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ABSTRACT 

 Batesian mimicry is a classic example of adaptation wherein the benefit of 

bearing the mimetic trait is directly and positively correlated with fitness. This tangible 

fitness benefit makes mimicry an excellent model system for addressing one of the 

largest remaining questions in evolutionary biology, that of the origin and maintenance of 

adaptive phenotypic diversity. Here I set out to answer a small part of this larger question 

- namely, what maintains color pattern polymorphism between two hybridizing species of 

admiral butterflies (genus Limenitis) in western North America. I address this question by 

examining both predator-mediated selection on the phenotype, and by investigating 

phenotype-genotype association across the genome. In chapter one, I demonstrate the 

adaptive significance of the mimetic orange apical forewing patch (AFP) phenotype in 

Limenitis lorquini through the use of a large-scale predation experiment. In the chapter 

two, I localize the genomic region responsible for this color pattern variation using a 

mapping cross and quantitative trait locus (QTL) analysis. Finally, in chapter three I 

identify putative causal variants that are associated with the phenotype using linear 

modeling in a genome wide association study (GWAS). Collectively, my results suggest 

that the presence or absence of the orange AFP phenotype is associated two separate 
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regions of the genome. The first region includes an undescribed gene, while the second 

contains variation near the known color patterning gene optix. Studies of the functional 

relationship between these gene regions and phenotype will be necessary to confirm this 

hypothesis and examine how selection acting on these regions of the genome impact 

patterns of introgression and gene flow across the species boundary between these two 

hybridizing admiral lineages.  
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PREFACE 

Diversity of form is one of the most striking features of the natural world. Endeavoring to 

categorize and understand how such diversity comes about has been a key focus of 

biologists since antiquity. From Aristotle's "the parts of animals" (Aristotle 350BC) -- 

where he describes the life cycle of a butterfly (likely Pieris brassicae) in great detail and 

contrasts it with that of other insects -- to more modern scientists like Henry Walter 

Bates, the diversity of life has been a constant source of fascination. In Bates' case, he 

became fascinated with the diversity of butterfly color patterns that he encountered 

during his famous voyage to South America in 1848 with fellow scientist Alfred Russel 

Wallace. During this journey he was struck both by the diversity of butterfly color pattern 

and the degree to which many unrelated species closely resemble each other when 

occurring in the same environment. He remarked: 

In tropical South America a numerous series of gaily-colored butterflies and moths, 

of very different families, which occur in abundance in almost every locality a 

naturalist may visit, are found to change their hues and markings together, as if by 

the touch of an Enchanter's wand, at every few hundred miles". (Bates 1879; 

Harrison 1993) 

The interesting thing was not that there was so much diversity, according to Bates, but 

rather that there was so much similarity between seemingly unrelated species. For these, 

and other reasons, butterflies have become a model system for understanding the origin 

and maintenance of diversity at multiple levels of biological organization. Butterflies 

have featured heavily, for example in studies of adaptation and speciation, evolutionary 
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genetics, evolutionary developmental biology, and the genetic and genomic basis of 

mimetic color pattern variation. Great strides, particularly with respect to mimicry, have 

allowed researches to begin to understand the genetic and developmental basis of color 

pattern variation and the evolutionary processes that shape adaptive phenotypic diversity 

in natural populations.  

In this preface I provide a brief overview of 1) convergent evolution and Batesian 

mimicry theory, 2) what is known about the genetics of color pattern variation in 

Lepidoptera, and 3) the genus Limenitis. I conclude with a summary of the main 

questions motivating each of my dissertation chapters. 

 

Convergent evolution: Convergent evolution is an evolutionary phenomenon wherein 

two organisms independently evolve similar phenotypes. These new convergent 

phenotypes may introduce barriers to gene flow within a population, thereby driving the 

formation of independent convergent and non-convergent populations. It is these barriers 

to gene flow, which lead to differential fixation of alleles between populations, that set 

the stage for lineage divergence, may lead to speciation. Convergent evolution between 

species can occur in three different ways. First, independent mutations can affect 

different genes or developmental pathways that nonetheless produce similar phenotypic 

outcomes; this is classically exemplified by cave tetra, in which independent mutations in 

Oca2 or Mc1r are both known to induce blindness (Gross, Borowsky, and Tabin 2009). 

Second, independent mutations can affect the same gene or the same developmental 

pathway, resulting in a similar phenotypic outcome; this appears to be a common 
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occurrence and can stretch across wide gulfs of phylogenetic time (e.g., Hoekstra et al. 

2006). Finally, convergent evolution between interfertile species can occur via 

introgression of a mutated gene region; identifying this mode of convergent evolution, 

sometimes called “collateral evolution” (Stern 2013), is complicated by the difficulty 

associated with differentiating introgression events from incomplete lineage sorting, but 

examples of convergence due to introgression have slowly begun to emerge (e.g., Mullen 

et al. 2019 (in press)). In each case, the result is that two phenotypically distinct species 

begin to resemble one another, which has the net effect of increasing intraspecific color 

pattern variation. Importantly, if this intraspecific color pattern variation associated with 

fitness differences, then it could introduce a barrier to gene flow in the form of reduced 

fitness, infertility, or hybrid inviability (Coyne and Orr 2004) and possibly speciation 

(Jiggins et al. 2008). 

 

Genetics of color pattern variation: Experiments aimed at understanding the genetics of 

butterfly color pattern began roughly 100 years ago with crossing experiments performed 

by Leigh and Poulton (1909). This early work, along with similar work in Heliconius 

(Beebe 1955, Turner and Crane 1962), was able to infer that a relatively small number of 

loci of major effect exerted binary (present/absent) control over the variation in color 

pattern in red and yellow color pattern elements. Additionally, control of color is very 

similar to the modular control of pattern in that a relatively small number of co-opted 

genes are responsible (Nijhout 2001; Carroll et al. 1994). Later work using modern 

techniques and DNA sequencing has also revealed a remarkable amount of homology 
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between species in both how they regulate color and pattern (Nadeau et al. 2014; Carroll 

et al. 1994; Papa, Martin, and Reed 2008). However, because pattern and color are 

independently controlled (Brunetti et al. 2001) and often unlinked, the result is additional 

modularity and potential diversity produced by different combinations of patterning loci 

and color loci. When paired with gene regulation in time and space, this modularity is a 

possible explanation for the evolution of widespread diversity in butterfly wing color 

patterns despite the relatively small number of genes. 

  Many of the loci underlying color have been identified in recent years. Pioneering 

work by Sheppard et al. (1985b), Mallet (1989), and Jiggins and McMillan (1997) and 

further characterized by Riccardo Papa et al. (2013) identified a small handful of 

important genetic loci that control color patterning in Heliconius (reviewed by Kronforst 

and Papa (2015)). Red and yellow patterning in Heliconius is controlled by the BD gene 

region, which contains the transcription factor optix. Optix is expressed during the 

development of red wing regions prior to ommochrome pigmentation (Reed et al. 2011), 

which demonstrates a functional link between this gene region and red color. The yellow 

locus (called Cr by Jiggins and McMillan (1997) , now called Yb/N (Kronforst and Papa 

2015)) has been shown to control the size, shape, and pattern of the yellow hindwing bar, 

and recently was found to be homologous with the supergene P in H. numata (Joron et al. 

2006). A candidate gene within this locus is cortex which is differentially expressed in 

black and yellow regions of the wing during development (Nadeau et al. 2016). Finally, a 

third locus has been implicated in the control of forewing band shape and melanization 

(Kronforst, Kapan, and Gilbert 2006). QTL analyses in two different species (Gallant et 
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al. 2014; Kronforst and Papa 2015) reveal that this locus contains the gene WntA, and 

functional demonstrations have revealed consistency between WntA expression and 

melanic patterning. This example is particularly interesting because it demonstrates 

convergence in the genetic basis of color patterning between two species (Limenitis 

arthemis and Heliconius erato) that are highly diverged (~65mya). This remarkable 

convergence in the genetic basis of color patterning points to the possibility that color 

pattern evolution is due primarily to changes at a few genomic "hotspots" (Martin and 

Orgogozo 2013; Papa, Martin, and Reed 2008), and further demonstrates the clear need 

for broadening the scope of study to include additional species.  

  

Mimicry: In his famous work, cited above, H.W. Bates pointed out the similarity between 

the patterns of co-occurring butterfly species that he encountered in the tropics. This, he 

postulated, was due to the fact that some of the butterflies were toxic, and that the non-

toxic butterflies were "mimicking" them; a phenomenon that has since been termed 

"Batesian" mimicry in recognition of his observations. Batesian mimicry is a classic 

example of adaptation where, as Bates predicted, palatable individuals gain protection 

from predation by resembling an unpalatable model species (Bates 1862). Batesian 

mimicry theory makes three concrete predictions: First, the model organism is 

unpalatable, leading to reduced predation because of learned avoidance (Bates 1862; 

Ruxton, Sherratt, and Speed 2004). Second, because the unpalatability of the model is be 

correlated with its phenotype, predators should also reduce their predation of organisms 

that resemble the model. Finally, this protection should disappear in areas where 
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predators have not learned to avoid the phenotype of the model. Despite these clear and 

highly testable predictions, very few field experiments of Batesian mimicry have been 

published. It is very common to infer a mimetic relationship between species that are 

similar in appearance and share a habitat, but this hypothesis goes untested surprisingly 

often. Among those studies that do have experimentally demonstrated mimicry, 

experiments are often conducted in laboratory settings, or are restricted to a handful of 

organisms including snakes (Wster et al. 2004; Pfennig, Harcombe, and Pfennig 2001), 

hoverflies (Rashed and Sherratt 2007), beetles (Hetz and Slobodchikoff 1988), and 

poison-dart frogs (Darst and Cummings 2006). More recently, studies have begun to 

emerge that utilize new techniques to assess the consequences of mimetic resemblance 

(Kristiansen et al. 2018; Palmer et al. 2018), but this new field is still developing. In the 

era of big data and spurious correlation it is increasingly important to establish firm 

biological basis for hypotheses of adaptation. 

Batesian mimicry provides important insights into the evolution of diversity 

because it posits a clear mechanism to explain the initial evolution of mimetic novelty 

following a two-step hypothesis. In this hypothesis an initial shift towards highly fit 

mimics dominating a landscape of relatively unfit non-mimetic individuals (Nicholson 

1927) may result in the non-mimic being supplanted by the mimic -- even in the presence 

of ongoing gene flow -- due to the selective advantage of bearing the mimetic phenotype 

(Ruxton, Sherratt, and Speed 2004). However, in areas where the Batesian model 

organism does not occur the selective landscape may be more variable due to associated 

costs of bearing the mimetic (often conspicuous) phenotype, which results in a 
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heterogeneous distribution (Ruxton, Sherratt, and Speed 2004). It is important to note that 

mimics routinely extend outside of the range of their models (Pfennig and Mullen 2010). 

Such cases, however, do not undermine the theoretical framework underlying a process 

of speciation via divergent selection resulting from mimicry, but merely demonstrates 

that traits that have positive fitness effects in some niches need not simultaneously have 

strongly negative fitness effects in other, unoccupied, niches. The outcome of the 

evolution of mimicry is often two distinct populations (mimetic and non-mimetic) and 

therefore a net increase in diversity. These populations may be genetically separated by 

only one or a small handful of loci that are responsible for the mimetic trait, while the 

remainder of the genome remains relatively similar until the subsequent evolution of 

additional divergent characteristics. 

It remains unclear how quickly porous species boundaries harden, and to what 

extent the genomic architecture of traits experiencing divergence (i.e., “Speciation 

phenotypes”) influence the speciation process (Mullen and Shaw 2014; Shaw and Mullen 

2011). Furthermore, while divergent regions in the genome are often thought to play a 

critical role in the evolution of reproductive isolation, few studies have successfully 

linked genomic divergence at the molecular level to patterns of reproductive isolation in 

natural populations, though some evidence is emerging (Cruickshank and Hahn 2014; 

Marques et al. 2016). To study the possibility that Batesian Mimicry may lead to 

speciation, a group that exhibits the hallmarks of early stage divergent selection for a 

mimetic phenotype is needed. 
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Limenitis: Limenitidine butterflies (Limenitis and Adelpha) are emerging as excellent 

model systems for studying mimicry because of their extreme diversity and widespread 

convergent evolution (Ebel et al. 2015; Porter 1990; Ritland and Brower 1991; Savage 

and Mullen 2009; Willmott 2003). The Limenitis genus is unusual among other temperate 

butterfly species in that mimicry has evolved multiple times, and hybridization is 

common among the species and forms (J. V. Z. Brower 1958a; Mullen 2006; Porter 

1989; 1990). Admiral butterflies (genus Limenitis) are a diverse radiation of butterflies 

found throughout North America. They are notable for the repeated evolution of mimicry 

within the genus, with mimicry having evolved at least three separate times within the 

radiation. The most famous mimetic relationship in Limenitis is between the Viceroy 

(Limenitis archippus) and the Monarch (Danaus plexippus), but significant attention has 

also been paid to mimicry between the eastern Red Spotted Purple (Limenitis arthemis 

astyanax) and the Pipevine Swallowtail (Battus philenor). In each case, a palatable 

Limenitis mimic resembles an unpalatable model, and gains protection from predation as 

a result. However, upon closer investigation, Ritland and Brower (Ritland and Brower 

1991) demonstrated that the relationship between the Monarch and Viceroy is variable 

throughout their shared range, with the Viceroy sometimes exhibiting lower palatability 

than the monarch. This led to the coining of the term "quasi-Batesian" mimicry, and also 

points to the importance of testing mimetic hypotheses. 

Less attention has been paid to the mimetic relationship between Lorquin's 

Admiral (Limenitis lorquini) and the California Sister (Adelpha californica). L. lorquini 

is an Admiral butterfly which is found primarily in California and the Pacific Northwest. 



 

 xvi 

These two butterflies are similar in appearance to most North American limenitidine 

butterflies, with dark brown ground color and a single longitudinal white column or band 

that is colored white/cream in the central symmetry system. Unlike other related 

butterflies with similar color patterns however, L. lorquini bears on its forewing an 

orange apical forewing patch (AFP) which appears to mimic the wing pattern of Adelpha 

californica in the geographic areas where the two species occur. Previous studies have 

demonstrated both the unpalatability of A. californica and the relative palatability of L. 

lorquini, which suggests that L. lorquini is a Batesian mimic of A. californica (Prudic, 

Shapiro, and Clayton 2002). Further tentative supporting evidence, such as a delayed 

brood emergence time for L. lorquini relative A. californica (Shapiro 2016), which may 

indicate an adaptive strategy that allows predators to be educated by the model before 

emergence; phenotypically stable populations of L. lorquini and it's close Great-Basin 

relative, L. weidemeyerii, despite ongoing hybridization; and changes in the geographic 

width of these hybrid zones based on the presence or absence of A. californica further 

support the theory of a Batesian relationship between the two western butterfly species 

(Boyd et al. 1999). Simultaneously, extensive hybridization between these two groups 

suggests a lack of strong prezygotic barriers to gene flow and indicated relatively recent 

divergence. When taken together, these two qualities -- 1) Batesian mimicry, and 2) 

distinct yet hybridizing populations -- make L. lorquini an attractive study system for the 

effects of selection on gene flow, the species boundary continuum, and the origins and 

maintenance of color pattern diversity. Despite this, field tests of mimicry between these 

two species have never been conducted and the genomic basis of their phenotypic 
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divergence remains unexplored. 

Therefore, the aim of the research I present here is twofold: To explore the 

adaptive significance of convergent evolution between L. lorquini and A. californica to 

test the hypothesis of Batesian mimicry between these two species. 

1. To test the adaptive significance of the orange AFP by investigating the hypothesis 

of mimicry.  

2. To identify the gene(s) or genomic region(s) that is(are) responsible for the orange 

AFP in L. lorquini. 

To accomplish this, I first present the results of a field study which tests the efficacy of 

Batesian mimicry inside and outside the geographic range of A. californica using actual 

predators in their natural habitat. Then I test for an association between the presence or 

absence of the mimetic phenotype and a genomic region using restriction site associated 

DNA (RAD) sequencing data to create a linkage map and to perform a QTL experiment. 

Finally, I utilize whole-genome sequencing and high-throughput genomics to assess the 

relationship between genomic variation at the previously identified QTL and the orange 

AFP phenotype in a natural population of hybridizing Limenitis.  
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CHAPTER ONE: 

Testing the adaptive hypothesis of Batesian mimicry among hybridizing North 
American admiral butterflies 

 
Introduction 

Predator avoidance is a key adaptive requirement for most animal species. A 

common survival strategy is to adopt phenotypes which can serve one of three functions: 

1) to reduce the number of predator-prey interactions 2) to reduce predation via warning 

signaling or deflection markings or 3) to dupe predators into mistaking the organism for 

an unpalatable species. The latter case, known as Batesian mimicry, is a classic example 

of adaptation in which a palatable mimic is protected from predation by resembling an 

unpalatable model (Bates 1862). Although lab-based experiments have provided 

compelling evidence that predators learn to recognize unpalatable prey based on their 

warning coloration (J. V. Z. Brower 1958a; Exnerová et al. 2015; Huheey 1980; Ruxton, 

Sherratt, and Speed 2004), and therefore avoid palatable mimics, field-based tests of 

Batesian mimicry theory are far less common (Finkbeiner, Briscoe, and Mullen 2017; 

Hetz and Slobodchikoff 1988; Howarth, Edmunds, and Gilbert 2004; Jeffords, Sternburg, 

and Waldbauer 1979; Rashed and Sherratt 2007; Winand et al. 1993) 

Perhaps the best experimental evidence for Batesian mimicry in nature comes 

from studies of predation on coral snake mimics (Harper and Pfennig 2007; Kikuchi and 

Pfennig 2010; Pfennig, Harcombe, and Pfennig 2001; Pfennig et al. 2007). By taking 

advantage of geographic variation in abundance of a venomous Batesian model, Pfennig 

(Pfennig, Harcombe, and Pfennig 2001) demonstrated that a) predators avoid coral snake 

mimics where the model is common, and b) that protection from predation breaks down 
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outside the range of the model, and this trend is consistent across gradients from 

sympatry to allopatry. This frequency-dependent dynamic strongly implies that Batesian 

mimics should only be found in geographic sympatry with their model (Ruxton, Sherratt, 

and Speed 2004). Surprisingly, however, many Batesian mimics also occur in allopatry 

with their models (Carpenter and Ford 1933; Pfennig and Mullen 2010; Poulton 1909; 

Waldbauer 1988), and evidence suggests that sympatric and allopatric mimics may 

experience strongly divergent selection over narrow spatial scales (Harper and Pfennig 

2007; Ries and Mullen 2008). Indeed, more recent findings (Pfennig, Akcali, and Kikuchi 

2015) found that predator-imposed selection disfavors immigrants and non-mimetic 

hybrid phenotypes, leading to reproductive isolation between sympatric and allopatric 

populations. 

Taken together with evidence from Müllerian systems that selection for mimicry 

leads to reproductive isolation via similarly predator-driven mechanisms (Jiggins et al. 

2001; Mallet et al. 1990; Mallet and Barton 1989; Twomey, Vestergaard, and Summers 

2014), these findings suggest that mimetic traits may represent “speciation phenotypes” 

(i.e., - traits whose divergence predictably leads to a reduction in gene flow and/or 

speciation) (Mullen and Shaw 2014; Shaw and Mullen 2011; 2014). However, any 

attempt to draw this conclusion is premature given the lack of a robust set of 

experimental field tests of Batesian mimicry in other systems. As noted above, Batesian 

mimicry theory makes three predictions that can be tested directly. First, the model must 

be unpalatable to a predator of both the model and the mimic (Bates 1862; Ruxton, 

Sherratt, and Speed 2004). Second, the unpalatability of the model should lead to reduced 
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predation on organisms that closely resemble it in areas where predators are educated to 

the model's appearance (Pfennig, Harcombe, and Pfennig 2001; Pfennig et al. 2007). 

Third, barring a confounding complex dynamic like sensory bias or migration of 

educated predators, both model recognition and mimic protection should erode outside of 

the usual geographic range of the model. 

 North American admiral butterflies (genus Limenitis) provide an ideal opportunity 

to investigate these predictions because mimicry has evolved in this lineage multiple 

times, and hybridization is very common among species and forms (J. V. Z. Brower 

1958b; Gunder 1932; Platt and Brower 1968; Platt, Coppinger, and Brower 1971; Porter 

1989; 1990; Poulton 1909). While significant attention has focused on the polytypic 

Limenitis arthemis-astyanax mimicry complex in the eastern United States (Gallant et al. 

2014; Platt and Brower 1968; Platt, Coppinger, and Brower 1971; Ries and Mullen 2008; 

Savage and Mullen 2009), convergent evolution is also observed between Limenitis 

lorquini and Adelpha californica in the western U.S. (Figure 1.1). This lack of attention is 

surprising because of the seemingly complex relationship between L. lorquini and its 

parapatric relative L. weidemeyerii. The two species hybridize extensively wherever their 

ranges overlap but remain phenotypically distinct (Austin and Murphy 1987; Boyd et al. 

1999; Porter 1990; Remington 1968). Despite this evidence for ongoing gene flow, the 

two species do vary in the presence or absence of a conspicuous orange patch (Apical 

Forewing Patch or AFP; Figure 1.1), suggesting that divergent selection for mimicry may 

play an important role in maintaining the species boundary between these butterfly 

species.  
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 Previous studies in this system with caged jays (Corvidae) found evidence for 

both the unpalatability of A. californica and the relative palatability of L. lorquini (Prudic 

et al. 2002). The mechanism of unpalatability of A. californica is not well known, but is 

thought to be linked to sequestration of distasteful tannins from Oaks (Quercus), the 

hostplant of A. californica (L. P. Brower 1984; Prudic, Shapiro, and Clayton 2002). 

However, despite the known palatability differences between these two butterflies, 

rigorous field experiments have never been conducted to test the adaptive significance of 

convergence between Limenitis and Adelpha in a natural setting or to explore how the 

dynamics of interactions between predators and these two species vary as a function of 

the frequency of the model.  

 To address these issues, and to evaluate the potential role that natural selection 

may play in limiting gene flow between L. lorquini and L. weidemeyerii, we conducted a 

large-scale predation experiment using facsimile butterflies, at field sites where the 

putative mimic (L. lorquini) is sympatric (California) vs. allopatric (Idaho) with the 

unpalatable model (A. californica). Based on Batesian mimicry theory, we predicted that 

facsimiles resembling the putative mimic (L. lorquini) would receive less predation in 

sympatry with the model. We also estimated the longevity of the putative mimic, using 

mark-recapture, at two sympatric field sites varying in their relative abundance of A. 

californica to test whether protection from predation was correlated with the frequency of 

the putative model. Finally, we analyzed the morphology of the orange AFP in sympatric, 

allopatric, and hybrid zone populations to quantitatively test the hypothesis that selection 

for Batesian mimicry maintains convergence between L. lorquini and A. californica. 
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Specifically, we predicted that the range of phenotypic variance in this hypothesized 

mimetic trait would be higher in populations of L. lorquini where the model is absent 

and/or in areas where L. lorquini has historically been known to hybridize with its 

congener, L. weidemeyerii. We discuss our results in light of the ongoing hybridization 

between these two species, and the potential role that selection for mimicry may play in 

the maintenance of species boundaries in this system. 

Methods 

 Site Selection: To study the relationship between predation rates on Limenitis 

lorquini in the presence and absence of its putative Batesian model Adelpha californica, 

we selected two geographically separate study areas in which the model and mimic are 

sympatric (California study area) or allopatric (Idaho study area), approximate locations 

of the study areas can be seen labeled in Figure 1.1. Geographic range data for each 

species was compiled from a combination of sources including: historical records (Boyd 

et al. 1999; Lepidopterist’s Society 2016; Scott 1992), citizen science databases (Lotts 

and Naberhaus 2017), long-term monitoring data (Shapiro 2016), field guides (Brock and 

Kaufman 2003), and direct field observations (Kristiansen pers. obs.). L. weidemeyerii 

was used as an allopatric control for novelty in all of our experiments because it does not 

occur in any of the study areas we selected. Study sites were intentionally selected to 

reduce ecological variability by selecting sites with similar ecological and climatic 

variables, primarily upper-sonoran mountain canyons featuring willow trees, habitat 

types where both A. californica and L. lorquini are known to occur (Scott 1992). 

 The sympatric study area was in Northern California's Yuba Pass and in 
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surrounding recreational use areas (Figure 1.1, see Table S1.1 for exact GPS coordinates 

of sites). The Yuba pass study area was originally selected based on the extensive long-

term records of A. Shapiro's group which preforms weekly transects through a nearby site 

at Bowman Lake Road and has established the presence of both A. californica and L. 

lorquini at this site. Subsequent sites in the surrounding area were selected based on the 

presence of suitable riparian habitat, and on the observed presence of the putative model 

and mimic.  

 The allopatric study area was in the Boise National Forest (Figure 1.1, GPS 

localities in Table S1.2) near Placerville and Idaho City. Site selection in Idaho was 

primarily based on field observations and reported geographic ranges for these butterflies 

(Brock and Kaufman 2003; Scott 1992). Data was also incorporated from the Butterflies 

and Moths of North America website (Lotts and Naberhaus 2017), which reported the 

presence of the relevant species in or near each of the study sites. These reports were 

subsequently supported by field observations before and during our field experiments 

(Kristiansen pers. obs.). 

 

Artificial Butterfly Facsimile Construction: Individually fabricated paper butterfly 

models (hereafter called “facsimiles”) were used to test the hypothesis of Batesian 

mimicry in field predation studies. Specifically, facsimiles were constructed for four 

species: A. californica (the putative model), L. lorquini (the putative Batesian mimic), 

Junonia coenia (known local, palatable control), and L. weidemeyerii (non-local, 

palatable control). Facsimile construction followed Finkbeiner et al. (Finkbeiner, Briscoe, 
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and Mullen 2017; Finkbeiner, Briscoe, and Reed 2012) with some modification. Butterfly 

facsimile design was based on high resolution dorsal-view images of wild-caught 

butterflies in an open-winged posture, imported into Adobe® Photoshop, and adjusted for 

color accuracy. Images were printed onto Grade 1 Whatman filter paper sheets (#1001-

931), which produces spectral reflectance similar to the brightness of actual wings 

(Finkbeiner, Briscoe, and Mullen 2017; Finkbeiner, Briscoe, and Reed 2012). Facsimiles 

were double-printed using an Epson Stylus Pro 4900 printer and UltraChrome® High 

Dynamic Range ink. This process involves printing the same image twice on the same 

sheet of paper to achieve appropriate color saturation. These double-printed sheets were 

then individually colored with either Crayola® brand crayons, or with Up and Up® brand 

colored pencils to match the spectral reflectance of specific color pattern elements, as 

measured by an Ocean Optics® USB2000 fiber optic spectrometer with a bifurcating 

cable (R400-7-UV-vis Ocean Optics, Winter Park, FL) and a deuterium-halogen tungsten 

light source (Model MINIDT1000-027; Analytical Instrument Systems, Flemington, NJ), 

with the facsimile placed on a cardboard backing material during measurements to 

simulate the influence on reflectance from the backing that would later be adhered to the 

facsimile. The spectrometer was calibrated using a spectralon white standard (WS-1-SL; 

Labsphere, North Sutton, NH) approximately every 5 measurements. The detection probe 

was held at a constant 45o angle to the plane of the butterfly (or facsimile) wing in a 

machined probe holder (Ocean Optics RPH-1). Measurements were taken in triplicate 

from three facsimiles and three wild caught butterflies, resulting in nine measurements 

per color pattern element per species for both the facsimile and the wild caught 
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butterflies. These data were analyzed with R statistical software (R Core Team 2016), to 

assess the accuracy of the facsimiles (Figure S1.1) by calculating just noticeable 

differences (JND). 

 The JND values were determined by estimating quantum catches using the “pavo” 

package (Maia et al. 2013) in R. Quantum catches for color stimuli were estimated by 

using a tetrachromatic bird-vision model, following previous work (Vorobyev and Osorio 

1998). Comparisons were made using the blue tit (Cyanistes caeruleus) cone sensitivities, 

which represents the UV-type avian visual system. Following the established norms (Hart 

et al. 2000), we used a relative cone abundance of (UV=0.37, S=0.7, M=0.99, L=1), a 

blue sky illuminant, and a von Kries transformation for green backgrounds. Comparisons 

were made at each of three possible colors on each species wing: Brown (or black), 

orange, and white. Note that not all the butterflies used in this study have all three colors 

on all four wings. JND calculations used a receptor noise model to calculate color 

distances from quantum catch data (Vorobyev and Osorio 1998).  

 Facsimiles that were determined to be accurately colored were then adhered to a 

Bazzil® cardstock paper backing (Color: Mocha Divine) using Krylon® High-strength 

Spray adhesive and allowed to dry overnight. The cardstock provides support and lends a 

suitably shade-darkened appearance to the ventral side of the final facsimile. Models 

were then individually cut out using a Brother Scan 'n Cut™ CM250 craft cutting 

machine and remaining excess was trimmed by hand. Individual facsimiles were sealed 

along the edges and across the body with clear candle wax to prevent layer separation and 

to increase water resistance and durability. Careful attention was paid to avoid obscuring 
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important color pattern elements with the wax, and facsimiles were discarded if wax 

penetrated these elements. Facsimiles were then threaded with a black twist-tie, and 

abdomens were formed over the body of the facsimile using black Newplast® brand 

Plasticine to allow beak marks and bite marks to be imprinted by avian predators. 

 

Transect Arrangement and data collection: Within each study area (sympatric or 

allopatric), transects were composed of 100 individual sites with 20 facsimiles in each (5 

of each of the four phenotypes: A. californica (unpalatable model), L. lorquini (palatable 

mimic), J. coenia (local palatable control), and L. weidemeyerii (non-local novel control), 

for a total of 2,000 facsimiles per site, and a grand total of 4,000 facsimiles for the entire 

study. Each transect site was chosen based on available habitat, which often overlapped 

with the presence of the relevant butterfly species. Sites were separated on the transects 

by a minimum of 250m (as measured by a Garmin eTrex 10 GPS). This distance is a 

conservative estimate for the average home range size of potential butterfly predators in 

these areas, which we found to be approximately 213m (Table S1.3). The 20 models in 

each site were separated by approximately 2m and were attached to the nearest available 

branch. The haphazard perch selection favored low trees or bushes, but in some cases the 

facsimiles were hung on sturdy grasses or wildflowers. In all cases, care was taken to 

hang the facsimiles in a natural position, ordinarily with the dorsal side presented as with 

territorial and basking postures in the Limenitidini (Ledersouse 1993; Rosenberg and 

Enquist 1991; Willmott 2003). 

  Facsimiles were checked once during each 24-hour period over the course of 96 
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hours (four days) and repaired or replaced if attacked. The experiment was restricted to a 

four-day period in response to previous experiments of this type where predator learning 

affected the results after a few days of exposure to the facsimiles (Finkbeiner et al. 2012, 

2017). When checked, facsimiles were visually inspected for signs of bird predation on 

the bodies or the wings and individual marks were photographed and recorded; because 

of the potential for ambiguity, attacks were photographed and evaluated by two 

researchers in the field, and then subsequently re-checked and permanently assigned to 

category based on the characteristics of the imprint left in the plasticine clay (bird 

attack/not bird attack/not attacked) using the field images (see Figure S1.2). Several 

different kinds of marks were observed during this study, including marks from birds, 

ants, grasshoppers, and rodents (Figure S1.2); only marks that could be described as 

"bird-like" were counted in the final data set. "Bird like" attacks resemble triangular bite 

marks or occasionally jagged puncture marks, whereas attacks from other animals reflect 

their particular anatomy. Note that in Idaho we observed several (n=7) bite marks that 

appeared to be from a rodent, leaving two rounded tooth marks in the clay bodies of the 

facsimiles (Figure S1.2 Panel B); these bites were occasionally difficult to distinguish 

from bird attacks when the damage to the body was extensive, so to be conservative any 

facsimiles that had rounded marks of any kind were counted as "not bird attack". 

Multiple bite marks on the same facsimile between days occurred only five times during 

the study and were counted as independent attacks. 
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Statistical Analysis: We used Maximum Likelihood to estimate probabilities that 

predators would attack each of the facsimile phenotypes (A. californica – putative model, 

L. lorquini – putative mimic, and L. weidemeyerii – novelty control) relative to the 

control species J. coenia, at each of the two geographic field locations. Attack 

probabilities (XA) and their support limits were estimated using the technique described 

by Edwards (Edwards 1972). This technique estimates the probability (QA i × ju) that avian 

predators in each site would attack a facsimile of type i relative to that of the Junonia 

control facsimile ju, by setting the attack rate on ju as a theoretical maximum such that 

QA i = (XA i / ( XA ju+ XA i)). Thus, for predation between Junonia controls versus other 

species i facsimiles, the actual probabilities are QA i × ju/(QA i × ju + 1) that predators attack i 

and 1/(QA i × ju + 1) that they attack ju. The loge likelihood for the experiment is:  

  

Σ[XA i * loge{QA i × ju/(QA i × ju + 1)} + XA ju* loge{1/(QA i × ju + 1)}] 

  

where XA i is the number of attacks on species i and XA ju is the number of attacks on 

Junonia coenia models. A G-test was used to compare the loge likelihood values between 

species comparisons, and the resulting p-values were adjusted by applying a Bonferroni 

correction to guard against false positives from multiple comparisons. Support limits, 

asymptotically equivalent to 95% confidence intervals (Edwards 1972), were estimated 

for each comparison by searching for values that decreased the loge likelihood by two 

units, similar to similar work in the field searching for values that decreased the loge 

likelihood by two units (Jiggins, Estrada, and Rodrigues 2004; Willmott et al. 2017) 
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Mark-recapture: Mark-recapture methods were used to estimate the average number of 

days in residence for L. lorquini and A. californica at two additional field sites in 

California with different relative frequencies of model and mimic, but within the 

geographic range of the model and mimic. These data are a second line of evidence 

evaluating the effectiveness of Batesian mimicry in given populations. The first location 

was at the Lodi Lake nature area in Lodi (San Joaquin Co., N038.14937, W121.29089, 

20m elev.). The second location was Camp Ohlone Regional Park (Alameda Co., 

N037.48941, W121.74574, 382m elev.). Butterflies were collected with aerial nets or 

with bait traps. Trapping success varies based on species and bait type but has low overall 

success in our temperate-zone studies. The vast majority of captures is accomplished via 

hand-netting. Sampling occurred at both sites between late May and late August between 

9:00 am and 5:00 pm at both locations; these dates overlap with the duration of the 

facsimile study. Transects were established between trap locations and traps were placed 

to sample equally among available habitats. In Lodi Lake, understory and canopy traps 

were baited with rotten-banana bait at each of 15 trap locations. Mean height of Lodi 

canopy traps was 6.1m (s.d. = 1.3) and understory was 1.1m (s.d. = 0.2). In Camp Ohlone 

there were a total of 32 trap locations, 16 rotten-banana baited traps were alternated with 

16 rotten-shrimp traps, to attempt to compensate for very low trapping success with 

banana-baited traps. Canopy and understory traps were present at each location. Mean 

height of Camp Ohlone canopy traps was 9.4m (s.d. = 2.4m) and understory was 1.0m 

(s.d. = 0.3m). Bait was placed in the traps the first morning of each sampling week, 

shrimp bait was replaced every other day, and both bait types were supplemented as 
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necessary to keep bait moist. Bait was removed the last day each week. Butterflies were 

identified to species and sex and given a unique number with Sharpie™ brand fine-point 

marker on the base of ventral hindwing. 

 Estimates of residence time were obtained from recapture decay plots (Watt et al. 

1977). The natural logarithm of all individuals recaptured days (d) or longer was plotted 

against the days in residence. Days in residence is defined as the number of days between 

recaptures, including the first day of capture (i.e., an individual captured and recaptured 

on the same day had an observed residence time of one day). The slope of the regression 

line is the natural logarithm of the daily residence rate, from which the average residence 

time was computed.  

Assessing mimetic resemblance: To indirectly test the prediction that selection for 

mimetic traits should be relaxed in allopatry, wing measurements of the orange apical 

forewing patch (AFP) on L. lorquini were made for individuals sampled both in sympatry 

(California; n=7) and allopatry (Idaho; n=7) with the presumed model (A. californica). 

The size of the orange AFP was measured using a caliper across vein M1, from the 

marginal border of the wing to the most medial border of orange scales. This 

measurement is reported in ratio to wing size as measured from apical tip to base of 

attachment. Finally, to place these measurements within the broader context of natural 

variation observed for this species, we also included individuals (n=41) sampled from 

several sites within the “Humboldt” hybrid zone (Pine Forest range, NV; Santa Rosa 

Range, NV) between L. lorquini and L. weidemeyerii in the western Great Basin (Boyd et 
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al. 1999). ANOVA and subsequent Tukey post-hoc tests between sites were performed in 

R. 

Results 

Facsimile Construction: Just Noticeable Difference (JND) calculations for most 

facsimile-butterfly pairs and most colors indicated little-to-no discriminability with 

scores below the threshold value of one (1) JND. Most JND scores for color matching of 

A. californica (Orange: 1.04, White: 1.48, Brown: 0.71), L. lorquini (Orange: 0.46, 

White: 0.95, Brown: 0.46), L. weidemeyerii (White: 5.04, Brown: 0.62), and J. coenia 

(Orange: 0.49, White: 0.53, Brown: 0.59), indicate a good match. The exceptions are A. 

californica orange (1.04) and white (1.48), and L. weidemeyerii white (5.04). 

Predation Experiments: Predation rates across both study areas were significantly lower 

than expected compared to similar experiments (Finkbeiner, Briscoe, and Mullen 2017). 

Using 2,000 facsimiles per study area (500 of each phenotype), we recorded 33 (1.65% 

attacked) bird attacks in California, and 56 attacks (~2.8% attacked) in Idaho. In 

California, the palatable control (J. coenia) facsimile received the most predation (13 of 

33 attacks, ~39.4% of attacks), followed by the non-local, novel control (L. weidemeyerii, 

10 of 34, ~30.0% of attacks), the putative Batesian mimic (L. lorquini, 6 of 33, ~18.2% of 

attacks), and finally the putative Batesian model (A. californica, 4 of 33, ~12.1% of 

attacks). In Idaho, the non-local control facsimile (L. weidemeyerii) was subject to the 

most predation (16 of 56, ~28.6% of attacks), palatable control (J. coenia) facsimile and 

the putative mimic (L. lorquini) facsimile received the same number of attacks (15 of 56, 

~26.8% of attacks), and finally the putative Batesian model (A. californica) was attacked 
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the least (10 of 56, ~17.9% of attacks, Figure 1.2).  

 Attack probabilities, calculated as QA i = (XA i / (XA ju+ XA i)), and their support 

limits are presented in Table 1. In California, the probabilities of avian predators 

attacking A. californica, L. lorquini, and L. weidemeyerii butterfly facsimiles (relative to 

the control facsimile) were 0.24, 0.32, and 0.43, respectively. The attack rate on A. 

californica was significantly lower than L. weidemeyerii (G = 12.94 d.f. = 1, corrected p 

< 0.01), and also lower on L. lorquini than on L. weidemeyerii (G = 7.79, d.f. = 1, 

corrected p = 0.047). We did not find a significant difference in the loge likelihood values 

between predator preference to attack L. lorquini and A. californica (G = 5.15, d.f. = 1, 

corrected p = 0.21). 

 In contrast, at our Idaho field location attack probabilities on A. californica, L. 

lorquini, and L. weidemeyerii (relative to the control facsimile), were 0.4, 0.5, and 0.52, 

respectively (Table 1). Although L. lorquini did not experience differences in relative 

attack probabilities from L. weidemeyerii (G = 1.35, d.f. = 1, corrected p = 0.73), we 

found that A. californica had a lower likelihood of attack than L. lorquini (G = 7.94, d.f. 

= 1, corrected p = 0.044) and L. weidemeyerii (G = 11.45, d.f. = 1, corrected p < 0.01). 

Comparisons of attack probabilities for the same phenotypes between Idaho and 

California indicated that all three experimental species: L. weidemeyerii, L. lorquini, and 

A. californica had a significantly higher relative risk of attack in Idaho than in California. 

L. weidemeyerii had a significantly higher risk of predation in Idaho than California (G = 

11.451, d.f. = 1, corrected p < 0.01), as did L. lorquini (G = 17.890, d.f. = 1, p < 0.01), 

and A. californica (G = 15.10, d.f. = 1, corrected p < 0.01). 
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Survival, longevity, and mimetic resemblance: The relative frequency of the putative 

Batesian model to its presumptive mimic was found to have a statistically significant 

effect on longevity. We found that the average longevity of these recaptured individuals 

of the putative mimic species (L. lorquini) at the Camp Ohlone site, where the frequency 

of A. californica was relatively high (~80% of captures of the two species, 98 L. lorquini 

males captured/45 recaptured), had a significantly larger number of days in residence – 

12.30 days (95% CI: 11.29-13.51) vs. 8.56 days (95% CI: 7.97-9.24)– than those found at 

the Lodi Lake site (~4% of captures A. californica, 117 L. lorquini males captured/48 

recaptured) where A. californica is at a much lower frequency (Figure 1.3). In addition, 

an ANOVA comparing the size of the L. lorquini orange apical forewing patch (AFP) 

between different field sites (i.e., – sympatric with A. californica, allopatric with A. 

californica, or from the “Humboldt” hybrid zone, Figure 1.4) found a significant 

relationship between site type and AFP size (F(2, 52) = 8.5, p < 0.001, Figure 1.5). Post hoc 

comparisons using the Tukey HSD test indicated a significant difference between the 

mean score for the hybrid (n=41)-sympatric (n=7) comparison, the sympatric-allopatric 

(n=7) comparison, but not for the allopatric-hybrid comparison (p = 0.64). In these 

comparisons, sympatric individuals had higher scores (indicating larger AFP-to-wing 

length ratios) than both hybrids (p < 0.001) and allopatric individuals (p < 0.001). 

 Reflectance spectra of the orange pigmentation are remarkably similar when 

compared between A. californica and L. lorquini (Figure S1.1), though A. californica has 

slightly more brightness in the blue to blue-green range (~400-500nm) and in the red 

range (~650nm). The mimetic species white bands are also quite similar, in contrast to 
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the white band of L. weidemeyerii, which had higher brightness overall and also reflects 

UV (Figure S1.1). 

Discussion 

The results of our predation and mark-recapture experiments, in combination with 

morphological data, strongly support the hypothesis that the phenotypic convergence 

between A. californica and L.s lorquini in areas of geographic overlap reflects predator-

mediated natural selection for Batesian mimicry despite ongoing gene flow. Consistent 

with prior lab-based studies of avian predation (Prudic, Shapiro, and Clayton 2002), we 

found that A. californica and L. lorquini facsimiles experienced significantly fewer 

attacks in our study area in California, where both are common, relative to both the 

known palatable control (Junonia coenia), and a second, unknown novel control (L. 

weidemeyerii) (Figure 1.2, Table 1.2) than in our study area in Idaho where A. californica 

is absent. Since the protective benefit of effective mimicry is not extended to the same 

degree to facsimiles that resemble the model in other ways, as is the case with the L. 

weidemeyerii facsimiles, we can infer that the AFP is acting as a warning signal, and that 

bearing the mimetic phenotype is advantageous only when the model (A. californica) is 

present. This pattern is consistent with Batesian mimicry theory and with our prediction 

of differential attack rates based on Batesian model presence and confirms that L. 

lorquini is indeed a Batesian mimic of A. californica.  

 Our finding that predators did not avoid facsimiles of novel L. weidemeyerii to the 

same degree as palatable L. lorquini is interesting for three reasons. First, with the caveat 

that the facsimiles are stationary unlike live butterflies, this finding is not consistent with 
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either theories of predator avoidance of novel prey (e.g., diet conservatism or neophobia; 

(Lindström et al. 1999; Marples, Roper, and Harper 1998)) or disruptive coloration (Cott 

1940; Cuthill et al. 2005; Seymoure and Aiello 2015; Silberglied, Aiello, and Windsor 

1980). Second, because both species of Limenitis (L. lorquini and L. weidemeyerii) and A. 

californica used in this experiment possess similar transverse white medial bands, it 

suggests that predators primarily rely on the bright orange apical forewing patch (AFP) as 

the signal to discriminate between potentially palatable and unpalatable prey; chromatic 

elements (such as orange and red) in aposematic prey are more reliable as aposematic 

signals than achromatic elements (such as white), because white spectral reflectance is 

less consistent under variable light environments (Dell’Aglio, Stevens, and Jiggins 2016). 

Finally, because there is some variation in attack rates on L. weidemeyerii between sites, 

it is possible that the white medial band also has a role in predator avoidance. However, 

the white bands of L. weidemeyerii have very different reflectance profiles relative to A. 

californica and L. lorquini (Figure S1.2), suggesting that mimicry between these two 

species might also extend to their white coloration (Finkbeiner, Briscoe, and Mullen 

2017), while the white band of L. weidemeyerii is maintained by other potential 

mechanisms (e.g., -mate recognition). Further work will be necessary to test this 

hypothesis because 1) the color accuracy of the white bands of L. weidemeyerii facsimiles 

proved difficult to reproduce, and 2) our support limit calculations suggest that larger 

sample sizes will be necessary to more accurately assess predation risk across all 

comparisons.  

 The results from our second experiment in allopatry demonstrate that protection 



 

 

19 

from predation for the mimic, L. lorquini, breaks down outside of the geographic range of 

its model, A. californica; which supports our predictions. Although there were differences 

in the absolute number of attacks among the four facsimile types, there was no significant 

differences in the probability of attack between the mimetic species, L. lorquini, or the 

novel control, L. weidemeyerii, relative to the palatable control, J. coenia. Surprisingly, 

however, facsimiles of the Batesian model, A. californica, experienced less predation 

than either Limenitis species, in relation to Junonia, despite the fact that the experiment 

was conducted several hundred miles outside the known geographic range of the model. 

Predator avoidance of the model in geographic regions where it does not occur might be 

explained by a variety of mechanisms (Pfennig and Mullen 2010), including: a) prior 

predator experience with the warning signal (AFP) within the geographic range of the 

model followed by predator migration, b) recent range contraction by the model, or c) 

biases in predator cognition such as innate avoidance (Coppinger 1970; Exnerová et al. 

2015). However, further work will need to be done to differentiate among these possible 

explanations. 

 The hypothesis of Batesian mimicry is further supported by the results of our 

mark-recapture study, which shows that L. lorquini individuals have significantly longer 

residence times where A. californica is abundant relative to a site where it is rare (Figure 

1.3). This frequency-dependent dynamic implies that individuals bearing a mimetic 

phenotype directly gain a longevity benefit when the cost of learning to discriminate the 

model and mimic is high, as when the unpalatable model is common relative to the 

mimic, which provides strong evidence for Batesian mimicry (Pfennig, Harcombe, and 
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Pfennig 2001; Ries and Mullen 2008).  

 Given this pattern of frequency-dependence in sympatry, the persistence of the L. 

lorquini orange apical forewing patch (AFP) coloration in the absence of the model 

would at first appear to be paradoxical (Pfennig and Mullen 2010; Ruxton, Sherratt, and 

Speed 2004). However, recent work suggests that the degree of spatial and temporal 

concordance between models and mimics may fluctuate more over ecological time than 

evolutionary time (Rabosky 2016). Therefore, the persistence of AFP coloration in 

allopatric L. lorquini populations may simply reflect an evolutionary lag between 

processes acting on contemporary vs. historical populations. This possibility is also 

supported by our data indicating that the accuracy of the mimicry varies significantly 

across the geographic distribution of L. lorquini (Figure 1.4, Figure 1.5). Specifically, we 

found that L. lorquini in allopatry had significantly smaller AFPs than those found in 

sympatry with the model (which had larger AFP’s and very little variability), implying a 

possible selective disadvantage to bearing the AFP phenotype outside of the range of A. 

californica (Figure 1.5). If so, the persistence of the AFP in these areas may be due to 

other selective forces, such as sexual selection.  

Hybrid Zone Dynamics: Although our primary goal was to investigate the adaptive 

significance of the convergent resemblance between A. californica and L. lorquini in this 

study, a secondary objective was to assess how selection and introgression interact across 

the phenotypic hybrid zone between L. lorquini and L. weidemeyerii, and to evaluate the 

potential role of Batesian mimicry in maintaining species boundaries. Previous genetic 

work suggests that there is significant gene flow between L. lorquini and L. weidemeyerii 
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(Porter 1990), which is corroborated by our observation of extensive phenotypic variation 

in the size and extent of the L. lorquini orange AFP for individuals sampled from hybrid 

populations relative to individuals sampled at our experimental sites (California and 

Idaho) where L. weidemeyerii is absent (Figure 1.5).  

 Interestingly, the geographic structure of the interactions between L. lorquini and 

L. weidemeyerii differ between the two hybrid zones (Boyd et al. 1999). Phenotypes 

abruptly transition across the southern hybrid zone (e.g., –the “Mono Lake” hybrid zone, 

see Figure 1.4 Panel B), which occurs in close proximity to the presence of the model. In 

contrast, in the upper Great Basin (e.g., – the “Humboldt” hybrid zone in western 

Nevada, Figure 1.4 panel B) the phenotypic transition between parental populations of L. 

weidemeyerii and L. lorquini, which occurs in the absence of the model, encompasses a 

larger physical distance, and hybrid populations show evidence of extensive mixing 

consistent with the formation of highly localized hybrid swarms (Boyd et al. 1999). 

Although geography likely leads to stronger physical isolation of parental populations 

and hybrid populations in the Humboldt hybrid zone, the persistence of large hybrid 

populations with large phenotypic variance suggests that selection for mimicry in this 

region is either relaxed due to the absence of the model or that selection is acting against 

the conspicuousness of the AFP. This latter conclusion is supported by well-known 

phenotypic data (Boyd et al. 1999), which indicates that there is an overall phenotypic 

bias in the Humboldt hybrid zone away from the L. lorquini phenotype. 

 While more work will be needed to definitively demonstrate that selection for 

mimicry maintains the species boundary between L. lorquini and L. weidemeyerii, the 
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sharper phenotypic clines observed near Mono Lake suggest a novel finding: that the 

relative geographic proximity of unpalatable A. californica (See Figure 1.1) results in 

stronger predator-mediated selection against introgression of non-mimetic wing pattern 

characters between these two species. This conclusion is supported by the observed 

bimodal distribution of phenotypes across the Mono lake hybrid zone, and the relative 

absence of phenotypic evidence for F1 hybrid females (Figure 1.4). Taken together with 

the results of our predation and mark-recapture studies, these findings suggest that 

selection for mimicry near Mono Lake results in a "tension" zone (Barton and Hewitt 

1989) between these two hybridizing species that is maintained by a balance of dispersal 

from parental populations and selection against hybrid offspring. 
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Figures and Tables 
 

 

 

Figure 1.1 Approximate geographic ranges of the species of interest adapted from Scott 
(1992). The boxed numbers represent approximate locations of each study area for the 
facsimile experiments. Note that the range of A. californica is represented by blue but is 
sympatric with L. lorquini (yellow) throughout its entire range, so it is represented green. 
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Figure 1.2 Number of attacks on each facsimile type in each field location. Each bar 
represents the cumulative number of attacks on each facsimile type. A. californica is the 
putative Batesian model, L. lorquini is the putative Batesian mimic (Prudic 2002). L. 
weidemeyerii was included as a “non-local control”, meaning that predators should treat 
it as novel prey, similar to the control. Finally, J. coenia was included as a known 
palatable control. See Table 1 for probabilities and support limits, and Table 2 for G-tests 
and p-values. 
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Figure 1.3 Mean time in residence as a function of model presence. A) the relative 
frequency of all A. californica and L. lorquini individuals encountered during the study 
are shown. The Camp Ohlone site has relatively high A. californica abundance, whereas 
Lodi Lake has relatively low A. californica abundance. B) The difference in mean 
residence time of L. lorquini males within each of these sites. Females were excluded 
from this analysis because of low capture rates. Error bars shown are 95% confidence 
intervals. 
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Figure 1.4 A) Panel A represents the extent of phenotypic variability in orange AFP at 
sample localities across the range of L. lorquini and L. weidemeyerii in the pictured 
states, including the hybrid zone (shown in orange). B) Panel B is a more detailed version 
of the map in Figure 1 to present the differential phenotypic distribution histograms at 
sample localities as reported in Boyd et al. (1999). The X-axes have been flipped (relative 
to Boyd et al. 1999) to reflect how phenotype changes with geography (West-to-East), 
with a value of 34 indicating L. lorquini-like, on the left, and 0 indicating L. 
weidemeyerii-like, on the right. 
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Figure 1.5 Variation in AFP size of L. lorquini associated with model presence. L. 
lorquini orange AFP differs significantly by locality (ANOVA p < 0.001). Tukey post-
hoc tests indicate L. lorquini AFP is significantly larger in sympatry with the model 
compared to in the hybrid zone (p < 0.001), or in allopatry with the model (p < 0.001). 
Allopatric and hybrid populations did not differ (p = 0.64). Asterisks indicate a 
significant comparison of p < 0.05. 
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Table 1.1 Probability of attack relative to J. coenia. Parenthetical numbers are upper and 
lower support limits, equivalent to 95% confidence intervals.  

 
Probability of attack 
relative to J. coenia A. californica L. lorquini L. weidemeyerii 

California Site 0.24 
(0.08, 0.47) 

0.32 
(0.14, 0.54) 

0.43 
(0.24, 0.64) 

Idaho Site 0.40 
(0.22, 0.60) 

0.5 
(0.32, 0.68) 

0.52 
(0.34, 0.69) 

 

 
Table 1.2 G-test for goodness of fit between attack rate comparisons. Each row is a 
comparison between the attack rates on two different butterfly facsimiles relative to the 
attack rate on J. coenia. In the last column, p-values have been adjusted using a 
Bonferroni correction for multiple comparisons.  

 
 Comparison G-score p-value Corrected 

p-value 

California 
Comparisons 

L. weid/A. calif (CA) 12.94 <0.001 0.003 

L. lorq/A. calif (CA) 5.15 0.023 0.209 
L. weid/L. lorq (CA) 7.79 0.005 0.047 

Idaho 
Comparisons 

L. weid/A. calif (ID) 9.29 0.002 0.021 
L. lorq/A. calif (ID) 7.94 0.005 0.044 
L. weid/L. lorq (ID) 1.35 0.245 0.730 

Between-Site 
Comparisons 

L. weid CA vs. ID 11.45 0.001 <0.001 
L. lorq CA vs. ID 17.89 <0.001 <0.001 
A. calif CA vs ID 15.10 <0.001 0.001 
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CHAPTER TWO: 

Identifying the genomic basis of color pattern adaptation in Limenitis lorquini 

Introduction 

Understanding the mechanistic basis of the origin and maintenance of adaptive 

phenotypic diversity is a central goal of evolutionary biology. Mimetic phenotypes, 

convergent traits which reduce predation pressure on one or more individuals, are classic 

examples of adaptation because the individuals gain a direct and measurable benefit from 

bearing these traits when compared with individuals that do not (Bates 1862; Joron and 

Mallet 1998; Kapan 2001; 2001; Malcolm 1990; Mallet and Joron 1999; Pfennig, 

Harcombe, and Pfennig 2001; Pfennig and Mullen 2010; Ruxton, Sherratt, and Speed 

2004; Speed and Turner 1999; J. R. G. Turner 1987; Vane-Wright 1980). This benefit 

predictably leads to differential success, sometimes through mechanisms like assortative 

mating, to restricted gene flow between wing-pattern races, and ultimately may lead to 

speciation (Jiggins and McMillan 1997; Jiggins et al. 2001; Mallet and Barton 1989; 

Naisbit, Jiggins, and Mallet 2003; Naisbit 2001; Pfennig, Akcali, and Kikuchi 2015). 

Therefore, understanding the genetic basis for these traits, sometimes called speciation 

phenotypes (Mullen and Shaw 2014; Shaw and Mullen 2011), is a key step in 

understanding the processes involved in the diversification of species. 

Butterflies have long been used as model systems to study the relationship 

between coloration and selection. The reasons for this are manifold, but the most 

compelling is that the patterns of coloration on butterfly wings are conspicuous targets of 

multiple types of selection. Both predator mediated selection and sexual selection 
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influence the fitness consequences butterfly color patterns (J. V. Z. Brower 1958a; Mallet 

and Barton 1989; Mallet and Joron 1999; Ruxton, Sherratt, and Speed 2004). In addition, 

wing color patterns have physiological implications for fitness, such as heat retention, 

which is modulated by developmentally controlled phenotypic plasticity in some species 

(Nijhout 2001). These multiple processes contribute to an enormous diversity of 

conspicuous color patterns in butterflies, which combined with variation in the 

opportunities different species have to sequester host plant secondary compounds as a 

predator defense, has made interspecific mimicry a common phenomenon among 

butterflies. In fact, the evolution of wing pattern diversity in butterflies continues to be an 

important model system for evolutionary and developmental genetics, and speciation 

(Brakefield and French 1999; Gallant et al. 2014; Kunte et al. 2014; Martin et al. 2012; 

McMillan, Monteiro, and Kapan 2002; Reed et al. 2011; Reed and Serfas 2004). 

Because selection acts on phenotypes that are determined by the underlying 

genomes, understanding the genetic and genomic basis of color pattern variation is 

critical to understanding the evolutionary processes responsible for the origin and 

maintenance of diversity. Several studies in the last decade have pursued using butterflies 

as a model system to explore the genetic and genomic basis of color pattern. This has led 

to the identification of many underlying the color pattern variation involved in mimicry, 

sexual selection, and speciation (Jiggins, Wallbank, and Hanly 2017). Based on these 

studies, it is clear that wing patterns in most butterflies have evolved through changes in, 

or changes in the regulation of, a small number of highly conserved genes even across 

very deep taxonomic history (Gallant et al. 2014; Martin and Orgogozo 2013; Martin et 
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al. 2012; Martin and Reed 2014; Papa, Martin, and Reed 2008); and even when the 

variation is in structural color rather than pigmentation (Thayer 2019). However, the bulk 

of our understanding of the genetic basis of adaptive phenotypic diversity is currently 

limited to a very small number of species emerging or established model species within 

Heliconius, Manduca, Bombyx, and Papilio (Kronforst and Papa 2015). Exploring the 

potentially divergent mechanisms underlying color pattern variation in a wider variety of 

organisms will lead to a better understanding of the evolutionary processes underlying the 

origins of novel and adaptive phenotypes. 

Admiral butterflies in the genus Limenitis are an excellent system for examining 

questions related to the genomic basis of adaptation, specifically as it relates to the 

evolution of wing color patterns. Butterflies in the genus Limenitis have evolved mimetic 

phenotypes multiple times but have failed to evolve complete reproductive isolation 

(Fisher and Bennett 1930; Gunder 1932; Platt and Brower 1968; Porter 1989; 1990; 

Poulton 1909; Remington 1968). Historical studies of mimicry in Limenitis have been 

influential in the evolutionary literature, experimentally demonstrating the adaptive 

significance of mimicry (J. V. Z. Brower 1958a), contributing to the debate on species 

boundaries (Fisher and Bennett 1930; Mullen 2006; Mullen, Dopman, and Harrison 

2008; Platt and Brower 1968; Remington 1968) and most recently contributing 

significantly to the literature on paradoxical imperfect mimicry (Ebel et al. 2015; 

Finkbeiner, Briscoe, and Mullen 2017; Finkbeiner et al. 2018; Kristiansen et al. 2018; 

Mullen et al. 2011). 

There are three major mimetic relationships between Limentis and toxic model 
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species. The first, and most well-known, is between the Viceroy butterfly (Limenitis 

archippus) and the Monarch butterfly (Danaus plexippus). Mimicry between these two 

butterflies is well-studied, represents one of the first demonstrated examples of the 

"palatability spectrum" (Ritland and Brower 1991), and has been termed "quasi-Batesian" 

(Speed 1993) due to the high degree of variance in the relative palatability of these two 

butterflies throughout the full extent of their distribution. The second mimetic 

relationship in Limenitis is found in the L. arthemis species complex in the southeastern 

and southwestern United states. The subspecies of L. arthemis (L. arthemis astyanax, L. 

arthemis arizonensis, and L. arthemis arthemis) maintain two distinct phenotypes, one of 

which is considered to mimic the Pipevine Swallowtail (Battus philenor) (Platt, 

Coppinger, and Brower 1971). Despite their phenotypic differences between mimetic (L. 

arthemis astyanax, L. arthemis arizonensis) and non-mimetic (L. arthemis arthemis) the 

subspecies are interfertile, and the two northeastern subspecies (L. arthemis astyanax, L. 

arthemis arthemis) hybridize freely in a broad hybrid zone across much of the 

northeastern United States. Both of these examples of mimicry in Limenitis involve 

significant changes to the wing color pattern, which, as is fairly common in other 

butterfly species like Heliconius (Kronforst and Papa 2015), are the result of changes 

associated with as few as one color patterning gene, in this case WntA (Gallant et al. 

2014; Martin and Reed 2014; Mazo-Vargas et al. 2017). The genetic basis of mimetic 

convergence remains unexplored in the third example of mimicry in the North American 

Limenitis, the apparent mimicry of the California Sister (Adelpha californica) by the 

Lorquin’s Admiral (L. lorquini). 
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  L. lorquini has long been thought to be a Batesian mimic of A. californica, which 

is a species of Adelpha butterfly found in California (Butler 1865). This inference has 

historically been supported by their similar appearance, broad overlap in range, and the 

existence of a L. weidemeyerii, a non-mimetic sister-species (Ebel et al. 2015; Mullen et 

al. 2011) to L. lorquini that can be found outside of the range of L. weidemeyerii (see 

Figure 1.1). Further evidence has been provided by palatability experiments 

demonstrating that naive Western Scrub Jays (Aphelocoma californica) held in captivity 

will avoid eating L. lorquini only if they have first been "trained" on A. californica, 

which the birds find distasteful (Prudic 2007). This supports the hypothesis that L. 

lorquini is co-opting the aposematic signal of A. californica, a finding that has since been 

demonstrated empirically in field study in natural habitats ((Kristiansen et al. 2018), 

Chapter 1). The most obvious mimetic component of L. lorquini’s phenotype is the 

orange Apical Forewing Patch ("AFP”), which is absent in L. weidemeyerii and 

resembles a similar patch in A. californica. There may also be mimicry in the white 

medial bands, which do not reflect UV light in L. lorquini or in A. californica but do in L. 

weidemeyerii and many other Adelpha species (unpublished personal observation).  

Despite a good understanding of the phenotypic and ecological aspect of mimicry 

in these butterflies, the genetic basis of the mimetic orange AFP color pattern element 

remains unexplored. However, given the conserved genetic basis of color formation in 

other butterfly species (Kronforst and Papa 2015), I hypothesize that the gene optix will 

be responsible for the presence/absence of the AFP. Here I present the results of a series 

of crossing experiments, a RAD-seq based linkage map, and a QTL association study 
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which aim to identify the genomic region(s) responsible for the presence or absence of 

the orange AFP in L. lorquini. Characterizing the relationships between genetics, 

genomics, and selectively advantageous traits is essential for a holistic understanding of 

how the evolution of such traits contributes to the divergence of species. 

Methods 

Rearing and mapping broods: To facilitate a QTL analysis of color pattern differences 

between L. loquini and L. weidemeyerii, a series of crossing experiments were performed 

(Fig 2.1). Wild-caught females of both species were captured and allowed to oviposit on 

willow saplings placed in mesh cages in the lab. Hatched larvae were allowed to develop, 

and offspring of true-breeding females were then crossed via hand-pairing and allowed to 

oviposit in the same way to produce F1 offspring. F1 offspring phenotypes were recorded 

after eclosure. F1 offspring were then mated to either an individual from the parental 

generation, their true-breeding offspring, or were full-sibling mated, to produce F2 

offspring. Backcross and F2 offspring were then reared until eclosure, after which their 

phenotype was recorded, and the tissue preserved in 70% Ethanol at -20°C. A total of 142 

offspring were produced, of which 89 were intercross offspring and 53 resulted from 

backcrosses. Phenotypes were scored as a simple presence/absence of an orange AFP. 

Extraction and ddRAD-seq: 171 individual samples (including wild-caught, 

grandparents, parental, and F2/BC offspring) from our crossing experiment were 

genotyped using restriction-site associated DNA (RAD-seq) sequencing. Genomic DNA 

was extracted from thorax muscle, ground with a hand pestle, using Qiagen’s DNeasy kit 

(Quiagen, Valencia CA) following the standard protocol with overnight incubation in the 
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lysis butter with 20uL of proteinase K. Final DNA concentrations were estimated using a 

NanoDrop® 2000 spectrophotometer. RAD-seq fragment libraries were prepared 

following the double-digest protocol in DaCosta and Sorenson (2014) with some minor 

modifications consistent with Stryjewsky and Sorenson (2017). Briefly, DNA samples 

were diluted to a standard 1µg concentration using ultrapure water before being digested 

with two restriction enzymes, BfucI and SbfI (New England Biolabs, Beverly, MA). 

Illumina sequencing adapters were then ligated to the digested DNA such that each 

sample had a unique barcode/index pair. After ligation, sample concentration was again 

quantified using qPCR (Kapa Library Quantification Kit, Kapa Biosystems, Wilmington, 

MA), and sets of 12 samples diluted to equimolar concentrations were pooled, reducing 

time and cost of downstream preparation steps. DNA fragments between 300-450bp in 

length were then size-selected using a PippinPrep® size selection protocol. Pooled 

libraries were then PCR amplified for 22 cycles using Phusion High-Fidelity DNA 

Polymerase (New England Biolabs, Beverly, MA) and quantified using qPCR as before. 

Finally, pools were combined in equimolar amounts for sequencing. 

The pooled fragment libraries were sequenced on an Illumina® HiSeq2500 in 

RAPID mode with 150 base pair single-end reads. The entire library was sequenced on 

two sequencing lanes, one of which produced lower quality data, and a third lane of 

sequencing data was generated. High-quality data from all three lanes were integrated 

into the final dataset. An inline barcode and an index read were then used to assign 

sequencing reads to individual samples (see appendix for barcode sequences). The 

sequence data returned from the sequencing facility were demultiplexed for the index 
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read but not the inline barcode. To separate these data into one file for each individual in 

the dataset, the "process_radtags" program in the Stacks software package (Catchen et al. 

2013) was used. This software uses a barcode file and the restriction enzyme recognition 

site adjacent to the barcode to demultiplex reads and to trim adapters. 

Reads were then aligned to a custom version of the L. arthemis reference genome 

(Gallant et al. 2014, Mullen et al. 2019 (in prep)) using the Burrows-Wheeler Aligner and 

the bwa-mem algorithm (H. Li and Durbin 2009). This version of the reference genome 

includes additional sequence data when compared with earlier versions, but only contains 

those scaffolds which show protein synteny with the H. melpomene genome (Hmel 2.5). 

Aligned read data was piped into the Samtools package (H. Li et al. 2009) to produce 

BAM files, which were then analyzed in the Genome Analysis Tool Kit v3.7 (McKenna 

et al. 2010). Genotypes were called using the UnifiedGenotyper, and filtered using 

custom scripts and according to GATK best practices recommendations (DePristo et al. 

2011). Finally, VCF files produced by GATK were filtered using the VCFtools software 

(Danecek et al. 2011) to generate a data set comprising highly confident SNP calls. Only 

biallelic SNPs with a per-sample sequencing depth of >10 were retained, samples with 

fewer than 10 reads were marked as “no call” at that SNP. SNPs were further filtered to 

include only those that were called for >85% of the individuals in our dataset. 

Linkage Map Construction: The filtered SNP data were imported into the program 

LepMap3 (Rastas 2017), a memory-efficient linkage-mapping program which can make 

use of genotype likelihoods, along with a pedigree file. Incorporating genotype 

likelihoods gives this program the ability to work with lower read-depth sequencing data. 
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The pedigree file format mirrors the experimental crosses described earlier and can 

include grandparents/initial crosses (p), parents/first-generation offspring (f1) and 

offspring (f2 or Backcross). These individuals are then grouped by brood to reflect their 

familial relationships. However, because several grandparents in these crosses exhibited 

poor sequencing quality, no grandparents were ultimately included in the mapping 

pedigree. Some of the wild-caught individuals that generated the grandparents, and not 

used directly in the crosses, were included in sequencing but excluded from analysis. In 

all, 142 individuals were coded according to their brood identity in one of eight broods: 

five Intercross (F2) broods, and three backcross (BC) broods. Phenotype values were 

assigned as a binary state based on the presence or absence of any orange in the apical 

wing patch. LepMap3 was run following the standard workflow but with the LOD limit 

set to 6. Output files for QTL analysis were created from LepMap3 output files using 

custom python scripts. These output were used to create a VCF containing only linkage 

informative sites using VCFTools (Danecek et al. 2011). Linkage informative sites are 

defined as those sites which are inherited from at least one heterozygous parent (Rastas 

2017). Final output files contained Linkage Group identity and centimorgan (cM) 

position from LepMap3, genotype from the GATK, and a marker name. 

  
QTL Analysis: QTL analysis was conducted in the R statistical software (R Core Team 

2016) using the r/qtl package (Broman et al. 2003) following the published guidelines 

(Broman and Sen 2009). Briefly, genotype data were imported from the VCF in "012" 

format data matrixes using base R. These data were then combined with Linkage 

information from LepMap3 and Phenotype information to produce a final analysis-ready 
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dataframe. This dataframe is then imported into r/qtl as a read.cross() object for qtl 

analysis and the data were checked for integrity. The function "jittermap()" was then used 

to separate overlapping loci by minute amounts to avoid known issues with the r/qtl 

software and analysis of co-occurring loci. The samples in the dataframe were then split 

into one of four groups: 1) All offspring, 2) All Intercross Offspring, 3) All Backcross 

Offspring, and 4) largest single brood. Each data set was analyzed separately as 

overlapping replicates. Splitting the data in this way allows for comparisons between the 

results of both overlapping (e.g. BC overlaps with All) and non-overlapping datasets (BC 

does not overlap with IC). QTL analysis proceeded by first estimating the recombination 

fraction and calculating the conditional genotype probabilities using the r/qtl Hidden 

Markov Model, which simultaneously accounts for genotyping errors, missing data, and 

dominant markers (Broman et al. 2003). Finally a QTL analysis with a single-QTL model 

(Broman and Sen 2009), was executed using the interval mapping algorithm "em" 

(Lander and Botstein 1989) as implemented in r/qtl. Other QTL estimation algorithms 

were tested but were found to produce either highly similar or less consistent results than 

the "em" algorithm, which is consistent with the findings of Broman and Sen (2009). 

Significance thresholds (alpha = 0.01, 0.001) were determined using permutation tests (n 

= 1000 per comparison;(Churchill and Doerge 1994)). Loci with LOD scores above the 

calculated significance threshold(s) were deemed to be "significantly associated" with the 

phenotype. Finally, results were visualized using a combination of base R graphics and 

the LinkageMapView package. 

Loci that were found to be associated with the phenotype were the investigated by 
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aligning sequence data to the Heliconius melpomene genome using BLAST (Altschul et 

al. 1990). The H. melpomene genome (Hmel 2.5 (Davey et al. 2016)) was used because it 

is of higher quality and more fully annotated than the L. arthemis genome. To accomplish 

this, a 30kbp region around the SNP was extracted from the Limenitis reference genome 

using Samtools (H. Li et al. 2009). This region was then used as a query sequence in a 

Discontiguous Megablast (Altschul et al. 1990) against the most recent version of the 

Heliconius melpomene genome (Hmel 2.5). The quality of matches was then assessed, 

and their identities investigated using the genome exploration tools on the Lepbase 

website (https://www.lepbase.org). 

Results 

 The breeding experiments revealed a broad range of variation in the AFP (Figure 

2.2). Some individuals exhibited orange color pattern extending as far as the white stripe 

that occupies the central symmetry system in these butterflies, while the extent of orange 

on the wings of others was so minute that it was difficult to see unaided. However, when 

the presence/absence of orange was scored as a binary trait, and orange assumed to be 

dominant, the ratio of F2 intercross offspring with and without orange was approximately 

3:1, as expected for a single-locus trait with orange dominant (Table 2.1). Similarly, the 

ratio of backcross offspring with and without orange was approximately 1:1 (Table 2.1). 

Three intercross broods were produced in 2011, and two additional intercross broods 

were produced in 2012. These broods contained a total of 89 offspring with a ratio of 63 

orange to 26 black (X2 test: X2= 0.46, p ~0.50). A total of three backcross broods were 

produced, two in 2012 and one in 2013. There were 28 orange individuals and 25 black 
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individuals produced by the backcross broods (X2 test: X2= 0.085, p ~0.80). These results 

are consistent with a single locus determining the presence or absence of orange 

coloration in Limenitis, and that at this locus there is one dominant allele. However, the 

observed phenotypic variability suggests that more than one or more additional loci 

influence the extent of the orange phenotype.  

 A total of 222,133,770 reads were obtained from the three lanes of Illumina 

HiSeq2500 for the 172 sequenced individuals. Of those reads, 171,638,711 (~77%) were 

successfully demultiplexed by barcode in Stacks, assigned to individual samples, and 

retained for further analysis and filtering. There was substantial variation in the number 

of reads per sample, ranging from 66,968,846 to 4,022. The mean number of reads per 

sample was 1,003,735, and the median number was 843,920. After alignment, 917,698 

SNPS were identified, of which a total of 13,391 high-quality bi-allelic SNPS were 

retained after stringent filtering. 

 LepMap3 identified 3935 SNPS as pedigree informative and retained these sites 

for linkage map construction. 188 linkage groups were recovered, but of these only a 

small number (~31) have appreciably high likelihood scores (< -100 lnL), and a smaller 

number (~16) have highly supported maps (< -5000), likely representing some 

combination of the 30 chromosomes found in Limenitis (or portions thereof). The largest 

linkage group (LG 1) was constructed from 193 SNPS on 22 scaffolds (Table 2.3). The 

30 linkage groups with the highest statistical likelihood were constructed using an 

average of 109 SNPs, and from 20 scaffolds on average. 

 QTL analysis recovered only six linkage groups with contained loci that were 
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significantly associated with the presence of orange coloration in one or more of the 

analysed data sets (all offspring, backcross, intercross, largest brood), by crossing the 

threshold LOD set by the permutation tests (Figure 2.4). Among these linkage groups, 

roughly 10 loci were found to have associations (Table 2.4). The strength of the statistical 

association with phenotype carried among loci and many of these ten loci were not 

consistently recovered in every sub-comparison of the different sets of offspring. Only 

three loci had high LOD scores for both the intercross and backcross offspring. The first 

locus (hereafter “Locus 1”), which is also the most strongly associated, is found on LG 8 

and has a LOD score of ~20 when all offspring are included, and roughly ~8 when only 

backcross offspring are considered (Figure 2.5). This locus corresponds to a SNP on 

scaffold00072 at bp 1,028,706 in the current iteration of the Limenitis genome. This is the 

highest LOD peak in every comparison. The second is found on LG 12 and has a LOD 

score of ~18 when all offspring are included, and ~6.7 when only backcross offspring are 

considered (Figure 2.5). This locus corresponds to a SNP on scaffold00065 at bp 

680,925. Finally, the third potential QTL is also found on LG 8, with a score of ~17.7 

when all offspring are included, and ~7.0 when only Backcross offspring are considered. 

Other QTL, their LOD score, and their genomic locations can be found in Table 2.3. 

Using only the intercross individuals results in a pattern that largely recapitulates the 

pattern found in the “All” and “Backcross” sub-comparisons (Figure 2.5). 

 Using NCBI's BLAST+ tool (Altschul et al. 1990), several candidate gene regions 

were identified in Heliconius. The first locus, found in LG 8 in the assembly, aligns to H. 

melpomene scaffold "Hmel218003o" around the 4Mbp region, and to the 5Mbp region of 
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Bombyx mori chromosome 23 (Yamamoto et al. 2008) (Table 2.4). Locus 2 is found on 

LG 12 in my assembly, but also mapped to H. melpomene scaffold "Hmel218003o" at 

around 5.7Mbp, and to the 7Mbp region of B. mori chromosome 23. Contrary to 

expectations based on an analysis of synteny (Table 2.5)Loci one and two therefore map 

to the same scaffolds/chromosomes in Heliconius/Bombyx, respectively, despite being 

found in different linkage groups in Limenitis (Table 2.6). Finally, locus 3 is found on LG 

8 in my assembly, but maps to H. melpomene scaffold "Hmel209001o" at around 4Mbp, 

and to B. mori chromosome 14 around 12.2Mbp (Table 2.4). Locus 3 therefore maps to 

different scaffolds/chromosomes than loci one or two, despite being found on the same 

linkage group in my data (Table 2.6). Note that nine out of the ten loci that were found to 

have a significant association with phenotype map to H. melpomene scaffold 

"Hmel218003o". Remaining BLAST comparisons can be found in table 2.4. 

The three loci with the most consistent associations to phenotype map to genomic 

regions that either contain or are proximate to several known proteins, imputed proteins 

and annotated domains (see: Table 2.7). Locus 1 is proximate to several toll-like receptor 

(TLR) genes, as well as an exportin-4 like protein sequence known as "HMEL017483". 

Locus 2 is also proximate to a toll-like receptor gene, as well as a sugar transporter gene, 

and an ortholog of the gene "Bursicon". The H. melpomene scaffold (Hmel208003o), to 

which most of my significant loci align, is also known to harbor the canonical color 

patterning gene "optix", which modulates the presence or absence of red color pattern 

elements in Heliconius, around 700Kbp from the beginning of the scaffold. Other 

proteins proximate to these BLAST results can be found in Table 2.7. 
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Discussion 

The goal of any genetic mapping study is to identify gene regions that underlie the 

phenotypic variation among a group of individuals. To pursue this goal, I created a 

linkage map in an effort to localize the causal variant that is responsible for color pattern 

variation in western Limenitis butterflies. Limenitis butterflies were chosen for this study 

because they are closely related, and because they actively hybridize in the western Great 

Basin (Boyd et al. 1999), which should contribute to high genomic similarity and help 

distinguish the genomic signature of adaptation from genome-wide divergence. We 

originally hypothesized that optix, a color patterning gene that is causatively linked to 

red-orange color patterns in Heliconius (Martin et al. 2014), would be conserved 

Lepidoptera (Kronforst and Papa 2015), and therefore responsible for the orange AFP 

phenotype in Limenitis. Surprisingly, while the most strongly associated QTL aligns to a 

Heliconius scaffold that contains optix, it is not in close proximity to optix within that 

scaffold, nor do any of the statistically associated SNPs align to the Limenitis scaffold 

that contains optix (scaffold00223). This suggests two intriguing possibilities: 1) the QTL 

is in a region that contains a novel color patterning gene or 2) the QTL is in a region that 

contains a trans-acting element that modulates the expression of optix. 

The linkage map was generated from 3935 linkage informative SNPS, and 

resolved into 250 linkage groups, of which ~30 well-supported linkage groups. While 

high likelihood values support these de-novo linkage groups, very little support can be 

drawn from comparison to a chromosomal assembly of a closely related butterfly species 

Melitaea cinxia. Melitaea is an ideal comparison because this species retains the ancestral 
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Nymphalid chromosomal arrangement, with 30 chromosomes rather than the 21 found in 

Heliconius (Ahola et al. 2014).The inferred linkage groups in Limenitis do not correspond 

well to the chromosomal arrangement of Melitaea based on comparisons of protein 

coding synteny at the scaffold level and based on BLAST comparisons of the QTL 

regions. In fact, most of the 10 SNPs from the QTL analysis align to chromosome 14 in 

Melitaea, to LG 18 in H. melpomene, and to chromosome 23 in B. mori, despite being 

found on different linkage groups in our map (Tables 2.5 and 2.6).  

The most likely source of error in our linkage map construction is the relatively 

small scale of our crossing experiment. F2 brood sizes ranged from five to 39 (Table 2.1) 

and a total of only 142 individual offspring were included in the final analysis, making 

this a smaller study than generally expected for traditional linkage mapping methods 

(Beavis 1994; Lange and Boehnke 1982). Additionally, LepMap3 was created for whole-

genome datasets (Rastas 2017), so it is possible that the lower density of markers reduced 

the effectiveness of joining linkage groups, though the effect of marker density on 

performance has not been explored. This is especially probable considering that most 

linkage groups exhibit low coverage at their extreme ends, possibly indicating poorly 

resolved linkage relationships between linkage groups. One way to overcome this issue in 

future experiments would be to reduce the stringency of filtering criteria for the SNP 

library. This should be possible in LepMap3, which can handle genotype likelihood data, 

allowing users to substantially increase the number of loci involved in an analysis 

(Rastas, 2017). However, I chose not to pursue this solution because of my lack of 

confidence in the sequence data quality for this dataset as a result of including the low-
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quality lane of sequencing. Finally, our linkage map was constructed from broods that 

had undergone only a single generation of either backcrossing or intercrossing. There is 

no recombination between maternally inherited markers in Lepidoptera because there is 

no crossing over in females; this could result in much lower resolution of linkage 

relationships as linkage mapping is only possible if recombination polarizes the 

relationships between SNPs (Broman and Sen 2009). Spurious inference of linkage 

between physically unlinked SNPs perhaps produced poor synteny between this linkage 

map and the genomes of other Lepidoptera. Alternatively, lack of linkage information 

may have led to some linkage groups being split, when in reality they are contiguous. 

This latter interpretation is particularly likely given that BLAST alignments of the 

regions around the associated loci against the Heliconius genome do not overlap, but 

align to a relatively small region of a single scaffold (Figure 2.6). 

Phenotypic inheritance patterns indicate that orange coloration in Limenitis is 

controlled by a single locus of large effect. Despite the quantitative variation in the extent 

of orange on the wing, this single-locus inference fulfilled our expectations based on the 

genetics of color pattern in other butterfly species (Kronforst and Papa 2015). 

Additionally, studies of the developmental genetics of butterfly wings have found that 

canonical morphogens such as distal-less (dll), wingless, and engrailed often exhibit 

complete dominance, which means that only one gene/gene region is required to produce 

a phenotypic change (Carroll et al. 1994). These genes are initially expressed in localized 

regions of the wing from which they diffuse to create gradients that activate 

developmental pathways to establish body segments and polarity (Lecuit et al. 1996; 
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Nellen et al. 1996; Neumann and Cohen 1997; Zecca, Basler, and Struhl 1996). These 

genes also have been found to function in the formation of wing patterning, such as 

establishing the locations of eyespots (Carroll et al. 1994). Further study has revealed a 

set of "developmental toolkit" genes that have been repurposed throughout the 

Lepidopteran evolutionary tree to generate a diversity of color patterns (Kronforst and 

Papa 2015). These genes include the signaling ligand WntA (black patterning (Gallant et 

al. 2014)), the cell-cycle regulatory protein cortex (yellow patterning (Nadeau et al. 

2016)), and the transcription factor optix (red patterning (Kunte et al. 2014)). While our 

findings support this expected single-locus model, our QTL did not map to any of these 

three toolkit genes, instead mapping to a region roughly 4-7Mbp away from the color 

patterning gene optix. However, it is important to note that filtering removed SNPs that 

are associated directly with the Limenitis scaffold that contains the optix protein coding 

region, so it remains possible that optix is involved in generating the AFP. 

QTL analysis returned 10 SNPs associated with the presence or absence of the 

orange AFP. Two pairs of these loci (Locus 4/7, and Locus 5/9) aligned to essentially the 

same position in Heliconius, and so they were considered to be the same locus, leaving 

eight putative color patterning loci. Locus 1 and Locus 2 stand out as particularly 

strongly associated with the phenotype, with LOD scores of 21.36 and 21.03, 

respectively. These loci, while mapping to different linkage groups in the Limenitis 

assembly, align to a roughly 2Mbp region on Heliconius melpomene scaffold 

"Hmel218003o", a scaffold which is known to harbor the color patterning gene optix. 

These loci, however, are not particularly close to optix, which demands explanation. 
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One intriguing possibility is that the gene regions near the QTL contain a novel 

color patterning gene. Of particular interest among our BLAST results is the gene 

bursicon. Bursicon is a neuropeptide first identified in Drosophila that is released into the 

hemolymph of insects shortly after emergence from the pupa (Loveall and Deitcher 

2010). This protein interacts with a receptor called Rickets to instigate maturation of the 

wings, which happens after most other developmental processes are complete (Bilousov, 

Katanaev, and Kozeretska 2012). Since wing pigmentation is the final step in wing 

pattern development (Brakefield and French 1999) we would expect that the molecule 

responsible for a shift in wing pigment to be expressed rather late in the developmental 

timeline, but still prior to emergence. This separation in time between wing maturation 

and pigment deposition means that it is possible that bursicon could be used in both 

instances without signal confusion, similar to how other patterning genes operate (Carroll 

et al. 1994). Studies of bursicon expression during development are needed to test 

whether this gene is causatively associated with the AFP. If this association is causative 

we should expect to see evidence of bursicon expression significantly earlier than wing 

maturation if this gene is causatively associated with the orange AFP. The evidence of a 

QTL at this site in Limenitis makes bursicon an excellent candidate gene for further 

study. 

Another possibility is that the QTL represents not a new color patterning gene, but 

rather a trans-acting element that interacts with optix to modulate the expression of red-

orange color patterning. Trans-acting elements are typically genes that produce RNA or 

protein products, such as transcription factors, that interact with another gene (Sassone-
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Corsi and Borrelli 1986). For example, Dll is a well-known trans-acting factor that has 

been implicated in the creation of color patterns, specifically eyespots, in Lepidoptera 

(Carroll et al. 1994). It is possible that one or more of the uncharacterized genes near the 

QTL we identified is such a trans-acting element. While further characterization of this 

region is necessary to fully elucidate its potential relationship with the orange AFP, one 

could speculate that it interacts with optix given they are located on the same linkage 

group in Melitaea cinxia, Heliconius melpomene, and Bombyx mori, respectively (table 

2.4 and 2.5).  

Further characterization of this gene region is necessary to fully elucidate its 

relationship with the orange AFP. RNA-i or CRISPR-CAS9 knockouts are exciting 

methods of establishing a functional relationship between the two; however, complete 

knockouts of bursicon may be too extreme because of its essential role in exoskeleton 

tanning and wing maturation in arthropods (Loveall and Deitcher 2010). It seems likely 

that individuals lacking bursicon or that have repressed expression would not be able to 

generate mature wings, which would be difficult to phenotype. As a result, in situ 

hybridization experiments may be the best way to demonstrate that certain gene products 

co-localize with the phenotype, as in previous work (Gallant et al. 2014) in Limenitis. 

Though direct evidence of a functional relationship awaits further study, the 

current analysis localized several QTL associated with the presence or absence of the 

orange AFP to genomic regions in Limenitis. Comparisons among reference genomes 

suggest that most of the significantly associate SNPs are in fact the same region of the 

genome, though this region is not particularly close to any known color patterning genes, 
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suggesting that we have identified a new target of selection. While they remain untested, 

two hypotheses seem equally plausible: 1) the QTL we identified are associated with a 

trans-acting element that acts on optix; or 2) the QTL we identified are associated with a 

novel color patterning gene. Each possibility is intriguing and worthy of further study. 

Identifying the function of this gene will advance our knowledge of color pattern genetics 

and development of adaptive color patterns. These results highlight the value of 

evolutionary dynamics across a variety of different species to gain a fuller picture of the 

evolution of divergent adaptive phenotypes.  
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Figures  
 
 

 
Figure 2.1 A representation of the two types of hybrid crosses and expected phenotypic 
proportions of offspring produced during this experiment, assuming that orange 
coloration is a dominant Mendelian trait. The left panel depicts an Intercross, whereby F1 
hybrid offspring are mated to a full sibling to produce F2 hybrids with an expected 
phenotypic ratio of 3:1 orange:non-orange. The right panel depicts a backcross, whereby 
F1 hybrid offspring are mated to a member of the parental population that does not 
exhibit the phenotype of interest, producing a 1:1 expected phenotypic ratio in the F2 
generation. 
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Figure 2.2 A depiction of the range of phenotypic diversity observed in the F2 hybrid 
offspring in the crossing experiments. Note the variation in extent of orange color 
patterning. Despite this high degree of variability, offspring ratios from the mating 
experiment are consistent with a simple two-allele Mendelian trait.  
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Figure 2.3 The 30 largest linkage groups produced from the LepMap3 analysis. Loci 
indicated with the color red represent loci that have higher LOD scores than the 
significance threshold calculated using a 1000-iteration permutation test. Note that locus 
density is highly variable, particularly when comparing linkage group centers and tips, 
and when comparing smaller chromosomes to larger ones.  
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Figure 2.4 LOD scores for SNPs on each of the first 15 linkage groups. The dotted 
orange and dashed green line represent significance thresholds (p < 0.01, p < 0.001) 
gathered from a permutation test utilizing 1000 permutations. Blue lines represent LOD 
scores from the “all offspring” comparison, whereas the red line represents backcrossed 
offspring. Significant associations with orange AFP color patterning are found on LGs 2, 
7, 8, 10, and 12, with the highest peaks found on LG 8 and LG 12. 

 
 
  



 

 

54 

 

Figure 2.5 LOD score distributions across the two linkage groups with the highest LOD 
peaks. Each of the small panels on the left shows the LOD scores in the respective 
linkage group for each QTL analysis. The panels on the right graph combine the “All 
Offspring” LOD scores and the “Backcross Offspring” LOD scores to show concordance 
between the two comparisons. 



 

 

55 

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 2.6 A schematic representation of the BLAST alignments of 2kbp queries drawn 
from around the QTL. 
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Tables 

Table 2.1 The results of the crossing experiments presented in each year that offspring were produced. In each case, 
individuals from each species were mated to produce hybrid offspring, which were then mated either to their siblings 
(intercross) or to a member of the parental generation (backcross) to produce second generation broods. The third row shows 
the number of broods and offspring produced in each year. Finally, in the bottom row, phenotypic ratios are tested for 
departure from the expected 3:1 (intercross) or 1:1 (backcross) ratio using a chi-squared test. 

 2011 2012 2013 

Parental Wild Caught Individuals 
L. lorquini x L. weidemeyerii 

Wild Caught Individuals 
L. lorquini x L. weidemeyerii 

Wild Caught Individuals 
L. lorquini x L. weidemeyerii 

Number of 
Families 

3 Full-sibling mate pair 
families 

2 Full-sibling mate pair families 
2 Backcrossing mate pair families 1 Backcrossing mate pair family 

Resulting 
Number of 
Offspring 

Intercross 1: 
Intercross 2: 
Intercross 3: 

5 
24 
7 

Intercross 4: 
Intercross 5: 
Backcross 1: 
Backcross 2: 

39 
14 
9 

32 

Backcross 3: 12 

Statistics 

Intercrosses Backcrosses 

Observed: 
63 Orange 
26 Black 

Expected (3:1): 
67.75 Orange 
22.25 Black 

X2: p ~ 0.50 
Observed: 
28 Orange 
25 Black 

Expected (1:1): 
26.5 Orange 
26.5 Black 

X2: p ~ 0.80 
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Table 2.2 The number of linked SNPS used to construct linkage groups. 
 

Linked SNPS All LG's 30 Largest 
LG's 

Total 3930 3265 
Average 15.53 108.83 
Median 3 103 

Min 2 17 
Max 193 193 

 
 
Table 2.3. The Number of scaffolds that were used to construct the top 30 linkage 
groups. Note that these scaffolds are not necessarily unique, a scaffold included in LG1 
could also be included in LG2. SNPs from many scaffolds were assigned to multiple 
linkage groups. 
 
  

 

LG Number 1 2 3 4 5 6 7 8 9 10 MAX 37 (LG 10) 

Scaffolds in LG 22 32 28 33 20 19 35 23 20 37 MIN 5 (LG 30) 

LG Number 11 12 13 14 15 16 17 18 19 20 AVG 23.87 

Scaffolds in LG 19 18 22 21 16 27 14 17 14 17 MED 19 

LG Number 21 22 23 24 25 26 27 28 29 30     
Scaffolds in LG 19 18 31 15 13 12 16 8 6 5     
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Table 2.4 QTL analysis results are presented with their corresponding LOD scores. LOD scores passing the permutation 
threshold are shaded. A 15Kbp region around each marker was aligned using BLAST to the Heliconius genome (Hmel2.5), 
and the resulting alignment is presented by scaffold and position. Linkage groups 2, 8, 10 and 12 all align to the Heliconius 
scaffold known to contain the coding region of optix  
 

 
 

Locus 
Number 

Marker 
Name LG 

cM 
position 
(ALL) 

Scaffold in 
Limenitis 
Genome 

Position 
Scaffold in 
Heliconius 
Genome 

Heliconius 
Location 

LOD 
ALL 

LOD 
BC 

LOD 
IC 

Locus 1: marker2015 12 38.48 scaffold00065 1029739 Hmel218003o 4033413-
4035060 21.36 11.12 9.70 

Locus 2: marker1407 8 106.83 scaffold00072 1028706 Hmel218003o 6861771-
6862621 21.03 8.72 11.29 

Locus 3: marker2004 12 39.26 scaffold00065 680925 Hmel218003o 5705260-
5706470 17.96 10.66 7.17 

Locus 4: marker1517 8 109.21 scaffold00053 1115470 Hmel218003o 7932759-
7932637 17.45 6.92 9.73 

Locus 5: marker1716 10 85.56 scaffold00092 243048 Hmel218003o 16238630-       
16242079 14.18 10.37 4.79 

Locus 6: marker2317 15 62.67 scaffold00048 1410884 Hmel212001o 13497000-       
13496633 13.48 8.27 5.36 

Locus 7: marker1515 8 72.04 scaffold00053 1115455 Hmel218003o 7932759-
7932637 13.43 6.56 6.19 

Locus 8:  marker422 2 47.63 scaffold00010 1383768 Hmel218003o 3104692-
3105952 11.77 7.86 4.24 

Locus 9: marker1714 10 55.51 scaffold00092 243044 Hmel218003o  4335635-
4336056 11.64 8.14 6.02 

Locus 10:  marker2012 12 72.38 scaffold00065 955620 Hmel218003o 3976436-
3976673 9.31 5.82 3.68 
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Table 2.5 Inferred linkage group correspondence to chromosome-level genome assemblies in three species of Lepidoptera 
using a comparison of protein synteny. Note that results for synteny and BLAST alignments (Table 2.6) are often inconsistent. 
 

 
 
 
  

Locus # Limenitis 
Scaffold 

Linkage Group 
(Limenitis) 

Linkage Group  
(H. melpomene) 

Chromosome 
(M. cinxia) 

Chromosome 
(B. mori) 

Locus 1: scaffold00065 12 18 14 23 

Locus 2: scaffold00072 8 18 14 23 

Locus 3: scaffold00065 12 18 14 23 

Locus 4: scaffold00053 8 18 14 23 

Locus 5: scaffold00092 10 Z 1 1 

Locus 6: scaffold00048 15 13 26 14 

Locus 7:  scaffold00053 8 18 14 23 

Locus 8: scaffold00010 2 18 14 23 

Locus 9:  scaffold00092 10 Z 1 1 

Locus 10:  scaffold00065 8 13 26 14 
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Table 2.6 Linkage group correspondence to chromosome-level genome assemblies in three species of Lepidoptera using 
BLAST alignment. Note that results for synteny (Table 2.5) and BLAST alignments are often inconsistent. 

 

Locus # Limenitis 
Scaffold 

Linkage Group 
(Limenitis) 

Linkage Group  
(H. melpomene) 

Chromosome 
(M. cinxia) 

Chromosome 
(B. mori) 

Locus 1: scaffold00065 12 18 14 23 

Locus 2: scaffold00072 8 18 14 23 

Locus 3: scaffold00065 12 18 14 23 

Locus 4: scaffold00053 8 18 14 23 

Locus 5: scaffold00092 10 18 14 23 

Locus 6: scaffold00048 15 7 28 2 

Locus 7:  scaffold00053 8 18 14 23 

Locus 8: scaffold00010 2 18 14 23 

Locus 9:  scaffold00092 10 18 14 23 

Locus 10:  scaffold00065 8 18 14 23 
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Table 2.7 Genes found near the Limenitis QTL based BLAST alignment to the Heliconius genome.   

 

Locus # Heliconius 
scaffold: position Protein Hit 1 Protein Hit 2 Protein Hit 3 Protein Hit 4 

Locus 1: Hmel218003o: 
4033413-4035060 

HMEL034295 
(Cullin - 5) 

HMEL006496 
(ETIF 2 Sub. 3) 

HMEL006499 
(uncharacterized) 

HMEL006495 
(ATP synthase) 

Locus 2: Hmel218003o: 
6861771-6862621 

HMEL017483 
(exportin 4-like) 

HMEL017487 
(TLR-J) 

HMEL017479 
(TLR-I) 

HMEL034352 
(uncharacterized) 

Locus 3: Hmel218003o: 
5705260-5706470 

HMEL034331 
(Bursicon) 

HMEL034332 
(histone 

demethylase) 

HMEL005787 
(sugar transporter) 

HMEL011010 
(TLR-F) 

Locus 4/7: Hmel218003o: 
7932759-7932637 

HMEL034380  
(nucleic-acid-

bind.) 

HMEL034379 
(uncharacterized) 

HMEL016208  
(translation init. 

factor) 

HMEL009488 
(carboxylate 

synthase) 

Locus 5: 
Hmel218003o: 

16238630-
16242079 

HMEL017112 
(Uncharacterized) 

HMEL034535 
(Uncharacterized) 

HMEL034536 
(Uncharacterized) 

HMEL006492 
(Kelch-Like 

Protein) 

Locus 6: Hmel205001o: 
352933-353461 

HMEL036595 
(zinc finger) 

HMEL036596 
(uncharacterized) 

HMEL036594 
(adenosine receptor) 

HMEL036593 
(uncharacterized) 

Locus 8: Hmel218003o: 
3104692-3105952 

HMEL014940 
(phosphatase) 

HMEL014937 
(uncharacterized) 

HMEL014936 
(repressor 

expression-enhancing 
protein) 

HMEL034262 
(uncharacterized) 

Locus 9: Hmel218003o: 
4335635-4336056 

HMEL034293 
(Uncharacterized) 

HMEL034292 
(Uncharacterized) 

HMEL006491 
(Uncharacterized) 

HMEL034537 
(Uncharacterized) 

Locus 10: Hmel218003o: 
3976436-3976673 

HMEL034293 
(uncharacterized) 

HMEL006491 
(uncharacterized) 

HMEL034292 
(uncharacterized) 

HMEL006492 
(kelch-like 

protein) 
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CHAPTER THREE 

Identifying Variants Underlying Adaptation in Limenitis lorquini 

Introduction 

A central goal of evolutionary biology is to understand how the phenotypes of 

organisms are linked to genetics and gene function. The diversity of butterfly wing 

coloration and the myriad ways in which color patterns influence the fitness makes them 

a favored subject for this type of study. Over the last decade, rapid progress has been 

made in identifying the genetic basis of color pattern in a variety of species, including 

butterflies (Kronforst et al. 2012). Much of this progress has come from painstaking 

crossing experiments using individuals from different species to generate large 

recombinant mapping broods, allowing researchers to identify linkage blocks associated 

with a phenotype of interest (Broman and Sen 2009). Laboratory crosses reduce potential 

environmental variation and therefore increase mapping power and the ability to identify 

genetic variants with a relatively small number of genetic markers (Hoekstra et al. 2006; 

Reed et al. 2011). For example, using this approach, Reed et al. (2011) demonstrated that 

phenotypic variation in patterns of red pigmentation among different geographic races of 

Heliconius butterflies was associated with the genomic region encompassing a well-

known transcription factor optix.  

Interestingly the optix gene was originally described in Drosophila as a 

developmental precursor to eye development (Toy et al. 1998), which suggests that its 

function in red-orange color patterning in Heliconius represents a co-option of this 

function. The finding that that developmental genes are often re-purposed in other 
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developmental contexts aligns with one the most surprising findings in the field of 

evolutionary developmental biology (evo-devo), that of the "developmental toolkit". The 

developmental toolkit comprises a set of genes that are highly conserved even among 

deeply diverged taxa (Carrol 2008), the discovery of which has broad implications for 

understanding the relationship between genes and phenotypes. As a consequence, the 

focus of evo-devo research has shifted from finding new genes to identifying new 

regulatory mechanisms, and investigating how regulatory evolution determines the spatial 

and temporal control of gene expression during development (Pearson, Lemons, and 

McGinnis 2005; Ronshaugen, McGinnis, and McGinnis 2002). This has led to the 

discovery of developmental genes that are not only conserved across distantly related 

taxa, but that are also involved in different aspects of development within the individual 

organism (Carroll et al. 1994). 

Many of the loci underlying color have been identified in recent years including 

cortex (yellow), optix (red), and WntA (black), across a small handful of butterfly species 

(Gallant et al. 2014; Jiggins and McMillan 1997; Martin and Orgogozo 2013; Martin et 

al. 2012; Naisbit, Jiggins, and Mallet 2003; Papa, Martin, and Reed 2008; Reed et al. 

2011; Sheppard et al. 1985b). The conserved function of developmental genes, when 

combined with the modularity of wing pattern development (Nijhout 2001), and with the 

finding that evolution of color pattern is generally due to regulatory changes as  

associated with mutations in evolutionary "hotspots” (Martin and Orgogozo 2013), 

provides a plausible mechanism for diversification of butterfly color patterns. However, 

there is a need to study additional species to examine the scope of the phenomenon in a 
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comparative evolutionary framework. Despite the power of classic genetic crossing 

experiments, they are expensive, time intensive, and lab stocks are difficult to maintain. 

In addition to these drawbacks, laboratory studies are also necessarily narrow in scope, 

often addressing only Mendelian genes and discrete characters (Hoekstra et al. 2006; 

Reed et al. 2011), leading to questions about their generalizability (Sansom and Brandon 

2007). However, with the advent of next generation sequencing we are no longer 

restricted to the laboratory and can take full advantage of variation that exists in natural 

populations. 

Investigations of genotype-to-phenotype relationships in natural populations are a 

logical companion for QTL experiments. Until recently, whole genome analyses have 

been largely inaccessible for use in natural populations because of sample size and cost, 

with notable exceptions in medicine (Ozaki et al. 2002; Visscher et al. 2017) and 

agriculture (Huang and Han 2014; Korte and Farlow 2013; Liu and Yan 2019). However, 

as the cost of generating robust whole-genome sequence data declines, natural 

populations can now be sampled, sequenced, and scrutinized with minimal effort and 

cost. Datasets composed of densely distributed markers can then be used in genotype-to-

phenotype genome wide association studies (GWAS) to identify causal variants. These 

types of studies rely on linkage disequilibrium between adjacent markers to identify 

regions of interest, and with enough recombination between the focal species, can 

identify causal variants (Korte and Farlow 2013). As a result, GWAS studies have 

emerged as an expedient way to identify genetic variants associated with phenotypic 

variability, even in natural populations.  
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One example of the successful deployment of this model is the identification of 

the causal variants underlying the variation in lateral plate count and opercle shape in 

natural populations of sticklebacks (Alligood 2017). However, natural populations also 

present challenges associated with population structure, unknown relationships among 

samples, and genotype-by-environment effects. One way to compensate for these 

variables is to use extremely large sample sizes, as exemplified in studies seeking to 

identify genes underlying disease risk in human populations (Ozaki et al. 2002; Visscher 

et al. 2017). A more realistic way to compensate for these confounding variables for 

organismal biologists is to focus on hybrid populations, in which population structure is 

likely to be minimal and in which genetic variation across most of the genome is broadly 

shared between individuals of different phenotype (Harrison 1993). When used in this 

way, hybrid zones become natural laboratories in which crossing has been occurring for 

multiple generations in concert with ongoing selection, resulting in an ideal system in 

which to identify causal variants for divergent phenotypes. 

One such hybrid zone occurs between two admiral butterflies in the western 

United States. The Lorquin’s Admiral (Limenitis lorquini) and the Weidemeyer’s 

Admiral (Limenitis weidemeyerii) hybridize extensively in a pair of hybrid zones formed 

where their geographic distributions meet (Boyd et al. 1999). Hybridization between 

these two groups has been documented since at least the early 20th century (Edwards 

1972), and has been well described (Boyd et al. 1999). The most obvious phenotypic 

difference between these two species is the presence or absence of an orange apical 

forewing patch (AFP) found in L. lorquini individuals as well as in many hybrid 



 

 

66 

individuals. In the previous two chapters, I demonstrated the adaptive significance of this 

phenotypic variation, and I used a traditional linkage mapping approach to identify the 

genomic region associated with the presence or absence of AFP. However, the causal 

variants associated with this phenotype have yet to be identified. Here I present the 

results of a GWAS using whole-genome sequences for a sample of 52 Limenitis 

individuals that tests the three following competing hypotheses about the mechanisms 

underlying adaptive phenotypic variation in AFP among western Limenitis:  

1. The Canonical color patterning gene optix is responsible for variation in AFP 

patterning between L. lorquini and L. weidemeyerii. 

2. A previously undescribed gene, or a trans-acting element of optix, is responsible 

for the variation 

3. Genome mis-assembly of the Limenitis arthemis genome is leading to spurious 

results in low-power analyses as seen in the linkage analysis in Chapter 2 

Methods 

Sample Collection and Preparation: Genomic DNA was extracted from wild-caught L. 

lorquini (n = 20), L. weidemeyerii (n = 20), and individuals with the orange AFP 

phenotype from the hybrid zone (n = 12). Hybrid samples were selected which showed 

variation in the extent of orange coloration as judged by eye. The sample spanned 

individuals where orange was weakly present (n = 4), intermediately present (n = 4), and 

strongly present (n = 4). Sampling localities (Table 3.1) covered 4 states (CA, OR, NV, 

CO) to get a representative sample of the genotypic variation within these two species, 

which are potentially isolated by distance; geographic sampling localities are displayed in 
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Figure 3.1. In total, geographic sampling included 20 L. lorquini, 20 L. weidemeyerii, and 

12 putatively hybrid individuals. Of the L. lorquini, 12 were collected from the San 

Francisco Bay Area (N39.29, W122.92) and 8 from Josephine county in Oregon (N42.60, 

W123.36). The L. weidemeyerii (n = 20) were primarily collected from Mono county 

California (n = 10, N38.12, W119.10) and Pershing county Nevada (n = 7, GPS: N40.84, 

W117.67), but a small sample of individuals (n = 3) from Delta county (n = 38.94, 

W107.36) in Colorado were also included. Finally, putatively hybrid individuals (n = 12) 

were collected from sites in Mono County (N38.43, W119.21, n = 3) and Humboldt 

county in Nevada (N41.78, W118.60, n = 10). Adults were collected using hand-nets, 

their wings were removed and placed in glassine envelopes with paper vouchers, and 

bodies were then preserved in either RNALater (Thermo Fisher, Waltham MA) solution 

or a 70% Ethanol solution. DNA was extracted from ~25 mg of thoracic flight muscle 

using a DNeasy kit (Quiagen, Valencia CA) following standard protocol and including 

20uL of proteinase K. To increase the likelihood of complete lysis, the lysis mixture was 

allowed to incubate overnight. Final DNA concentrations were determined using a 

NanoDrop® 2000 spectrophotometer. 

Library preparation and Sequencing: Genomic DNA quality was first assessed using an 

Agilent® (Santa Clara, CA) TapeStation system. Samples that passed quality assessments 

were prepared for sequencing by ligating Illumina® (San Diego, CA) Nextera PCR 

primers and indexed adapters, allowing unique identification of each sample. Sequencing 

was conducted on two separate pools of samples, hereafter called fragment libraries. The 

first set of libraries included only L. lorquini (n = 10) and L. weidemeyerii (n = 10) 
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individuals, originally generated for a separate project (Mullen et al. 2019, in prep), 

whereas the second included L. lorquini (n = 10), L. weidemeyerii (n = 10), and putative 

hybrids (n = 12). Both sequencing runs were conducted on Illumina® HiSeq2500 

machines in RAPID mode with 150 bp paired-end reads. The first sequencing run, 

originally containing four Limenitis species (n= 40) including L. lorquini (n = 10) and L. 

weidemeyerii (n = 10) was sequenced on three lanes whereas the second library, 

containing L. lorquini (n = 10), L. weidemeyerii (n = 10), and Hybrids (n = 12), was 

sequenced on two. Raw sequence data, including sequence quality, was returned from the 

sequencing facility demultiplexed by sample. Custom bash scripts were used to check for 

adapter sequences and, if present, were removed from the data using the Cutadapt (v1.8) 

software with default parameters and the Illumina adapter sequence as the search 

template. 

Sequence Alignment and Initial Filtering: The Burrows-Wheeler Aligner (H. Li and 

Durbin 2009) and the bwa-mem algorithm (Heng Li 2013) were used to align sequence 

reads to the Limenitis reference genome (Mullen et al., in prep), which comprises 306.3 

megabases (Mb) in 4,786 scaffolds (N50 2.16 Mb), with the longest scaffold approaching 

32 Mb. For the analyses presented here, I focused on a reduced set of Limenitis scaffolds 

(n = 236), which had been previously mapped and ordered relative to the Heliconius 

melpomene genome (Davey et al. 2016). Aligned output from BWA was piped directly 

into the Samtools software (H. Li et al. 2009) to produce binary alignment map (BAM) 

files for each sample and each lane in our dataset. This is done so that libraries can be 

assigned unique read group ID's based on sequencing lane. The resulting BAM files were 
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then merged by sample before being deduplicated and coordinate sorted using Picard 

(v2.18.11). The resulting merged files were then analyzed using the Genome Analysis 

Tool Kit v3.7 (McKenna et al. 2010).  

Genotypes were called with respect to our reference genome using the 

UnifiedGenotyper, and hard-filtered using custom scripts and according to GATK best 

practices recommendations (DePristo et al. 2011). Briefly, custom python scripts were 

used to generate plots of several variant quality statistics including: Quality by Depth 

(QD), Fisher Strand (FS, the phred scaled probability of strand bias at a given site), 

Strand Odd Ratio (SOR), RMS Mapping Quality (MQ), Mapping Quality Rank Sum Test 

(MQRankSum), and Read Positive Rank Sum (ReadPosRankSum). Each of these plots 

was compared to their expected distributions for high-quality data to inform the choice of 

filtering parameters that were applied to the raw variants. Final filters were: “QD < 5”, 

“FS > 60”, “SOR > 2”, “MQ < 40”, “MQRS < -12.5”, and “RPRS < -8.0”. In each case, 

variants satisfying any of these criteria were removed from the dataset. 

Final Filtering: Finally, variant call files (VCFs) produced by GATK were filtered using 

the VCFtools software (Danecek et al. 2011) to generate a final data set confident SNP 

calls. Only biallelic SNPS of high quality (QUAL >30) and with a sequencing depth of 5 

or greater per individual were selected. SNPs were further filtered to remove those that 

deviate significantly from null expectations of Hardy Weinberg equilibrium, to remove 

SNPs with a minor allele frequency of less than 0.01, and to include only those SNPs that 

were called for >75% of the individuals in our dataset (Purcell 2007, Alligood 2015). 
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GWAS: To perform association tests with the SNP data, I first used the software PLINK 

(v1.9) (Purcell et al. 2007) to produce binary files, and to perform a Principal 

Components Analysis (PCA) to test for population structure in the data. I then used the 

binary files, which are compatible with the software suite GEMMA (genome-wide 

efficient mixed-model association, v0.98), to perform association tests by implementing 

univariate mixed models (Zhou and Stephens 2012) to test for genotype-phenotype 

association. These were implemented by fitting a univariate linear model using the "-lm" 

flag. Tests statistics and p-values were estimated using the Wald test, the likelihood ratio 

test, and the score test. This analysis was completed twice: once with unfiltered biallelic 

data (n = 20,609,607 SNPS), and once with filtered highly confident SNP calls (n = 

197,575 SNPS). In both cases, GEMMA was set to exclude sites based on minor allele 

frequency (MAF), missingness (MISS), and deviation from hardy weinberg equilibrium 

(HWE), however parameters were adjusted (Table 2.3) from their standard values. 

Results were visualized using custom scripts in conjunction with the "qqman" (S. D. 

Turner 2018) package in R (R Core Team 2016). 

BLAST: Finally, to test the hypothesis of genome mis-assembly, genomic regions with 

SNP loci showing evidence of significant association to the AFP phenotype were 

compared to the Heliconius melpomene genome (Hmel 2.5) using BLAST (Altschul et al. 

1990). This comparison was made because an earlier analysis of synteny between protein 

coding regions in limenitis and Heliconius indicated possible mis-assembly of the 

genome (see Chapter 2). Therefore, to check for concordance between the results of our 

QTL analysis and those of the GWAS, a 2kbp region around each significant SNP was 
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extracted from the Limenitis reference genome using Samtools. The resulting file was 

then used to query the Heliconius melpomene genome in a Discontiguous Megablast 

(BLAST+ v2.7.1) search with default settings. Resulting matches were sorted by bit score 

and by length and were recorded if they spanned more than 10% of the query sequence 

(i.e., they were more than 200bp in length). 

Results 

Sequencing: To produce sequence data for the 52 samples included in this dataset, two 

separate sequencing runs were used. In the first sequencing run, we sequenced 20 

individuals across two separate lanes of HiSeq2500 sequencing, which returned a total of 

~860 million reads, and an average of 42 million unmapped reads per sample. Average 

mapping rate was roughly 86%, likely due to the fact that I analyzed a subset of all 

scaffolds in the full genome sequence of L. arthemis (see Methods). However, the 

variance in mapping rate was high at the extreme ends, with mapping success only 6.7% 

for one sample due to significant read mispairing. If this sample is excluded, mapping 

rate increases to 91%. As a result, this sample was excluded from all further analyses. In 

the second sequencing run, 32 individuals were sequenced across two lanes of 

HiSeq2500 and returned ~590million reads and an average of 18 million reads per 

sample. Mapping rate was higher in the second run, with ~93% of reads mapped to the 

genome, an average of 17 million reads per sample. There was also variation in 

sequencing depth among samples, with a maximum of 29.8 million reads and a minimum 

of 10.8 million reads assigned to single samples. See Table 3.1 for more information 

about sequencing results. 
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Raw data set statistics: Sequences were filtered according to GATK best practices which 

produced a file containing 32 million unfiltered variants. Summary statistics were 

generated from this dataset using VCFTools (v0.1.16). The mean read depth per 

individual for the set of 32M variants was 10.6 which was very similar to mean read-

depth-per-sample of 10.03. However, this global average obscures the differences 

between the two libraries. Library 1, containing only L. weidemeyerii and L. lorquini had 

an average read depth of 14.4, whereas Library 2 had roughly half as many reads with 

7.6. This results in an average missingness in Library 2 (31%) that is much higher than 

the missingness in Library 1 (0.06%) when the individual with poor alignment results is 

excluded. This difference in missingness between runs impacts the later filtering, as 

excluding sites that are not present in more than 70% of individuals would exclude a 

significant proportion of the sites found in Library 1 that are not also found in Library 2. 

Call quality was high, with an average QUAL score of 1810.69 in the full dataset and 

only 1.8 million sites (0.6%) with a QUAL score less than 30. 

Following a second round of filtering to retain only high-quality SNPs, the mean 

depth-by-site for this dataset was higher at 14.56, but the mean depth by individual is 

lower, at 13.78. When calculated separately for each sequencing run, the source of this 

variance becomes clear. Library 1 has a higher average read depth-by-individual than in 

the initial dataset that was only filtered by quality using GATK. The new read depth-by-

individual increases to 19.99 from 14.4 following the second round of filtering in library 

one, whereas library two only increases to 10.3 from 7.6. Library one has an average 

missingness of 7% in whereas Library 2 still has high missingness after final filtering, 
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with an average 28%. Average quality is much higher in the filtered dataset (QUAL = 

3863.3) and, as expected after filtering, none of the sites have a quality score of less than 

30. Overall, the filtered dataset clearly contains SNPs of higher quality than the unfiltered 

and initially filtered datasets, but it loses a very significant number of SNPS (~32 million 

vs ~22 million). 

Principal Components Analysis: To scrutinize patterns of genetic structure among our 

samples, we performed a principal components analysis in PLINK (v1.9). Based on the 

first two principal component axes, the samples are separated into four distinct clusters 

(Figure 3.2), corresponding to geography and phenotype, indicating that there is 

population structure in this dataset. Two of these clusters represent, respectively, L. 

lorquini individuals from Oregon and the San Francisco Bay area, and hybrid individuals 

from Nevada. The two remaining clusters comprise individuals that phenotypically 

resemble pure L. weidemeyerii and lack any apparent orange forewing coloration. 

Surprisingly, these two phenotypically similar clusters do not overlap in the PCA, but are 

instead separated largely by the second principal component axis, which explains ~2.5% 

of the variation in the data. These two clusters comprise individuals from the first and 

second dataset, which are also separated geographically. Library 1 L. weidemeyerii were 

all collected from a single site (GPS: N38.12, W119.08) where individuals with orange 

AFPs were also collected, whereas Library 2 was composed of individuals from sites in 

Mono county California (GPS:), Pershing county Nevada (GPS: N40.84, W117.67), and 

Gunnison county Colorado (GPS: 38.94, W107.30). The geographical distribution of 

these samples may account for the differences in position along the second principal 
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component. 

GWAS: To identify potentially causative SNPs, I performed a genome-wide association 

analysis employing a univariate linear model and estimated the significance of the 

association between individual SNPs and the orange AFP phenotype. This same 

procedure was repeated twice, once each for a larger (unfiltered, n SNPs = ~22 million) 

and smaller (filtered, n SNPs = ~207 thousand) SNP datasets (see details in methods, 

Table 3.3). The GWAS using the larger, unfiltered, SNP dataset found statistically 

significant evidence for an association between 13 SNPs and the AFP phenotype, with 

each of these SNPs having a p-value of 1.0x10-30 or smaller when calculated utilizing a 

likelihood ratio test (Table 3.3). In contrast, analysis of the smaller filtered SNP dataset 

yielded a slightly larger number of associated SNPs (24), with p-values of 1.0x10-17 or 

smaller based on likelihood ratio tests (Table 3.4). Surprisingly, no SNP is found to be 

significantly associated in both analyses. However, three scaffolds (scaffold00006, 

scaffold 00035, and scaffold00176) included significantly associated SNPs in both 

analyses, although none of these associated scaffolds included a SNP that has significant 

association in both analyses. This is likely due to the variable effects of filtering on 

effective sample size and statistical power at individual SNPs. In contrast to our 

hypotheses, none of the scaffolds on which these associated SNPs were found were 

predicted to be syntenic with the scaffold in Heliconius that contains optix (see 

supplemental data).  

 Finally, one of the associated SNPs identified in the smaller dataset is located 

within the Limenitis scaffold that contains the optix protein coding domain. This SNP, 
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called “Locus 20” in this analysis, is found on Limenitis scaffold “scaffold00223”, at 

position 57,614 bp. This is quite close to the optix coding region, which is begins roughly 

14Kbp away at position 43,397 bp. The location of the optix coding region in the 

Limenitis genome was determined by a BLAST alignment of both the nucleotide 

sequence and protein sequence from Heliconius. Both alignments identified the region 

around 43Kbp within “scaffold00223” as the location of the optix protein. 

BLAST alignment: A 2Kbp sequence surrounding each of the associated SNPs from the 

large and small datasets was used as a query sequence in a BLAST search against the 

Heliconius melpomene genome (Hmel2.5). The regions encompassing seven of the 13 

significant SNPs from the large dataset generated alignments that exceeded 200bp in 

length (Table 3.4). These seven alignments matched four different Heliconius scaffolds 

with scaffolds “Hmel 206001o” and "Hmel216002o" appearing three times each. In both 

of these cases, these BLAST alignments are not unique, but rather the result closely 

linked significant SNPs falling within virtually identical 2Kbp regions that align to the 

same genomic regions. The most highly associated SNPs are equally associated and have 

p-values (designated "Locus 1" and “Locus 2” in this analysis), which have a p-value 

three orders of magnitude smaller than the next-most associated SNPs. Only one of these 

two, “Locus 1”, aligned to the Heliconius genome, and it aligned to a scaffold that 

contains the protein coding region of optix (i.e., "Hmel218003o"), but aligned to 

~7.5Mbp region, whereas optix is found at ~700Kbp. This alignment is at odds with an 

overall analysis of synteny between Limenitis and Heliconius, in which Limenitis 

“scaffold00021” was found to be most similar to the Heliconius scaffold 
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“Hmel204001o”. However, this result accords with the results of the QTL analysis (see 

Chapter 2), in which a region between 6.8 and 7.9Mbp was found to be associated with 

the phenotype. Both "Locus 2" and "Locus 4/7" from the QTL analysis are found on 

linkage group 8 and aligned to the 6.8-7.9Mbp region of the same Heliconius scaffold as 

the alignment from this highly associated SNP on “scaffold00021”. In the linkage 

analysis, these two QTL loci were adjacent, and both showed an association with the 

phenotype. Genes in this QTL region were identified as Orthologs of Toll-Like Receptor 

(TLR) proteins, as nucleotide binding proteins, and as translation initiation factors. TLR’s 

are a class of membrane-bound ligand-binding proteins well known for their role in 

innate immune responses (Botos, Segal, and Davies 2011), whereas the other two protein 

types bind nucleotides and initiate translation, respectively.  

Among the 23 SNPs identified as significant in the small dataset, 13 produced 

sequence alignments longer than 200bp. These 13 SNPs mapped to nine different 

Heliconius scaffolds with three aligning to "Hmel218003o" and three others to 

"Hmel206001o". It should be noted that all three of the alignments to "Hmel206001o" are 

from the same region of the Limenitis scaffold "scaffold00006" and so the query 

sequences generated from this set of SNPs overlap considerably and identify a single 

small region of the genome. The same cannot be said of the three loci that align to 

"Hmel218003o", each of which all come from different Limenitis scaffolds. "Locus 6" in 

this analysis aligns to this region of the Heliconius chromosome at roughly 7.6Mbp. 

Despite being found on a different Limenitis scaffold from the SNP in the large analysis, 

this alignment is again found between 6.9 and 8.5Mbp, which is consistent with the 
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results of the QTL analysis. Finally, "Locus 15" from the filtered analysis also aligns to 

the Heliconius “Hmel218003o” scaffold, but outside of the region found to be most 

strongly associated in the QTL analysis. 

Discussion 

In this study, I have attempted to identify SNPs associated with the orange AFP 

phenotype in L. lorquini by analyzing whole-genome sequencing data from both parental 

and hybrid populations of Limenitis found in western North America. Samples were 

drawn from a variety of populations spanning four states and included 52 individuals in 

total. Based on experiments and analyses completed in Chapters 1 and 2, I expected to 

find at least one genomic region with one or more highly associated SNPs that map to 

one of the Limenitis scaffolds that was also found to harbor a QTL. I also expected to find 

that associated SNPs would align to the Heliconius genome in the same regions as those 

covered by the QTLs. Alternatively, I expected to find SNPs that were associated directly 

with optix (Martin et al. 2014; Reed et al. 2011). This latter hypothesis, though not 

supported by the results of my QTL mapping experiment, continues to be relevant 

because all of the RAD-seq loci from the Limenitis scaffold that contains the optix protein 

(i.e., "scaffold00223") were filtered out of the final QTL data set (see Chapter 2). This 

means that it was impossible to find a direct association with optix in that experiment. 

Given prior evidence from other butterfly species, notably Heliconius (Martin et al. 2014; 

Reed et al. 2011), that optix influences multiple aspects of color pattern variation and is 

responsible for adaptive differences in patterns of red pigmentation, it was a logical 

putative candidate gene in Limenitis. It is also possible that apparent genomic distance 
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between optix and the RAD-seq QTL as well as some of the significant SNPs from the 

GWAS, which mapped to similar locations in Heliconius, is an artifact of either genome 

mis-assembly, incomplete assembly and/or chromosomal rearrangements between 

Heliconius and Limenitis. The GWAS analysis found evidence for a small handful of 

significantly associated SNPs that map to a variety of scaffolds in the Limenitis genome 

assembly.  Intriguingly, in both analyses, a pair of strongly associated SNP loci map to 

the same general region of the Limenitis genome identified in chapter 2.  While this result 

seems to support the hypothesis of a novel color patterning locus or trans-acting factor 

influencing optix expression, additional experiments will be necessary to confidently rule 

out concerns about the quality of genome assembly. 

GWAS analysis of both unfiltered and filtered genotype data supports the 

hypothesis of a causative relationship between gene regions that align to Heliconius 

scaffold "Hmel218003o" and the AFP phenotype (Figure 3.5). In each association 

analysis, SNPs aligning to this scaffold were significantly associated with the variation in 

the presence or absence of AFP. This is particularly convincing in the analysis of the 

larger SNP dataset, in which one of the two most strongly associated SNPs (both p = 

2.75E-35) was found to align to this scaffold. When the region around this SNP is aligned 

to the Heliconius genome, it aligns to a region of "Hmel218003o" at roughly 7.5Mbp, 

which is within a region flanked by two RAD-seq QTL (see Chapter 2). "Locus 6" in the 

filtered analysis also aligns to the same region of the same Heliconius scaffold at roughly 

7.6Mbp, despite being found on a different Limenitis scaffold. Finally, "Locus 14" from 

the filtered analysis aligns to the same region, but further downstream, at roughly 
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8.5Mbp. Taken together, the results of both my RAD-seq QTL mapping experiment and 

GWAS analysis support a putatively causal association between this genomic region, 

comprising QTL linkage group 8, and the AFP phenotype. 

Finding SNPs that align to the optix-containing Heliconius scaffold and that are 

associated with the presence or absence of AFP in Limenitis in two different, independent 

experiments is consistent with the a priori hypothesis that this well-known color-

patterning gene may control or influence the expression of this trait in this system. 

However, these SNPS do not align to the region of the Heliconius scaffold that produces 

the protein optix (~700 kbp). Rather, they align significantly upstream of this region, 

between 6.8 Mbp and 7.9 Mbp. When the protein coding genes in this region of the 

Heliconius genome were investigated, several putative proteins were found. Particularly 

compelling were a pair of proteins called "HMEL034380" and "HMEL016208," which 

were found near the alignments of QTL Loci 4 and 7. These two proteins code for a 

"nucleic acid binding protein" and a "translation initiation factor," respectively. Given 

that optix itself is a transcription factor regulating red-orange color in Heliconius (Reed et 

al. 2011), it is possible that these genes are transcription factors that regulate red-orange 

color patterning in Limenitis. Another possibility is that these genes, or another gene 

nearby, regulate the function of optix as trans-acting elements, as suggested in Chapter 2. 

However, this conclusion is premature without either a functional demonstration of the 

link between one of these genes and the phenotype, or evidence of reduced gene flow 

between L. lorquini and L. weidemeyerii in this region of the genome.  

Interestingly, I also found a SNP ("Locus 20") significantly associated with the 
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phenotype on Limenitis scaffold "scaffold00223". This scaffold, which is only 91 Kbp in 

length, contains the protein coding region of optix in the Limenitis assembly. While not 

the strongest association in the dataset based on statistical significance, its presence 

represents intriguing evidence for a possible role of optix in regulating red-orange color 

pattern in Limenitis. Importantly, this associated SNP is not within the coding region of 

optix based on a BLAST alignment with the Heliconius genome. This sequence aligns to 

the 690 Kbp region of the Heliconius scaffold "Hmel218003o", whereas the optix gene 

itself is found at ~706 Kbp. It is possible that this SNP represents a cis-regulatory 

mutation that affects the expression of this gene in L. lorquini, similar to findings of optix 

regulation in Heliconius (Reed et al. 2011). Thus, it is possible that color pattern 

variation, including the presence, absence and/or extent of orange pigmentation on the 

forewings of Limenitis, may be the result of both cis- and trans-acting factors influencing 

spatial patterns of optix expression. 

While this hypothesis is intriguing, the GWAS also found significant associations 

at a number of other loci spread across the genome (Tables 3 and 4). These other loci 

appear to have no relationship to the strongest QTL based on BLAST alignments to the 

Heliconius genome. Although these may be true associations, confidence in their veracity 

is lower because of the lack of corroborating evidence from the QTL mapping 

experiment. This concern is reinforced by the limited overlap in the identity of SNPs 

found in the two different GWAS datasets (unfiltered and filtered). For example, the most 

strongly associated marker in the smaller dataset, found on Limenitis scaffold 

"scaffold000061", is unique among the top SNPs from either dataset in aligning to 
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Heliconius scaffold "Hmel209001," but this scaffold is not identified in the QTL analysis. 

It is difficult to assess whether any individual SNP represents a spurious association. 

Clearly, however, more functional and population genetic work must be completed to 

confirm or rule out any of these associations. This is particularly true of loci such as the 

two "Locus 9" from the filtered and unfiltered analysis, respectively, which align to 

Heliconius scaffold "Hmel206001o" within ~300bp of one another. "Locus 14" from the 

unfiltered dataset also aligns to this scaffold, albeit 1 Mbp away, suggest that these 

associations may be genuine despite the lack of concordance with the RAD-seq QTL 

results.  

As mentioned, the discordance between the associations found in the large and 

small datasets suggests that these results be viewed with caution. However, the way that 

SNPs were filtered to produce the smaller dataset may partially explain these differences. 

The final SNP variant calls were derived from a combination of sequencing data from 

two separate sequencing libraries and runs, generated for different purposes and at 

different times, resulting in substantial variation in the quality (see Results, specifically 

discussion of quality scores) and mean depth of the data between libraries. One example 

of this average number of reads per individual. Sequencing Library 1, which contained 

only L. lorquini and L. weidemeyerii individuals from a dataset generated for a different 

project (Mullen et al. 2019, in prep) had 37 million mapped reads per individual on 

average, whereas Library 2 had only 17 million mapped reads per individual (Table 3.2). 

This inequality results in a substantial difference in variant-site-missingness, where 

individual samples in Library 2 are missing 28% of variants on average. This means that 
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Library 2 has fewer detected variants than Library 1, which is problematic because 

Library 2 contains the hybrid individuals and is should therefore more informative for our 

analysis because the set of shared alleles between orange hybrids and L. lorquini that also 

do not occur in L. weidemeyerii should be smaller than when comparing L. lorquini to L. 

weidemeyerii directly. Additionally, filtering for SNPS that occur at high confidence in at 

least 75% of individuals (Alligood 2017; Purcell et al. 2007) results in low SNP retention. 

Finally, it is possible that removing SNPs using a HWE threshold filter may have skewed 

the results of the final analyses. Using HWE-based filtering criteria is a common practice 

in NGS data handling, even when dealing with case-control studies (Wang and Shete 

2012; Hosking et al. 2004; Xu et al. 2002), to remove spurious SNP calls resulting from 

sequencing error. However, there has been some recent discussion about parsing types 

deviations from HWE to avoid filtering out informative data (Chen, Cole, and Grond-

Ginsbach 2017). It is possible that the HWE filter applied in this study negatively 

impacted the analysis by removing biologically informative deviations from HWE (Chen, 

Cole, and Grond-Ginsbach 2017). However, selective sweeps of linked markers should 

lead to a regional increase in genomic signatures of selection around the selected SNP. 

As a result, selection can be detected by looking for these regional increases, even in 

instances where a HWE filter removes the causative SNP. 

 It is important to note that, even when high-quality SNP data are used, GWAS 

studies have several sources of error, some of which cannot be eliminated from this data. 

Although GWAS studies of hybrid populations potentially allow for a much longer 

history of recombination than laboratory crossing experiments, they rely on identifying 
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populations that vary based in the trait of interest, but which do not exhibit strong 

genome-wide divergence or population structure (Pallares et al. 2014). To avoid spurious 

associations, GWAS requires eliminating or at least controlling for allele frequency 

differences that result from population structure (Astle and Balding 2009; Flint and Eskin 

2012; Purcell et al. 2007). Therefore, the relatively large number of associations found 

throughout the genome in these analyses is not surprising when considering the results of 

the PCA (Figure 3.2). The PCA showed clear signatures of population structure, 

particularly along PC1, which accounts for 15.4% of the variance in the data. It is 

therefore expected that some of the associations found by GEMMA may be spurious. 

However, because the data from the QTL experiment were generated independently of 

these data, any concordance between the two is less likely to be the result of spurious 

association. Denser sampling, particularly from both L. lorquini-like and L. 

weidemeyerii-like individuals in the hybrid zone(s) is likely to improve the signal-to-

noise ratio in this data (Pallares et al. 2014) and would dramatically increase confidence 

in these findings. 

A further source of error in this dataset is the incomplete assembly and possibility 

of mis-assembly in the current iteration of the Limenitis genome. This possibility is 

particularly evident in the QTL analysis, in which variants from a given Limenitis 

scaffold are assigned to multiple well-supported linkage groups. In addition, loci found to 

be associated with the AFP phenotype in both the QTL and GWAS analyses align to 

similar regions in the Heliconius genome within scaffold "Hmel218003o" despite being 

from a number of different Limenitis scaffolds. The Limenitis reference was generated 
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using multiple outbred individuals resulting in high levels of heterozygosity and poor 

N50 assembly statistics (Mullen pers. comm.). To overcome this challenge, the genome 

assembly was refined using the software pipeline REDUNDANS (Pryszcz and Gabaldón 

2016). REDUNDANS is designed to reduce heterozygosity in genome assemblies, but 

the resulting scaffolds are a chimeric mixture of multiple haplotypes in the original set of 

scaffolds (Pryszcz and Gabaldón 2016). If there are assembly errors in the original 

Limenitis genome as a result of high heterozygosity, it is possible that these assembly 

errors were carried forward into the current analysis and this may be an explanation for 

the scattered distribution of significantly associated SNPs in the Limenitis genome. 

Despite these challenges, a subset of the associations presented here agree with 

the findings of the QTL experiment and analysis presented in Chapter 2, suggesting that a 

new gene or trans-acting factor is responsible for orange color patterning in Limenitis 

butterflies. This finding is surprising given that other developmental pathways controlling 

color pattern appear to rely on a small set of highly conserved "developmental toolkit" 

genes across a variety of phylogenetic depths (Mallet and Barton 1989; Martin and 

Orgogozo 2013; Martin et al. 2012; Papa, Martin, and Reed 2008; Reed et al. 2011; 

Sheppard et al. 1985b). This observed conservatism in color pattern genetics calls for a 

similarly conservative interpretation of these data. Further study, including association 

studies using larger sample sizes, should be conducted to test these hypotheses. The 

relationship between color pattern variation and species divergence is well supported in 

the literature (Mallet and Barton 1989; Jiggins et al. 2001), and the underlying genetic 

variation largely reflects these differences (Mallet et al. 1990). Therefore, studies that 
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demonstrate variation in the rates of introgression at these SNPs would further support 

their causative role in pattern formation while simultaneously casting significant light on 

the role of these SNPs in maintaining the species boundary between L. lorquini and L. 

weidemeyerii.  
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Figure 3.1 Approximate geographic ranges of the species of interest adapted from Scott 
(1992). The boxed numbers represent approximate locations of each sample locality for 
the GWAS experiment: 1) Bay Area, 2) Oregon, 3) Mono, 4) Humboldt (individuals were 
also collected in nearby Pershing county), and 5) Colorado. Note that the range of A. 
californica is represented by blue but is sympatric with L. lorquini (yellow) throughout its 
entire range, so it is represented green. 
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Figure 3.2 Population structure in the unfiltered dataset as represented by plotting 
samples along the first two principal components. Note that PC1 accounts for ~16% of 
the variation in the data as compared to just 2.5% for PC2. Colors correspond to 
phenotype, with orange representing samples that are L. lorquini-like and black 
representing samples that are L. weidemeyerii-like. The shape of the points corresponds 
to their sample locality. Note that the Humboldt hybrid zone (Winnemucca) are 
intermediate with respect to pure L. lorquini and pure L. weidemeyerii. The cluster of 
points above 0.2 on the PC2 axis are all taken from Mono county, and sequenced in 
Library 1. 
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Figure 3.3 GWAS results for the unfiltered dataset. This graph was produced by 
randomly sampling the 2 million data points without eliminating the top 13 SNPS. The x-
axis represents Limenitis scaffolds. Green SNPS most strongly associated.   

 

Figure 3.4 GWAS results for the filtered dataset. The x-axis represents Limenitis 
scaffolds. Green SNPS most strongly associated.   
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Figure 3.5 A Schematic Representation of the BLAST alignments of selected Limenitis 
loci against the Heliconius genome. The green line represents the span across which 
quantitative trait loci from chapter 2 align to the Heliconius genome, and stars represent 
the location of BLAST alignments for 2 kbp regions around three SNPs. 
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Tables 

 
Table 3.1 Sample localities of the individual samples used for whole-genome 
sequencing. Sample names were taken from field labels.  
 

Locality 
Name County State Approxim

ate GPS Samples 

Winnemucca Humboldt Nevada 41.775,  
-118.603  Hybrid Limenitis (N = 10) 

Mono Mono California 38.425,  
-119.207 

Hybrid Limenitis (N = 2) 
L. weidemeyerii (N = 17) 

Bay Area Monterey California 36.478,  
-121.740 L. lorquini (N = 12) 

Oregon Josephine Oregon 42.603,  
-123.359 L. lorquini (N = 8) 

Colorado Gunnison Colorado 38.954,  
-107.276 L. weidemeyerii (N = 3) 

 
 
Table 3.2 Sequencing results by library. 
 

Sequencing 
Library # of Samples 

Mapped 
Reads 

(mapping %) 
Reads Per Sample 

Unfiltered 
Variants 
Detected 

Library 1 L. lorquini (n = 10) 
L. weidemeyerii (n = 10) 

743,633,877 
(86.5%) 

Avg: 37,181,693 
Max: 78,137,308 
Min: 1,985,233 

32,314,357 

Library 2 

L. lorquini (n = 10) 
Putative hybrids (n = 

12) 
L. weidemeyerii (n = 10) 

549,394,308 
(92.9%) 

Avg:17,168,572 
Max: 29,751,073 
Min: 10,823,226 
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Table 3.3 Filtering parameters used for each program in the GWAS pipeline. 
 

GATK BCFTOOLS/VCFTOOLS GEMMA 
(Large Data Set) 

GEMMA 
(Small Data Set) 

QD < 5 Max Alleles = 2 Hardy Weinberg 
Equilibrium = 0 

Hardy Weinberg 
Equilibrium = 0 

FS > 60 Min Alleles = 2 
Minor Allele 
Frequency = 

0.001 

Minor Allele 
Frequency = 

0.001 

SOR > 2 Skip/Remove Indels Missingness 0.50 Missingness 0.75 

MQ < 40 Output Variant Sites 

 

MQRS < -12.5 Minimum Depth = 5  
(small data set only) 

RPRS < -8.0 Minimum Quality = 30 
(small data set only) 

HaplotypeScore > 
13.0 

Max Missingness = 75% 
(small data set only) 

Resulting 
Variants: 

32,314,357 

Resulting SNPS: 
22,640,612 (large) 

207,802 (small) 

Resulting SNPS: 
20,609,607 

Resulting SNPS: 
197,575 

 



 

92
 

 
Table 3.4 The most highly associated SNPS in the GWAS of the unfiltered dataset. This analysis was based on 20 million 
SNPS. 
 

Locus # Scaffold BP P-value 
(LRT) 

BLAST 
RESULT BP Size of hit Sequence 

Identity 
Locus 1 scaffold00021 257810 2.75E-35 Hmel218003o 7556121-7556629 518 68.533 
Locus 2 scaffold00111 115697 2.75E-35 No major hits 
Locus 3 scaffold00103 56713 1.64E-32 Hmel216002o 4925001-4924801 204 83.33 
Locus 4 scaffold00116 340966 1.64E-32 No major hits 
Locus 5 scaffold00108 1945 1.30E-31 No major hits 
Locus 6 scaffold00007 1026855 1.45E-30 No major hits 
Locus 7 scaffold00020 1097933 1.45E-30 No major hits 
Locus 8 scaffold00006 3921118 3.42E-30 No major hits 
Locus 9 scaffold00071 1014192 3.42E-30 Hmel206001o 13735184-13733998 1219 68.499 

Locus 10 scaffold00071 1014209 3.42E-30 Overlaps with Locus 9 and 11 
Locus 11 scaffold00071 1014219 3.42E-30 Overlaps with locus 9 and 10 
Locus 12 scaffold00103 18857 3.42E-30 Hmel216002o 4961332-4961128 205 88.293 
Locus 13 scaffold00103 18862 3.42E-30 Overlaps with Locus 12 
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Table 3.5 Filtered SNPS GWAS. Two BLAST hits have been included despite not being 200bp in length. 

Locus # Scaffold BP P-value 
(LRT) 

BLAST 
RESULT BP Size of 

Alignment 
Sequence 
Identity 

Locus 1 scaffold00061 989094 7.84E-25 No major hit 
Locus 2 scaffold00006 2478920 1.08E-22 Hmel206001o 12793690-12793032 682 68.328 
Locus 3 scaffold00013 1496886 1.27E-22 No major hit 
Locus 4 scaffold00001 18410329 1.30E-21 Hmel220003o 305088-305321 247 75.304 
Locus 5 scaffold00176 29840 1.49E-21 No major hit 
Locus 6 scaffold00001 17432294 1.39E-20 Hmel218003o 7675286-7675494 209 81.818 
Locus 7 scaffold00001 3212569 6.12E-20 Hmel202001o 2774232-2774599 373 69.169 
Locus 8 scaffold00044 1354467 6.77E-20 No major hit 
Locus 9 scaffold00006 2478304 1.93E-19 Hmel206001o 12793397-12793690 312 68.59 

Locus 10 scaffold00101 630073 1.93E-19 Hmel204001o 9343219-9342822 398 71.106 
Locus 11 scaffold00035 33036 1.96E-19 Hmel217001o 4942065-4942609 580 71.207 
Locus 12 scaffold00015 341694 3.08E-19 Hmel201001o 5218466-5219016 554 75.271 
Locus 13 scaffold00002 19660042 4.09E-19 No major hit 
Locus 14 scaffold00006 2480141 4.09E-19 Hmel206001o 12793032-12793460 434 70.507 
Locus 15 scaffold00064 1793090 4.09E-19 Hmel218003o 8533881-8534931 1064 64.986 
Locus 16 scaffold00076 92261 1.15E-18 No major hit 
Locus 17 scaffold00138 411452 1.78E-18 No major hit 
Locus 18 scaffold00001 12242527 2.33E-18 Hmel210001o 9823668-9823900 233 84.979 
Locus 19 scaffold00001 12242541 2.33E-18 overlaps with locus 18 
Locus 20 scaffold00223 57614 2.35E-18 Hmel218003o 693217-693329 114 88.596 
Locus 21 scaffold00053 277310 2.92E-18 No major hit 
Locus 22 scaffold00094 643364 3.56E-18 No major hit 
Locus 23 scaffold00628 12914 5.72E-18 No major hit 
Locus 24 scaffold00224 89842 6.27E-18 Hmel205001o 9837424-9837946 527 70.019 
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Table 3.6 Associated loci from the QTL analysis presented in Chapter 2. Query 
sequences for BLAST alignments are taken from flanking regions around each associated 
SNP. Each query sequence is 2kbp in size. 
 

QTL Locus Limenitis 
scaffold 

Linkage 
Group 

Heliconius 
scaffold 

BLAST 
Start 

BLAST 
End 

Locus 1 scaffold00065 12 Hmel218003o 4035060 4033413 
Locus 2 scaffold00072 8 Hmel218003o 6861771 6862621 
Locus 3 scaffold00065 12 Hmel218003o 5705260 5706470 
Locus 4 Scaffold00053 8 Hmel218003o 7932759 7932637 
Locus 5 scaffold00092 10 Hmel218003o 4335635 4336056 
Locus 7 scaffold00053 8 Hmel218003o 7932759 7932637 
Locus 8 scaffold00010 2 Hmel218003o 3104692 3105952 
Locus 9 scaffold00092 10 Hmel218003o 4335635 4336056 

Locus 10 scaffold00065 12 Hmel218003o 3976436 3976673 
 
 
 
Table 3.7 Similarity between the GWAS results and the QTL results based on BLAST 
alignments of 2kbp flanking sequences. 
 

GWAS 
SNP 

Name 
Analysis Limenitis 

scaffold 
Heliconius 

scaffold 
BLAST 

Start 
BLAST 

End 

Similar 
to QTL 
Locus # 

Locus 1 Unfiltered scaffold00021 Hmel218003o 7556121 7556629 Locus 
2/4/7 

Locus 1 Filtered Scaffold00061 Hmel209001o 4085036 4085125 None 

Locus 6 Filtered scaffold00001 Hmel218003o 7675286 7675494 Locus 
2/4/7 

Locus 15 Filtered scaffold00064 Hmel218003o 8533881 8534931 None 

Locus 20 Filtered scaffold00223 Hmel218003o 693217 693329 None 
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CONCLUSION 

 
All of the results of my experimental field work indicate that L. lorquini is a 

Batesian mimic of A. californica, and that this the presence or absence of the orange AFP 

is under selection. While more work will be needed to definitively demonstrate that the 

AFP is a “speciation phenotype” that maintains the species boundary between L. lorquini 

and L. weidemeyerii, there is clear evidence that predator-mediated selection of an 

adaptive mendelian trait plays a key role in driving the maintenance of biological 

diversity in the Limenitis. Despite analytical challenges in both chapter two and chapter 

three, I have identified a strong association between the orange AFP phenotype and a 

region of the Heliconius genome (Hmel 2.5) on the same scaffold as the optix protein. 

This conclusion was reached in two independent analyses based on independent datasets 

and biological samples. Strongly associated SNPS from the GWAS analysis align to a 

region of the Heliconius genome which overlaps the region that was implicated as 

causative in the QTL analysis, increasing my confidence in these results. These results 

suggest that a new gene or trans-acting factor is responsible for orange color patterning in 

Limenitis butterflies. Fully characterizing the relationship between this genomic region 

and the presence of the orange AFP will require additional demonstrations of a functional 

connection between the genotype and the phenotype. Identifying the function of this gene 

will advance the field of color pattern genetics and development, give us further insights 

into the evolution of adaptive color patterns, and allow us to scrutinize the species 

boundary continuum for traits which predictably lead to the divergence of species. 
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APPENDIX 

 
Figure S1 Comparison of the mean spectral reflectance (lines) and 99% confidence 
intervals (shadow) of real and facsimile color pattern elements. Each line represents a 
grand mean of three sampling events from each wing of three individuals. L. 
weidemeyerii does not have orange color-pattern elements, and so was not measured for 
this color. The solid lines overlain on these graphs represent the reflectance profiles of 
the artificially constructed facsimile butterflies. Note the similarities between the spectra 
of the facsimiles with the real wings. A quantitative measure of similarity calculated 
using the “Blue Tit” visual system is presented in “Just noticeable differences” (JND) 
above the legend in each graph. The magnitude of these differences appears to be 
consistent with the differences found in Finkbeiner et al. (2012, 2014, and 2017), with 
one major exception in L. weidemeyerii white. A JND above 1 is generally considered 
discriminable in ideal conditions.  
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Figure S2 Attack types A) Bird attack B) Rodent attack C) Grasshopper or similar attack 
D) ant or other hymenopteran. Only attacks that were similar to those in panel A were 
included in our analysis as a “hit” or “attack”. Attacks that were so destructive that it was 
difficult to determine the type of attack were also excluded. 
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Figure S3 LOD score distributions across the linkage group 2. Each of the small panels 
on the left shows the LOD scores in the respective linkage group for each QTL analysis. 
The panels on the right graph combine the “All Offspring” LOD scores and the 
“Backcross Offspring”. 
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Figure S4 LOD score distributions across the linkage group 10. Each of the small panels 
on the left shows the LOD scores in the respective linkage group for each QTL analysis. 
The panels on the right graph combine the “All Offspring” LOD scores and the 
“Backcross Offspring”. 
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Figure S5 LOD score distributions across the linkage group 15. Each of the small panels 
on the left shows the LOD scores in the respective linkage group for each QTL analysis. 
The panels on the right graph combine the “All Offspring” LOD scores and the 
“Backcross Offspring”. 
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Table S2 GPS coordinates for numbered transects for facsimile placement within the 
California study area. Each numbered transect contained 20 butterfly facsimiles, five of 
each species.  

California Sites 

Site Latitude Longitude Elevation (m) Site Latitude Longitude Elevation 
(m) 

1 43.88 -116.18 880 51 43.89 -116.01 1531 
2 43.88 -116.18 907 52 43.89 -116.01 1488 
3 43.88 -116.17 934 53 43.90 -116.00 1445 
4 43.88 -116.18 934 54 43.90 -116.00 1412 
5 43.88 -116.17 943 55 43.90 -116.00 1406 
6 43.87 -116.17 956 56 43.90 -115.99 1401 
7 43.87 -116.17 958 57 43.90 -115.99 1380 
8 43.87 -116.17 974 58 43.90 -115.98 1349 
9 43.87 -116.16 977 59 43.90 -115.98 1334 
10 43.87 -116.16 989 60 43.91 -115.98 1316 
11 43.87 -116.16 1000 61 43.91 -115.97 1302 
12 43.87 -116.15 1023 62 43.88 -115.91 1252 
13 43.87 -116.15 1027 62 43.88 -115.91 1254 
14 43.87 -116.14 1047 64 43.88 -115.92 1256 
15 43.87 -116.14 1047 65 43.87 -115.91 1257 
16 43.87 -116.14 1061 66 43.87 -115.91 1256 
17 43.87 -116.13 1071 67 43.87 -115.91 1247 
18 43.87 -116.13 1079 68 43.87 -115.91 1245 
19 43.87 -116.13 1087 69 43.86 -115.92 1242 
20 43.87 -116.12 1093 70 43.86 -115.92 1248 
21 43.87 -116.12 1101 71 43.86 -115.92 1279 
22 43.87 -116.11 1122 72 43.86 -115.92 1277 
23 43.87 -116.11 1126 73 43.85 -115.92 1266 
24 43.87 -116.11 1149 74 43.85 -115.93 1228 
25 43.88 -116.10 1161 75 43.85 -115.93 1223 
26 43.88 -116.10 1168 76 43.85 -115.93 1211 
27 43.88 -116.09 1172 77 43.85 -115.92 1235 
28 43.88 -116.09 1193 78 43.84 -115.92 1237 
29 43.88 -116.09 1203 79 43.84 -115.93 1232 
30 43.88 -116.08 1215 80 43.84 -115.93 1225 
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31 43.88 -116.08 1232 81 43.84 -115.93 1237 
32 43.88 -116.08 1254 82 43.84 -115.93 1194 
33 43.88 -116.07 1258 83 43.83 -115.94 1190 
34 43.88 -116.07 1277 84 43.83 -115.94 1185 
35 43.88 -116.07 1279 85 43.83 -115.94 1182 
36 43.88 -116.06 1287 86 43.83 -115.94 1173 
37 43.88 -116.06 1313 87 43.83 -115.95 1183 
38 43.88 -116.06 1306 88 43.82 -115.95 1160 
39 43.88 -116.05 1338 89 43.82 -115.95 1154 
40 43.88 -116.05 1345 90 43.82 -115.96 1149 
41 43.88 -116.05 1360 91 43.81 -115.96 1144 
42 43.88 -116.04 1389 92 43.81 -115.96 1149 
43 43.88 -116.04 1421 93 43.81 -115.96 1137 
44 43.88 -116.03 1442 94 43.80 -115.96 1135 
45 43.89 -116.03 1461 95 43.80 -115.96 1124 
46 43.89 -116.02 1519 96 43.79 -115.96 1121 
47 43.89 -116.02 1517 97 43.79 -115.96 1116 
48 43.89 -116.02 1531 98 43.79 -115.96 1109 
49 43.90 -116.02 1545 99 43.79 -115.97 1128 
50 43.89 -116.02 1583 100 43.78 -115.97 1107 
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Table S3 GPS coordinates for numbered transects for facsimile placement within the 
Idaho study area. Each numbered transect contained 20 butterfly facsimiles, five of each 
species. Note that the 101st transect was a replacement for one of the transects which was 
destroyed overnight. Data were not counted for this site (Site 60), and were replaced with 
data from site 101. 

Idaho Sites 

Site Latitude Longitude Elevation 
(m) Transect Latitude Longitude Elevation 

(m) 
1 39.31 -120.67 1415 51 39.26 -120.68 1548 
2 39.31 -120.67 1413 52 39.26 -120.68 1540 
3 39.31 -120.66 1417 53 39.26 -120.68 1531 
4 39.31 -120.66 1423 54 39.26 -120.68 1539 
5 39.31 -120.66 1417 55 39.26 -120.69 1541 
6 39.32 -120.66 1390 56 39.26 -120.69 1520 
7 39.32 -120.66 1379 57 39.26 -120.69 1521 
8 39.33 -120.65 1445 58 39.27 -120.69 1522 
9 39.33 -120.65 1518 59 39.27 -120.69 1506 
10 39.34 -120.65 1547 61 39.28 -120.68 1511 
11 39.34 -120.65 1592 62 39.28 -120.68 1477 
12 39.35 -120.65 1665 63 39.28 -120.68 1484 
13 39.31 -120.68 1389 64 39.28 -120.68 1495 
14 39.31 -120.68 1389 65 39.28 -120.68 1490 
15 39.34 -120.65 1613 66 39.29 -120.68 1500 
16 39.32 -120.79 1407 67 39.29 -120.67 1505 
17 39.32 -120.78 1368 68 39.29 -120.67 1541 
18 39.32 -120.78 1353 69 39.29 -120.67 1556 
19 39.32 -120.78 1346 70 39.30 -120.67 1566 
20 39.31 -120.78 1349 71 39.30 -120.60 1743 
21 39.32 -120.77 1358 72 39.30 -120.60 1739 
22 39.31 -120.77 1350 73 39.30 -120.61 1744 
23 39.32 -120.77 1350 74 39.30 -120.60 1757 
24 39.32 -120.77 1371 75 39.30 -120.60 1779 
25 39.32 -120.76 1360 76 39.30 -120.60 1784 
26 39.32 -120.76 1367 77 39.30 -120.59 1785 
27 39.32 -120.76 1338 78 39.30 -120.59 1812 
28 39.32 -120.76 1348 79 39.30 -120.59 1791 
29 39.32 -120.75 1344 80 39.30 -120.58 1793 
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30 39.33 -120.75 1345 81 39.30 -120.58 1777 
31 39.33 -120.75 1345 82 39.30 -120.58 1782 
32 39.33 -120.75 1370 83 39.30 -120.58 1781 
33 39.33 -120.75 1364 84 39.30 -120.57 1787 
34 39.33 -120.74 1353 85 39.30 -120.57 1789 
35 39.33 -120.74 1399 86 39.29 -120.57 1783 
36 39.33 -120.74 1389 87 39.29 -120.57 1779 
37 39.33 -120.73 1398 88 39.29 -120.56 1797 
38 39.33 -120.73 1405 89 39.29 -120.56 1825 
39 39.33 -120.72 1382 90 39.29 -120.56 1856 
40 39.33 -120.72 1363 91 39.30 -120.61 1753 
41 39.27 -120.66 1474 92 39.31 -120.61 1737 
42 39.27 -120.66 1468 93 39.31 -120.61 1736 
43 39.27 -120.67 1490 94 39.31 -120.61 1738 
44 39.27 -120.67 1513 95 39.31 -120.61 1756 
45 39.26 -120.67 1503 96 39.31 -120.61 1762 
46 39.26 -120.67 1508 97 39.32 -120.61 1780 
47 39.26 -120.67 1532 98 39.32 -120.61 1783 
48 39.26 -120.67 1558 99 39.32 -120.61 1768 
49 39.26 -120.68 1571 100 39.32 -120.61 1762 
50 39.25 -120.68 1594 101 43.782 -115.974 1092 
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Table S4 Linear Distance Diameter estimates of home range size for several putative 
butterfly predators with known geographic ranges that overlap our study areas. 
Information was compiled from the Cornell lab of Ornithology website after identifying 
possible predators of adult Lepidoptera found in our study areas.  

Species 
Name 

Common 
Name 

HR 
Diameter 

Estimate (m) 
Source/Citation 

Cyanocitta 
stelleri Steller’s jay 120 

Brown, J. L. 1963a. Aggressiveness, dominance and 
social organization in the Steller Jay. Condor no. 

65:460-484. 

Aphelocoma 
californica 

California 
Scrub Jay 185 

Carmen, W. J. 1988. Behavioral ecology of the 
California Scrub Jay (Aphelocoma coerulescens. Phd 

Thesis, Univ. of California, Berkeley. 

Sialia 
mexicana 

Western 
Bluebird 87 

Colestock, K. L. 2006. Landscape scale assessment of 
contaminant effects on insectivorous birds. Master's 

Thesis. Utah State Univ. Logan. 
Contopus 
sordidulus 

Western 
Wood Pewee 160 

Eckhardt, R. C. 1979. The adaptive syndromes of two 
guilds of insectivorous birds in the Colorado Rocky 

Mountains. Ecol. Monogr. 49:129-149. 

Empidonax 
traillii 

Willow 
Flycatcher 160 

Empidonax 
oberholseri 

Dusky Flycatc
her 160 

Geothlypis 
trichas 

Common 
Yellowthroat 167 

Setophaga 
petechia 

Yellow 
Warbler 155 

Cardellina 
pusilla 

Wilsons 
Warbler 64 

Geothlypis 
trichas 

Common 
Yellowthroat 167 

Tyrannus 
verticalis 

Western 
Kingbird 285 

Goldberg, N. H. 1979. Behavior flexibility and 
foraging strategies in Cassin's and Western kingbirds 

(Tyrannus vociferans and T. verticalis) breeding 
sympatrically in riparian habitats in central 

Arizona. Phd Thesis. Univ. of Illinois, Champaign-
Urbana. 

Tyrannus 
vociferans 

Cassin’s 
Kingbird 285 

Sayornis 
nigricans Black Phoebe 374 

Irwin, K. 1985. Foraging ecology and reproduction of 
the Black Phoebe in Humboldt County. Master's 

Thesis. California State Univ., Humboldt. 

Turdus 
migratorius 

American 
Robin 200 

Wheelwright, N. T. 1986. The diet of American 
Robins. Auk 103:710-725. 

Pitts, T. D. 1984. Description of American Robin 
territories in northwest Tennessee. Migrant 55:1-6. 

Contopus 
cooperi 

Olive Sided 
Flycatcher 625 

Wright, J.M. 1997. Preliminary study of olive-sided 
flycatchers in central Alaska, 1994-1996. Alaska 

Department of Fish and Game. Final Report, Juneau, 
AK  

Average 212.93 
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Table S5 Analysis of protein synteny between Limenitis arthemis and Heliconius 
melpomene. Abbreviations: “Lim. Scaf #” = Limenitis scaffold number, “# of Prot” = 
number of proteins identified as syntenic. 
 

Lim. 
Scaf 

# 

Scaffold 
Length 

Heliconius 
Scaffold Name 

# of 
Prot. 

Lim. 
Scaf 

# 

Scaf. 
Len. 

Heliconius 
Scaffold 
Name 

# of 
Prot. 

1 20238534 Hmel220003o 281 120 634469 Hmel206001o 17 
2 31042543 Hmel212001o 204 121 517063 Hmel213001o 17 
3 5752760 Hmel211001o 102 122 650105 Hmel203003o 34 
4 6271485 Hmel218003o 228 123 1076252 Hmel217001o 27 
5 4019797 Hmel212001o 79 124 508241 Hmel221001o 19 
6 6267820 Hmel213001o 233 125 658746 Hmel213001o 8 
7 2269647 Hmel210001o 48 126 1140381 Hmel202001o 37 
8 5386796 Hmel206001o 180 127 712281 Hmel219001o 3 
9 5858054 Hmel211001o 179 128 495129 Hmel210001o 25 

10 1458867 Hmel218003o 30 129 492438 Hmel201001o 19 
11 8233769 Hmel201001o 150 130 928579 Hmel202001o 18 
12 3355357 Hmel212001o 140 131 521612 Hmel217001o 27 
13 2556729 Hmel213001o 88 132 604839 Hmel212001o 13 
14 3162699 Hmel202001o 107 133 482309 Hmel219001o 5 
15 3547134 Hmel205001o 88 134 506823 Hmel201001o 14 
16 6875015 Hmel212001o 111 135 487974 Hmel201001o 6 
17 3171799 Hmel210001o 69 136 699878 Hmel213001o 4 
18 2322194 Hmel206001o 40 137 536548 Hmel212001o 39 
19 2371282 Hmel219001o 103 138 637629 Hmel214004o 37 
20 2288290 Hmel216002o 113 139 779874 Hmel210001o 29 
21 2455649 Hmel204001o 92 140 408467 Hmel213001o 34 
22 2270746 Hmel215003o 133 141 324269 Hmel206001o 25 
23 2139955 Hmel213001o 64 142 393696 Hmel201001o 17 
24 3062685 Hmel213001o 102 143 391830 Hmel207001o 35 
25 2109006 Hmel204001o 63 144 451884 Hmel217001o 12 
26 1355308 Hmel209001o 52 145 386701 Hmel221001o 8 
27 2069120 Hmel210001o 109 146 394660 Hmel201001o 19 
28 1999080 Hmel219001o 82 147 398823 Hmel203003o 37 
29 3454437 Hmel201001o 66 148 665096 Hmel206001o 8 
30 2163551 Hmel215003o 40 149 372466 Hmel216002o 5 
31 1054230 Hmel219001o 50 150 371301 Hmel212001o 3 
32 1837516 Hmel203003o 56 151 412550 Hmel210001o 30 
33 1745787 Hmel208001o 44 152 281590 Hmel217001o 13 
34 1866854 Hmel203003o 24 154 649692 Hmel202001o 30 
35 1723720 Hmel217001o 106 155 370870 Hmel215003o 35 
36 1735816 Hmel217001o 54 156 353604 Hmel220003o 11 
37 1716978 Hmel213001o 62 157 399799 Hmel217001o 18 
38 1320673 Hmel206001o 31 158 344322 Hmel214004o 4 
39 3276309 Hmel219001o 123 159 372444 Hmel207001o 29 
40 3066127 Hmel203003o 31 160 342822 Hmel209001o 5 
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41 1831651 Hmel212001o 46 161 338576 Hmel213001o 16 
42 1614452 Hmel220003o 37 162 344360 Hmel202001o 19 
43 1678709 Hmel217001o 30 163 342532 Hmel210001o 13 
44 1517139 Hmel211001o 61 165 168079 Hmel219001o 16 
45 2628552 Hmel210001o 36 166 337719 Hmel212001o 31 
46 1378669 Hmel210001o 31 169 320377 Hmel215003o 24 
47 610524 Hmel205001o 38 170 459249 Hmel217001o 29 
48 3499841 Hmel207001o 77 171 306156 Hmel206001o 15 
49 2040198 Hmel216002o 43 172 488861 Hmel205001o 18 
50 1445474 Hmel211001o 124 173 303080 Hmel205001o 14 
51 1440006 Hmel216002o 22 175 320485 Hmel209001o 12 
52 2168477 Hmel221001o 67 176 289353 Hmel202001o 7 
53 1413128 Hmel214004o 28 177 288783 Hmel214004o 4 
54 1586677 Hmel213001o 26 178 281322 Hmel207001o 15 
55 4084496 Hmel201001o 111 179 281876 Hmel203003o 23 
56 2191474 Hmel210001o 83 180 133575 Hmel211001o 13 
57 1683119 Hmel208001o 32 181 434571 Hmel205001o 10 
58 1317330 Hmel219001o 44 182 274572 Hmel212001o 20 
59 2542647 Hmel201001o 49 183 259040 Hmel206001o 5 
60 974303 Hmel219001o 20 184 264442 Hmel219001o 6 
61 1511179 Hmel201001o 77 185 253629 Hmel220003o 12 
62 1344480 Hmel207001o 27 186 237815 Hmel206001o 6 
63 1322859 Hmel208001o 61 187 238860 Hmel217001o 11 
64 1813461 Hmel221001o 28 188 216656 Hmel207001o 8 
65 1148056 Hmel218003o 44 189 213577 Hmel210001o 10 
66 2080429 Hmel213001o 42 190 221364 Hmel213001o 15 
67 1143972 Hmel207001o 113 193 254744 Hmel212001o 17 
68 914461 Hmel201001o 73 194 222002 Hmel220003o 9 
69 1120661 Hmel212001o 36 195 56798 Hmel212001o 3 
70 1086740 Hmel215003o 38 196 179439 Hmel217001o 5 
71 1088571 Hmel202001o 97 197 191896 Hmel212001o 15 
72 1050973 Hmel218003o 39 198 173172 Hmel203003o 14 
73 1046807 Hmel205001o 54 200 128885 Hmel220003o 5 
74 1917438 Hmel218003o 50 201 154764 Hmel217001o 11 
75 984617 Hmel215003o 35 202 154555 Hmel206001o 3 
76 990633 Hmel220003o 62 205 150948 Hmel219001o 4 
77 978423 Hmel210001o 28 206 111925 Hmel218002o 16 
78 1289600 Hmel211001o 30 207 283271 Hmel217001o 9 
79 934792 Hmel219001o 21 208 147723 Hmel210001o 9 
80 1284799 Hmel211001o 38 209 137936 Hmel220003o 12 
81 898778 Hmel221001o 49 210 137550 Hmel211001o 3 
82 890065 Hmel207001o 26 213 124546 Hmel208001o 12 
83 886375 Hmel215003o 18 214 122775 Hmel219001o 11 
84 693725 Hmel216002o 13 216 123525 Hmel206001o 3 
85 839693 Hmel219001o 12 218 111700 Hmel221001o 3 
86 1409511 Hmel220003o 57 219 106543 Hmel218003o 7 
87 1603973 Hmel204001o 28 220 177456 Hmel202001o 14 
88 831753 Hmel211001o 60 222 93419 Hmel221001o 5 
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89 1298327 Hmel207001o 60 223 89856 Hmel218003o 2 
90 589493 Hmel212001o 17 224 176355 Hmel206001o 6 
91 782829 Hmel212001o 64 225 86696 Hmel213001o 7 
92 748645 Hmel219001o 17 226 85065 Hmel206001o 5 
93 737146 Hmel213001o 14 229 79155 Hmel208001o 19 
94 906023 Hmel213001o 10 230 76750 Hmel217001o 3 
95 1040559 Hmel201001o 29 232 128780 Hmel218003o 4 
96 449767 Hmel201001o 7 233 94209 Hmel215003o 3 
97 689049 Hmel209001o 28 237 65826 Hmel209001o 16 
98 222385 Hmel213001o 4 241 60570 Hmel212001o 5 
99 1526722 Hmel214004o 39 244 60836 Hmel208001o 6 
100 305432 Hmel220003o 9 246 67049 Hmel217001o 3 
101 730068 Hmel207001o 40 248 56480 Hmel211001o 6 
102 671946 Hmel216002o 16 252 59267 Hmel217001o 3 
103 666662 Hmel216002o 25 254 66988 Hmel213001o 3 
104 654021 Hmel206001o 32 256 46318 Hmel214004o 3 
105 955798 Hmel203003o 17 260 89940 Hmel206001o 3 
106 679534 Hmel217001o 16 262 44516 Hmel218003o 3 
107 664861 Hmel207001o 21 274 77017 Hmel202001o 4 
108 638297 Hmel221001o 18 304 28574 Hmel204001o 4 
109 755462 Hmel208001o 12 330 40155 Hmel217001o 3 
110 221094 Hmel221001o 4 362 21152 Hmel215003o 3 
111 496480 Hmel208001o 9 371 20344 Hmel210001o 3 
112 590229 Hmel205001o 26 450 15176 Hmel219001o 4 
113 81032 Hmel221001o 7 454 14971 Hmel207001o 13 
115 596199 Hmel214004o 25 489 13937 Hmel205001o 4 
116 785840 Hmel221001o 15 611 11418 Hmel206001o 3 
117 549297 Hmel213001o 19 628 14703 Hmel218003o 4 
118 715126 Hmel219001o 37 650 10843 Hmel202001o 3 

119 554589 Hmel205001o 7 AC 
Scaf 171321 Hmel210001o 8 
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