystems across very different climatic settings 

(Cadenasso et al., 2006; Grimm and Redman, 2004). Of necessity the research in these 

areas has been focused on differing aspects of the urban ecosystem, including for instance 

the formation of the urban heat- or “cool”-island in Phoenix (Connors et al., 2013) and 

stream ecosystem function in Baltimore (Kaushal et al., 2014). The topic of albedo 

variation has not received as much attention in general, as evidenced by the relatively few 

empirical studies of the matter to date. Carbon flux research in the urban context has been 

advanced recently with the advent of the CO2-USA network with active research in Salt 

Lake City, Boston, Baltimore, Indianapolis, San Francisco, and Los Angeles. This research 

has primarily been focused on development of methods for the measurement of fossil C 

flux rather than specifics of urban forest biogeochemistry or biogenic C flux (Gurney et 

al., 2015). Alternatively, there exist publicly available and spatially extensive archives of 
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satellite earth observations from, for instance, Landsat and MODIS (Davis et al., 2015), 

capable of discerning key features of land cover that have proved useful in estimating some 

aspects of ecosystem function in the urban context (Hardiman et al., 2017). However, most 

of the readily available remote sensing data for the earth’s surface is collected at coarse to 

moderate resolution (km-scale to 30 m) that necessarily obscures key features shown in 

this study to have important effects on ecosystem function in urban areas, where smaller-

scale spatial heterogeneity dominates.  

Between the growing interest at the municipal scale in strategies for minimizing the 

local causes and consequences of climate change, and the current state of research into and 

understanding of the functioning of urban ecosystems, is a critical gap in both empirical 

data and comparative study. Urban ecosystems likely have broadly comparable features 

and commonalities that both unite and set them apart just as other ecosystems do, such as 

the persistence of the urban heat island effect that has been noted by observers for more 

than a century (Meyer, 1991). On the other hand, the biophysical and climatic context of 

each city (Ossola and Hopton, 2018a), as well as factors under direct and indirect human 

influence such as its community of native and imported indwelling species (Alberti, 2015), 

development history (Dietzel et al., 2005), and management practices (Polsky et al., 2014), 

likely also play determinative roles in the structure and function of these ecosystems. 

Beside the emergence of specifically urban-focused research networks, less research has 

been done to directly quantitatively compare metrics of and controls on ecosystem function 

across cities. Furthermore, little institutional support appears to exist at any scale of 

government to frequently or systematically collect key high-quality and spatially explicit 
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data on aspects of ecosystem function such as tree canopy coverage, near-surface 

meteorology (Wang et al., 2017), or air quality — or indeed the lived experience of the 

people therein. In the absence of current and spatio-temporally resolved data on the state 

of the urban ecosystem, policy towards adapting or modifying these landscapes to the needs 

of its inhabitants or the rigors of a changing climate appear to be, at least occasionally, 

disconcertingly speculative. 

New global-coverage satellite remote sensing data is becoming available at 

resolutions of 10–20 m, which may help to better resolve some of the small spatial-scale 

processes at work in urban ecosystems (Lefebvre et al., 2016). However, the point must be 

underlined that in order to better predict urban ecosystem response to climate change or to 

policy intervention, a more refined empirically based understanding is needed. Either (or 

both) a more generalizable model of urban ecosystem function must be obtained through 

more inter-city comparative research, or efforts at the local level to routinely collect and 

synthesize data on the status of key functional metrics such as canopy cover, impervious 

surface extent, and temperature will be required. For example, while techniques such as 

aerial LiDAR and multispectral photometry during the leaf-off period have become more 

commonly used in urban areas to obtain information on land surface elevation and change 

in development extent (Yan et al., 2015), such techniques are not routinely applied during 

the leaf-on period to obtain critical canopy height and extent data (King and Locke, 2013; 

Raciti et al., 2014; Walton et al., 2008). Moreover, a continued exclusive focus on 

management of ecosystem function solely in identifiable “green spaces”, as this work has 
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shown, will necessarily miss a large portion of the activity in the urban ecosystem or its 

impact on the well-being of the inhabitants of cities. 

As we progress through the 21st century, the human species will have to grapple 

with its emerging role as a controlling factor on the functioning of the earth system. How 

we manage the landscape of our cities, for good or for ill, will likely prove to be one of the 

most important determinants of our success or failure in our task of caring for our own 

well-being, as well as the continued health of our hybridized human-natural world. 
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