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ABSTRACT

Network Time Protocol (NTP) is used to synchronize time between computer systems

communicating over unreliable, variable-latency, and untrusted network paths. Time

is critical for many applications; in particular it is heavily utilized by cryptographic

protocols. Despite its importance, the community still lacks visibility into the robust-

ness of the NTP ecosystem itself, the integrity of the timing information transmitted

by NTP, and the impact that any error in NTP might have upon the security of other

protocols that rely on timing information. In this thesis, we seek to accomplish the

following broad goals:

1. Demonstrate that the current design presents a security risk, by showing that

network attackers can exploit NTP and then use it to attack other core Internet

protocols that rely on time.

2. Improve NTP to make it more robust, and rigorously analyze the security of

the improved protocol.

3. Establish formal and precise security requirements that should be satisfied by

a network time-synchronization protocol, and prove that these are sufficient for

the security of other protocols that rely on time.
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We take the following approach to achieve our goals incrementally.

1. We begin by (a) scrutinizing NTP’s core protocol (RFC 5905) and (b) stati-

cally analyzing code of its reference implementation to identify vulnerabilities

in protocol design, ambiguities in specifications, and flaws in reference imple-

mentations. We then leverage these observations to show several off- and on-

path denial-of-service and time-shifting attacks on NTP clients. We then show

cache-flushing and cache-sticking attacks on DNSSEC that leverage NTP. We

quantify the attack surface using Internet measurements, and suggest simple

countermeasures that can improve the security of NTP and DNS(SEC).

2. Next we move beyond identifying attacks and leverage ideas from Universal

Composability (UC) security framework to develop a cryptographic model for

attacks on NTP’s datagram protocol. We use this model to prove the security

of a new backwards-compatible protocol that correctly synchronizes time in the

face of both off- and on-path network attackers.

3. Next, we propose general security notions for network time-synchronization pro-

tocols within the UC framework and formulate ideal functionalities that capture

a number of prevalent forms of time measurement within existing systems. We

show how they can be realized by real-world protocols (including but not limited

to NTP), and how they can be used to assert security of time-reliant applica-

tions — specifically, cryptographic certificates with revocation and expiration

times. Our security framework allows for a clear and modular treatment of the

use of time in security-sensitive systems.

Our work makes the core NTP protocol and its implementations more robust and

secure, thus improving the security of applications and protocols that rely on time.
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Chapter 1

Introduction

1.1 Time Synchronization & Network Time Protocol (NTP)

The need for time in computer network systems does not arise from the desire to

provide synchronous communication, quality of service, or other “sophisticated” net-

working primitives. Rather, the need for correct time is often coupled with the safe

use of applications especially for cryptography to thwart attacks against the network.

It may appear that measuring real time is a relatively easy task; indeed, most

computing platforms today, even low end ones, are equipped with a built-in clock.

Still, synchronizing and adjusting these clocks, and in particular reaching agreement

on time in an asynchronous network like the Internet turns out to be non-trivial. In

particular, Network Time Protocol (NTP), one of the oldest protocols in the Inter-

net and the current Internet Engineering Task Force (IETF) standard to synchronize

time between computer systems communicating over unreliable variable-latency net-

work paths, is rather complex. In its most typical client-server mode of operation,

NTP assumes a hierarchical system of “time servers”, where lower-stratum servers

are assumed to have a more accurate notion of time, and higher-stratum servers de-

termine time by querying several lower-stratum ones and performing some complex

aggregation of the responses. The protocol has mechanisms for protecting from er-

rors introduced by network delays, but is built on complete trust in the queried time

servers, as well as in the authenticity of the communication.

The goal of this thesis is to make the core NTP protocol and its implementations

1
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more robust and secure.

1.2 Motivation to Secure NTP

Time matters! Time is a fundamental building block for multiple applications;

in particular it is heavily utilized by cryptographic protocols. For instance, crypto-

graphic protocols use timestamps to prevent replay attacks and limit the use of stale

or compromised cryptographic material, e.g., TLS (Rescorla, 2018), HSTS (Hodges

et al., 2012), DNSSEC (Arends et al., 2005a), RPKI (Lepinski and Kent, 2012), au-

thentication protocols, etc. while accurate time synchronization is a basic requirement

for various distributed systems like email, bitcoin (Nakamoto, 2008), etc.

Why do we care about NTP? NTP is the most dominant protocol in the In-

ternet to update system time (Minar, 1999), (Murta et al., 2006), (Czyz et al.,

2014a) (Mauch, 2015). When NTP fails on the system, multiple applications on

the system can fail, all at the same time. Such benign (non-malicious) failures have

happened. On November 19, 2012 (Bicknell, 2012), for example, two important NTP

(stratum 1) servers, tick.usno.navy.mil and tock.usno.navy.mil, went back in

time by about 12 years, causing outages at a variety of devices including Active Di-

rectory (AD) authentication servers, PBXs and routers (Morowczynski, 2012). Other

than these benign failures, exploits of individual NTP clients can also serve as a

building block for malicious attacks on other protocols and applications. For ex-

ample, several authors (Mills, 2011, pg 33, pg 183) (Klein, 2013), (Selvi, 2015)

have observed that NTP could be used to undermine the security of TLS certifi-

cates. Others like (Corbixgwelt, 2011) suggest how an NTP attacker can trick a

victim into rejecting a legitimate block on bitcoin blockchain, or waste computa-

tional power on a stale block. (Klein, 2013) also discusses the implications of shifting

time on logging and authentication services. (Selvi, 2014), (Selvi, 2015) was the first

tick.usno.navy.mil
tock.usno.navy.mil
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Table 1.1: Attacking various applications with NTP.

To attack... change time by ... To attack... change time by ...
TLS Certificates years or months Routing (RPKI) days
HSTS a year Bitcoin hours
DNSSEC months API authentication minutes
Kerberos minutes DNS Caches days

to practically demonstrate Man-in-The-middle timeshifting attacks on Simple NTP

(SNTP) (Mills, 2006) to attack another application HTTP Strict Transport Security

(HSTS). HSTS is used by a webserver to tell its client that all future connections

should use HTTPS. The HSTS request, however, comes with an expiry time (one

year is recommended (OWASP, 2015)) after which point the client need no longer

use an encrypted connection; thus, an NTP attacker that sends the client a year into

the future can effectively disable HSTS, allowing for downgrade attacks (e.g., ‘SSL

Stripping’ (Marlinspike, 2009)) to non-encrypted connections.

We summarize (in Table 1.1) various applications that can be subverted by lever-

aging vulnerabilities in NTP. This further motivates the need for securing NTP.

1.3 Our Novel Research Approach Towards Network Proto-

col Security

In this thesis we use a novel research approach towards network protocol security

comprising of techniques ranging from theoretical to applied. While we focus on

securing NTP, our research approach is general and can be applied to other network

protocols.

Overview of network protocols ecosystem (See Figure 1·1) Network proto-

cols like NTP are specified in the documents called RFCs published by IETF, the

standards body for Internet protocols. These are important documents that are ref-

erenced by different developers for various implementations. A single protocol may
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Figure 1·1: Overview of network protocols ecosystem.

have several implementations. Further each implementation may have several differ-

ent configurations1 when they are deployed in the real world. Although these imple-

mentations when shipped with operating systems have certain default configuration,

they may be customized by the end users.

Following is the exposition of our approach towards network protocols security:

Scrutinizing RFCs. In order to do any meaningful research on network protocols,

the first obvious step is to take a deep dive into RFCs. This helps us recognize

underspecifications in the protocol and ambiguities in the written language that may

lead to vulnerabilities.

Analyzing implementation code. The next step is to analyze the code of different

implementations of the protocol to see how these underspecifications and ambiguities

are interpreted by the developers and baked into the software2.

This two-step process exposes potential security vulnerabilities due to flaws in

protocol design or gaps in implementation and specifications.

Simulating attacks and network measurements. The next step is to demon-

strate network attacks on the protocol for different implementations that leverage

1Implementations come with configuration files used to configure the parameters and initial set-
tings for some computer programs.

2RFCs do not necessarily mandate everything. Some things are left to the interpretation or choice
of developers.
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vulnerabilities identified in the above process. Finally we perform measurements in

the Internet to determine the attack surface i.e., the number of IPs that are vulnerable

to our attacks.

Security & Cryptography. Having demonstrate the fragility/subvertibilty of the

protocol, the next step is to make it more robust and secure. Our approach towards

this depends on the underlying issue. Sometimes these vulnerabilities are due to gaps

between the specifications and implementations. This usually requires modifications

in RFCs and code changes in the existing software. Other times the identified security

issue is due to flaw(s) in the design of the core protocol itself, which requires a change

in the protocol design and use of cryptographic tools to prove its security.

1.4 NTP Security: History & Current-State-of-Art

NTP’s design rationale. At the time of its inception back in 1985 (Mills, 1985,

Sec. 2) there were two main design goals for the service provided by NTP.

1. Robustness To mitigate errors due to equipment or network propagation failures,

NTP was designed as a service where a client can gather timing samples from

multiple peers over multiple communication paths and then combine them to

get more accurate measurement.

2. Load distribution Top-level NTP servers that are directly attached to high pre-

cision time-keeping devices like atomic clocks, GPS, etc have more accurate

time. While ideally every NTP client would like to connect to these devices,

that would wreck havoc for these relatively fewer NTP servers and the net-

work. So to reduce protocol load on the network, NTP service was designed in

a hierarchical manner.

RFC 958 (Mills, 1985, Sec. 3) also states the following non-goals of the protocol:
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Figure 1·2: Timeline of development of protocols after NTP.

1. Peer authentication The protocol does not provide any guarantee on the identity

of the entity that the NTP client thinks that it is connected to.

2. Data integrity The protocol provides no guarantee on the correctness of the

data delivered. Integrity check was deferred to the lower layers of the protocol

stack such as IP and UDP layer checksums.

It is clear from above that security against malicious entities was a “non-goal” for the

protocol at the time of its design. We attribute this to the following two reasons:

1. Like many other protocols in common use on the Internet today, NTP was de-

signed at a time when Internet was not as vast and full of untrusted entities

as it is today. e.g., until late 1980’s, before the commercialization of the Inter-

net with the arrival of ISPs and World Wide Web (WWW), the Internet was

basically an internetwork of few mutually-trusted nodes (Leiner et al., 1999).

2. Time, unlike today, was not crucially used by other security critical applications.

See, for example, Figure 1·2 for a rough timeline of the development of security

protocols, that depend on time to provide functionality and security guarantees,

that developed after NTP.
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Current state-of-art of NTP security. Since the need for securing NTP was re-

alized after the development of protocols that relied on time, there were proposals for

cryptographically-authenticating NTP3. While NTP supports both symmetric (Mills

et al., 2010) as well as asymmetric authentication (Haberman and Mills, 2010) mech-

anisms, we found that they are rarely used in practice because of limitations of both.

Symmetric cryptographic authentication appends an MD5 hash keyed with symmetric

key k of the NTP packet contents m as MD5(k||m) (Mills, 2011, pg 264) to the

NTP packet. MD5(k||m) is intended to be a cryptographic message authentication

code (MAC). There are at least two major problems with this approach. First, the

use of MD5 in this manner is not a provably secure MAC and is also vulnerable to

length-extension attacks (Bellare et al., 1996); HMAC should be used instead (Bellare

et al., 1996). Moreover, MD5 is not collision-resistant (Wang and Yu, 2005) and has

been deprecated in favor of more secure hash functions like SHA-256 (Turner and

Chen, 2011). Second, the symmetric key k must be pre-configured manually, which

makes this solution quite cumbersome for public servers that must accept queries

from arbitrary clients. (Indeed, NIST operates important public stratum 1 servers

and distributes symmetric keys only to users that register, once per year, via US

mail or facsimile (NIST, 2010); the US Naval Office does something similar (USNO,

2015).)

Asymmetric cryptographic authentication is provided by the Autokey protocol, first

described in RFC 5906 (Haberman and Mills, 2010). RFC 5906 is not a standards-

track document (it is classified as ‘Informational’), NTP clients do not request Au-

tokey associations by default (Autokey, 2012), and many public NTP servers do

not support Autokey (e.g., the NIST timeservers (NIST, 2010), many servers in

3The payload of NTP packets consists basically of timestamps, which are not considered se-
cret (Mizrahi, 2012b). Therefore, encryption of the time synchronization protocol packet’s payload
is usually of low importance.
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pool.ntp.org). The most critical problem, however, is that the protocol has non-

standard authentication mechanisms and is badly broken. Any network attacker can

trivially retrieve the secret key shared between the client and the server (Röttger,

2012). In fact, a lead developer of the ntpd client wrote in 2015 (Stenn, 2015a): “No-

body should be using autokey. Or from the other direction, if you are using autokey

you should stop using it.”

These limitations inhibit the adoption of cryptographically-authenticated NTP,

thus exposing it to network attacks.

1.5 Our Goals

We observe that despite the critical role played by NTP, the community lacks visibility

into the robustness of the NTP ecosystem itself, the integrity of the timing information

transmitted by NTP, and the impact that any error in NTP might have upon the

security of other protocols that rely on timing information. In this thesis, we seek to

accomplish the following broad goals:

1. Demonstrate that the current design presents a security risk, by showing that

network attackers can exploit NTP and then use it to attack other core Internet

protocols that rely on time.

2. Improve NTP to make it more robust, and rigorously analyze the security of

the improved protocol.

3. Establish formal and precise security requirements that should be satisfied by

a network time-synchronization protocol, and prove that these are sufficient for

the security of other protocols that rely on time.

pool.ntp.org
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Figure 1·3: Threat models

1.6 Our Contributions

The following chapters in this thesis are self-contained with their own introduction,

motivation, results and conclusion sections. This section gives an overview of the

results in these chapters, and discuss how they contribute incrementally to achieve

the goals of this thesis.

1.6.1 Attacking and fixing different modes of NTP (unauthenticated and

authenticated) Chapters 2, 3, 5

Threat Models. We consider the following categories of network attacks on NTP

(See Figure 1·3).

1. Off-path attacks. An off-path attacker cannot eavesdrop on the NTP traffic

of its targets, but can spoof IP packets i.e., send packets with a bogus source IP

address. This threat model captures ‘remote attacks’ launched by arbitrary IPs

that do not occupy a privileged position on the communication path between

the NTP client and server. Off-path attacks are essentially the weakest (and

therefore the scariest) threat model that one could consider for a networking
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protocol.

2. On-path attacks. An on-path attacker occupies a privileged position on the

communication path between NTP client and one of its servers, or hijacks (with

e.g., DNS (Kaminsky, 2008), (Herzberg and Shulman, 2013) or BGP (Goldberg,

2014), (d’Itri, 2015; Peterson, 2013)) traffic to the server. An on-path attacker

can eavesdrop, inject, spoof, and replay packets, but cannot drop, delay, or

tamper with legitimate traffic. An on-path attacker eavesdrops on a copy of the

target’s traffic, so it need not disrupt live network traffic, or even operate at line

rate. For this reason, on-path attacks are commonly seen in the wild, disrupting

TCP (Weaver et al., 2009), DNS (Duan et al., 2012), BitTorrent (Weaver et al.,

2009), or censoring web content (Clayton et al., 2006).

3. In-path/MiTM attacks. An in-path attacker or more traditionally a Man-

in-The-Middle (MiTM) can eavesdrop, inject, spoof, replay and can additionally

delay, drop, or tamper with the legitimate traffic.

Our Attacks. We demonstrate several attacks on NTP client. Each of these attacks

(a) exploits distinct flaws in the protocol or its implementation, (b) requires different

resources in terms of number of spoofed packets, time to accomplish the attack, and

position of the attacker on network path (off-, on- or in-path), (c) requires different

fixes to the protocol design or implementation.

Impact. Overall our attacks and Internet measurements expose the fragility of NTP

ecosystem. We show that the attacks are possible due to the following:

1. flaws in NTP protocol design and underspecified RFCs.

2. despite conflicting security-requirements, RFC 5905 suggests that implementa-

tions process different NTP modes4 in the same codepath. Also, this lack of

4Other than the typical client-server mode, NTP has several other modes of operation, e.g.,
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modularity in code-design makes it challenging to modify code without inad-

vertently (re)introducing more vulnerabilities.5

3. lack of secure protocol for cryptographically-authenticating NTP.

We make several recommendations to fix NTP’s existing reference implementation

that were incorporated in the ntpd software thus making it more robust and secure6.

Most importantly, however, our work motivates the community to work towards bet-

ter protocol design (Schiff et al., 2018), (roughtime, 2015), efforts to make existing

implementations more robust and secure ( (Stenn, 2015b), (NTPsec, 2017)), and

proposals for cryptographically-authenticating NTP (Dowling et al., 2016), (Mkacher

et al., 2018) and (Franke et al., 2018), (Malhotra and Goldberg, 2019).

Following is a brief overview of some of our attacks on NTP (more details in

respective chapters).

Time-shifting attacks.7 In time-shifting attacks, a network attacker can mali-

ciously alter time on client systems.

1. Time steps by on-path and off-path attackers. Our on-path attacks on NTP’s

client-server mode exploit client’s behavior upon initialization, and the fact that an

on-path attacker can easily determine exactly when an ntpd client is initializing.

We show “small-step-big-step” attack that stealthily shifts client clocks when clients

are unlikely to notice. One might suppose that preconfiguring an NTP client with

multiple servers could prevent this attack. However, we show that an attacker need

only intercept traffic to one server queried by a client. We then show how an off-path

broadcast mode, where a set of clients are pre-configured to listen to a server that broadcasts timing
information, and symmetric mode where peers exchange time information typically on the same
level. There is also an interleaved mode that enables NTP servers to provide their clients and peers
with more accurate timestamps that are available only after transmitting NTP packets.

5e.g., our “Zero-0rigin timestamp” attack was fixed in ntpv4.2.8p6. However, subsequent times-
tamp validation checks introduced a regression in the handling of some Zero origin timestamp checks.

6We secured several Common Vulnerabilities and Exposure (CVE, 2019) in the process.
7Some attacks were discovered by members of Cisco security team ASIG (specifically Matt Van

Gundy, Jonathan Gardner) while the author was a visiting research fellow at Cisco, Knoxville.
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attacker, that uses spoofed rate-limiting Kiss-o’-Death (KoD) packets, forces clients

to synchronize to malfunctioning servers that provide incorrect time.

2. Leaky-origin timestamp attack. In this attack we leverage our observation that

NTP’s control query interface is not specified in the latest RFC 5905 and can be

exploited remotely as a side-channel to leak information about NTP client’s internal

timing state variables. We show that an off-path attacker can maliciously shift time

on a target client by querying for client’s secret state variables and thus bypassing

the non-cryptographic authentication checks.

3. Interleaved pivot attack. In this attack we exploit the fact that in NTP’s reference

implementation, client-server mode shares the same codepath as NTP’s interleaved

mode. First, the attacker spoofs a single packet, for an NTP client operating in

client-server mode, that tricks the target into thinking that he is in interleaved mode.

There is no codepath that allows the client to exit interleaved mode. The target then

rejects all subsequent legitimate client-server mode packets. This is a DoS attack. We

further leverage NTP’s leaky control queries to convert this DoS attack to an on-path

timeshifting attack.

4. Zero-0rigin timestamp attack. This is among the strongest timeshifting attacks

on NTP’s client-server mode and follows directly from RFC 5905 specification. In

this attack we exploit the fact that NTP’s client-server mode shares the same code-

path as NTP’s symmetric mode. The off-path attacker bypasses non-cryptographic

authentication check by spoofing server response packets (with malicious timing infor-

mation) for the client with their nonce set to a predictable value “zero” (a legitimate

requirement for symmetric mode).

5. Fragmentation attack. We show how NTP’s interaction with lower layer protocols

(UDP, ICMP, IP) can be exploited in an off-path IPv4 fragmentation attack that can

dramatically shift time on a victim client. We explain why NTP’s clock discipline
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algorithms force our attack to craft a stream of self-consistent packets (rather than

just one packet, as in the attacks of e.g., (Kaminsky, 2008), (Herzberg and Shulman,

2013)), and demonstrate that this can be done with a proof-of-concept implementa-

tion.

6. Replay attack. This attack exploits the weakness in NTP’s broadcast mode that

the check for replay protection does not actually prevent replay in general; it only

prevents replay for the most recent packet. We show that an on-path attacker can

indefinitely stick a cryptographically-authenticated broadcast client to a specific time.

Denial-of-Service (DoS) attacks. In DoS attacks, a network attacker prevents

the victim client system from ever updating its clock.

1. DoS attack-1. RFC 5905 requires that the server sends a client a KoD packet

asking the client to reduce its polling interval if the client queries it too many times

within a specified time interval. RFC 5905 also requires that the client MUST imme-

diately reduce its polling interval to that sent by the server and continue to reduce

it each time it receives this packet. But RFC 5905 does not explicitly require the

client to check for authentication for KoD packet. We show how an off-path attacker

can essentially disable NTP for any victim. Our attacker need only spoof a single

KoD packet with large polling interval from each of the client’s preconfigured servers,

and send this packet once every 36 hours. The client stops querying its servers and

no longer updates its local clock. An off-path attacker that uses standard network-

ing scanning tools (e.g., zmap (Durumeric et al., 2013)) to spoof KoD packets can

launch this attack on most NTP clients in the Internet within a few hours, essentially

disabling NTP in the Internet.

2. DoS attack-2. This attack exploits a flaw in NTP’s broadcast mode8 of operation

that an off-path attacker can easily cause an error by sending a packet with bad cryp-

8In broadcast mode a set of NTP clients are pre-configured to listen to a server that broadcasts
timing information.
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tographic authentication (e.g., wrong or mismatched key, incorrect message digest,

etc.). We show a DoS attack where an off-path attacker sends one such error-causing

packet per query interval, so that a cryptographically-authenticated broadcast client

immediately tears down its association with the server. This way, the client never

collects enough good NTP responses to allow its clock discipline algorithms to update

its local clock. This attack also applies to all other NTP modes that are ‘ephemeral’9

or ‘preemptable’ (including manycast, pool, etc). This attack implies that even if

cryptographic-authentication is used, an off-path attacker can still spoof packets that

will deny NTP service to a broadcast client.

1.6.2 Leveraging NTP to attack DNS (Chapter 4)

Progressing towards the goal of analyzing the impact of security vulnerabilities in

network timing protocols (including but not limited to NTP) on other protocols, we

demonstrate this on Domain Name System (DNS) and the DNS Security Extensions

(DNSSEC) protocol.

How does DNS rely on time? DNS relies on caching to provide enhanced perfor-

mance and improved reliability in the face of network failures. DNS caches rely on an

absolute notion of time (e.g., “August 8, 2019 at 11:00am”) to determine how long

DNS records can be cached (i.e., their Time To Live (TTL)) and to determine the

validity interval of DNSSEC signatures. Following our two-step approach described

above in subsection 1.6.1, we find that while TTL is a relative time value (e.g., “2

hours from the time the DNS query was sent”), the RFCs do not clearly specify how

the cache should determine that the TTL has elapsed. We then checked popular

caching resolver implementations (Unbound, 2018), (Bind, 2018), (Powerdns, 2018),

(Dnsmasq, 2018), (knot, 2018) (before v1.5.1) to see how their caches were imple-

menting time. We found that these implementations all mark the end of validity of

9An ephemeral association is mobilized upon arrival of a packet and exists until error or timeout.
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the cached object by translating the relative time values in the TTL into absolute

time values by adding an offset equal to the TTL to the current system time. DNS

resolver implementations, however, do not come with a predefined mechanism for

getting absolute time. So the best that they can do is to rely on system time (which

represents some form of absolute time) from the underlying OS to get these absolute

time values.

Previous work on DNS attacks. Several works study DNS spoofing and cache

poisoning attacks and propose potential solutions (Kaminsky, 2008), (Herzberg and

Shulman, 2012a), (Klein et al., 2017), (Herzberg and Shulman, 2012b), (Schomp

et al., 2014), (Yuan et al., 2006). These attacks focus on how the DNS protocol can

be exploited to poison DNS resolver caches. By contrast our attacks show how to

pivot from vulnerabilities in absolute time (e.g., in NTP), to attacks that flush/stick

the DNS cache.

Impact. Our attacks indicate that DNS caches should lessen their reliance on abso-

lute time. In fact, we observe that setting TTL as relative time value is a feature of

the DNS protocol. So there is no fundamental change required to the DNS protocol

to deal with our attacks. We therefore recommend that DNS caching resolvers use

relative time rather than absolute time. Specifically, we suggest using the OS’s raw

time, which is monotonically increasing and not subject to adjustment by external

sources (and thus immune to the network attacks on time.) We have implemented

our recommendations as part of the popular open source validating, recursive, and

caching DNS resolver product from NLnet Labs.

Our Attacks. We leverage the above mentioned observations to investigate a largely

overlooked and important threat in DNS: the impact of security vulnerabilities intro-

duced because resolver’s caches are dependent on absolute time, which is obtained

from the system time, which is often obtained via network timing protocols (e.g.,
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NTP), which are vulnerable to attacks. We show how to pivot from network attacks

on absolute time (NTP) to attacks on DNS caching. Specifically, we present and

discuss the implications of following attacks:

1. Cache-expiration attacks. When time is shifted forwards, the DNS cached re-

sponses expire sooner than expected, effectively flushing the cache.

2. Cache-sticking attacks. When time is shifted backwards, the cached responses

stick in the cache for longer than intended.

We show how these attacks can be used to harm DNS performance (introducing

latency into DNS responses) and DNS availability (increasing the risk of denial-of-

service). We also discuss how they can be used to aid for fast-fluxing (Holz et al.,

2008), (Honeynet, 2018), cache poisoning and other well-known threats to the DNS.

We use network measurements to identify a significant attack surface for these DNS

cache attacks in the Internet.

1.6.3 New provably-secure NTP (Chapter 5)

Having demonstrated the fragility of NTP and its impact on other protocols, our next

goal is to go beyond attacks and patches and propose a more robust protocol and prove

the security of new protocol. In Chapter 5 we propose a new backwards-compatible

protocol for client-server mode that preserves the semantics of the timestamps in

NTP packets. We then leverage ideas from the universal composability framework

(UC) (Canetti, 2001) to develop a cryptographic model for network attacks on NTP’s

datagram protocol.

Impact. Our network protocol analysis introduces new ways of reasoning about

network attacks on time synchronization protocols. In this work, our focus is in

securing the core datagram protocol used by NTP. To the best of our knowledge,

the security of the core NTP datagram protocol has never previously been analyzed.
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We also prove the security of authenticated NTP where we assume authenticated

communication channels. As such, our design and analysis of secure client-server

protocols complements recent proposals of protocols for establishing authenticated

communication channels i.e., protocols for distributing keys and performing the MAC

(Haberman and Mills, 2010), (Dowling et al., 2016), (Franke et al., 2018), (Itkin and

Wool, 2016).

Threat model. Our model is inspired by prior cryptographic work that designs syn-

chronous protocols with guaranteed packet delivery (Katz et al., 2013a),(Achenbach

et al., 2015). However, we consciously omit to model the more powerful MiTM who

can drop, modify, or delay packets.

Why is MiTM too strong a threat model for NTP? We do not consider in-path

attacks. This is because an MiTM can always prevent time synchronization by drop-

ping packets. Moreover, an MiTM can also bias time synchronization by delaying

packets (Mizrahi, 2012a; Mizrahi, 2012b). This follows because time synchronization

protocols use information about the delay on the network path in order to accurately

synchronize clocks (Section 5.2). A client cannot distinguish the delay on the forward

path (from client to server) from the delay on the reverse path (from server to client).

As such, the client simply takes the total round trip time δ (forward path + reverse

path), and assumes that delays on each path are symmetric. The MiTM can exploit

this by making delays asymmetric (e.g., causing the delay on the forward path to be

much longer than delay on the reverse path), thus biasing time synchronization.

We assume instead that the network delivers all packets sent between the honest

parties. We also assume that the network does not validate the source IP in the

packets it transits, so that the attacker can spoof packets. Honest parties experience a

delay before their packets are delivered, but the attacker can win every race condition.

We require that honest parties have sufficient time to process every packet received;
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put another way, attacks that flood an honest party with packets in order to deny

service are out of scope.

Security guarantees. We use this model to prove that our proposed protocol

correctly synchronizes time in the face of both (1) off-path attackers when NTP is

unauthenticated, and (2) on-path attackers when NTP packets are authenticated with

a cryptographically secure MAC (Refer to the corresponding Theorems in Chapter 5.)

We also use our model to prove similar results about a different protocol that is

used by chronyd (chronyd, 2015) and openNTPD (openNTPD, 2012) (two alternate

implementations of NTP). The chronyd/openNTPD protocol is secure, but unlike our

protocol, does not preserve the semantics of packet timestamps.

1.6.4 A Universally-Composable Treatment of Network Time (Chapter 6)

Up until now, our work has specifically focused on the design and analysis of the

most dominant protocol for time synchronization in the Internet NTP. We observe

that meanwhile we have many candidates for secure network time synchronization

protocols like (Haberman and Mills, 2010), (Sibold et al., 2015), (Dowling et al.,

2016), (Itkin and Wool, 2016), (Franke et al., 2018). We also have several frameworks

(Mizrahi, 2012b), (Dowling et al., 2016), (Itkin and Wool, 2016), (Malhotra et al.,

2017) that aim to define and analyze the security requirements of time synchronization

protocols. Additionally there exist many works that propose ways to model time

(either real, global, or relative) within network protocols, and even within security

protocols (Kalai et al., 2005), (Katz et al., 2013b), (Canetti, 2013), (Backes et al.,

2014) and (Vajda, 2016) to analyze their security.

However none of these works rigorously capture the security guarantees from a

network time synchronization protocol that provably suffice for security-sensitive ap-

plications that require time— for instance for guaranteeing the validity of crypto-

graphic certificates in a way that, in turn, will guarantee authenticated and secure
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communication.

So the next goal of this thesis is to establish formal and precise security require-

ments that should be satisfied by a network time synchronization protocol, and prove

that these are sufficient for the security of other time-reliant applications – specifically,

cryptographic certificates with revocation and expiration times.

Our Contributions. We choose the Universally Composable (UC) security frame-

work as a basis for our formalism because of its two specific properties that are im-

portant for our modeling:

1. Secure composition: UC framework provides a general mechanism for specifying

security properties of cryptographic protocols in a way that facilitates compos-

ing protocols together, and in particular guarantees that composition of secure

components results in overall security of the composed protocol. This allows for

relatively clear and modular treatment of the use of time in security-sensitive

systems.

2. Seamless integration of real time within existing cryptographic tools and prim-

itives: UC framework is geared towards analyzing the security of cryptographic

protocols, which facilitates incorporating the results in this work with existing

analytical results for cryptographic protocols.

Both of these properties are crucial towards our goal of realizing time-sensitive

cryptographic primitives like the Public Key Infrastructure (PKI). Specifically, we

propose formal abstractions of secure network time, and show that:

• Our abstractions of network-time suffice for securely incorporating expiration

times in certificates, as well as freshness guarantees for public certificate lists,

in a way that guarantees PKI-based secure communication even in face of an
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adversary who tries to subvert the measurement of time and at the same time

corrupts revoked and expired certificates.

• Our abstractions are realizable by simple protocols that mimic the behavior of

authenticated NTP.

Specifically, we build upon an existing analytical work by Canetti et al. that asserts,

within the UC framework, the security of authentication and key exchange protocols

that are based on global PKI (Canetti et al., 2016). We incorporate our analysis of

timing consensus achieved via network time into the UC analysis of a global PKI.

The combined analysis extends the security guarantees provided by (Canetti et al.,

2016) to the case of revocable and expirable certificates.

Impact. Our methodology of incorporating network time into existing UC protocols

and functionalities is quite generic. Hence, our work paves the way toward instanti-

ating time consensus and reaping its security benefits within other UC formalisms in

a seamless fashion. An important lesson learned from this modeling is that real-life

certificate revocation lists and online certificate status protocol (OCSP) requests must

continue to answer requests about revoked or expired certificates during the interval

[t∗, t∗+ Σ] because clients may not be able to adjudicate them correctly on their own

before this time. Here, Σ denotes the maximum shift from real time expected by The-

orems 4 and 5 for all clients on the Internet. After this interval, the adversary cannot

convince any clients of the validity of a revoked or expired certificate via network

manipulation, so the CA may forget about its existence.



Chapter 2

Attacking the Network Time Protocol

2.1 Introduction

NTP (Mills et al., 2010) is one of the Internet’s oldest protocols, designed to syn-

chronize time between computer systems communicating over unreliable variable-

latency network paths. NTP has recently received some attention from security

researchers due to software-implementation flaws (National Vulnerability Database,

2014), (Röttger, 2015), and its potential to act as an amplifier for distributed denial

of service (DDoS) attacks (Czyz et al., 2014a), (Stenn, 2015d). However, the commu-

nity still lacks visibility into the robustness of the NTP ecosystem itself, as well as the

integrity of the timing information transmitted by NTP. These issues are particularly

important because time is a fundamental building block for computing applications,

and is heavily utilized by many cryptographic protocols.

NTP most commonly operates in an hierarchical client-server fashion. Clients

send queries to solicit timing information from a set of preconfigured servers that

usually remain static over time. At infrequent intervals, a client adaptively select

a single server to which it synchronizes its local clock; selection decisions are made

by a series of complex clock discipline algorithms that are (sometimes incompletely)

specified in RFC 5905 (Mills et al., 2010), and have evolved in small but important

ways across different versions of ntpd, the NTP reference implementation. While NTP

supports both symmetric and asymmetric cryptographic authentication (Haberman

and Mills, 2010), in practice, these modes of operation are rarely used (Section 2.3).

21
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Our goal is therefore to explore attacks on unauthenticated NTP that are pos-

sible within the NTP protocol specification (Mills et al., 2010). We consider both

(1) on-path attacks, where the attacker occupies a privileged position on the path

between NTP client and one of its servers, or hijacks (with e.g., DNS (Kaminsky,

2008), (Herzberg and Shulman, 2013) or BGP (Goldberg, 2014), (d’Itri, 2015), (Pe-

terson, 2013)) traffic to the server, and (2) off-path attacks, where the attacker can

be anywhere on the network and does not observe the traffic between client and any

of its servers. This chapter considers the following.

Implications (Section 2.2). We consider a few implications of attacks on NTP, high-

lighting protocols and applications whose correctness and security relies on accurate

time.

On-path time-shifting attacks (Section 2.4). We discuss how an on-path attacker can

shift time on victim clients by hours or even years. Our attacks exploit NTP’s behavior

upon initialization, and the fact than an on-path attacker can trivially determine

when an ntpd client is initializing. We also present a “small-step-big-step” attack

(CVE-2015-5300) that stealthily shifts clocks when clients are unlikely to notice.

Off-path DoS attacks (Section 2.5.3). We show how an off-path attacker can disable

NTP at a victim client by exploiting NTP’s rate-limiting mechanism, the Kiss-o’-

Death (KoD) packet.

1. DoS by Spoofed Kiss-o’-Death (CVE-2015-7704). We show how a single attacking

machine can disable NTP on most of clients in the Internet. We find that ntpd

versions earlier than 4.2.8p4 allow an off-path attacker to trivially spoof a KoD packet

for each of the client’s preconfigured servers; upon receipt of the spoofed KoD, the

client stops querying its servers and stops updating its clock. Because the attacker

only sends a few KoD packets per client, standard network scanning tools (nmap,

zmap (Durumeric et al., 2013)) can be used to quickly launch this attack, in bulk,
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on all ntpd clients in the Internet. This vulnerability was patched in ntpd v4.2.8p4

following our work.

2. DoS by Priming the Pump (CVE-2015-7705). Even if KoD packets can no longer

be trivially spoofed, an off-path attacker can still disable NTP at a victim client;

this attack, however, requires the attacker to expend more resources (i.e., send more

packets). Our off-path attacker sends the servers a high volume of queries that are

spoofed to look like they come from the client. The servers then respond to any

subsequent queries from the client with a valid KoD, and once again, the client stops

querying its servers, and stops updating its local clock. Our recommended mitigations

are in Section 2.5.7.

Off-path time-shifting attacks. Next, we consider off-path attackers that step time

on victim NTP clients:

1. Pinning to bad timekeepers (Section 2.5.4). We first consider an off-path attacker

that uses spoofed KoD packets to force clients to synchronize to malfunctioning servers

that provide incorrect time; we find that NTP is pretty good at preventing this type

of attack, although it succeeds in certain situations.

2. Fragmentation attack (Section 2.6). Then we show how NTP’s interaction with

lower layer protocols (ICMP, IPv4) can be exploited in a new off-path IPv4 fragmenta-

tion attack that shifts time on a victim client. We explain why NTP’s clock discipline

algorithms require our attack to craft a stream of self-consistent packets (rather than

just one packet, as in (Kaminsky, 2008), (Herzberg and Shulman, 2013)), and demon-

strate its feasibility with a proof-of-concept implementation. This attack, which has

a small but non-negligible attack surface, exploits certain IPv4 fragmentation policies

used by the server and client operating systems (Section 2.6.5), rather than specific

issues with NTP.

Network measurements (Sections 2.3.2, 2.5.6, 2.6.7, 2.6.8). The last measurement
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studies of the NTP ecosystem were conducted in 1999 (Minar, 1999) and 2006 (Murta

et al., 2006), while a more recent study (Czyz et al., 2014a) focused on NTP DoS

amplification attacks. We study the integrity of the NTP ecosystem using data from

the openNTPproject (Mauch, 2015), and new network-wide scans (Section 2.3.2).

We identify bad timekeepers that could be exploited by off-path attacker (Section 2.5.6),

and servers that are vulnerable to our fragmentation attack (Sections 2.6.7-2.6.8).

Recommendations and disclosure. We began disclosing these results on August

20, 2015. The Network Time Foundation, NTPsec, Redhat’s security team, and

Cisco quickly patched their NTP implementations to prevent trivial spoofing of the

KoD packet (CVE-2015-7704). We also worked with the openNTPproject to pro-

vide a resource that operators can use to measure their servers’ vulnerability to

our fragmentation attacks.1 Our recommendations for hardening NTP are in Sec-

tions 2.4.3, 2.5.7, 2.6.9 and summarized in Section 2.8.

2.2 Why time matters: Implications of attacks on NTP

NTP lurks in the background of many systems; when NTP fails on the system, mul-

tiple applications on the system can fail, all at the same time. Such failures have

happened. On November 19, 2012 (Bicknell, 2012), for example, two important NTP

(stratum 1) servers, tick.usno.navy.mil and tock.usno.navy.mil, went back in

time by about 12 years, causing outages at a variety of devices including Active

Directory (AD) authentication servers, PBXs and routers (Morowczynski, 2012). Ex-

ploits of individual NTP clients also serve as a building block for other attacks, as

summarized in Table 2.1. Consider the following:

TLS Certificates. Several authors (Mills, 2011, pg 33, pg 183) (Klein, 2013; Selvi,

2015) have observed that NTP could be used to undermine the security of TLS cer-

1http://www.cs.bu.edu/~goldbe/NTPattack.html

tick.usno.navy.mil
tock.usno.navy.mil
http://www.cs.bu.edu/~goldbe/NTPattack.html
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tificates, which are used to establish secure encrypted and authenticated connection.

An NTP attacker that sends a client back in time could cause the host to accept

certificates that the attacker fraudulently issued (that allow the attacker to decrypt

the connection), and have since been revoked2. (For example, the client can be rolled

back to March 2011, when a compromise at Comodo (Comodo, 2011) allowed hackers

to issue fraudulent certificates for domains including *.google.com, or back to mid-

2014, when > 100K certificates were revoked due to heartbleed (Zhang et al., 2014).)

Alternatively, an attacker can send the client back to a time when a certificate for

a cryptographically-weak key was still valid. (For example, to 2012 when (Heninger

et al., 2012) exploited entropy problems in key generation to obtain private keys for

0.50% of the Internet’s TLS hosts, or to 2008, when a bug in Debian OpenSSL caused

thousands of certificates to be issued for keys with only 15-17 bits of entropy (Ecker-

sley and Burns, 2010).) Moreover, most browsers today accept (non-root) certificates

for 1024-bit RSA keys, even though sources speculate that they can be cracked by well-

funded adversaries (Barker and Roginsky, 2011); thus, even a domain that revokes

its old 1024-bit RSA certificates (or lets them expire) is vulnerable to cryptanalytic

attacks when its clients are rolled back to a time when these certificates were valid.

Some of these attacks were demonstrated by Selvi (Selvi, 2015).

HSTS. Selvi (Selvi, 2014) suggests using NTP to attack HTTP Strict Transport Secu-

rity (HSTS). HSTS is used by a webserver to tell its client that all future connections

should use HTTPS. The HSTS request, however, comes with an expiry time (one

year is recommended (OWASP, 2015)) after which point the client need no longer

2The attacker must also circumvent certificate revocation mechanisms, but several authors (Mut-
ton, 2014), (Kiyawat, 2014), (Langley, 2014) point out that this is relatively easy to do in various
settings. For instance, several major browsers rely on OCSP (Santesson et al., 2013) to check if a
certificate was revoked, and default to “soft-fail”, i.e., accepting the certificate as valid, when they
cannot connect to the OCSP server. NTP-based cache-flushing could also be useful for this purpose,
by causing the client to ‘forget’ any old certificate revocation lists (CRLs) that it may have seen in
the past; see also our discussion of routing attacks.

*.google.com
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Table 2.1: Attacking various applications with NTP.

To attack... change time by ... To attack... change time by ...
TLS Certificates years Routing (RPKI) days
HSTS a year Bitcoin hours
DNSSEC months API authentication minutes
Kerberos minutes DNS Caches days

use an encrypted connection; thus, an NTP attacker that sends the client a year into

the future can effectively disable HSTS, allowing for downgrade attacks (e.g., ‘SSL

Stripping’ (Marlinspike, 2009)) to non-encrypted connections.

DNSSEC. DNSSEC (Arends et al., 2005a) provides cryptographic authentication of

the Domain Name System (DNS) data. NTP can be used to attack a DNS resolver

that performs ‘strict’ DNSSEC validation, i.e., fails to return responses to queries

that fail cryptographic DNSSEC validation. An NTP attack that sends a resolver

forward in time will cause all timestamps on DNSSEC cryptographic keys and sig-

natures to expire (the recommended lifetime for zone-signing keys in DNSSEC is 1

month (Kolkman et al., 2012)); the resolver and all its clients thus lose connectivity

to any domain secured with DNSSEC. Alternatively, an NTP attack that sends a

resolver back in time allows for DNSSEC replay attacks; the attacker, for example,

roll to a time in which a certain DNSSEC record for a domain name did not exist,

causing the resolver to lose connectivity to that domain. Since the recommended

lifetime for DNSSEC signatures is no more than 30 days (Kolkman et al., 2012), this

attack would need to send the resolver back in time by a month (or more, if the time

in which the DNSSEC record did not exist was further in the past). Going back

in time also allows an attacker to forge DNSSEC responses using an old DNSSEC

key that is compromised or cryptographically weak. Indeed, DNSSEC resolvers still

accept 1024-bit RSA signatures (Kolkman et al., 2012), so even if zone decides to

protect itself by upgrading to a stronger key, an NTP attack could still roll back its

clients to a time when the old 1024-bit key was still valid. (Indeed, 1024-bit RSA
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was the most popular DNSSEC key in 2014, although we hope it won’t be in the

future (Herzberg et al., 2014).)

Cache-flushing attacks. NTP can be used to flush caches. The DNS, or example,

uses caching to minimize the number of DNS queries a resolver makes to a public

nameserver, thus limiting network traffic. DNS cache entries typically live for around

24 hours, so rolling a resolver forward in time by a day would cause most of its cache

entries to expire (Mills, 2011), (Klein, 2013). A widespread NTP failure (like the one

in November 2012) could cause multiple resolvers to flush their caches all at once,

simultaneously flooding the network with DNS queries.

Interdomain routing. NTP can be used to exploit the Resource Public Key Infras-

tructure (RPKI) (Lepinski and Kent, 2012), a new infrastructure for securing routing

with BGP. The RPKI uses Route Origin Authorizations (ROAs) to cryptographically

authenticate the allocation of IP address blocks to networks. ROAs prevent hijackers

from announcing routes to IP addresses that are not allocated to their networks. If

a valid ROA is missing, a ‘relying party’ (that relies on the RPKI to make routing

decisions) can lose connectivity to the IPs in the missing ROA.3 As such, relying

parties must always download a complete set of valid ROAs; to do this, they verify

that they have downloaded all the files listed in cryptographically-signed ‘manifest’

files. To prevent the relying party from rolling back to a stale manifest that might

be missing a ROA, manifests have monotonically-increasing ‘manifest-numbers’, and

typically expire within a day (Heilman et al., 2014). NTP attacks, however, can first

roll the relying party forward in time, flushing its cache and causing it to ‘forget’

its current manifest-number, and then roll the relying party back in time, so that it

accepts a stale manifest as valid.

Bitcoin. Bitcoin is a digital currency that allows a decentralized network of nodes

3See (Cooper et al., 2013, Side Effect 6): the relying party loses connectivity if it uses ‘drop
invalid’ routing policy (Cooper et al., 2013, Sec. 5), and the missing ROA has ‘covering ROA’.
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to arrive at a consensus on a distributed public ledger of transactions, aka “the

blockchain”. The blockchain consists of timestamped “blocks”; bitcoin nodes use

computational proofs-of-work to add blocks to the blockchain. Because blocks should

be added to the blockchain according to their validity interval (about 2 hours), an

NTP attacker can trick a victim into rejecting a legitimate block, or into wasting

computational power on a stale block (Corbixgwelt, 2011).

Authentication. Various services (e.g., (Amazon, 2015), (DropBox, 2015)) expose

APIs that require authentication each time an application queries them. To prevent

replay attacks, queries require a timestamp that is within some short window of

the server’s local time, see e.g., (Hammer-Lahav, 2010, Sec 3.3); Amazon S3, for

example, uses a 15-minute window. An NTP attacker can also launch replay attacks

on Kerberos, which requires clients to present tickets which have been timestamped

within minutes (Kohl and Neuman, 1993).

2.3 The NTP Ecosystem

We start with background on the NTP protocol, and use a measurement study to

discuss its structure and topology. NTP has evolved in more fluid fashion than other

core Internet protocols like DNS or BGP. While NTP is described in RFC 5905 (Mills

et al., 2010), practically speaking, the protocol is determined by the NTP reference

implementation ntpd, which has changed frequently over the last decades (Stenn,

2015d). (For example, root distance Λ (equation (2.4)) is a fundamental NTP param-

eter, but is defined differently in RFC 5905 (Mills et al., 2010, Appendix A.5.5.2),

ntpd v4.2.6 (the second most popular version of ntpd we found in the wild) and ntpd

v4.2.8 (the latest version).)
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2.3.1 Background: The NTP Protocol.

NTP most commonly operates in an hierarchical client-server fashion.4 Clients send

queries to solicit timing information from a set of servers. This set of servers is

manually configured before the client initializes and remains static over time. In

general, the ntpd client can be configured with up to 10 servers.5 Online resources

suggest configuring anywhere from three to five servers (Knowles, 2004), and certain

OSes (e.g., MAC OS X 10.9.5) default to installing ntpd with exactly one server (i.e.,

time.apple.com). At the root of the NTP hierarchy are stratum 1 NTP servers, that

provide timing information to stratum 2 client systems. Stratum 2 systems provide

time to stratum 3 systems, and so on, until stratum 15. Stratums 0 and 16 indicate

that a system is unsynchronized. NTP servers with low stratum often provide time to

the Internet at large (e.g., pool.ntp.org, tick.usno.navy.mil); our organization,

for example, has stratum 2 servers that provide time to internal stratum 3 machines,

and take time from public stratum 1 servers.

Client/server communications. An NTP client and server periodically exchange a

pair of messages; the client sends the server a mode 3 NTP query and the server

responds with a mode 4 NTP response. This two-message exchange uses the IPv4

packet shown in Figure 2·1, and induces the following four important timestamps on

the mode 4 response:

T1 Origin timestamp. Client’s system time when client sent mode 3 query.

T2 Receive timestamp. Server’s system time when server received mode 3 query.

T3 Transmit timestamp. Server’s system time when server sent mode 4 response.

4NTP also supports several less popular modes including broadcast, where a set of clients listen
to a server that broadcasts timing information, and symmetric peering, where servers (typically at
the same stratum) exchange time information. We only consider client-server mode.

5For example, when installing NTP in 14.04.1-Ubuntu in July 2015, the OS defaulted to installing
ntpd v4.2.6 with a five preconfigured servers.

time.apple.com
pool.ntp.org
tick.usno.navy.mil
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T4 Destination timestamp. Client’s system time when client received mode 4 re-

sponse. (Not in packet.)

The round-trip delay δ during the exchange is therefore:

δ = (T4 − T1)− (T3 − T2) (2.1)

Offset θ quantifies the time shift between a client’s clock and a server’s clock. Assume

that delays on the forward (client→server) and reverse (server→client) network paths

are symmetric and equal to δ
2
. Then, the gap between the server and client clock is

T2 − (T1 + δ
2
) for the mode 3 query, and T3 − (T4 − δ

2
) for the mode 4 response.

Averaging these two quantities gives the offset:

θ = 1
2

((T2 − T1) + (T3 − T4)) (2.2)

An NTP client adaptively and infrequently selects a single server (from its set of

pre-configured servers) from which it will take time. The IPv4 address of the selected

server is recorded in the reference ID field of every NTP packet a system sends, and

the reference timestamp field records the last time it synchronized to its reference ID.

Notice that this means that any client querying a server S2 can identify exactly which

IPv4 NTP server S1 the server S2 has used for synchronization.6

Infrequent clock updates. NTP infrequently updates a client’s clock because (1) a

client and server must exchange between eight to hundreds of messages before the

client’s clock discipline algorithms synchronizes it to the server (Mills et al., 2010, Sec.

10-12) (see also Section 2.5.5), and (2) messages are exchanged at infrequent polling

intervals (on the order of minutes) that are adaptively chosen by a randomized poll

process (Mills et al., 2010, Sec. 13).

6128-bit IPv6 addresses are first hashed and then truncated to before recorded in the 32-bit
reference ID field (Mills et al., 2010, pg 22). Thus, one would need a dictionary attack to identify
an IPv6 server.
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Figure 2·1: Mode 4 NTP Packet, highlighting nonces and checksums.

Authentication. How does the client know that she is talking to its real NTP server

and not to an attacker? While NTPv4 supports both symmetric and asymmetric

cryptographic authentication, this is rarely used in practice. Symmetric cryptographic

authentication appends an MD5 hash keyed with symmetric key k of the NTP packet

contents m as MD5(k||m) (Mills, 2011, pg 264) to the NTP packet in Figure 2·1.7

The symmetric key must be pre-configured manually, which makes this solution quite

cumbersome for public servers that must accept queries from arbitrary clients. (NIST

operates important public stratum 1 servers and distributes symmetric keys only to

users that register, once per year, via US mail or facsimile (NIST, 2010); the US

Naval Office does something similar (USNO, 2015).) Asymmetric cryptographic au-

7MD5(k||m) is intended to provide be a cryptographic message authentication code (MAC), but
the use of MD5 in this manner is not a provably secure MAC and is also vulnerable to length-
extension attacks; HMAC should be used instead (Bellare et al., 1996). Moreover, MD5 has been
depreciated in favor of more secure hash functions like SHA-256 (Turner and Chen, 2011).
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thentication is provided by the Autokey protocol, described in RFC 5906 (Haberman

and Mills, 2010). RFC 5906 is not a standards-track document (it is classified as ‘In-

formational’), NTP clients do not request Autokey associations by default (Autokey,

2012), and many public NTP servers do not support Autokey (e.g., the NIST time-

servers (NIST, 2010), many servers in pool.ntp.org). In fact, a lead developer of

the ntpd client wrote in 2015 (Stenn, 2015a): “Nobody should be using autokey. Or

from the other direction, if you are using autokey you should stop using it.” For the

remainder of this chapter, we shall assume that NTP messages are unauthenticated.

2.3.2 Measuring the NTP ecosystem.

We briefly discuss the status of today’s NTP ecosystem. Our measurement study

starts by discovering IP addresses of NTP servers in the wild. We ran a zmap (Du-

rumeric et al., 2013) scan of the IPv4 address space using mode 3 NTP queries on

April 12-22, 2015, obtaining mode 4 responses from 10,110,131 IPs.8 We augmented

our data with openNTPproject (Mauch, 2015) data from January-May 2015, which

runs weekly scans to determine which IPs respond to NTP control queries. (These

scans are designed to identify potential DDoS amplifiers that send large packets in

response to short control queries (Czyz et al., 2014a).) The openNTPproject logs

responses to NTP read variable (rv) control queries. rv responses provide a trove of

useful information including: the server’s OS (also useful for OS fingerprinting!), its

ntpd version, its reference ID (32-bit field that identifies the source of time for the

data packet), the offset θ between its time and that of its reference ID, and more.

Merging our zmap data with the openNTPproject rv data gave a total of 11,728,656

IPs that potentially run NTP servers.

OSes and clients in the wild. We use openNTPproject’s rv data to get a sense of the

8NTP control query scans run in 2014 as part of (Czyz et al., 2014a)’s research found several
‘mega-amplifiers’: NTP servers that response to a single query with millions of responses. Our mode
3 scan also found a handful of these.

pool.ntp.org
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Table 2.2: Top ntpd versions in rv data from May 2015.

ntpd version 4.1.1 4.2.6 4.1.0 4.2.4 4.2.0 4.2.7 4.2.8 4.2.5 4.4.2
# servers 1,984,571 702,049 216,431 132,164 100,689 38,879 35,647 20,745 15,901

Table 2.3: Top OSes in rv data from May 2015.

OS Unix Cisco Linux BSD Junos Sun Darwin Vmkernal Windows
# servers 1,820,957 1,602,993 835,779 38,188 12,779 6,021 3625 1994 1929

OSes and ntpd clients that are present in the wild. Importantly, the rv data is incom-

plete; rv queries may be dropped by firewalls and other middleboxes, NTP clients

can be configured to refuse these queries, and some rv responses omit information.

(This is why we had only 4M IPs in the rv data, while 10M IPs responded to our

mode 3 zmap scan.) Nevertheless, we get some sense of what systems are out there

by looking at the set of rv responses from May 2015. In terms of operating systems,

Table 2.3 shows many servers running Unix, Cisco or Linux. Table 2.4 indicates that

Linux kernels are commonly v2 (rather the more recent v3); in fact, Linux v3.0.8

was only the 13th most popular Linux kernel. Meanwhile, Table 2.2 shows that ntpd

v4.1.1 (released 2001) and v4.2.6 (released 2008) are most popular; the current release

v4.2.8 (released 2014) is ranked only 8th amongst the systems we see. The bottom

line is that there are plenty of legacy NTP systems in the wild. As such, our lab

experiments and attacks study the behavior of two NTP reference implementations:

ntpd v4.2.6p5 (the second most popular version in our dataset) and ntpd v4.2.8p2

(the latest release as of May 2015).

Bad timekeepers. Next, we used our mode 3 zmap data to determine how many

bad timekeepers–servers that are unfit to provide time—are seen in the wild. To

do this, we compute the offset θ (equation (6.2)) for each IP that responded to our

mode 3 queries, taking T1 from the Ethernet frame time of the mode 3 query, T4

from the Ethernet frame time of the mode 4 query, and T2 and T3 from the mode 4

NTP payload. We found many bad timekeepers — 1.7M had θ ≥ 10 sec, 3.2M had
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Table 2.4: Top Linux kernels in rv data from May 2015.

kernel 2.6.18 2.4.23 2.6.32 2.4.20 2.6.19 2.4.18 2.6.27 2.6.36 2.2.13
# servers 123,780 108,828 97,168 90,025 71,581 68,583 61,301 45,055 29550

Table 2.5: Stratum distribution in our dataset.

stratum 0,16 1 2 3 4 5 6 7-10 11-15
# servers3,176,142115,3571,947,7765,354,9221,277,942615,633162,162218,370187,348

stratum 0 or 16, and the union of both gives us a total of 3.7M bad timekeepers. Under

normal conditions, NTP is great at discarding information from bad timekeepers, so

it’s unlikely that most of these servers are harming anyone other than themselves; we

look into this in Sections 2.5.4-2.5.6.

Topology. Since a system’s reference ID reveals the server from which it takes

time, our scans allowed us to start building a subset of the NTP’s hierarchical client-

server topology. However, a reference ID only provides information about one of a

client’s preconfigured servers. In an effort to learn more, on June 28-30, 2015 we

used nmap to send an additional mode 3 NTP query to every IP that had only one

parent server in our topology; merging this with our existing data gave us a total of

13,076,290 IPs that potentially run NTP servers. We also wanted to learn more about

the clients that synchronize to bad timekeepers. Thus, on July 1, 2015, we used the

openNTPproject’s scanning infrastructure to send a monlist query to each of the 1.7M

servers with θ > 10 sec. While monlist responses are now deactivated by many servers,

because they have been used in DDoS amplification attacks (Czyz et al., 2014a), we
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Figure 2·2: Client-degree distribution of NTP servers in our dataset;
we omit servers with no clients.



35

did obtain responses from 22,230 of these bad timekeepers. Monlist responses are a

trove of information, listing all IPs that had recently sent NTP packets (of any mode)

to the server. Extracting only the mode 3 and 4 data from each monlist response,

and combining it with our existing data, gave us a total of 13,099,361 potential NTP

servers.

Stratum. Table 2.5 shows the distribution of stratums in our entire dataset. Note

that there is not a one-to-one mapping between an NTP client and its stratum; be-

cause an NTP client can be configured with servers of various stratum, the client’s

stratum can change depending on the server it selects for synchronization. Thus,

Table 2.5 presents the ‘best’ (i.e., lowest) stratum for each IP in our dataset. Un-

surprisingly, stratum 3 is most common, and, like (Czyz et al., 2014a) we find many

unsynchronized (stratum 0 or 16) servers.

Degree distribution. Figure 2·2 shows the client (i.e., child) degree distribution

of the servers in our topology. We note that our topology is highly incomplete; it

excludes information about clients behind a NAT or firewall, as well as servers that

a client is configured for but not synchronized to.9 The degree distribution is highly

skewed. Of 13.1M IPs in our dataset, about 3.7M (27.8%) had clients below them

in the NTP hierarchy. Of these 3.7M servers with clients, 99.4% of them have fewer

than 10 clients, while only 0.2% of them have more than 100 clients. However, servers

with more than 100 clients tend to have many clients, averaging above 1.5K clients

per server, with the top 50 servers having at least 24.5K clients each. Compromising

these important servers (or hijacking their traffic) can impact large swaths of the

NTP ecosystem.

9Earlier studies (Murta et al., 2006), (Minar, 1999) used monlist responses, which are now com-
monly deactivated, to obtain topologies. We present a new technique that exposes a client’s servers
in Section 2.5.3, but as it is also a denial-of-service attack on the client, we have not used it to
augment our measurements.
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2.4 How to step time with NTP

Unauthenticated NTP traffic is vulnerable to on-path attacks, as was pointed out by

various authors (Mizrahi, 2012b), (Haberman and Mills, 2010), (Klein, 2013), (Selvi,

2014), (Selvi, 2015). While on-path attacks are sometimes dismissed because the

attacker requires a privileged position on the network, it is important to remember

that an attacker can use various hijacking techniques to place herself on the path to

an NTP server. For instance, ntpd configuration files allow clients to name servers by

either their IP or their hostname (e.g., MAC OS X 10.9.5 comes with an NTP client

that is preconfigured to take time from the host time.apple.com, while many systems

rely on the pool of servers that share the hostname pool.ntp.org). By hijacking the

DNS entries for these hostnames (Kaminsky, 2008), (Herzberg and Shulman, 2013),

an attacker can quietly manipulate the NTP traffic they send. Moreover, NTP relies

on the correctness of IP addresses; thus ARP-spoofing in a local-area network or

even global attacks on BGP (Goldberg, 2014) (like those seen in the wild (d’Itri,

2015), (Peterson, 2013)) can divert NTP traffic to an attacker.

In Section 2.2 and Table 2.1 we saw that dramatic shifts in time (years, months)

are required when NTP attacks are used inside larger, more nefarious attacks. Can

an on-path attacker really cause NTP clients to accept such dramatic shifts in time?

2.4.1 Time skimming

At first glance, the answer should be no. NTP defines a value called the panic

threshold which is 1000 sec (about 16 minutes) by default; if NTP attempts to tell

the client to alter its local clock by a value that exceeds the panic threshold, then

the NTP client “SHOULD exit with a diagnostic message to the system log” (Mills

et al., 2010). Our experiments confirm that ntpd v4.2.6 and v4.2.8 quit when they

are initially synchronized to a server that then starts to offer time that exceeds the

time.apple.com
pool.ntp.org
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panic threshold.

One way to circumvent this is through an adaption of (Selvi, 2014)’s “time-

skimming” technique,10 so that the man-in-the-middle slowly steps the client’s local

clock back/forward in steps smaller than the panic threshold. However, this comes

with a caveat: it can take minutes or hours for ntpd to update a client’s local clock.

To understand why, observe that in addition to the panic threshold, NTP also defines

a step threshold of 125 ms (Mills et al., 2010). A client will accept a time step larger

than step threshold but smaller than the panic threshold as long as at least “stepout”

seconds have elapsed since its last clock update; the stepout value is 900 seconds (15

minutes) in ntpd v4.2.6 and RFC 5905 (Mills et al., 2010), and was reduced to 300

seconds (5 minutes) in ntpd v4.2.8. Thus, shifting by one year using steps of size

16 minute each requires 1×365×24×60
16

= 33K total steps; with a 5-minute stepout, this

takes at least 114 days.

2.4.2 Exploiting reboot.

There are other ways to quickly shift a client’s time. ntpd has a configuration op-

tion called -g, which allows an NTP client that first initializes (i.e., before it has

synchronized to any time source) to accept any time shift, even one exceeding the

panic threshold. (We have confirmed that both ntpd v4.2.6p5 and ntpd v4.2.8p2 on

Ubuntu13.16.0-24-generic accept a single step 10 years back in time, and forward in

time, upon reboot.) The -g configuration is quite natural for clocks that drift sig-

nificantly when systems are powered down, and many OSes, including Linux, do run

10Selvi’s (Selvi, 2014) time-skimming attack allows for fast timesteps on clients that update their
clocks at predictable intervals—for instance, Fedora Linux sends a query every minute and updates
its clock immediately upon receipt of the response. The full ntpd implementation has more complex
clock update mechanisms that thwart this attack. These mechanisms include (1) sending mode 3
queries at randomized and adaptively-selected intervals determined by the poll process (Mills et al.,
2010, Sec 13), (2) only updating the clock upon receipt of an adaptively-chosen number of self-
consistent mode 4 responses (see e.g., the discussion of TEST11 in Section 2.5.5), (3) using the
stepout value to delay clock update events, etc..
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ntpd with -g by default.

Reboot. An on-path attacker can exploit -g by waiting until the client restarts as a

result of power cycling, software updates, or other ‘natural events’. Importantly, the

attacker knows exactly when the client restarts, because the client puts ‘INIT’ in the

reference ID of its packets (Figure 2·1), including the mode 3 queries the client sends

the server. Moreover, a determined attacker can deliberately cause ntpd to restart

using e.g., a packet-of-death like Teardrop (BUGTRAQ mailing list, 1997).

Feel free to panic. Suppose, on the other hand, that an NTP attacker shifts a client’s

time beyond the panic threshold, causing the client to quit. If the operating system

is configured to reboot the NTP client, the rebooted NTP client will initialize and

accept whatever (bogus) time it obtains from its NTP servers. Indeed, this seems to

have happened with some OSes during the November 2012 NTP incident (Menscher,

2012).11

Small-step-big-step. Users might notice strange shifts in time if they occur immedi-

ately upon reboot. However, we have found that ntpd allows an on-path attacker to

shift time when clients are less likely to notice. To understand how, we need to look

into ntpd’s implementation of the -g configuration.

Small-step-big-step with ntpd v4.2.6. One might expect -g to allow for timesteps

that exceed the panic threshold only upon initialization—when the client updates

its clock for the very first time upon starting. To implement this, ntpd allows steps

exceeding the panic threshold only when a variable called allow panic is TRUE. ntpd

v4.2.6p5 sets allow panic to TRUE only upon initialization with the -g configuration

(otherwise, it is initialized to FALSE), and set to FALSE if the client (1) is just about

to update its local clock by a value less than the step threshold (125ms), and (2) is

already in a state called SYNC, which means it recently updated its clock by a value

less than the step threshold. Normally, a client initializes and (1) and (2) occur after

11Panic might be recorded in system log, but users may ignore it.
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two clock updates. However, if an attacker is able to prevent the client from making

ever two contiguous clock updates (one after the other) of less than 125 ms each, then

allow panic remains TRUE.

The following small-step-big-step attack on ntpd v4.2.6 exploits the above obser-

vation. First, the client reboots and begins initializing; it signals this to the server by

putting ‘INIT’ in the reference ID of its mode 3 queries (Mills et al., 2010, Fig. 13)).

Next, the client synchronizes to the server; it signals this with the server’s IP address

in the reference ID of its mode 3 queries (Mills et al., 2010, Fig. 13)). When the

server sees that the client has synchronized once, the server sends the client a ‘small

step’ greater than the STEP threshold (125 ms) and less than the panic threshold

(≈ 16 min); the client signals that it has accepted this timestep by putting ‘STEP’

in its reference ID (Mills et al., 2010, Fig. 13)). When the server sees that the client

is in ‘STEP’ mode, the server immediately sends the client a ‘big step’ that exceeds

the panic threshold. At this point, the client does not panic, because it never set

allow panic to FALSE. Indeed, one might even interpret this as expected behavior

per RFC 5905 (Mills et al., 2010):

STEP means the offset is less than the panic threshold, but greater than

the step threshold STEPT (125 ms). In this case, the clock is stepped to

the correct offset, but ... all associations MUST be reset and the client

begins as at initial start.

Notice that this gives the server some ‘slack time’ before it sends the client the bogus

big time step. We confirmed this for ntpd v4.2.6p5 with a small step of 10 minutes

and a big step of 1 year. Upon initialization, our client exchanges 3 packets with the

server before it first synchronizes, then 21 packets before accepting the small step and

entering STEP mode, and 25 packets before accepting the big step.

Small-step-big-step with ntpd v4.2.8. Meanwhile, ntpd v4.2.8p2 sets allow panic
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to FALSE under conditions (1) and (2), OR if (1) holds and (3) the client is in

FSET state, which is the state the client enters upon initialization. Normally, a

client initializes and (1) and (3) occur after one clock update. Thus, small-step-

big-step succeeds iff every clock update the client receives exceeds the step threshold

(125ms). We confirmed this for an ntpd v4.2.8p2 client with a small step of 10 minutes

and two big steps of 1 year. The very first mode 4 response received by the client,

upon initialization, was the small step of 10 minutes back in time, and the client

immediately went into ‘STEP’ mode. The next mode 4 response was a big step of 1

year back in time, which the client accepted after sending 11 queries to the server.

The next mode 4 response was a another big step of 1 year, which the client accepted

after sending 10 queries to the server.

Stealthy time shift. As an application of the small-step-big-step attack, an on-path

attacker can preform a bogus big step and then to quickly bring the client’s clock

back to normal, so that the client never notices; this might be useful for stealthily

flushing a client’s cache, or expiring certain cryptographic objects (see Section 2.2).

To do this, the attacker waits for ntpd to reboot (or deliberately causes a reboot),

and ensures that every clock update made by the client makes is larger than 125 ms,

sending the client into STEP mode. To keep things stealthy, the attacker can e.g.,

first shift the client forward by 150 ms, then back by 150 ms, then forward by 150

ms, etc.. Then, when the attacker is ready, it can send a big step that exceeds the

panic threshold, perform nefarious deeds, and finally send another big step that sets

the client’s clock back to normal.

2.4.3 Recommendation: Careful with -g

The security of ntpd should not rely on 100% OS uptime, so users should be careful

with the -g option. One solution is to not use the -g option. Alternatively, one can

detect feel-free-to-panic attacks by monitoring the system log for panic events and
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being careful when automatically restarting ntpd after it quits. Monitoring should

also be used to detect suspicious reboots of the OS (that might indicate the presence

of a small-step-big-step or other reboot-based on-path attacks). Implementors can

prevent small-step-big-step attacks by patching ntpd to ensure that the allow panic

variable is set to FALSE after the very first clock update upon initialization; this issue

has been captured in CVE-2015-5300. Moreover, implementors can prevent ntpd

clients from putting ‘INIT’ in the reference ID of their NTP packets upon initializing;

this would make it more difficult for on-path attackers to know when initialization is

taking place, raising the bar for attacks that exploit reboot.

2.5 Kiss-o’-Death: Off-path Denial-of-Service Attacks

We show how NTP security can be stymied by another aspect of the NTP protocol:

the ‘Kiss-o-death’ (KoD) packet. KoD packets are designed to reduce load at an NTP

server by rate-limiting clients that query the server too frequently; upon receipt of

a KoD from its server, the client refrains from querying that server for some period

of time (Mills et al., 2010, Sec 7.4). We now show how KoD packets can be used

to launch off-path denial-of-service attacks on NTP clients. We also consider using

KoDs to pin a client to a bad timekeeper.

2.5.1 Why are off-path attacks hard?

We first need to understand why it is usually difficult to spoof NTP mode 4 packets

(Figure 2·1) from off-path.

TEST2: The origin timestamp. Like many other protocols, NTP requires clients to

check that a nonce in the client’s query matches a nonce in the server’s response; that

way, an off-path attacker, that cannot observe client-server communications, does

not know the nonce and thus has difficulty spoofing the packet. (This is analogous to

source port randomization in TCP/UDP, sequence number randomization in TCP,
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and transaction ID randomization in DNS.) NTP uses the origin timestamp as a

nonce: the client checks that (a) the origin timestamp on the mode 4 response sent

from server to client (Figure 2·1), matches (b) the client’s local time when he sent

the corresponding mode 3 query, which is sent in the transmit timestamp field of the

mode 3 query sent from client to server. This is called TEST2 in the ntpd code. (Note

that ntpd does not randomize the UDP source port to create an additional nonce;

instead, all NTP packets have UDP source port 123.)

How much entropy is in NTP’s nonce? The origin timestamp is a 64 bit value,

where the first 32 bits represent seconds elapsed since January 1, 1900, and the last

32 bits represent fractional seconds. A client whose system clock has e.g., ρ = −12

bit precision (2−12 = 244µs) puts a 32 − 12 = 20-bit random value in the least

significant bit of the timestamp. Thus, for precision ρ, the origin timestamp has at

least 32 + ρ bits of entropy. However, because polling intervals are no shorter than

16 seconds (Mills et al., 2010), an off-path attacker is unlikely to know exactly when

the client sent its mode 3 query. We therefore suppose that the origin timestamp has

about 32 bits of entropy. This is a lot of entropy, so one might conclude that NTP

is robust to off-path attacks. However, in this section and Section 2.6, we will show

that this is not the case.

2.5.2 Exploiting the Kiss-O’-Death Packet.

A server sends a client a Kiss-O’-Death (KoD) if a client queries it too many times

within a specified time interval; the parameters for sending KoD are server dependent.

The KoD is an NTP packet (Figure 2·1) with mode 4, leap indicator 3, stratum 0

and an ASCII ‘kiss code’ string in the reference ID field. A sample KoD packet is

shown in Figure 2·3. According to RFC5905 (Mills et al., 2010):

For kiss code RATE, the client MUST immediately reduce its polling
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v4 IHL=20 TOS  Total length = 76 

IPID x DF MF Frag Offset 

TTL Protocol = 17 IP Header Checksum 

Source IP 

Destination IP 

Source Port = 123 Destination Port = 123 

Length = 56 UDP Checksum 

L=3 v4 Mode =4 Stratum=0 Poll =17 Precision 

Root Delay 

Root Dispersion 

Reference ID = RATE 

Reference Timestamp = Jan 1, 1970 0:00:00 UTC 

Origin Timestamp = July 29, 2015 01:23:45 UTC 

Receive Timestamp  = July 29, 2015 01:23:45 UTC 

Transmit Timestamp = July 29, 2015 01:23:45 UTC 

IP header 

UDP header 

NTP data 
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Figure 2·3: Kiss-o’-Death (KoD) packet, telling the client to keep
quiet for at least 217 seconds (36 hours).

interval to that server and continue to reduce it each time it receives a

RATE kiss code.

In ntpd v4.2.6 and v4.2.8, this is implemented by having the client stop querying

the server for a period that is at least as long as the poll value field in the received

KoD packet.12 Our experiments confirm that if the KoD packet has polling interval

τkod = 17 then the ntpd v4.2.8 client will stop querying the server for at least 2τkod sec

(36 hours).13 The poll field in the NTP packet is an 8-bit value (i.e., ranging from 0

to 255), but RFC 5905 (Mills et al., 2010, pg 10) defines the maximum allowable poll

12Interestingly, RFC 5905 (Mills et al., 2010, Sec. 7.4) defines an even more dangerous type of
KoD packet: “ For kiss codes DENY and RSTR, the client MUST demobilize any associations to
that server and stop sending packets to that server”. Thus, spoofing a single DENY or RSTR KoD
packet can completely disconnect a client from its server! Fortunately, however, neither ntpd v4.2.6
or v4.2.8 honor this functionality.

13Due to complex interactions between τkod, the poll value in the KoD packet, and NTP’s polling
algorithm, the period of time that the client stops querying the server will usually exceed 2τkod .
More precisely, the client’s polling algorithm resets the minpoll value τmin for the server sending
the KoD to τmin = max(τmin, τkod) and then the client stops querying the server for a period of
about 2max(τmin+1,max(min(τmax,τkod))). By default, minpoll is initialized to τmin = 6, and maxpoll to
τmax = 10.
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value to be 17. The most recent ntpd implementation, however, will accept KoDs

with poll values even larger than 17; setting τkod = 25, for example, should cause the

client to stop querying its server for at least 225 seconds, i.e., ≈ 1 year.

Spoofing a KoD from off-path. How does the client know that the KoD packet came

from the legitimate server, and not from an attacker? With regular mode 4 responses,

the client uses the origin timestamp as a nonce. While it seems reasonable to expect

this check to be performed on the KoD packet as well, RFC 5905 (Mills et al., 2010,

Sec. 7.4) does not seem to explicitly require this. Moreover, lab experiments with

ntpd v4.2.6p5 and v4.2.8p3 show that the client accepts a KoD even if its origin

timestamp is bogus. This means that an offpath attacker can trivially send the client

a KoD that is spoofed to look like it came from its server; the only information the

attacker needs is the IP addresses of the relevant client and server. Moreover, by

setting the poll value in the spoofed KoD to be an unreasonably high value (e.g.,

τkod = 25), the spoofed KoD will prevent the client from querying its server for an

extended period of time. This vulnerability, captured in CVE-2015-7704, was patched

in ntpd v4.2.8p4 after the disclosure of our work.

Eliciting a KoD from off-path: Priming the pump. Even if the client does validate

the origin timestamp on the KoD packet, an off-path attacker could still elicit a valid

KoD packet for the client from the server. To do this, the off-path attacker ‘primes-

the-pump’ at the server, by sending multiple mode 3 queries spoofed to look like they

come from the victim client; the server then ‘gets angry’ at the client, and responds

to the client’s legitimate mode 3 queries with a KoD. The client will accept this

KoD because it has a valid origin timestamp (matching that in the client’s legitimate

query). The attacker just needs to measure the number of times q in a given period of

time t0 that a client must query the server in order to elicit a KoD; this is easily done

by attempting to get the server to send KoD packets to the attacker’s own machine.
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Then, the attacker sends the server q−1 queries with source IP spoofed to that of the

victim client, and hopes that the client sends its own query to server before time t0

elapses. This issue has been captured in CVE-2015-7705. Interestingly, recent NTP

security bulletins (as of 09/2015) have increased this attack surface by recommending

that servers send KoDs (Axel K, 2015).14

Attack efficiency. A single spoofed KoD packet with high poll (e.g., τkod ≥ 25) can

essentially prevent the client from ever taking time from its server, and thus gives

rise to a very low-rate off-path denial-of-service attack (CVE-2015-7704). Meanwhile,

eliciting a KoD by priming-the-pump (CVE-2015-7705) requires more packets, be-

cause:

1) The attacker must send several packets to the server to elicit the KoD, and

2) The elicited KoD packet is likely to have poll value no larger than 10. (This

follows because when ntpd servers send KoDs, the KoD’s poll value τkod is at least

as large as that in the query triggering the KoD. Meanwhile, the query triggering

the KoD was a legitimate query from the client, and default maximum value of the

poll in the client’s query is 10.) The attacker can thus elicit a KoD that quiets the

client for ≈ 210 seconds (15 minutes), then elicit another KoD 15 minutes later, and

continue this indefinitely.

Thus, patching clients to validate the KoD origin timestamp (CVE-2015-7704) does

weaken, but does not eliminate, KoD-related attacks.

2.5.3 Low-rate off-path denial-of-service attack on NTP clients.

It’s tempting to argue that NTP clients are commonly pre-configured with many, and

so KoD-related attacks on one server can be mitigated by the presence of the other

servers. However, this is not the case. We now present a denial-of-service attack that

14As of August 2015, (Axel K, 2015) recommends the configuration restrict default limited

kod nomodify notrap nopeer. Note that turning on limited means that a server will not serve
time to a client that queries it too frequently; kod additionally configures the server to send KoDs.
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allows an off-path attacker to “turn off” NTP at a client by preventing the client

from synchronizing to any of its preconfigured servers.

What are the implications of this attack? For the most part, the client will just sit

there and rely on its own local clock for the time. If the client has accurate local time-

keeping abilities, then this attack is unlikely to cause much damage. On the other

hand, the client machine could be incapable of keeping time for itself, e.g., because

it is in a virtual machine (VMware, 2011), or running CPU-intensive operations that

induce clock drift. In this case, the client’s clock will drift along, uncorrected by NTP,

for the duration of attack.

The denial of service attack. The attack proceeds as follows:

1) The attacker sends a mode 3 NTP query to the victim client, and the client

replies with a mode 4 NTP response. The attacker uses the reference ID in the mode

4 response to learn the IP of the server to which the client is synchronized.

2) The attacker spoofs/elicits a KoD packet with τkod from the server to which the

client is synchronized. The client stops querying this server for at least 2τkod sec.

3) There are now two cases. Case 1: the client declines to take time from any its

of other preconfigured servers; thus, the attacker has succeeded in deactivating NTP

at the client. Case 2: The client will synchronize to one of its other preconfigured

servers, and the attacker returns to step 1. To determine whether the client is in the

Case 1 or Case 2, the attacker periodically sends mode 3 queries to the client, and

checks if the reference ID in the mode 4 response has changed.

Thus, the attacker learns the IP addresses of all the preconfigured servers from which

the client is willing to take time, and periodically (e.g., once every 2τkod seconds),

spoofs/elicits KoD packets from each of them. The client will not synchronize to any

of its servers, and NTP is deactivated.

Attack surface. For this attack to work, the client must (1) react to KoD packets by
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refraining from querying the KoD-sending server, (2) respond to NTP mode 3 queries

with NTP mode 4 responses, and (3) be synchronized to an IPv4 NTP server. This

creates a large attack surface: condition (1) holds for ntpd v4.2.6 and v4.2.8p3, the

most recent reference implementation of NTP, and our scans (Section 2.3.2) suggest

that over 13M IPs satisfy condition (2).

Sample experiment. We ran this attack on an ntpd v4.2.8p2 client in our lab

configured with the IP addresses of three NTP servers in the wild. We elicited a

KoD for each server in turn, waiting for the client that resynchronize to a new server

before eliciting a new KoD from that server. To elicit a KoD, a (separate) attack

machine in our lab ran a scapy script that sent the server 90 mode 3 queries in rapid

succession, each of which was spoofed with the source IP of our victim client and

origin timestamp equal to the current time on the attacker’s machine. (Notice that

the origin timestamp is bogus from the perspective of the victim client.) Because

our spoofed mode 3 queries had poll value τ = 17, the elicited KoDs had poll value

τ = 17. Our client received its third KoD within 1.5 hours, and stopped querying its

servers for the requested 217 seconds (36 hours); in fact, the client had been quiet for

50 hours when we stopped the experiment.

2.5.4 Pinning to a bad timekeeper. (Part 1: The attack)

Consider a client that is preconfigured with several servers, one of which is a bad

timekeeper. Can KoDs force the client to synchronize to the bad timekeeper? Indeed,

since ntpd clients and configurations are rarely updated (see Table 2.2, that shows

that 1.9M servers use a version of ntpd that was released in 2001), a bad timekeeper

might be lurking in rarely-updated lists of preconfigured servers.

The attack. The attacker uses the KoD denial-of-service attack (Section 2.5.3) to

learn the client’s preconfigured servers; each time the attacker learns a new server,

the attacker sends a mode 3 query to the server to check if it is a good timekeeper,
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continuing to spoof KoDs until it identifies a server that is a bad timekeeper. At this

point, the client is taking time from a bad timekeeper, and the attack succeeds. To

ensure that the client remains pinned to the bad timekeeper, the attacker periodically

sends the client fresh KoDs from the good timekeepers.

But does this attack actually work? NTP’s clock discipline algorithms are designed

to guard against attacks of this type. We have launched this attack against different

clients (in our lab) configured to servers (in the wild), and observed differing results;

sometimes, that client does take time from the bad timekeeper, and sometimes it does

not. Unfortunately, however, we have not yet understood exactly what conditions are

required for this attack to succeed. One thing we do know, however, are conditions

that would definitely cause this attack to fail. We explain these conditions by tak-

ing detour into some aspects of NTP’s clock discipline algorithm, that will also be

important for the attacks in Section 2.6.

2.5.5 Detour: NTP’s clock discipline algorithms.

An NTP client only updates its local clock from its chosen server at infrequent inter-

vals. Each valid mode 4 response that the client obtains from its server is a sample

of the timing information at that server. A client needs to obtain enough “good”

samples from a server before it even considers taking time from that server.

There are mechanisms that “age”, but do not necessarily delete, old samples from

servers that have not been heard from in a long time (because e.g., they have an

excessively long polling interval, or have been KoD’d). Empty samples are recorded

under various failure conditions; we discussed one such failure condition, TEST2 (origin

timestamp validity) in Section 2.5.1. TEST7 is another important failure condition:

TEST7. Read the root delay ∆ and root dispersion E from the server’s mode 4

packet (Figure 2·1) and check that ∆/2 +E does not exceed MAXDISP, a parameter

whose default is 16 sec (Mills et al., 2010). (Roughly, ∆/2 + E measures how far off
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the server’s clock is, relative to the stratum 1 server that is at the ‘root’ of the NTP

hierarchy from which the server is taking time.)

For each non-empty sample, the client records the offset θ per equation (6.2) and

delay δ per equation (6.1). The client keeps up to eight samples from each server,

and selects the offset θ∗ corresponding to the non-empty sample of lowest delay δ∗.

It then computes the jitter ψ, which is the root-mean-square distance of the sample

offsets from θ∗, i.e.,

ψ =

√
1
i−1

∑
i

(θi − θ∗)2 (2.3)

Next, the server must pass another crucial check:

TEST11. Check that the root distance Λ does not exceed MAXDIST, a parameter

that defaults to 1.5 sec. While RFC 5905 (Mills et al., 2010, Appendix A.5.5.2), ntpd

v4.2.6 and ntpd v4.2.8 each use a slightly different definition of Λ, what matters is

Λ ∝ ψ + (δ∗ + ∆)/2 + E + 2ρ (2.4)

where ∆ is the root delay, E is the root dispersion, and ρ is the precision, all which are

read off the server’s mode 4 packet per Figure 2·1. (Precision ρ reveals the resolution

of the server’s local clock; e.g., ρ = −12 means the server’s local clock is precise to

within 2−12 sec or 244 µs. Root delay ∆ is the cumulative delay from the server to

the ‘root’ (i.e., stratum 1 server) in the NTP client-server hierarchy from which the

server is taking time; a stratum 1 server typically has ∆ = 0. Root dispersion E is an

implementation-dependent quantity related to the Λ value computed by the server.)

If the client has several servers that pass TEST11 (and other tests we omit here), the

client must select a single server to synchronize its clock. This is done with a variant

of Marzullo’s Algorithm (Marzullo, 1984), which clusters servers according to offset

θ∗ (equation (6.2)) and other metrics. Servers who differ too much from the majority

are ignored, while the remaining servers are added to a ‘survivor list’. (This is why,
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under normal conditions, NTP clients do not synchronize to bad timekeepers.) If all

servers on the survivor list are different from the server the client used for its most

recent clock update, the client must decide whether or not to “clock hop” to a new

server. The clock hop decision is made by various other algorithms that are different

in ntpd v4.2.6 and v4.2.8. If no clock hop occurs, the client does not update its clock.

2.5.6 Pinning to a bad timekeeper. (Part 2: Attack surface)

Thus, for a client to synchronize to a bad timekeeper, we know that the bad time-

keeper must be able to pass TEST11. In practice, we found that this means that

bad timekeeper must send mode 4 packets (Figure 2·1) with root delay ∆ and root

dispersion E and precision ρ such that ∆/2 +E+ 2ρ < 1 sec. In addition to this, the

bad timekeeper must (1) “defeat” the good timekeepers in Marzullo’s algorithm, and

then (2) convince the client to clock hop.

Example: A successful attack. We synchronized an ntpd v4.2.6 client in our lab to

three stratum 2 servers in the wild. Two of these servers were good timekeepers, and

the bad timekeeper had an offset of -224 sec relative to our client with E ≈ 10 msec

and ∆ ≈ 0. We let the client synchronize to one of the good timekeepers, and then

an (separate) attack machine in our lab elicited KoDs with poll interval τ = 17 (36

hours) from the two good timekeepers (by sending 90 NTP mode 3 packets spoofed

with the source IP of our client in rapid succession to each). At this point, the client

stopped querying the good timekeepers, still keeping the old samples from these

servers in its logs, and continuously getting fresh samples from the bad timekeeper.

At this time, the client indicated that Marzullo’s Algorithm was eliminating the bad

timekeeper from consideration. Then, 94 minutes after the KoDs were first sent,

the client cleared its logs of samples and sent one query to each of its three servers.

Because the good timekeepers had poll interval of τ = 17, the client stopped querying

them after this one query. Meanwhile, the client continued to get fresh samples from
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the bad timekeeper. Once the client had four fresh samples from the bad timekeeper,

it was accepted for synchronization.

This experiment is quite curious; we are not sure what caused the client to clear

its log of samples after 94 minutes and requery all its servers. Once this happened, the

larger number of fresh samples logged from the bad timekeeper allowed it to become

the chosen server for synchronization. Indeed, we ran the exact same experiment

(using the same servers) with a ntpd v4.2.8 client, and after six hours the client never

cleared its log of samples, and thus never accepted time from the bad timekeeper. We

tried the same experiment with the same ntpd v4.2.6 client and good timekeepers,

but this time using a ‘worse’ timekeeper with offset -582s and E ≈ 10 msec and

∆ ≈ 0; five hours later, the client still had not cleared its logs or taken time from the

bad timekeeper.

KoD + reboot. There is one way around all of the issues discussed so far. If

ntpd reboots,15 then the attacker has a short window during which the client is not

synchronized to any of its preconfigured servers; our experiments confirm that in ntpd

v4.2.6 this window is at least 4 polling intervals (i.e., the minimum polling interval

is 24 sec, so this translates to at least 1 min), while ntpd v4.2.8 shortens this to after

the client receives its first mode 4 responses from its servers. Thus, the attacker can

exploit this short window of time to spoof a KoD packet from each of the clients’ good-

timekeeper servers, but not from the bad timekeeper. As long as the bad timekeeper

passes TEST11, the attacker no longer has to worry about Marzullo’s algorithm, clock-

hopping, or exceeding the panic threshold, and the attack will succeed.

Bad timekeepers in the wild. To quantify the attack surface resulting from pinning

to a bad timekeeper, we checked which bad timekeepers (with offset θ > 10 sec) are

15A reboot can be elicited by sending a packet-of-death that restarts the OS (e.g., Teardrop (BUG-
TRAQ mailing list, 1997)) or the ntpd client (e.g., CVE-2014-9295 (National Vulnerability Database,
2014)). Alternatively, the attacker can wait until the client reboots due to a power cycling, software
updates, or other ‘natural’ events.
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Figure 2·4: Cumulative distribution of the size of the subtrees rooted at bad time-
keepers (with offset θ > 10 sec) that can pass TEST11 (because ∆/2 + E + 2ρ < 1
sec), broken out by the bad timekeeper’s stratum. We omit bad timekeepers with no
children.

“good enough” to have (a) ∆/2 + E + 2ρ < 1 sec and (b) stratum that is not 0

or 16. Of the 3.7M bad timekeepers in our dataset (Section 2.3.2), about 368K (or

10%) are “good enough” to pass the necessary tests. Meanwhile, we found only 2190

bad timekeepers that had clients below them in the NTP hierarchy, and of these, 743

were “good enough”. While our topology is necessarily incomplete (Section 2.3.2), this

suggests that there are only a limited number of servers in the wild that can be used for

these attacks. Figure 2·4 is a cumulative distribution of the size of the subtrees rooted

at bad timekeepers that are “good enough” to pass the necessary tests, broken out

by the bad timekeeper’s stratum. (Point (x, y) in the figure corresponds to y “good-

enough” bad timekeepers have a subtree of size at least x.) Notice, however, that the

distributions are highly skewed, so some of the “good enough” bad timekeepers had

large subtrees below them in the NTP hierarchy. For example, one stratum 1 server

(in Central Europe) had an offset of 22 minutes and almost 20K clients in its subtree.

2.5.7 Recommendation: Kiss-o’-Death considered harmful.

Following the disclosure of our work, many NTP implementations (including ntpd

v4.2.8p4) have been patched to ensure that clients validate the origin timestamp

on KoD packets (CVE-2015-7704), thus preventing our extremely low-rate off-path
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denial-of-service attack that uses spoofed KoD. However, our less severe priming-the-

pump attack that allows the attacker to elicit a valid KoD (CVE-2015-7705) has not

yet been addressed. Preventing this attack requires some rethinking of NTP’s KoD

and rate-limiting functionality.

One solution is to simply eliminate NTP’s KoD and other rate-limiting function-

ality; this, however, eliminates a server’s ability to deal with heavy volumes of NTP

traffic.

Alternatively, if clients are required to cryptographically authenticate their queries

to the server, then it is no longer possible for an off-path attacker to prime the pump

at the server by spoofing mode 3 queries from the client. Interestingly, however, a new

proposal for securing NTP (Sibold et al., 2015, Sec.4) only suggests authenticating

mode 4 responses from the server to client, but not mode 3 queries from client to

server.

In the absence of authentication, another solution is to apply techniques devel-

oped for rate-limiting other protocols, e.g., Response Rate Limiting (RRL) in the

DNS (Vixie, 2014). With RRL, nameservers do not respond to queries from clients

that query them too frequently.16 Like NTP, DNS is sent over unauthenticated UDP,

and therefore is at risk for the same priming-the-pump attacks we discussed here.

RRL addresses this by requiring a server to randomly respond to some fraction of the

client’s queries, even if that client is rate limited (Vixie and Schryver, 2012, Sec. 2.2.7);

thus, even a client that is subject to a priming-the-pump attack can still get some

good information from the server. To apply this to NTP, a server that is rate-limiting

a client with KoDs would send legitimate mode 4 responses (instead of a KoD) to the

client’s queries with some probability. For this to be effective, NTP clients should

also limit the period for which they are willing to keep quiet upon receipt of a KoD;

16ntpd also offers this type of rate limiting, as an alternative to the KoD, via the limited config-
uration option.
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not querying the server for days (τkod = 17 ) or even years (τkod = 25) upon receipt

of a single KoD packet is excessive and invites abuse.

2.6 Off-Path NTP Fragmentation Attack

We now show how an off-path attacker can hijack an unauthenticated NTP connec-

tion from a client to its server. The key ingredient in our attack is overlapping IPv4

packet fragments ; therefore this attack succeeds a on small but non-negligible set of

clients and servers that use the IPv4 fragmentation policies described in Section 2.6.5.

We will assume the client is preconfigured with only one server. (Some OSes (e.g.,

MAC OS X v10.9.5) actually do use this configuration, and in Section 2.5.6 we show

how to combine our KoD and reboot techniques to simulate this scenario for clients

preconfigured with multiple servers.) We first explain why off-path attacks are chal-

lenging and give background on IPv4 packet fragmentation (Postel, 1981a), (Novak,

2005), (Shankar and Paxson, 2003), (Ptacek and Newsham, 1998). Next, we present

the attack itself, explain when it works, and conclude with a measurement study that

sheds light on the number of clients and servers in the wild that are vulnerable to

this attack.

2.6.1 Why are off-path attacks hard?

The goal of our attacker is to spoof a series of mode 4 response packets (Figure 2·1)

from the server to the client. The spoofed response should contain bogus server

timestamps (i.e., T3 transmit timestamp, T2 receive timestamp) in order to convince

the client to accept bogus time from the server. This creates several hurdles for an

off-path attacker who cannot see the communication between client and server:

First, there is the issue of nonces. Per Section 2.5.1, the attacker must spoof

packets with the correct origin timestamp, which has about 32 bits of entropy. Our

off-path attacker will not even try to learn the origin timestamp; instead, we use the
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origin timestamp from the honest mode 4 response from server to client, and use IPv4

packet fragmentation to overwrite other relevant fields of the NTP packet.

Second, since our attacker does not know NTP’s origin timestamp, it cannot

compute the UDP checksum. However, the UDP specification for IPv4 allows a host

to accept any packet with UDP checksum of zero (which means: don’t bother checking

the checksum) (Postel, 1980, pg 2). As such, our attacker uses IPv4 fragmentation

to set the UDP checksum to zero.

Third, in order to convince the client’s clock discipline algorithms (Section 2.5.5)

to accept the attacker’s bogus time, our attacker must spoof a stream of several

(at least eight, but usually more) packets that are acceptable to the clock discipline

algorithm. This is significantly more challenging than just spoofing a single packet

as in e.g., (Kaminsky, 2008), (Herzberg and Shulman, 2013). Moreover, this stream

of spoofed packets must be sufficiently self-consistent to pass TEST11 (Section 2.5.5).

To do this, our attacker uses IPv4 fragmentation to set several fields in the packet to

tiny values (e.g., ρ = −29, ∆ = 0.002, E = 0.003 sec and stratum = 1). His main

challenge, however, is to ensure that jitter ψ is small enough to pass TEST11. We

show how this can be done in Section 2.6.4.

2.6.2 IPv4 packet fragmentation.

Fragmentation is one of IP’s original functionalities (Postel, 1981a); chopping a large

packet into fragments that can be sent through networks that can only handle small

packets. The length of the largest packet that a network element can accommodate is

its ‘maximum transmission unit (MTU)’. In practice, almost every network element

today supports an MTU of at least 1492 bytes (the maximum payload size for Ethernet

v2 (Mamakos et al., 1999, Sec. 7)). Back in 1981, however, RFC791 (Postel, 1981a)

required that “all hosts must be prepared to accept” IPv4 packets of length 576

bytes, while “every internet module must be able to forward” IPv4 packets of length
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Figure 2·5: ICMP Fragmentation Needed packet from attacker 6.6.6.6 telling server
42.42.42.42 to fragment NTP packets for client 43.43.43.43 to MTU of 68 bytes.

68 bytes. The minimum IPv4 MTU for the Internet is therefore 68 bytes, but many

OSes refuse to fragment packets to MTUs smaller than 576 bytes. Our attack only

succeeds against servers that fragment to a 68 byte MTU; the attacker can therefore

convince a server to chop an NTP packet into the two fragments of Figure 2·7. Our

measurements (Section 2.6.7) confirm that there are ten of thousands of NTP servers

in the wild that do this.

ICMP Fragmentation Needed. How does a host learn that it needs to fragment

packets to a specific MTU? Any network element on the path from sender to receiver

can send a single ICMP fragmentation needed packet to the sender containing the

desired MTU; this information is then cached for some OS-dependent period of time

(e.g., 10 minutes by default on Linux 3.13.0 and MAC OS X 10.9.5). Figure 2·5 shows

an ICMP fragmentation needed packet that signals to host 42.42.42.42 to fragment

all NTP packets (UDP port 123) it sends to destination IP 43.43.43.43 to an MTU of

68 bytes. Since the host is not expected to know the IP addresses of all the network

elements on its path, this packet can be sent from any source IP; in Figure 2·5

this source IP is 6.6.6.6. The payload of this ICMP packet contains an IP header

and first eight bytes of a packet that has already been sent by host and exceeded the
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MTU (Postel, 1981b); for NTP, these eight bytes correspond to the UDP header. The

sender uses this to determine which destination IP (i.e., 43.43.43.43) and protocol

(i.e., UDP port 123) requires fragmentation. Our attacker (at IP 6.6.6.6) can easily

send an ICMP fragmentation needed from off-path. Its only challenge is (1) choosing

UDP checksum (which it sets to zero) and (2) matching the IPID in the ICMP

payload with that in an NTP packet previously sent to the client (which it can do,

see Section 2.6.4, and moreover some OSes don’t bother checking this (e.g., Linux

3.13.0)).

IPv4 Fragmentation. How do we know that an IPv4 packet is a fragment? Three

IPv4 fields are relevant (see Figure 2·1). Fragment offset specifies the offset of a

particular fragment relative to the beginning of the original unfragmented IP packet;

the first fragment has an offset of zero. The more fragment (MF) flag is set for

every fragment except the last fragment. IPID indicates that a set of fragments all

belong to the same original IP packet. Our attacker infers IPID (Section 2.6.4), and

then sends the client spoofed IPv4 fragments with the same IPID as the legitimate

fragments sent from the server, as in Figure 2·6. The spoofed and legitimate fragments

are reassembled by the client into a single crafted NTP packet.

Fragment reassembly. How does a host reassemble a fragmented IPv4 packet?

In the common case, the fragments are non-overlapping, so that the offset of one

fragment begins immediately after the previous fragment ends. In this case, the

host checks its fragment buffer for fragments with the same IPID, and pastes their

payloads together according to their fragment offset, checking that the last fragment

has a MF=0 (Postel, 1981a). Fragment buffer implementations differ in different

OSes (Knockel and Crandall, 2014; Herzberg and Shulman, 2013). Meanwhile, the

RFCs are mostly silent about reassembly of overlapping fragments, like the ones

in Figure 2·6 and 2·7.17 Several authors (Ptacek and Newsham, 1998), (Shankar

17RFC 3128 (Miller, 2001) does have some specific recommendations for overlapping IPv4 frag-
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Figure 2·6: IPv4 fragments for our attack: 1st and 2nd spoofed fragments.
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Figure 2·7: IPv4 fragments for our attack: 1st and 2nd legitimate fragments.

and Paxson, 2003), (Novak, 2005), (Baggett, 2012) have observed that reassembly

policies differ for different operating systems, and have undertaken to determine these

policies using clever network measurement tricks. (Hilariously, Wireshark has an

overlapping fragment reassembly policy that is independent of its host OS (Baggett,

2012) and is therefore useless for this purpose.) Our attacks also rely on overlapping

fragments. Overlapping fragment reassembly policies are surprisingly complex, poorly

documented, and have changed over time. Thus, instead of generically describing

them, we just consider reassembly for the specific fragments used in our attack.
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First reassembly = 
 our attack succeeds 
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Linux reassembly = 
 our attack fails due to checksum 
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Linux reassembly = 
 our attack fails due to checksum 

Figure 2·8: Different ways our fragments may be reassembled. From left to right:
Outcome A, Outcome B, Outcome C.

2.6.3 Exploiting overlapping IPv4 fragments.

Our attack proceeds as follows. The attacker sends the server a spoofed ICMP frag-

mentation needed packet (Figure 2·5) requesting fragmentation to a 68-byte MTU for

all NTP packets sent to the client. If the server is willing to fragment to a 68-byte

MTU, the server sends all of its mode 4 NTP responses as the two fragments in Fig-

ure 2·7. Meanwhile, our attacker plants the two spoofed fragments in Figure 2·6 in the

client’s fragment buffer. The spoofed fragments sit in the fragment buffer and wait for

the server’s legitimate fragments to arrive. The first spoofed fragment sets the UDP

checksum to zero, and sets ρ = −29, ∆ = 0.002, E = 0.003 to tiny values so that the

reassembled packet is more likely to pass TEST11. The second spoofed fragment sets

the NTP receive timestamp (T2) and transmit timestamps (T3) to bogus time values.

Both spoofed fragments must have the same IPID as the two legitimate fragments;

we explain how to do this in Section 2.6.4. This process of planting spoofed fragments

continues for every mode 4 NTP response that the server sends the client. Once the

client has accepted the bogus time, the attacker spoofs KoDs (Section 2.5.3) so the

client stops updating its clock. (The attacker can check that the client accepted the

bogus time by sending it a mode 3 query and checking the timestamps in the client’s

mode 4 response.)

ments in the case of TCP; NTP, however, is sent over UDP. Also, overlapping fragments are forbidden
for IPv6.
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The victim client receives the four overlapping fragments in Figure 2·6 and 2·7,

in the order shown, with the first fragment in 2·6 arriving earliest. How are they

reassembled? One potential outcome is for the client to reject the fragments altogether

because they are overlapping or too short. Otherwise, the first honest fragment arrives

in the client’s fragment buffer and is reassembled with one or both of the spoofed

fragments, according to one of the reassembly outcomes shown in Figure 2·8. (Note:

the second honest fragment will not reassemble with anything, because by the time it

arrives in the buffer the earlier fragments have already reassembled.) In Outcome A

the client prefers fragments that arrive earliest, pasting the first legitimate fragment

underneath the two spoofed fragments that were waiting in the cache (i.e., the ‘First’

policy in the Paxson/Shankar overlapping-packet reassembly model (Shankar and

Paxson, 2003), and the ‘First’, ‘Windows’ and ‘Solaris’ policies of Novak (Novak,

2005)). In Outcome B, the client prefers an earlier fragment with an offset that is

less than or equal to a subsequent fragment (i.e., the ‘BSD’ policy of (Shankar and

Paxson, 2003), (Novak, 2005)). In Outcome C the client prefers fragments that arrive

later over those that arrive earlier (i.e., the ‘Last’ and ‘Linux’ policies of (Shankar

and Paxson, 2003), (Novak, 2005)).

In which outcome does our attack succeed? In Outcome C, the packet is dropped

due to its incorrect UDP checksum, and our attack fails. In Outcomes A and B, our

off-path attacker successfully injects packets with the correct origin timestamp and

UDP checksum. However, in Outcome B, the attacker controls only the transmit

timestamp T3 in the reassembled packet. Because passing TEST11 (equation (2.4))

constrains delay δ to be < 1 sec (equation (6.1)) it follows that the spoofed T3 must

be within 1 sec of the legitimate receive timestamp T2, making our attack much

less interesting. Our attack therefore works best in Outcome A, where the attacker

controls both the T3 and T2; by setting T2 ≈ T3, the delay δ is small enough to pass



61

TEST11, even if the spoofed T2 and T3 are very far from the legitimate time.

2.6.4 Planting spoofed fragments in the fragment buffer.

Because a client will only take time from a server that provides several self-consistent

time samples (Section 2.6.1), our attacker must craft a stream of NTP mode 4 re-

sponses. In achieving this, our attacker must surmount two key hurdles:

Hurdle 1: Jitter. The reassembled stream of packets must be sufficiently self-

consistent to pass TEST11, so that root distance Λ < 1.5 sec (equation (2.4)). If the

client reassembles packets as in Outcome A, the attacker can set tiny values for the

precision ρ, root delay ∆ and root dispersion E (in the first spoofed fragment on the

left of Figure 2·6) and delay δ (by setting T2 ≈ T3 in the second spoofed fragment).

What remains is ensuring that jitter ψ is sufficiently small (equation (5.3)); this means

that the offset values θ in the reassembled stream of packets must be consistent to

within about 1 sec.

Why is this difficult? The key problem is that the offset θ is determined by the

timestamps T2 and T3 set in the attacker’s second spoofed fragment (Figure 2·6), as

well as the origin and destination timestamps T1, T4. T1 corresponds to the moment

when the legitimate client sends its query, and is unknown to our off-path attacker.

Moreover, T1 roughly determines T4, which roughly corresponds to the moment when

the first legitimate fragment reassembles with the spoofed fragments in the client’s

fragment buffer. Now suppose the fragment buffer caches for 30 sec. This means

that timestamps T2 and T3 (from attacker’s second spoofed fragment) can sit in

the fragment buffer for anywhere from 0 to 30 sec before reassembly at time T4

(Figure 2·6). Thus, the offset θ in the reassembled packet can vary from 0 to 30 sec,

so that jitter ψ ≈ 30 sec and the attack fails TEST11.

Hurdle 2: IPID. Our attacker must ensure that the IPID of the spoofed fragments

planted in the fragment buffer (the two fragments in Figure 2·6) match the IPID of



62

the legitimate fragments sent by the server (the two fragments in Figure 2·7); this

way, the spoofed fragments will properly reassemble with the legitimate fragments.

Surmounting these hurdles. To surmount the first hurdle, our attacker ensures

that the client’s fragment buffer always contains fresh copies of the second spoofed

fragment that are no more than 1 sec old. Suppose that the client’s fragment

cache is a FIFO queue that holds a maximum of n fragments. (Windows XP has

n = 100 (Knockel and Crandall, 2014), and the Linux kernel in (Herzberg and Shul-

man, 2013) has n = 64). Then, every second, the attacker sends the client n/2 copies

of its first spoofed fragment (each with different IPIDs), and n/2 copies of the sec-

ond spoofed fragment, per Figure 2·6. Each second spoofed fragment has (1) IPID

corresponding to one of the first spoofed fragments, and (2) timestamps T2 and T3

corresponding to the (legitimate) time that the fragment was sent plus some constant

value (e.g., x = +10 mins, where x represents how far the attacker wants to shift the

client forward/backward in time). Thus, every second, a fresh batch of n fragments

evicts the old batch of n fragments. The reassembled packets have offset within ≈ 1

sec, so that jitter ψ ≈ 1 sec, and the attacker passes TEST11.

To surmount the second hurdle, our attack exploits the fact that IPIDs are

often predictable. Several policies for setting IPID exist in the wild, including:

globally-incrementing, i.e., the OS increments IPID by one for every sent packet,

per-destination-incrementing, i.e., the OS increments IPID by one every packet sent

to a particular destination IP, and random, i.e., the IPID is selected at random for ev-

ery packet (Gilad and Herzberg, 2013). Random IPIDs thwart our attacks. However,

when the server uses an incrementing IPID policy, the following techniques allow our

attacker to plant several copies of the spoofed fragments with plausible IPIDs (cf.,

(Herzberg and Shulman, 2013), (Gilad and Herzberg, 2013), (Knockel and Crandall,

2014)):
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Globally incrementing IPIDs: Before sending the client the n/2 copies of the spoofed

fragments, our attacker pings the server to learn its IPID i, and sets IPID of its spoofed

packets accordingly (i.e., to i+ 1, i+ 2, ..., i+ n/2).

Per-destination incrementing IPIDs: Gilad and Herzberg (Gilad and Herzberg,

2013)(Knockel and Crandall, 2014) show how per-destination incrementing IPIDs

can be inferred by a puppet (adversarial applet/script that runs in a sandbox) on

the client or server’s machine, while (Knockel and Crandall, 2014) show how to do

this without puppets. Thus, at the start of our attack, our attacker can use (Gilad

and Herzberg, 2013), (Knockel and Crandall, 2014)’s techniques to learn the initial

IPID i, then uses i to set IPIDs on the n/2 copies of its pairs of spoofed fragments.

The choice of IPIDs depends on the polling interval, i.e., the frequency at which the

client queries the server. NTP default poll values range from τ = 6 (26 = 64 sec) to

τ = 10 (1024 seconds) (Mills et al., 2010). If the attacker knew that the client was

polling every 64 seconds, it could send n/2 copies of the spoofed fragments with IPID

i+ 1,....,i+ n/2, and then increment i every 64 seconds.

More commonly, however, the polling interval is unknown. To deal with this,

the attacker can predict the IPID under the assumption that the client and server

consistently used the minimum (resp., maximum) polling interval, and ensures that

all possible IPIDs in between are planted in the buffer. As an example, suppose that

2048 seconds (30 mins) have elapsed since the attacker learned that the IPID is i. At

one extreme, the client and server could have consistently used the minimum default

polling interval of 2τ = 64 sec; thus, imax = i + 2048/64 = i + 32. At the other

extreme, the client and server could have consistently used the maximum default

polling interval of 2τ = 1024 sec; then imin = i + 2048/1024 = i + 2. Then, the

attacker must send pairs of spoofed fragments with IPIDs ranging from imin = i + 2

to imax = i+32. This works as long as the fragment buffer can hold imax−imin > 30 ·2
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fragments (as in e.g., Linux (Herzberg and Shulman, 2013) and Windows XP (Knockel

and Crandall, 2014)). When 2(imin − imax) exceeds the size of the fragment buffer

n, the attacker repeats (Gilad and Herzberg, 2013), (Knockel and Crandall, 2014)’s

techniques to learn IPID again.

Moreover, to avoid having to plant so many IPIDs in the fragment buffer, the

attacker can try making the polling interval more predictable. Our experiments show

that if a server becomes “unreachable” (i.e., stops responding to queries) for a short

period, and starts to respond with packets with poll field τp = 6, the ntpd v4.2.6 client

will speed up its polling interval to ≈ 64 sec. To simulate “unreachable” behavior

from off-path, the attacker can plant fragments with incorrect UDP checksum (e.g.,

planting just the second spoofed fragment, but not the first, per Figure 2·6). Then,

after some time, the attack begins with poll set to τp = 6 in the first spoofed fragment.

2.6.5 Conditions required for our attack.

In summary, our attack succeeds for a given victim NTP server and victim NTP client

if the following hold:

1) the server accepts and acts on ICMP fragmentation needed packets for a 68-byte

MTU, and

2) the server uses globally-incrementing or per-destination-incrementing IPID, and

3) the client reassembles overlapping IPv4 fragments as in Outcome A of Figure 2·8.

If the client reassembles packets as in Outcome B, then a weaker form of our

attack could be possible, where the attacker can alter the client’s time in steps of

at most 1 sec. Alternatively, if the first two conditions hold and server sends NTP

packets with a UDP checksum of zero, then the weak form of our attack could also

be possible if the client reassembles overlapping IPv4 fragments as in Outcomes C.
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2.6.6 Proof-of-concept implementation of our attack.

We implemented a proof of concept of our attack on three lab machines. Our server

had per-destination incrementing IPID. We perform the small-step-big-step attack

(Section 2.4.2) from off path against an ntpd v4.2.6p5 client, with a ‘small step’ of

10 minutes, and a ‘big step’ of 1 day.

Server. Our victim server ran ntpd v4.2.8p2 on Linux 3.13.0-24-generic kernel

which uses a per-destination incrementing IPID. This Linux kernel has configuration

parameter min pmtu that determines the minimum MTU to which the OS is willing to

fragment packets upon receipt of an ICMP fragmentation needed packet; we manually

set min pmtu to 68, so that the server would satisfy the first condition of our attack.18

Client. Choosing the right client was a challenge. It is extremely difficult to find

documentation on overlapping fragment reassembly policies for popular OSes. These

policies also change over time (e.g., in 2005 (Novak, 2005) found that MAC OS

reassembles as in Outcome A, but our July 2015 experiments indicated that MAC

OS X v10.9.5 reassembles as in Outcome B). After testing various OSes, we tried

using the Snort IDS to emulate a network topology where a middlebox reassembles

fragmented packets before passing them to endhosts. We set up Snort in inline mode

on a VM in front of another VM with the ntpd v4.2.6 client. Unfortunately, Snort’s

frag3 engine, which reassembles overlapping IPv4 fragments according to various

policies, exhibited buggy behavior with UDP (even though it worked fine with the

ICMP fragments used in (Novak, 2005)). Finally, we gave up and wrote our own

fragment buffer in python and scapy, running it on a Linux 3.16.0-23-generic OS with

ntpd v4.2.6p5.

18The default value for min pmtu in Linux exceeds 500 bytes (Schramm, 2012), so that the vast
majority of NTP servers running on Linux should not be vulnerable to our attack. (Linux 2.2.13 is
one notable exception; see Section 2.6.7.) However, our measurements in Section 2.6.7 indicate that
servers in the wild do fragment to a 68-byte MTU; we just use Linux 3.13.0 as a proof-of-concept in
our lab.
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Our fragment buffer code had two parts. The first part uses scapy’s sniff func-

tion to detect IPv4 fragments, and then sends them to our fragment buffer, which

reassembles them and passes them back to the OS. The second part uses nfqueue to

drop packets that were reassembled by the OS and pass packets reassembled by our

fragment buffer. The fragment buffer itself is a FIFO queue with capacity n = 28 frag-

ments and timeout t = 30 sec. Fragments older than t are evicted from the queue.

When the queue is full, a newly-arrived fragment evicts the oldest fragment. The

buffer reassembles packets according to the ‘First’ policy19 in (Shankar and Paxson,

2003) (i.e., Outcome A in Figure 2·8).

Attacker. Our attacker machine ran code written in scapy. Before the attack starts, we

let the NTP client synchronize to the server. After that, our attacker machine should

infer the IPID the server uses to send mode 4 packets to the client; rather than reim-

plementing the IPID-inference techniques of (Gilad and Herzberg, 2013), (Knockel

and Crandall, 2014), we just have the client machine send the initial IPID i directly

to the attack machine. At this point, the client no longer reveals any more infor-

mation to the attacker, and the attack starts. The attacker first sends the server a

spoofed ICMP fragmentation needed packet requesting fragmentation to a 68-byte

MTU for the client; the server caches the request for 10 minutes, and starts sending

the two fragments in Figure 2·7. To keep the server fragmenting, the attacker sends

a fresh ICMP fragmentation needed every 10 minutes.

Per Section 2.6.4, each second our attacker needs to send the client a fresh

batch of n/2 pairs of the two fragments in Figure 2·6. Each pair had IPID in

{(i+1), ..., (i+n/2−1)}, with i incremented every 70 seconds.20 Our attack machine

19The ‘First’ policy of (Shankar and Paxson, 2003) requires reassembly to prefer the fragment
that was received earliest by fragment buffer.

20NTP uses a randomized algorithm to set the polling interval. Our client had not been running for
long, so its polling interval was τ = 6 (64 sec), which translates to intervals randomly chosen from the
discrete set {64, 65, 66, 67} sec. We therefore increment i every 70 seconds.However, per Section 2.6.4,
(1) an off-path attacker can push the polling interval down to τ = 6 by using fragmentation to make
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Figure 2·9: Absolute value of offset θ (above) and jitter ψ (below) computed by the
client during a proof-of-concept implementation of our attack.

was a relatively less efficient eight-year old Fujitsu x86 64 with 1.8GB of memory

running Linux 3.16.0-24-generic, and thus could only manage to send thirteen pairs

of the required fragments within 1 second. We therefore set the size of the FIFO

queue on our client machine to n = 28. Our attacker uses the fragmentation attack

to launch a “small-step-big-step” attack : First, it sets receive and transmit times-

tamps T2 and T3 in its second spoofed fragment to shift the client 10 minutes back

in time. Once the client enters ‘STEP’ mode, it sets T2 and T3 to shift the client

one day back in time. (Note that an off-path attacker can check that the client is in

‘STEP’ mode by querying the client and checking for ‘STEP’ in the reference ID of

the response (Mills et al., 2010, Fig. 13).)

Results (Figure 2·9). We plot the results of one run of our attack, obtained from

the client’s ntpq program. We plot offset θ (equation (6.2)) computed by the client

for each mode 4 packet the client (thinks it) received from the server. The horizontal

lines on the offset plot represent NTP’s default panic threshold (1000 sec) and ‘STEP’

threshold (125 ms). We also plot jitter ψ (equation (5.3)) computed by the client from

its eight most recent offset samples. Recall that the client will only synchronize to the

the server to look like it has become ‘unreachable’, and (2) if the fragment buffer has large n,
our attack can accommodate larger variation in the polling interval (e.g., MAC OS X has n =
1024 (Knockel and Crandall, 2014)).
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server if ψ < 1 sec (Section 2.5.5, 2.6.4). Before the attack begins, the client and server

are synchronized and offset is small. Once the attack begins, offset jumps to about

600 seconds (10 minutes). Figure 2·9 also shows some spikes where the offset jumps

back down to a few msec. These spikes occur during cache misses, when our attacker

fails to plant fragments with the right IPID in the fragment buffer; this allows the

two legitimate fragments to reassemble so that the client gets sample of the correct

time. The attacker pays a price each time a cache miss causes an inconsistency in

the offset values; for example, at time 25 mins, the attacker crafts enough packets to

force the jitter to about 10 sec, but two samples later it suffers a cache miss, causing

jitter to jump up again. Eventually, the attacker crafts enough packets to keep jitter

below 1 sec for some period of time, and the client accepts the time, enters ‘STEP’

mode, and clears its state. Once in ‘STEP’ mode, the attacker manages to craft nine

consecutive packets, causing jitter to drop below 1 sec and sending the client back in

time for another 24 hours.

2.6.7 Measuring the attack surface: Servers.

How often are the conditions required for our attack (Section 2.6.5) satisfied in the

wild? We answer this question by scanning our dataset of 13M NTP servers (Sec-

tion 2.3.2) to find servers satisfying the two conditions for our attack per Section 2.6.5:

(1) fragmenting to a 68-byte MTU, and (2) using incrementing IPID. To avoid harm-

ing live NTP servers with this scan, we send only ICMP packets or mode 3 NTP

queries (which do not set time on the server).

Fragmenting to 68-byte MTU. We send each server in our list (1) an NTP mode 3

query and capture the corresponding NTP mode 4 response, and then (2) send an

ICMP fragmentation needed packet requesting fragmentation to a 68-bytes for NTP

packets sent to our measurement machine (as per the packet in Figure 2·5, where

UDP checksum is zero and IPID inside the ICMP payload is that in the captured
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Table 2.6: IPID behavior of non-bad-timekeepers satisfying conditions (1), (2) of
Section 2.6.5.

IPID Per-Dest Globally incrementing
behavior Γ = 1 Γ = 10 Γ = 25 Γ = 50 Γ = 100 Γ = 250 Γ = 500
# servers 2,782 5,179 2,691 533 427 135 55

mode 4 NTP response), and finally (3) send another NTP mode 3 query. If the

server fragments the final mode 4 NTP response it sends us, we conclude it satisfies

condition (1) for our attack.

Server IPID behavior. Next, we check the IPID behavior of each server that was

willing to fragment to a 68-byte MTU. To do this, we send each IP five different

NTP mode 3 queries, interleaving queries so that at about 30 sec elapse between each

query to an IP. We then check the IPIDs for the mode 4 responses sent by each IP.

If IPID incremented by one with each query, we conclude the server is vulnerable

because it uses a per-destination-incrementing IPID. Otherwise, we determine the

gap between subsequent IPIDs; if all gaps were less than a threshold Γ (for Γ =

{10, 25, 100, 250, 500}), we conclude that the server uses a globally-incrementing IPID.

Results of server scan. Out of the 13M servers we scanned, about 24K servers were

willing to fragment to a 68-byte MTU. 10K of these servers have bigger problems

than just being vulnerable to our attacks: they were either unsynchronized (i.e.,

either stratum 0 or stratum 16) or bad timekeepers (i.e., with offset θ > 10 sec).

However, we did find 13,081 ‘functional’ servers that fragment to a 68-byte MTU. As

shown in Table 2.6, the vast majority (11,802 servers) of these are vulnerable to our

attack because they use an incrementing IPIDs that grow slowly within a 30-second

window. In fact, most use a globally-incrementing IPID, which is easier to attack

than a per-destination IPID (see Section 2.6.4).

Who are these vulnerable servers? The majority 87% (10,292 servers) are at

stratum 3, but we do see 14 vulnerable stratum 1 servers and 660 vulnerable servers
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with stratum 2. Indexing these with our (very incomplete) topology data, we find

that 11 servers are at the root of subtrees with over 1000 clients, and 23 servers have

over 100 clients each. One vulnerable stratum 2 server, for example, is in South Korea

and serves over 19K clients, another with over 10K clients is in a national provider in

the UK, one with over 2K clients serves a research institute in Southern Europe, and

two with over 7K clients are inside a Tier 1 ISP. Cross-referencing these servers to our

May 2015 rv data, we find that the vast majority (9,571 out of the 11,803 vulnerable

servers) are running Linux 2.2.13; the other significant group is 1,295 servers running

“SunOS”. We note that not every Linux 2.2.13 server in our rv dataset fragmented to

a 68 byte MTU; 688 of the servers running on Linux 2.2.13 in our rv data responded

to our final NTP query with an unfragmented NTP response, even though they had

been sent a valid ICMP fragmentation needed packet, possibly because of middleboxes

that drop ICMP packets.

2.6.8 Measuring the attack surface: Clients.

Determining how many clients in the wild satisfy the third condition of our attack

(Section 2.6.5) was significantly more complex. To measure how an NTP client re-

assembles overlapping IPv4 fragments, we can use (Shankar and Paxson, 2003), (No-

vak, 2005)’s technique of sending fragmented pings. To check for reassembly per

Outcome A in Figure 2·8, we send four ping fragments with offsets corresponding

exactly to those in Figures 2·6 and 2·7. If the client reassembles them as in Outcome

A, the reassembled ping will have a correct ICMP checksum and elicit a ping response

from the client; otherwise, the client will ignore them. Figure 2·10 shows the four

ping fragments and how they would be reassembled per Outcome A. We repeat this

with four other ping fragments to check for Outcome B.

Before we could deploy this technique in the wild, we hit an important complica-

tion: Teardrop (BUGTRAQ mailing list, 1997), an ancient implementation bug (from
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1997) with devastating consequences. In a teardrop attack, the attacker sends two

overlapping IPv4 fragments to an OS, and the OS crashes. Most OSes were patched

for this over fifteen years ago, but some firewalls and middleboxes still alarm or drop

packets when they see overlapping IPv4 fragments. Worse yet, legacy operating sys-

tems may not be patched, and new IP stacks might have reintroduced the bug. This

is a big problem for us: this measurement technique inherently requires overlapping

IPv4 fragments, and thus inherently contains a teardrop attack. We therefore cannot

run this measurement on all 13M NTP clients we found in the wild, since we don’t

know what OSes they might be running. Instead, we deal with this in two ways.

First, we have developed a website for users to measure the vulnerability of their

NTP clients, i.e., whether they reassemble packets as in Outcome A. (http://www.cs

.bu.edu/~goldbe/NTPattack.html) To prevent the site from becoming a teardrop

attack vector, we require users running the measurement to be on the same IP prefix

as the measured NTP client.

Second, we can send our measurements to NTP clients that we know are patched

for Teardrop. Teardrop affects version of Linux previous to 2.0.32 and 2.1.63 (BUG-

TRAQ mailing list, 1997); thus, we can use the rv data from the openNTPproject to

determine which clients are running on patched Linux versions, and send our mea-

surements to those clients only. We did this for 384 clients that responded to rv

queries with “Linux/3.8.13”, a kernel released in May 2013, well after Teardrop was

patched. Five clients responded with pings reconstructed as in Outcome A, 51 clients

with pings reconstructed as in Outcome B.

This is interesting for two reasons. Most obviously, this gives evidence for the

presence of reassembly per Outcome A in the wild, which means that there are NTP

clients that are vulnerable to our attack. But it also suggests that this fragmentation

reassembly is not always done by the endhost itself; if it had, all 384 servers would

http://www.cs.bu.edu/~goldbe/NTPattack.html
http://www.cs.bu.edu/~goldbe/NTPattack.html
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Figure 2·10: Ping packets for measuring fragmentation reassembly policies.

have responded in the same way. (Also, (Novak, 2005), (Shankar and Paxson, 2003)’s

measurement indicate that Linux uses a policy that results in reconstruction per

Outcome C, rather than Outcomes A or B.) Thus, we speculate that these five

clients responded to our ping because they were sitting behind a middlebox that

performs fragment reassembly for them

2.6.9 Recommendations: Fragmentation still considered harmful.

Our measurements suggest that the attack surface for our NTP fragmentation attack

is small but non-negligible. Thousands of NTP servers satisfy the conditions required

by our attack (Section 2.6.5). However, our attack only succeeds if the victim client

is synchronized to a vulnerable server, and reassembles fragmented packets according

to the third condition required for our attack (Section 2.6.5). Unfortunately, we could

not safely measure which NTP clients reassemble packets in this way, although we do

find evidence of vulnerable clients.

Perhaps the simplest way to protect the NTP ecosystem is to ensure that any OS

running an NTP server does not fragment packets to a 68 byte MTU; indeed, many

OSes already do this (e.g., Linux (Schramm, 2012), Windows (Microsoft, 2010)). On

the client side, the OS should drop overlapping NTP fragments, as should middleboxes

that reassemble IPv4 fragments like (Checkpoint, 2018).

Source port randomization? One might wonder whether our attack is thwarted by
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UDP source-port randomization. (That is, what if the client chose a random 16-bit

value for the UDP source port (Larsen and Gont, 2011), instead of always setting

it to 123?) Unfortunately, the answer is no. Suppose conditions (1), and (2) of

Section 2.6.5 hold, and modify our attack as follows: replace the first spoofed fragment

on the left of Figure 2·6 with an identical fragment that has its UDP source port and

destination port fields sliced off. (The replacement fragment has fragment offset of

24 bytes.) Then, if the client reassembles the packet according to the ‘First’ policy of

(Shankar and Paxson, 2003), then the packet will look just like the one reassembled

per Outcome A in Figure 2·8, except with the legitimate UDP source/dest ports, and

the attack will succeed. Thus, while UDP source-port randomization raises the bar

for our attack, we do not consider it to be a sufficient defense.

2.7 Related work

NTP security. While NTP-based DDoS amplification attacks have generated widespread

interest (see e.g., (Czyz et al., 2014a)), there is less research (Mizrahi, 2012b; Selvi,

2014; Klein, 2013; Mills, 2011; Corbixgwelt, 2011) on the implications of shifting time

via NTP attacks. A few researchers (Mizrahi, 2012b; Selvi, 2014; Mills, 2011; Selvi,

2015) have considered the implications of attacks on NTP traffic, and (Selvi, 2014;

Selvi, 2015) demonstrated on-path attacks on timing clients that update their clocks

at predictable intervals. We consider on-path attacks on the full NTP implementation

(ntpd), which does not perform clock updates in a predictable fashion, and present

new off-path attacks. Complementary to our work are efforts to identify software

bugs in ntpd (National Vulnerability Database, 2014), (Röttger, 2015), including sev-

eral that were made public at the same time as our work (Chiu, 2015); because ntpd

typically operates as root on the host machine, we expect that interest in this area

will only continue to increase. Our work is also related to older NTP measurement
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studies (Minar, 1999), (Murta et al., 2006), as well as the recent work of (Czyz et al.,

2014a); (Czyz et al., 2014a) studies NTP’s use for DDoS amplification, but we focus

on the integrity of timing information. Finally, concurrent to our work is a study that

measures network latency using NTP (Durairajan et al., 2015).

IPv4 Fragmentation. Our work is also related to research on exploiting IPv4 packet

fragmentation for e.g., off-path attacks on operating systems (BUGTRAQ mailing

list, 1997), DNS resolvers (Herzberg and Shulman, 2013), TCP connections (Gilad

and Herzberg, 2013; Gont, 2010), and to evade intrusion detection systems (Ptacek

and Newsham, 1998), (Shankar and Paxson, 2003), (Novak, 2005), (Baggett, 2012)

and exploit side channels (Knockel and Crandall, 2014). Unlike most prior work,

however, we had to use fragmentation to craft a stream of self-consistent packets,

rather than a single packet. Our attack also exploits problems with overlapping IPv4

fragments (Novak, 2005), (Shankar and Paxson, 2003), (Baggett, 2012) and tiny IPv4

fragments, and should provide some extra motivation for OSes/middleboxes to drop

tiny/overlapping fragments, rather than reassemble them.

2.8 Conclusion

Our results suggest four ways to harden NTP:

1) In Section 2.4 we discuss why freshly-restarted ntpd clients running with the

-g configuration (which is the default installation for many OSes) are vulnerable to

quick time shifts of months or years. We also present a ‘small-step-big-step’ attack,

captured in CVE-2015-5300, that allows an on-path attacker to stealthily shift time

on a freshly-restarted ntpd client. Different versions of the small-step-big-step attack

succeed on ntpd v4.2.6 and ntpd v4.2.8. To protect against these attacks, users can

either stop using the -g configuration, or monitor their systems for suspicious reboots

of the OS or of ntpd. Section 2.4.3 also has recommendations for implementors who
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wish to patch against our small-step-big-step attack.

2) We showed how NTP’s rate-limiting mechanism, the Kiss-o-Death packet (KoD),

can be exploited for off-path denial-of-service attacks on NTP clients (Section 2.5.3).

We find that ntpd versions earlier than v4.2.8p3 allow for trivial spoofing of KoD

packets, and that this can be exploited to disable NTP on clients in the Internet

using only a single attacking machine. The KoD-spoofing vulnerability (CVE-2015-

7704) has been patched in ntpd 4.2.8p4, following the disclosure of our work. This

patch, however, does not prevent off-path attackers from eliciting valid KoDs from the

server via a priming-the-pump technique (CVE-2015-7705); the priming-the-pump

technique, however, does require the attacker to expend more resources (i.e., send

more packets). Therefore, we argue in Section 2.5.7 that NTP should either (1)

eliminate its KoD functionality, (2) require NTP clients to cryptographically authen-

ticate their queries to NTP servers, or (3) adopt more robust rate limiting techniques,

like (Vixie, 2014).

3) In Section 2.6 we showed how an off-path attacker can use IPv4 fragmentation

to hijack an NTP connection from client to server. Because our attack requires server

and client to run on operating systems that use less-common IPv4 fragmentation

policies, we have used a measurement study to quantify its attack surface, and found

it to be small but non-negligible. As we argue in Section 2.6.9, NTP servers should

run on OSes that use a default minimum MTU of ≈ 500 bytes, as in recent versions

of Linux and Windows (Schramm, 2012), (Microsoft, 2010). OSes and middleboxes

should also drop overlapping IPv4 fragments. We have also set up a website where

operators can test their NTP clients for vulnerability to our fragmentation attacks.21

4) Each of our attacks has leveraged information leaked by the reference ID field

in the NTP packet (Figure 2·1). (In Section 2.4, we use the reference ID to learn that

the client was in the ‘INIT’ or ‘STEP’ state. In Section 2.5.3 our off-path attacker

21http://www.cs.bu.edu/~goldbe/NTPattack.html

http://www.cs.bu.edu/~goldbe/NTPattack.html
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used the reference ID to learn the IPs of client’s servers.) Moreover, since the purpose

of the reference ID is to prevent timing loops (where A takes time from B who takes

time from A (Stenn, 2015c)) any extra information leaked in the reference ID should

be limited.

In fact, RFC 5905 (Mills et al., 2010, pg 22) already requires IPv6 addresses to be

hashed and truncated to 32 bits before being recorded as a reference ID. Of course,

this approach is vulnerable to trivial dictionary attacks (with a small dictionary, i.e.,

the IPv4 address space), but there are other ways to obfuscate the reference ID. One

idea is to use a salted hash, in an approach analogous to password hashing. Upon

sending a packet, client A chooses a a fresh random number as the ‘salt’, includes the

salt in the NTP packet (perhaps as the lower-order bits of the reference timestamp

(Figure 2·1)), and sets the reference ID in the packet to Hash(IP, salt), where IP is

the IP address of the server B from which A takes time. B can check for a timing loop

by extracting the salt from the packet, taking B’s own IP, and checking that Hash(IP,

salt) matches the value in the packet’s reference ID; if yes, there is a timing loop,

if no, there is not. This approach requires no state at A or B, and de-obfuscating

the IP requires an attacker to recompute the dictionary for each fresh salt. This

approach, however, comes with the caveat that an committed attacker could still

launch dictionary attacks on the salted hash.

5) Our attacks also exploited the fact that, by default, ntpd sends mode 4 responses

in response to any mode 3 query sent by any IP in the Internet. Thus, it makes sense

to limit the set of IPs that can communicate with an NTP client, especially for clients

that are not designed to serve time to the Internet at large. (My laptop, for example,

should not be responding to NTP queries from anyone.) An organization can also

run its entire NTP infrastructure (including stratum 1 servers) behind a firewall, to

avoid attacks from the public Internet.
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Our work also motivates taking another look at cryptographic authentication for

NTP (Haberman and Mills, 2010), (Mizrahi, 2012b), (Röttger, 2012), (Franke et al.,

2018).



Chapter 3

Attacking NTP’s Authenticated

Broadcast Mode

3.1 Introduction

The Network Time Protocol (NTP) (Mills et al., 2010), one of the Internet’s old-

est protocols, is used to set time on Internet clocks. Time places a crucial and

often-ignored role in the security and correctness of computing applications, and es-

pecially in cryptographic protocols. As we discussed in Chapter 2 (Section 2.2),

an attacker that manipulates time using NTP can seriously undermine the secu-

rity of key Internet protocols and applications, including TLS certificates (Selvi,

2015), (Mills, 2011), (Klein, 2013), DNSSEC, routing security with the RPKI, au-

thentication with Kerberos, caching, and bitcoin (Corbixgwelt, 2011). NTP operates

in several modes including (1) client/server, (2) symmetric active/passive, and (3)

broadcast/multicast. Our earlier work (Chapter 2) considered attacks on NTP’s

client/server mode. In this companion Chapter, we consider the security of NTP’s

broadcast mode.

We use network measurements to find that NTP’s broadcast mode, which is in-

tended for an environment with a few servers and potentially a large client population,

is used by thousands of NTP clients in the wild (Section 3.5). Next, we show that

while symmetric-key cryptographic authentication of NTP broadcast traffic is recom-

mended by the NTP specification (Mills et al., 2010) and required by the open-source

78
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NTP reference implementation ntpd, it does not provide sufficient protection against

attacks on broadcast mode. We consider both (1) on-path attacks, where the at-

tacker occupies a privileged position on the path between NTP client and one of its

servers, and (2) off-path attacks, where the attacker can be anywhere on the network

and does not observe the traffic between client and any of its servers. We present

an on-path replay attack on authenticated broadcast mode (CVE-2015-7973) that

causes the NTP client to get stuck at a particular time (Section 3.3), and a new

off-path denial-of-service attack on authenticated broadcast mode (CVE-2015-7979)

that also applies to all of NTP’s “preemptable” and “ephemeral” modes of operation

(Section 3.4). We conclude by discussing the inherent challenges of cryptographically

authenticating NTP’s broadcast mode, and provide several recommendations for the

way forward (Section 3.6).

3.2 NTP’s broadcast mode

NTP clients and servers are not configured to operate in broadcast mode by default

on most operating systems. However, there is a configuration option that allows for

this mode of operation.

Broadcast servers. An NTP broadcast server can be preconfigured to periodically

send ‘persistent ’ broadcast-association server packets (NTP mode 5 packets) to the

clients on the broadcast network. By persistent, we mean the server mobilizes the

broadcast association upon initialization, and never demobilizes the association (Mills

et al., 2010). Figure 3·1 presents a sample NTP mode 5 broadcast packet.

Broadcast clients. An NTP client can be preconfigured to accept NTP mode 5

packets.1 When a broadcast client receives its first NTP mode 5 packet, the client

1The configuration option broadcastclient or multicastclient [address] allows an ntpd client to
receive and process mode 5 broadcast packets. Note that a client configured to accept multicast
messages from a particular address also accepts broadcast messages from ANY address.
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must first calculate the propagation delay by exchanging a volley of client/server

mode packets with the broadcast server—where the client sends the server an NTP

mode 3 query and the server responds with an NTP mode 4 response.2 After this, the

client reverts to broadcast client mode, and creates an ephemeral association with the

server upon receipt of further mode 5 broadcast packets. An ephemeral association

is mobilized upon arrival of a packet and exists until error or timeout (Mills et al.,

2010).

Authenticating an association. How does an NTP client validate incoming pack-

ets before establishing an association with a server? Most NTP traffic (especially

client/server-mode traffic) is not cryptographically authenticated.3 However, even

in the absence of cryptographic authentication, NTP clients running in client/server

mode or symmetric active/passive mode use a nonce to validate a server’s response.

The nonce is a field in the NTP packet, called the origin timestamp; see Figure 3·1.

Upon receipt of an NTP response packet, the client checks if the 64-bit transmit

timestamp field in the most recent query packet it sent the server, matches the 64-bit

origin timestamp field in the incoming response packet. This is called TEST2 in the

NTP specifications. This non-cryptographic authentication is based on the premise

that the nonce has enough entropy such that an off-path attacker, who can not see the

NTP packets in transit, cannot guess the nonce. Indeed, as we argued in Chapter 2,

we can safely assume that this nonce has about 32 bits of entropy, and so it is difficult

2The server and client also run the Autokey security protocol, if they are configured to do so.
Autokey (Haberman and Mills, 2010) is public-key authentication method for NTP, but NTP clients
do not request Autokey associations by default (Autokey, 2012), and many public NTP servers do
not support Autokey (e.g., servers in pool.ntp.org). In fact, a lead developer of the ntpd client
wrote in 2015 (Stenn, 2015a): “Nobody should be using autokey. Or from the other direction, if
you are using autokey you should stop using it.” We therefore do not consider Autokey any further
here.

3As we discussed in Chapter 2, NTP’s symmetric-key cryptography is not commonly because the
symmetric keys must be pre-configured manually ; this can be quite cumbersome for public servers
that must accept queries from arbitrary clients. (NIST, for example, distributes symmetric keys for
its public servers via US mail or facsimile (NIST, 2010).) Moreover, NTP’s public-key cryptography
(Autokey) is not recommended for use in the wild, see footnote 2.

pool.ntp.org
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to forge from off path.

Authenticating broadcast. In contrast to the client/server mode, where the client

actively sends a query to the server to get the response, the broadcast client operates

in listen-only mode. Thus, because the client does not send the server any queries

for broadcast packets, and the origin timestamp field in the broadcast server packet

is always set to null. So now TEST2 that defends NTP’s client-server mode from off-

path attacks does not apply. Moreover, the NTP’s current reference implementation

(ntpd v4.2.8p4) does NOT use UDP source port randomization (Larsen and Gont,

2011), and so an off-path attacker can easily forge an unauthenticated mode 5 packet.

Also, an NTP client preconfigured to run in broadcast client mode will accept

and process packets from ANY server that sends it broadcast packets; it is NOT

configured to listen only to one particular broadcast server. So any off-path attacker

can easily send broadcast messages and the client will accept them. RFC5905 (Mills

et al., 2010, pg 57) says:

Filtering can be employed to limit the access of NTP clients to known

or trusted NTP broadcast servers. Such filtering will prevent malicious

traffic from reaching the NTP clients.

To fill this gap and the lack of nonce check, RFC 5905 (Mills et al., 2010) strongly

suggests the use of cryptography to authenticate broadcast packets. Indeed, NTP’s

current reference implementation (ntpd v4.2.8p4) requires symmetric-key cryptog-

raphy, by default, for clients that wish to listen to broadcast mode packets. NTP’s

symmetric cryptographic authentication appends an MD5 hash keyed with symmetric

key k of the NTP packet contents m as MD5(k||m) (Mills, 2011, pg 264) to the NTP

packet in Figure 3·1; authenticated NTP packets also have a 32-bit key ID which is

used to identify the symmetric key that was used to authenticate the message.

In this paper, however, we present two attacks that show that NTP’s symmetric
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Figure 3·1: Mode 5 NTP Broadcast Packet.

key cryptography does not provide sufficient protection for broadcast mode.

3.3 Timeshifting Attacks

Should broadcast be robust to replay attacks? According to RFC 5905 (Mills

et al., 2010), NTP’s “on-wire protocol ... resists replay of a server response packet.”

This is supposed to be accomplished through what is called TEST1 in the protocol

specification: Upon receipt of an NTP response packet, the NTP client matches

the transmit timestamp in the current packet to that of the last response packet it

received; if the timestamp matches, it marks the packet as duplicate and drops it.

However, we now show that because broadcast mode does not impose TEST2, then

TEST1 cannot provide sufficient protection against replay attacks, even when NTP

packets are cryptographically authenticated.

a) Deja Vu: Our on-path time-sticking attack (CVE-2015-7973). Consider a man-

in-the-middle (MiTM) attack, where the attacker is positioned between the server

and the victim client, and can intercept and replay a packet and prevent onward
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transmission of the original packet, but does not possess the symmetric key that

authenticates broadcast messages. We show that the protocol does not resist the

following replay attack. The MiTM collects and records a contiguous sequence of

server broadcast packets. (The attacker requires a sufficient number of these packets

for the client to update its clock; this is because NTP requires a client to obtain

between eight to hundreds of messages from a server before the client’s clock discipline

algorithms synchronizes it to the server (Mills et al., 2010, Sec. 10-12).) He then

replays this sequence of packets, over and over, to the victim client; the victim accepts

the same time over and over, and thus gets stuck at a particular time. Notice that

these are the authenticated packets from the broadcast server, and so they pass the

authentication check on the client. Moreover, by replaying a sequence of packets,

rather than just one packet, the attacker ensures that the replayed packets pass

TEST1.

b) Our off-path time-shifting attack. If the attacker is one of the clients on the

broadcast network, or on an adjacent network that also gets the broadcast packets

from the same broadcast server, it then shares the same symmetric key with the server

as the victim client. In this case, the attacker possesses the same key as the server

and therefore can simply forge authenticated NTP mode 5 packets and send them

to the victim client. The attacker can then send the victim back/forward in time as

discussed in Chapter 2, or can make him stick to a particular time.

Why do these attacks work? These attacks highlight the following weaknesses in

NTP; a) The protocol specifies and defaults to the use of symmetric key cryptography

for broadcast authentication, where all nodes share the same key and one/some of

them could be malicious or may be compromised, b) an NTP client is unable to

recognize that it is stuck in a particular time for long periods of time, and c) in

the absence of TEST2, TEST1 doesn’t actually prevent replay in general—it just
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prevents replay of the most recent packet. Our replay attack passes TEST1 because

the client only matches the current transmit timestamp with that of the last packet.

Experiments: As a proof-of-concept, we set up an ntpd v4.2.8p3 broadcast client

and server using the configuration options broadcastclient and broadcast IP address range.

Another machine on the same network behaves as MiTM and collects 12 mode 5 pack-

ets and stores them. The MiTM then drops the original mode 5 packets to the victim

and replays his previously collected set of mode 5 packets. The victim accepts the

time after getting sufficient samples required for a server to pass the clock discipline

algorithms, gets into the ‘STEP’ mode4and clears the state variables for this associa-

tion. We continue this experiment for ≈ 4 hours and observe that the victim’s system

clock is stuck at the same time.

Implications of the attack. A MiTM can use a replay attack to make the victim

client get stuck at a particular time value forever. Moreover, a compromised machine

on the same or adjacent subnet can or forge authenticated mode 5 packets and shift

time forward or backward on the victim client. Shift time forward/backward has

severe implications on security guarantees provided by various core Internet proto-

cols, such as DNSSec, BGP, TLS, and authentication services that use Kerberos; see

Chapter 2 for discussion.

3.4 Denial of Service Attacks

We now present an off-path denial-of-service attack that generically succeeds on any

preemptable or ephemeral association that is cryptographically authenticated, includ-

ing authenticated broadcast mode.

Preemptable and empheremal associations. NTP’s broadcast clients use an

4An NTP client enters ‘STEP’ mode whenever it needs to shift its clock by more than 125ms but
less than ≈ 16 min; our replay attack shifts the client back in time by more than 125ms, causing
the client to enter STEP mode.
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ephemeral association to listen to NTP mode 5 from a broadcast server; as discussed

in Section 3.2, this association is automatically demobilized upon error or timeout.

NTP also supports preemptable associations (Mills, 2014), which are similar to

ephemeral associations. Preemptable associations are mobilized if the ntpd client has

the keyword “preempt” to the line in its configuration file that establishes a associa-

tion with a particular server. Alternatively, the ntpd client may be preconfigured with

the manycastclient or pool [pool address ] options; in this case, the client establishes

a preemptable association upon receipt of a server discovery packet. Preemptable

associations are also demobilized upon error or timeout.

Our off-path DoS attack (CVE-2015-7979). An off-path attacker can easily cause

an error by sending mode 5 with bad cryptographic authentication (e.g., wrong key,

mismatched key, incorrect message digest, etc.). The attacker sends one such error-

causing packet for every legitimate response the client receives from the server, so that

the client immediately tears down its association with the server. This way, the client

never collects enough good NTP response to allow its clock discipline algorithms to

update its local clock, resulting in a denial-of-service attack on the client.

Experiment. As a proof-of-concept, we set up ntpd v4.2.8p3 broadcast client and

server using the configuration options broadcastclient and broadcast IP address range

respectively. Once the client is synchronized with the broadcast server, another ma-

chine which behaves as an off-path attacker sends badly-authenticated mode 5 packet

to the client. The client immediately tears down the association with the server and

clears all the state variables. Next, the client receives the legitimate packet from

the broadcast server and again mobilizes the association. The attacker again sends

the bad mode 5 packet and the client again tears down the association. The attacker

keeps repeating this and the client never obtains enough consistent time samples from

the server to allow it to update its system clock.
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Implications a) An off-path attacker can deny NTP service to the broadcast client

even when it uses cryptographic authentication. b) If the client is preconfigured

to a bad timekeeper or one of the servers’ that the client is configured to is con-

trolled/compromised by the attacker, then using this DoS attack, the client can pin

the client to bad server that is controlled by him. The attacker can then send the

client back/forward in time which has implications as mentioned in Section 3.3.

3.5 Measurement Results

We use NTP’s peers command to check for the presence of broadcast and other

ephemeral and preemptable modes in the wild. As shown in Figure 3·2, NTP’s peers

command returns a list of all associations used by an NTP client; associations with

a broadcast server are marked with a b or B, client/server associations are marked

with a u, etc.. ‘*’ is used to indicate the association that the client last took time

from, and ‘+’ indicates an association that is a candidate for synchronization. While

this command provides a variety of useful information for network measurement, it’s

also a great tool for adversarial network reconnaissance and DDoS amplification at-

tacks (Czyz et al., 2014a); for this reason, network operators commonly disable remote

peers queries, or configure firewalls or other middleboxes to drop them. Moreover,

while we conjecture broadcast mode is most common when both the clients and the

broadcast server are behind a NAT, we are unable to scan clients behind a NAT.

Therefore, it’s important to remember that our measurement results can only pro-

vide a lower bound on the number of broadcast/ephemeral/preemptable associations

in the wild.

Our scan. Thus, we scanned the entire IPv4 address space using the peers command

on 10-11 November 2015, and obtained responses from 4,443,118 IPv4 addresses. On

16-21 November 2015 we rescanned only the 4.4M responding IP addresses with NTP’s
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peers command, as well the rv command (which reveals useful information about the

NTP client, including its version, build date, and the operating system it runs on),

and the as command (which has useful information about each association used by

the client). For this second scan we obtained responses from 3,716,362 IPv4 addresses;

we consider only these addresses here.

Results. Of the 3.7M responding IPs, we found that 18,020 (0.4%) IPs have at least

one broadcast association, and 1,767 IPs use multicast associations. (Recall that

clients configured for multicast will also accept broadcast associations.) Moreover,

we see 9,806 IPs that use broadcast associations exclusively, of which 7,556 IPs were

synchronized to a broadcast server, while the remaining 2,250 were unsynchronized

and thus likely malfunctioning.

As an aside, we were also surprised to find many symmetric associations in the

wild; 190,724 (5.1%) of the responding IPs had at least one symmetric association.

Overall, we found 2,848,238 IPs that have at least one client/server associations, 77

IPs use multicast exclusively, 67383 IPs use symmetric associations exclusively, and

9806 use broadcast exclusively. This is a total of 2,925,504 (78.7%) IPs; for the rest

of the IPs, their association status is “-” which may mean they are initializing, or

using a local clock (e.g., via GPS) rather than taking time from the Internet using

NTP. Thus, while broadcast is not an especially popular mode of operation for NTP,

we do find thousands of clients in the wild that rely upon it for time synchronization.

Who are these broadcast clients? Of the 18K IPs that have at least one broad-

cast association, 16,552 of them also responded to NTP’s rv query, and thus reveal

information about their operating systems, ntpd version, and compile date. Most of

these broadcast clients are running on unix (10,671 IPs) or ‘cisco’ devices (5,135 IPs).

Also, out of 16.5K IPs that responded to the rv query, only 326 replied with the

detailed ntpd version and compilation details (the rest merely say “ntpd version 4”).
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Figure 3·2: Sample response to peers query.

Of these, the majority (212 IPs or 65%) of these have been compiled between 2012

and 2015 inclusive. The most popular ntpd version that we found is 4.2.6p5@1.2349

(23%) which was released in December 2011, closely followed by 4.2.8@1.3265 (20%)

which was released in December 2014, while 4.1.1c-rc1@1.836 (released in 2001) and

4.2.4p5-a (released in 2008) are 9% each. The bottom line is that we do find evidence

of recently maintained NTP implementations that use broadcast mode in the wild.

3.6 Recommendations

We have several recommendations to mitigate our attacks.

1) Ephemeral and pre-emptable associations considered harmful. Our denial-of-

service attack from Section 3.4 points to a serious problem with the notion of ephemeral

and preemptable associations; namely, that an off-path attacker can easily forge a

packet that can tear down an association. Even though an ephemeral association can

easily be reestablished, the attacker can quickly tear it down again before the client

has the chance to update its clock. For this reason, we suggest that NTP does NOT

tear down ephemeral associations upon receipt of a malformed packet; instead, the

malformed packet should just be dropped, while the association remains in place.

2) Prevent replay in broadcast mode. As others have pointed out (Mizrahi,

2012b), (Franke et al., 2018), NTP’s broadcast mode should contain a robust mech-

anism for preventing replay attacks. TEST1 is insufficient, since it only checks if

the most recent packet has been replayed. One solution is to require authenticated

mode 5 NTP packets to include an incrementing counter (e.g., in the extension field).

Another idea is to use the transmit timestamp field in the mode 5 response packet
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(Figure 3·1) as an incrementing counter; to do this, the broadcast client would need

to ensure that the transmit time is monotonically increasing. Alternatively, the MAC

computed on the broadcast packet could become a hash chain; that is, the MAC on

packet pi should be computed over the contents of packet pi concatenated with the

MAC on packet pi−1.

3) Monitor to detect time-sticking. In the absence of replay protection, monitoring

could be used as a “band-aid” solution against time-sticking attacks. That is, NTP

clients could monitor their own clocks to see if they are stuck at the same timestamp

for a considerable amount of time; if so, they could log an error or alert to warn an

admin.

4) Only the broadcast server should be able to sign broadcast packets. As others have

pointed out (Mizrahi, 2012b),(Franke et al., 2018), the broadcast servers’ symmetric

key should NOT be distributed to all its client; as we noted in Section 3.3, this allows

clients to trivially forge packets from the server. Instead, the only entity that should

be able to sign broadcast (mode 5) packets is the broadcast server itself.

3.7 Conclusion

Our analysis highlights the difficulty of designing robust cryptographic authentica-

tion for NTP’s broadcast mode. One might be tempted to dismiss broadcast mode

altogether, by arguing that broadcast mode is a legacy from the past that is largely

unused today. Our measurements, however, indicate that this is not the case; while

broadcast mode is not especially popular, we do find thousands of NTP clients in the

wild that have broadcast associations. Thus, we believe that the community should

take another careful look at authentication for NTP’s broadcast mode.

One approach, taken by a new Internet draft for the “Network Time Security pro-

tocol (NTS)”, achieves recommendations (2) and (4) above through a modified version
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of TESLA (Perrig et al., 2005). TESLA uses public-key cryptography to ensure that

a server is the only entity that can authenticate broadcast messages, but that the

authenticators themselves can be computed and validated using fast symmetric cryp-

tography. To do this, however, TESLA requires loose time synchronization between

the broadcast server and its client. Thus, using TESLA in the context of NTP creates

a circular dependency on time. NTS suggests avoiding this circular dependency by

using an authenticated unicast association to achieve the loose synchronization be-

tween the server and each of its clients. This, however, once again requires pairwise

associations between server and each client, and may defeat the purpose of using the

broadcast mode in the first place. Finding a cryptographic solution that can authen-

ticate NTP’s broadcast mode, without a unicast association or a circular dependency

on time, remains an interesting open problem.



Chapter 4

The Impact of Time on DNS Security

4.1 Introduction

Time is a crucial building component of network protocols, providing basic correctness

and functionality as well as claimed security guarantees. Recently, however, it has

become clear that network protocols cannot take the correctness and security of time

for granted. There have been a series of works describing errors, misconfigurations

and malicious attacks that are possible when time is obtained from network timing

protocols such as the Network Time Protocol (NTP) and Simple NTP (SNTP), (Mal-

hotra et al., 2016), (Selvi, 2014), (Malhotra and Goldberg, 2016), (Malhotra et al.,

2017), (Czyz et al., 2014b). It is known that millions of hosts (Czyz et al., 2014b),

(Malhotra et al., 2016), (Mauch, 2015), (Minar, 1999), (Murta et al., 2006) on the

Internet implement and run network timing protocols. However, there is little work

exploring how a reliance on network timing protocols affects the security of other

network protocols that rely on time. (Thus far, there is only the work of Selvi on

SNTP’s impact on the security of HSTS (Selvi, 2015).) In this work, we explicitly

look into how a reliance on time affects the security of the Domain Name System

(DNS) and DNSSEC. We show how attacks on time and NTP can be used as a pivot

for attacks on DNS and DNSSEC.

DNS relies on caching to provide enhanced performance and improved reliability

in the face of network failures. Our work considers how time can be exploited to

attack the correctness and security of caching, and to expose the DNS to Denial of

91
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Service (DoS) and cache poisoning attacks. We also consider how the DNS security

extensions (DNSSEC) can be attacked by exploiting time.

Time can be represented as absolute time (e.g., “midnight August 7, 2018”) or

relative time (e.g., “20 minutes from the moment you read this”). While the rela-

tive time is typically obtained from internal sources (e.g., oscillators, CPU timers),

absolute time is typically obtained from an external source (e.g., manual settings,

network timing protocols like NTP). As we have seen from recent work (Selvi, 2014),

(Malhotra et al., 2016), (Malhotra and Goldberg, 2016), (Malhotra et al., 2017), this

reliance on external time sources leads to vulnerabilities.

DNS and Time The DNS protocol’s reliance on time comes through its use of Time

To Live (TTL) values for DNS records. Fortunately, the DNS on-the-wire protocol

specification uses only relative time values for the TTL, and thus is not directly

attackable. However, DNS caching implements TTL as an absolute time value, and

is therefore attackable. This issue is not just the result of an implementation flaw; we

point out that the earliest DNS RFCs (RFC 1035) implicitly assume that DNS caches

rely on absolute time (Section 4.2.3). Moreover, the DNSSEC on-the-wire protocol

also relies on absolute time to determine the validity interval for DNSSEC signatures;

thus, we show DNSSEC is also vulnerable to attacks that pivot from time.

Attacks & Implications To support these claims, we show two concrete attacks

that leverage absolute time to attack DNS resolver caches. First, we present a cache

expiration attack : when time is shifted forwards, the DNS cached responses expire

sooner than expected, effectively flushing the cache. Second, we present a cache

sticking attack : when time is shifted backwards, the cached responses stick in the

cache for longer than intended. We show how these attacks can be used to harm

DNS performance (introducing latency into DNS responses) and DNS availability

(increasing the risk of denial of service). We also discuss how they can be used to aid
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for fast-fluxing, cache poisoning and other well-known threats to the DNS. We also

present two similar attacks on DNSSEC signature validation; by shifting the time on

the validating resolver forwards or backwards, we can force a valid signature to be

deemed invalid, causing DNSSEC denial-of-service and several other problems.

Measurements How big is the attack surface? While there are many ways to attack

the absolute time, in this work we specifically focus on NTP as an attack vector.

In Section 4.4, we use DNS and NTP measurements to see how many DNS resolvers

might be vulnerable to our cache expiration and cache sticking attacks via pivots from

NTP. We distinguish between two types of attacks on NTP. (1) In an on-path attack

on NTP, the attacker holds a privileged position on the network between a victim

system and its NTP timeserver. (2) In an off-path attack on NTP, the attacker does

not sit between the victim system and it’s NTP timeserver; the off-path attacker need

only have the ability to spoof NTP packets (which are sent via UDP, the transport

protocol that is used by NTP). Naturally, off-path attacks are “a scarier threat”,

because the attack can be any remote machine on the Internet.

We measure both open resolvers identified by the Open Resolver Project (Mauch,

2018), and private (non-open) resolvers that are accessible via RIPE Atlas Probes

(ripe, 2018). We find a significant attack surface. At least 33% of our measured private

DNS resolvers and 5% of our measured open resolvers are vulnerable to MiTM attacks

on NTP. Meanwhile, 6% of those (33%) private DNS resolvers and 19% of those (5%)

open resolvers are vulnerable to “even scarier” off-path attacks on NTP (Malhotra

et al., 2017), many of which should have been patched years ago. (Indeed, one of the

relevant patches was shipped in ntp-4.2.8p6, released on 19 January 2016.)

Recommendations & Implementation Our attacks and measurements indicate

that DNS should not continue to rely on the correctness of absolute time (which is

often derived from NTP). Instead, we suggest using the raw time or adjusted raw
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time (Section 4.2.1) as operating-system obtained sources of relative time for DNS

caching. Meanwhile, for DNSSEC signature validation, resolvers are doomed to use

the vulnerable absolute time. The only way to secure DNSSEC against timing-related

attacks is to secure the aboslute time (e.g., to secure NTP).

Upon our disclosure and recommendations, we worked with the open-source im-

plementation of the Unbound resolver (Unbound, 2018) to built a prototype imple-

mentation that uses raw time (rather than absolute time) for DNS caching. Unbound

is committed to release this update in the coming version of Unbound. (See section

4.5.1 for details on implementation.) Also, after a preliminary disclosure of our work

at IETF 100, the knot resolver (knot, 2018) co-incidentally also changed how it used

time for DNS caching. These changes were released in knot v1.5.1. In Section 4.5.1

we review their changes and discuss the extent to which they actually harden knot

against our attacks. (As a spoiler, we find that these changes are not sufficient to

completely stop our caching attacks on DNS.)

4.2 Time and the DNS ecosystem

In this section, we give background on why attacks on time can be used to harm the

correctness of DNS. We start with an overview of absolute time and relative time

(Section 4.2.1) and then discuss how the DNS specifications and implementations

treat time (Section 4.2.3).

4.2.1 Absolute time vs Relative time

Protocols and applications can express time in several forms, depending on whether

or not universal agreement is required about that point in time. This section focuses

on the differences between absolute time and relative time.

Absolute Time Absolute time expresses an absolute point in time (e.g., June 13,

2018 at 1:32:09pm).For instance,“Unix Time” is seconds since midnight January 1st,
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1970, while “Universal Coordinated Time” (UTC) is an international time scale that

forms the basis for the coordinated dissemination of standard frequencies and time

signals (BIPM, 2018). Absolute time is often used to express the validity of objects

with a limited lifetime that are shared over the network1. In order to validate absolute

time value, a system needs access to a reasonably close reference time, for instance

one based on the UTC.

How do systems get absolute time and why is it vulnerable? The absolute

time on a system is known as system time. One way to update system time is to

manually enter the date and/or time. One can also set the system time from the

local machine by using the hardware time, which is maintained by a battery-powered

clock that persists upon reboot. Alternatively, one can get the absolute time from the

Internet, using a variety of timing protocols including the Network Time Protocol2

(NTP) (Mills et al., 2010), chronyd (chrony, 2015), sntpd (Mills, 2006), openNTPD

(openNTPD, 2012) and others.

There are several problems with relying on system time. First, manual configura-

tions can be subject to errors and misconfiguration. Also, for some machines, when

moving between time zones, the system time must be corrected manually. Second,

because accessing the hardware time requires an I/O operation which is resource in-

tensive, many systems use hardware time only upon reboot, to initialize the system

time; subsequent updates to the system time are made either manually or through

NTP (Linux, 2018), (gentoo linux, 2018), (time, 2018). However, systems like micro-

controllers that operate within embedded systems (e.g., Raspberry Pi, Arduino, etc.)

often lack internal hardware to keep track of time. When embedded systems require

synchronization with the absolute time, they typically initialize their base time upon

reboot by obtaining the current time from an external source (e.g., a timeserver or

1For instance, PKIX certificates (Cooper et al., 2008) carry two time values expressing their
earliest and latest validity.

2NTP disseminates UTC time.
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an external clock), or by asking the user to manually enter the current time (wiki,

2018). Third, relying on Internet timing protocols opens up the system time to at-

tack. Recent papers show vulnerabilities in NTP (Malhotra et al., 2016), (Malhotra

et al., 2017), (Malhotra and Goldberg, 2016) and SNTP (Selvi, 2014) that allow at-

tackers to maliciously alter system time - pushing system time into the past or even

into the future. Moreover, many of these time-shifting attacks can be performed by

off-path attackers, who do not occupy a privileged position on the network between

the victim system and its time sources on the Internet. Researchers have also demon-

strated off-path denial of service attacks on timing protocols that prevent systems

from synchronizing their clocks. The bottom line is that obtaining system time from

an external sources create dependencies that can be exploited.

Relative Time Relative time measures the time interval that has elapsed from some

reference point (e.g., “20 minutes from the time of your query”). Relative time is

commonly used in network protocols, e.g., to determine when a packet should be

considered “dropped”, or e.g., to set Time To Live (TTL) values that govern the

length of time for which an object is valid or usable. Relative time does not require

access to the UTC time, or any other absolute time metric—only the rate of passage

of this time across different systems is important.

How do systems get relative time? The relative time on an operating system can

either be a raw time or an adjusted raw time. In both cases, relative time is monotonic.

Importantly, the key property of each type of time source is not its current value, but

rather the guarantee that the time source is monotonically increasing and thus useful

for calculating the difference in time between two points (Love, 2013).That said, there

are several caveats to each type of time source.

Raw time At its most fundamental, a system has its own perception of time; its

unmodified, raw time. This time is typically measured by counting cycles of an
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oscillator, but systems can also use process CPU time or thread CPU time (via timers

from the CPU). The quality of the raw time is therefore dependent on the either the

stability of the oscillator or of the CPU timer. Raw time is a purely subjective

time—no general meaning can be attached to any specific value. One can only obtain

the relative time by comparing two values. Because raw time is unaltered by any

external or manual time source, the raw time is continuous and strictly monotonically

increasing; it always increases, never decreases, never makes unexpected jumps, and

never skips. It is not subject to vulnerabilities or dependencies in external time

sources. Importantly, even if highly accurate oscillators are used, raw time passes at

a slightly different rate than system time. This difference is called clock drift. Raw

time is not adjusted for the error introduced by clock drift. Thus, the accuracy of

raw time is dependent on the clock drift, which further depends on factors including

oscillator quality, system load, or ambient temperature, etc..

Adjusted raw time When raw time is compared to an external reference time source

in order to adjust for clock drift, then the result is adjusted raw time. This adjustment

doesn’t happen sporadically but rather, the rate of advance of time is slowed down

or sped up slightly until it approaches that of the external reference time source.

Therefore, adjusted raw time is still monotonic. Like raw time, adjusted raw time is

subjective with no specific meaning attached to its values. But how does one obtain

the adjusted raw time? One way to do this to access an external time source using

one of the networking timing protocols we discussed earlier. The approach, however,

is thus susceptible to some of the security risks that underly these network timing

protocols.

4.2.2 The Domain Name System (DNS)

We briefly review the aspects of DNS, address resolution and caching that are relevant

to the DNS cache attacks that we present in Section 4.3.
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Domain Name System DNS is one of the Internet’s most critical components.

DNS is a distributed database that provides mappings between domain names and

IP addresses and other resources in the form of resource records (RRs). A DNS

name server (NS) stores the DNS RRs for a domain and responds with answers to

queries against its database. An authoritative NS is responsible for mapping domain

names for a specific domain (e.g., example.com) to Internet resources, by serving the

relevant DNS RRs (A, CNAME, PTR, etc.).

Caching To resolve an address (Mockapetris, 1987a), a stub resolver typically sends

DNS query from an end-user system to a recursive resolver. If the requested record is

not found in the recursive resolver’s cache (i.e., the query ‘cannot be resolved locally’)

then the recursive resolver recursively queries the authoritative NSs in order to resolve

the name. The recursive resolver caches the final response, and any additional RRs

it learned as part of the resolution process, and sends the final response to the stub

resolver. The stub resolver may also cache the final response.

4.2.3 Time in DNS

Time is an important component of DNS RRs. Each RR contains a time interval,

known as the Time to Live (TTL), which is assigned by the administrator of the

DNS zone in the zone file (aka., “master file” in (Mockapetris, 1987a)). The DNS

specifications require the TTL to be a relative time. However, as we shall now see,

these TTLs are converted to absolute time when they are used for DNS caching.

Later, in Section 4.3, we show that this conversion to absolute times creates network-

time-related vulnerabilities.

According to RFC 1035 (one of the earliest DNS RFCs), TTL specifies the time

interval (i.e., the relative time) that an RR may be cached before the source of the

information should be consulted again (Mockapetris, 1987b). RFC 1035 recommends

that all caching resolvers obey TTL values for caching, but RFC 2181 (Elz and Bush,

example.com
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1997) says that caches can upper-bound the TTL of any RR, and treat any TTLs

larger than the upper bound as if they were equal to the upper bound. In other words,

the TTL specifies a maximum time to live, not a mandatory time to live. RFC 1035

also advises the zone file manager about suitable TTL values for different RRs in

different situations.3

Upon receiving a DNS RR, a caching resolver is supposed to cache the RR for

the time interval specified by its TTL. While the TTL is a relative value, the RFCs

do not clearly specify how the cache should determine that the TTL has elapsed.

However, there is some evidence that the RFCs assume that the cache converts the

TTL to an absolute time.

The first bit of evidence comes when RFC 1035 says “When the RR has an absolute

time, it is part of a cache”, which suggests that the RFC assumes that the cache will

implement the TTL as an absolute time.

The second bit of evidence comes from RFC 1035’s recommendations for validating

the freshness of an RR that is retrieved from the cache in order to answer a query.

Specifically, RFC 1035 recommends timestamping the query for an RR using the

current system time, and comparing that timestamp with the TTL of the RR in the

cache. Comparing the system time (an absolute time) with the TTL time implicitly

implies that the cache is storing the TTL as an absolute time.4

We checked popular caching resolver implementations ((Unbound, 2018), (Bind,

2018), (Powerdns, 2018), (Dnsmasq, 2018), (knot, 2018) (before v1.5.1) ) to see how

3For instance, RFC 1035 says that TTL values on the order of days or weeks boost Internet
performance and suggests a TTL value of zero for certain records such as SOA RR that should not
be cached. One may also choose to have lower TTL values for extremely volatile data or if a change
in the RR is anticipated to minimize inconsistency and then later revert back to the longer TTL.

4Specifically, RFC 1035 says: The “timestamp indicat[es] the time the request [for an RR] began.
The timestamp is used to decide whether RRs in the database can be used or are out of date. This
timestamp uses the absolute time format previously discussed for RR storage in zones and caches.
... When the RR has an absolute time, it is part of a cache, and the TTL of the RR is compared
against the timestamp for the start of the request.”
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their caches were implementing time. We found that these implementations all mark

the end of validity of the cached object by translating the relative time values in the

TTL into absolute time values by adding an offset equal to the TTL to the current

system time.

DNS resolver implementations do not come with a predefined mechanism for get-

ting absolute time. So the best that they can do is to rely on system time (which

represents some form of absolute time) from underlying OS to get these absolute time

value. For instance, the POSIX function to get the system time is gettimeofday(),

which gives the number of seconds and microseconds since the epoch 1970-01-01

00:00:00 +0000 (UTC). It therefore follows that DNS resolver implementations take

the correctness and security of system time for granted. This creates a security risk,

because the system time is often set by network timing protocols (e.g., NTP), which

are vulnerable to attack (see Section 4.2.1.)

Cache security and correctness. Finally, we note that the risks due to the cache’s

reliance on absolute time (or system time) are not mentioned in the DNS RFCs. RFC

1035 only minimally discusses security risks to the cache. The closest that RFCs get

to this is: (a) RFC 1035 suggests implementing the cache as separate data structure

so that it can be easily discarded without disturbing zone data (especially since the

cache is vulnerable to corruption when a system reboots, and because it can also

become full of expired RRs) and (b) RFC 3833 (Atkins and Austein, 2004), RFC

5452 (Hubert and von Mook, 2009) and RFC 7873 (III and Andrews, 2016) discuss

hardening caches to DNS spoofing and cache poisoning attacks.

4.3 Using Time to Attack the DNS Cache

We now investigate a largely overlooked and important threat in DNS: the impact of

security vulnerabilities introduced because resolver’s caches are dependent on absolute
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time, which is obtained from the system time, which is often obtained via network

timing protocols (e.g., NTP), which are vulnerable to attacks. In this section, we

present two attacks that exploit vulnerabilities in networking timing protocols: a

Cache Expiration Attack and a Cache Sticking Attack. We also discuss how each of

these attacks can harm DNS and other protocols and applications that rely on DNS.

4.3.1 Cache Expiration Attack

If the system time is shifted forward on a caching DNS resolver, then the RRs in the

cache would expire sooner than intended. This is tantamount to flushing attacks on

DNS cache and may cause a denial of DNS services to a client.

This attack is possible when the system time is updated from an external source

that is attackable, e.g., NTP (Malhotra et al., 2016), (Malhotra and Goldberg, 2016),

(Malhotra et al., 2017) and SNTP (Selvi, 2014). The attack follows because DNS

cache implementations use the system time to determine TTLs. Meanwhile, the DNS

protocol gives TTL as a relative time. If the cache had instead implemented TTLs

as a relative time (i.e., raw time or adjusted raw time, see Section 4.2.1) the security

of system time would have no impact on the security of the cache.

We perform the attack in the laboratory setting. For this we set up our own

validating, recursive, and caching DNS resolver Unbound v1.7.3 (Unbound, 2018) on

an Arch Linux version 2018.08.01 machine. (This was the latest version of Unbound

and Arch Linux at the time of our test). Our resolver uses NTP to update the

system time; indeed, NTP is the most common method of time synchronization on

GNU/Linux systems and on Arch Linux systems (Archlinux, 2018). We reboot the

system just to allow for a clean attack demonstration; this same attack is possible

even if the system is not rebooted. On system reboot, the resolver cache is empty.

We then perform the following experiment:

1. We initialize the empty cache by inserting an A record as follows. Send an
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A record query to the recursive resolver for the domain ndss-symposium.org

using the standard dig query for DNS lookup. (The dig query bypasses the

stub resolver cache lookup on our test machines.) Since the recursive resolver

has an empty cache, it performs a recursive lookup for the domain. It first

queries the root TLD, then .org authoritative NS and then ndss-symposium.org

authoritative NS to get the final A record as the answer. In our experiment,

the recorded time to complete the entire recursive address resolution process

was 267 ms and TTL was 3600 sec ≈ 1 hour (per the“Query time” and “TTL”

field respectively in the dig response message).

2. Next, we confirm that the A record has been cached by the resolver. To do this,

we perform another query, within the TTL window of the A record, for the same

domain.The record time to answer the query was just 4 ms, implying that the

record is served from the resolver cache.

3. Next, we attack by manually changing the system time on the resolver to be

past the TTL window of the cached A record by 1 hour 5 minutes. (There are

several techniques to perform these attacks from off-path and on-path described

in (Malhotra et al., 2016), (Malhotra et al., 2017), (Malhotra and Goldberg,

2016), (Selvi, 2014). We did not reproduce those attacks in our lab.)

4. Next, we perform the same query to the resolver. We observe now the query took

94 ms because it did not have to do the full recursion from the root. The root and

.org were still cached (because they have longer TTLs than 1 hour 5 minutes.)

The resolver had to refetch the A record for only ndss-symposium.org which

indicates that the A record was flushed from the cache.

ndss-symposium.org
ndss-symposium.org
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4.3.2 Implications of the Cache Expiration Attack

We consider the implications of cache expiration attack in three categories: (a) im-

pact on DNS, (b) making other attacks easier, and (c) economic repercussions for

outsourced domains.

Impact on DNS. Caching is critical to the DNS. All recursive resolvers are caching,

while many stub resolvers (depending on the underlying OS) support caching. (For

instance, Windows (Klein, 2018), Linux dnsmasq (dnsmasq, 2018) and Linux systemd

(systemd, 2018) do support caching in stub resolvers, but the libc stub resolver does

not.) Our attack harms caching performance and availability.

Performance A cache fetch from the resolver is much faster than a full recursive

query to one (or many) external NS(es). This is also indicated in our attack demon-

stration above which took 4 ms to respond from the cache as opposed to 267 ms

for full recursive response. Research suggests that resolvers typically have a 70-90%

cache hit rate (Jung et al., 2001), (DeGroote, 2013), so by flushing the cache using

our cache expiration attack, we can harm performance significantly. Each time this

attack is launched, flushing the cache, it harms the performance for the first query

made for a given RR. Nevertheless, we believe this performance hit is significant. As

evidence of this, (Kareem, 2017) observed that DNS resolver operators sometimes

serve RRs from the cache for 2-3 days longer than is allowed by their TTLs. In other

words, the the performance hit we have demonstrated here is important enough to

DNS operators that they sometimes are willing to disregard the requirements of the

DNS specifications.

Availability If the cached RRs expire too soon and the local caching resolver has

to go out and query the name servers for every other query it receives, the relia-

bility level of the DNS becomes the limiting factor in availability of service. RFC

1034 (Mockapetris, 1987a) says that even though the Internet is built for resiliency
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and redundancy, nameservers can be down and/or communication link to the root

server broken due to network disruptions or other reasons. In such cases, the cache

of recursive resolver decides the availability of resolving services.

This is a real threat, as we have seen many instance when DNS services go down

but users are unaffected because of the presence of the cache. Consider, for instance

large-scale DoS attacks like as DNS flooding, which are symmetrical DoS attacks

that attempt to exhaust server-side assets (e.g., memory or CPU) with a flood of

UDP requests, generated by malicious scripts running on several compromised bot-

net machines. In one incident (rootops, 2015), some root DNS servers received high

query rates that caused network connections to saturate, denying service to valid,

normal queries. As another example, series of DDoS attacks on DNS provider Dyn

in 2016 (“2016 Dyn cyberattack”, 2016) affected many major services. (News head-

lines went so far as to say that it “broke the Internet” (Gordon, 2016), (SiteUptime,

2016), (Steinberg, 2016)). When Dyn’s targeted, authoritative DNS servers became

unavailable, the attack traveled across the world at TTL speed. That is, as soon as

a recursive resolver attempted to refresh its cache and discovered that Dyn wasn’t

available, it had no supply of IP addresses to provide. Since most of the records in

question relied on short TTLs, the impact was almost immediate. Meanwhile, longer

TTLs in DNS cache buys time for remedial action to be taken against the adversary.

However, with our cache expiration attack if the cached responses expire, then the

service is no longer available.5

Other Attacks made easier. We can use the cache expiration attack to make other

DNS attacks easier to accomplish.

DNS cache poisoning made easier With DNS cache poisoning, an attacker at-

5As a solution, there is a new draft IETF specification (Lawrence and Kumari, 2017) that proposes
to serve expired data from the cache to maintain availability and draft. Also (Pappas et al., 2012)
suggests keeping longer TTL values to improve DNS service availability during prolonged outages.
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tempts to insert a fake DNS record into the cache. If the querying resolver accepts

the fake record and saves it, the cache is poisoned and subsequent requests for that

record are answered as this fake record within its TTL window. The attacker may

poison the cache with fake A or AAAA, or CNAME, or NS RR that cause traffic

redirects to a server controlled by attacker. Since almost all communications on the

Internet require a DNS lookup, any application that is served from the DNS cache

becomes vulnerable.

Importantly, cache poisoning attacks can be difficult because they require the

victim resolver to send a query to an external NS. However, if the relevant RR is

already present in the victim resolver’s cache, then the query to the external NS will

never be sent, and the cache poisoning attack will not succeed. (Indeed, RFC 5452

explains how longer TTLs for cached responses make DNS cache poisoning harder.)

Meanwhile, our cache expiration attack flushes RRs out of the cache, making it easier

to launch a cache poisoning attack.

Fast fluxing made easier Fast Flux (Honeynet, 2018), (Holz et al., 2008) is a

DNS technique used by botnet networks to hide various malicious activities, behind

a dynamic network of compromised machines acting as proxies. The basic technique

behind fast fluxing is to have multiple IP addresses associated with a single domain

name (controlled by the attacker) which are swapped at high frequency, using short

TTL values. However, fast fluxing is commonly thwarted by DNS resolvers that

defensively reject RRs with very short TTLs. However, with our cache expiration

attack, one can effectively shorten TTLs short, thus thwarting this defense mechanism

and aiding fast fluxing. While our attack works only on individual caching resolvers

(rather than authoritative NSes), it’s important to remember that some resolvers

serve as core Internet infrastructure that are used by a large number of users (e.g.,

8.8.8.8, 9.9.9.9, 1.1.1.1). Moreover, fast fluxing via cache expiration attack is more
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difficult to detect than very short TTLs.

4.3.3 Cache Sticking Attacks

If system time is shifted backwards on DNS resolver, the validity period of cached

RRs may increases. This makes them stick in the cache for longer than their intended

TTL. This attack is identical to the Cache Expiration Attack we just presented, except

that now, the attacker maliciously shifts time backwards, rather than forwards. That

said, the implications of this attack are different.

4.3.4 Implications of the Cache Sticking Attack

Cache Poisoning lasts longer If the attacker is able to poison the cache at a victim

resolver (by inserting a fake RR into the cache), then by sticking the cache he can

keep the cached poisoned for a long time. This approach circumvents many existing

defenses that try to limit the impact of cache poisoning by limiting the TTL of records

that live in the cache. For instance, by default the Unbound resolver will requery for

cached responses every 24 hours to alleviate the damage if the cache is poisoned.

(This way a poisoned record will necessarily be requeried in 24 hours, forcing the

attacker to relaunch the attack every 24 hours.) Meanwhile, our cache sticking attack

will prevent this requerying, since the victim resolver will not realize that 24 hours

have passed.

Domain Propagation Delay The TTL of a RR determines the rate at which

changes to a DNS RR propagate through the DNS ecosystem. This is why RFC

1035 suggests that when a change to an RR is anticipated, the domain owners should

reduce the TTL values of that RR prior to the change. Meanwhile, our cache sticking

attack thwarts this approach, by making even those RRs with a short TTL live longer

in the cache. While this attack targets resolvers (rather than authoritative NSes), it

can still have a big impact if those resolvers serve as infrastructure (e.g., 8.8.8.8 or
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9.9.9.9 or 1.1.1.1). We now discuss several ways that this cache sticking attack can

harm DNS.

1) Failover. Content Delivery Networks (CDNs) often use short TTLs on DNS

records to tackle failovers. Failover is defined to be the process of moving an service

from one IP to another, in the event that access to that IP fails. This failover process

should happen as quickly as possible. A low TTL for the A record bindings can reduce

the failover latency due to DNS caching and update the system more quickly, making

the failover services more effective (Jung et al., 2001), (Singh and Schulzrinne, 2007).

However, with our cache sticking attack, this approach of adding robustness to the

system can be rendered ineffective by sticking old RRs in the cache and delaying the

propagation of new RRs.

2) Load Balancing and Quality of Service (QoS): Various CDNs (Cloudflare, 2018)

(Akamai, 2018) rely on DNS-based server selection to balance load. The idea is that

the CDN’s authoritative NSes decide which RRs to serve in response to a query (e.g.,

for www.example.com) based on the location of querying resolvers. (For instance, a

resolver in Italy may be directed to a webserver for www.example.com at IP 1.2.3.4

while a resolver in China might be directed to a webserver for www.example.com at

IP 9.8.7.6.) By serving different RRs to different resolvers (that all make the same

query), the CDN can balance load across multiple webservers. Since it is a dynamic

server selection scheme that must adapt to dynamically changing loads, CDNs may

want to frequently change the RRs they serve to a given resolver. This requires TTLs

on RRs to very short (on the order of a few minutes (Pan et al., 2003)). However,

our cache sticking attack sticks a user to a particular RR, which may be outdated or

saturated with load. This affects the quality of service achieved by the load balancing

scheme.

3) Suppose a domain name is sold or transferred, orr that one wants to change the

www.example.com
www.example.com
www.example.com
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DNS host for a domain. Then, the RRs related to this domain need to be changed.

Short TTLs allow this change to quickly propagate through the DNS ecosystem.

Meanwhile, with our cache sticking attack, an old RR may be stuck in the victims

cache, directing the users to an old IP which may now be malicious or may have old

data. (This idea is also similar to the IP-use-after-free attacks presented by (Borgolte

et al., 2018).)

Negative Caching RFC 1034 (Mockapetris, 1987a) optionally provided a nega-

tive caching service to allow negative responses (NXDOMAIN) with TTLs to be

distributed by NSes and cached by resolvers. RFC 2308 (Andrews, 1998) makes neg-

ative caching -the storage of knowledge that something does not exist - mandatory for

the caching resolvers. This is important, as it not only reduces the response time of

negative responses, but also helps reduce DNS traffic. However, RFC 2308 is sensitive

to risk of a DoS attack that propagates via a negative response (NXDOMAIN) that

has a very high TTL; as a defense, the RFC suggests a sanity check to make sure

that the TTL on negative responses is not too high. Meanwhile, our cache sticking

attack would thwart any such defense, by sticking even those NXDOMAIN responses

with short TTLs in the cache for a very long time.

Blacklisting DNS has become the de-facto standard for the creation and distribu-

tion of blacklists of IP addresses/domains associated with spam and other anti-social

behavior on the Internet. RFC 5782 says that a blacklist of IPs that sends a spam

should have short TTLs as these IPs tend to change frequently (might change ev-

ery few minutes). However, with the cache sticking attack, one can effectively make

TTLs longer, potentially blacklisting address long after they have recovered from a

compromise by the spammer.
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4.4 Measuring the attack surface

We use measurements to find the number of DNS resolver IPs in the wild that are

vulnerable to our cache sticking and cache expiration attacks.

We perform our measurement study on two kinds of DNS resolvers (1) Open

resolvers - ones that are publicly accessible, and willing to resolve recursive queries

for anyone on the Internet (2) Private resolvers - ones that are meant to provide

resolver service to hosts in their respective network only. We test private resolvers

only in those networks that have RIPE Atlas (ripe, 2018) probes.6

4.4.1 Pivoting from NTP time-shifting attacks

Our attacks rely on shifting time on the resolvers. Resolvers that use NTP to update

their system time are vulnerable to off- and on-path time-shifting attacks (Malhotra

et al., 2016), (Malhotra and Goldberg, 2016) and (Malhotra et al., 2017). Thus we

measure the attack surface of our DNS cache sticking and DNS cache expiration

attacks by assuming that the attacker preforms the attack via NTP.

MiTM attacks via NTP. All NTP clients are vulnerable to Man-in-the-Middle

(MiTM) time-shifting attacks. This follows because NTP packets are never encrypted

and are typically not authenticated by a message authentication code (MAC) (Mal-

hotra et al., 2017). Instead, an NTP client decides whether to accept packets from

a timeserver by checking a nonce called the origin timestamp on the timeserver’s

response packet; the origin timestamp on the timeserver’s response packet (aka, an

NTP mode 4 packet) is required to match the transmit timestamp on the client’s

query packet (aka, an NTP mode 3 packet). The transmit timestamp on the client

query can trivially be read by a MiTM, making NTP vulnerable to MiTM attackers

that spoof bogus server response packets in order to shift time on the client (Malhotra

6Since these networks are maintained by individuals or enterprises for internal use, they are
generally not accessible from outside the network.



110

et al., 2016), (Malhotra et al., 2017). If a resolver is vulnerable to NTP MiTM at-

tacks, the MiTM can execute our cache expiration and cache sticking attacks on DNS.

As we will soon see, we found that 33% of measured private resolvers and 5.37% of

measured open resolvers speak NTP and are thus vulnerable to these MiTM attacks.

Below we discuss how we find and interpret these results.

Off-path attacks via NTP. Next we consider whether NTP can be used to launch

our cache expiration and cache sticking attacks from off-path. One key reason that

NTP is vulnerable to off-path attacks is because it operates over UDP. Nevertheless,

clients that simply speak NTP are not necessarily vulnerable to off-path time-shifting

attacks (although several generic off-path time-shifting attacks have been found and

patched (Malhotra et al., 2016), (Malhotra et al., 2017)). This follows because an

off-path attacker cannot read the transmit timestamp nonce on an NTP client query,

and therefore cannot correctly inject a bogus server response with a correct origin

timestamp. To attack from off-path, the attacker somehow has to learn the origin

timestamp nonce.

That said, there is a known attack (Malhotra et al., 2017, Section V), called the

“Leaky Origin Timestamp” that causes the client to reveal his nonce. This attack is

possible on clients that answer unsolicited NTP mode 6 control queries from arbitrary

IPs with information that reveals the origin timestamp nonce. The specific NTP

control queries that should be answered to launch this attack are either (rv assocID

org or rv assocID rec). While patches for this attack exist (namely: stop answering

NTP control queries from unknown IPs), many machines remain vulnerable even as

of August 2018. Thus, we will decide that a DNS resolver is vulnerable to our DNS

cache expiration and cache sticking attack if they respond to either one of the above

NTP control queries. Surprisingly we find that 18.28% of the open resolvers that

replied to NTP mode 3 queries and 6% of private resolvers that replied to NTP mode
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3 queries leaked at least one of the org or rec nonces.

Finally, we note that there is another off-path time-shifting attack called the “Zero-

Origin Timestamp Attack” (Malhotra et al., 2017, Section IV.A). While this attack

was patched over two years ago, not all machines have deployed the patch. This

attack is especially powerful because it does not require the victim NTP client to

answer unsolicited mode 6 control queries from arbitrary IPs. That said, to measure

the attack surface for this zero-origin time attack, we need to use NTP mode 6 control

queries (Malhotra et al., 2017). When performing this measurement, we found that of

the resolvers that answered unsolicited mode 6 control queries, we found that 70.17%

of open resolvers and 69.14% of private resolvers were vulnerable to the zero-origin

timestamp attack.

The bottom line is that many resolvers in our dataset are vulnerable to known

attacks on NTP.

4.4.2 Private resolver measurements.

To find out the number of DNS resolvers that are vulnerable to attacks that pivot

from NTP, we use the RIPE Atlas probes. At the time of our experiment (July 29

2018 - August 2 2018), a total of 10,338 Atlas probes were active. Each probe gets its

list of DNS resolvers by either manual configuration or by default by DHCP in their

respective networks. We start by obtaining the list of IPs for DNS resolvers on each

probe from the publicly available data from another - long running - DNS measure-

ment study (ripe NCC, 2018) on RIPE network. This study builds the resolver IP list

by sending a DNS TXT query for o-o.myaddr.l.google.com from each probe using

the locally configured resolvers. The IP addresses of the locally configured resolvers

are part of the measurement results. By using the results of this query measurement,

we make sure to select only working local resolvers.

In the following steps we discuss our measurement methodology and the challenges
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that we face.

1) MiTM attacks. First we send NTP mode 3 client queries to these privates

resolvers. From the ones that respond to these queries with a mode 4 server response,

we can determine the number of resolvers that use NTP to update their system time.

Importantly, this only gives us a lower bound on the number of resolvers that are NTP

clients, since a security-aware NTP client will only send NTP mode 3 client queries

but not respond to them (Malhotra et al., 2016). NTP clients that respond to NTP

mode 3 queries are (often unwittingly) acting as NTP timeservers. We emphasize

that there is a significant probability that there are other resolvers that are NTP

clients but are configured to ignore mode 3 queries. While an MiTM can launch our

DNS cache attacks to any resolver that speaks NTP (even those who are not acting

as timeservers), we know of no other technique to determine if a remote machine uses

NTP to set its system time. However even this measurement comes with a challenge.

Hurdle 1: Atlas probes allow NTP mode 3 queries only to public IP addresses.7.

In order to filter out the resolvers that have private address, we discard the resolvers

that have IPs in the private address space as described in RFC1918 (Rekhter et al.,

1996). We also discard well-known open DNS resolver addresses.

Stats. We then use the remaining IP addresses as target for mode 3 query. After

filtering we obtained 4,703 unique resolvers with public IP address. We then send

RFC5905-compliant mode 3 NTP queries to these resolvers from the Atlas probes that

had them configured. (Note: NTP mode 3 queries do not modify the internal state

of the queried systems.) Of the 4,703 queried resolvers, a staggering 1,535 (32.64%)

resolvers answered with a mode 4 response to our mode 3 NTP queries.

Discussion The fact that 33% of the scanned private resolvers are acting as NTP

timeservers (by responding to NTP mode 3 queries) looks pretty odd. But if we think

7Note that this restriction is only for NTP queries. One can send DNS queries to both public
and private IP addresses.
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about it, we expect a properly-configured DNS resolver to speak NTP, since accurate

time is a good operational practice, and a necessity for DNSSEC validation too.

Why then, are so many resolvers acting as NTP timeservers? This is likely because

most DNS operators do not spend time thinking through the intricacies of NTP. It

turns out that, by default, the ntpd daemon makes every NTP-speaking system run

as an NTP server (Malhotra et al., 2016); this functionality needs to be turned off

manually by the administrator. Unfortunately, most DNS resolver administrators are

unlikely to be aware of this default. NTP-speaking systems that act as timeservers

are also more vulnerable to time-shifting and DoS attacks, when compared to NTP-

speaking systems that have turned off their timeserver functionality (Malhotra et al.,

2016).8 Also, most DNS operators are probably unaware (or have not thought deeply

about the fact) that NTP is trivially vulnerable to time-shifting attacks by an MiTM,

because NTP packets are not cryptographically authenticated.

1) Off-path attacks. Which of these 1,535 NTP-speaking DNS resolvers are vul-

nerable to off-path time-shifting attacks? To answer this question, we use NTP mode

6 control queries to see how many of those leak their org and rec nonces. We run a

script that sends the following mode 3 queries in order.

ntpq -c "assocID"

ntpq -c "rv assocID org"

ntpq -c "rv assocID rec"

As described earlier, systems that reply to the above queries by revealing either org

or rec nonce are vulnerable to the off-path “Leaky Origin Timestamp” time-shifting

attack on NTP (Malhotra et al., 2017). This brings us to our next challenge.

Hurdle 2: Atlas probes do not allow mode 6 NTP queries to be sent. This means

8This follows because an NTP mode 4 server response reveals the IP address of the time source
used by the responding timeserver, which is useful for launching off-path time-shifting attacks (Mal-
hotra et al., 2016).
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that we can not query these resolvers from inside their network using Atlas probes.

We found two ways that can, to some extent, solve this problem.

One solution is to querying these resolvers from outside the network in which they

reside using NLnet Labs network. This approach is very limited since the resolvers

are inside a private network, there is a low chance that they can be queried from

outside. We queried the 1,535 resolvers. 68 resolvers leaked at least one of the org

or rec nonces. Of these, 49 resolvers also leaked information indicating that they are

vulnerable to the NTP Zero-Origin Timestamp attack.

An additional solution is to use the NLNOG RING (Snijders, 2018) nodes. 377

(24.56%) resolvers have a common network with at least one NLNOG ring node.

Of these 42 (11.15%) resolvers leaked at least org or rec, and 38 of the responding

resolvers also revealed that they are vulnerable to the Zero-Origin Timestamp attack

on NTP.9

Putting these two approaches together, we found a total of 98 resolvers that

revealed at least one of the org or rec NTP nonces (and thus are vulnerable to the

off-path“Leaky Origin Timestamp” attack). Of these 65 resolvers were also vulnerable

to the off-path “Zero Origin Timestamp” attack on NTP. Both of these NTP attacks

should have been patched years ago. Nevertheless, these resolvers remain vulnerable,

which by extension makes them vulnerable to our DNS cache attacks from off-path.

4.4.3 Open resolver measurements.

To measure the number of DNS resolver IPs in the wild, we obtain data from the

Open Resolver Project (Mauch, 2018) that runs weekly scans of IPv4 address space

to determine the IPs that respond to DNS queries. obtained a list of 23,137,317 IPs

that responded to these queries during the week of April 15, 2018. We then start our

9NLNOG RING nodes do not have inbuilt support for mode 6 NTP queries. However, NLNOG
RING allows for customized queries, so we copied NTP mode 6 queries to these nodes.
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Resolver type Total IPs replied to mode 3 leaked org OR rec leaked org 0
Open 342,131 18,385 (5.37%) 3,434 (18.68%) 2,416 (70.17%)
Private 4,703 1,535 (32.64%) 98 (6.39%) 65 (69.14%)

Table 4.1: Resolver IPs vulnerable to NTP time-shifting and our DNS cache expi-
ration and cache sticking attacks. Column 3- All IPs vulnerable to MiTM, Column
4 - All IPs vulnerable to off-path attacks, column 5 - All IPs vulnerable to off-path
Zero Origin Timestamp attack.

scan on DATE July 28, 2018 as follows:

1) We send a DNS A query for www.example.com to this list of 23,137,317 IPs.

1,458,194 IPs still replied to the DNS A query. Of the ones that replied, we found

that 342,131 (23.46%) are open resolvers (those that replied with an answer) and

1,116,063 (76.54%) were non-answering, returning either REFUSED or some other

DNS error code, indicating that they resolvers, but not open resolvers.10

2) Next, we send NTP mode 3 query to 342,131 answering open resolver IPs.

Of these, 18,385 (5.37%) replied back with a mode 4 response packet. And 87,141

(7.80%) of 1,116,063 non-answering IPs replied back with a mode 4 response. All

of these resolvers are vulnerable to MiTM NTP attacks and hence our DNS cache

expiration and cache sticking attacks by an MiTM.

3) We then send NTP mode 6 control queries to 18,385 answering open resolver

IPs and found that 3,451 (18.77%) IPs leaked at least one of the org or rec nonces.

Moreover, a total of 416 (70.17%) resolvers indicated that they are vulnerable to the

NTP “Zero-Origin Timestamp” attack.

Discussion 5.37% of scanned open resolvers answered NTP mode 3 queries. We

don’t expect open resolvers (with the exception of infrastructure open resolvers like

8.8.8.8 or 1.1.1.1) to be properly configured; the fact that they are open resolvers is

sufficient evidence of misconfiguration. Why are open resolvers (5%) less vulnerable

10These non-answering resolvers are properly configured private resolvers with access control lists
(ACLs). They may have been open resolvers at those IPs when openresolver project collected the
data, but became non-open resolvers at the time of our scan.
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than private resolvers (33%) to NTP MiTM attacks? Again this might look odd, but

this may be because nobody cares to configure NTP on open resolvers in the first

place, which could be viewed as a bad DNS operational practice. Also, a staggering

18.68% open resolvers acting as NTP timeservers (as compared to only 6% private

resolvers) were found to be vulnerable to off-path time-shifting attacks. This again

supports our argument of misconfiguration, except that now it is a bad configuration

for NTP.

4.4.4 Takeaways and Ethical Measurements

We observe that more private resolvers (as compared to open resolvers) have NTP

configured (33%) (good for DNS(SEC) operational practice), but fewer of them are

vulnerable to off-path time-shifting attack (6%) (good NTP configuration). Fewer

open resolvers are NTP configured (5%) (bad DNS(SEC) operational practice), but

more of them are vulnerable to off-path time-shifting attacks (19%) (bad NTP con-

figuration). In other words, if the DNS resolver is sloppily configured, then NTP is

sloppily configured as well. Therefore we ask: Is the risk of sloppily configuring NTP

bigger if one configures NTP at all? Our results suggest that this is indeed the case.

Therefore, DNS resolver operators that decide to turn on NTP should also be

careful with their NTP configurations. DNS resolvers should not be operating at NTP

timeservers, because this increases the surface for NTP attacks (Malhotra et al., 2016).

DNS resolvers should also regularly update their NTP software, to avoid situations

where NTP vulnerabilities remain exploitable two years after they should have been

patched.

Ethical measurements. We acknowledge that a far more ‘informative’ measure-

ment would have been to directly measure our DNS cache attacks in the wild by

launching NTP time-shifting attacks in the wild, and then checking if the DNS cache

has been flushed or stuck. Naturally, however, we did not do this, because it would be
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unethical to attack live resolvers. This is especially important since our DNS cache

attacks indiscriminately flush or stick all RRs in the cache, so we could not have a

done a very targeted “test attack” on our own RRs that we inject into the cache of

the measured resolver (as was done e.g., in (Klein et al., 2017)). Instead, we focused

on using NTP side channels for measurements. None of the side channels modify the

internal state of the NTP daemon (see also (Malhotra et al., 2016), (Malhotra et al.,

2017)), and thus also do not modify the state of the DNS cache.

4.5 Recommendations

We believe that setting TTL as relative time value is a feature of the DNS protocol.

To deal with the attacks described in Section 4.3, there is no fundamental change

required to the DNS protocol. The only thing that needs to be dealt with is the way

relative time values (TTL) are implemented in DNS cache. Since TTL represents a

duration of time, we just need the value that gives the difference in time between two

points.

We recommend to get this value from a monotonic source of time that is not sub-

ject to a) manual changes and b) adjustments by vulnerable network timing protocols.

Instead, one can use raw time or adjusted raw time,11as discussed in Section 4.2, de-

pending on their availability on different OS. If both types are available, the choice

of time value to be used is application-specific. For applications that can tolerate a

certain amount of clock drift or need to keep track of extremely small intervals of

time (say on the order of few seconds), then raw time should be used. However, if

that is an issue, then one has no choice but to fall back to adjusted raw time.

11Note that adjusted raw time is subject to adjustments by timing protocols. However, 1) it can
not be set manually, 2) it does not make large jumps, and 3) the rate of passage of time is just
slowed down or sped up which means that it will take way longer to shift time. Adjusted raw time
is better than system time but worse than raw time; see Section 4.2.
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4.5.1 Implementing our Recommendations

Unbound Unbound is a validating, recursive, and caching DNS resolver product

from NLnet Labs(Unbound, 2018). It is distributed free of charge in open source

form under the BSD license.

Unbound’s internal operation is organized around asynchronous event notification.

Different serve-threads wait for events to happen (i.e., network sockets to become

readable, writable, closed or to fail) to take appropriate action. Events are registered

with a so called “event-base” (or loop) together with a timeout value. Fired time-

outs are also events upon which (different) appropriate actions are taken (i.e., retry

scheduling of queries at different authoritatives etc.).

Unbound serve-threads read and record system time, every time events become

available (or timed out). (This is similar to the recommendation in RFC1035 to

timestamp every request/query for an RR, that we discussed in Section 4.2.3.) The

timestamp is subsequently used with Unbound’s operations dealing with the fired

events: to set expiration time for newly cached RRsets, to check the validity of

already cached RRsets, to limit the rate at which requests are send to authoritative

servers, and to check validity of DNSSEC signatures. The function which is used to

read and record system time is gettimeofday().

We have a preliminary implementation of our recommendations for Unbound, and

the implementation is publically available on GitHub. [We omit the link to preserve

anonymity.] At the time of writing, Unbound has been altered as follows. Instead

of one, two timestamps are recorded when events are available, one absolute time

value from gettimeofday() which is used for DNSSEC validation only, and one

relative time value from clock gettime() — currently with the clock id parameter

set to CLOCK MONOTONIC RAW (the unadjusted raw time on Linux systems) — which is

used for all other timing related functions, such as dealing with RRset’s TTL values
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and rate-limiting requests to authoritative servers. Several issues still remain to be

resolved:

1. Those tests — that are part of the Unbound source tree — which are testing

timing behavior of Unbound (i.e., cache expiration etc.) are failing, because

the scripts for those tests are based on absolute time values.

2. The current implementation uses the Linux specific CLOCK MONOTONIC RAW clock

which is an extension on the POSIX standard(“clockgettime”, 2018), which

defines CLOCK MONOTONIC only and leaves whether or not the value is adjusted

for drift, undefined. In general, portability of the implementation has to be

evaluated.

3. Furthermore, Unbound has a built-in event-base system based on select. The

registration and handling of timeout values with this event-base are still based

on absolute time values from gettimeofday(). This has to be rewritten to use

relative time values too.

NLnet Labs has committed to incorporate our changes into Unbound’s main devel-

opment branch once all issues have been resolved and the implementation has proven

to be stable and not negatively affecting current deployments.

Knot-resolver After a preliminary disclosure of our work at IETF 100, the Knot

resolver (knot, 2018) co-incidentally also changed how it used time for DNS caching.

This was released as Knot version 1.5.1. Because Knot’s cache is persistent, it needs

a defined epoch to be meaningful between restarts and reboots. The cache still has

expiration values in absolute time values, but timing discontinuities are detected by

comparing progression of system time with monotonic time. In default configuration,

the Knot clears the cache if time jumps more than 10 minutes into the past. This

has two implications.
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1) This opens the DNS cache to an alternate cache expiration/flushing attack.

The attacker needs to shift time backwards by only 10 minutes and the cache will be

flushed, which is equivalent to our cache expiration attack in which the attacker has

to shift the time forwards to pass the TTL window of the cached response. In fact,

this new attack could be easier, since it is independent of the TTL of a particular

RR.

2) Cache sticking attacks, on the other hand, would now require more persistent

work by the attacker. Remember, for sticking the RRs in the cache the attacker has

to shift time backwards within the TTL window of the RR to stick the RR in the

cache (Section 4.3.3). Meanwhile, knot has now imposed a restriction of 10 minutes.

The attacker can not shift time backwards by more than 10 minutes; if she did, the

cache will be flushed instead of getting stuck. As result, performing a cache sticking

attack is harder, because the attacker has to keep attacking at least every 10 minutes

for as long as he wants to stick the RRs in the cache.

We conjecture that the Knot could not fix this problem entirely because Knot

uses a persistent cache. It is not possible to store relative time values (raw time or

adjusted raw time) in a persistent cache.

4.6 DNSSEC and System Time.

DNSSEC described in RFCs (Arends et al., 2005a) (Arends et al., 2005b) and (Arends

et al., 2005c) is a set of protocols that adds a layer of trust by providing data origin

authentication and data integrity to DNS lookups and exchanges. For authentica-

tion, DNSSEC associates cryptographic digital signatures, called the Resource Record

Signature (RRSIG) records, generated using the zone’s private key with the DNS Re-

source Record Set (RRSet)12. By checking its associated RRSIG, one can verify that

12RRset is a group of records with same label, class and type, but with different data. Typically
RRsets are signed as opposed to signing individual RRs.
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a requested DNS RRset comes from its authoritative NS and wasn’t altered en-route.

A security-aware resolver understands DNSSEC and is capable of using DNSEC RR

types to provide DNSSEC services. When a security-aware resolver learns the zone’s

public key, it can validate the RRSIG as described in (Kolkman and Gieben, 2006).

RRSIG RRs have defined the inception time and expiration time to establish a

validity period for the signatures and the RRsets covered by the signature. These

inception and expiration fields are specified as absolute time values. This is unlike

DNS TTLs, that are expressed as relative time values. Thus, unlike the DNS on-the-

wire protocol, the DNSSEC on-the-wire protocol uses the notion of absolute time.

How do implementations deal with timestamps?In a typical software imple-

mentation (Unbound, Bind, PowerDNS, DNSMasq, etc.), the two absolute time values

on RRSIG RRs are compared against the current system time. The current system

time of the resolver MUST be between these two time values; otherwise the response

is discarded either as an expired or not-yet-valid record.

DNSSEC RRs expired/not-yet-valid attacks If the system time of the security-

aware validating resolver is shifted forward such that it is past the expiration time on

RRSIG, then we can effectively make RRSIG RRs expire. On the other side, if the

time is shifted backwards such that it is before the inception time on the RRSIG, then

we can make them “not-yet-valid”. In such a case, most resolver implementations

(including but not limited to Unbound) shows the SERVFAIL status to the client

and cache this failed response for 60 seconds after five retries with the same NS. This

DNSSEC DoS is tantamount to DNS DoS attack. (Note, there is no fallback to DNS

in case of too many SERVFAILs.)

So how can our attacks make DNSSEC DoS (aka DNS DoS) easier when there are

multiple NSes? First, we note that the Unbound resolver (Dai et al., 2016) (and other

resolvers) keep some statistics about NSes, and will stop querying an NS that causes



122

too many SERVFAILs (or other failures) and start querying other NSes instead. Thus,

a traditional DNSSEC DoS works only if all relevant NSes are causing SERVFAILs

(or other failures). Meanwhile, our attacks directly DoS DNSSEC at the resolver by

shifting time, without controlling any NSes, lowering the bar for the attack. Our

attacks would invalidate all signed data from all correctly configured honest NSes,

and leave the resolver with no NSes to fall back to.

4.6.1 Recommendations

The use of absolute time is inherent to security protocols. This raises the question:

Why don’t we use relative time values to define the validity of cryptographic objects

just like we do for non-cryptographic records? There are two reasons we think that

absolute time is needed for DNSSEC.

Argument 1. The authority determining and setting the validity period on the ob-

ject can be different from the one delivering the object. For example, setting the TTL

value on DNS records is an operational matter and is thus left to the operators of the

DNS zone. Zone operators can change the TTL values on non-signed or non crypto-

graphic records even when they don’t own it. The content of the cryptographically

signed records (RRSIG RRs) are, however, determined by the signer of the records.

When the signer is not also the zone operator, signer has no way to determine when

the records will be queried for, and thus has to depend on cryptographically signed

absolute time values to limit the validity of the record stored in the zone13.

Argument 2. In a replay attack, an attacker records the data and maliciously

resends it later. However if the data has absolute time values on it, that limits its

lifetime. This is not possible with relative time values.

Thus, it becomes imperative for the validating resolver to use system time to

13Note however that DNSSEC signatures do contain the original TTL of an RRset, restricting the
maximum TTL value with which the operator may deliver the RRs.
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validate the absolute time values on RRSIG RRs. The only way to ensure the security

of such a system is to secure the way system time is updated. On the bright side, there

is an ongoing effort at Internet Engineering Task Force (IETF) community to secure

NTP. e.g., (Franke et al., 2018) is a proposal to secure NTP’s client/server mode

using Public Key Infrastructure and another RFC 8573 (Malhotra and Goldberg,

2019) that deprecates MD5-based symmetric key authentication, which is considered

to be too weak, and recommends the use of secure AES-CMAC as a replacement.

DNSSEC resolver operators should be amoung the first to adopt these NTP security

updates.

4.7 Related Work

Attacks. Several works study DNS spoofing and cache poisoning attacks and propose

potential solutions (Kaminsky, 2008), (Herzberg and Shulman, 2012a), (Klein et al.,

2017), (Herzberg and Shulman, 2012b), (Schomp et al., 2014), (Yuan et al., 2006).

These attacks focus on how the DNS protocol can be exploited to poison DNS resolver

caches. By contrast our attacks show how to pivot from vulnerabilities in absolute

time (e.g., in NTP), to attacks that flush/stick the DNS cache. We also discuss how

our DNS cache attacks can lower the bar for classic cache poisoning attacks by a)

making them easier to launch, b) making them stick in the cache for longer. Finally,

we note that existing work tends to propose security fixes to DNS on-wire protocol,

while our recommendations focus on the DNS resolver cache implementations.

DNS measurement. Many previous studies measure DNS resolvers. For instance,

studies have analyzed resolver performance (Boulakhrif, 2015), (Jung et al., 2001),

the effectiveness of resolver caching (Jung et al., 2001), (Bhatti and Atkinson, 2011),

or the classification of open DNS resolvers and their non-legitimate responses. (Ager

et al., 2010) measures local resolvers from 50 commercial ISPs for responsiveness and
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correctness and compares them with third-party popular open DNS resolvers. (Yu

et al., 2012) measure how current caching resolver implementations distribute queries

among a set of authoritative NSs. Our measurements are different because we focus

on NTP-related vulnerabilities at DNS resolvers.

NTP measurement.In (Malhotra et al., 2016), (Malhotra and Goldberg, 2016),

(Malhotra et al., 2017), the authors scan the IPv4 address space to find systems that

are vulnerable to NTP attacks. While our attack surface measurement uses similar

NTP queries (as in (Malhotra et al., 2017)) our measurements are specifically focused

on open and private DNS resolvers.

4.8 Conclusion

We showed that DNS resolvers’ dependence on absolute time makes them vulnerable

to DNS caching attacks and DNS(SEC) DoS attacks. We studied the attack surface

using network measurements, focusing specifically on the Network Time Protocol

(NTP) as a vector for remotely attacking time. Our network measurements indicate

that the attack surface is large . From total 342,131 measured open resolvers, we

identified 18,385 open DNS resolvers that use NTP to set the absolute time. From

total 4703 measured private resolvers, we find 1,535 private DNS resolvers that use

NTP to set the absolute time. All these NTP-speaking resolvers are vulnerable to

attacks by a MiTM that pivot from NTP time-shifting into DNS cache sticking /

cache expiration attacks and DNSSEC downgrade attacks. In fact, we identified

3,451 out of 18,385 measured open DNS resolvers and 98 out of 1,535 measured

private DNS resolvers that are vulnerable to NTP time-shifting attacks that can be

launched from off-path, by any remote machine on the Internet with the ability to

spoof UDP packets. While these off-path NTP attacks should have been patched over

two years ago, many resolvers in the wild remain vulnerable.
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Our attacks indicate that DNS caches should lessen their reliance on absolute time.

Indeed, the DNS on-wire protocol does not actually need absolute time; instead,

DNS packets only use relative time. We therefore recommend that DNS caching

resolvers use relative time rather than absolute time. Specifically, we suggest using

the operating system’s raw time, which is monotonically increasing and not subject

to adjustment by external sources (and thus immune to the network attacks on time

explored here). We are currently working with Unbound resolver to implement and

roll out our recommendations; our implementation is publicly available on Github.

https://github.com/ralphdolmans/unbound/tree/monotonic


Chapter 5

The Security of NTP’s Datagram Protocol

5.1 Introduction

Millions of hosts (Malhotra et al., 2016), (Minar, 1999), (Murta et al., 2006), (Mauch,

2015), (Czyz et al., 2014a) use the Network Time Protocol (NTP) (Mills et al., 2010)

to synchronize their computer clocks to public Internet timeservers (using NTP’s

client/server mode), or to neighboring peers (using NTP’s symmetric mode). Over

the last few years, the security of NTP has come under new scrutiny. Along with

significant attention paid to NTP’s role in UDP amplification attacks (Czyz et al.,

2014a), (Krämer et al., 2015), there is also a new focus on attacks on the NTP

protocol itself, both in order to maliciously alter a target’s time (timeshifting at-

tacks) or to prevent a target from synchronizing its clock (denial of service (DoS)

attacks) (Malhotra et al., 2016), (Stenn, 2016). These attacks matter because the

correctness of time underpins many other basic protocols and services. For instance,

cryptographic protocols use timestamps to prevent replay attacks and limit the use of

stale or compromised cryptographic material (e.g., TLS (Selvi, 2015), (Klein, 2013),

HSTS (Selvi, 2014), DNSSEC, RPKI (Malhotra et al., 2016), bitcoin (Corbixgwelt,

2011), authentication protocols (Klein, 2013),(Malhotra et al., 2016)), while accurate

time synchronization is a basic requirement for various distributed protocols.

126
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5.1.1 Problems with the NTP specification.

We start by identifying three fundamental problems with the NTP specification in

RFC 5905, and then exploit these problems in four different off-path attacks on ntpd,

the “reference implementation” of NTP.

Problem 1: Lack of respect for basic protection measures. The first issue

stems from a lack of respect for TEST2, the mechanism that NTP uses to prevent

off-path attacks. Off-path attacks are essentially the weakest (and therefore the most

scary) threat model that one could consider for a networking protocol. An off-path

attacker cannot eavesdrop on the NTP traffic of their targets, but can spoof IP

packets i.e., send packets with a bogus source IP. This threat model captures ‘remote

attacks’ launched by arbitrary IPs that do not occupy a privileged position on the

communication path between the parties. (See Figure 5·2.)

NTP attempts to prevent off-path attacks much in the same way that TCP and

UDP do: every client query includes a nonce, and this nonce is reflected back to

the client in the server’s response. The client then checks for matching nonces in

the query and response, i.e., “TEST2”. Because an off-path attacker cannot see the

nonce (because it cannot eavesdrop on traffic), it cannot spoof a valid server response.

Despite the apparent simplicity of this mechanism, its specification in RFC 5905 is

flawed and leads to several off-path attacks.

Problem 2: Same code for different modes. NTP operates in several different

modes. Apart from the popular client/server mode (where the client synchronizes

to a time server), NTP also has a symmetric mode (where neighboring peers take

time from each other), and several other modes.RFC 5905 recommends that all of

NTP’s different modes be processed by the same codepath. However, we find that

the security requirements of client/server mode and symmetric mode conflict with

each other, and result in some of our off-path attacks.
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Figure 5·1: Chapter overview.

Problem 3: Leaky control queries. NTP’s control-query interface is not specified

in RFC 5905, but its specification does appear in the obsoleted RFC 1305 (Mills, 1992)

from 1992 and a new IETF Internet draft (Mills and Haberman, 2016). We find that

it can be exploited remotely to leak information about NTP’s internal timing state

variables. While the DDoS amplification potential of NTP’s control query interface

is well known (Czyz et al., 2014a), (Krämer et al., 2015), here we show that it is also

a risk to the correctness of time.

We exploit these three problems to find working off-path attacks on ntpd (Sec-

tion 5.3-5.4, Appendix A), and use IPv4 Internet scans to identify millions of IPs

that are vulnerable to our attacks (Section 5.5). The first three attacks maliciously

shift time on a client using NTP’s client/server mode, and the fourth prevents time

synchronization in symmetric mode.

Attack 1: Leaky Origin Timestamp Attack (Section 5.4). Our network scans find a

staggering 3.8 million IPs that leak the nonce used in TEST2 in response to control

queries made from arbitrary IPs (CVE-2015-8139). An off-path attacker can mali-

ciously shift time on a client by continuously querying for this nonce, and using it to

spoof packets that pass TEST2.

Attack 2: Zero-0rigin Timestamp Attack (Section 5.3.3 and Appendix A.1). This
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attack (CVE-2015-8138) follows from RFC 5905, and is among the strongest timeshift-

ing attacks on NTP that has been identified thus far. The attacker bypasses TEST2

by spoofing server response packets with their nonce set to zero. We use leaky NTP

control queries as a side-channel to measure the prevalence of this attack. We find 1.3

million affected IPs. However, we expect that the true attack surface is even larger,

since this attack itself does not require the control-query interface, works on clients

operating in default mode, and has been part of ntpd for seven years (since ntpd

v4.2.6, December 2009).

Attack 3: Interleaved-Pivot Attack (Section 5.4). Our third off-path timeshifting

attack (CVE-2016-1548) exploits the fact that NTP’s client/server mode shares the

same codepath as NTP’s interleaved mode. First, the attacker spoofs a single packet

that tricks the target into thinking that he is in interleaved mode. The target then

rejects all subsequent legitimate client/server mode packets. This is a DoS attack

(Section 5.4, Appendix A.2).

We further leverage NTP’s leaky control queries to convert this DoS attack to

an off-path timeshifting attack. NTP’s control-query interface also leaks the nonce

used in the special version of TEST2 used in interleaved mode. The attacker spoofs

a sequence of interleaved-mode packets, with nonce value revealed by these queries,

that maliciously shifts time on the client. Our scans find 1.3 million affected IPs.

Attack 4: Attacks on symmetric mode (Appendix B). We then present security analy-

sis of NTP’s symmetric mode, as specified in RFC 5905, and present off-path attacks

that prevent time synchronization. We discuss why the security requirements of sym-

metric mode are at odds with that of client/server mode, and may have been the root

cause of the zero-0rigin timestamp attack.

Disclosure. Our disclosure timeline is in Appendix E. Our research was done against

ntpd v4.2.8p6, the latest version as of April 25, 2016. Since then, three versions have
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been released: ntpd v4.2.8p7 (April 26, 2016), ntpd v4.2.8p8 (June 2, 2016), ntpd

v4.2.8p9 (November 21, 2016). Most of our attacks have been patched in these re-

leases. We provide recommendations for securing the client/server mode in Section 5.7

and symmetric mode in Appendix B.4.

5.1.2 Provably secure protocol design.

Our final contribution is to go beyond attacks and patches, and identify a more

robust security solution (Section 5.6) We propose a new backwards-compatible pro-

tocol for client/server mode that preserves the semantics of the timestamps in NTP

packets (Figures 5·6, 5·7). We then leverage ideas from the universal composability

framework (Canetti, 2001) to develop a cryptographic model for attacks on NTP’s

datagram protocol. We use this model to prove (Section 5.6.3,5.6.4) that our protocol

correctly synchronizes time in the face of both (1) off-path attackers when NTP is

unauthenticated and (2) on-path attackers when NTP packets are authenticated with

a MAC. We also use our model to prove similar results about a different protocol that

is used by chronyd (chronyd, 2015) and openntpd (openNTPD, 2012) (two alternate

implementations of NTP). The chronyd/openntpd protocol is secure, but unlike our

protocol, does not preserve the semantics of packet timestamps.

Our cryptographic model models both on-path attackers and off-path attackers.

An on-path attacker can eavesdrop, inject, spoof, and replay packets, but cannot drop,

delay, or tamper with legitimate traffic. An on-path attacker eavesdrops on a copy

of the target’s traffic, so it need not disrupt live network traffic, or even operate at

line rate. For this reason, on-path attacks are commonly seen in the wild, disrupting

TCP (Weaver et al., 2009), DNS (Duan et al., 2012), BitTorrent (Weaver et al.,

2009), or censoring web content (Clayton et al., 2006). Meanwhile, we cannot prove

that NTP provides correct time synchronization in the face of the traditional Man-

in-The-Middle (MiTM) attacks (aka. ‘in-path attacks’) because an MiTM can always
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Figure 5·2: Threat models.

prevent time synchronization by dropping packets. Moreover, an MiTM can also bias

time synchronization by delaying packets (Mizrahi, 2012a), (Mizrahi, 2012b).1

Taking a step back, our work can be seen as a case study of the security risks that

arise when network protocols are underspecified. It also highlights the importance of

handling diverse protocol requirements in separate and rigourously tested codepaths.

Finally, our network protocol analysis introduces new ways of reasoning about network

attacks on time synchronization protocols.

5.1.3 Related work

Secure protocols. Our design and analysis of secure client/server protocols comple-

1This follows because time-synchronization protocols use information about the delay on the
network path in order to accurately synchronize clocks (Section 5.2). A client cannot distinguish the
delay on the forward path (from client to server) from the delay on the reverse path (from server to
client). As such, the client simply takes the total round trip time δ (forward path + reverse path),
and assumes that delays on each path are symmetric. The MiTM can exploit this by making delays
asymmetric (e.g., causing the delay on the forward path to be much longer than delay on the reverse
path), thus biasing time synchronization.
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ment recent efforts to cryptographically secure NTP and its “cousin” PTP (Precision

Time Protocol) (Mizrahi, 2012b). Our interest is in securing the core datagram pro-

tocol used by NTP, which was last described in David Mills’ book (Mills, 2011).

To the best of our knowledge, the security of the core NTP datagram protocol has

never previously been analyzed. Meanwhile, our analysis assumes that parties cor-

rectly distribute cryptographic keys and use a secure MAC. A complementary stream

of works propose protocols for distributing keys and performing the MAC, begin-

ning with the Autokey protocol in RFC5906 (Haberman and Mills, 2010), which was

broken by Rottger (Röttger, 2012), which was followed by NTS (Sibold et al., 2015),

ANTP (Dowling et al., 2016), other works including (Itkin and Wool, 2016), (Moreira

et al., 2015), and on-going activity in the IETF (Franke et al., 2018).

Attacks. Our analysis of the NTP specification is motivated, in part, by discovery

of over 30 ntpd CVEs between June 2015 to July 2016 (Stenn, 2016). These imple-

mentation flaws allow remote code execution, DoS attacks, and timeshifting attacks.

Earlier, Selvi (Selvi, 2014), (Selvi, 2015) demonstrated MiTM timeshifting attacks

on ‘simple NTP (SNTP)’ (rather than full-fledged NTP). Even earlier, work (Klein,

2013), (Mills, 2011), (Corbixgwelt, 2011) considered the impact of timeshifting on the

correctness of other protocols. The recent academic work (Malhotra et al., 2016) also

attacks NTP, but our attacks are stronger. (Malhotra et al., 2016) presented attacks

that are on-path (weaker than our off-path attacks), or off-path DoS attacks (weaker

than our timeshifting attacks), or off-path time-shifting attacks that needed spe-

cial client/server configurations (our Zero-0rigin Timestamp attack works in default

mode). Also, our measurements find millions of vulnerable clients, while (Malhotra

et al., 2016) finds thousands. Finally, NTP’s broadcast mode is outside our scope;

see (Malhotra and Goldberg, 2016), (Franke et al., 2018), (Mizrahi, 2012b) instead.

Measurement. Our work is also related to studies measuring the NTP ecosystem
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Figure 5·3: Timestamps induced by the server response packet (mode 4).

T1: Origin timestamp. Client’s local time when sending query.
T2: Receive timestamp. Server’s local time when receiving query.
T3: Transmit timestamp. Server’s local time when sending response.
T4: Destination timestamp. Client’s local time when receiving response.

(in past decades) (Minar, 1999), (Murta et al., 2006), the use of NTP for DDoS ampli-

fication attacks (Czyz et al., 2014a), the performance of NIST’s timeservers (Sherman

and Levine, 2016), and network latency (Durairajan et al., 2015). Our attack surface

measurements are in the same spirit as those in (Malhotra et al., 2016), (Malhotra

and Goldberg, 2016), but we use a new set of NTP control queries. We also pro-

vide updated measurements on the presence of cryptographically-authenticated NTP

associations.

5.2 NTP Background

NTP’s default mode of operation is a hierarchical client/server mode. In this mode,

timing queries are solicited by clients from a set of servers; this set of servers is typ-

ically static and configured manually. Stratum i systems act as servers that provide

time to stratum i + 1 systems, for i = 1, ...15. Stratum 1 servers are at the root

of the NTP hierarchy. Stratum 0 and stratum 16 indicate failure to synchronize.

Client/server packets are not authenticated by default, but a Message Authentica-

tion Code (MAC) can optionally be appended to the packet. NTP operates in several

additional modes. In broadcast mode, a set of clients listen to a server that broad-

casts timing information. In symmetric mode, peers exchange timing information

(Appendix B). There is also an interleaved mode for more accurate timestamping

(Appendix A.2).

NTP’s client/server protocol consists of a periodic two-message exchange. The

client sends the server a query (mode 3 ), and the server sends back a response (mode

4 ). Each exchange provides a timing sample, which uses the four timestamps in

Figure 5·3. All four timestamps are 64 bits long, where the first 32 bits are seconds
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elapsed since January 1, 1970, and the last 32 bits are fractional seconds. T1, T2, and

T3 are fields in the server response packet (mode 4) shown in Figure 5·4. The delay

δ is an important NTP parameter (Mills et al., 2010) that measures the round trip

time between the client and the server:

δ = (T4 − T1)− (T3 − T2) (5.1)

If there are symmetric delays on the forward and reverse network paths, then the

difference between the server and client clock is T2− (T1 + δ
2
) for the client query, and

T3 − (T4 − δ
2
) for the server response. Averaging, we get offset θ:

θ = 1
2

((T2 − T1) + (T3 − T4)) (5.2)

A client does not immediately update its clock with the offset θ upon receipt of

a server response packet. Instead, the client collects several timing samples from

each server by completing exchanges at infrequent polling intervals (on the order of

seconds or minutes). The length of the polling interval is determined by an adaptive

randomized poll process (Mills et al., 2010, Sec. 13). The poll p is a field on the

NTP packet, where (Mills et al., 2010) allows p ∈ {4, 5, .., 17}, which corresponds to

a polling interval of about 2p (i.e., 16 seconds to 36 hours).

Once the client has enough timing samples from a server, it computes the jitter

ψ. First, it finds the offset value θ∗ corresponding to the sample of lowest delay δ∗

from the eight most recent samples, and then takes jitter ψ as

ψ2 = 1
k−1

k∑
i=1

(θi − θ∗)2 (5.3)

Typically, 4 ≤ k ≤ 8. A client considers updating its clock only if it gets a stream of

k timing samples with low delay δ and jitter ψ. This is called TEST11.2

2A single server response packet is sufficient to set time on a SNTP (“simple NTP”) client, but
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Figure 5·4: NTP server response packet (mode 4). (Client queries have the same
format, but with mode field set to 3. Symmetric mode uses mode 1 or 2. Broadcast
mode uses mode 5).

TEST11: Check that the root distance Λ does not exceed MAXDIST = 1.5 seconds.

Λ is proportional 3to:

Λ ∝ ψ + (δ∗ + ∆)/2 + E + 2ρ (5.4)

The root delay ∆, root dispersion E and precision ρ are from fields in the server’s

mode 4 response packet (Figure 2·1). Precision ρ is the quality of the system’s local

clock; ρ = 12 implies 2−12 = 244µs precision.

After each exchange, the client chooses a single server to which it synchronizes its

local clock. This decision is made adaptively by a set of selection, cluster, combine

and clock discipline algorithms (Mills et al., 2010, Sec. 10-12). Importantly, these

algorithms can also decide not to update the client’s clock; in this case, the clock

a stream of self-consistent packets is required for full NTP.
3The exact definition of Λ differs slightly between RFC5905 (Mills et al., 2010, Appendix A.5.5.2)

and the latest version of ntpd.
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runs without input from NTP.

Implementation vs. Specification. RFC 5905 (Mills et al., 2010) specifies NTP

version 4, and its “reference implementation” is ntpd (Stenn, 2015d). David Mills,

the inventor of NTP, explains (Mills, 2011) the “relationship between the published

standard and the reference implementation” as follows: “It is tempting to construct a

standard from first principles, submit it for formal verification, then tell somebody to

build it. Of the four generations of NTP, it did not work that way. Both the standard

and the reference implementation were evolved from an earlier version... Along the

way, many minor tweaks were needed in both the specification and implementation...”

For this reason, we consider both ntpd and the specification in RFC 5905.

5.3 The Client/Server Protocol in RFC 5905

We now argue that the client/server datagram protocol in RFC 5905 is underspecified

and flawed. RFC 5905 mentions the protocol in two places: in its main body (Section

8) and in a pseudo-code listing Appendix A. Because the two mentions are somewhat

contradictory, we begin with an overview of the components of NTP’s datagram

protocol, and then present its specification in Appendix A (Mills et al., 2010, Sec. 8),

and in the prose of (Mills et al., 2010, Sec. 8).

5.3.1 Components of NTP’s datagram protocol.

NTP uses the origin timestamp field of the NTP packet to prevent off- and on-path

attacks. (Recall from Figure 5·2 that an off-path attacker can spoof IP packets but

cannot eavesdrop on its target’s NTP traffic, while an on-path attacker can eavesdrop,

inject, spoof, and replay packets, but cannot drop, delay, or tamper with legitimate

traffic.) Whenever a client queries its server, the client records the query’s sending

time T1 in a local state variable (Mills et al., 2010) named “xmt”. The client then

sends T1 in the transmit timestamp of its client query (Figures 5·3 and 5·4). Upon
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1 receive()

2 if (pkt.T3 == 0 or # fail test3

3 pkt.T3 == org): # fail test1

4 return

5

6 synch = True

7 if !broadcast:

8 if pkt.T1 == 0: # fail test3

9 synch = False

10 elif pkt.T1 != xmt: # fail test2

11 synch = False

12

13 org = pkt.T3

14 rec = pkt.time_received

15 if (synch):

16 process(pkt)

Figure 5·5: Pseudocode for the receive function, RFC 5905 Appendix A.5.1.

receipt of the query, the server learns T1 and copies it into the origin timestamp field

of its server response (Figure 5·4). When the client receives the server response, it

performs TEST2:

TEST2: The client checks that the origin timestamp T1 on the server response matches

the client’s time upon sending the query, as recorded in the client’s local state variable

xmt.

The origin timestamp is therefore a nonce that the client must check (with TEST2)

before it accepts a response.4 An off-path attacker cannot see the origin timestamp

(because it cannot observe the exchange between client and server), and thus has

difficulty spoofing a server response containing a valid origin timestamp. Indeed, the

origin timestamp looks somewhat random to the off-path attacker. Specifically, its

first 32 bits are seconds, and the last 32 bits are subseconds (or fractional seconds).

The first 32 bits appear slightly random because the off-path attacker does not know

4Note that ntpd does not randomize the UDP source port to create an additional nonce; instead,
all NTP packets have UDP source port 123.
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the exact moment that the client sent its query; indeed, Appendix A of RFC 5905 has

a comment that says “While not shown here, the reference implementation randomizes

the poll interval by a small factor” and the current ntpd implementation randomizes

the polling interval by 2p−4 seconds when poll p > 4. Moreover, the last 32 bits

also appear somewhat random because RFC 5905 requires a client with a clock of

precision ρ randomize the (32− ρ)- lowest-order bits of the origin timestamp.

The origin timestamp thus is analogous to source port randomization in TCP/UDP,

sequence number randomization in TCP, etc. When NTP packets are cryptograph-

ically authenticated with a MAC, this nonce also provides some replay protection:

even an on-path attacker cannot replay a packet from an earlier polling interval be-

cause its origin timestamp is now stale.

NTP also has mechanisms to prevent replays within the same polling interval.

These are needed because an NTP client continuously listens to network traffic, even

when it has no outstanding (i.e., unanswered) queries to its servers. Whenever a client

receives a server response packet, it records the transmit timestamp field from the

packet in its org state variable. The client uses the following test to reject duplicate

server response packets:

TEST1: The client checks that the transmit timestamp field T3 of the server response

is different from the value in the client’s org state variable.

The client deals with the duplicates of the client’s query as follows:

Clear xmt: If a server response passes TEST2, the client sets its local xmt state

variable to zero.

Suppose the server receives two identical client queries. The server would send re-

sponses to both (because NTP servers are stateless (Mills et al., 2010)). If the client

cleared xmt upon receipt of the first server response, the second server response packet

will be rejected (by TEST2) because its origin timestamp is non-zero. At this point,



139

one might worry that an off-path attacker could inject a packet with origin timestamp

set to zero. But, TEST3 should catch this:

TEST3: Reject any response packet with origin, receive, or transmit timestamp

T1, T2, T3 set to zero.

5.3.2 Query replay vulnerability in Appendix A of RFC 5905.

Pseudocode from Appendix A of RFC 5905 (see Figure 5·5) handles the processing

of received packets of any mode, including server mode packets (mode 4), broadcast

mode packets (mode 5), and symmetric mode packets (mode 1 or 2). Importantly,

this pseudocode requires a host to always listen to and process incoming packets.

This is because some NTP modes (e.g., broadcast) process unsolicited packets, and

RFC 5905 suggest that all modes use the same codepath. We shall see that this single

codepath creates various security problems.

On-path query replay vulnerability. The pseudocode in Figure 5·5 is vulnerable

to replays of the client’s query. Suppose a client query is replayed to the server. Then,

the server will send two responses, each with a valid origin timestamp field (passing

TEST2) and each with a different transmit timestamp field (passing TEST1). The client

will accept both responses. Our experiments show that replays of the client query

harm time synchronization; see Appendix C.

5.3.3 Zero-0rigin timestamp vulnerability in RFC 5905 prose.

Meanwhile, we find the following in Section 8 of RFC 5905:

Before the xmt and org state variables are updated, two sanity checks are

performed in order to protect against duplicate, bogus, or replayed packets. In

the exchange above, a packet is duplicate or replay if the transmit timestamp t3

in the packet matches the org state variable T3. A packet is bogus if the origin

timestamp t1 in the packet does not match the xmt state variable T1. In either

of these cases, the state variables are updated, then the packet is discarded. To
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protect against replay of the last transmitted packet, the xmt state variable is

set to zero immediately after a successful bogus check.

This text describes TEST1 and TEST2, but what does it mean to update the state

variables? Comparing this to the pseudocode in Appendix A of RFC 5905 (Figure 5·5

lines 13-14) suggests that this means updating org and rec upon receipt of any packet

(including a bogus one failing TEST2), but not the xmt state variable.5 Next, notice

that the quoted text does not mention TEST3, which rejects packets with a zero-0rigin

timestamp. Thus, we could realize the quoted text as pseudocode by deleting lines

8-9 of Figure 5·5. Finally, notice that the quote suggests clearing xmt if a received

packet passes TEST2. Thus, we could add the following after line 11 of Figure 5·5

(with lines 8-9 deleted):

else: xmt = 0

However, if xmt is cleared but TEST3 is not applied, we have:

Zero-0rigin Timestamp Attack. The zero-0rigin timestamp vulnerability allows an

off-path attacker to hijack an unauthenticated client/server association and shift time

on the client.

The attacker sends its target client a spoofed server response packet, spoofed with

the source IP address of the target’s server.6 The spoofed server response packet has

its origin timestamp T1 set to zero, and its other timestamps T2, T3 set to bogus values

5Indeed, suppose we did update the xmt variable even after receipt of a bogus packet that fails
TEST2, with the bogus origin timestamp in the received packet. In this case, we would be vulnerable
to a chosen-origin-timestamp attack, where an attacker injects a first packet with an origin timestamp
of the their choosing. The injected packet fails TEST2 and is dropped, but its origin timestamp gets
written to the target’s local xmt variable. Then, the attacker injects another packet with this same
origin timestamp, which passes TEST2 and is accepted by the target.

6As observed by (Malhotra et al., 2016), hosts respond to unauthenticated mode 3 queries from
arbitrary IP addresses by default. The mode 4 response (Figure 5·4) has a reference ID field that
reveals the IPv4 address of the responding host’s time server. Thus, our off-path attacker sends its
target a (legitimate) mode 3 query, and receives in response a mode 4 packet, and learns the target’s
server from its reference ID. Moreover, if the attacker’s shenanigans cause the target to synchronize
to a different server, the attacker can just learn the IP of the new server by sending the target a
new mode 3 query. The attacker can then spoof packets from the new server as well.
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designed to convince the client to shift its time. The target will accept the spoofed

packet as long is it does not have an outstanding query to its server. Why? If a client

has already received a valid server response, the valid response would have cleared

the client’s xmt variable to zero. The spoofed zero-0rigin packet is then subjected to

TEST2, and its origin timestamp (which is set to zero) will be compared to the xmt

variable (which is also zero). TEST3 is never applied, and so the spoofed zero-0rigin

packet will be accepted.

Suppose that the attacker wants to convince the client to change its clock by x

years. How should the attacker set the timestamps on its spoofed packet? The origin

timestamp is set to T1 = 0 and the transmit timestamp T3 is set to the bogus time

now + x. The destination timestamp T4 (not in the packet) is now + d, where d

is the latency between the moment when the attacker sent its spoofed packet and

the moment the client received it. Now, the attacker needs to choose the receive

timestamp T2 so that the delay δ is small. (Otherwise, the spoofed packet will be

rejected because it fails TEST11 (Section 5.2).) Per equation (5.1), if the attacker

wants delay δ = d, then T2 should be:

T2 = δ + T3 − (T4 − T1) = d+ now + x− (now + d+ 0) = x

The offset is therefore θ = x− d
2
. If the attacker sends the client a stream of spoofed

packets with timestamps set as described above, their jitter φ is given by the small

variance in d (since x is a constant value). Thus, if the attacker sets root delay ∆, root

dispersion E and precision ρ on its spoofed packets to be tiny values, the packet will

pass TEST11 and be accepted. This vulnerability is actually present in the current

version of ntpd. We discuss how we executed it (CVE-2015-8138) against ntpd in

Appendix A.1.
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5.4 Leaky Control Queries

Thus far, we have implicitly assumed that the timestamps stored in a target’s state

variables are difficult for an attacker to obtain from off-path. However, we now show

how they can be learned from off-path via NTP control queries. Interestingly, the

control queries we use are not mentioned at all in the latest NTP specification in

RFC5905 (Mills et al., 2010). However, they are specified in detail in Appendix B of

the obsolete RFC1305 (Mills, 1992) from 1992, and are also specified in a new IETF

Internet draft (Mills and Haberman, 2016). They have been part of ntpd since at

least 1999.7 NTP’s UDP-based control queries are notorious as a vector for DDoS

amplification attacks (Czyz et al., 2014a), (Krämer et al., 2015). These DoS attacks

exploit the length of the UDP packets sent in response to NTP’s mode 7 monlist

control query, and sometimes also NTP’s mode 6 rv control query. Here, however,

we will exploit their contents.

The leaky control queries. We found control queries that reveal the values stored

in the xmt (which stores T1 per Figure 5·3) and rec (which stores T4) state variables.

First, launch the as control query to learn the association ID that a target uses for

its server(s). (Association ID is a randomly assigned number that the client uses

internally to identify each server (Mills, 1992).) Then, the query rv assocID org

reveals the value stored in xmt (i.e., expected origin timestamp T1 for that server).

Moreover, rv assocID rec reveals the value in rec (i.e., the destination timestamp

T4 for the target’s last exchange with its server).

Off-path timeshifting via leaky origin timestamp. If an attacker could continuously

query its target for its expected origin timestamp (i.e., the xmt state variable), then

all bets are off. The off-path attacker could spoof bogus packets that pass TEST2 and

shift time on the target. This is CVE-2015-8139.

7https://github.com/ntpsec/ntpsec/blob/PRE_NT_991015/ntpq/ntpq.c

https://github.com/ntpsec/ntpsec/blob/PRE_NT_991015/ntpq/ntpq.c
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Off-path timeshifting attack via interleaved pivot. NTP’s interleaved mode is designed

to provide more accurate time synchronization. Other NTP modes use the 3-bit mode

field in the NTP packet (Figure 5·4) to identify themselves (e.g., client queries use

mode 3 and server responses use mode 4). The interleaved mode, however, does

not. Instead, a host will automatically enter interleaved mode if it receives a packet

that passes Interleaved TEST2. Interleaved TEST2 checks that the packet’s origin

timestamp field T1 matches rec state variable, which stores T4 from the previous

exchange. Importantly, there is no codepath that allows the host to exit interleaved

mode. Appendix A.2 shows that this leads to an extremely low-rate DoS attack that

works even in the absence of leaky control queries. This is CVE-2016-1548.

Now consider an off-path attacker that uses NTP control queries to continuously

query for rec. This attacker can shift time on the client by using its knowledge of

rec to (1) spoof a single packet passing ‘interleaved TEST2’ that pivots the client into

interleaved mode, and then (2) spoof a stream of self-consistent packets that pass

‘interleaved TEST2’ and contain bogus timing information. We have confirmed that

this attack works on ntpd v4.2.8p6.

Recommendation: Block control queries! By default, ntpd allows the client

to answer control queries sent by any IP in the Internet. However, in response to

monlist-based NTP DDoS amplification attacks, best practices recommend config-

uring ntpd with the noquery parameter (Stenn, 2015d). While noquery should block

all control queries, we suspect that monlist packets are filtered by middleboxes,

rather than by the noquery option, and thus many “patched” systems remain vul-

nerable to our attacks. Indeed, the openNTPproject’s IPv4 scan during the week of

July 23, 2016 found 705,183 unique IPs responding to monlist. Meanwhile, during

the same week we found a staggering 3,964,718 IPs responding to the as query.8 The

control queries we exploit likely remain out of firewall blacklists because (1) they are

8To avoid being blacklisted, we refrained from sending monlist queries.
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rv ‘associd’

rv ‘associd’ org

rv ‘associd’ rec

rv

mode 3 NTPv4 query

undocumented in RFC5905 and (2) are thus far unexploited. As such, we suggest

that either (1) noquery be used, or (2) firewalls block all mode 6 and mode 7 NTP

packets from unwanted IPs.

5.5 Measuring the Attack Surface

We use network measurements to determine the number of IPs in the wild that are

vulnerable to our off-path attacks. We start with zmap (Durumeric et al., 2013) to

scan the entire IPv4 address space (from July 27 - July 29, 2016) using NTP’s as

control query and obtain responses from 3,964,718 unique IPs. The scan was broken

up into 254 shards, each completing in 2-3 minutes and containing 14,575,000 IPs.

At the completion of each shard, we run a script that sends each responding IP the

sequence of queries shown below.

These queries check for leaky origin and destination timestamps, per Section 5.4, and

also solicit a regular NTP server response packet (mode 4). Our scan did not modify

the internal state of any of the queried systems. We solicit server responses packets

using RFC 5905-compliant NTP client queries (mode 3), and RFC 1305-compliant

mode 6 control packets identical to those produced by the standard NTP control query

program ntpq. We obtained a response to at least one of the control queries from

3,822,681 (96.4%) of the IPs responding to our as scan of IPv4 address space. We

obtained server response packets (mode 4) from 3,274,501 (82.6%) of the responding

IPs. Once the entire scan completed on July 29, 2016, we identified all the stratum 1

servers (from the rv and mode 4 response packets), and send each the NTP control
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Table 5.1: Hosts leaking origin timestamp.
Total unauthenticated Stratum 2-15 good timekeepers

3,759,832 3,681,790 2,974,574 2,484,775

query peers using ntpq; we obtained responses from 3,586 (76.6%) IPs out of a total

of 4,683 IPs queried. (We do this to check if any stratum 1 servers have symmetric

peering associations, since those that do could be vulnerable to our attacks.)

5.5.1 State of crypto.

The general wisdom suggests that NTP client/server communications are typically not

cryptographically authenticated; this follows because (1) NTP uses pre-shared sym-

metric keys for its MAC, which makes key distribution cumbersome (NIST, 2010),

and (2) NTP’s Autokey (Haberman and Mills, 2010) protocol for public-key authen-

tication is widely considered to be broken (Röttger, 2012). We can use our scan to

validate the general wisdom, since as also reveals a host’s ‘authentication status’ with

each of its servers or peers. Of 3,964,718 IPs that responded to the as command, we

find merely 78,828 (2.0%) IPs that have all associations authenticated. Meanwhile,

3,870,933 (97.6%) IPs have all their associations unauthenticated. We find 93,785

(2.4%) IPs have at least one association authenticated. For these hosts, off-path at-

tacks are more difficult but not infeasible (especially if most of the client’s associations

are unauthenticated, or if the authenticated associations provide bad time, etc.).

5.5.2 Leaky origin timestamps.

Of 3,964,718 IPs responding to the as query, a staggering 3,759,832 (94.8%) IPs leaked

their origin timestamp. (This is a significantly larger number than the 705,183 IPs

that responded to a monlist scan of the IPv4 space by the openNTPproject during

the same week, suggesting that many systems that have been ‘patched’ against NTP
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DDoS amplification (Czyz et al., 2014a), (Krämer et al., 2015) remain vulnerable to

our leaky-origin timestamp attack.)

But how many of these leaky hosts are vulnerable to off-path timeshifting attacks

described in Section 5.4? Our results are summarized in Table 5.1. First, we find that

only 78,042 (2.1%) of the IPs that leak org to us have authenticated all associations

with their servers, leaving them out of the attackable pool. Next, we note that

stratum 1 hosts are not usually vulnerable to this attack, since they sit a the root

of the NTP hierarchy (see Section 5.2) and thus don’t take time from any server.

The only exception to this is the stratum 1 servers that have symmetric peering

associations. Combining data from rv and mode 3 responses, we find the stratum

of the remaining 3,681,790 (97.9%) leaky IPs. We combine this information with

the output of the peers command, which reveals the ‘type of association’ each host

uses with its servers and peers. Of the 4,608 (0.1%) stratum 1 servers, none have

symmetric peering associations. Thus, we do not find any vulnerable stratum 1

servers.

On the other hand, there are 2,974,574 (80.8%) stratum 2-15 IPs that leak their

origin timestamp and synchronize to at least one unauthenticated server. These are

all vulnerable to our attack. We do not count 601,043 (16.3%) IPs that have either

(1) stratum 0 or 16 (unsynchronized), OR (2) conflicting stratums in rv and server

responses (mode 4). Finally, we check if these 3M vulnerable IPs are ‘functional’ or

are just misconfigured or broken systems by using data from our mode 3 query scan

to determine the quality of their timekeeping. We found that 2,484,775 (83.5%) of

these leaky IPs are good timekeepers—their absolute offset values were less than 0.1

sec.9 Of these, we find 490,032 (19.7%) IPs with stratum 2. These are good targets

for attack, so that the impact of the attack trickles down the NTP stratum hierarchy.

9We compute the offset θ using equation (6.2), with T1, T2, T3 from the packet timestamps and
T4 from the frame arrival time of the mode 4 response packet .



147

Table 5.2: Hosts leaking zero-0rigin timestamp.
Total unauthenticated Stratum 2-15 good timekeepers

1,269,265 1,249,212 892,672 691,902

Table 5.3: Hosts leaking rec and zero-0rigin timestamps. (Underes-
timates hosts vulnerable to the interleaved pivot timeshifting attack.)

Total unauthenticated Stratum 2-15 good timekeepers
1,267,628 1,247,656 893,979 691,393

5.5.3 Zero-0rigin timestamp vulnerability.

The zero-0rigin timestamp vulnerability was introduced seven years ago in ntpd v4.2.6

(Dec 2009), when a line was added to clear xmt after a packet passes TEST2.10(This is

Line 18 in Figure A·1.) Thus, one way to bound the attack surface for the zero-0rigin

timestamp vulnerability is to use control queries as measurement side-channel. We

consider all our origin-timestamp leaking hosts, and find the ones that leak a times-

tamp of zero. Of 3,759,832 (94.8%) origin-timestamp leaking IPs, we find 1,269,265

(33.8%) IPs that leaked a zero-0rigin timestamp. We scrutinize these hosts in Ta-

ble 5.2 and find ≈ 700K interesting targets. Importantly, however, that this is likely

an underestimate of the attack surface, since the zero-0rigin vulnerability does not

require the exploitation of leaky control queries.

5.5.4 Interleaved pivot vulnerability.

The interleaved pivot DoS vulnerability (Appendix A.2)was introduced in the same

version as the zero-0rigin timestamp vulnerability. Thus, the IPs described in Sec-

tion 5.5.3 are also vulnerable to this attack.

10See Line 1094 in ntp proto.c in https://github.com/ntp-project/ntp/commit/fb8fa5f

6330a7583ec74fba2dfb7b6bf62bdd246.

https://github.com/ntp-project/ntp/commit/fb8fa5f6330a7583ec74fba2dfb7b6bf62bdd246
https://github.com/ntp-project/ntp/commit/fb8fa5f6330a7583ec74fba2dfb7b6bf62bdd246
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Next, we check which IPs are vulnerable to the interleaved pivot timeshifting

attacks (Section 5.4). These hosts must (1) leak the rec state variable and (2) use

a version of ntpd later than 4.2.6. Leaks of rec are also surprisingly prevalent:

3,724,465 IPs leaked rec (93.9% of the 4M that responded to as). These could be

vulnerable if they are using ntpd versions post v4.2.6. We cannot identify the versions

of all of these hosts, but we do know that hosts that also leak zero as their expected

origin timestamp are using versions post v4.2.6. We find 1,267,265 (34%) such IPs

and scrutinize them in Table 5.3.

5.6 Securing the Client/Server Protocol.

We now move beyond identifying attacks and prove security for modified client/server

datagram protocols for NTP.

5.6.1 Protocol descriptions.

Our protocol. Figure 5·6,5·7 present our new client/server protocol that provides

32-bits of randomization for the origin timestamp used in TEST2.

Clients use the algorithm in Figure 5·6 to process received packets. While the

client continues to listen to server response packets (mode 4) even when it does not

have an outstanding query, this receive algorithm has several features that differ from

RFC 5905 (Figure 5·5).First, when a packet passes TEST2, we clear xmt by setting it

to a random 64-bit value, rather than to zero. We also require that, upon reboot,

the client initializes its xmt values for each server to a random 64-bit value. Second,

TEST2 alone provides replay protection and we eliminate TEST1 and TEST3. (TEST3 is

not needed because of how xmt is cleared. Eliminating TEST3 is also consistent with

the implementation in ntpd versions after v4.2.6.)

Clients use the algorithm in Figure 5·7 to send packets. Recall that the first 32

bits of the origin timestamp are seconds, and the last 32 bits are subseconds. First, a
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def client_receive_mode4( pkt ):

server = find_server(pkt.srcIP)

if (server.auth == True and

pkt.MAC is invalid):

return # bad MAC

if pkt.T1 != server.xmt:

return # fail test2

server.xmt = randbits(64) # clear xmt

server.org = pkt.T3 # update state variables

server.rec = pkt.receive_time()

process(pkt)

return

Figure 5·6: Pseudocode for pro-
cessing a response. We also require
that the xmt variable be initialized as
a randomly-chosen 64-bit value, i.e.,
server.xmt = randbits(64), when
ntpd first boots.

def client_transmit_mode3_e32( precision ):

r = randbits(precision)

sleep for r*(2**(- precision)) seconds

# fuzz LSB of xmt

fuzz = randbits(32 - precision)

server.xmt = now ^ fuzz

# form the packet

pkt.T1 = server.org

pkt.T2 = server.rec

pkt.T3 = server.xmt

... # fill in other fields

if server.auth == True:

MAC(pkt) #append MAC

send(pkt)

return

Figure 5·7: This function is run when
the polling algorithm signals that it is
time to query server. If server.auth
is set, then pkt is authenticated with
a MAC.

client with a clock of precision ρ put a (32−ρ)-bit random value in the (32−ρ) lowest

order bits. Next, the client obtains the remaining ρ bits of entropy by randomizing

the packet’s sending time. When the polling algorithm indicates that a query should

be sent, the client sleeps for a random subsecond period in [0, 2−ρ] seconds, and then

constructs the mode 3 query packet. We therefore obtain 32 bits of entropy in the

expected origin timestamp, while still preserving the semantics of NTP packets—the

mode 4 packet’s origin timestamp field (Figure 5·4) still contains T1 (where T1 is as

defined in Figure 5·3).

Notice that this protocol only modifies the client, and is fully backwards-compatible

with today’s stateless NTP servers:

Stateless server algorithm. Today’s NTP servers are stateless, and so do not keep

org or xmt state variables for their clients. Instead, upon receipt of client’s mode 3

query, a server immediately sends a mode 4 response packet with (1) origin timestamp

field equal to the transmit timestamp field on the query, (2) receive timestamp field
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def client_transmit_mode3_e64( precision ):

# store the origin timestamp locally

server.localxmt = now

# form the packet

server.xmt = randbits(64) #64-bit nonce

pkt.T1 = server.org

pkt.T2 = server.rec

pkt.T3 = server.xmt

... # fill in other fields

if server.auth == True:

MAC(pkt) #append MAC

send(pkt)

return

Figure 5·8: Alternate client/server protocol used by chronyd/openNTPd, that ran-
domizes all 64-bits of the origin timestamp. This function is run when the polling
algorithm signals that it is time to query server.

set to the time that the server received the query, and (3) transmit timestamp field

to the time the server sent its response.

Chronyd/openNTPd protocol. The chronyd and openNTPd implementations

also use a client/server protocol that differs from the one in RFC5905. This protocol

just sets the expected origin timestamp to be a random 64-bit nonce (see Figure 5·8).

While this provides 64-bits of randomness in the origin timestamp, it breaks the se-

mantics of the NTP packet timestamps, because the server response packet no longer

contains T1 as defined in Figure 5·3. (Instead, the client must additionally retain T1 in

local state variable server.localxmt.) This means that the chrony/openNTPd pro-

tocol cannot be used for NTP’s symmetric mode (mode 1/2), but our protocol (which

preserves timestamp semantics) can be used for symmetric mode. (See footnote 1.)

Security. Both our protocol (Figures 5·6,5·7) and the chronyd/openNTPd protocol

(Figures 5·6,5·8) can be used to protect client/server mode from off-path attacks

(when NTP packets are unauthenticated) and on-path attacks (when NTP packets

are authenticated with a secure message authentication code (MAC)11.) Security holds

11RFC 5905 specifies MD5(key||message) for authenticating NTP packets, but this is not a secure
MAC (Bellare et al., 1996). We are currently in the processes of standardizing a new secure MAC
for NTP (Malhotra and Goldberg, 2019).
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as long as (1) all randomization is done with a cryptographic pseudorandom number

generator (RNG), rather than the weak ntp random() function currently used by

ntpd (NTPrand, 2014), (2) the expected origin timestamp is not leaked via control

queries, and (3) NTP strictly imposes k = 4 or k = 8 as the minimum number of

consistent timing samples required before the client considers updating its clock. The

last requirement is needed because 32-bits of randomness, alone, is not sufficient to

thwart a determined attacker. However, by requiring k consistent timing samples in

a row, the attacker has to correctly guess about 32k random bits (rather than just

32 random bits). Fortunately, because of TEST11 (see Section 5.2), ntpd already

requires k ≥ 4 most of the time.

To obtain these results, we first develop a cryptographic model for security against

off- and on-path NTP attacks (Section 5.6.2). We then use this model prove security

for off-path attacks (Section 5.6.3) and on-path attacks (Section 5.6.4), both for our

protocol, and for the chronyd/openNTPd protocol.

5.6.2 Security Model.

Our model, which is detailed in Appendix F, is inspired by prior cryptographic work

that designs synchronous protocols with guaranteed packet delivery (Katz et al.,

2013a), (Achenbach et al., 2015). However, unlike these earlier models, we consciously

omit modeling the more powerful MiTM who can drop, modify, or delay packets (see

Section 5.1 and Figure 5·2). We assume instead that the network delivers all packets

sent between the ` honest parties P1,...,P`. We also assume that the network does

not validate the source IP in the packets it transits, so that the attacker can spoof

packets. Honest parties experience a delay % before their packets are delivered, but

the attacker can win every race condition.

The network orchestrates execution of several NTP exchanges (akin to the ‘envi-

ronment’ in the universal composability framework (Canetti, 2001)) through the use
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of a transcript that stipulates (1) which parties engage in two-message client/server

exchanges with each other, (2) when they engage in each exchange, and (3) the times

tc and ts on the local clocks of the client and server respectively during each exchange.

We require security over all possible transcripts. This means, as a corollary, that the

attacker can choose the optimal transcript for her to attack, including having control

over the local clocks of all honest parties. An on-path attacker can see every packet

sent between honest parties, while an off-path attacker can only see the packet’s IP

header. (See Figure 5·2.) Clients update their local state which includes (1) the set

of servers they are willing to query, (2) the state variables (e.g., xmtj, orgj, recj) for

each server Pj, and (3) timing samples from their k most recent exchanges with each

server. Then:

Definition 5.6.1 (Soundness (Informal)). NTP is (k, ε)-sound on transcript ts if for

all resource-bounded attackers A and all parties Pi who do not query A as an NTP

server, Pi has k consecutive timing samples from one of its trusted servers that have

been modified by A with probability ε. The probability is over the randomness of all

parties.

We parameterize by k because NTP has mechanisms that prevent synchronization

until the host has a stream of consistent timing samples from a server or peer most

likely to represent accurate time. TEST11 enforces this, for example, by requiring

jitter ψ < 1.5 seconds. (See Section 5.2).

But how should we parameterize k? One idea is k = 8, because TEST11 depends

on the jitter ψ which is computed over at most eight consecutive timing samples

(equation 5.3). k = 8 is also consistent with pseudocode in Appendix A.5.2 of RFC

5905; this pseudocode describes the algorithm used for clock updates and includes

the comment “select the best from the latest eight delay/offset samples”. This may

be too optimistic though, because we have observed that ntpd v4.2.6 requires only

k = 4 before it updates its clock upon reboot. ntpd v4.2.8p6 requires only one sample
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Figure 5·9: Success probability of off-path attacker per Theorem 1: (Top) for Fig-
ures 5·6,5·7 and (Bottom) for Figures 5·6,5·8. τ ∈ {56, 1350, 9540} is the number of
polling intervals attacked. We assume one server (s = 1) and latencies of at most
% = 1 second.

upon reboot but this is a bug (CVE-2016-7433); see Appendix D. Thus, we consider

k ∈ {1, 4, 8}.

5.6.3 Security analysis: Unauthenticated NTP & off-path attacks.

We now discuss the security guarantees for the protocols described in Appendix 5.6.

We start by considering off-path attacks. At a high level, our protocol and the

chronyd/openNTPd protocols thwart off-path attackers due to the unpredictability

of the origin timestamp. Preventing off-path attacks is the best we can hope for when

NTP is unauthenticated, since on-path attackers (that can observe the expected origin

timestamp per Figure 5·2) can trivially spoof unauthenticated server responses.

We assume that honest parties can send and receive packets at rate at most R

bits per second (bps). The network imposes latencies of ≤ % for packets sent by any

honest party. The polling interval is 2p, where RFC 5905 constrains p ≤ 17. Let

offA denote the off-path attackers and let ts be any transcript that involves ` honest

parties, τ the maximum number of exchanges involving any single client-server pair,

k is the minimum number of consistent timing samples needed for a clock update

and s the maximum number of trusted servers per client. Also let Adv(RNG) denote

the maximum advantage that any attacker with offA’s resource constraints has of
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distinguishing a pseudorandom number generator from a random oracle. Then both

protocols satisfy the following:

Theorem 1. Suppose NTP is unauthenticated. Let offA, k, %, p, R, ts, `, s, τ and

Adv(RNG) be as described above. Then the protocol Figures 5·6 5·7 is (k, εoffA)-sound

on transcript ts with

εoffA = Adv(RNG) + (k + 1)sτ ·
[

2−32kR%

360

]k
(5.5)

12And the protocol in Figure 5·6 5·8 is (k, εoffA)-sound on transcript ts with

εoffA = Adv(RNG) + (k + 1)sτ ·
[

2p−64kR

720

]k
(5.6)

Figure 5·9 plots εoffA versus the bandwidth R at honest parties for k ∈ {1, 4, 8} and

different values of τ , where τ is the number of polling intervals for which the attacker

launches his attack. We do this both for our protocol in Figure 5·7 (Figure 5·9(top))

and the chronyd/openNTPd protocol in Figure 5·8 (Figure 5·9(bottom)).Since hosts

typically use a minimum poll value pmin = 6, the values τ = (9450, 1350, 56) in

Figure 5·10 correspond to attacking one (week, day, hour) of 2pmin = 64 second polling

intervals. We also assume one server s = 1, overestimate network latencies as % = 1

second, overestimate poll p in equation (5.6) as p = 17. We assume a good RNG so

Adv(RNG) is negligible.

k = 4 is sufficient with 32-bits of randomness. Recall that k is the minimum number

of consistent timing samples needed for a clock update. Figure 5·9(top) indicates that

k = 4 suffices for our protocol (that randomizes the 32-bit sub-second granularity of

12Our soundness definition (Appendix 5.6.2) both allows the off-path attacker to choose the tran-
script (and thus also the clients local time tc when it sends the packet) and to see the IP header
(only) of the sent packet. Thus, for our protocol (that provides 32-bits of randomness), the off-path
attacker essentially knows T1 up to the second (but not sub-second) granularity. This allows us to
claim security even against an off-path attacker that predicts the behavior of a target’s polling algo-
rithm (but not her cryptographic random number generators (RNGs)). Some off-path attackers may
realistically be able to do this. Consider an off-path attacker that sends a target a ‘packet-of-death’
that triggers a reboot of ntpd (e.g., CVE-2016-9311 or CVE-2016-7434). Because the attacker knows
when ntpd rebooted, it may be able to predict the behavior of its polling algorithm.
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the expected origin timestamp). Even if an off-path attacker attacks for a week, his

success probability remains less than 0.1% as long as k = 4 and the target accepts

packets at bandwidth R = 5 Gbps or less. When the attacker attacks for an hour,

the target’s bandwidth must be R ≈ 19 Gbps for a 0.1% success probability. To put

this in context, endhosts typically send < 10 NTP packets per minute, and even the

large stratum 1 timeservers operated by NIST process queries at an average rate of

21 Gbps (Sherman and Levine, 2016). Therefore, it seems unlikely that an attacker

could attack for hours or days without being detected. If more security is needed, we

could take k = 8, which requires a bandwidth of R ≈ 40 Gbps for a one-hour attack

with success probability of 0.1%. Meanwhile, Figure 5·9(top) suggests that 32-bits of

randomness do not suffice to limit off-path attacks when k = 1. This should provide

further motivation for fixing the ntpd v4.2.8p6 bug that allows k = 1 upon reboot

(see Appendix D).

k = 1 is sufficient with 64-bits of randomness. Meanwhile, Figure 5·10 (bottom)

indicates that k = 1 suffices for the chronyd/openNTPd protocol that randomizes all

64 bits of the expected origin timestamp. Even if an off-path attacker attacks for a

week, his success rate remains less than 0.1% as long as the target’s bandwidth is

limited to R = 5 Gbps. Moreover, when k = 4, attacking for a week at 100 Gbps

only yields a success probability of 10−17.

5.6.4 Security analysis: Authenticated NTP & on-path attacks.

Both our protocol (Figure 5·6,5·7) and the chronyd/openNTPd protocol (Figure 5·6,5·8)

thwart on-path attackers when NTP packets are authenticated with a MAC.

We let sending rate R, network latency %, poll p and Adv(RNG) be as before.

Let onA be an on-path attacker, and let ts be any transcript that involves ` honest

parties, a maximum of s trusted servers per client and a maximum of τ exchanges

involving any single client-server pair that replicate any tc value (up to the second) at
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Figure 5·10: Success probability of on-path attacker per Theorem 2: (Top) for
Figures 5·6,5·7; in this case we overestimate the number of legitimate client queries
that have identical 32 high-order bits of origin timestamp as γ = 100. (Bottom) for
Figures 5·6,5·8. τ ∈ {56, 1350, 9540} is the number of polling intervals attacked. We
assume one server (s = 1), latencies of at most % = 1 second, MAC of length 2n =
128 bits and maximum poll value p = 17.

most γ times. Let Adv(EU-CMA) be the maximum probability that an attacker with

onA’s resource constraints can forge a MAC of length 2n under a chosen-message

attack. Then both protocols satisfy the following:

Theorem 2. Suppose NTP is authenticated with a MAC of length 2n. Let onA, k,

%, p, R, ts, `, s, τ , γ, Adv(EU-CMA) and Adv(RNG) be as described above. Then,

both protocols are (k, εonA)-sound on transcript ts with

εonA ≤ Adv(RNG) + (k + 1)sτ(kQ)k, (5.7)

where

Q = max

{
qE +

R% · Adv(EU-CMA)

360 + n
,

2p−64R%

720 + 2n

}
. (5.8)

where qE = 2−32γ for the protocol in Figures 5·6 5·7 and qE = 2−64τ for the protocol

in Figures 5·6 5·8.

To argue about security, we assume a good MAC (like CMAC (Malhotra and

Goldberg, 2019)) so that Adv(EU-CMA) ≈ 2−128. We overestimate p = 17 in equa-

tion (5.8) and % = 1 second and plot εonA versus R for one server (s = 1) and different

choices of τ in Figure 5·10.

With 32-bits of randomness, k = 4 is sufficient. Suppose the 32-bits sub-second

granularity of the expected origin timestamp is randomized. When R is small, Fig-
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ure 5·10(top) indicates that the on-path attacker’s success rate is dominated by the

first term inside the maximum in equation (5.8). This corresponds to a successful

replay attack, because the client has sent multiple queries with the same expected

origin timestamp. Meanwhile, when R is large, second term in the maximum in

equation (5.8) dominates. This corresponds to a successful replay attack, because the

client ‘cleared’ xmt to a random 64-bit value that matches an origin timestamp in an

earlier query. Again, the attacker’s success probability is disconcertingly high when

k = 1. 13 On the other hand, excellent security guarantees are obtained for k = 4, so

it is safer to have k ≥ 4.

With 64-bits of randomness, k = 4 is sufficient. Suppose now that the entire 64-

bits of the expected origin timestamp is randomized. Now the second term in the

maximum in equation (5.8) always dominates. This again corresponds to a successful

replay attack, because the client ‘cleared’ xmt to a random 64-bit value that matches

an origin timestamp in an earlier query.

5.7 Summary and Recommendations

We have identified several vulnerabilities in the NTP specifications both in RFC5905 (Mills

et al., 2010) and in its control query specification in (obsoleted) RFC1305 (Mills,

1992), leading to several working off-path attacks on NTP’s most widely used client/server

mode (Section 5.3-5.4). Millions of IPs are vulnerable our these attacks (Section 4.4).

We present denial-of-service attacks on symmetric mode in Appendix B.

Many of our attacks are possible because RFC5905 recommends that same code-

path is used to handle packets from all of NTP’s different modes. Our strongest

attack, the zero-0rigin timestamp attack (CVE-2015-8139), follows because NTP’s

13The poor results for k = 1 and 32-bits of randomization follow because our model allows the 32
high-order bits of the expected origin timestamp to repeat in at most γ different queries. It might
be tempting to dismiss this by assuming γ = 0, but basing security on this is not a good idea. For
example, a system might always boot up thinking that it is January 1, 1970.
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client/server mode shares the same codepath as symmetric mode. (In Section B.3,

we explain why the initialization of symmetric mode requires that hosts accept NTP

packets with origin timestamp set to zero; this leads to the zero-0rigin timestamp

attack on client/server mode, where the attacker convinces a target client to accept

a bogus packet because its origin timestamp is set to zero.) Similarly, the fact that

interleave mode and client/server mode shares the same codepath gives rise to the

interleave pivot attack (CVE-2016-1548). Thus, we recommend that different code-

paths be used for different modes. This is feasible, since a packet’s mode is trivially

determined by its mode field (Figure 5·4). The one exception is interleaved mode,

so we suggest that interleaved mode be assigned a distinguishing value in the NTP

packet.

Our attacks also follow because the NTP specification does not properly respect

TEST2. We therefore propose a new backwards-compatible client/server protocol that

gives TEST2 the respect it deserves (Section 5.6.1). We developed a framework for eval-

uating the security of NTP’s client/server protocol and used it to prove that our pro-

tocol prevents (1) off-path spoofing attacks on unauthenticated NTP and (2) on-path

replay attacks when NTP is cryptographically authenticated with a MAC. We have

proved the similar results for a different client/server protocol used by chronyd and

openNTPD. (See Section 5.6.3,5.6.4.) We recommend that implementations adopt

either protocol.

Our final recommendation is aimed at systems administrators. We suggest that

firewalls and ntpd clients block all incoming NTP control (mode 6,7) and timing

queries (mode 1,2 or 3) from unwanted IPs (Section 5.4), rather than just the notorious

monlist control query exploited in DDoS amplification attacks.



Chapter 6

Universally Composable Treatment of

Network Time

6.1 Introduction

Most existing large-scale networks, and in particular the global Internet, are predom-

inantly asynchronous and do not require the participants to be “synchronized” with

other entities in any way or have a global sense of time. In fact, this non-reliance

on a common notion of time can be seen as one of the reasons for the success of the

TCP/IP design.

However, as it turns out, several important mechanisms that are central to the

usability of networks as a platform for communication and distributed computation

do indeed require parties to have some global, common sense of real-time. Interest-

ingly, the need for a global sense of time does not arise from the desire to provide

synchronous communication, quality of service, or other “sophisticated” networking

primitives. Rather, awareness to real time is often coupled with the safe use of cryp-

tography to thwart attacks against the network.

One prevalent use of real time is in revoking, and limiting the duration of certifi-

cates for public keys. Indeed, verifying the validity of the public key of one’s peer for

communication is a crucial step in setting up authenticated communication, which in

turn is the basis for practically any security-aware interaction on the Internet today.

Setting time limit to the validity of certificates, and furthermore revoking certificates

159
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when necessary, is a crucial component in making Public-Key Infrastructure (PKI) a

valid, usable basis for secure communication. Such ability, in turn, hinges on having

good sense of current real time. Furthermore, not only mainframe servers need to

have such ability – even low end clients need it, in fact arguably even more so than

servers. Indeed, without a good sense of current time, a client cannot verify whether a

certificate is valid, or whether a given certificate revocation list is the up-to-date one.

Other uses of real time to improve security include various forms of timestamping for

contracts and timing transactions in public ledgers.

It may appear that measuring real time is a relatively easy task; indeed, most

computing platforms today, even low-end ones, are equipped with a built-in clock.

Still, synchronizing and adjusting these clocks, and in particular reaching agreement

on time in a large, asynchronous network like the Internet turns out to be non-trivial.

In particular, NTP, the current IETF standard protocol for computers on the Internet

to determine time (Mills et al., 2010), is rather complex. It assumes a hierarchical

system of “time servers,” where lower-stratum servers are assumed to have a more ac-

curate notion of time, and higher-stratum servers determine time by querying several

lower-stratum ones and performing some complex aggregation of the responses. The

protocol has mechanisms for protecting from errors introduced by network delays, but

is built on complete trust in the queried time servers, as well as in the authenticity

of the communication. Indeed, NTP has been demonstrated to be easily subvertible,

resulting in massive loss of security (Malhotra et al., 2016), (Malhotra and Goldberg,

2016), (Malhotra et al., 2017), (Czyz et al., 2014b).

Several variants of NTP such as sntpd (Mills, 2006), ptpd (ptpd, 2015), chronyd (chronyd,

2015), OpenNTPD (openNTPD, 2012), ntimed (ntimed, 2015), and Roughtime (rough-

time, 2015) have been proposed. These protocols offer varying degree of clock ac-

curacy, correctness, precision and security guarantees. They have different packet
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semantics and a different mechanism on how the querying client chooses to update

its local time, if at all, after interacting with one or potentially many time servers.

When coming to assess these proposals, it becomes evident that we don’t currently

have a good measure to test these proposals against. Indeed, while great many analyt-

ical works propose ways to model time (either real, global, or relative) within network

protocols, and even within security protocols, we do not have a way to rigorously cap-

ture the security guarantees from a network time protocol that provably suffice for

security-sensitive applications that require an agreed-upon time measurement— for

instance for guaranteeing the validity of certificates in a way that, in turn, will guar-

antee authenticated and secure communication. (See Section 6.1.4 for a brief account

of related work on the modeling of time.)

6.1.1 Our Contributions

We provide a modular, composable formalism of the security requirements from

network-time protocols — or, more generally from protocols that provide a read-

ing of real time with the assistance of other nodes over an asynchronous network.

Specifically, we propose formal abstractions of secure network time, and show that:

• Our abstractions of network-time suffice for securely incorporating expiration

times in certificates, as well as freshness guarantees for public certificate lists,

in a way that guarantees PKI-based secure communication even in face of an

adversary who tries to subvert the measurement of time and at the same time

corrupts revoked and expired certificates.

• Our abstractions are realizable by simple protocols that mimic the behavior of

authenticated NTP.

We use the Universally Composable (UC) security framework as a basis for our formal-

ism. Indeed, the UC framework provides a general mechanism for specifying security
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properties of cryptographic protocols in a way that facilitates composing protocols

together, and in particular guarantees that composition of secure components re-

sults in overall security of the composed protocol. Furthermore, the UC framework is

geared towards analyzing the security of cryptographic protocols, which facilitates in-

corporating the results in this work with existing analytical results for cryptographic

protocols.

Specifically, we build upon an existing analytical work by Canetti et al. that

asserts, within the UC framework, the security of authentication and key exchange

protocols that are based on global public-key infrastructure (PKI) (Canetti et al.,

2016). We incorporate our analysis of timing consensus achieved via network time

into the UC analysis of a global PKI. The combined analysis extends the security

guarantees provided by (Canetti et al., 2016) to the case of revocable and expirable

certificates.

Our methodology of incorporating network time into existing UC protocols and

functionalities is quite generic. Hence, our work paves the way toward instantiating

time consensus and reaping its security benefits within other UC formalisms in a

seamless fashion.

Technical and Conceptual Challenges. A priori it appears that the UC frame-

work might be unsuitable for representing real time. Indeed, the framework is cen-

tered around modeling completely asynchronous, event-driven systems. Furthermore,

in the UC formalism the basic computational elements (Turing machine instances)

are activated one by one, and the order of execution and activation of components

is under total adversarial control. This is done with good reason, namely in order

to provide security even against adversaries that have full control over the network;

however, this structure appears to be incompatible with the modeling of real time

that advances “at the same rate” within all components of a physically spread-out
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system. (It should be noted that this asynchronous, event-driven formalism that

gives the adversary total control over the scheduling of events is not unique to the

UC framework. Indeed, it is the common methodology for modeling and analyzing

cryptographic protocols in general — for the same reason outlined above.)

Our first contribution is thus to propose a construct that represents global time

even within such a system. The construct is simple: It is a trusted entity (formalized

as a global ideal functionality) that keeps a counter. This counter is incremented

adversarially by the environment, but is guaranteed to never decrease. All entities in

the system have access to this counter (or, rather, some perturbed version of it, as

described below) — which they treat as Time. Indeed, this adversarially incremented

counter does not in any way approximate the passing of real physical time. Still,

we argue that from the point of view of capturing the validity of mechanisms that

use time in order to provide some security guarantees, this simple gadget is good

enough. Said otherwise, any security property that is expressible and asserted within

our formal framework would be preserved even when implemented in a real system

that has access to real physical time.

Another set of challenges has to do with the modeling of the “imperfections” that

one encounters when using the currently available mechanisms for measuring time.

We consider two main methods for measuring time, each with its own imperfections:

One method is measuring one’s own local physical clock. This method provides

fast response and relatively accurate measurement of time elapsed between events

that occur at the same location; however, the response may be arbitrarily “shifted”

relative to actual real time. The second method is asking one (or more) other entities

in the network (“time servers”) for their current time reading. This method can

potentially provide reading of real time, but is susceptible to measurement errors

due to network delays, spoofing attacks, and faulty servers. It may also be slow in
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Figure 6·1: Overview of our formalism, from the exact, approximate, and relative
time functionalities to ideal certification with limited-time certificates. Double arrows
mean “UC realizes,” and single arrows mean “uses as a subroutine.”

providing a response. Indeed, a good network time protocol is one that combined

these two methods in a “secure way” in order to provide a reliable reading of real

time. Our goal is to capture that property.

6.1.2 Our Formalism in a Nutshell

We provide a brief overview of our formalism. See Figure 6·1 for the relationships

between these primitives.

The GUC framework. Writing a specification within the Global Universal Com-

posability (GUC) framework amounts to writing a program for an ideal functionality

F that captures the expected behavior of the analyzed system π. Here F captures

both the expected functionality and the expected security properties. Formally, sys-

tem π is said to GUC-realize F if for any adversary A there exists a simulator S such

that no external environment E can tell whether it is interacting with A and π or

with S and F . Here E plays the role of a calling protocol that provides inputs to π

(or F) and obtains the outputs of π (or F), whereas A controls the communication

between the parties running π. The communication between S and F captures the
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“security imperfections” that F allows.

The main added feature of the GUC framework beyond the original UC framework

is that it allows incorporating in the model of execution “global functionalities” that

represent trusted services that exist in the system regardless of the analyzed protocol.

That is, the global functionalities exist both in the ideal model for functionality F

and in the model for executing π. This modeling allows to better capture long-

term services such as public-key infrastructure (as done in (Canetti et al., 2016)), or

network time — as done here.

Exact and Approximate Clocks. Our first basic construct is a global ideal func-

tionality GrefClock that provides an exact clock. Formally, it provides a non-decreasing

counter that the environment can increment at will. In a sense, the clock’s idealistic

time serves as a reference or benchmark to which everyone aspires, even though none

of the parties directly interacts with GrefClock itself.

Instead, parties only interact with GrefClock indirectly through a timer functionality

and a network clock functionality that provide approximate relative and absolute

notions of time, respectively. The timer functionality Ftimer captures a cheap but

low-latency device that can only provide measurements locally without delay, and

the measurements “drift” significantly.

The network clock Gclock provides information more globally, to all parties in the

system; however it may not respond to queries right away (or ever!). This func-

tionality captures the behavior expected from a single client-server execution of the

network time protocol, since the adversary controls the delays of packets transmitted

over the asynchronous network. On the plus side, Gclock guarantees that timing mea-

surements are approximately accurate (up to some bound) at the moment that they

are eventually given.
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Realizing Gclock. We provide two network protocols that realize the network clock

functionality. The first protocol πtimeSync involves a single query-response exchange

between a client C with has access to a local timer (i.e., an instance of Ftimer) and

a server S that has access to her own clock. This protocol allows the client to

“bootstrap” the server’s clock into one of her own, as long as the server is honest

(i.e., uncorrupted).

We also capture a generalization of Gclock whose accuracy depends on multiple

servers in such a way that it is robust to the corruption of a few servers. This gen-

eralization, denoted GmultiClock, allows a client to request time from multiple servers

(each with their own Gclock) and then to select time as a function of all responses ob-

tained before its Ftimer times out (e.g., by picking the median response). By selecting

the time in this way, the client obtains resilience against network corruptions. Even if

many of the sessions are compromised, the client’s timing measurement approximates

the reference time as long as the majority of the servers whose Gclock boxes responded

quickly to a query were uncorrupted, akin to the “sleepy model” of consensus (Pass

and Shi, 2016), (Micali, 2016).

PKI with Expiration and Revocation. The final piece in our formalism is a

time-aware variant of public-key infrastructure and signature verification. The start-

ing point of our formalism is the certified signature verification functionality Gcert of

(Canetti et al., 2016) that utilizes infinite-duration keys. However, since the guaran-

tee provided by Gcert has no time limit, it follows that Gcert cannot be realized in a

system where signature keys get compromised after some time has elapsed.

In this work, we extend Gcert by allowing each signer to provide an expiration time

t∗; furthermore, the signer can update this time in order to emulate revocation. Our

extended functionality guarantees that if the global time at the time of verification

is larger than t∗ plus some “fudge factor” that accounts for the inaccuracies in time
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measurement, then the verification necessarily fails. This “fudge factor” is of crucial

importance: it determines the length of time for which certificate authorities must

respond to CRL or OCSP queries about certificates after they expire.

6.1.3 Additional Discussion

Incorporating Time in Existing UC Modeling, a General Paradigm. Our

method for incorporating the time constraints in Gcert and in the protocol that realizes

it minimal and general: To obtain time-aware certification, we only add a simple, self-

contained time check to the existing code of to Gcert. Additionally, we observe that the

security of timing-agnostic protocols is unaffected by the presence of time-sensitive

protocols.

Putting together these two observations, we obtain a general methodology for

adding time-sensitive protocols and functionalities to the existing UC framework and

its corpus of secure functionalities in a seamless way.

Time is Global. We model time as a global construct. That is, the time-related

functionalities GrefClock, Gclock, and GmultiClock are global: they are accessible by anyone

in the system. In particular, they always exist both in the “ideal” and in the “real”

system. This modeling simplifies the composition of protocols that use these joint

functionalities and provide a closer modeling of reality. We choose to model Ftimer as a

local functionality since it represents a service that is available only locally to a party.

However this functionality too can in principle be modeled as a global functionality.

(Such modeling might indeed be useful for analyzing systems where several protocols

that use time have access to the same local physical clock.)

Implementing Authenticated Communication. Our network time protocols

rely upon authenticity of communication between C and S. When specifying the
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protocols, we assume the existence of an ideal authenticated communication func-

tionality Fauth (Canetti, 2004) as specified in Fig. 6·2, and we use the modularity of

the framework to remain agnostic about Fauth’s underlying implementation.

Functionality Fauth

1. Upon receiving (Send, sid, B,m) from party A, send (Sent, sid, A,B,m) to A.

2. Upon receiving (Send, sid, B′,m′) from the A, do: If A is corrupted then output
(Sent, sid, A,m′) to party B′. Else, output (Sent, sid, A,m) to party B. Halt.

Figure 6·2: The authenticated communication functionality, Fauth. Reproduced
from (Canetti, 2004).

We can instantiate Fauth using a PKI-based authenticated communication, as in,

e.g., (Canetti et al., 2016). But we intend to use time to bolster the PKI! Ergo, we

must avoid circularity in our arguments.

One way to do so is to assume that time servers have certificates that do not expire,

or else where revocation is done out-of-band. Alternatively can instantiate Fauth as

NTP does: have the client and server use an out-of-band key exchange mechanism to

perform symmetric key authentication. Specifically, the maintainer of most stratum

1 NTP servers, NIST, shares keys with its clients over U.S. mail or fax machines

(NIST, 2018). This method completely circumvents the reliance on PKI for realizing

Fauth. Potentially, there are other out-of-band mechanisms for key exchange such as

biometric human identification.

6.1.4 Related Work

The ability for parties to obtain a notion of time is an integral part of distributed

computations (Lamport, 1978). These computations often require that timing mea-

surements satisfy specific properties depending on the nature of the computation.
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The most basic of these is that time be monotonically increasing to allow for a con-

sistent and correct ordering of events in, e.g., a time stamping protocol (Haber and

Stornetta, 1991), (Matsuo and Matsuo, 2005), (Buldas et al., 2005). However, many

protocols such as those of (Goldreich, 2006) and (Kalai et al., 2005) require stronger

guarantees, namely that time is both synchronized between parties and advances in

a relatively uniform and expected pace.

A number of formalisms have been proposed over the years for incorporating time

(both absolute and relative) in the security analysis of protocols. Some of these

formalisms, like ours, are based on the UC framework (Kalai et al., 2005), (Backes

et al., 2014), (Vajda, 2016), (Katz et al., 2013b), (Canetti, 2013). We briefly review

them.

UC Analyses of Time. The modeling of time by (Kalai et al., 2005) is perhaps

the closest to the one in this work. There too, time is modeled as an additional

“counter” that is available to all machines, and is incremented by the adversary on

each machine, individually, subject to some global constraints. However, there it

is assumed that all parties have ideal access to the global time (and furthermore

that communication delays are within known time bounds.) In fact our work can be

viewed as a more detailed and “faithful” modeling of the propagation of time in real-

life networks, in a way justifying the more abstract modeling of (Kalai et al., 2005).

In other words, if one assumes that a majority of the instances of GP,S,Σclock used by the

parties are uncorrupted, (Kalai et al., 2005) can be used as an additional application

for our modeling. Furthermore, the impossibility result in (Kalai et al., 2005) implies

that one cannot realize GP,S,Σclock or GrefClock with appropriate parameters in the plain

model.

(Katz et al., 2013b) and (Canetti, 2013) provide, within the UC framework, ideal

functionalities that give abstractions that mimic synchronous communication among
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participants. However, these works do not provide ways for realizing these abstrac-

tions from existing mechanisms like network time. Furthermore, these abstractions

do not suffice to capture the prevalent use of limited-time certificates.

(Backes et al., 2014) provide an alternative formalism of time based on the UC

framework that differs from the present formalism in a number of crucial ways. First,

(Backes et al., 2014) significantly modifies the existing UC framework, thus making

its formalism incompatible with the body of work in the existing framework. Second,

the (Backes et al., 2014) modeling assumes that machines have specific and fixed

relative speeds and where time passage is directly proportional to the number of

computational steps. In contrast, in our modeling time is not necessarily tied to

other computational aspects of the system. Third, (Backes et al., 2014) analyzes only

standard, time-unaware protocols; the modeling of time is used only to bound the

success of attacks on the protocol. In contrast, we model protocols where time is

crucially used by the protocol itself.

(Vajda, 2016) provides a number of high-level proposals for general modeling of

real-time within the UC framework. However this work does not address network

time protocols or the cryptographic applications treated here.

Security-Aware Network Time Protocols. Several frameworks (Malhotra

et al., 2017), (Dowling et al., 2016), (Mizrahi, 2012b), (Itkin and Wool, 2016) aim to

define and analyze the security requirements of time synchronization protocols. RFC

7384 (Mizrahi, 2012b) provides guidelines for important security features of PTP and

NTP as they relate to possible attacks. (Itkin and Wool, 2016) build on this with new

attack vectors and suggested mitigations for PTP, but they do not provide proofs for

their mitigations nor any accuracy guarantees for the time protocols themselves.

(Dowling et al., 2016) extend NTP to include lightweight authentication for

servers and provide game based proofs for its accuracy relative to the time at the
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server. They do not provide any accuracy guarantees relative to a global notion of

time, and thus they fail to provide the global synchronization that is necessary for

time sensitive crypto such as PKI.

(Malhotra et al., 2017) focus on several security concerns when deploying NTP

in practice, at the expense of full coverage. They study concrete security bounds for

NTP against off/on-path attacks in the standalone model. By contrast, the security

guarantee in our work addresses composable security and additionally covers adver-

saries who have full control over the network and may use it to drop packets sent by

honest parties. Both of these properties are crucial towards our work in Section 6.6

of realizing time-sensitive crypto primitives like the PKI.

6.1.5 Organization

The paper is organized as follows. Section 6.2 gives an overview of the Network

Time Protocol. In Section 6.3, we introduce three new ideal functionalities: GrefClock,

GP,S,Σclock , and FC,∆C ,ΣC
timer . Section 6.4 formalizes and proves the security of a protocol

that permits a single server to share its view of time with a single client. Section

6.5 generalizes this basic protocol in two ways for improved resilience: a client takes

timing measurements from multiple servers, and the network topology is dispersed to

reduce resource and network resource congestion. Finally, Section 6.6 integrates our

time consensus protocol with time-sensitive applications such as PKI.

6.2 Preliminaries

This section summarizes (separately!) the universally composable security framework

and the network time protocol.
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6.2.1 Universally Composable Security

We provide a brief overview of the UC framework. See (Canetti, 2013) and (Canetti

et al., 2007) for more details. (This overview is taken almost verbatim from (Canetti

et al., 2016).)

We focus on the notion of protocol emulation, wherein the objective of a protocol

π is to imitate another protocol φ. In this work, the entities and protocols we con-

sider are polynomial-time bounded Interactive Turing Machines (ITMs), in the sense

detailed in (Canetti, 2013).

Systems of ITMs. To capture the mechanics of computation and communica-

tion among entities, the UC framework employs an extension of the ITM model. A

computer program (such as for a protocol, or perhaps program of the adversary) is

modeled in the form of an ITM. An execution experiment consists of a system of

ITMs which are instantiated and executed, with multiple instances possibly sharing

the same ITM code. A particular executing ITM instance running in the network is

referred to as an ITI. Individual ITIs are parameterized by the program code of the

ITM they instantiate, a party ID (pid) and a session ID (sid). We require that each

ITI can be uniquely identified by the identity pair id = (pid,sid), irrespective of the

code it may be running. All ITIs running with the same code and session ID are said

to be a part of the same protocol session, and the party IDs are used to distinguish

among the various ITIs participating in a particular protocol session.

The Basic UC Framework. At a very high level, the intuition behind security

in the basic UC framework is that any adversary A attacking a protocol π should

learn no more information than could have been obtained via the use of a simulator

S attacking protocol φ. Furthermore, we would like this guarantee to hold even if

φ were to be used as a subroutine in arbitrary other protocols that may be running
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concurrently in the networked environment and after we substitute π for φ in all

the instances where it is invoked. This requirement is captured by a challenge to

distinguish between actual attacks on protocol φ and simulated attacks on protocol π.

In the model, attacks are executed by an environment E that also controls the inputs

and outputs to the parties running the challenge protocol. The environment E is

constrained to execute only a single instance of the challenge protocol. In addition,

the environment E is allowed to interact freely with the attacker (without knowing

whether it is A or S). At the end of the experiment, the environment S is tasked

with distinguishing between adversarial attacks perpetrated by A on the challenge

protocol π, and attack simulations conducted by S with protocol φ acting as the

challenge protocol instead. If no environment can successfully distinguish these two

possible scenarios, then protocol π is said to UC-emulate the protocol φ.

Balanced environments. In order to keep the notion of protocol emulation from

being unnecessarily restrictive, we consider only environments where the amount of

resources given to the adversary (namely, the length of the adversary’s input) is at

least some fixed polynomial fraction of the amount of resources given to all protocols

in the system. From now on, we only consider environments that are balanced.

Definition 1 (UC-emulation). Let π and φ be multi-party protocols. We say that π

UC-emulates φ if for any adversary A there exists an adversary S such that for any

(constrained) environment E , we have:

EXECπ,A,E ≈ EXECφ,S,E

Defining protocol execution this way is sufficient to capture the entire range of

network activity that is observable by the challenge protocol but may be under ad-

versarial control.

Furthermore, the UC framework admits a very strong composition theorem, which
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guarantees that arbitrary instances of φ that may be running in the network can be

safely substituted with any protocol π that UC-emulates it. That is, given protocols

ρ, π and φ, such that ρ uses subroutine calls to φ, and protocol π UC-emulates φ, let

ρφ→π be the protocol which is identical to ρ except that each subroutine call to φ is

replaced by a subroutine call to π. We then have:

Theorem 3 (UC-Composition). Let ρ,π and φ be protocols such that ρ makes sub-

routine calls to φ. If π UC-emulates φ and both π and φ are subroutine-respecting,

then protocol ρφ→π UC-emulates protocol ρ.

The Generalized UC Framework. As mentioned above, the environment E in

the basic UC experiment is unable to invoke protocols that share state in any way

with the challenge protocol. In contrast, in many scenarios we would like to be able

to analyze challenge protocols that share information with other network protocol

sessions. For example, protocols may share information via a global setup such as

a public Common Reference String (CRS) or a standard Public Key Infrastructure

(PKI). To overcome this limitation and allow analyzing such protocols in a modu-

lar way, (Canetti et al., 2007) propose the Generalized UC (GUC) framework. The

GUC challenge experiment is similar to the basic UC experiment, only with an un-

constrained environment. In particular, now E is allowed to invoke and interact with

arbitrary protocols, and even multiple sessions of the challenge protocol. Some of the

protocol sessions invoked by E may even share state information with challenge pro-

tocol sessions, and indeed, those protocol sessions might provide E with information

related to the challenge protocol instances that it would have been unable to obtain

otherwise. To distinguish this from the basic UC experiment, we denote the output of

an unconstrained environment E , running with an adversary A and a challenge pro-

tocol π in the GUC protocol execution experiment, by GEXECπ,A,E . GUC emulation

is defined analogously to the definition of basic UC emulation outlined above:
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Definition 2 (GUC-emulation). Let π and φ be multi-party protocols. We say that

π GUC-emulates φ if for any adversary A there exists an adversary S such that for

any (unconstrained) environment E , we have:

GEXECπ,A,E ≈ GEXECφ,S,E .

The UC theorem directly extends to the GUC model.

6.2.2 The Network Time Protocol (NTP)

As the name suggests, NTP permits several computers on a network to share infor-

mation about the time.

In this work, we focus on NTP’s most popular method of operation: a hierarchical

client-server fashion in which a client queries a server who has (ostensibly) higher

fidelity timing information than the client. A client can use multiple invocations

of NTP’s fundamental query-response protocol (either with the same server or with

multiple servers) to gather several timing measurements, which it then uses to set or

update its own notion of time.

Query-Response Protocol. We first describe NTP’s two-round timing exchange

protocol over IPv4. Four timing measurements are relevant during the execution of

this protocol:

T1 Origin timestamp. Client’s system time at the moment that the client sends the

query.

T2 Receive timestamp. Server’s system time at the moment that the server receives

the query.

T3 Transmit timestamp. Server’s system time at the moment that the server sends

the response.
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T4 Destination timestamp. Client’s system time at the moment that the client re-

ceives the response.

The client’s query packet includes measurement T1. The server’s response packet

repeats T1 and appends T2 and T3. The client locally computes T4 upon receipt of

the response packet.

Setting, or Updating, the Client’s Time. The client makes two assumptions

when analyzing the timestamps.

1. Its clock and the server’s clock move in relative synchrony while the NTP session

is live (even if they have different absolute notions of time).

2. The network delay is symmetric. That is, the query packet’s client → server

latency equals the response packet’s server → client latency.

Deviations from these assumptions do lead to small but bounded error in the client’s

eventual measurement of time; we will return to this issue later.

If assumption 1 is accurate, then the round-trip network delay δ during the ex-

change equals:

δ = (T4 − T1)− (T3 − T2) (6.1)

If assumption 2 is accurate, then the absolute gap between the server and client clock

is T2−(T1+ δ
2
) for the client query, and T3−(T4− δ

2
) for the server response. Averaging

these two quantities gives us the absolute offset between the client and server clocks:

θ = 1
2

((T2 − T1) + (T3 − T4)) (6.2)

While talking to multiple servers, the client chooses a single server to which it

synchronizes its local clock. This decision is made adaptively by a set of selection,

cluster, combine and clock discipline algorithms. For the purpose of this paper, we
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assume that the client will make an update to its clock if median θ is less than a certain

threshold. Client/server packets are not authenticated by default, but a Message

Authentication Code (MAC) can optionally be appended to the packet (Mills et al.,

2010, Sec. 13). In this work, we restrict our attention to authenticated NTP.

6.3 Modeling Absolute and Relative Time

In this section, we introduce three ideal functionalities that aid a client C or server

S to learn the time. The first two provide exact and approximate absolute notions

of time, whereas the third functionality approximates the relative passage of time.

These functionalities are depicted formally in Figs. 6·4 through 6·5. We stress that

the functionalities only respond to the methods explicitly stated in the figures; when

given a message that cannot be parsed into one of the provided forms, they simply

hand the execution back to the caller without providing any output.

The functionalities themselves are referred to as Gparamaters
functionality for global function-

alities and as Fparamaters
functionality for local (i.e., non-global) functionalities. Protocols are

specified in the format πparamaters
functionality. The protocols and functionalities may use sub-

routines, which we indicate in the text and sometimes denote using square brackets.

6.3.1 The Reference Clock Functionality GrefClock

We begin by introducing a simple global functionality GrefClock that provides a univer-

sal reference clock. When queried, it provides an abstract notion of time represented

as an integer G. It is monotonic, and only the environment may increment it; we

stress that the simulator S cannot forge the reference time.

In this work we use subscripts to denote the relative order in which requests are

made to the reference clock. Hence, if x > y then Gx ≥ Gy.

Figure 6·4 formally codifies GrefClock. It functions similarly to Vadja’s ideal notion

of time (Vajda, 2016), with one crucial exception: we do not intend for any honest
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Functionality GP,S,Σclock [ GrefClock ]

A clock functionality identified by a session id sidclock = (sid′clock, P, S) that denotes
its owner P as well as a (potentially but not necessarily different) party S whose
honesty influences the accuracy of the clock. It is also parameterized by the maximum
allowable shift Σ from the reference time. It operates as follows.

Corrupt: Upon receiving a Corrupt message, record that S is now corrupted.

GetTime: Upon receiving input (GetTime, sidclock) from party P ′, ignore this request
if P ′ 6= P , otherwise:

1. Send (Sleep, sidclock) to the adversary A. Wait for a response of the form
(Wake, sidclock, σ) from A.

2. If σ == ⊥, output (TimeReceived, sidclock,⊥) to P .

3. Else send GetTime to GrefClock to receive G. Next, compute TP = G + σ. Then
do the following:

• If |σ| > Σ and no Corrupt record exists, then reset TP = ⊥.

• Output (TimeReceived, sidclock, TP ) to P .

Figure 6·3: Ideal functionality GP,S,Σclock that provides delayed, approximately accurate
time measurements to its owner P . The functionality doesn’t provide any guarantee
on when a timing measurement will be delivered. It only guarantees that at the
instant the measurement is given, its value is approximately correct.

party to access GrefClock directly. Instead, in this work GrefClock exclusively functions

as a subroutine for the remaining two functionalities.

6.3.2 Delayed Approximate Clock Functionality GP,S,Σclock

In Figure 6·3, we construct the global functionality GP,S,Σclock that provides delayed,

approximate time. This functionality has three major distinctions from GrefClock.

First, the clock communicates with a single party P , who we refer to as its owner,

and the accuracy of the clock can be influenced by (potentially but not necessarily

different) party S. This degree of freedom allows us to use the clock functionality in
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Functionality GrefClock

GrefClock maintains an integer G corresponding to the reference time. When created,
the box initializes G = 0.

IncrementTime: Upon receiving an IncrementTime request from E , update G ←
G+ 1 and send an ok message to E . Ignore IncrementTime requests sent by any other
entity.

GetTime: Upon receiving a GetTime command, return G to the calling entity.

Figure 6·4: Global Ideal functionality representing reference time GrefClock. It is
expected that honest parties do not talk to this functionality directly.

this work as an abstraction of two very different situations: (1) a physical clock that

is actually under the control of its owner, such as an atomic clock owned by a stratum

1 NTP server, and (2) an ideal service akin to that expected from the Network Time

Protocol itself, which permits a client to operate “as if” she owned a clock herself,

modulo the unavoidable imperfections (cf. Theorems 4-5).

Second, the clock is inaccurate, in the sense that its belief about the time T = G+σ

is somewhat shifted away from the reference time. Still, the clock is guaranteed to

approximate the reference time up to some maximum shift value |σ| ≤ Σ.

Third, the clock is not instantaneous. Instead, it only returns a time measurement

after some adversarially-controlled delay δ (which may be infinite). The approximate

correctness guarantee from above holds at the moment that the time is eventually

returned.

GP,S,Σclock is used both as a goal, or benchmark, in the sense that everyone strives to

attain it (with the best parameters possible), and at the same time it is used as a

service for other protocols in order to achieve other tasks (or even another instance

of GP,S,Σclock but with better parameters or another server S).
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6.3.3 Approximate Timer Functionality FC,∆C ,ΣC

timer

In Figure 6·5, we construct the FC,∆C ,ΣC
timer functionality. Like local clocks, a timer

functionality has a single owner C and its measurements only guarantee approximate

correctness. However, FC,∆C ,ΣC
timer differs from the prior two functionalities in three

ways. First, it doesn’t provide an absolute notion of time; instead, it provides the

relative difference in time between a starting and ending point.

Second, the timer has a short lifetime: after a maximum delay ∆C , it will “time

out” and only output ⊥. This limitation ensures that FC,∆C ,ΣC
timer cannot be used as

a substitute for long-term time measurements of the type provided by GrefClock and

GP,S,Σclock .

Third, it is only used locally within a specific instance of a time synchronization

protocol. By contrast, GrefClock and GP,S,Σclock are Global UC functionalities.

6.4 Single Server Time Sync

In this section, we formally specify a simplified version of the way that a client C

uses the Network Time Protocol (NTP) to query a single server S for its belief about

the time. We show that this protocol π∆C ,ΣC ,ΣS

timeSync allows C to operate as if she had

a delayed approximate clock of her own. Formally, we prove that π∆C ,ΣC ,ΣS

timeSync GUC-

realizes a clock GC,S,Σ
∗
C

clock owned by the client.

As depicted in Fig. 6·7, π∆C ,ΣC ,ΣS

timeSync internally uses the functionalities specified in

Section 6.3. The server has access to its own instance of GS,S,ΣS

clock that approximates

the reference time, whereas the client can only measure the relative passage of time

via FC,∆C ,ΣC
timer . Additionally, S and C communicate using Fauth.

We fully specify the protocol π∆C ,ΣC ,ΣS

timeSync in Figure 6·6. The protocol is natural:

C sends a time request to S and uses FC,∆C ,ΣC
timer to measure the time elapsed until

the response arrives. S responds with (roughly) the times at which she receives the
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Functionality FC,∆C ,ΣC
timer [ GrefClock ]

A timer functionality identified by a session id sidtimer = (sid′timer, C) that denotes its
owner C. It is also parameterized by the maximum allowable delay ∆C , and the
maximum allowable shift ΣC . It operates as follows.

SetShift: Upon receiving a command (SetShift, sidtimer,M) from E , record M as the
code of a Turing machine (replacing any previously-stored code) and send an (ok,
sidtimer) message to E .

Start: Upon receiving input (Start, sidtimer) from a party P : if P 6= C or if a Start
command was previously received then ignore this request. Otherwise:

1. Send GetTime to GrefClock. Denote its response as G’. Record the tuple
(G′, sidtimer).

2. Send an (ok, sidtimer) message to C.

TimeElapsed: Upon receiving input TimeElapsed from a party P : if no previous
Start command was issued or if P 6= C then ignore this request. Otherwise:

1. Send GetTime to GrefClock. Denote its response as G. Also, retrieve the
previously-recorded G′.

2. Run M(sidtimer,G
′,G) and denote its output as σC . (Also, maintain M ’s state

for future calls.)

3. Compute δ = G − G′ + σC . If δ ≤ ∆C , output (δ, sidtimer) to C. Else output
(⊥, sidtimer) to C.

Figure 6·5: Ideal functionality FC,∆C ,ΣC
timer that returns to its owner C the approx-

imate relative time elapsed between the Start and TimeElapsed commands. While
the environment E may influence the timer’s accuracy, it must do so ‘out of band’:
once C requests TimeElapsed, it learns the answer instantaneously. Additionally, the
adversary doesn’t directly interact with FC,∆C ,ΣC

timer at all.
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Protocol π∆C ,ΣC ,ΣS

timeSync [ Fauth, FC,∆C ,ΣC
timer , GS,S,ΣS

clock ]

GetTime: Begins when the caller (e.g., E) sends the input (GetTime, sidts) to
C, where sidts = (sid′ts, C, S). Ends when C responds back to the caller with
(TimeReceived, sidts, Tc).

E Client C Fauth Server S A
−→ 1: Record the tuple (sidts, sidtimer)

2: Send Start to FC,∆C ,ΣC
timer , receive (ok,sidtimer)

3: Send (query, sidts) to S −→ 4: Record the tuple (sidts, sidclock)

5: Send (GetTime, sidclock) to GS,S,ΣS
clock

←→

6: Get (TimeReceived, sidclock, T2)

7: Append T2 to the record (sidts, sidclock)

8: Send (Sleep, sidts) to A −→
9: Get (Wake, sidts) from A ←−

10: Send (GetTime, sidclock) to GS,S,ΣS
clock

again ←→
11: Get (TimeReceived, sidclock, T3)

12: Retrieve (sidts, sidclock, T2)

←− 13: Send (response, sidts, T2, T3) to C

14: Retrieve (sidts, sidtimer), abort if no tuple exists

15: Send TimeElapsed to FC,∆C ,ΣC
timer , receive (δ, sidtimer)

16: If δ == ⊥, then set TC = ⊥

17: Else, set TC = T3 + 1
2
· (δ − T3 + T2)

18: Delete record (sidts, sidtimer)

←− 19: Output (TimeReceived, sidts, TC) to E

Continue: Begins when A sends a Continue message to C, so that C can determine
whether an ongoing session of π∆C ,ΣC ,ΣS

timeSync has timed out. If so, C ends the session.

A Client C

−→ 1: Retrieve (sidts, sidtimer), abort if no tuple exists

2: Send TimeElapsed to FC,∆C ,ΣC
timer , receive (δ, sidtimer) in response

←− 3: If δ == ⊥, then delete record (sidts, sidtimer) and output (TimeReceived, sidts,⊥) to E
←− 4: If δ 6= ⊥, then end activation

Figure 6·6: Time Synchronization Protocol π∆C ,ΣC ,ΣS

timeSync . The two participants C

and S communicate through Fauth, and they have access to FC,∆C ,ΣC
timer and GS,S,ΣS

clock ,
respectively. Note that S does not have any inputs or outputs.
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Figure 6·7: Interactions between participants and functionalities during an execu-
tion of the single server time synchronization protocol π∆C ,ΣC ,ΣS

timeSync .

Figure 6·8: Interactions between participants in the ideal world execution of single
server time sync, including the emulation of the real world inside of the simulator.
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client query (T2) and sends the response packet (T3) to allow the client to distinguish

network transmission time from server processing time. The client uses its local timer

to determine how long the server took to respond as well as to calculate the average

network delay in an NTP-like manner; however, the client times out if the server

responds after too long a delay (measured on the client’s local timer).

For simplicity of exposition, we chose to “hardwire” the identity of the server

in the code of both the ideal functionality and the protocol. However this is not

essential: our results continue to hold in an alternative model where the identity of

the server (or servers, in Section 6.5) is given to the client as a part of the input.

The remainder of this section contains a formal theorem and proof about the

accuracy of π∆C ,ΣC ,ΣS

timeSync .

Theorem 4 (Single server UC security). Given any parameters that satisfy Σ∗C ≥
1
2
· ∆C + ΣC + ΣS, it holds that the single server approximate time synchronization

protocol π∆C ,ΣC ,ΣS

timeSync GUC-realizes GC,S,Σ
∗
C

clock .

We emphasize that the shift of the client’s purported time depends on the delay

that the client waits for the timing information. Hence, C’s insistence upon a max-

imum delay ∆C isn’t merely a matter of convenience: it affects the accuracy of her

notion of time as well.

Our proof has two components. First, in Section 6.4.1 we design a simulator

S that successfully emulates the execution of any real-world adversary A from the

environment E ’s point of view. Then, in Section 6.4.2 we analyze the time bound

that it achieves.

6.4.1 Designing the Simulator

Fig. 6·8 depicts the high-level interaction between components in the ideal world. As

usual, the simulator S runs an emulated copy of the real world protocol π∆C ,ΣC ,ΣS

timeSync

inside its head while also playing the role of E inside this simulation.
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In more detail, S internally emulates the execution of A, FC,∆C ,ΣC
timer , Fauth and

each of the involved parties. In addition, S externally instantiates the global GS,S,ΣS

clock

that’s called by the protocol (unless it already exists). S also relays the messages

sent from the emulated parties to GS,S,ΣS

clock and GrefClock, and from GS,S,ΣS

clock and GrefClock

to the emulated parties.

While conducting this simulation, S monitors the traffic of its emulated A and E ,

along with any messages that S directly receives from GC,S,Σ
∗
C

clock . The messages that S

views/receives causes it to make changes in the ideal world or the emulated world.

Simulating GetTime: When GC,S,Σ
∗
C

clock sends a message of the form (Sleep, sidclock),

then S instantiates C with the environmentally-provided message (GetTime, sidts).

Simulating Continue: When S observes A sending a Continue message to the

emulated C, it waits to see which of the two possible outcomes occur at C. If C

simply ends its activation, then a timeout event has not yet occurred and S does

nothing. If instead C outputs (TimeReceived, sidclock,⊥) then a timeout event has

occurred; in this case, S sends a (Wake, sidclock, σ) message to GC,S,Σ
∗
C

clock to cause the

dummy C to produce the same output in the ideal world.

Relaying messages to E: When the emulated A sends a message to the emulated

E , S relays it to the real E . Conversely, S forwards messages sent by the real E to

the emulated A.

Corrupting the server: When A sends a Corrupt message in the emulated world,

then S sends a Corrupt message to GC,S,Σ
∗
C

clock .

Completing the simulation: When the emulated C sends to E its output

(TimeReceived, sidts, TC), then S knows both when and what to send back to GC,S,Σ
∗
C

clock .
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If TC == ⊥, then S simply sends (Wake, sidclock,⊥) to GC,S,Σ
∗
C

clock . Otherwise: S send

GetTime to GrefClock to retrieve the current reference time T . Then, S computes the

shift σSim = (TC − T ) and sends (Wake, sidclock, σSim) to GC,S,Σ
∗
C

clock .

6.4.2 Analyzing the Accuracy of the Simulator

It is straightforward to verify that the simulator’s Wake responses perfectly emulate

those in the real world: its simulation of Continue ensures that time-out actions occur

identically in the real and ideal worlds, and otherwise its calculation of σSim within

the Wake message agrees with the message sent by A.

Therefore, it only remains to show that the answer S returns can meet the ap-

proximate correctness bound required by GC,S,Σ
∗
C

clock . If S is corrupted or if C times out

then there is no bound to meet. Ergo, in the rest of this section we assume that S is

uncorrupted and also that δ < ∆C in response to all queries C makes to FC,∆C ,ΣC
timer so

that no timeout occurs.

In the emulated protocol π∆C ,ΣC ,ΣS

timeSync , the output time TC is computed by the client

as TC = T3 + 1
2
(δ − T3 + T2). T2 and T3 are the times returned from the server

and are equal to G2 + σ2 and G3 + σ3 respectively. δ is returned from FC,∆C ,ΣC
timer

to the client and is computed as G4 + σ4 − G1 − σ1. So, for the emulated client,

TC = G3 + σ3 + 1
2
(G4 + σ4 − G1 − σ1 − G3 − σ3 + G2 + σ2).

In the ideal world, the client interacting with GC,S,Σ
∗
C

clock outputs the time G4 + σSim,

where the simulator provides σSim to account for discrepancy between the emulated

client’s output and the output of the client interacting with the GC,S,Σ
∗
C

clock . Combining

the two equations yields:

σSim =
G2 − G1 + G3 − G4

2
+
σ2 − σ1 + σ3 + σ4

2
.

The simulator must be able to correct for the maximum possible value of σSim. It
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is straightforward that |σSim| is maximized when the following criteria hold.

1. The server’s clock is maximally shifted: σ3 and σ2 both equal ΣS.

2. The client’s timer shifts to the maximum extent permissible between the Start

and TimeElapsed queries: σ4 = ΣC and σ1 = −ΣC .

3. The network latency is maximally asymmetric: E maximizes (G2−G1 +G3−G4)

by incrementing the reference time a large amount between G1 and G2 and not

at all between G3 and G4, or vice versa.

We desire an upper bound on the network asymmetry described in item 3. For the

client to avoid timing out, it must be the case that the total time elapsed obey the

constraint that

(G4 + σ4)− (G1 + σ1) ≤ ∆C .

It follows that G4 − G1 ≤ ∆C + 2 · ΣC . Also, since the four times are monotonic,

0 ≤ G4−G3 ≤ G4−G1 and 0 ≤ G2−G1 ≤ G4−G1. Therefore: |G2−G1 +G3−G4| ≤

∆C + 2 · ΣC .

Combining the three bounds above yields

|σSim| ≤
∆C

2
+ ΣC + ΣS.

Hence, it suffices for the Σ∗C for the GC,S,Σ
∗
C

clock to be 1
2
∆C + ΣC larger than the shift

in the server-owned clock GS,S,ΣS

clock in order for the simulator to be able to simulate

correctly, proving Theorem 4.

6.5 More Robust Network Time

In this section, we provide a more robust method to acquire time over the Internet. It

is better representative of the way NTP operates: each client queries multiple servers
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Protocol π∆C ,ΣC ,ΣS

multiTimeSync [ GC,S1,Σ∗C
clock , . . . , GC,Sn,Σ∗C

clock and 2n instances of FC,∆C ,ΣC
timer ]

GetTime: Begins when the caller sends to C the input (GetTime, sidmts). In response,
C provisions a timing measurement array Tsidmts of length n with all values initialized
to a special ‘?’ symbol. C also allocates sufficient storage space to record the session
ids of all timers and clocks with which it interacts. Finally, C invokes QueryClock.

QueryClock: Begins when invoked by GetTime or Continue. Invariant: at least one
clock has not been invoked.

1. C identifies a previously-unqueried GC,Si,Σ
∗
C

clock .

2. C sends a Start command to the ith timer and waits for an ok response.

3. C sends the command (GetTime, sidclocki) to GC,Si,Σ
∗
C

clock .

ResponseReceived: Begins when C receives a response (TimeReceived, sidclocki, Ti)

from a clock GC,Si,Σ
∗
C

clock :

1. C records Tsidmts [i]← Ti.

2. C sends a TimeElapsed message to the ith timer. If it returns ⊥, then C updates
Tsidmts [i]←⊥.

3. If Tsidmts [i] 6=⊥, then C sends a Start command to the (n+ i)th timer and waits
for an ok response.

4. Invoke the Continue routine.

Continue: Begins when A sends to C the Continue command or when
ResponseReceived ends.

1. If C has not yet queried each GC,Si,Σ
∗
C

clock , then C begins the QueryClock protocol
as stated above.

2. Else, C begins the CheckTimeout protocol as stated below.
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CheckTimeout: Begins when invoked by Continue. Invariant: each GC,Si,Σ
∗
C

clock has
already received a GetTime query.

1. For all i: C sends a TimeElapsed message to the ith timer if Tsidmts [i] == ? and
to the (n + i)th timer otherwise. If the timer returns a ⊥ response, then C
updates Tsidmts [i]←⊥.

2. If none of the records in Tsidmts equal ‘?’, then invoke Finalize. Else, end the
current activation.

Finalize: Begins when invoked by CheckTimeout. Note that A never gets control
during Finalize.

1. For all i such that Tsidmts [i] 6=⊥, send a TimeElapsed message to the (n + i)th

timer and wait for a response of the form (δ, sidtimern+i).

• If δ ==⊥, then update Tsidmts [i]←⊥.

• Otherwise, update Tsidmts [i]← Tsidmts [i] + δ.

2. C sets TC to be the median of the non-⊥ values within Tsidmts . If all values equal
⊥, then C sets TC to ⊥.

3. Output (TimeReceived, sidmts, TC) to the caller.

Figure 6·9: Time Synchronization Protocol π∆C ,ΣC ,ΣS

multiTimeSync in between a client C with

access to unused FC,∆C ,ΣC
timer functionalities and a set of n GC,Si,Σ

∗
C

clock functionalities each
parameterized by a server Si from the set {S1, ..., Sn}.

to increase its resilience to compromise, and different clients query different servers

to remove network and resource bottlenecks.

Section 6.5.1 considers the case of a single client accessing multiple servers. Then,

Section 6.5.2 considers the multi-stratum case in which each server in a stratum re-

ceives its notion of time not from a local clock, but instead by acting also as a client

and querying several servers in the stratum below. We use the composition theo-

rem to provide modular and relatively simple analysis of these these rather intricate

interactions.
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Functionality GP,S,ΣmultiClock [ GrefClock ]

This ideal functionality is identified by a session id sidmclock = (sid′mclock, P, {S1, ..., Sn})
where sid′mclock = sidclock1 . . . sidclockn that denotes the clock’s owner P as well as a set
of parties S = {S1, ..., Sn} whose honesty influences the accuracy of the clock. It is
also parameterized by the maximum allowable shift Σ from the reference time. It
operates as follows.

Corrupt: Upon receiving a message (Corrupt, S), if S ∈ {S1, . . . , Sn} then record Si
as corrupted.

GetTime: Upon receiving input (GetTime, sidmclock) from party P ′, ignore this re-
quest if P ′ 6= P , otherwise:

1. Send (Sleep, sidmclock) to the adversary. Wait for a response from the adversary,
of the form (Wake, sidmclock, σ, L) where L is the list of servers that are deemed
to provide non-⊥ timing measurements.

2. If σ == ⊥, output (TimeReceived, sidclock,⊥) to P .

3. Else send GetTime to GrefClock. Denote its response as T .

(a) If the majority of servers in L are corrupted or |σ| ≤ Σ, output
(TimeReceived, sidmclock, T + σ) to P .

(b) Else output (TimeReceived, sidmclock,⊥) to P .

Figure 6·10: Ideal functionality GP,S,ΣmultiClock that outputs a time influenced by the
corruption status of servers in S. Note that the GP,S,Σclock functionality in Fig. 6·3 is a
special case of this one with a singleton set S = {S}.

6.5.1 Multiple Server Time Sync

At a high level, the new π∆C ,ΣC ,ΣS

multiTimeSync protocol involves a client who queries n different

servers for the time. Once all timing measurements have been collected or time-out,

then the client outputs the median of all non-⊥ timing measurements.

The full protocol to aggregate times from multiple servers is shown in Fig. 6·9.

This protocol requires the client to keep an extra timer per server in order to calculate

and remember the freshness of responses.
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Producing a real multi-server protocol should involve the composition of π∆C ,ΣC ,ΣS

timeSync

protocols with each server. Thanks to the UC composition theorem, it suffices to

analyze a simpler protocol in which the π∆C ,ΣC ,ΣS

timeSync with each server Si is replaced

with its corresponding ideal functionality GC,Si,Σ
∗
C

clock . We make a few remarks about

this use of composition:

• There are implicitly two uses of Gclock here: the server’s clock GS,S,ΣS

clock in the

real protocol and the entire ideal functionality GC,S,Σ
∗
C

clock . We stress the lack of

circularity here, as shown in Fig. 6·1: the first clock is a subroutine of π∆C ,ΣC ,ΣS

timeSync

whereas the second clock is an ideal abstraction of it.

• The protocol π∆C ,ΣC ,ΣS

multiTimeSync contains ΣS as a parameter but its specification in

Fig. 6·9 never mentions ΣS explicitly. Instead, the only impact of ΣS is its

influence over Σ∗C , as shown in Theorem 4.

In comparison to the single-server case, this protocol offers one drawback and

one benefit. The extra timer adds the price of 2 · ΣC additional shift to the time

computed by the client. On the plus side, the multiple server protocol can guarantee

approximate correctness even if some servers are corrupted, due to the following two

observations. First, uncorrupted measurements must be close to the reference time

G. Second, if the majority of servers are uncorrupted, then the median time must be

bounded on both sides by uncorrupted samples.

These observations yield an approximate correctness guarantee that is quite ro-

bust! We do not require that all or even most timing measurements reach the client;

on the contrary, the adversary might corrupt, drop, or delay almost all requests.

Additionally, the adversary may corrupt parties adaptively and may choose their re-

sponses conditioned upon the timing measurements of the honest parties. We simply

require the following constraint: of the servers whose interactions result in the client
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receiving a timing measurement (i.e., anything but ⊥), a majority of those servers

are uncorrupted.1

The ideal functionality GP,{S1,...,Sn},Σ′C
multiClock specified in Figure 6·10 formally captures

this accuracy constraint.

Theorem 5 (Multiple server UC security). Given parameters that satisfy Σ′C ≥
2.5 ·∆C + 3 ·ΣC + ΣS, the multiple server approximate time synchronization protocol

π∆C ,ΣC ,ΣS

multiTimeSync GUC-realizes GP,{S1,...,Sn},Σ′C
multiClock .

As before, the simulator S internally runs an emulated copy of the real world

protocol π∆C ,ΣC ,ΣS

multiTimeSync, where S plays the role of E inside this simulation. In particular,

S internally emulates the execution of adversary A, all n FC,∆C ,ΣC
timer functionalities,

all the instances of Fauth, and each of the involved parties. In addition, S relays the

messages sent from the emulated parties to GrefClock and GC,S,Σ
∗
C

clock , and from GrefClock

and GC,S,Σ
∗
C

clock to the emulated parties.

While conducting this simulation, S monitors the traffic of its emulated A and E ,

along with any messages that S directly receives from GP,{S1,...,Sn},Σ′C
multiClock . The messages

that S views/receives causes it to make changes in the ideal world or the emulated

world.

Simulating GetTime: When GP,{S1,...,Sn},Σ′C
multiClock sends a message of the form (Sleep, sidmclock),

then S instantiates C with the environmentally-provided message (GetTime, sidmts).

Simulating Continue: When S observes A sending a Continue message to the

emulated C, then S sends a Continue message to C. (Upon receiving this message,

the emulated C might invoke QueryClock or CheckTimeout.)

1This threshold constraint corresponds to the strong “sleepy model of consensus” of (Pass and
Shi, 2016) and (Micali, 2016).
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Maintaining Records: Upon receiving a message of the form (TimeReceived, sidclocki, Ti)

from GC,Si,Σ
∗
C

clock , if Ti ==⊥, initialize an empty list L if there does not exist one. Ap-

pend i to list L. Subsequently, if a CheckTimeout procedure ever returns a ⊥ when

querying the ith timer, then remove i from L.

Relaying messages to E: When the emulated A sends a message m to the

emulated E , then S relaysm to the real environment. Conversely, S forwards messages

sent by the real E to the emulated A.

Corrupting a server: When A sends a (Corrupt, Si) message in the emulated

world, then S sends a (Corrupt, Si) message to GP,{S1,...,Sn},Σ′C
multiClock .

Completing the simulation: When the emulated C sends to E its output

(TimeReceived, sidmts, TC), then S knows both when and what to send back to GP,{S1,...,Sn},Σ′C
multiClock .

If TC == ⊥, then S sends (Wake, sidmclock,⊥,⊥) to GP,{S1,...,Sn},Σ′C
multiClock . Otherwise: S sends

GetTime to GrefClock to retrieve the current reference time T and also retrieves the list

L. Then, S computes the shift σsim = (TC −T ) and sends (Wake, sidmclock, σsim, L) to

GP,{S1,...,Sn},Σ′C
multiClock .

In the ideal model (namely in the execution of GP,{S1,...,Sn},Σ′C
multiClock with S), GP,{S1,...,Sn},Σ′C

multiClock

receives from S an offset σ′Sim and a list of the servers whose GP,S,Σclock boxes output ⊥

in the simulated π∆C ,ΣC ,ΣS

multiTimeSync. It is also informed when a server is corrupted.

From this information GP,{S1,...,Sn},Σ′C
multiClock computes TC as Gx + σ′Sim where, if fewer

than half of the servers whose GS,S,ΣS

clock boxes did not output ⊥ are corrupted, σ′Sim ≤

Σ′C , the maximum offset that a GP,{S1,...,Sn},Σ′C
multiClock box will allow.

The value output by π∆C ,ΣC ,ΣS

multiTimeSync is selected as the median of the values returned

from its GC,S,Σ
∗
C

clock boxes plus a δ corresponding to the time passed since the response

was received. The value returned from GC,Si,Σ
∗
C

clock is of the form Ti = Gi + σi where
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Figure 6·11: Interactions between participants in the real world execution of multi-
server time sync

Figure 6·12: Interactions between participants in the ideal world execution of multi-
server time sync, including the emulation of the real world inside of the simulator.
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|σi| ≤ Σ∗CSi
the max offset for the GC,S,Σ

∗
C

clock owned by server Si if Si is uncorrupted.

The client in π∆C ,ΣC ,ΣS

multiTimeSync will then add a δ to this corresponding to the elapsed time

since receiving the response Ti from the ith GC,S,Σ
∗
C

clock . The delay δ is computed like

before as G2 + σ2 − G1 − σ1 and is at most ∆′C . Finally, it must be the case that

∆′C > ∆C or else valid responses could timeout while C is waiting for all GC,Si,Σ
∗
C

clock to

respond.

In this case G2 = Gx as the FC,∆C ,ΣC
timer is queried for a δ when all the responses are

received in the simulation and there is not a chance for the environment to update

the reference time between this point and when it is obtained by GP,{S1,...,Sn},Σ′C
multiClock .

Additionally, G1 = Gi as the timer is started once the response is received. Therefore,

Gx − Gi ≤ ∆′C + 2 ∗ ΣC where ΣC is, as before, the max allowable shift for a C’s

FC,∆C ,ΣC
timer .

The TC output by π∆C ,ΣC ,ΣS

multiTimeSync is Gi + σi + δi so in order to properly simulate S

must be able to input a σSim that will make Gx + σ′Sim equal to Gi + σi + δ. Gx is at

most ∆′C + 2 · ΣC greater than Gi, σi is at most Σ∗CSi
, and δ ≤ ∆′C . Finally, recall

from Section 6.4.2 that Σ∗CSi
≤ ∆C

2
+ ΣC + ΣSi

.

Combining the above bounds yields

|σ′Sim| ≤ 2.5 ·∆C + 3 · ΣC + ΣS.

Therefore, it suffices for the Σ′C for the GP,{S1,...,Sn},Σ′C
multiClock to be 2(∆′C + ΣC) larger

than the Σ∗C for the simulated GC,S,Σ
∗
C

clock in order for the simulator to be able to simulate

correctly, proving Theorem 5.

6.5.2 Multiple Strata Network Time

In this section, we add another feature of the network time protocol: a hierarchical

structure to distribute the network load required to propagate network time. Partici-
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pants in NTP are stratified, with stratum-0 servers possessing their own source of time

GS,S,Σ0

clock and all other participants serving as both clients and servers. We restrict our

attention to the case in which NTP servers communicate within the following ‘rigid

topology.’

• We insist that each individual machine be statically pegged to a single stratum

forever. We impose this restriction so that we may compose invocations of

π∆C ,ΣC ,ΣS

multiTimeSync. In the more realistic scenario where machines can change strata,

the UC composition theorem breaks down since a feedback loop may occur

where a client provides an input into its own time measurement.

• We require that machines in stratum j only take timing measurements from

servers located in stratum j − 1 and thus only provide time to stratum j + 1

clients. We impose this restriction merely to simplify our calculations in The-

orem 6; the UC composition theorem would enable more complicated analyses

if so desired.

• We use the following parameters: Stratum 0 servers are within shift Σ0 of

GrefClock. All machines in higher strata have timers with maximum delay ∆∗

and maximum shift Σ∗.

Additionally, we make two observations that generalize the work we have already

provided. First π∆C ,ΣC ,ΣS

multiTimeSync continues to be well-defined if it receives multi-server

ideal functionalities GP,S,ΣmultiClock as subroutines rather than single-server functionalities.

Additionally, if all servers within all of the GP,S,ΣmultiClock used by the client have the

same ΣS bound, then the statement and proof of Theorem 5 continue to hold in this

setting.

Second, we may further generalize π∆C ,ΣC ,ΣS

multiTimeSync by permitting S to be a set of

sets and by modifying the consistency rule in step 3a to state that the adversary



197

only has free reign to alter the time if the set of servers S is ‘bad,’ as defined below.

Furthermore, Theorem 5 continues to provide bounds on consensus and accuracy in

this case as well.

Definition 3. During an execution of π∆C ,ΣC ,ΣS

multiTimeSync, we denote a server as bad if it is

corrupted. Additionally, a set of parties is deemed to be bad if a majority of elements

are corrupted. Note that these elements may either be parties or sets themselves; in

the latter case, the notion of corruptedness is defined recursively.

Here, the majority vote is only taken over elements that respond to the client’s

request for timing measurements within its maximum allowable delay ∆ (which we

stress that the adversary has the capacity to control). The fact that non-responsive

servers do not factor either positively or negatively into the badness of a set of parties

is consistent with the sleepy model of consensus (cf. footnote 1).

These two observations and the UC composition theorem allow us to bound the

worst-case error when timing measurements percolate down multiple strata.

Theorem 6. Consider several machines who conduct multiple server timing mea-

surements following the network topology specified above. Then, a client C at stratum

j who executes π∆C ,ΣC ,ΣS

multiTimeSync using the set of servers S will receive a time whose in-

accuracy is bounded by Σj ≥ 2.5j · ∆∗ + 3j · Σ∗ + Σ0 as long as the set S is not

bad.

The proof of this theorem is straightforward. First, we apply the UC theorem to

replace all instances of the π∆C ,ΣC ,ΣS

multiTimeSync protocol (for C and for all of the timeservers

who get their measurements from lower strata as well) with instances of the ideal

functionality GP,S,ΣmultiClock. We remark that our definition of good and bad timeservers

matches precisely with the (modified) constraint for timing consensus in step 3a of

GP,S,ΣmultiClock. Ergo, Theorem 5 upper bounds the inaccuracy of all good servers at

stratum i as Σi ≥ 2.5∆∗ + 3Σ∗ + Σi−1. Summing these inequalities for all i ∈

{1, 2, . . . , j} yields the desired result.

We stress that Theorem 6 provides a worst case bound. By contrast, in the remain-

der of this section we mathematically analyze and computationally simulate average
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case error propagation over multiple strata by timeservers with accidental rather than

adversarial timing inaccuracies. Suppose that these accidental network asymmetries

and server clock imprecisions contribute to delays δ and shifts σ (respectively) that

are randomly distributed (e.g., using a uniform or Gaussian distribution). In this

average case setting, the central limit theorem provides much more stringent bounds

on error propagation.

• Within a single stratum, the fact that each client invokes multiple servers means

that their individual shift errors are very likely to interfere destructively. Net-

work jitter effects do cause a noticeable delay, however.

• The effect of network asymmetry at a particular stratum i upon the shift (as

found in Theorems 4 and 5) is also reduced significantly when progressing down

the strata.

The net result of the average case analysis is that the expected shift at a high stratum

is influenced mostly by the magnitude of the network asymmetry at that stratum only.

Hence, a high stratum timeserver with low latency network connections may actually

possess better timing measurements than a low stratum timeserver in a high latency

environment, even if the latter contributes toward the timing measurements of the

former.

6.6 Using Approximate Time in UC Protocols

In this section, we explore the ramifications of injecting approximate time into exist-

ing, time-agnostic GUC protocols and functionalities. Although our principal interest

is in the expiration and revocation of PKI certificates, much of our analysis applies

generically to any protocol whose security depends in part on the approximate accu-

racy of time.
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6.6.1 Adding Time to Existing Protocols & Functionalities

We begin by considering generically the influence of time upon existing UC protocols

and functionalities that have previously been proved secure in the usual untimed,

asynchronous setting. The following straightforward theorem states that UC security

continues to hold for all untimed protocols:

Theorem 7. Let π be a protocol that GUC-realizes functionality G in an untimed

setting. Then, π continues to GUC-realize G even in the presence of exact or approx-

imate time functionalities like GrefClock or GP,S,Σclock .

This theorem follows immediately from the UC security guarantee in the presence

of global functionalities. Since no environment can distinguish π from G, in particular

this condition must hold for environments that either keep track of, or have access

to, a time functionality such as G.

More interestingly, we can automatically add a time dependency on top of proto-

cols that previously lacked an understanding of time. In this section, we focus upon

protocols and functionalities of the following type.

Definition 4 (Binary decider). We say that a protocol πbin is a binary decider if the

following constraints hold:

• Only one party P receives output. We denote the collection of inputs by ~x and

the output as (b, y).

• The value b is a single bit. (By contrast, y and the elements of ~x are strings of

arbitrary length.)

Intuitively, binary deciders provide P with a putative output and a verification

bit that determines whether P chooses to accept the answer. Protocols of this form

include bit commitments, zero-knowledge proofs, and (of particular interest to us)

signature and certificate verification checks.

Given any binary decider protocol πbin, Fig. 6·13 constructs a new protocol π̂Σ,t∗

bin

that operates identically to πbin except that it subjects the verification bit to a new
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constraint that rejects responses when P ’s time is past a threshold t∗. For simplicity,

in this section we assume that P ’s clock GP,P,Σclock is corrupted only if P is, so the only

relevant parameter is the maximum clock shift Σ. Note that t∗ and Σ are explicitly

provided to the adversary; π̂Σ,t∗

bin makes no attempt to hide them.

Next, we demonstrate a canonical method to transform ideal functionalities anal-

ogously. Given any Gbin, Fig. 6·14 constructs a new ideal functionality ĜΣ,t∗

bin that

executes Gbin as a subroutine and also determines the reference time G. It is more

restrained than before: the adversary can only change an otherwise-valid response if

G is close to the threshold t∗.

Next, we show that these two transformations produce identical outcomes. Intu-

itively, the adversary can control the output bit of ĜΣ,t∗

bin only when her clock skew

capability can be used to affect π̂Σ,t∗

bin ’s output.

Theorem 8. Suppose that the binary decider πbin GUC-realizes Gbin and that πbin’s

output party P has access to a clock GP,P,Σclock . Then, π̂Σ,t∗

bin GUC-realizes ĜΣ,t∗

bin .

Let Dπ denote the dummy adversary against πbin and SimG denote its correspond-

ing simulator. Additionally, let Dπ̂ denote the dummy adversary against π̂Σ,t∗

bin . Our

objective is to design a simulator SimĜ that connects with ĜΣ,t∗

bin and produces a view

indistinguishable from Dπ̂.

SimĜ emulates the real world interaction with Dπ̂ in its head, and it behaves as

follows during each step of the execution of ĜΣ,t∗

bin in the ideal world.

1. SimĜ sends (t∗,Σ) to E and relays E ’s response to ĜΣ,t∗

bin , just as Dπ̂ does with

π̂Σ,t∗

bin .

2. During the execution of Gbin, the simulator SimĜ simply acts as SimG would.

3. SimĜ observes the shift σ that Dπ̂ applies to P ’s clock and then sends b′ =

b ∧ [t
?

≤ t∗] to ĜΣ,t∗

bin .
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Protocol π̂Σ,t∗

bin [ πbin, GP,P,Σclock ]

When instantiated with inputs ~x where party P ’s input has the form xP = (x′P , t
∗,Σ),

do the following:

1. P sends (t∗,Σ) to A and waits for an ok response.

2. The parties execute the subroutine protocol πbin on inputs ~x′, where x′P ′ = xP ′
for all P ′ 6= P . Eventually, P produces output of the form (b, y).

3. Before submitting this output, P queries her clock (with max shift Σ) for the
current time t. This request invokes A to provide a shift σ.

4. Compute b′ = b ∧ [t
?

≤ t∗].

5. P outputs (b′, y) to the caller.

Figure 6·13: Time-conditional protocol π̂Σ,t∗

bin . It connects to two subroutines: a
binary decider πbin and P ’s clock.

Note that SimĜ has nothing to do during steps 4-5.

The messages sent to the environment during steps 1-2 are clearly identical to

those of Dπ̂. The only other message received by E is the output (b′, y).

Ergo, to prove simulation, it suffices to show that the output values b′ are identical

in π̂Σ,t∗

bin and ĜΣ,t∗

bin . This follows from the fact that the adversary’s ability to shift P ’s

clock is bounded such that:

[t
?

≤ t∗] =


1, if G < t∗ − Σ,

0, if G > t∗ + Σ,

controlled by SimĜ, otherwise.

Hence, SimĜ’s inability to influence b′ in the first two cases of step 4 is irrelevant

because π̂Σ,t∗

bin ’s output must equal b and 0, respectively. In the third case, SimĜ

chooses b′ just as π̂Σ,t∗

bin does during step 4, so the simulation is perfect.
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Functionality ĜΣ,t∗

bin [ Gbin, GrefClock ]

When instantiated with inputs ~x where party P ’s input has the form xP = (x′P , t
∗,Σ),

do the following:

1. Send (t∗,Σ) to A. Wait for an ok response.

2. Send ~x′ (as defined in Fig. 6·13) to subroutine Gbin. Eventually, receive a re-
sponse of the form (b, y).

3. Query the adversary for a value b′.

4. Obtain the reference time G from GrefClock. Update the value of b′ as follows:

• If G < t∗ − Σ, then set b′ = b.

• If G > t∗ + Σ, then set b′ = 0.

• If b = 0, set b′ = 0.

5. Output (b′, y) to P .

Figure 6·14: The time-conditional ĜΣ,t∗

bin functionality with two subroutines: GrefClock

and an untimed binary decider Gbin. The max shift Σ of P ’s clock affects the behavior
of ĜΣ,t∗

bin , even though they never communicate.

Functionality Gtimed-bb

Report: Upon receiving from party P a message of the form (Register, P, serial, v, t),
send the message to the adversary and wait for an ok response. If this is the first
request involving (P, serial) then record the tuple (P, serial, v, t). Otherwise, ignore
the message.

Retrieve: Upon receiving from some party Pi or the adversary a mes-
sage (Retrieve, Pj, serial), retrieve the record r containing (Pj, serial) and return
(Retrieve, r). If no such record exists, return (Retrieve,⊥).

ChangeExpiration: Upon receiving from party P a message of the form
(ChangeExpiration, P, serial, t′), retrieve the record of the form (P, serial, v, t). If t′ < t,
then replace t with t′ in this record. Otherwise (including if the record does not exist),
do nothing.

Figure 6·15: A public bulletin board that augments (Canetti et al., 2016, Fig. 3) to
incorporate an expiration time.
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6.6.2 Application to Public Key Infrastructure

In this section, we augment Canetti, Shahaf, and Vald’s GUC analysis of signature-

based authentication (Canetti et al., 2016) to enable revocation and expiration. The

goal of (Canetti et al., 2016) is to provide, within the UC framework, modeling

and analysis of the process of (1) generating signing and verification keys for a dig-

ital signature scheme, (2) certifying the verification key, and (3) using these keys to

authenticate and verify messages by way of signing them on the sending end and

verifying the verification key and the signature on the receiving end. An important

innovation within (Canetti et al., 2016) is to provide adequate treatment to the fact

that the certified verification keys are universally available and may be used to au-

thenticate several messages within many different protocols. The main components

of their modeling are:

• A public bulletin-board Gbb where parties can publicly associate values with

their identities. The bulletin board is globally available and guarantees authen-

ticity (a party can only associate values with her own true ID).

• A certification functionality Gcert that provides its owner with a public key, that

it then posts globally using Gbb. When the owner provides a message m to be

signed, Gcert returns an idealized signature string S; later on, when asked by

anyone, Gcert correctly verifies valid message-signature pairs.

• An existentially unforgeable signature scheme Fsig that is used to realize Gcert.

• An authenticated message transmission functionality Fcert-auth that properly

models the non-deniability of an authenticated message, i.e., that it is possible

for third parties to verify whether a given message was indeed sent and signed by

the sender. (This stands in contrast with the “standard” authenticated message
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transmission functionality in Fig. 6·2, which only allows the specified receiver

to tell whether a message is authentic.)

• A protocol πauth for realizing Fcert-auth using Gcert, by way of signing the message

by the sender and later verifying the signature on the receiving end, against Gcert

of the sender. An important aspect of this analysis is that Gbb is global and

exists regardless of the specific instance of Gcert. Furthermore, while Gcert is

specific for a single “party” (i.e., long-term entity), it is global in the sense that

it exists regardless of any single message-authentication instance.

We remark that, while the analysis of (Canetti et al., 2016) only considers the setting

in which each party registers a single certificate, one can verify that their modeling

and proofs continue to hold when each pid is replaced with a (pid, serial) pair, where

serial denotes a unique identifier of a certificate issued by a particular CA (Cooper

et al., 2008, §4.1.2.2). As a result, the same analysis applies when participants can

request the creation of multiple certificates, which is essential when certificates expire.

Adding time awareness and certificate revocation. To capture expiration

and revocation requests, we extend Canetti et al.’s public bulletin board Gbb into

a time-aware bulletin board Gtimed-bb that supports expiration and revocation. Our

extension augments the Report method to record the expiration time and adds a new

third method called ChangeExpiration to support revocations. Figure 6·15 shows the

details.

Then, we may apply Theorem 8 to “lift” the certification functionality Gcert and

the authentication functionality Fcert-auth described in (Canetti et al., 2016) to their

respective time-dependent versions. In the lifted ĜΣ,t∗

cert , the recipient determines the

appropriate threshold t∗ to use by querying Gtimed-bb with the sender’s credentials.

Finally, the timed version of the real authentication protocol πtime-auth , π̂Σ,t∗

auth GUC-
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realizes the timed ideal functionality Ftime-cert-auth , F̂Σ,t∗

cert-auth based upon Theorem 8

and (Canetti et al., 2016, Claim 4.4).

This protocol πtime-auth combines all of the components designed so far to provide

time-based non-deniable authentication, as shown in Fig. 6·1. It requires a clock,

which we know how to instantiate from Sections 6.4-6.5. Additionally, it uses Gcert as

a subroutine just as its untimed counterpart did.

By imbuing this subroutine with a notion of time itself, ĜΣ,t∗

cert can interface with our

timed bulletin board Gtimed-bb to attest that (1) the signature is valid, just as before

and (2) the certificate hasn’t yet expired, using the new expiration time t contained

within the record returned by Gtimed-bb’s Retrieve command. Furthermore, in case of

key compromise, the signer can request that her certificate be revoked.

Impact upon use of the PKI today. An important lesson learned from this

modeling is that real-life certificate revocation lists and online certificate status re-

quests must continue to answer requests about revoked or expired certificates during

the interval [t∗, t∗ + Σ] because clients may not be able to adjudicate them correctly

on their own before this time. Here, Σ denotes the maximum shift expected by The-

orems 4 and 5 for all clients on the Internet. After this interval, the adversary cannot

convince any clients of the validity of a revoked or expired certificate via network

manipulation, so the CA may forget about its existence.
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The Client/Server Protocol in ntpd

We present several ntpd vulnerabilities that stem from ambiguities in RFC5905. Fig-

ure A·1 is a (simplified) description1 of the code used for the datagram protocol in

ntpd v4.2.8p6 (the most recent release as of mid-April 2016).

Our attacks assume that client/server connections are unauthenticated, which is

the default in ntpd and is the most common configuration in the wild (Section 5.5.1).

Appendix A.1 presents our Zero-0rigin Timestamp vulnerability (CVE-2015-8138)

that allows an off-path attacker to completely hijack an unauthenticated association

between a client and its server, shifting time on the client. Appendix A.2 presents

our Interleaved Pivot vulnerability (CVE-2016-1548), an extremely low-rate off-path

denial-of-service attack. Importantly, both vulnerabilities affect ntpd clients operat-

ing in default mode, are performed from off-path, and require no special assumptions

about the client’s configuration. Both have been present in ntpd for seven years,

since the first release of ntpd v4.2.6 in December 2009. In Section 5.4 we combine

the interleaved pivot vulnerability with information-leaking NTP control queries and

obtain a new off-path timeshifting attack.

A.1 Zero-0rigin timestamp vulnerability.

The zero-0rigin timestamp vulnerability allows an off-path attacker to completely

hijack an unauthenticated client/server association and shift the client’s time.

1Note that the actual ntpd code swaps the names of the xmt and org state variables; we have
chosen the description that is consistent with the RFCs.
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1 def receive( pkt ):

2 if pkt.T3 == 0:

3 flash |= test3 # fail test3

4 elif pkt.T3 == org

5 flash |= test1 # fail test1

6 return

7 elif broadcast == True:

8 ; # skip further tests

9 elif interleave == False:

10 if pkt.T1 == 0:

11 xmt = 0

12 elif (xmt == 0 or pkt.T1 != xmt):

13 flash |= test2 # fail test2

14 if (rec !=0 and pkt.T1 == rec):

15 interleave = True

16 return

17 else:

18 xmt = 0 # pass test2, clear xmt

19 elif (pkt.T1 == 0 or pkt.T2 == 0):

20 flash |= test3 # fail test3

21 elif (rec != 0 and rec != pkt.T1):

22 flash |= test2

23 return # fail interleave test2

24

25 if interleave == False:

26 rec = pk.receive_time()

27 org = pkt.T3

28

29 if flash == True:

30 return

31 else

32 process( pkt )

33 return

Figure A·1: Simplified implementation of the datagram protocol from ntpd v4.2.8p6.
The packet will not be processed if the flash variable is set. interleave variable is
set when the host is in interleaved mode. Line 16 was introduced at ntpd v4.2.8p4
and 10-11 at ntpd v4.2.8p5.
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Injecting 0rigin packets from off-path. In this attack, the attacker sends a

spoofed mode 4 response packet to the target client. The spoofed packet has its

origin timestamp T1 set to zero, and its other timestamps T2, T3 set to bogus values

designed to convince the target to shift its time, and its source IP set to that of the

target’s server. (The off-path attacker learns the server’s IP via the reference ID, per

footnote 6.) Now, consider how the target processes the received spoofed zero-0rigin

timestamp packet:

(1) For ntpd v4.2.8p5 or v4.2.8p6, a spoofed zero-0rigin packet will always be

accepted, because it passes through lines 10-11, which skip TEST2 altogether. While

the addition of lines 10-11 may seem strange, we suspect that they were added to

handle the initialization of NTP’s symmetric mode, which shares the same code path

as client/server mode. Further discussion is in Appendix B.3.

(2) For ntpd v4.2.6 to v4.2.8p4, lines 10-11 of Figure A·1 were absent. Thus, the

target will accept the spoofed packet when it does not have an outstanding query to

the server. Why? When the target does not have an outstanding query to its server,

its xmt variable is cleared to zero. Thus, when the spoofed zero-0rigin packet is

subjected to TEST2 (line 12), its origin timestamp (which is zero) will be compared to

the xmt variable (which is also zero) and be accepted. The vulnerability arises because

Figure A·1 fails to apply TEST3, which rejects packets with zero origin timestamp.2

Thus, an off-path attacker can send the target a quick burst of self-consistent zero-

0rigin packets with a bogus time, and cause the target to shift its time. The spoofed

zero-0rigin packets are always accepted in case (1), and usually accepted in case (2)

because the target is unlikely to have outstanding query to its server. (In case (2),

this follows because the server is queried so infrequently—NTP’s polling intervals are

at least 16 seconds long, but are often up to 15 minutes long.) After accepting the

2TEST3 is applied in the fifth clause in Figure A·1, but a client will not enter this clause unless it
is in interleaved mode.
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burst of zero-0rigin packets, the target immediately shifts its time; in fact, the target

shifts its time more quickly than it would under normal conditions, when legitimate

responses arrive from the server at the (very slow) NTP polling rate (Section 5.2).

Experiment. On April 29, 2016, we performed a zero-0rigin timestamp attack on

an ntpd v4.2.8p6 client. The target client uses the -g option on an operating system

that restarts ntpd when it quits.3 The target is configured to take time from a single

server. The target starts and completes 15 timing exchanges with its server, averaging

about one exchange per minute. We then attack, sending the target a spoofed zero-

0rigin timestamp packet every second for ten seconds; these spoofed packets have T3

as October 22, 1985 and T2 as August 1, 2006. (This choice of T2 sets δ ≈ ψ ≈ 0,

so we pass TEST11; see Section 5.2.) The target panics and restarts after the ninth

spoofed packet. It then receives the tenth spoofed packet before it queries its server,

and per the reboot bug in Appendix D, immediately shifts to 1985. (Our attack would

still work even without this bug; the target would shift to 1985 after we sent it a few

more packets.)

Eventually, the attacker decides to check if the attack has been successful by

sending a mode 3 query to the target. By checking the transmit timestamp of the

mode 4 response, the attacker realizes that the target is in 1985. Then, the attacker

sets T2 = 0 on his spoofed packets to maintain the target client in 1985. (This

3NTP’s has a panic threshold that is 1000 seconds (16 mins). If the client gets a time shift that
exceeds the panic threshold, the client quits. Thus, at first glance, it seems that that the worst an
attacker can do is alter the client’s clock by 16 minutes. However, as noted in (Malhotra et al.,
2016), this panic behavior can be exploited. ntpd has a -g option that allows a client to ignore the
panic threshold when it reboot; -g is the default ntpd configuration on many OSes including CoreOS
Alpha (1032.1.0), Debian 8.2.0, Arch Linux 2016.05.01, etc. Moreover, many operating systems uses
process supervisors (e.g., systemd), which can be configured to automatically restart any daemons
that quit. (This behavior is the default in CoreOS and Arch Linux. It is likely to become the default
behavior in other systems as they migrate legacy init scripts to systemd.) Thus, an an attacker
can circumvent the protections of panic threshold by sending the client a timeshift that exceeds the
panic threshold, causing the NTP daemon to quit. The OS subsequently automatically reboots the
NTP daemon. Now, if the NTP daemon is running with the -g option, it will ignore the panic
threshold because it has just rebooted.
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is necessary because the target client’s T4 is now October 22, 1985, so maintaining

δ ≈ 0 so we pass TEST11 requires T2 = 0.) The attacker continues pelting the target

with spoofed packets at a higher rate (≈ 1 packet/second) than that of the legitimate

server response packets (≈ 1 packet/minute). The legitimate packets look like outliers

(due, in part, to TEST11, Section 5.2) and the target sticks to the attacker’s bogus

time.

A.2 Interleaved pivot vulnerability.

We next consider a vulnerability introduced by NTP’s interleaved mode, which is

designed to allow for more accurate time synchronization.

What is interleaved mode? Recall that NTP uses timestamps on the packets to

determine the offset θ between the client and the server. Because these timestamps

must be written to the packet before the packet is sent out on the network, there is a

delay between the time when the packet is ‘formed’ and the time when the packet is

sent. This delay is supposed to introduce small errors in the offset. Interleaved mode

eliminates this delay by spreading the computation of the offset (equation (6.2)) over

two exchanges, rather than just one. In interleaved mode, hosts record timestamps

for the moment that they actually transmit packet onto the network, and send them

in the packet transmitted in the subsequent polling interval. Interleaved mode is not

mentioned in RFC 5905 (Mills et al., 2010), but is implemented in ntpd. Mills (Mills,

2011) indicates that interleaved mode is intended for use on top of the broadcast or

symmetric modes only.

We will exploit the following issues: (1) Interleaved mode shares the same code

path as the client/server code (Figure A·1). (2) Interleaved mode changes the mean-

ings of the values stored in the timestamp fields of an NTP packet. Importantly,

the origin timestamp field of the mode 4 server response now contains T4 from the
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previous exchange (rather than T1 from the current exchange). Thus, the usual TEST2

no longer works; instead, there is ‘interleaved TEST2’ comparing the packet’s origin

timestamp to the rec variable, which stores T4 from the previous exchange. (Line

21 in Figure A·1.) (3) A host automatically switches into interleaved mode when it

detects that the host on the other side of the association is in interleaved mode. (Line

15 in Figure A·1.)

Interleaved mode as a low rate DoS vector. The implementation of interleaved

mode in ntpd introduces a low rate denial-of-service attack. The vulnerability is

introduced in line 14 of Figure A·1. Namely, if a server response packet fails the usual

TEST2, the client subjects the packet to ‘interleaved TEST2’. If the packet passes, the

client sets the interleave variable and enters interleaved mode. Importantly, a client

cannot escape from interleaved mode—there is no code path to clear the interleave

variable.

Thus, an off-path attacker can inject a spoofed server response packet that passes

‘interleaved TEST2’ because its origin timestamp equals T4 from the previous exchange.

But how can the attacker learn T4? It turns out that whenever an ntpd client updates

its clock, it sets its reference time to be T4 from the most recent exchange with the

server to which it synchronized. This T4 is sent out with every subsequent packet in

the reference timestamp field.4 Thus, to learn T4, the off-path attacker first sends the

client a regular mode 3 query, and learns the reference time from the client’s response.

If the target updated its clock in the previous exchange, the reference time will be

T4 from the previous exchange. The target will then react to the spoofed packet by

switching into interleaved mode (Line 14 of Figure A·1). All subsequent legitimate

server responses are rejected because they fail ‘interleaved TEST2’.

Worse yet, this vulnerability also leads to a low-rate DoS attack that could be

sprayed across the Internet (e.g., using Zmap (Durumeric et al., 2013)). The attack

4Miroslav Lichvar noted that T4 leaks in the reference timestamp.
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leads to a DoS for each one of the target’s servers. The attack works by repeating the

process of (1) sending a timing query to the target to learn the IP of the server that

the target synchronizes to, and its T4 timestamp, and then (2) pivoting the target

into interleaved mode for that server by sending a spoofed interleaved pivot packet.

Thus, whenever the target synchronizes to a new server, the attacker will detect this

(in step (1)) and DoS that new server as well (in step (2)). (This process is similar

to the DoS by Spoofed Kiss-o’-Death attack from (Malhotra et al., 2016, Sec V.C).)

Timeshifting attacks. Section 5.4 shows how nptd’s control query interface can

be leveraged to turn the interleaved pivot vulnerability into a time-shifting attack

(rather than just a DoS attack). Section 5.5.4 finds 700K vulnerable IPs.
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Flaws in Symmetric Mode

Some of the vulnerabilities in NTP’s client/server mode (mode 3/4) follow because

it shares the same code path as NTP’s symmetric mode (mode 1/2). Therefore,

we now consider the security of NTP’s symmetric mode. We identify several flaws

in its specification in RFC5905 (including several off-path denial-of-service (DoS)

attacks on unauthenticated symmetric mode, and several replay attacks (i.e., on-

path DoS attacks) on authenticated symmetric mode), explain how these flaws harm

client/server mode, and conclude with recommendations.

B.1 Background: Symmetric mode.

In symmetric mode, two peers Alice and Bob can give (or take) time to (or from)

each other via either ephemeral symmetric passive (mode 2) or persistent symmetric

active (mode 1) packets. The symmetric active/passive association is preconfigured

and initiated at the ‘active’ peer (Alice), but not preconfigured at the ‘passive’ peer

(Bob). Upon arrival of a persistent mode 1 NTP packet from Alice, Bob mobilizes

a new ephemeral association if he does not have one already. Because this is a

potential security risk—an arbitrary attacker ask Bob to become its symmetric peer

and start offering time to Bob—ntpd requires symmetric passive associations to be

cryptographically authenticated by default. Active/active symmetric associations are

also possible, where both peers are preconfigured with persistent associations. In this

case, authentication is not required by default.

213



214

Symmetric mode has two additional quirks. First, each peer uses its own polling

algorithm to decide when to respond to its peer. As such, Bob will not immediately

respond to Alice upon receipt of her packet. (This is in contrast to the client/server

mode, where servers immediately respond to queries.) Second, both peers perform

TEST2 (and other tests) on the same volley of packets, and use the same packet

timestamps to obtain timing samples.

B.2 Problems with bogus packets.

In both RFC5905 and ntpd, a host processes (mode 1 and 2) symmetric mode packets

it receives using the same code used to process (mode 4) server response packets.

Another look at this code in Appendix A of RFC 5905 (Figure 5·5) shows that the

org state variable is updated even when a received packet fails TEST2. ntpd prior to

v4.2.8p4 does this as well (Lines 16 and 27 in Figure A·1). But should a bogus packet

really be allowed to update the client’s state? We now explain why there is no easy

answer to this question.

What if bogus packets do not update org? We first suppose that the org state variable

is not updated upon receipt of a bogus packet (i.e., a packet that fails TEST2). We

show this leads to persistent failures in two cases:

1) Packet drop leads to persistent failure. In Figure B·1 Alice’s second packet to

Bob is dropped. After Alice’s packet is dropped, Bob’s orgb state variable still stores

the (now stale) time T1. Bob uses T1 as the origin timestamp of the packet he now

sends to Alice. Alice drops this packet because its origin timestamp T1 does not

match her xmta = T5 variable. Now this ‘bogus’ packet also does not update Alice’s

orga variable. Next, Alice sends a new packet to Bob at time T9, using the (now

stale) value orga = T3 as the new packet’s origin timestamp. Now Bob drops the

packet, because its origin timestamp T3 does not match xmtb = T7. This continues
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Figure B·1: Alice (left) exchanges symmetric mode packets with Bob (right). Each
grey packet depicts the following fields (per Figure 5·4) in order: origin timestamp,
receive timestamp, transmit timestamp. Alice’s state variables orga and xmta are
shown on the left. Bob’s state variables orgb and xmtb are shown on the right. (Alice
initializes the association by sending Bob an initialization packet, with origin and
receive timestamps set to zero, and transmit timestamp set to Alice’s sending time T1.
Alice writes T1 to xmta. Bob receives the packet and copies the transmit timestamp
T1 from the packet to his orgb. When Bob’s polling algorithm indicates he is ready to
respond, he sends Alice a packet with origin timestamp T1 copied from his orgb and
transmit timestamp T3 equal to his time when he sent the packet. Bob then writes
T3 to his xmtb. Upon receipt of Bob’s packet, Alice performs TEST2, updates her
state variables, computes offset, delay, etc., and decides whether to update her clock.
When her polling algorithm indicates that she is ready to respond, she constructs
her next packet to Bob using her state variables in the same way Bob did.) In this
Figure, Alice’s second packet to Bob is dropped. If bogus packets (failing TEST2) do
not update org, as shown here, then one dropped packet can cause persistent failure.
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ALICE BOB 

orga = T0 

xmta = Ta Ta 

T0 
xmtb = T0 

Pass TEST2! 
(T0==xmtb) 

set orgb = Ta 
clear xmtb = 0 

Ta 

Fail TEST2! 
(Ta!=xmta) 

Fail TEST2! 
(T0!=xmtb) 

xmta = Tc 

T0 

Tc 

Figure B·2: Alice (left) exchanges symmetric mode packets with Bob (right). Alice
sends two consecutive packets to Bob due to unsynchronized polling intervals. The
first packet passes TEST2, but all subsequent packets fail TEST2 on both peers, leading
to persistent failure.

indefinitely, so all future packets fail TEST2.

2) Unsynchronized poll leads to persistent failure. We saw a similar failure happen

naturally during an authenticated active/active symmetric association between peers

Alice and Bob both running ntpd v4.2.8p6. This version of ntdp does not update org

upon receipt of a bogus packet (because of the return added on line 16 in Figure A·1).

In Figure B·2 Alice was a symmetric peer with Bob. Bob was a symmetric peer

with Alice, and also a client to an external server. Alice had a clock synchronization

event that caused her to set her polling interval to 64 seconds. Meanwhile, Bob’s

polling interval was 128 seconds. Next, Alice sent Bob a packet with the correct

origin timestamp T0 expected by Bob. Bob accepted this packet and cleared xmtb

and updates his orgb = Ta. However, Bob did not yet respond, since his polling
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interval was longer than Alice’s. In the meantime, Alice sent Bob another packet

with this same origin timestamp T0. (Alice sends the same T0 because she has not

yet received a new packet from Bob to cause her to update her orga variable.) This

time Bob rejected the packet by TEST2 because he had cleared xmtb. When Bob was

ready to respond to Alice, he sent a packet with origin timestamp Ta matching to

that in the first packet sent by Alice. (This is because Bob did not update his orgb

variable from the second rejected packet.) But Bob’s packet failed TEST2 at Alice,

because she was expecting origin timestamp Tc corresponding to the second packet.

We are back in the persistent failure scenario of Figure B·1.

What if bogus packets do update org? The reader might now conclude that bogus

packets should update org, as is required by Appendix A of RFC 5905. However,

this leads to two denial-of-service attacks:

1) On-path denial-of-service for authenticated symmetric mode. Suppose that org

can be updated by bogus packets that pass cryptographic validation (of the MAC)

but fail TEST2. Consider an on-path attacker (who does not have the ability to

drop/modify/delay packets) who attacks an authenticated symmetric association.

(Note that symmetric active/passive associations are authenticated by default.) We

show that this on-path attacker can parlay his ability to replay packets into the ability

to (effectively) drop packets.

To do this, the on-path attacker replays any stale packet from Alice to Bob (1)

after Alice sends Bob a legitimate packet but (2) before Bob sends his response as per

Figure B·3. If these polling intervals are not synchronized, the attacker has plenty

of time (i.e., seconds or minutes) to perform this replay. The stale replayed packet

overwrites Bob’s orgb variable to T9. Thus, Bob responds to Alice with a packet

whose origin timestamp is equal to the (stale) transmit timestamp T9 from the stale

replayed packet. This stale origin timestamp T9 fails TEST2 at Alice. The attacker
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ALICE BOB ATTACKER 

orga = T101 

set xmta = T103 

T101 

T102 

T103 

set orgb = T103 

T7 

T8 

T9 

set orgb = T9 

set xmtb = T105 

T9 

T104 

T105 
Fail TEST2! 
 (T9!=xmta) 

Figure B·3: Alice (left) exchanges symmetric mode packets with Bob (center).
Attacker (right) is on-path for authenticated NTP and off-path for unauthenticated
NTP. For the on-path authenticated DoS attack, the attacker’s packet (timestamps
T7, T8, T9) is a replay of a stale packet sent from Alice to Bob. For the off-path
unauthenticated DoS attack, the attacker’s packet is spoofed.

can repeat this replay each time Alice sends Bob a packet, thus preventing Alice from

ever synchronizing to Bob.

Note also this attacker need not be ‘on-path’ forever. Indeed, once the attacker

gets his hands on a single stale packet sent from Alice to Bob, he can move off-path,

and keep launching this attack forever by replaying this stale packet.

2) Off-path denial-of-service for unauthenticated symmetric mode. Suppose org can

be updated by bogus packets that fail TEST2. We show how an off-path attacker can

launch an identical attack on unauthenticated symmetric mode by spoofing (rather

than replaying) a packet from Alice. This is a serious threat, since active/active

symmetric associations are not cryptographically-authenticated by default.

We performed this attack on two ntpd v4.2.8p2 hosts Alice and Bob. (We use

v4.2.8p2 because this implementation lets bogus packets update org.) Both Alice and

Bob are preconfigured to be each other’s symmetric active peer. Additionally, Bob

is also preconfigured in client/server mode with four other servers. Upon restarting

ntpd on both hosts, Bob gets synchronized to one of his servers in the very first

exchange (per the reboot bug, see Appendix D). Alice sends symmetric active mode

packets to Bob and gets back symmetric active response packets from Bob. After

four exchanges with Bob, Alice synchronizes to Bob and indicates this by putting
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Bob’s IP address in the reference ID of her fifth packet. After two more exchanges,

the off-path attack begins.

In symmetric mode, the time between a packet and its response is often up to

several seconds (62 seconds in this experiment), giving our off-path attacker plenty of

time to inject packets. So the attacker sends Bob a symmetric mode packet spoofed

to look like it came from Alice; this query is sent after Alice sends her legitimate

query to Bob, and before Bob sends his reply (per Figure B·3). Bob updates orgb =

T9 from attacker’s bogus packet. Now Bob sends the response to Alice with origin

timestamp T9 corresponding to orgb. This packet fails TEST2 at Alice. The attacker

continues to inject spoofed packets to Bob for the next 16 exchanges between Alice

and Bob. Bob’s responses fail TEST2 at Alice and so Alice never updates her clock.

Summary. Thus, we are between a rock and a hard place. Should bogus packets

update org or not? Our recommendations are in Appendix B.4.

B.3 Problems with initialization.

Consider what happens if Alice reboots and sends Bob a packet initializing their

association. Alice has no timing information, so this ‘initialization packet’ has T1 =

T2 = 0 (as in the first packet in Figure B·1). If Bob did not reboot, he has xmt !=

0. Now, if Bob performed TEST2 on the initialization packet, it would be dropped

(because T1 != xmt). Also, it would be dropped if Bob performed TEST3 (because

T1 = T2 = 0). Thus, if the protocol is to tolerate a reboot, initialization packets

cannot be subject to TEST2 or TEST3.

Denial-of-service via initialization packets. We use the fact that TEST2 cannot

be performed on initialization packets to perform DoS attacks identical to those in

Appendix B.2. We can perform on-path DoS attacks on authenticated symmetric

associations by replaying initialization packets (instead of replaying stale packets).
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Off-path DoS attacks on unauthenticated symmetric mode can also be accomplished

by spoofing initialization packets (rather than spoofing arbitrary packets); notice that

spoofing initialization packets is trivial because they do not contain any unpredictable

information. Importantly, both of these DoS attacks exist regardless of whether bogus

packets update org or not (Appendix B.2).

Impact on client/server mode. The initialization of symmetric mode requires that

TEST2 and TEST3 are not performed on a received packet with a zero-origin timestamp.

However, this is at odds with the security of client/server mode. Unfortunately,

however, client/server and symmetric modes share the same code path. ntpd deals

with symmetric mode initialization using Lines 10-11 in Figure A·1, which clears xmt

and skips TEST2 if a received packet has a zero-origin timestamp. These lines of

code, however, create the zero-0rigin timestamp vulnerability in client/server mode

(Appendix A.1). Meanwhile, RFC 5905 Appendix A deals with this by not performing

TEST3 (Figure 5·5). However, because TEST3 is not performed, the xmt variable cannot

be cleared, creating the query-replay vulnerability (Section 5.3.2).

B.4 Symmetric Mode: Choose your poison!

Many problems in symmetric mode occur because both peers update their state vari-

ables (org, xmt) and collect timing samples (θi, δi, ψi) from the same volley of packets.

Per the discussion in Appendix B.2, we cannot see how to fix this while maintaining

a single volley of packets between peers. One drastic suggestion is to require two

distinct volleys, where each peer is a server in one volley, and is a client in the other

(using one of the protocols described in Section 5.6.1). However, this is not back-

wards compatible, as both peers involved in association must simultaneously make

this change. Thus, an (unsatisfying) band-aid solution could involve:

1. To prevent the persistent failure problem of Appendix B.2, allow packets failing
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TEST2 to update org. However, this enables off-path DoS attacks.

2. To prevent off-path DoS attacks, we suggest mandatory cryptographic authen-

tication in symmetric mode (for both active/active and active/passive).

3. Even so, symmetric peers that use cryptographic authentication are still vulner-

able to DoS attacks, so we also suggest monitoring to detect excessive number

of bogus packets (Appendix B.2).

4. Monitoring should also be used to detect excessive number of initialization pack-

ets, since these also lead to DoS (Appendix B.3).

5. Finally, symmetric peers should ensure that they run TEST2 against an origin

timestamp that contains 32 bits of randomness. This can be done with a receive

function as in Figure 5·6 and a sending function in Figure 5·7.1

1 Because both peers update their state variables and collect timing samples from the same
volley of packets, symmetric mode must preserve the semantics of the origin timestamp. Thus, in
symmetric mode we cannot replace the origin timestamp with a random 64-bit nonce per Figure 5·8.
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On-path Query Replay Attack

Replays of the client’s query are a problem because they harm the accuracy of time

synchronization. We demonstrate this with an on-path query replay attack on a

target host in our lab. We were able to degrade the accuracy of the target’s time

synchronization from 4× 10−5 seconds (on average) to 2.7 seconds (on average). We

show the client’s offset (i.e., the distance between the client’s clock and the server’s

clock per equation (6.2)) under normal and attack conditions in Figure C·1; the

attacked client’s accuracy is 5 orders of magnitude worse.

Experiment. We modified the source code for ntpd v4.2.8p2 to make it vulnerable

to client query replays. Specifically, we deleted the line of code that cleared xmt

when a response passed TEST2. We then preconfigured our modified ntpd client with

one server. Every time the client sent a query to its server, our on-path attacker

captured the query, and replayed it to the server once per second, until the client

sent a new query. We repeated this for every query sent by the client. The resulting

offset in Figure C·1 was computed per equation (6.2) with T1, T2, T3 taken from the

NTP packet timestamps on server responses sent in response to real client queries

(not replayed queries) and T4 taken from the response packet’s arrival time at the

client. We repeat this experiment on the same client and server machine but without

a replay attack.

Why does accuracy degrade? This follows because the replayed queries cause the

server to respond with a stale origin timestamp T1. Suppose that t seconds elapse
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Figure C·1: Query replay attack on modified version of ntpd v4.2.8p2. Time syn-
chronization on the attacked client degrades by 105.

since the client’s most recent query. If the attacker now replays the client’s query,

the packet timestamps in the server’s response will be such that T2 − T1 ≈ t seconds

and T4 ≈ T3 seconds, resulting in a timing sample with offset θ ≈ t
2

seconds per

equation (6.2). As t grows during the polling interval, the offset in the timing sample

grows as well. Thus, when the client uses these sampled offsets to set its clock, it

miscalculates the discrepancy between its local clock and that of the server, resulting

in the inaccuracies in Figure C·1. Thus, this query replay attack has similar effect to

a delay attack (Mizrahi, 2012a).
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Reboot Bug

Our experiments show that, upon reboot, an ntpd v4.2.8p6 client updates its local

clock from the very first response packet it receives from any of its preconfigured

servers. This is CVE-2016-7433. We now explain why this is a security vulnerability.

What does the RFC say? When describing the algorithm used for clock updates,

the pseudocode in Appendix A.5.2 of RFC5905 has a comment that states “select

the best from the latest eight delay/offset samples”. Also, a client configured with

multiple servers is supposed to choose the ‘best’ server from which it will take time.

Section 5 says: “The selection algorithm uses Byzantine fault detection principles to

discard the presumably incorrect candidates called “falsetickers” from the incident

population, leaving only good candidates called “truechimers”.” We argue that this

bug disables Byzantine fault tolerance upon reboot.

Experiment. We set up an ntpd v4.2.8p6 client preconfigured with five pool servers.

Upon reboot, the client sends server Alice a mode 3 query with reference id ‘INITAL-

IZATION’ (indicating that it is unsynchronized) and reference time ‘NONE’ (ex-

pected behavior upon reboot). Another such query is made to Bob. Bob’s response

arrives first, followed by the response from Alice. Next the client sends a query to

server Carol. The reference id field in this new query is Bob’s IP, and the reference

time is set to a time before the response was received from Alice. We therefore see

that the client updates his clock upon receipt of his first response packet (from Bob),

without considering the contributions of servers Alice, Carol, Dave and Frank.
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Implications. Thus, on reboot, Byzantine fault tolerance is disabled, and the client

is at risk of taking time from bad timekeepers. This issue becomes even more serious

when the panic threshold is disabled upon reboot when a client is configured with -g

option. (This is the default on many OSes, see footnote 3.) Thus, if a bad timekeeper’s

response arrives first, a -g client will immediately accept huge, potentially bogus,

update to its clock.

Worse yet, an off-path attacker can exploit this, along with other bugs, in order

to perform a low-rate time-shifting attack. The attacker first learns the IP of one of

the target’s preconfigured servers, using the trick per footnote 6. Then, the off-path

attacker sends some ‘packet-of-death’ that crashes ntpd.1 If the OS reboots ntpd,

then the target restarts with the panic threshold disabled. The attacker now injects a

single spoofed server response with (1) zero origin timestamp (per Appendix A.1), (2)

the legitimate server as the source IP, and (3) some huge (incorrect) time offset. The

client accepts the response even before it queries its legitimate servers, and adjusts

its clock to the attacker’s bogus time. The low rate of this attack—it requires only

three packets—also means it could be sprayed across the Internet.

Recommendation. An NTP client should be compliant to the RFC specifications

even upon reboot, and adjust its clock only after multiple successful exchanges with

each of its timeservers.

Where is the bug introduced? The bug is introduced in ntpd v4.2.7p385 (re-

leased August 18, 2013) and exists in all the following versions, upto and including

ntpd v4.2.8p7 (released April 26, 2016). The definition for Root distance (λ) in the

variable dtemp in file ntp proto.c was changed between ntpd v4.2.7p384 (Figure D·2)

and ntpd v4.2.7p385 (Figure D·1). This change (Lines 2966-2967 in Figure D·1) in-

troduced the bug. However, this change violates compliance with the definition of

Root distance in RFC5905 which defines it as in Figure D·2.

1For instance, CVE-2016-7434 or CVE-2016-9311.
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2965 dtemp = (peer->delay + peer->rootdelay) / 2

2966 + LOGTOD(peer->precision)

2967 + LOGTOD(sys_precision)

2968 + clock_phi * (current_time - peer->update)

2969 + peer->rootdisp

2970 + peer->jitter;

Figure D·1: Lines 2965-2970 in ntpd v4.2.7p385

2933 dtemp = (peer->delay + peer->rootdelay) / 2 + peer->disp

2934 + peer->rootdisp + clock_phi * (current_time - peer->update)

2935 + peer->jitter;

Figure D·2: Lines 2933-2935 in ntpd v4.2.7p384

Tested Versions.ntpd v4.2.7p384, ntpd v4.2.7p385, ntpd v4.2.8p6, ntpd v4.2.8p7,

ntpd v4.2.8p8. This part of code remains the same in all the versions beginning ntpd

v4.2.87p385.

Patch: Replacing code in Figure D·1 with that in Figure D·2 mitigates the bug.

We successfully patched ntpd v4.2.8p7 (lines 3447-3453). To confirm, we ran the

experiment with the patched version of ntpd v4.2.8p7 with the same setup as above.

The test client updates its local clock after obtaining four timing samples from its

servers.



Appendix E

Disclosure and Subsequent Developments

This research was done against ntpd v4.2.8p6, which was the latest version of ntpd

until April 25, 2016. Since that date, three new versions of ntpd have been released:

ntpd v4.2.8p7 (April 26, 2016), ntpd v4.2.8p8 (June 2, 2016), and ntpd v4.1.8p9

(November 22, 2016). We summarize our disclosure timeline and the impact of our

research results on new releases of ntpd as follows:

Report. This report was first disclosed on June 7, 2016 and Section 4.4 was revised

on July 29, 2016. The report was last edited, for clarity and style, on August 26,

2019.

Zero-0rigin timestamp vulnerability (CVE-2015-8138, CVE-2016-7431, Ap-

pendix A.1). This vulnerability was disclosed in October 2015 (prior to ntpd

v4.2.8p4) but unfortunately still existed in v4.2.8p8. (This is because Lines 10-11

of Figure A·1 were still present in ntpd v4.2.8p8, likely in order to process initializa-

tion packets in symmetric mode, see Appendix B.3.) The vulnerability has been fixed

in ntpd v4.2.8p9.

Interleaved pivot vulnerability (CVE-2016-1548, Appendix A.2). Following

disclosure of this vulnerability in November 20151, ntpd v4.2.8p7 was patched so that

clients do not automatically switch into interleaved mode by default. Now, clients do

this only if the option ‘xleave’ is set with a peer, server or broadcast configuration

command.

1Also the concurrent disclosure by Miroslav Lichvar.
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Leaky control queries (CVE-2015-8139, Section 5.4). This vulnerability was

first disclosed in October 2015, but ntpd v4.2.8p9 still accepts control queries from

arbitrary IPs by default. Users must configure the noquery option to change this

default. The leaky control queries we describe are also mentioned in a new Internet

draft (Mills and Haberman, 2016). We have worked with the authors of (Mills and

Haberman, 2016) to add a security considerations to this document.

Origin timestamp randomization (Section 5.6). Cryptographic randomization

of the origin timestamp has not yet been incorporated into ntpd.

Bogus packets in symmetric mode (Appendix B.2). ntpd v4.2.8p7, ntpd

v4.2.8p8 and v4.2.8p9 allow bogus packets (that fail TEST2) to update the org state

variables.2 Thus, the ‘transient failure to persistent failure’ from Appendix B.2 is

no longer present, but the two denial of service vulnerabilities in Appendix B.2 are

present. This issue was disclosed on June 7, 2016.

DoS via initialization packets in symmetric mode (Appendix B.3). This

was first disclosed on June 7, 2016. These flaws were still present in v4.2.8p9.

Reboot bug (CVE-2016-7433, Appendix D). We first disclosed this issue in

August 2015, and provided a full analysis on June 7, 2016. This bug was still present

in v4.2.8p8 and fixed in v4.2.8p9.

2This change was probably done in response to NTP Bug2952 reported by Michael Tatarinov
and made public on April 26, 2016 (concurrently with our work). The bug report states only that
“symmetric active/passive mode is broken” (Tatarinov, ).



Appendix F

Security Analysis

In this appendix, we provide our formal security model and prove that the protocols

in Appendix 5.6.1 are secure against off-path attackers when NTP is unauthenticated

and against on-path attackers when NTP is authenticated.

F.1 Model

Our model focuses on the description of an honest party called the network N that

delivers packets and orchestrates the execution of several NTP exchanges akin to the

environment in a UC protocol (Canetti, 2001).

Parties. We suppose there are ` honest parties P1, . . . ,P`, where Pi denotes the

IP address of the ith party, who collectively perform many pairwise client/server ex-

changes. A single party Pi may act in both the client and server roles in different ex-

changes. There is also single attacker A = P0 who may also have honest client/server

exchanges, but has other goals and powers as well. Parties send packets through a

network N .

Packets. We model a packet as a tuple of the form (h,m, t), where h = (IP src, IP dst)

contains the source and destination IPs, t is a MAC tag optionally appended to the

packet, and m contains the remaining fields of the packet that are authenticated by

the MAC tag.

Packet delivery. The network N maintains a counter step to orchestrate the flow of

communication. Informally, one may think of step as the wall-clock time from N ’s

229



230

point of view. During each step of the step counter, each honest party may receive,

process, or transmit one packet.

We require that honest parties have sufficient time to process every packet re-

ceived; put another way, attacks that flood an honest party with packets in order to

deny service are out of scope. Formally, we model this property by (1) restricting N

to deliver at most one packet per step of the counter to each party, and (2) incre-

menting the counter in integer multiples of L/R, where R denotes an upper bound

on the bandwidth (bps) of honest parties when ingesting NTP packets of length L

bits. Here, L = 720 bits for unauthenticated NTP packets and L = 720 + 2n bits for

NTP packets authenticated with a MAC of length 2n.

The network imposes a constant latency δ on packet delivery. Specifically, if N

receives a packet from an honest party when the counter is step, N holds the packet

in a queue and assigns a value deliver = step+ δ to the packet. When step == deliver,

the packet is transmitted. We stress that the attacker A does not have the power to

modify, delay, or drop packets between honest parties.

Race conditions. Unlike the honest parties, attacker A may specify the deliver value

for all packets she sends. However, as per constraint (1) above, this value must be

distinct from the deliver values of all other packets in N ’s queue destined for IP dst.

This power allowsA to win all race conditions.1 As such, our model allows attakcer

A to send an honest party up to 2δR
L

packets in the duration of an NTP exchange,

since A can request the delivery of one packet for each step of the counter, while the

two messages in an NTP exchange are each subject to a longer delay δ.

Additionally, this power also encapsulates the real-world uncertainty in packet

delivery. So far, our model assumes that all packets encounter a constant delay. In

reality, we often have at most a rough upper-bound on network latency, and we want

1We remark that this capability is unrealistically powerful for an off-path attacker, who cannot
observe honest packet transmissions.
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for NTP’s security guarantee to hold for any distribution of packet latency times that

fit within this bound. Rather than formalizing a network latency distribution within

our model, we opt for the simpler approach of letting attacker A “speed up” packet

arrivals using its power to determine deliver for its packets.

Transcripts. A transcript is a list of NTP client/server exchanges, formally written

as a set of tuples

(start, i, tc, j, ts)

each indicating that an exchange between client Pi with local time tc and server Pj

with local time ts starts at step start of the step counter. We stress that A = P0 may

legitimately engage in NTP exchanges in the transcript specification.

Network N enforces execution of the transcript by informing parties that they

should begin a client/server exchange. When N ’s counter is step == start for tuple

(start, i, tc, j, ts) in the transcript ts, N sends a ‘go message’ (client, i, tc) to Pi, after

which an honest party Pi immediately sets her local clock to tc, runs the protocol

in Figure 5·7 or Figure 5·8 resulting in a mode 3 query packet ((Pi,Pj),m, t) to Pj

through N . After a delay of δ, N sends a ‘go message’ (server, i, ts) to the Pj and

also delivers the Pi’s query packet, and honest Pj responds assuming that her local

clock is set to time ts.

The transcript must be consistent with our “no flooding” rule that limits each

party to receiving 1 packet (plus perhaps a ‘go message’) per step. As a consequence,

two exchanges involving the same client cannot have the same start counter. Addi-

tionally, a party cannot simultaneously be a server at counter start and a client at

counter start + δ.

Interacting with the network. The networkN starts by receiving ts and then choosing

and dispersing secret keys for each pair of parties {ski,j : i, j ∈ {0, 1, . . . , `}}. The

honest parties Pi receive these keys and initialize their xmtj state variables for every
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other party j 6= i. The game then begins with N in control and the counter step

initialized to 0.

If N ’s counter step equals either (1) the start value of a tuple in the transcript

ts or (2) the deliver value of a packet in its queue, then N delivers the appropriate

packet or ‘go message’ and cedes control to the honest party. The honest party starts

computing when it receives the packet or ‘go message’.

Once an honest party finishes its computation and possibly transmits a new packet

((IP src, IP dst),m, t) to N , the honest party cedes control back to N . Next, the net-

work N instantly reveals [(IP src, IP dst),L(m, t)] to the attacker, where L is a leakage

function. N then cedes control to A, who may perform arbitrary computations and

optionally transmit a packet of its own. When N regains control, it increments step

and repeats the process. This model implicitly forbids A from dropping, modifying,

or further delaying packets; instead, every packet is delivered intact to IP dst after

delay δ.

Leakage. The leakage function L models the information available to an on-path or

off-path attacker. Specifically, L equals the identity function for an on-path attacker

(i.e., m and t are revealed perfectly) and the zero function for an off-path attacker

(i.e., m and t are perfectly hidden).

Spoofing. Network N never validates IP src in a transmitted packet. This allows

attacker A to send packets with a spoofed source IP IP src. Meanwhile, honest parties

always use their true IP src. Additionally, if A spoofs a query packet on behalf of a

client Pi, we observe that N lacks a timestamp t∗s to deliver to the honest server Pj

along with the query packet. We choose t∗s as follows: if A’s spoofed packet occurs

during an honest NTP transaction between parties i and j, then N sends the same

timestamp that the honest transaction uses; otherwise, A may choose t∗s arbitrarily

and inform N of its choice.
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F.1.1 Soundness guarantee.

Without an attacker, the results of honest parties’ NTP exchanges are completely

defined by the transcript. Formally, clients update their local state which includes the

set of servers they are willing to query, the state variables (i.e., xmtj and orgj) used

in exchanges with each server Pj, and the resulting set of validated timing samples

(including delay δ, offset θ, jitter ψ, dispersion ε per the equations in Section 5.2).

k-statei(ts, step) is the state of party Pi during an execution of the transcript ts while

N ’s counter is step, and contains the results of the k most recent exchanges with each

server.

A’s objective is to tamper with k consecutive timing samples that some honest

client Pi stores in its state corresponding to interactions with a single server Pj.2

Hence, we let k-stateAi (ts, step) denote the state of party Pi during a game where the

attacker A is present. Of course, if Pi voluntarily chooses to query A as its server,

then A can significantly influence Pi’s state. The soundness guarantee effectively

states that A can do no more than this.

However, there is one type of modification that we cannot hope to rule out. Con-

sider the effect of A “preplaying” honest packets: that is, submitting a packet that

is identical to one in N ’s queue but with an earlier arrival time. This action is very

likely to affect the state of honest parties, albeit in a bounded manner. It may re-

duce delay measurements δ from their upper bound of 2δ, but never increase them.

Similarly, each offset θ may increase or decrease by at most δ. Finally, jitter ψ may

be altered slightly, likely by far less than the bound accepted by TEST11. Due to

their limited, unavoidable effects, we consciously opt to ignore preplay attacks in the

following soundness definition to simplify our discussion.

2Note that the definition ‘NTP exchanges should not fail’ does not hold because exchanges may
fail even without an attacker. As one example, consider a client who initiates two exchanges with the
same server in rapid succession, i.e., the client’s second query is sent before she receives a response
to the first query. Then TEST2 will fail for the server’s first response.
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Definition F.1.1 (Soundness). NTP is (k, ε)-sound on transcript ts if for all resource-

bounded attackersA who never preplay packets from honest parties, and for all parties

Pi who do not query A as an NTP server,

Pr[∃ step s.t. k-stateAi (ts, step) 6= k-statei(ts, step)] < ε.

This inequality must hold for all k components of the state. The probability is taken

over the randomness of all parties and N ’s choice of shared secret keys.

F.2 Soundness against off-path attackers.

We now prove Theorem 1 of Appendix 5.6.3, which states that the protocols in Ap-

pendix 5.6.1 are sound against an off-path attacker offA. Theorem 1 follows largely

from the entropy E present in the origin timestamp. We do not require NTP packets

to be authenticated.

The theorem holds as long as randomness is produced from a cryptographically-

strong random number generator (RNG), and that, upon reboot, honest parties ini-

tialize their xmtj variables for each server to a 64-bit number generated by their

RNG.

Let offA be any off-path attacker, and let ts be any transcript that involves `

honest parties, a maximum of τ exchanges involving any single client-server pair, and

a maximum of s trusted servers per client.

Let i∗ be any client who does not query offA as server. We say that the protocol

described in Figure 5·6, 5·7 randomizes the sub-second granularity of the expected

origin timestamp, while the protocol in Figure 5·6, 5·8 randomizes the entire expected

origin timestamp.

We use a sequence of games to prove that offA tampers the state of Pi∗ with

probability at most εoffA.

Game G0. This is the real interaction of offA with the honest parties P1, . . . ,Pl and
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the network N . For ease of notation, we denote the probability that offA breaks the

soundness of game G0 by Pr0
offA.

Game G1. This game is identical to G0, except that Pi∗ ’s pseudorandom number

generator is replaced with a truly random number generator. By definition, the

probability that anybody (in particular offA) notices this change is at most A(RNG).

Hence, Pr0
offA − Pr1

offA ≤ A(RNG).

Game G2. This game is identical to G1, except that we abort the execution if offA

sends a spoofed packet (i.e., one for which offA claims an IP src different than her

own) involving client Pi∗ and some server Pj such that the spoofed packet’s origin

timestamp matches Pi∗ ’s state variable xmtj. Importantly, offA has no chance of

winning game G2 (that is, Pr2
offA = 0) because its spoofed packets always fail TEST2.

In order to demonstrate that any client Pi∗ distrusting offA properly refuses all of the

attacker’s spoofed packets while also accepting all of the honest servers’ packets (i.e.,

computes the desired value k-statei(ts, step) at all steps), it only remains to prove that

the probabilities of winning G1 and G2 are close.

There are two conditions that cause Game G2’s abort condition to trigger:

• Client Pi∗ is engaged in an NTP exchange with server Pj at the moment the

spoofed packet is received, and the spoofed packet’s origin timestamp matches

that of the transmit timestamp in honest client’s query.

• Client Pi∗ is not engaged in an NTP exchange with server Pj at the moment the

spoofed packet is received, and the spoofed packet’s origin timestamp matches

the client’s randomly-chosen xmtj value.3

In the first case, we know that the client’s choice of the origin timestamp expected

in the mode 4 response packet (i.e., pkt.T3 in Figure 5·7) ensures that xmtj has

3Recall that A may choose the server’s response time t∗s arbitrarily in this case, which would have
immense power if A could get the spoofed client to accept the response packet.
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E = 32 bits of entropy if the sub-second granularity of the timestamp comes from

Pi’s RNG or E = 64 bits of entropy if the entire origin timestamp is randomly chosen

(i.e., pkt.T3 in Figure 5·8). When targeting a particular server Pj, offA can send

Rδ
360

packets to each honest party during an NTP exchange between the target client

Pi∗ and the server Pj, each of which influences Pi∗ ’s state with probability at most

2−E where E is the number of bits of entropy in the origin timestamp. Hence, offA’s

ability to impact Pi∗ ’s state during the NTP exchange is at most Qd = 2−E Rδ
360

.

In the second case, offA can send T = 2pR/720 packets to each party in the interval

between two successive exchanges (where p corresponds to the polling interval). Each

packet succeeds in altering Pi∗ ’s state with probability Qb = 2−64 because xmtj has

64 bits of entropy.

Finally, Lemma 1 below states that offA can influence the state of k consecutive

exchanges between client Pi∗ and server Pj with probability at most (k + 1) · (kQ)k,

where Q = max{Qd, TQb}. Additionally, there are τ possible locations for this run

of k successes to start, and s possible servers whose state may be attacked. In total,

we find that:

Pr1
offA − Pr2

offA ≤ (k + 1)sτ · (kQ)k

In practice, we claim that Qd > TQb if entropy E = 32:

2−32 · Rδ
360

> 2−64 · 2p R
720

233δ > 2p

With the maximum poll value p = 17 permitted by NTP (Mills et al., 2010), this

reduces to the claim that δ > 2−16 ≈ 10−5 seconds, which is the time required for light

to travel about 3 miles. So, our inequality is reasonable unless the client and server

are physically co-located but still using a large polling value. Conversely, we claim

TQb > Qd if entropy E = 64: this claim reduces to the statement that 2p > 2δ, which
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holds since RFC5905 constrains poll p ≥ 4 while network delays δ do not exceed 16

seconds in practice.

All that remains is to prove the following combinatorial statement relating the

probabilities of success during and between exchanges.

Lemma 1. Let Qd denote the probability that an attacker A successfully impacts the

state of client Pi∗ during an NTP exchange, Qb denote the probability that each packet

by A in between NTP exchanges impacts Pi∗’s state, and let T = 2p · R
720

denote the

number of packets that A may send to each party in between NTP exchanges. Then,

the probability that A impacts k state observations in a row, beginning with a specified

exchange, is at most (k + 1) · (kQ)k, where Q = max{Qd, TQb}.

A may compromise a total of k states either during or between exchanges. Let

c ∈ {0, 1, . . . , k} denote the number of consecutive NTP exchanges (with a specified

starting point) that A plans to compromise; clearly, she may do so with probability

Qc
d. Additionally, A must also inject a total of k − c state measurements over the

course of c + 1 intervals between these NTP exchanges. Here, each packet is an

independent Bernoulli random variable that successfully impact’s the client’s state

with success probability Qb. The total number of between-exchange successes (i.e.,

the sum of the (c + 1)T Bernoullis) is distributed as a binomial random variable,

hence the probability of k − c total successes is at most
(

(c+1)T
k−c

)
·Qk−c

b .

In total, A succeeds at compromising c NTP exchanges and successfully injecting

state k − c times in between these exchanges with probability at most(
(c+ 1)T

k − c

)
Qc
dQ

k−c
b ≤ (kQ)k,

where the inequality follows from the bound
(
x
y

)
≤ xy. The lemma then follows by

summing the probabilities of success for the k + 1 choices of c.
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F.3 Soundness against on-path attackers.

We now prove Theorem 2 of Appendix 5.6.4, which states the protocols in Section 5.6.1

are sound against an on-path attacker onA as long as NTP packets are authenticated,

randomness is produced from a cryptographically-strong RNG, and honest parties

initialize their xmtj variables for each server to a 64-bit number generated by their

RNG upon reboot. For the protocol described in Figure 5·6, 5·7, which randomizes

the 32-bit sub-second granularity of the expected origin timestamp, we also require

that the second-level granularity of the client’s local time tc isn’t replicated too often

within NTP queries.

We suppose NTP is authenticated with MAC of length 2n. Let onA be any on-

path attacker, and let ts be any transcript involving a maximum of s trusted servers

per client and a maximum of τ exchanges involving any single client-server pair that

replicate any tc value (up to the second) at most γ times. Let i∗ be a client who does

not query onA as server.

As before, we use a sequence of games to prove that onA tampers the state of Pi∗

with probability at most εonA. We start by reusing games G0 and G1 from the proof of

Theorem 1 above. It is straightforward to validate that the reduction between those

games continues to hold against an on-path attacker. We now build a new sequence of

games that (1) reflects onA’s ability to view the contents of honest parties’ messages

and (2) utilizes the MAC tag to limit onA’s spoofing capacity.

Foreshadowing the end of the proof, we will use Lemma 1 to arrive at the fi-

nal bound. As such, our analysis simply describes the impact of each game on the

probability of success during an NTP exchange (Qd) and between NTP exchanges

(Qb).

Game G′2. This game is identical to G1, except that the network N is additionally

instructed to drop all the packets sent by onA that are simply ‘preplays’ of packets
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sent between honest parties; i.e., spoofed packets sent by onA that are identical to

existing packets in N ’s queue such that onA’s packet will be delivered first.

Recall that our definition of soundness is agnostic to preplay attacks. Hence,

forbidding them has no effect on the adversary’s success probability, i.e., Pr1
onA =

Pr2′

onA.

Game G′3. This game is identical to G′2, except that we abort the execution if

the client Pi∗ sends two different queries to the same server with identical origin

timestamps. We stress that this constraint is independent of onA’s behavior.

Consider a single NTP exchange between client Pi∗ and server Pj where the client’s

clock begins at tc. Pi∗ ’s origin timestamp replicates a previous choice with probability

at most q32 = 2−32γ if only the sub-second granularity is randomized or q64 = 2−64τ

if the entire expected origin timestamp is randomized. If the honest client repeats an

origin timestamp, then onA may trivially attack an NTP exchange by replaying (an

already-MAC’d) responses from previous exchanges.

Hence, the transformation from game G′2 to game G′3 affects Qd by at most qE.

We remark that onA only requires 1 packet to perform this attack, so the resulting

probability is independent of the bandwidth R.

Game G′4. This game is identical to G′3, except that the network N is instructed to

drop all of onA’s ‘replayed’ packets, i.e., packets sent by onA that are identical to

prior packets sent between honest parties and (1) have already been delivered or (2)

are in N ’s queue for delivery before onA’s packet. These replayed packets will have

valid MAC tags but stale origin timestamps.

Consider what happens when a response packet from server Pj is replayed to

target Pi∗ , or when a query packet from target Pi∗ is replayed to server Pj and elicits

Pj’s legitimate response packet. If Pi∗ and Pj are currently engaged in an NTP

exchange, then Pi∗ ’s state variable xmtj is set to an origin timestamp that is distinct
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from the one in the replay packet, so the replayed packet definitely fails TEST2 by

the constraint imposed by Game G′3. On the other hand, if Pi∗ and Pj are between

exchanges, then xmtj is set to a randomized value with 64 bits of entropy. Hence, the

transformation from game G′3 to game G′4 affects Qb by at most 2−64.

Game G′5. This game is identical to G′4, except that the network N consciously

corrupts all MAC tags in offA’s spoofed packets that aren’t replays or preplays, so

they never verify. We note that onA has no chance of winning game G′5 (that is,

Pr5′

onA = 0, and thus Qd = Qb = 0 for game G′5) because all of the packets she sends

are rejected by their recipients for having invalid tags. Hence, onA cannot get any

honest party to read its spoofed packets, much less change their state as a result of

them. Additionally, we claim that the Game G′4 → G′5 transformation affects Qd by

Rδ
360+n

· A(EU-CMA) and Qb by 2−64 · A(EU-CMA).

To prove the claim, we replace the tags of all onA’s packets toward server Pj

or client Pi∗ that aren’t replays or preplays with an invalid tag ⊥. We do this one

packet at a time, starting with the final packet and working our way back up to the

first one. By a simple hybrid argument, we see that each change has an impact with

probability at most A(EU-CMA).

During an exchange, a single forged MAC permits the attacker to respond to

a query with timing data of her own choosing, and a simple union bound gives the

bound on Qd stated above. In between exchanges, a forged message must also include

the origin timestamp matching Pi∗ ’s randomly-chosen xmtj or else the packet will fail

TEST2, yielding the bound on Qb.

Putting it all together. Game G1 additively impacts εonA, and Game G′2 has no effect.

Games G′3, G′4, and G′5 all depend on k, and they detail the combined vulnerability
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of NTP to an on-path attacker during and between exchanges:

Qd ≤ qE +
Rδ

360 + n
· A(EU-CMA)

Qb ≤ 2−64 · [1 +A(EU-CMA)] ≈ 2−64,

where the final approximation follows from the fact that 1+A(EU-CMA) ≈ 1 for any

reasonable MAC. Lemma 1 then bounds the probability that onA affects a particular

client-server state k times in a row beginning from a specified starting point, and (as

before) multiplying this value by the sτ possible starting points yields the bound in

Theorem 2.
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