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ABSTRACT 

 Microbial communities are key components of Earth’s ecosystems and they play 

important roles in human health and industrial processes. These communities and their 

functions can strongly depend on the diverse interactions between constituent species, 

posing the question of how such interactions can be predicted, measured and controlled. 

This challenge is particularly relevant for the many practical applications enabled by the 

rising field of synthetic microbial ecology, which includes the design of microbiome 

therapies for human diseases. Advances in sequencing technologies and genomic 

databases provide valuable datasets and tools for studying inter-microbial interactions, 

but the capacity to characterize the strength and mechanisms of interactions between 

species in large consortia is still an unsolved challenge. In this thesis, I show how 

machine learning methods can be used to help address these questions.  

The first portion of my thesis work was focused on predicting the outcome of pairwise 

interactions between microbial species. By integrating genomic information and observed 
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experimental data, I used machine learning algorithms to explore the predictive 

relationship between single-species traits and inter-species interaction phenotypes. I 

found that organismal traits (e.g. annotated functions of genomic elements) are sufficient 

to predict the qualitative outcome of interactions between microbes. I also found that the 

relative fraction of possible experiments needed to build acceptable models drastically 

shrinks as the combinatorial space grows. In the second part of my thesis work, I 

developed an algorithmic method for identifying putative interaction mechanisms by 

scoring combinations of variables that random forest uses in order to predict interaction 

outcomes. I applied this method to a study of the human microbiome and identified a 

previously unreported combination of microbes that are strongly associated with Crohn’s 

disease. In the last part of my thesis, I utilized a regression approach to first identify and 

then quantify interactions between microbial species relevant to community function. The 

work I present in this dissertation provides a general framework for understanding the 

myriad interactions that occur in natural and synthetic microbial consortia.  
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CHAPTER ONE 

Introduction and Background 

 

Microbial communities have been found in nearly every environment on Earth [1]. The 

survival of an individual species hinges on the nature of its interactions with other species 

in the community [2–5]. From the perspective of a single species these interactions can 

exert positive, neutral, or negative influences on its ability to survive [6]. In turn, 

multicellular life is critically dependent on the biochemical processes that mediate the 

many inter-species interactions found within microbial communities [7–9]. Microbial 

communities can also have profoundly personal effects on individuals by causing or 

preventing disease [10–12], providing camouflage [13], and adding flavor to our food 

[14, 15]. Humans are no strangers to the use of microbial communities for industrial 

purposes. We have evidence that our ancestors used fermentation for cheese making 

nearly 10,000 years ago [16]. Despite our millennia-long relationship with microbial 

communities [17], the development of methods for intentionally manipulating their 

composition to obtain desired effects is still nascent.  

 

In recent decades, strategies for improving the productivity of microbial communities for 

human purposes have focused on manipulating the genomes of member strains [18–20], 

altering media components in order to optimize communal productivity [21–24], or 

identifying the best starting compositions of several bacteria through exhaustive 

experimentation [25][26]. Studies of this last type have discovered that consortia of 
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multiple microbial species are often able to accomplish tasks that no individual species 

can on its own [27].  

 

The success of fecal microbiota transplants in treating infection by Clostridium difficile 

[28] has contributed to the realization that communities can do things monocultures 

cannot. This realization has helped inspire the rise of an entirely new biomedical industry 

– microbiome engineering [29]. Ever since the scientific community turned its attention 

toward understanding the myriad inter-species interactions taking place in our guts, many 

in our society have hoped that understanding would bring with it the ability to engineer 

novel therapies [30]. Dozens of companies have appeared on the market, each promising 

to alter the trajectory of human health through the rational design of the bacterial 

communities living in our digestive tracts and on our food. To date, the grand promise of 

microbiome therapy for human health has yet to materialize [31]. Nevertheless, the 

scientific community is undaunted in its quest to understand the world of the microbes 

and their communities. 

 

High throughput sequencing technologies, such as PacBio’s SMRT sequencing [32], have 

provided researchers with an immensely powerful tool with which to spy on the 

microbial composition of the world around us [33]. Additionally, recent descriptions of 

novel culturing methods have provided tools for the rapid characterization of thousands 

of combinations microbial assemblages [34, 35]. For example, some of the emerging 

methodologies leverage microfluidics to produce many compositions of microbes [36] 



 

 

3 

while others enable the culturing of fastidious species [37]. The synthesis of these tools 

and existing methods has set the stage for improved effectiveness in the engineering of 

microbial consortia. The outputs of studies that use these tools are massive data sets 

relating community composition to function that can yield a plethora of insights when 

analyzed with specialized bioinformatics tools. Yet, significant challenges remain. In the 

following sections, I briefly discuss three challenges whose solutions will benefit the 

design of synthetic microbial consortia. Then, in the subsequent chapters of this 

dissertation, I present my work that focused on addressing these issues. 

 

Challenge 1: Predicting interactions 

The first challenge I address is that of predicting what the outcome of interactions 

between microbes will be in pairwise co-culture experiments. The implications of the 

answer to this are significant; if interactions between microbes are largely predictable 

then there is potential for considerable savings in terms of resources and time when 

designing consortia from the bottom up. In the design of synthetic consortia, candidate 

species are selected based on their known properties and expected cooperative or 

antagonistic interactions with the other species that will be in the community [38–41].  

 

For a set of microbes, the number of possible pairwise combinations grows as the square 

of the number of species. Exhaustively characterizing every interaction is both resource 

intensive and likely to produce many redundant qualitative outcomes. In this context, 

there is much to be gained from the application of supervised machine learning. The 
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utility of machine learning to address this challenge is demonstrated in chapter two. By 

leveraging a relatively small fraction of the possible experimental space it is possible to 

construct a model that has high predictive performance on the qualitative, if not 

quantitative, outcomes of unobserved pairwise interactions. An accurate model will allow 

researchers to efficiently allocate resources toward those experiments that are most likely 

to result in interesting outcomes. 

 

The actual implementation of machine learning algorithms is not challenging; however 

the features used for prediction should be carefully considered. The relationship of the 

predictive features to the predicted quantity has direct implications on the interpretation 

of model parameters. Various annotation tools are freely available that can generate 

feature sets from genomic content. One such tool is PICRUSt [42] which produces a set 

of predicted metabolic functions based on the 16s rRNA sequence of a bacterium. 

Another tool that can be effectively utilized is the Rapid Annotation using Subsystem 

Technology server (RAST) [43]. RAST takes as input the sequenced genome of an 

organism and returns to the user a draft of a stoichiometric metabolic model. The outputs 

produced by both of these tools, and others, are easily converted into feature sets for 

machine learning purposes. The specific representation scheme (e.g.presence/absence of 

metabolic functions, copy number of functions) is a choice that must be made with the 

study goals in mind. 

 

Challenge 2: Identifying interactions that driving community-level phenotypes 
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Sometimes prediction of how microbes will interact or how they will function as a 

community is insufficient. We may also need to know the likely causal mechanisms so 

that we can better understand of the system we are studying. In this scenario the complex 

architecture of machine learning algorithms becomes a weakness because many methods 

are notoriously difficult to interpret, hence the phrase “black box” [44]. Some methods 

such as ridge regression [45] produce parsimonious models through regularization that 

retain most of their predictive power, but the catch is that important information about 

variable interactions may be lost in the process.  

 

We also know that the causes of many biological processes are non-linear interactions of 

multiple constituent parts [46]. Due to the vast degree of biochemical diversity in 

microbial communities there may be multiple mechanisms by which different consortia 

achieve a given qualitative function. Provided we have selected a feature set that 

faithfully represents the underlying mechanisms (e.g. composition of bacteria in the gut, 

genes of individual species), multiple machine learning approaches will be capable of 

predicting which compositions will perform a given function – the challenge now 

becomes understanding why the algorithms make the predictions that they do. 

Developing an approach to answer this question, even for a single algorithm, would serve 

to help our experimental colleagues to generate novel mechanistic hypotheses and deepen 

our collective understanding of the phenomena we are witnessing. To this end, I have 

developed a novel set of algorithms for identifying these potentially complex interactions 

between species in large consortia. These algorithms are described in Chapter three. 
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Challenge 3: Identification of interactions between species in microbial consortia 

One of the most commonly encountered hurdles in the analysis of microbial communities 

is to identify and quantify interactions between species as they relate to overall 

community characteristics.  Examples of these include net biomass or typical disease 

status of a host organism. When the measured community characteristic is net biomass 

then an ideal data set for the relationship of biomass to community composition would be 

a time series of the absolute abundances of each species across multiple experimental 

conditions. With a data set like this, it is possible to identify interactions between species 

and to establish causality [40]. Because labor and resources are finite, these types of data 

sets will not always be available. It is much more likely that we will be in possession of a 

cross-sectional data set. For example, one may have abundance profiles of bacterial taxa 

found in the guts of patient samples of an observational study with corresponding disease 

status [47]. A popular approach in this case is to implement pairwise correlation analyses 

of the healthy and disease sample subsets in order to infer interactions between taxa. 

While conceptually easy, pairwise correlation methods are prone to producing many false 

positives [48] and the resulting network can become indecipherably complex when 

species have interactions with more than one other microbe [49]. Recent work has taken 

advantage of conditional independencies in the data to discard uninformative pairwise 

associations [50–52].  
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An additional complication that arises when dealing with cross-sectional data is a lack of 

information regarding the abundances of constituent species at the time when the target 

function is measured. This is a common occurrence in studies of synthetic consortia 

where the response of interest is a community level function and not the population 

densities of individual species per se [53–55]. In contrast to observational studies (e.g. 

microbiome studies from recruited donors), the controllable nature of experiments allows 

us to know the starting compositions of each microcosm, which can be used to optimize 

consortia for community function [56] and build explanatory models of community 

function [57]. When interactions between species assumed to not be significantly 

influential on the outcome, then simple additive models are expected to explain the data 

satisfactorily well. With this assumption in mind, feature selection methods such as 

LASSO [58], elastic net [59], or stepwise regression [60] are typically employed to 

produce parsimonious explanatory models. These methods are incapable of detecting 

interactions [61] and thus are unable, by themselves, to inform users when interactions 

between species should be considered. In order to evaluate the presence of interaction 

terms in parametric regression models, we must add each term of interest individually 

and estimate its influence.  

 

Most current statistical methods are limited to evaluating pairwise interactions between 

microbes [62][63] but attention is turning to the identification of higher-order interactions 

[64, 65]. Efficiently identifying and quantifying high order interactions will allow us to 

characterize core community modules relative to a particular function that we could, in 
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principle, use as a foundation for further mechanistic studies. In Chapter four I present an 

approach that allows us to identify high-order interactions in microbial consortia and 

demonstrate on publicly available data set that their influence should be considered as a 

matter of course. 

 

The future is bright for the marriage of machine learning and microbial ecology. There 

have already been several studies demonstrating the kinds of medical and agricultural 

riches we can expect to reap from engineered communities in the near future [66–69]. As 

the scientific community continues to build and release tools for annotating genomes and 

statistical methods for detecting interactions continue to disseminate through the 

biological sciences our collective prowess in engineering microbial communities will 

surely become formidable. 
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CHAPTER TWO 

Machine Learning of Microbial Ecosystem Networks 

Summary 

This thesis chapter was published as the following research article: 

Dimucci, D., Kon, M., Segrè, D. Machine Learning Reveals Missing Edges and Putative 

Interaction Mechanisms in Microbial Ecosystem Networks. mSystems. Sep/Oct 2018 

volume 3 issue 5 

Abstract 

Microbes affect each other’s growth in multiple, often elusive ways. The ensuing 

interdependencies form complex networks, believed to reflect taxonomic composition, as 

well as community-level functional properties and dynamics. Elucidation of these 

networks is often pursued by measuring pairwise interaction in co-culture experiments. 

However, combinatorial complexity precludes the exhaustive experimental analysis of 

pairwise interactions even for moderately sized microbial communities. Here, we use a 

machine-learning random forest approach to address this challenge. In particular, we show 

how partial knowledge of a microbial interaction network, combined with trait-level 

representations of individual microbial species, can provide accurate inference of missing 

edges in the network and putative mechanisms underlying interactions. We applied our 

algorithm to three case studies: an experimentally mapped network of interactions 

between auxotrophic E. coli strains, a community of soil microbes, and a large in silico 

network of metabolic interdependencies between 100 human gut-associated bacteria.  For 

this last case, 5% of the network is enough to predict the remaining 95% with 80% 
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accuracy, and mechanistic hypotheses produced by the algorithm accurately reflect known 

metabolic exchanges.  Our approach, broadly applicable to any microbial or other 

ecological network, can drive the discovery of new interactions and new molecular 

mechanisms, both for therapeutic interventions involving natural communities and for the 

rational design of synthetic consortia. 

Importance 

Different organisms in a microbial community may drastically affect each other’s growth 

phenotype, significantly affecting the community dynamics, with important implications 

for human and environmental health. Novel culturing methods and decreasing costs of 

sequencing will gradually enable high-throughput measurements of pairwise interactions 

in systematic co-culturing studies. However, a thorough characterization of all interactions 

that occur within a microbial community is greatly limited both by the combinatorial 

complexity of possible assortments, and by the limited biological insight that interaction 

measurements typically provide without laborious specific follow-ups. Here we show how 

a simple and flexible formal representation of microbial pairs can be used for 

classification of interactions with machine learning. The approach we propose predicts 

with high accuracy the outcome of yet to be performed experiments, and generates testable 

hypotheses about the mechanisms of specific interactions. 

Introduction 

The collective behavior of microbial ecosystems across biomes is an outcome of the many 

interactions between members of the community [70–76]. These interactions include 

exchange of metabolites, signaling and quorum sensing processes, as well as growth 
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inhibition and killing. Understanding the interspecific interactions within microbial 

communities is essential for understanding the function of natural ecosystems [70–72, 75, 

77] and for the design of synthetic consortia [74, 78–81] 

A powerful and increasingly employed method for assessing microbial interactions is the 

direct measurement of phenotypes of microbial species grown in co-culture [81, 82][81, 

82].  A fundamental challenge in this endeavor is the huge diversity of many natural 

communities, which could count up to several hundred strains or species of microbes. 

Performing experiments for all possible pairwise interactions constitutes a herculean, and 

likely insurmountable task for even a moderately sized community. It is however, 

conceivable that new computational approaches could systematically complement existing 

tools such as high-throughput sequencing and genome annotation [83–87]. to help extract 

as much information as possible from interaction datasets, providing both insight on yet-

to-be-measured interactions, and on possible biological mechanisms mediating specific 

partnerships. 

 

Here we present a conceptual framework for the mathematical representation of microbial 

interactions and subsequent use of supervised learning to build a classifier with high 

predictive accuracy. While any algorithm may be used, we obtained our best results with 

random forest [88–90]. Random forests are ensembles of many decision trees that 

individually are poor classifiers but can be democratically pooled to create a very good 

classifier. Random forests have two attributes that we found particularly attractive for our 

purposes. First, they are non-parametric and thus require no a priori definitions or 
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assumptions about underlying relationships between predictive variables. Second, recent 

methodological developments in the interpretation of random forests have been made that 

allow users to query why specific examples are classified as they are, through the 

calculation of feature contributions [91]. Feature contributions can be exploited to develop 

new hypotheses about the mechanisms that mediate specific interactions. In order to 

demonstrate a proof of principle for the classification of microbial interactions using 

organism traits and the utility of feature contributions for developing insight into the 

underlying mechanisms, we applied this approach to three communities where all pairwise 

experiments had been performed. The first is an in silico community of 100 metabolic 

models of human gut associated bacteria. The second community involves 14 amino acid 

auxotrophic strains of Escherichia coli. The third community is a collection of 20 

microbial strains that were isolated from the same soil sample. Our results show that 

combining random forests with trait level representations results in high-performance 

classifiers. Furthermore, feature contributions have the potential to facilitate the discovery 

of new interaction mechanisms. 

 

Results  

Representing Pairwise Interactions 

Our objective in this study was twofold; first, we sought to predict the qualitative 

outcomes of unobserved pairwise interactions in microbial communities; second, we 

wanted to identify predictive variables that suggest potential mechanisms of interaction. In 

order to achieve both of these goals it was important to establish a representation that can 
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be used by an algorithm to make good predictions and that can also be easily parsed for 

interpretation. Our approach relies on the availability of trait-level descriptions for each 

organism in the community under consideration. These trait descriptions are used to 

construct feature vectors for each organism (see Methods). Specific interactions are 

represented as the concatenation of the relevant trait vectors (Figure 2.1).  Trait vectors 

may be constructed from any set of biologically relevant features such as presence/absence 

of a certain gene or metabolic function, phylogenetic classifications, or even 

characteristics of the environment where the organism was found. In our analyses, 

different case studies are based on different trait vector representations: in particular, we 

used (i) presence/absence of metabolic reactions for the in silico community case study, 

(ii) binary vectors of biosynthetic capabilities for each E. coli strain in the auxotroph 

community case study, and (iii) metabolic functions predicted from 16s sequences for the 

soil community case study.  

 

These trait vectors, together with the known outcome of a subset of interactions, can be 

fed into machine learning algorithms that can separate outcome classes and subsequently 

predict the outcome of unobserved interactions. Here we use the random forest algorithm, 

based on an ensemble of many decision trees that individually ask a series of yes or no 

questions about randomly selected subsets of predictive features in order to classify 

samples. In order to find potential mechanisms of interaction we take advantage of the 

structure of individual trees in order to identify which variables are the most influential for 

the classification of specific samples.  
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Figure 2.1. A schematic representation of our machine learning approach for inferring 

interactions among microbes. A trait vector captures the characteristics of each organism 

in the community of interest. The presence or absence of a trait in a given organism is 

encoded (as a binary number) in the corresponding element of the trait vector. For every 

possible pairwise interaction among community members we construct a composite 

vector that is the concatenation of the corresponding trait vectors. The vector of the 

organism whose response is being predicted is concatenated to the front of the trait vector 

of its interaction partner. For the set of observed interactions each composite vector is 

then mapped to the measured response of the interacting species. All observed 

interactions are then used to train a model that predicts the outcome of unobserved 

interactions. If random forest is used then feature contributions can be calculated on a 
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case-by-case basis in order to identify which elements of the composite genome 

contribute most strongly to the prediction. 

 

Application to computationally predicted interactions between human gut microbes  

We first applied our approach to a large in silico dataset that we generated by simulating 

time course microbial co-culture experiments with dynamic flux balance analysis [92, 93] 

using Computation of Microbial Ecosystems in Time and Space (COMETS) [74] (see 

Methods). Dynamic flux balance analysis enables the computation of approximate growth 

curves based on the complete metabolic networks of microbes (derived from their 

sequenced genomes), and the abundance of each nutrient present in the medium at the 

beginning of the experiment. At the end of a simulated experiment one obtains an estimate 

of the final biomass for each organism and the exchange fluxes during exponential 

growth. Possible interactions between different species in co-culture can emerge due to the 

exchange of secreted byproducts or the competition for common nutrients. In order to 

generate a large set of observations for machine learning we selected metabolic models of 

100 human gut-associated bacteria [94] and used COMETS to simulate all pairwise co-

culture interactions between them under the same rich medium, in a well-mixed batch 

culture scenario.  

 

The trait vectors we used to represent each organism were simply binary vectors 

indicating the presence or absence of various nutrient exchange reactions in the metabolic 

network models (see Methods and Figure 2.2A). Interactions in the network were 

computed by determining the influence of every organism on every other organism in 
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COMETS co-culture simulations. In particular, the simulations provide the final biomass 

of each organism in co-culture and monoculture. A normalized difference between these 

two yields (which we refer to as relative yield, see Methods), is used as the phenotypic 

metric for classifying the interaction (negative or non-negative, see Figure 2.2B).  

 

We first applied the random forest algorithm to the full dataset, and found that its out-of-

bag (OOB) accuracy (which is roughly equivalent to five-fold cross-validation, see [95] 

and Methods) is approximately 90.5 %. The receiver operator characteristic (ROC) curve 

for the random forest algorithm (Figure. 2.2C and Methods) compares favorably to a naïve 

prediction based on the Jaccard distance [96] between the different trait vectors (see 

Methods, and [97, 98] for similar use of Jaccard distance in microbial communities 

studies).  

 

High predictive accuracies are encouraging but are of little use if they can only be 

achieved when the vast majority of the experiment outcomes are already known. We thus 

constructed a series of learning curves to visualize how the balanced accuracy of the 

random forest classifier is affected by the size of the community and by the amount of 

training data available (Figure 2.2D). For small communities (for example, Norganisms  = 10) 

there is little gain in predictive performance until the experimental space is nearly totally 

known. However, when Norganisms is increased to 20 (which amounts to 190 pairwise 

experiments, corresponding to 380 individual responses to co-culture), as little as 5% of 

the total data (~9-10 experiments, i.e. 18-20 responses) is enough to obtain useful 
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predictions. ROC curves and comparison with a Jaccard distance classifier for selected 

points along the learning curve show a similar trend to what seen for the full dataset (Fig. 

A.3). The general trend indicates that the larger a community is, the smaller the relative 

fraction of experiments needed to get a high accuracy. In general, learning curves can be 

used as guidelines to determine how many experiments should be implemented in order to 

reach a target performance. 

 

In addition to confirming that the algorithm can accurately classify unobserved 

interactions, we wanted to investigate whether the top feature vector components used as 

predictors are biologically interpretable. The variable importance plot (Methods and 

Figure. 2.2E) visualizes the globally most informative trait vector components. In this 

case, the most important predictors for the classification of a given organism is a feature 

of the interaction partner (Figure 2.2E). In other words, the predicted growth phenotype of 

organism i in presence of organism j is best described by features that are in the vector for 

organism j.   In addition to analyzing the global contributions of variables on classification 

across all data, one can exploit the tree-based approach of random forests to determine 

why specific samples were classified as they were by examining the feature contributions 

for specific interactions. A feature contribution (see details in Methods) quantifies how 

much a given variable typically influences the classification probability of a single sample. 

Feature contributions were originally developed for analysis of regression models [99] but 

have since been adapted for binary classification models [91]. We wondered whether we 

could use the simulated data to illustrate the possible value of feature contributions in 
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identifying putative biological mechanisms underlying a given interaction. In particular, 

we envisaged that the random forest algorithm, trained only based on the trait profiles and 

the relative yields in co-cultures, could be used to suggest which metabolites may be more 

likely to mediate a given competitive (Figure. 2.3) or facilitative (Fig. A.1) interaction. As 

opposed to an in vitro system, where such prediction would need to be validated with new 

experiments, in our in silico system we can check the value of the random forest 

prediction by comparing it with simulated exchange fluxes across the two species (which, 

importantly, were not used in training the random forest).  

 

 

Figure 2.2. Classification of pairwise interactions for an in silico model of a community 

of human gut microbes. A. Organisms are represented in silico as large networks of 

metabolic reactions that take up metabolites (blue circles) from the environment (arrows 

leading to model) and release by-products (arrows leading to metabolite). Organisms may 
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interact with one another during simulation when both organisms compete for the uptake 

of a metabolite or through cross feeding where one model consumes a by-product of the 

other. B. Relative yields from all experiments are plotted in ascending order.  There were 

5563 samples with a negative relative yield. Neutral interactions, a relative yield of zero, 

occurred 3917 times, and positive relative yield happened 420 times. Samples were 

classified as negative or non-negative. C. For all 9900 in silico observations we 

determined the ROC curve of a random forest classifier using 388 exchange reactions as 

predictors and compared to the ROC curve obtained from using Jaccard Distance as a 

simple threshold to predict negative versus non-negative relative yields. Values for the 

ROC curve were obtained by evaluating the class voting ratios on out-of-bag samples 

(methods). ROC curves for classifiers trained on subsets of the data can be seen in 

supplemental figure A.3. D. Learning curves for sub-communities of the full in silico 

community. These learning curves are the median learning curve evaluated with 10 fold 

cross-validation on held out test sets at each point (methods) for 5 sub-communities 

selected at random for each value of Norganisms. E. Globally the 20 most influential 

predictors as determined by mean decrease in accuracy. The ‘.p’ suffix indicates that the 

predictor belongs to the interaction partner. Some metabolite names are shortened: DAP = 

meso-2,6-Diaminopimelate, dhptd = 4-5-dihydroxy-2-3-pentanedione, XAN = xanthine, 

GlcNac = N-Acetylglucosamine. The results of an alternative representation scheme using 

phylogenies is presented in supplemental figure S5. 

 

Towards this goal, for each pair of organisms, we ranked - by their net feature 

contributions (see Methods, Figure 2.3A and Supplemental Table A.1) - the 194 

metabolites involved in exchange reactions. We found that metabolites ranking highly 

based on this criterion were much more likely than random to be among the metabolites 

truly exchanged in the COMETS simulations (Figure. 2.3B). This is particularly valuable 

if the interaction is due to a single exchanged metabolite (Figure. 2.3C). In practice, if this 

criterion were to be used on in vitro data, it would imply a significant reduction in the 

number of tests that would have to be performed to identify at least one mechanism of 

interaction.  
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It is also instructive to look in more detail at a specific case of feature contribution 

analysis. In particular, we observed that fructose exchange was most frequently the 

strongest predictor of competitive interactions (it was the top ranking true feature in   

~18.7% of all competitive interactions, Supplemental Table A.1) and it corresponded to 

the 15th most common true mechanism based on the COMETS-simulated fluxes 

(Supplemental Table A2). Interestingly, fructose has been implicated in altering the gut 

microbiome in connection to a number of diseases, including antibiotic treatable [100] 

metabolic syndrome [101, 102], liver disease [103], and obesity [104]. Our approach is 

also readily applicable for the discovery of metabolites that mediate positive interactions, 

which comprise a small minority of all interactions (420/9900). Due to the scarcity of their 

occurrence and the dearth of metabolites that mediate positive interactions, discovery of 

these mechanisms is more challenging. Nevertheless, using ranked feature contributions to 

find facilitative metabolites was a powerful improvement over a naive approach 

(Supplemental Figure A.1). 
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Figure 2.3. Using feature contributions to find a metabolite for which two organisms 

compete. A. The first half of the composite trait vector corresponds to metabolite 

transporters belonging to the organism of interest while the second half corresponds to 

metabolite transporters belonging to its interaction partner. We were interested in 

identifying a metabolite that is associated with the negative relative yield for the organism 

of interest. To establish a ranking of metabolites we took the summation of feature 

contributions from both halves of the composite trait vector and then sorted the new vector 

according to the net contribution. Proceeding from the negative end, the rank and identity 

of the first contended metabolite encountered relative to the negative end of the new 

vector was recorded. B. The probability distribution of the average rank at which the first 

mechanistic metabolite would be encountered by sampling metabolites randomly one at a 

time was calculated for each sample and compared to the observed distribution obtained 

by using feature contributions. By chance the first metabolite would typically be 

encountered after 13 random queries. Feature contributions reduce the median number of 

queries to 4. C. 99 samples produced a negative relative yield through the competition for 

exactly one metabolite. Randomly investigating the 194 candidate metabolites one at a 

time results in an average of 97.5 experiments before discovering the metabolite. Using 

feature contributions to prioritize the order in which to investigate metabolites instead 
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would typically reveal the contended metabolite on or before the fourth experiment 

(median = 4).  

 

Application to a community of auxotrophic Escherichia coli strains 

We next applied random forest to experimental data on auxotrophic E. coli co-cultures. In 

particular, we used previously published data from all possible co-cultures of 14 E. coli 

strains, each auxotrophic for a given amino acid [105]. Interactions between any given 

pair of E. coli strains are presumably dependent on the direct exchange of the missing 

amino acids, or related precursors (Figure 2.4A). The total growth of each strain in the 91 

experiments was measured after 84 hours and reported as the net fold change relative to 

the initial inoculum, resulting in 182 total observations (see Methods for additional 

comments on the experimental setup). We built trait vectors based on the 14 amino acids, 

and labeled growth phenotypes based on the fold change response a given E. coli 

auxotroph strain had in co-culture with another auxotrophic strain (using 2 as the fold 

change cutoff for distinguishing between “strong” and “weak” interactions phenotypes, 

Figure 2.4B). 

 

Random forest yielded a balanced accuracy of ~79.2% in predicting this interaction 

phenotype. Examination of the corresponding ROC curves shows that random forest is a 

much better predictor than simpler metrics based on biosynthetic costs [105] of the 

different amino acids (Figure. 2.4C). The learning curve for this test case (Figure. 2.4D) 

resembles the trajectory of the learning curve for in silico communities of 20 members 

(Figure 2.2D). Variable importance rankings show that, in general, the identity of the 
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amino acid needed by the receiver is more impactful on classification accuracy than the 

amino acid that its partner needs, suggesting that specificity of interaction is dominated by 

auxotrophies, whereas most mutants can in principle provide the missing amino acid 

(Figure 2.4F).  

 

As for the in silico simulations, also in this case we analyzed the feature contributions, and 

asked whether they reflect the underlying mechanisms. In particular, we asked how often 

one of the two amino acids missing in a pair of organisms has the strongest contribution in 

random forest. As expected, the random forest is more strongly influenced by the absence 

of an amino acid feature than by its presence. Of all 182 observations, the amino acid 

missing from the receiver had the largest feature contribution 140 times and the amino 

acid from the giver had the largest contributor 40 times (Supplemental Table S3). Thus the 

pair of most influential predictors tended to correspond to the underlying mechanism of 

the interaction, even in instances where the predicted class was incorrect. Scenarios where 

the presumed mechanisms are the strongest contributors sometimes result in 

misclassification, presenting opportunities for direct research of interesting outliers. The 

response of the methionine auxotroph (ΔMet) in co-culture with the cysteine auxotroph 

(ΔCys) was one such case, which we describe in detail in Fig. A.2.  
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Figure 2.4. Data representation and results for the case study of a network of auxotrophic 

E. coli strains. A. In the original experiment, single gene knockout E. coli auxotrophs were 

co-cultured in a minimal medium. In order for ∆A to grow it must receive amino acid A 

from ∆B, which in turn must receive another amino acid, B, in order to grow itself. 

Auxotroph strains were constructed for the following amino acids: cysteine, 

phenylalanine, glycine, histidine, isoleucine, leucine, methionine, proline, arginine, serine, 

threonine, tryptophan, and tyrosine. B. Auxotroph strain fold changes in ascending order. 

E. coli strains had a weak response (fold change ≤ 2) 90 times and failed to grow at all 9 

times (green circles). In 92 instances the E. coli auxotroph population more than doubled 

over the course of 84 hours. C. For all 182 observations we determined the ROC curve for 

a random forest classifier using 28 amino acids as predictors. Single value thresholds 

based on the biosynthetic costs of knocked out amino acids resulted in poorer performance 

than random forest. D. The trajectory of a learning curve built for the E. coli interactions 

closely resembles that of the learning curve for in silico communities with 20 organisms, 

dashed line. E. The 28 amino acids ranked according to their affects on prediction 

accuracy when randomly permuted. Amino acids corresponding to the receiver strain are 

enriched near the top of the list. Amino acids are represented by their single letter codes. 

The suffix ‘.p’ indicates that the predictive feature belongs to the giver strain. In 

supplemental figure A.2 we examine the single case of ∆Methionine co-cultured with 

∆Cysteine.  

 



 

 

25 

Application to a community of soil bacteria 

For our final test case we analyzed the results of a study featuring all pairwise co-culture 

experiments of 20 bacterial strains isolated from the same soil sample [72] (see Methods). 

For each experiment the authors reported whether each species was present at detectable 

levels at the final time point. We built trait vectors based on the presence or absence of 

KEGG modules [106] as predicted by PICRUSt [42]. Random forest trained on the full 

data set resulted in an out-of-bag balanced accuracy of 79.4%. The ROC curve shows that 

random forest performs much better than a simple decision rule based on the differences 

in the reported initial growth rates of each species (Figure 2.5A). The learning curve for 

this community closely resembles that of the 20-member communities from our in silico 

case study (Figure 2.5B). The variable importance plot shows that predictions are most 

strongly influenced by transport of teichoic acids (which are found in the walls of several 

gram positive bacteria [107]), both in the strain being predicted and in its interaction 

partner (Figure 2.5C, see supplemental table S4 for KEGG Module names). 

 

 
 

Figure 2.5. A. We determined the ROC curve from the random forest trained on all 302 

observations using 79 predicted KEGG modules as features. Difference in the initial 
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growth rates of both strains was used as a baseline simple predictor. B. The learning curve 

built on this data set starts at ~72% balanced accuracy and tops out at ~78% balanced 

accuracy. The learning curve for the in silico communities with 20 organisms is displayed 

for comparison (dashed line). C. The IDs of the most important modules for predictive 

accuracy of the forest. See supplemental table S3 for the full module names. 

 

Discussion 

Exhaustive pairwise co-culture studies of microbial strains are an increasingly common 

avenue for estimating an ecosystem interaction network. While such pairwise interactions 

do not necessarily capture all possible interdependencies in a community [73, 108], they 

have been shown to be a dominant factor [81], making the reliable prediction and 

interpretation of predictive models matters of great importance. In this study, we have 

described a conceptual framework for the representation of microbes and their pairwise 

interactions in order to address both of these challenges.  

 

Ideal datasets for testing our approach would include a large number of pairs of microbes, 

and genotypes or multi-dimensional phenotypes for each species. While we envisage that 

a multitude of such datasets will be available in the future, existing datasets are either 

limited in size or in trait vector accessibility. We thus tested our approach on three 

datasets, each with a different set of advantages and limitations. The first, and largest 

dataset was obtained by simulating 4950 microbial co-cultures with dynamic flux balance 

metabolic modeling (COMETS). An important caveat about this specific test case is that 

metabolic models may not capture the full biochemical details of the real system they 

approximate, and they do not incorporate any of the non-metabolic processes that one may 

expect to observe in real communities [109]. However, these models have been used to 
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successfully help understand the physiology of specific organisms [110] and communities 

[74, 111, 112]. The two experimental studies we used next are not affected by these issues, 

but they are limited in the number of organisms and pairs analyzed. The first experimental 

dataset is the outcome of a study involving 14 E. coli amino acid auxotrophs. In this case, 

the trait vectors are a straightforward representation of the auxotrophies, but the random 

forest has a chance to highlight the complexity of the underlying interdependencies. The 

second experimental dataset is from a community of soil microbes, whose trait vectors 

were derived from the available 16s rRNA sequences, suggesting a broad applicability of 

our approach to future similar studies.  

 

Qualitatively predicting the outcome of unobserved interactions is most valuable if those 

predictions can lead to a reduction in the usage of precious resources and time. To this end 

the construction of learning curves is an important step in identifying how much data is 

required in order to achieve desired prediction accuracy from machine learning. This may 

be particularly useful for planning large-scale studies of naturally co-occurring species or 

synthetic consortia, e.g. for searching communities with specific properties relevant for 

biomedical or engineering applications [113]. 

 

Despite the common perception that random forest algorithms are merely un-interpretable 

“black boxes”, we showed here that feature contributions provide a clear window into the 

decision-making process of a random forest. If the features are defined based on clearly 

identifiable biological entities (e.g. genes, reactions, or phenotypic traits) then feature 
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contributions can be effectively used for guiding experiments that can help reveal the 

underlying mechanisms.  

 

In the current implementation of our algorithm we concatenated the binary trait vectors of 

two organisms in order to form a new composite trait representation. However, alternative 

representations of microbes and their interactions are possible, and should be explored. 

These could also include more quantitative information, such as gene copy number or 

mean transcriptional levels. While in our current work the environment for each case 

study was fixed, it is also possible to apply our method to data coming from 

heterogeneous environments, provided that the environmental parameters are encoded in 

the trait vector.  

 

The current study focused entirely on demonstrating the possible benefits of applying 

machine learning to the study of inter-species interactions in microbial communities. In 

this context, our use of mechanistic models (based on dynamic flux balance analysis) was 

limited so far to the generation of in silico datasets meant to enable testing of our 

approach. However, we envisage that in the future it will be possible to integrate machine 

learning and mechanistic approaches towards a better characterization and design of 

microbial consortia. More broadly, we foresee that the interplay of quantitative approaches 

with high-throughput genotypic and phenotypic measurements will constitute a very 

valuable instrument for future microbiome research and synthetic ecology. 
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Data Availability. Pointers to datasets obtained from previous work, and used in our 

analysis are reported in the Materials and Methods Section.  

The code and data tables necessary to reproduce all of our figures and analyses is hosted 

at: https://github.com/ddimucci/MicrobialCommunities 

 

Materials and Methods 

Representation of interactions with trait-derived features 

For a given community C, the observed co-culture response of each species i in the 

presence of species j is encoded into the element Xij of a community matrix X. Xij could 

represent the appropriately normalized abundance of species i at the end of a co-culture 

experiment with species j, or a binary variable describing whether or not species i will 

survive after inoculation with species j. To define a set of trait vectors for each organism 

in C, we start by obtaining a list of n features that can be assigned systematically across all 

organisms. These features could be the presence/absence of specific genes, metabolic 

functions, or any other relevant trait, so long as these features are not dependent on or 

derived from the quantities being measured. Thus, each organism i is assigned a n-long 

vector 𝑭(𝒊), whose k-th element 𝐹𝑘
(𝑖)

  is 0 or 1 depending on whether or not the 

corresponding trait is absent or present in the organism. Each pair of organisms (i,j) is then 

associated with a co-culture feature vector, defined as the concatenation of vectors 𝑭(𝒊) 

and 𝑭(𝒋), indicated as 𝑭(𝒊,𝒋) = [𝑭(𝒊), 𝑭(𝒋)] (see Fig. 1). The behavior of a specific organism 

in a pair in co-culture, is thus formally described by the concatenated feature vector 𝑭(𝒊,𝒋) 

and the corresponding phenotype Xij. Note that in general 𝑭(𝒊,𝒋) ≠  𝑭(𝒋,𝒊) and Xij ≠ Xji. 
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Data generation for case study of in silico gut microbe interactions 

Metabolic reconstructions of human gut-associated microbes were obtained from Bauer et 

al [94]. At the time of this writing these models can be downloaded directly from the 

following URL: 

https://wwwen.uni.lu/content/download/86230/1056013/file/Bauer_et_al_301_microbe_m

odels.rar  

Each metabolic reconstruction encompasses the stoichiometry of virtually all metabolic 

reactions present in an organism, including uptake/secretion. Flux balance analysis (FBA) 

is a constraint-based steady state approach that uses this stoichiometry to predict fluxes 

and growth capacity under a given boundary condition of nutrient availability, and has 

been described in detail before [93, 109, 111, 114]. Briefly: The set of reactions contained 

in a model is derived from the organism’s genome annotation. Reactions are then used to 

construct the stoichiometric matrix S for the metabolic model, whose element Sij indicates 

the number of molecules of type i used or produced by reaction j. Identification of feasible 

metabolic fluxes (v) for the system is achieved by imposing a steady state (Sv = 0), as well 

as upper/lower bound constraints that define the environmental nutrient availability. 

Standard flux balance analysis calculations then use linear optimization to identify feasible 

flux states that maximize a given objective function, usually the growth flux of the cell, 

i.e. the production of a balance biomass composition of the organism.  

Dynamic flux balance analysis (dFBA) [92] extends classical FBA to perform dynamic 

simulations in which intracellular metabolites are still assumed to be at steady states, but 

https://wwwen.uni.lu/content/download/86230/1056013/file/Bauer_et_al_301_microbe_models.rar
https://wwwen.uni.lu/content/download/86230/1056013/file/Bauer_et_al_301_microbe_models.rar
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total biomass and environmental metabolites are treated as time-dependent variables in a 

discretized approximation. Crucially, in a dFBA simulation of multiple species, 

competition or facilitation (e.g. cross feeding) are emergent properties of the flux 

dynamics of individual organisms. Thus, no a priori assumptions need to be made about 

the existence or nature of ecological interactions. We performed dFBA simulations using 

our platform for Computation of Microbial Ecosystems in Time and Space (COMETS), 

which has been previously used to model microbial communities [74] . We selected 100 

metabolic models [94] and identified a common medium that would permit the growth of 

nearly all models in a monoculture scenario. We then performed all pairwise co-culture 

simulations of the 100 models using the common media set in a well-mixed batch culture 

scenario (approximated by using COMETS without spatial structure). For each scenario 

we saved the record of biomass accumulation and fluxes in order to calculate relative yield 

and identify mechanisms of interaction, respectively. In this case, Xij corresponds to the 

relative yield of strain i in co-culture with strain j at the final timepoint. Xij can be directly 

computed from the amounts of biomass for different species at the end of the COMETS 

simulations. If Bij is the final amount of biomass for organism i in co-culture with 

organism j, and the diagonal element Bii is the biomass of i in monoculture, then the 

relative yield is defined as: 

Xij = (Bij – Bii)/Bii 

 



 

 

32 

Xij < 0 indicates that strain i (which we also call the responder) is detrimentally affected by 

its partner. Correspondingly, an Xij = 0 indicates no effect and an Xij  > 0 indicates a 

positive effect of j on i. 

For this case study, the feature profile 𝑭(𝒊) for species i encodes the presence (1) or 

absence (0) of each of 194 possible exchange reactions (corresponding to the columns in 

the S matrix). It is important to note that these feature vectors are equivalent to functional 

annotations based on genomes, e.g. profiles of presence/absence of specific genes. They 

do not depend on the fluxes that can be eventually computed for each of the corresponding 

reactions.     

In addition to implementing random forest, as described below, we also built a simple 

classifier based on the Jaccard distance (JD) between two feature vectors 𝑭(𝒊) and 𝑭(𝒋), 

defined as: 

JD(𝑭(𝒊), 𝑭(𝒋)) = 1 – (𝑭(𝒊) 𝑭(𝒋))/ (𝑭(𝒊) 𝑭(𝒋)). 

 

Data for case study of auxotrophic E. coli  

We obtained the measured growth response of individual E. coli strains and biosynthetic 

costs of amino acids from the supplemental files provided by [105]. In this study 14 

amino acid auxotrophic strains of E. coli were generated knocking out single genes. Co-

cultures were reported as being inoculated in 200 μL of M9 glucose media in 96 well 

microtiter plates at an initial cell density of 107/mL and incubated at 30 °C for 84 hours at 

which point the fold change in growth relative to initial inoculum for each strain was 

determined by plating, counting colonies, and qPCR to identify strain proportions. In this 
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case the feature vector 𝑭(𝒊) (of length n=14) encodes the presence/absence of biosynthetic 

capabilities for each of the 14 amino acids, and the co-culture phenotype Xij corresponds 

to the fold change of strain i in co-culture with strain j at the final time point, which may 

represent the final growth yield. Based on the original dataset, batch effects (e.g. 

evaporation) or mutations seem not to have affected the quantitative estimate of the 

reported yield, and thus the outcome of our analysis. However, further scrutiny of the 

level of precision in yield measurements, and corresponding estimates of how 

experimental errors could affect machine learning outcomes would be an important 

subject for future follow up studies.  

 

Data for case study of soil community 

We downloaded the results of an experimental study of 20 soil microbial strains in which 

all pairwise co-culture experiments were performed in a yeast extract nutrient broth media 

[72]. Survival of different strains after 5 dilution cycles were estimated by plating co-

culture media and counting colonies and verified with next-generation sequencing. For our 

analysis, we encoded in Xij the reported persistence (Xij  = 1) or exclusion (Xij  = 0) of 

strain i when co-cultured with strain j. To generate feature vectors 𝑭(𝒊) for this community 

we downloaded the 16s rRNA sequences of each strain from GenBank [115] and used 

PICRUSt [42] to predict the presence of KEGG modules. We obtained KEGG modules 

for 18 strains and represented each strain with a binary trait vector of 79 modules 

(Supplementary Table S3).  
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Using PICRUSt to generate features 

Full 16S sequences were obtained from the supplemental files of [72].  For each strain, 

we ran PICRUSt [42] to identify the number of genes within orthologous gene families in 

KEGG (KO numbers) [106].  We then assigned each strain a taxonomic identity and 

reference sequence with the Qiime [116] function pick_closed_reference_otus.py using 

the greengenes database (version 13.5) [117] at 97% similarity.   

 

We next computed the fraction of genes within each reference genome that belonged to 

transport modules found in KEGG.  We identified genes belonging to 154 transport 

modules from the KEGG database using the Restful Web API.  More explicitly, let gij 

represent the copy number of ortholog j in strain i. We then computed the fractional 

abundance of each ortholog using the following equation: 

g'ij = gij / ∑gij 

We next computed the fractional abundance each transport module k using the following 

equation: 

mik = ∑j ∈ Mk g’ij 

Where Mk represents the set of genes in module k. If the fractional abundance was greater 

than 0 we represented the module as a 1 in feature space and as a 0 otherwise. 

 

Implementation of random forest 

We used the randomForest R library [95]. Random forests are ensemble classifiers that 

aggregate the results of many individual decision trees. This specific algorithm makes use 
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of two hyper-parameters: the number of training trees (nTree) and the number of 

predictors to consider at each split point (mTry). We determined that the default settings 

of nTree and mTry were near optimal for our in silico data set (Supplementary Fig. S4) 

and therefore used only the default setting for the remainder of the study. Each tree in the 

random forest is assigned a synthetic data set that is of the same size as the training set but 

generated through sampling with replacement. The result is that the average tree is trained 

on approximately 2/3 of the observations; these observations are referred to as in-bag 

samples. The remaining 1/3 of observations not in the synthetic data sets are referred to as 

out-of-bag samples. The new synthetic data set is placed at the root node of a new tree; 

next a randomly selected subset of predictive features is queried for the best split of the 

data into two child nodes. This process is repeated at each node until a stopping criterion 

is met. The classification accuracy of individual trees is assessed by using them to predict 

their out-of-bag samples and recording the results. The random forest then makes a 

classification call for individual samples based on what class the majority of trees 

predicted them to be. Accuracy was evaluated on the full training set with out-of-bag 

performance metrics and has been shown to be equivalent to 5-fold cross validation [95]. 

The ratio of the votes of the out-of-bag trees can be used to construct ROC curves (see 

below). See [88] for a full description of the algorithm. 

 

Balanced accuracy 

We report the balanced accuracy to evaluate the performance of classifiers on independent 

held out test sets and on the OOB samples when the model was trained using the full data 
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set. This metric is based on the values from the confusion matrix: true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN). Balanced accuracy is 

calculated as follows: 

Balanced Accuracy = [TP/(TP+FN) + TN/(TN+FP)]/2. 

 

ROC curve 

To evaluate the random forest classifiers for each case study we determined the receiver 

operator curve (ROC) from the model trained on the full set of available data. Using the 

out-of-bag voting proportions we plotted the true positive rate (sensitivity) against the 

false positive rate (1 – specificity) as the classification threshold was increased from the 

minimum value to the maximal value. In the context of random forest, the classification 

threshold is the fraction of out-of-bag votes for the positive class. After generating the 

ROC curve, we calculated the area under the curve (AUC) with the ‘AUC’ package in R 

[118]. 

 

Learning curves 

To construct learning curves we defined a set of fractions, r = [.05, .1, .2, .3, .4, .5, .6, .7, 

.8, .9, .95] where we would evaluate balanced accuracy of the model using cross 

validation. For all cross-validation experiments we ensured that observations Xij and Xji 

were either both in the training set or in the test set. For each fraction in r we randomly 

selected a subset of the community matrix of the corresponding size to use as a training set 

and reserved the remaining data as an independent test set. This process was repeated until 
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at least 10 subsets of training data were selected for each value in r. The median balanced 

accuracy of classifiers was then calculated for each fraction. In order to investigate the 

effect of the community size on the learning curve we defined a set of community sizes c 

= [10, 20, 30, 40, 50, 60, 70, 80, 90]. For each community size in c we randomly selected 

five community sub-matrices from the full in silico community matrix. Then for each sub-

community we determined the learning curve. For each size in c the median learning curve 

for balanced accuracy of each community size was calculated and reported in Fig 2D. 

 

Variable importance plots 

Variable importance plots are commonly used with random forests to evaluate which 

variables are the most important for the model by comparing their mean decrease in 

accuracy scores. Mean decrease in accuracy is a measurement of the change in the 

accuracy of the forest’s predictions when the variable in question is randomly permuted 

[89]. Here, we use it as a relative ranking of the global importance of each feature. The 

randomForest package automatically generates the variable importance plots which we 

visualize in Figs. 2E, 4E and 5C. 

 

Feature contributions for binary classifications 

The calculation of feature contributions has been described in [91]. The goal of this 

calculation is to quantify the effect of a given variable on the classification of a specific 

sample j. After training of a random forest with T trees, one can count, for each tree t and 

node k in the path followed by sample j in tree t, how many training samples at node k 
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belong to each of the two classes (C1 and C2). The fraction of samples belonging to C1 is 

indicated by Yj
t,k.  Next, in order to evaluate the contribution of an individual feature f in 

classifying a specific sample, we perform the following steps: (i) At each node where 

feature f is the splitting variable, we calculate the local increment (Lj
t,k,f) in the fraction of 

samples belonging to class C1, defined as Lj
t,k,f = Yj

t,k+1 - Y
j
t,k . (ii) We obtain a mean 

sample-specific contribution of a given feature f across all trees, by averaging over all the 

local increments, i.e.  

     𝜙𝑓
𝑗

=
∑ 𝐿𝑡,𝑘,𝑓

𝑗𝑇
𝑡=1

𝑇
  

Feature contributions for all case studies were computed on out-of-bag trees using the 

forestFloor package available in R [119]. 
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CHAPTER THREE 

BowSaw: Discovering Explanatory High-Order Interactions  for Biological 

Phenotypes  

Summary 

This thesis chapter will be submitted as the following manuscript: 

Dimucci, D., Kon, M., Segrè, D. BowSaw: Discovering Explanatory High-Order 

Interactions for Biological Phenotypes 

Abstract 

Machine learning is revolutionizing biology by enabling the learning (prediction) of 

phenotypes from large datasets produced by studies utilizing high throughput methods 

including, metagenomic, genomic, and transcriptomic ones. Algorithms search data sets 

to discover complex and often nonlinear patterns in measured variables such as gene 

expressions or microbial taxa. There is a need to understand the underlying decision 

processes of algorithms, since doing so can enable generation of new mechanistic 

hypotheses. We have developed a set of algorithmic methods, collectively called 

BowSaw, that take advantage of the structure of a trained random forest (RF) algorithm 

to identify patterns frequently used by RF.  We first demonstrate the utility of our 

approach by showing that it recovers causal patterns in simulated data sets, and explore 

the perfomance of BowSaw under increasingly difficult scenarios. We next apply our 

method to data from the Human Microbiome Project and find previously unreported 

high-order combinations of microbial taxa putatively associated with Crohn’s disease. By 
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leveraging the structure of trees within a RF, BowSaw provides a new way of using 

decision trees to generate plausible hypotheses. 

 

Introduction 

The production of large life sciences data sets with high throughput techniques 

has increased the utilization of supervised machine learning algorithms to produce 

accurate predictions of phenotypes (e.g healthy vs disease). These algorithms use 

measurements of relevant traits such as gene variants, the presence/absence of microbial 

taxa, or metabolic consumption variables as predictors. Categorical prediction of 

phenotypes is typically the end goal of these applications. However, an additional benefit 

of these algorithms is the potential to extract explanatory classification rules. In this 

context, rules are defined by the values that a specific set of traits have when they are 

associated with a given phenotype. Identifying the relationships between the traits 

involved in classification rules may yield key insights into the biological processes 

associated with important phenotypes [120, 121] . This realization is creating demand for 

methods that assist in the interpretation of supervised machine learning methods [122–

124], especially when the measured traits are expected to be causal agents such as genes 

or microbial taxa [125]. Identifying classification rules associated with a phenotype of 

interest is valuable because they are likely to carry information about the causal 

mechanisms that generate the phenotype.  

Algorithms that are particularly valuable in this respect, are those involving 

decision trees, such as random forests, because the decision trees are easily interpretable 
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[126]. Decision trees are rule-based classifiers, where rules arise from a series of “yes-

no” questions that can efficiently divide the data into categorical groups. In a biological 

context, such rules may arise from sets of genes whose simultaneous modulation could 

affect a phenotype, or sets of microbial species whose co-occurrence may be associated 

with a disease state. While in several cases it seems like disease phenotypes are uniquely 

associated with a single specific pattern (e.g. retinoblastoma [127]), there is increasing 

evidence for cases in which multiple distinct patterns can be associated with (and 

potentially causing) the same high-level phenotype [128, 129]. A particular example we 

will explore in this work is the multiplicity of distinct microbial presence/absence 

patterns which may be associated with Crohn’s disease [130]. Crohn’s disease has five 

clinically defined sub-types [131] but studies of the associated microbiome do not usually 

indicate which form of Crohn’s disease a donor has been diagnosed with. Each sub-type 

of the disease may have different mechanisms, each requiring different treatment 

regimes. Thus, identifying rules associated with sub-populations within a particular 

phenotype label are of great interest due to potential therapeutic implications.  

The fact that there may be multiple rules generating the same or similar 

phenotypes complicates the straightforward interpretation of parameter coefficients or 

variable importance scores [132, 133]. Uncovering the multiple interactions between 

predictive variables as they relate to phenotypic labels remains a challenging statistical 

endeavor, but one that is of paramount importance. Identifying multiple interactions  

associated with a disease enables the development of mechanistic hypotheses for follow 

up-studies. This challenge, and an overview of the key strategy we propose, are 
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illustrated in Figure 3. In figure 3.1A we depict a toy-model where measured variables 

(traits) have only two possible values (e.g.: present/absent), the high-level phenotype 

(category) is binary (e.g.: no disease/disease), and two distinct rules can both generate the 

phenotype. The goal in this case is to identify each of the rules that are associated with 

the phenotype. In this work we will show how this can be achieved by in-depth analyses 

of a random forest (RF) (Fig. 3.1B). 

 

Figure 3.1 A) In a hypothetical data set there may be two phenotype labels – “Disease” 

and “No Disease” that we wish to discriminate based on input predictor variables. In this 

example, there are two distinct high-order patterns that both confer the “Disease” 

phenotype. B) Conceptual pipeline of BowSaw. In (1) we begin by identifying a target 

vector, in this case the colored nodes indicate the true pattern. In (2) we follow the path 

of the sample through each of its out-of-bag trees and record how often the sample 
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encounters sequential pairs of variables. (3) Each ordered pair sequence is sorted in 

descending order by frequency. (4) Pair sequences are used to generate a candidate rule 

that is maximally associated with the observed phenotype of the target vector. 

 

The random forest algorithm intrinsically takes advantage of non-linear 

relationships between variables and is widely used in the life sciences [134–136]. RFs, 

when used to distinguish between disease states known to have multiple causes, often 

result in excellent classifiers [137, 138]. It has also been reported that RFs capture subtle 

statistical interactions between variables [132]. Unfortunately, a RF is not 

straightforwardly interpretable despite its hierarchical structure, and recovering those 

interactions is notoriously difficult [133] due in large part to the method’s reliance on 

ensembles of trees [89]. The difficulties in interpretation created by these properties has 

led many to refer to RF as a ‘black-box’ model [44]. 

Identifying the rules that a RF utilizes in classification tasks is an active area of 

research, and many strategies have been developed to address this problem. Effective 

strategies have focused on evaluating how individual variables influence the 

classification probabilities of specific samples [91, 119], pruning existing decision rules 

found in the tree ensemble to produce a compact model [139], computing conditional 

importance scores [140], or iteratively enriching the most prevalent variable co-

occurrences through regularization [141]. Each of these approaches offer valuable 

methods for the identification of statistical interactions between variables. However, we 

and others have observed that while these methods are capable of recovering true causal 

rule in simulated data when exactly one such rule is present, the existence of multiple 

rules associated with one phenotype can confound interpretation efforts [141].  
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Here we describe BowSaw, a new set of algorithms that utilizes variable 

interactions in a trained RF model in order to extract multiple candidate explanatory 

rules. With BowSaw, we set out to develop a post hoc method intended to aid in the 

discovery of these rules when the input variables are categorical in nature. The main idea 

of BowSaw is to systematically quantify the co-occurrence of specific pairs of traits 

across multiple trees, and assemble these co-occurring pairs into larger sets of traits that 

best account for a phenotype.  We first demonstrate that BowSaw is capable of 

recovering true rules by applying the algorithms to simulated data sets of varying 

complexity. We then apply BowSaw to a study on the role of the gut microbiome on 

Crohn’s disease [130], and show that it can find a previously unreported combination of 

microbial taxa that is fully associated with Crohn’s disease. BowSaw can be broadly 

applied to any dataset with categorical or discrete predictors. 

 

Methods 

Overview of the pipeline 

Provided with a trained random forest and a training set, BowSaw goes through 

three steps in order to generate a candidate rule (variable-value combination) for each 

observation associated with the phenotype of interest (Figure 3.1. B). First, for each 

observation, the Count algorithm counts the frequency of unique ordered pairs of 

variables encountered along each relevant tree in the forest. Second, for each observation, 

the Construct algorithm generates a list of ordered pairs of variables, ranked by their 

frequencies, and uses this list as a guide to construct a decision rule (which could consist 
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of two or more variables) that is maximally associated with the observed phenotype. 

Finally, the Curate algorithm pools all of the rules together in order to select a subset of 

rules that collectively account for all of the samples with the desired phenotype. 

Optionally, the Sub-rule algorithm can be used to generate pruned versions of candidate 

rules prior to applying the Curate algorithm in order to obtain a more concise, albeit less 

specific, set of candidate rules. The Count and Curate algorithms generate the candidate 

rules for individual observations while the Curate and Sub-rule algorithms produce a 

combined set of rules that account for all observations with the chosen phenotype. 

In the following section, we provide a description of the inputs BowSaw takes and 

the algorithms that implement these steps along with pseudocode. 

 

Inputs 

 BowSaw takes as inputs a dataset, D, composed of N observed vectors each of p 

categorical variables. There are assumed to be K possible class labels for each vector in D 

which for the purposes of this discussion denote different phenotypes. A random forest is 

assumed to be trained on D to distinguish the classes k = 1, … , K. Additionally, BowSaw 

takes a target vector ni with observed phenotype ki for which the goal is to identify a set 

of simplified association rules. 

 

Counting stubs 

Given an RF machine M trained on dataset D and a feature vector x = (x1, … , xp) ∈ D 

the first sub-routine of our method (the count algorithm) proceeds as follows. It starts by 

identifying among the set of trees in M sub-paths (sequences of successive variable 
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indices) encountered by x as it travels through T, its set of out-of-bag trees. An out-of-

bag tree is a tree in which x was not including in the training set. For the specific path Ti 

with v + 1 variable indices, each stub (ordered pairwise variable sequence) along Ti (e.g. 

TiTi+1) from i = 1, … v is accounted for in an n x n matrix, C, where the element Cij 

records the number of instances of the stub in all paths of T.  

 

Algorithm 1: Count Algorithm Pseudocode 

For t in T: 

 v = {1,2, …, |t| – 1}  

 For i in v 

  Cti,ti+1 = Cti,ti+1 + 1 

 End loop 

End loop 

Return C 

Constructing a candidate rule 

The second sub-routine (the construct algorithm) builds a candidate rule for 𝐱 by first 

placing all of the stubs with non-zero counts in a list 𝑳 sorted in descending order by their 

values in 𝑪. We define the candidate rule 𝑹 as a set of paired lists {Rindices, Rvalues} and 

initialize it by adding the stub from L to Rindices and the corresponding values from x to 

Rvalues. Next, we identify all of the observations in D whose values at Rindices are exact 

matches for the corresponding values in Rvalues and store their indices in I. The fraction of 

observations in I that have phenotype k is F. Stubs and values are added to R until F is 
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either equal to 1 or all of the stubs in L have been exhausted. We retain in R only those 

variable pairs whose additions increase F.  

 

Algorithm 2: Construct Algorithm Pseudocode 

Make ranked list L of stubs from C 

Initialize R as the paired lists {Rindices, Rvalues} 

I = 0, F = 0 

For stub i in L: 

If F = 1:  

Exit loop 

Else: 

  R’indices = (Rindices, Li) 

  R’values = (Rvalues, xLi) 

  I’ = I∪ (DR’indices = R’values) 

  F’ = |kM’ = k| / |I’|    

 If F’ > F: 

  Rindices = R’indices  

  F = F’ 

I = I’  

End loop 

Return R, I, F 
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Curating candidate rules: 

The count and construct algorithms are the heart of BowSaw. In our workflow, 

we apply these algorithms to each observation in D that has the desired observed 

phenotype Ki. We call the set of these vectors xall. By default, we produce a single 

candidate rule for each vector in xall. We store each candidate rule in list Q and rank them 

by their respective values of |I|. Since Q may include many redundant rules, we 

developed another sub-routine (the curate algorithm) to generate a concise set of 

candidate rules that collectively account for xall.  Briefly, we create a new empty list, E, 

to which we add the top ranked rule from Q (by default this is the rule with the greatest 

value for I), and record the index of samples in D that match any rule in E and also have 

the desired observed phenotype class, Kd, in the set A. Next, we determine how many 

samples remain unaccounted for U = xall – A, then we determine which of the remaining 

rules in Q minimizes |U|, add it to E, and repeat these steps until U is an empty set.  

 

Algorithm 3: Curate algorithm pseudocode 

Q = ranked list of all candidate rules for Φt 

E = Qbest (user defined, default is maximum M) 

I* = which D match any rule in E and k = Kd 

A = xall ∩ M* 

U = xall - A 

While U is not empty:  

 B = { } 
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 For rule i in Q: 

  E* = E + Qi 

  I* = which D match any rule in E* and k = Kd 

  A* = xall ∩ I* 

  Bi = |U – A* | 

End loop 

  best = which min Bi 

E = E + Qbest 

M* = which D match any rule in E and k = Kd  

A = xall ∩ M* 

U = U - A 

End while loop 

Return E 

 

Constructing sub-rules 

Since rules are rarely 100% associated with any given phenotype, we devised a 

strategy for selecting a set of candidate sub-rules that account for all samples with desired 

observed phenotype class Kd. Candidate sub-rules are shorter candidate rules derived 

from larger candidate rules by omitting one or more variables. For each candidate rule in 

E, we identify sub-rules that meet a user-defined complexity criteria, e.g. only produce 

sub-rules that are composed of three or four variables and their corresponding values. We 

place each of the unique sub-rules into a new list Esub. Then the corresponding number of 
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identical matches, I, and proportion of I that have the phenotype Kd, F, are determined. 

At this stage, we can apply our third sub-routine (the Curate algorithm) to Esub to obtain a 

parsimonious list of sub-rules that accounts for xall. In our pipeline, we also choose 

thresholds based on desired levels of I and/or F in order to eliminate poor candidate sub-

rules from consideration. In this study, we decided on the thresholds after visually 

inspecting a plot of F against I.  

 

Algorithm 4: Sub-rule algorithm pseudocode 

Esub = { } 

Complexity = {user defined numeric values} 

For rule in E 

 For i in Complexity 

  Esub = Esub ∪ (
𝒓𝒖𝒍𝒆

𝒊
) 

 End loop 

End loop 

 

The algorithms described above are generalizable to multi-classification tasks but 

are currently limited to discretized or categorical representations of the feature space. 

Pseudocode for implementing each of the algorithms described above along with an 

implementation of the algorithms in R [142] can be found in the supplemental files and 

on github: https://github.com/ddimucci/BowSaw. 

 

https://github.com/ddimucci/BowSaw
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Results 

Application to simulated Data 

To test the capacity of BowSaw to recover multiple decision rules, we applied it 

to increasingly challenging simulated data sets. These data set consists of binary vectors 

representing different observations. The phenotype associated with each observation is a 

function of the corresponding vector.  The function consists of a set of multiple mutually 

distinct rules, such that if a rule is satisfied, it will cause the observation to have the 

phenotype with a certain probability (which we call here “penetrance” because of its 

resemblance to the genetics concept). The first dataset (IDEALIZED) we use is relatively 

simple, and includes multiple equally prevalent rules. It is also generated under the 

assumption that there are no unmeasured confounders, i.e. that if an observation does 

have a phenotype, then it must be satisfying at least one of the above rules.  We then 

apply BowSaw to a more challenging scenario (INTERMEDIATE) in which the 

phenotype-generating rules differ in their relative prevalence and the assumption of 

unmeasured confounders is violated. Finally, is a set of data sets with complex co-

varying parameters (COMPLEX), we systematically varied the underlying parameters of 

the simulation and examined the relationship between summary statistics of the RF 

performance and the ability of BowSaw to generate candidate rules containing the true 

phenotype-generating rules.  

 For the IDEALIZED scenario, we simulated data set of 100 independent random 

binary variables and 2,000 observations. We randomly defined five rules that each 

required four randomly selected variables each to have specific values (e.g. all variables 
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equal to 1) in order to assign a hypothetical phenotype with likelihood between .8 and .9. 

Here we present the results of this scenario with a specified random seed, but other seeds 

and parameters can be explored using the scripts provided in the supplemental files. 

Using these parameters 479 samples were assigned the phenotype and BowSaw produced 

a set of 135 unique candidate rules ranging in complexity from six to fourteen variables. 

From these rules, we produced all sub-rules ranging involving anywhere from two to five 

variables, which resulted in unique 50,034 sub-rules. We calculated the number of 

matches |I|, the proportion of samples with the phenotype, F, for each sub-rule, and 

visualized these values in order to select an association threshold (Figure 2A). To reduce 

the number of sub-rules that the curate algorithm would need to examine, we eliminated 

from consideration any rules that had an F below 80%. We selected an 80% threshold 

because in the cluster centered around 125 matching samples there is a small cloud of 

rules that are clearly segregating the phenotype more efficiently than the others are. We 

selected the sub-rule with largest |I| among these as the top candidate rule. This produced 

a final list consisting of five candidate rules that accounted for all of the samples with the 

phenotype and were each one of the true phenotype generating rules (Figure 3.2A red 

points). These results demonstrate that in an ideal scenario with no phenotype diagnosis 

errors BowSaw is indeed capable of recovering multiple true rules. 

For the more challenging scenario (INTERMEDIATE), we generated the data set 

the same as before except this time we allowed the five underlying rules to vary in 

complexity from three to five variables. Varying the complexities of rules resulted in 

different prevalence among them, as rules that are more complicated are less likely to 
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appear in the data. In this case, we had one rule of complexity five, two that required four 

variables, and two that used three variables. We also added background noise by 

randomly assigning the phenotype to 2% of samples that did not possess any of the rules. 

BowSaw produced 176 unique candidate rules involving between six to thirteen 

variables. From this list we generated 68,938 sub-rules and chose an association threshold 

of 75% because there are two clusters at ~|I| = 125 that begin to clearly separate in that 

range and the two outlier points at ~|I| = 250 do not combine to account for all of the 

phenotype (Figure 3.2B). Applying the curate algorithm to the rules meeting this 

threshold produced 20 candidate sub-rules the top four (when ranked by |I|) of which 

were true rules. The rule of five variables was not recovered. These results show that 

BowSaw is able to recover strongly associated patters (and in this case, causal patterns) 

even in the presence of noise, but low prevalence rules can be masked by high prevalence 

rules. 

We used the same data generation method to investigate BowSaw’s ability to 

produce candidate rules containing true rules when the underlying parameters change. 

We applied BowSaw to 20,000 simulated data sets where we randomly altered the 

number of features, sample size (200 or 2,000 samples), complexity of the rules, number 

of rules, the likelihood of each rule assigning the phenotype, and the background noise. 

We identified scenarios where rule recovery with BowSaw performs very well and 

situations in which it fails to recover any rules at all. Additionally, we found a strong 

linear relationship between BowSaw’s performance measured as the average fraction of 

rules recovered and the of number of samples, number of features, and two evaluation 
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metrics for RF model – the area under the curve for both the receiver operator 

characteristic and precision recall curves (Figure 3.2C). 

 

Figure 3.2 A) Candidate sub-rules generated for the ideal scenario. Each point represents 

a unique sub-rule. X-axis is the number of samples that exactly match the pattern defined 

by the rule. Y-axis is the fraction of matching samples with the observed phenotype. Each 

cluster corresponds to decreasing rule complexity from 5 variables per rule to 2 on the 

right most cluster. These clusters appear because the data is produced by a binary 

distribution. Dashed line is the association threshold we set. Red points are the causative 

sub-rules we defined. BowSaw identified by all five red points in this scenario. B) 

Candidate sub-rules generated for the more challenging scenario. We defined 5 causative 

rules of varying lengths in this scenario but BowSaw was only able to recover 4 of them 

completely. The longest rule which was 5 variables long was not recovered. In this 

scenario BowSaw recovered the 4 red points. C) There is a strong linear relationship 

between the performance of BowSaw and observable metrics measured here as the 

average fraction of a complete rule recovered in any candidate rule (y). The linear model 

we specified was: y = sampleSize + #features + ROCAUC + PRAUC. 

 

 

Application to Human Microbiome Data 

  Irregular distributions of microbial taxa within the gut are often associated with 

serious illnesses such as Crohn’s disease or ulcerative colitis [143, 144]. Human 

microbiome studies regularly use 16s sequencing methods and extensive reference 

databases to report on microbial taxa found in samples as operational taxon units (OTUs). 
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RF classifiers are frequently built using counts of OTUs to accurately discriminate 

between disease and healthy patient samples [145, 146]. Despite their demonstrated 

effectiveness as good classifiers of Crohn’s disease, studies that look to discover 

associations with disease status typically focus on individual OTUs while specific 

microbial association rules found by RF are not discussed, as a result it is uncertain how 

heterogeneous study cohorts are. To investigate potential rule heterogeneity in a human 

microbiome cohort we downloaded processed files from the Human Microbiome Project 

for inflammatory bowel disease (IBD) [130] which contain information on the taxonomic 

profiles of 982 OTUs in 178 patients – 86 of which have been diagnosed with Crohn’s 

disease, 46 diagnosed with ulcerative colitis, and 46 diagnosed as non-IBD. We were 

specifically interested in finding rules that separate the Crohn’s disease samples from 

ulcerative colitis and non-IBD, so we framed the problem as a binary classification task 

with Crohn’s disease as the target phenotype. 

Since the current implementation of BowSaw is limited to finding rules when the 

variables have categorical values, we first converted the OTU counts of each taxon to a 

simple presence/absence scheme. This resulted in nearly equivalent RF performance 

relative to training RF with the original continuous OTU inputs: ROC AUC of .862 

(binary) vs .882 (continuous) and PR AUC of .846 (binary) vs .886 (continuous) (Figure 

3.3A-B). This is an important result because it allows us to think about associations just 

in terms of presence or absence of an OTU without sacrificing much in model 

performance. We applied BowSaw to the Crohn’s disease samples and visualized 56,902 

resultant sub-rules ranging in complexity from 2 to 7 variables (Figure 3.3C). There were 
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1,941 sub-rules with F = 1. We selected the most general of these rules (max|I|) to be the 

top candidate for the curate algorithm and found that it considers the status of 5 OTUs 

and accounts for 38 of 86 Crohn’s disease samples (Figure 3.3C). We set an association 

threshold of 90% and ended up with 10 sub-rules that together account for all 86 Crohn’s 

disease samples and an additional 11 non-Crohn’s disease samples (4 non-IBD, 7 

ulcerative colitis). The top five rules combine to account for 78 of 86 Crohn’s disease 

samples and include 10 non-Crohn’s disease samples (Table 3.1).  
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Table 3.1 Association rules identified by BowSaw that account for all Crohn’s disease 

samples. 

 

The top candidate rule is comprised of the presence of bacteroides and lachnoclostridium 

and the absence of three genera from the family lachnospiraceae: lachnospira, tyzerrella, 

and lachnospiracea UCG 001 (Figure 3.3D). Detection of bacteroides was nearly 

Rule CD Samples Non CD SamplesNew Samples Covered Taxonomy Presence

1 38 0 38 Bacteroides (genus) y

Lachnolostridium (genus) y

Tyzzerella (genus) n

Lachnospira (genus) n

Lachnospiricae UCG-001(genus) n

2 41 4 20 Dialister (genus) y

Christensenellacea R7 group (genus) n

Christensenellacea R7 group (genus) n

Collinsella (genus) n

Ruminococcaceae (family) n

Finegoldia (genus) n

Ruminococcus 1 (genus) n

3 9 1 9 Ruminococcus 1 (genus) y

Ruminococcaceae UCG-002 (genus) n

Lachnospiraceae (family) n

4 24 2 6 Streptococcus (genus) y

Tyzzerella (genus) n

Lachnospiraceae (family) n

Hafnia Obesumbacterium n

5 27 3 5 Lachnospiraceae UCG-008 (family) y

Ruminococcus 1 (genus) n

Eubacterium eligens group n

6 5 0 2 Ruminococcus 1 (genus) y

Dorea (genus) n

7 7 0 2 Bacteroides (genus) y

Dialister (genus) n

Eubacterium rectale group n

8 15 0 2 Lachnospiraceae NK4A136 group y

Eubacterium eligens group y

Tyzzerella (genus) n

Christensenellacea R7 group (genus) n

Lachnospira (genus) n

9 3 0 1 Ruminococcus gnavus group y

Veillonella (genus) n

Bacteroides (genus) n

Finegoldia (genus) n

10 10 1 1 Parabacteroides (genus) y

Eubacterium eligens group y

Ruminococcaceae UCG-003 (genus) n

Lachnospiraceae ND3007 group n
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ubiquitous within the cohort, it was found in 170 of 178 total samples, but only 3 of the 

samples in which it was missing are diagnosed as Crohn’s disease. Lachnoclostridium 

was frequently found in Crohn’s disease (67/86) but not in ulcerative colitis (27/46, p = 

.02) and was detected at roughly the same rate in non-IBD samples (34/46, p = .616). 

Detection of lachnospira was depleted in Crohn’s disease samples (20/86) relative to 

ulcerative colitis (20/46, p = .022) and to non-IBD samples (31/46, p = 9.9-7). Tyzzerella 

was also detected at a lower rate in Crohn’s disease (63/86) relative to ulcerative colitis 

(24/46, p = .019) and non-IBD (24/46, p = .019). Lachnospiracea UCG 001 was rarely 

detected in Crohn’s disease (4/86) which is a lower rate than it was detected in ulcerative 

colitis (9/46, p = .022) and in non-IBD samples (19/46, p = 1.45-5). 

 



 

 

59 

Figure 3.3 A) Performance of the random forest classifier as measured by area under the 

receiver operator curve (ROC-AUC) is not strongly perturbed by simplifying OTU 

representation to a presence/absence scheme versus the original continuous count. 

Dashed line indicates the performance of a perfectly random classifier. B) The area under 

the curve of the precision recall curve is similarly not strongly affected by the new 

representation scheme. Dashed horizontal line is the random performance line. C) Each 

point represents a unique candidate sub-rule. On the x-axis is the number of samples in 

the data matrix that are subject to that rule. The y-axis represents what fraction of 

matching samples were diagnoses as Crohn’s disease. D) The taxon identities of the 

OTUs that make up the most generally applicable of the sub-rules where all matching 

samples have the Crohn’s disease label. 

 

Discussion 

 Interpretation of random forest models for classification may be confounded when 

there are multiple rules (combinations of variables and their specific values) associated 

with a phenotype of interest. We have developed BowSaw, which is an algorithmic 

approach for identifying the rules that a trained random forest model uses to make 

classifications when the values are categorical in nature. By taking advantage of the 

structure of trees found within a random forest BowSaw produces a set of multiple 

decision rules that combine to account for each sample with a given observed phenotype. 

When the variables are the presumed causal agents, these rules represent plausible 

mechanistic relationships.  

 Results on simulated data demonstrate that when there are multiple rules 

associated with a single phenotype label that BowSaw is capable of faithfully identifying 

them. Application to data from the human microbiome project offers further evidence 

that BowSaw provides an efficient way of generating plausible hypotheses for high 

through put metagenomics studies. In particular we identified a rule that utilizes a 

presence/absence pattern of five microbial taxa (present: bacteroides, lachnoclostridium, 
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absent: lachnospira,lachnospiracea, tyzerrella) that accounts for nearly half of all 

Crohn’s disease samples in the cohort (38/86). This specific pattern of microbial 

colonization in the guts of Crohn’s disease patients is unreported, but each taxon’s 

respective enrichment or depletion status and association with disease status has been 

reported. If the cohort of patients in the human microbiome study are representative of all 

people afflicted by Crohn’s disease then this rule represents a significantly large sub-set 

of those suffering. Inquiries into the relationship of the taxa included in this rule with 

disease status may yield important insights into the mechanisms of the disease and 

potential therapeutic strategies for this sub-population. Of the five associated taxa, we 

suspect that the absence of lachnospira, lachnospiracea UCG 001, and tyzzerella are 

biologically meaningful. We have reason to believe so because it has been reported that 

the lachnospiraceae family is generally suppressed in Crohn’s disease [147–149]. 

Lachnospira has been reported as depleted with respect to Crohn’s disease several times 

[150, 151]. The depletion of tyzzerella has been associated with chronic intestinal 

inflammation and supplementation suggested as a probiotic for Crohn’s disease [152, 

153]. While the relationship of lachnospiracea UCG 001 with Crohn’s disease is still 

unclear, its depletion has been reported in mice displaying symptoms of anhedonia and it 

was significantly enriched in anhedonia resilient mice [154]. Partly because IBD is 

frequently accompanied by depression, anhedonia has been suggested as an important 

symptom in the diagnosis of IBD [155]. The associations of the individual OTUs defined 

by this rule are consistent with previously reported findings in the existing literature and 

describe a taxonomic profile that exclusively identifies a large sub-population of Crohn’s 
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disease samples within this cohort. The presence of bacteroides does not appear to be 

particularly useful and in this context is probably preserved because it causes a perfect 

association, although high levels of some species are implicated in the pathology of 

Crohn’s disease [156]. Lachnoclostridium, is differentially distributed across the three 

classes. Notably it is less frequently detected in ulcerative colitis relative to Crohn’s and 

non-IBD samples, which roughly resemble one another. Increased levels of this genus 

was detected in rats that showed relief of colitis symptoms after treatment with a 

proposed therapeutic agent [157].  

The current implementation of the algorithms are restricted to classification tasks 

with categorical predictor values, this is a challenge that we will need to address in order 

to make the approach more generally applicable. Future work will also focus on 

extending these for the interpretation of regression models. Such additions will greatly 

increase the number of systems to which we can apply BowSaw. 
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CHAPTER FOUR 

A Strategy for Identifying the Presence of Microbial Interactions in Mixed 

Consortia and Quantifying Them 

Summary 

This thesis chapter will be submitted as the following article: 

Dimucci, D., Bhatnagar, J., Segrè, D. Identification and Quantification of Microbial 

Interactions in Synthetic Consortia. Manuscript in preparation 

 

Abstract 

Consortia of microbes can be constructed combinatorically in order to  achieve the dual 

goals of predicting emergent community level functions and identifying interactions 

between species. Identifying the functional relationships between species as they relate to 

the measured quantity provides a foothold for further mechanistic studies and the 

eventual rational engineering of communities to perform desired functions. Although 

combinatorial studies of microbial communities is common, the identification of 

interactions between species in those communities is often neglected. Here, we applied 

simple additive regression models to two such published studies. We first use additive 

assumptions to build predictive models of net community productivity in a system of soil 

bacteria and a system of wood rot fungi. We analyze patterns in the residual errors 

generated by the additive assumption in order to identify modules of interacting microbes 

and subsequently quantify their statistical significance. We were able to identify high 
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order interactions between microbes that systematically bias community function and 

generate new hypotheses regarding the role of interspecies interactions in these systems. 

 

Introduction 

Productivity of a microbial community is a function of its species composition. Studies 

measuring the productivity of microbial communities as a function of their composition 

often ignore the effects of interspecies interactions or consider them to be inconsequential 

[57, 158]. The decision to omit interaction effects from models of community 

productivity can be justified by the fact that main effects typically explain the bulk of 

variability in experimental observations. Interspecies interactions can have profound 

effects on community level attributes [5, 73, 108, 159, 160] and for this reason they 

should be thoroughly examined in any study.  

 

The assembly of microbial consortia betrays an implicit appreciation for the importance 

of interspecies interactions. For example, the emergence of “bugs as drugs” therapies rely 

on interactions between bacteria to treat diseases via the gut [161, 162], it is understood 

that ecosystem functioning is critically dependent on interactions [163], and interactions 

can drastically improve community productivity [35, 164, 165]. In spite of these 

observations, analytical strategies tend to either only assume additivity or they fail to 

identify statistical interactions found by their chosen modeling algorithm.  
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Incorporating the appropriate interaction terms in our models will improve both our 

ability to predict community traits and advance our mechanistic understanding of the 

relationships causing those traits. Once one or more interactions between species have 

been identified, incorporating the correct interaction terms into models is trivial. 

However, even the detection of pairwise interaction terms can be a significant challenge 

[133, 141, 166], particularly when dealing with synthetic microbial consortia because 

there is rarely an a priori rationale for including interaction terms. Knowledge of which 

pairwise interaction terms to include in studies of microbial communities is commonly 

derived from an exhaustive set of pairwise experiments [81, 82] although these 

relationships may not be relevant in larger consortia [167].  

 

An effective strategy for modeling community productivity as a function of community 

composition is linear regression. In its simplest form, only assumptions of additive effects 

are made. In practice researchers often keep only the terms for the main effects that are 

statistically significant in order to generate a parsimonious model [57, 168]. Analysts 

employ this approach because prediction is often the primary or only objective of these 

studies. However, the absent discussion of interspecies interactions in these studies 

prompted us to ask the question, how can interactions between microbial species be 

efficiently identified? The ideal strategies for identifying significant interaction terms is 

to exhaustively evaluating all possible interaction terms, but this approach rapidly 

becomes infeasible in high dimensional settings. For the high-dimensional case it has 

been shown that tree based models such as random forest can identify important 
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interactions between variables [169–171] but tree-based ensembles are notoriously 

difficult to interpret [172].  

 

Here we systematically analyze the residual errors from linear regression models fit to 

two publicly available data sets of synthetic microbial consortia. We identify sets of 

interacting species within the trees and evaluate their statistical significance. In both data 

sets, we find evidence of significant interactions between two or more species. Inclusion 

of the corresponding interaction terms significantly improves predictive performance. 

Our results indicate that evaluation of interspecies interactions should be a standard 

analytic step in any study of microbial communities.  

 

Results 

Evidence of Interactions 

If interspecies interactions are present, we expect that their associated residuals would 

show a non-random bias. For example, a simulated system with a positive pairwise 

interaction between species A and species B produces biased results even though the 

distribution of all residuals appears unbiased in visual diagnostic plots. Provided the 

effect is strong enough to overcome noise, this interaction would result in an enrichment 

for positive valued residuals whenever both species are present in a community (A = 1, B 

= 1). To test this hypothesis we first convert all residuals into classes based on their sign. 

Then, if the feature space is a manageable size, we can exhaustively evaluate the strength 

of the association of every pairwise motif with any class. In this context, a motif is a 
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specific pattern of presence or absence for a subset of microbial species. We add the 

interaction terms for the species involved in motifs that are significantly associated with 

any type of residual to the linear model and quantify their effects. We apply this 

evaluation to motifs of increasing size so long as it is computationally feasible. The 

number of possible motifs to evaluate grows roughly at the rate of 3#species , thus even for 

moderately sized systems more sophisticated machine learning approaches will need to 

be employed for motif identification.  

 

Analysis of communities comprised of six soil bacteria 

In the first data set we analyzed, the authors of the original study collected 6 soil 

microbial strains and inoculated all 63 possible combinations into a liquid growth 

medium with xylose as the sole carbon source [164]. Each species was giving a strain 

designation (SL-68, SL-104, SL106, SL187, SL-197, SL-WC2) for simplicity we refer to 

each species by the index of its name in this list. For each community, they estimated 

metabolic activity with a colorimetric assay. Since they only reported one reading for 

each community combination, we proceed with our analysis as though the reading is the 

true population mean. 

 

We fit a regression model to the measured xylose oxidation using just the presence or 

absence of each species in communities as predictors with ordinary least squares 

regression (OLS). The linear model produced a good fit to the data (adjusted r2 ~ .8, 

figure 4.1A). Homoscedasticity and lack of obvious bias of the residuals in relation to the 
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fitted values indicates that the model fit was good as does their normal distribution 

(Figure 4.1 B,C). Next, we produced a learning curve to evaluate how the average 

predictive performance of the linear model would be affected by data availability in terms 

of r2. For this system, there is a significant improvement in predictive performance when 

the number of randomly selected samples is increased to 13 from 9, at which point the 

expected r2 is .66 (95% CI .46 - .87). These results indicate that using about 1/5 of the 

possible information will result in a model that has an r2 that is nearly 84% as good as the 

full fitted model (Figure 4.1D). Plotting the residuals as we did in figures 4.1B and 4.1C 

provides us with a visual diagnostic that the assumptions made by our model are 

satisfied. The learning curve in 4.1D gives us a sense of how much data is required to 

fairly represent the full experimental space. 
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Figure 4.1 Performance of a model with additive assumptions only. (A) An ordinary 

least squares linear regression model using only the presence or absence of the 6 

inputsconstituent species produces a strong fit. (B) Homoscedasticity (equal variance of 

residuals across predicted values) and the lack of an obvious bias is evidence of a good 

model fit as is (C) the normal distribution of errors. (D) The predictive performance of 

the model improves as the number of samples made available for fitting increases. There 

is a sharp jump in the mean r2 when the number of samples in the training set increases 

from 9 to 13. Black lines are the 95% confidence interval. 

 

 

To search for lurking interactions we first classified the residuals based on their sign (30 

negative, 33 positive). Next for each motif in the design matrix, we determined how 

many of its associated residuals belonged to each class and calculated the probability of 

that association occurring by chance for a motif of the same size. Due to the nature of this 

data, even the most extreme associations fail to reach significance after multiple 

hypothesis correction at α = .05. Therefore, we decided to examine in detail those motifs 

that were fully associated with a single class and had a p < .01. We identified five motifs 

representing three unique combinations of species each involving three species using this 

criterion (Table 4.1). 

𝑆𝑝1 𝑆𝑝2 𝑆𝑝3 𝑆𝑝4 𝑆𝑝5 𝑆𝑝6 −𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 +𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠
−1 −1 0 −1 0 0 7 0
1 −1 0 1 0 0 0 8
1 1 0 1 0 0 8 0
1 −1 0 0 0 1 0 8
0 −1 0 0 1 −1 0 8

 

Table 4.1. Motifs fully associated with one residual class. For columns 1 through 6, a 1 

indicates the species is present, -1 that it is absent, and 0 that it is ignored. 

 

 

These microbial combinations suggested that there are potentially several significant 

three-way interactions. Alternatively, each three-way motif may represent the co-

occurrence of two or more significant pairwise interactions. To distinguish between these 
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possibilities we first quantified the strength of all pairwise interaction effects by 

calculating how the effect of species A on net biomass of the community is affected by 

the presence or absence of species B and then calculating the probability of the 

interaction effect being non-zero (Methods – Quantification of Interactions). Our analysis 

showed that there were four significant pairwise interactions – species 2 interacts 

antagonistically with species 1, 4, and 5 and species 6 interacts negatively with species 4 

(Figure 4.2). Then for each unique three species combination, we tested the likelihood 

that a third species, C, modifies the effect of the corresponding pairwise interaction AB 

on net biomass. Although we are able to quantify the strength of the net interaction, it is 

worth noting that with this approach we are unable to determine the directionality of 

interactions (i.e. A affects B while B does not affect A).  
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Figure 4.2 Adding an interaction term between two species influences the value of the 

constituent regression coefficients. From this data, we can determine the net effect of an 

interaction between two species but not the directionality or relative contributions. Most 

interaction terms appear to be cooperative (although not significantly different from 

zero). Species 2 has evidence for negative interactions with three other species {1, 4, 5} 

as does the interaction between species 4 and 6. * = p < .05. 

 

Next, we tested the hypothesis that there are significant interactions among the unique 

three species combinations involved in the motifs we identified. In order for a three-way 

interaction to be significant, the addition of a three-way interaction term should affect the 

coefficients of the two-way interaction terms. For each of these combinations highlighted 

by the motifs we discovered, we quantified the effect adding a three-way interaction term 

had on the coefficient for the interaction of the pairwise interactions. None of the three-

way interactions effects we investigated were statistically different from zero, leading us 

to reject the prospect of a large influence coming from three way interactions in this 

system. We specified a new form of the linear model which included terms for the four 

pairwise interaction of species. The inclusion of these four interaction terms improved the 

fit (adjusted r2 ~ .92) and predictive power of the model (predicted r2 ~ .9) (Figure 4.3A). 

The new model with interaction terms was also more parsimonious than the form without 

interaction terms (AICoriginal : -60.52, AICplusInteractions : -118.38). The residuals displayed 

both constant variance and no bias (Figure 4.3 B) but the errors appeared to almost 

normally distributed (Figure 4.3 C). The learning curve displayed the same shape as it did 

for the no interaction model (Figure 4.3D).  
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Figure 4.3. Performance of a model with significant interaction terms. (A) Leave one 

out prediction of net xylose oxidation when four pairwise interaction terms were included 

in the model (2x1, 2x4, 2x5, and 4x6). (B) Residuals of the more complicated model are 

unbiased and homoscedastic. (C) Residuals of the new model are not quite normally 

distributed. (D) The predictive performance again shows sharp jump in the mean r2 when 

the number of samples in the training set increases from 9 to 13. Predictive accuracy 

begins to saturate around 20 training samples. Black lines are the 95% confidence 

interval.  

 

Analysis of communities of 18 fungi 

The second data set is a system of 18 wood decay basidiomycete fungi grown in petri 

dishes by Maynard et al [158].  The authors set up 147 combinations out of a possible 

262,144 combinations and assayed them for net biomass production. We fit an OLS 

model to the measured net biomass using the presence or absence of each species as 

binary predictors. The performance of the model was weak in contrast to what we 

observed with the bacterial communities, but still useful (fitted r2 ~ .36 Figure 4.4A). The 
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residuals display a random pattern (Figure 4.4B) and are normally distributed but with a 

long positive tail (Figure 4.4C). The learning curve shows a steadily increasing r2 as the 

number of training samples increases, but there is not an obvious elbow along it (Figure 

4.4D).  

 

Figure 4.4. (A) The fitted values against observed net biomass for communities of 18 

fungal species. (B) Residuals appear to be unbiased with even variance across fitted 

values. (C) Residuals also appear to be normally distributed, indicating that the 

assumptions of the linear model are satisfactory. (D) The trajectory of the learning curve 

is smooth. 

 

We evaluated the strength and likelihood of all 153 pairwise interactions. We found five 

significant pairwise interactions (non-overlapping 95% confidence intervals), two net 

positive interactions and three net negative interactions (Figure 4.5). Species 2 was 

involved in both positive interactions -one with species 1 and one with species 6. Species 
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14 was involved in all three negative interactions, its interaction partners were species 11, 

15, and 16. Because of the overlap between two-way interactions, we added the triplet 

combination of species 1, 2, and 6 to the set of prospective high order combinations we 

wanted to evaluate along with the four-way combination of species 11, 14, 15, and 16. 

We next searched the higher order combinatorial space to identify motifs of species that 

stand out. For 18 species, there are greater than 387x106 motif combinations that could 

occur in the design matrix. Since we do not normally expect higher order interactions to 

be significant and the evidence that supports them becomes scarcer as they become more 

complicated we exhaustively evaluated all motifs involving up to four species. We fully 

investigated only the most widely applicable motifs that were fully associated with one 

residual class (restricted to motifs with greater than 10 instances). We identified three 

candidate motifs this way, each involving the presence or absence of 4 species. Along 

with the two combinations of species found when we quantified pairwise interactions, we 

now had five high order combinations to evaluate for the presence of interactions (Table 

4.2). 
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Figure 4.5 Adding an interaction term between two species influences the value of the 

constituent regression coefficients. Interaction terms appear evenly split between 

antagonistic and cooperative (81 positive, 72 negative). Species 2 has evidence for 

positive interactions with species 1 and 6. Species 14 has negative interactions with 

species 11, 15, and 16. * = p < .05 and 95% confidence intervals are non-overlapping. 

 
𝑆𝑝𝑐1 𝐼𝐷 𝑆𝑝𝑐2 𝐼𝐷 𝑆𝑝𝑐3 𝐼𝐷 𝑆𝑝𝑐4 𝐼𝐷

1 2 5 9
1 2 9 15
4 7 14 17

11 14 15 16
1 2 6 𝑛𝑎

 

Table 4.2. Combinations of species identified for in depth analysis. 

For each triplet combination within the larger sets, we calculated the probability of a third 

species affecting the interaction between two species. We did the same for the full four 

species interactions in the applicable combinations by measuring the effect of the fourth 
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species on the coefficient for the three species interaction. There was no evidence for 

significant influences occurring in any of the three way interactions nor most of the 4 

species interactions. However, we found evidence supporting the existence of a net 

positive 4-way interaction involving species 1, 2, 5, and 9 (p = .035). This combination is 

one of the three combinations we identified via motif analysis. A new linear model that 

incorporated the 4-way interaction and the five significant pairwise interactions we 

identified earlier resulted in an improved performance (predicted r2 ~ .488) (Figure 4.6A). 

The new model was significantly parsimonious compared to the original additive model 

(AICoriginal : -102.74, AICplusInteractions : -144.8). The residuals follow the same patterns as 

they did for the no interaction model (Figure 4.6B,C). The learning curve displays an 

upward bending elbow between 29 and 37 training samples then smoothly increases until 

the full data set is used (Figure 4.6D). It appears that given our choice of representation, 

more observations are needed in order to reach a saturation point, signaled by a sharp 

decrease in the rate of improved prediction. While none of the 3-way interactions that 

could be made from the set of species 1, 2, 5 and 9 was statistically significant, they all 

produced net negative interactions, which are the likely causes of the motif’s strong 

association with negative residuals.  
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Figure 4.6 (A) Leave one out prediction of net biomass when five pairwise interaction 

terms and the order-four interaction term are included in the model. (B) Residuals of the 

more complicated model are unbiased and largely homoscedastic. (C) Residuals of the 

new model are not quite normally distributed. (D) The predictive performance shows an 

inflection point between 29 and 37 training samples when a sharp upward trend in r2 

begins. After this point, the smooth monotonic growth in performance indicates that there 

more samples are needed in order to reach predictive saturation. 

 

Discussion 

High throughput experiments of hundreds and sometimes thousands of synthetic 

microbial consortia are becoming commonplace [35]. Building reliable predictive models 

for the functions of these communities is the first step to being able to engineer them. 

While prediction of community functioning is a powerful tool, we will also need to 

understand the nature of the interactions within communities that cause community 

phenotypes. By identifying and quantifying interspecies interactions in synthetic 



 

 

77 

consortia, we will be able to build models with improved predictive performance. Not 

only will our predictive powers increase, but also by better understanding the statistical 

interactions that are present in our experimental systems, we will be able better guide our 

search for the mechanisms of interactions.  

Here we have demonstrated how to use a motif analysis of residual errors to 

identify putative high order interactions. We further demonstrated how one could use 

regression models methods to quantify the strength of interactions contained within high 

order combinations of microbes and test their significance. Our results on the xylose 

oxidizing soil bacteria reveals that even when additive assumptions are sufficient to build 

a model with good predictive properties that a detailed analysis of patterns associated 

with error types can reveal significant interactions that would otherwise be missed. 

Adding these interactions to the linear regression model resulted in a significant increase 

in terms of predictive power at a relatively cost in terms of extra parameters.  

The results of our analysis on the 18 fungal species community data set illustrates 

the potential impact a motif analysis of residuals can have. When the combinatorial space 

is too large to exhaustively search, limiting the scope of the inquiry can still reveal 

interesting species combinations worthy of in depth investigation. In this data set, we 

found three motifs involving four fungal species each that were fully associated with 

negative residual errors – that is to say, whenever these particular combinations of 

variables were present the model overestimated the net productivity of the community. 

Of these we found none of the 3-way interaction terms to be significant but interestingly 
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found that one of the 4-way interaction terms was and that the sign of its coefficient was 

opposite to the sign of its constituent 3-way interactions.  

  To date most of the experimental studies we have found in the literature that try to 

predict community functions as linear functions of the constituent species neglect to 

search for significant interactions. Feature selection with methods such as LASSO [173] 

and stepwise regression [57] are often used to produce a parsimonious model with high 

predictive accuracy that is also amenable to interpretation. While predictive power is not 

adversely affected by these methods, they introduce significant biases into the parameter 

estimates [174]. If the goal of the study is interpretation of the coefficients then the 

coefficients for all species in the experiments should be kept, even when their coefficients 

are not significant, and when an interaction term is being evaluated all of its constituent 

terms should be as well [174].  

 

This study focused on identifying and quantifying interspecific interactions across many 

synthetic consortia. However, in the future we should combine these methods with 

genomic analyses to develop plausible hypotheses regarding the biological mechanisms 

driving the interactions. 

 

Methods 

Data Sets: The xylose oxidation dataset was produced by Langeheder et al [164]. We 

obtained the design matrix and measurements data table from the supplemental files of 
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Jaillard et al [175]. The design matrix and measurements for the experiments with 18 

fungal strains were obtained from the supplemental files from Maynard et al [158]. 

Linear Regression 

To build a predictive model of community productivity as a function of community 

composition of n species we specified a linear regression model according to the 

equation: 

y =  𝛽0 + ∑ 𝛽𝑖𝑋𝑖 +  𝜀𝑛
𝑖=1   

Where y is the observed measurement (i.e. net oxidation of xylose, or net biomass), 𝛽0 is 

the average community productivity, each 𝛽𝑖 coefficient is the per-unit effect 𝑋𝑖 has on y, 

each 𝑋𝑖 is a binary variable indicating the presence or absence of species, and 𝜀 is the 

residual error term. We used ordinary least squares to estimate the values of the 

coefficients. When including interactions between species we add a new 𝛽𝑖 coefficient 

and a new 𝑋𝑖 term that is the product of the species in the interaction and increment n by 

one. 

Cross-Validation 

To obtain an estimate of the predictive utility of a given regression model we performed 

leave-one-out cross validation. In this process, we fit a model to all but one sample in the 

data set and then predict the value of that observation. We repeat this step until every 

sample in the data set has a predicted value. We then calculate the Pearson correlation of 

the predicted and observed values, which we report as the predicted r2. 

Learning Curves 
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To build learning curve we defined a set of fractions, f = {.1, .15, .2, .25, .35, .4, .45, .5, 

.55, .6, .65, .7, .75, .8, .85, .9, .95}, which we used to define the number of samples we 

allocate to the training set in order to evaluate test error as a function of data availability. 

For each fraction in f, we fit a regression model to 100 randomly selected sub-sets of the 

corresponding size and held the omitted data separate to use as an independent test set. 

We recorded the r2 for each iteration of predictions.  

Quantification of interactions 

We adopt the methods and practices described by [174] for interpretation of interaction 

effects in linear models. When there are no interaction terms included in a linear 

regression model then we may interpret the coefficients associated with each 𝑋𝑖 as the 

unconditional marginal effect of that species’ presence on the quantity of interest. When 

an interaction term is included, such as in the simple two variable system below this 

interpretation can no longer be used because 𝛽1 is now conditionally dependent on the 

value of Z. 

𝑦 = 𝛽0 +  𝛽1𝑋 +  𝛽2𝑍 +  𝛽3𝑋𝑍 +  𝜀 

When Z = 0 the above equation becomes: 

𝑦 = 𝛽0 +  𝛽1𝑋 +  𝜀 

In this form it is clear that 𝛽1 captures the per unit effect of X on y. We can re-write 

equation (1) to capture the effect of X on y when Z is present (Z = 1): 

𝑦 = (𝛽0 + 𝛽2) +  (𝛽1 + 𝛽3)𝑋 +  𝜀  

The contribution of X on y is represented by its marginal effect: 

𝜕𝑦

𝜕𝑋
=  𝛽1 + 𝛽3𝑍 
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The standard error of the parameter estimate is  

�̂�𝜕𝑦
𝜕𝑋

= √𝑣𝑎𝑟(�̂�1) +  𝑍2𝑣𝑎𝑟(�̂�3) + 2𝑍𝑐𝑜𝑣(�̂�1�̂�3) 

With these equations, we derive a confidence interval for the effect that X has on y 

conditional on Z. When investigating an interaction effect all constitutive terms of the 

interaction must be included in the model, e.g. when the interaction being investigated is 

WXZ then the terms W, X, Z, WX, WZ, XZ should also be included in the model in order to 

obtain an unbiased estimate of the interaction effects. We implemented these calculations 

with the interplot package for R []. 

To determine the significance of an interaction with overlapping confidence intervals we 

calculate the t-statistic: 

𝑡 =  
�̂�1𝑧=1 − �̂�1𝑧=0

√�̂�𝛽1𝑧=1

2 +  �̂�𝛽1𝑧=0

2  

 

Definition of motifs 

For our purposes, we define a motif to be a specific combination of variables and values 

found within the design matrix. For example, for a design matrix of three binary variables 

eight unique vectors can be constructed: 

𝑉1 𝑉2 𝑉3
0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1
1 1 1

 



 

 

82 

A motif need not contain all of the variables in the matrix, e.g. {V1 = 0, V3 = 1}. The 

number of motifs that can be found in a complete binary matrix of n variables is roughly 

3n.  

Identification of potential high-order interactions 

In order to identify potential combinations of variables that are interacting we first 

convert the residual errors from the fitted model into a set of classes based on their sign. 

Next, we construct a matrix that stores every motif present in the design matrix. When 

the number of variables is small, this matrix contains the exhaustive list of all motifs in 

the design matrix; this was what we did for the six-member soil bacteria data set. When 

the combinatorial space is unwieldly, we define a cutoff in terms of motif complexity – in 

the case of the 18 fungal strain data set, we limited our exhaustive search to motifs 

involving at most four variables.  

For each of our curated motifs we find all of the samples within the design matrix that 

possess that motif – e.g. identify all vectors where V1 = 0 and V3 = 1. We then enumerate 

the number of identified vectors that produced negative residual errors and the number 

that produced positive residual errors. The association of the motif with a particular error 

types is determined by calculating the cumulative hypergeometric probability of it being 

associated with that many samples of the given error type if its observed residual errors 

had been randomly assigned.  
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CHAPTER FIVE 

 

Discussion  

In this thesis, I reviewed the current state of synthetic microbial ecology and some of the 

applications that motivate research in the area. Throughout much of the field’s history, 

the bulk of scientific research has been on the optimization of single species functions. 

This was achieved either through modification of the organisms’ genomes or by 

optimization of the environmental growth conditions. These approaches have been 

extraordinarily successful as evidenced by the abundance of companies dedicated to 

using them. 

 

The recognition of the importance of the microbiome in human health has resulted in the 

development of synthetic gut consortia as therapies for various ailments, a “bugs as 

drugs” approach. These methods necessarily rely on the power of communities to achieve 

their ends. Identifying and characterizing the interactions in these consortia is very 

challenging but is seen as a necessity in order to fully understand these communities and 

ultimately engineer them. A key step along this path is gaining the ability to predict the 

nature of interactions between microbes. 

 

In chapter two, I described a conceptual framework that we can use for representing 

interactions between two microbes so that we may apply machine learning methods. To 

the best of my knowledge, this is the first application of a machine learning approach to 
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the prediction of interspecies interactions of microbes. As is the case with most machine 

learning applications, the choice of feature representation is more important than the 

specific algorithm chosen. The reason for this is that our ability to derive meaningful 

hypotheses from the trained models is directly affected by how we perceive the features. 

 

In chapter three I built on the concepts of feature contributions in random forests that I 

introduced in chapter two. The main influenceof feature contributions to the concept that 

eventually became BowSaw is the idea of following the path individual samples take 

through the forest and track the frequency of pairwise variable co-occurrences as 

evidence for pairwise interactions.  

 

The intuition behind BowSaw reflects the action we observe on a Galton board. A Galton 

board is a device, such as a board, that has many rows of pegs arranged triangularly, 

beginning with one peg at the top and ending with the greatest number of pegs on the 

bottom row. When we drop a ball down the board it hits the first peg and then gets sent to 

either the left or the right where it encounters another peg and this decision is made 

again. As an analogy to random forest we can imagine that the first peg is the splitting 

variable that is encountered at the root node of a tree and the subsequent peg is the next 

variable along the branch. At the first node there is some probability distribution for the 

likelihood that each variable will be selected as the splitting variable and this is true at the 

second node and so on. The probabilities are not constant though at each node, in fact the 

probability distribution at nodes other than the root node are conditionally dependent on 
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the history of splitting decisions that preceded them. If there is a true positive statistical 

relationship between two variables {A,B} then a split on variable A will increase the 

probability of variable B being selected as the child of the A node. We assume that giving 

many opportunities for this interaction to occur randomly by building many trees will 

cause the interaction pair A -> B to occur more frequently than a false interaction e.g. A -

> C. In this work, I focus on the practical implications of finding high order interactions 

only. In the future attention should be paid to the statistical properties of using the 

BowSaw approach in order to formalize the assumptions it makes and better understand 

the mechanics of random forests. 

 

The current form of BowSaw is subject to some considerable limitations. Firstly, due to 

its reliance on exactly matching values in order to generate candidate rules it is only 

meaningfully useful on data sets with discrete or categorical predictors. Second, while the 

relevant variables are identified, it does not provide any extra insight into the functional 

relationship between them. Finally, in order to apply it to regression forests we must first 

convert the forest into a classification forest. 

 

Chapter four is an exploratory analysis of the residuals produced by linear regression and 

their associated patterns. In this study, I applied an additive linear model to microbial 

communities in order to predict community function (e.g. xylose oxidation, net biomass). 

These models appear to be well fit to the data and the assumptions of linear regression 

upheld. By looking at high order patterns and determining their associations with certain 
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types of errors I was able to identify putative interactions. Statistical evaluation of these 

interactions revealed evidence that some of these interactions may be real and this 

manifests in the significant improvements to model predictions when their interaction 

terms were accounted for. The methods I described in this chapter, while quite simple, 

lay the foundation for a new line of inquiry in looking for and quantifying interspecies 

interactions in microbial consortia. This is an important avenue for future development 

since the current approaches tend to rely heavily on pairwise correlational analysis, which 

cannot be easily extended to higher order interactions, and are prone to producing many 

false positives [48]. 
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APPENDIX 

  

Supplemental Figure A.1. Feature contributions were used to find a facilitative 

metabolite in samples that had a positive relative yield (RY > 0). The empirical probability 

distribution of the average rank at which the first facilitative metabolite would be 

encountered by sampling metabolites randomly one at a time was calculated for each 

sample and compared to the observed probability distribution obtained from using ranked 

feature contributions. By chance, the median first metabolite is encountered after 65 

queries (mean ≈ 58.7). With feature contributions, the median number of queries was 27 

(mean ≈ 50). The number of experiments required by chance to find the first metabolite in 

a sample is a function of the number of real mechanisms in that sample and is the cause of 

the observed multimodality. Positive samples were scarce in the in silico data set 
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(420/9,900). A reliable classifier was developed via a balanced training set created by 

randomly sampling 420 nonpositive samples. This process was repeated 100 times, with 

an observed median balanced accuracy of ∼85%. A single random forest model was then 

used to calculate the feature contributions for the identification of putative facilitative 

metabolites.  

 

 

 

Supplemental Figure A.2. A. Bar plot of the calculated feature contributions for the 

growth response of a ΔMet mutant cocultured with a ΔCys mutant in the E. 

coli auxotrophs case study. The feature contribution from the receiver methionine is 

≈0.41. The feature contribution from the giver cysteine is ≈−0.03. The net contribution 

from the remaining predictors is ≈0.02. (B) The ΔMet mutant typically had a strong 

response in coculture no matter the identity of its interaction partner; 12 interactions 

resulted in strong response type for the ΔMet mutant. When it was grown with a ΔCys 

mutant, however, it had a weak growth response. The use of feature contributions 

correctly identified the receiver’s methionine and the giver’s cysteine as the first and 

second most important predictors, respectively, in this interaction. The contribution from 

the receiver methionine is overwhelmingly positive, reflecting the fact that the ΔMet 

mutant typically benefits strongly from coculture and results in the strong response 

prediction in panel A. To develop a hypothesis for why this interaction defied the 

expectations of the random forest, we consulted the literature regarding the biosynthetic 

pathways for methionine and cysteine and learned that under the specified growth 

conditions, cysteine is necessary for the biosynthesis of cystathionine. Cystathionine is 
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subsequently required for the biosynthesis of homocysteine, which is in turn required for 

the production of methionine. Given this knowledge, we suspect the ΔCys mutant is 

unable produce methionine until enough cysteine accumulates in the environment, and 

the ΔMet mutant must wait for the ΔCys mutant to use its excess cysteine for the 

production of excess methionine (B). The ΔMet mutant is likely not able to provide an 

abundance of extracellular cysteine for the ΔCys mutant early in the interaction, because 

cysteine biosynthesis is tightly regulated due to its toxicity, but (i) efflux of cysteine has 

been proposed as a potential regulatory mechanism and (ii) likely enables the ΔMet 

mutant to produce low levels of extracellular cysteine. The waiting time associated with 

ΔMet mutant-derived cysteine to accumulate in the environment would result in delayed 

growth for both strains relative to other interactions involving the ΔMet mutant. The 

reported fold changes in this experiment were 0.8 for the ΔMet mutant and 1.2 for the 

ΔCys mutant. The weak growth response of the ΔMet mutant is consistent with delayed 

growth 

 

 

Supplemental Figure A.3 For 3 subset sizes of the in silico dataset (100, 500, and 

1,000), the respective number of samples was randomly selected to use for training a 

random forest. The AUCs of the ROC curves were calculated using the Jaccard distance 

as a single threshold on the training set, the vote proportions on the out-of-bag samples 

from the random forest on the training set, and the vote proportions of the random forest 

on the samples in the test set. This process was repeated 5 times for each subset.  
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Supplemental Figure A.4 (A) The out-of-bag error rate as a function of nTree for the 

random forest model trained on the full in silico data. Error converges at ~150 trees; the 

green line is the error rate for nonnegative responses, the red line is the error rate for 

negative responses. (B) A random subset of 500 samples of the in silico data and for the 

series of possible values of mTry (1, 2, 4, 6, 76, 95, 114, 133, 152, 171, 190, 209, 228, 

247, 266, 285, 304, 323, 342, 361, and 380) was selected to see if tuning the 

hyperparameter mTry resulted in benefits to performance. The AUCs were calculated for 

the ROC curves obtained from the subsequent class votes. This process was done for 5 

random subsets of 500 samples. Points that are the same color in the figure correspond to 

AUC results from the same series.  
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Supplemental Figure A.5 Phylogenetic classifications for each metabolic model were 

used as an alternative set of features. The out-of-bag error for a model trained on the full 

9,900 sample data set is ~ 21.18% (black line); the green line is the error rate for 

nonnegative responses and red line is the error rate for negative responses.  
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SeedID Name 

Times Found 

First 

Median 

Rank 

cpd00082 D-Fructose 1041 4 

cpd11581 gly-asn-L 347 9 

cpd11593 ala-L-asp-L 308 8 

cpd11589 gly-asp-L 261 8 

cpd00053 L-Glutamine 252 3 

cpd00039 L-Lysine 245 2 

cpd00277 Deoxyguanosine 197 2 

cpd00246 Inosine 192 3 

cpd00080 G3P 176 2 

cpd00654 Deoxycytodine 161 3 

cpd00179 Maltose 151 6 

cpd00162 Aminoethanol 149 2 

cpd00105 D-Ribose 145 2 

cpd00047 Formate 142 2 

cpd00129 L-Proline 116 6.5 

cpd00027 D-Glucose 113 5 

cpd00264 Spermidine 99 5 

cpd03279 Deoxyinosine 98 3 

cpd11585 L-alanylglycine 86 6 

cpd00220 Riboflavin 82 5 

cpd00023 L-Glutamate 80 4 

cpd00516 

meso-2,6-

Diaminopimelate 75 1 

cpd00182 Adenosine 66 3 

cpd00367 Cytidine 66 4 

cpd00156 L-Valine 59 4 

cpd00106 Fumarate 58 1 

cpd00122 

N-Acetyl-D-

glucosamine 58 3 

cpd01017 Cys-Gly 51 3 

cpd15605 Gly-Phe 47 12 

cpd15606 Gly-Tyr 47 11 

cpd00322 L-Isoleucine 44 5 

cpd01080 ocdca 33 2 

cpd00051 L-Arginine 32 2 

cpd11586 ala-L-glu-L 29 9 

cpd11588 gly-pro-L 28 11.5 

cpd00438 Deoxyadenosine 26 6 

cpd00159 L-Lactate 24 1 
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cpd15604 Gly-Leu 23 10 

cpd00092 Uracil 20 2.5 

cpd00644 PAN 20 6 

cpd00108 Galactose 19 3 

cpd00311 Guanosine 18 1 

cpd00035 L-Alanine 17 2 

cpd00118 Putrescine 17 3 

cpd00249 Uridine 17 2 

cpd11591 Gly-Met 16 2 

cpd00054 L-Serine 15 4 

cpd00794 TRHL 14 2 

cpd00184 Thymidine 13 4 

cpd00309 XAN 13 6 

cpd11583 Ala-Leu 13 8 

cpd00013 NH3 11 7 

cpd11582 ala-L-Thr-L 11 9 

cpd00036 Succinate 10 1 

cpd00137 Citrate 10 7.5 

cpd00064 Ornithine 9 12 

cpd00117 D-Alanine 8 4 

cpd11584 Ala-His 8 9.5 

cpd11606 Menaquinone 7 8 4.5 

cpd00060 L-Methionine 6 6.5 

cpd00393 Folate 6 3 

cpd00028 Heme 5 1 

cpd00133 Nicotinamide 5 3 

cpd00208 LACT 5 3 

cpd00226 HYXN 5 10 

cpd00305 Thiamin 5 3 

cpd00355 

Nicotinamide 

ribonucleotide 5 8 

cpd00065 L-Tryptophan 4 7 

cpd00076 Sucrose 3 4 

cpd00107 L-Leucine 3 7 

cpd00066 L-Phenylalanine 2 2.5 

cpd00158 CELB 2 14.5 

cpd00268 H2S2O3 2 2.5 

cpd00276 GLUM 2 5.5 

cpd00655 Dephospho-CoA 2 15.5 

cpd00024 2-Oxoglutarate 1 1 

cpd00130 L-Malate 1 12 
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cpd00136 4-Hydroxybenzoate 1 3 

cpd00161 L-Threonine 1 1 

cpd00185 D-Arabinose 1 2 

cpd11590 met-L-ala-L 1 98 

cpd16336 Isoprene 1 2 

Supplemental Table A.1 Top metabolites for which pairs of organisms are predicted to 

compete based on ranked feature contributions. 
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Supplemental Table A.2 Numbers of times each of the 194 metabolites were consumed 

by both organisms in negative interactions. Metabolite cpd00082 corresponds to fructose. 

Legends for all metabolites can be found at http://modelseed.org/biochem/compounds.  

 

Supplemental Table A.3 Counts of how often one or both auxotrophic amino acids were 

the strongest predictors for E. coli interactions.  

 

http://modelseed.org/biochem/compounds
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Supplemental Table A.4 KEGG module names and IDs identified with PICRUSt for the 

soil bacteria case study dataset.  
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