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ABSTRACT

M dwarfs are ubiquitous in the galaxy, yet their fundamental properties are not pre-

cisely known. Radii are particularly difficult to determine because M dwarfs are

intrinsically small and faint, leading to only a few radius determinations using either

long-baseline optical interferometry or eclipses of binary stars. Observations rarely

agree with models, and the scatter in M dwarf radius relations is significantly larger

and less understood than it is for higher mass stars. I explored the two main hy-

potheses evoked to explain discrepancies between model radii and observed radii,

namely effects from metallicity and strong magnetic fields. I conducted a spectro-

scopic survey of M dwarfs with a wide range of metallicities and derived radii using

the Stefan-Boltzmann law in order to constrain radius relations for the lowest mass

and lowest metallicity stars. I found that solar metallicity stars can be up to five

times larger than their low-metallicity counterparts for a given effective temperature,

but that metallicity has a relatively small effect on mass- or luminosity-to-radius rela-

tions. To test the effect of magnetism on radii, I determined a statistical distribution

of radii for magnetically active M dwarfs by combining measured rotational broad-

ening values with literature rotation periods. I found that the magnetically active

vi



stars were on average 10-15% larger than model predictions and that models and

observations were most discrepant for the lowest-mass stars. To deduce whether

the 10-15% radius discrepancy could be due entirely to the spotted nature of these

stars, I determined the spot temperature and spot filling fraction of one of the most

magnetically active stars in my sample. I measured a high spot filling fraction, spot

temperatures several hundred Kelvin lower than the photosphere temperature, and I

also detected evidence of faculae on the stellar surface. I concluded that spots are the

primary cause for models overestimating the sizes of low-mass stars, and that stellar-

evolution models should consider the effects of spots to more accurately predict the

sizes and temperature of all M dwarfs.

vii



Contents

Acknowledgments iv

Abstract vi

List of Tables xii

List of Figures xiii

List of Abbreviations xvi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 M dwarf Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Spectral Types . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Interior Structure and Magnetic Field Generation in M dwarfs . . . . 7

1.3.1 M dwarf Structure . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Magnetic Field Generation . . . . . . . . . . . . . . . . . . . 8

1.3.3 Observations of Magnetic Field Strengths . . . . . . . . . . . 9

1.4 Observations of M dwarf Radii . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Eclipsing Binaries . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Long Baseline Optical Interferometry . . . . . . . . . . . . . . 13

1.4.3 Stefan-Boltzmann Law . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Radii from Stellar Evolutionary Models . . . . . . . . . . . . . . . . 16

1.5.1 Comparisons between model radii and observed radii . . . . . 18

viii



1.6 Hypotheses for M dwarf Radius Discrepancies . . . . . . . . . . . . . 18

1.6.1 Metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6.2 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Spectral Templates and a Method for Estimating Metallicities 26

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Radial Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Surface Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.4 Co-adding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Stellar Template Library . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 PyHammer: A Tool for Spectral Parameter Extraction . . . . . . . . . 45

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 The Effects of Metallicity on M dwarf Radii 56

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 The Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 The Metallicity of Subdwarfs . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Determining Effective Temperatures . . . . . . . . . . . . . . . . . . . 65

3.5 Measuring the Bolometric Luminosity . . . . . . . . . . . . . . . . . . 71

3.6 Results and Updated Radius Relations . . . . . . . . . . . . . . . . . 77

3.6.1 Color Relations . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6.2 Absolute Magnitude Relations . . . . . . . . . . . . . . . . . . 84

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7.1 Internal Consistency Check . . . . . . . . . . . . . . . . . . . 85

3.7.2 Variations in Chemical Abundances . . . . . . . . . . . . . . . 87

ix



3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 The Effects of Strong Magnetic Fields on M dwarf Radii 92

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Literature Rotation Periods . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Rotational Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.1 Observations and Data Reduction . . . . . . . . . . . . . . . . 95

4.3.2 v sin i Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 The Bayesian Statistical Approach . . . . . . . . . . . . . . . . . . . 101

4.4.1 Constructing the Likelihood Function . . . . . . . . . . . . . . 110

4.4.2 Marginalizing Over Nuisance Parameters . . . . . . . . . . . . 112

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6 Potential Biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6.1 Differential Rotation . . . . . . . . . . . . . . . . . . . . . . . 120

4.6.2 Isochrone Age and Metallicity . . . . . . . . . . . . . . . . . . 121

4.6.3 Microturbulence . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5 Can Starspots Explain Magnetic Stellar Inflation? 129

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Target Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Properties of 2MASS J23270216+2710367 . . . . . . . . . . . . . . . 133

5.3.1 Empirically Derived Parameters . . . . . . . . . . . . . . . . . 133

5.3.2 Parameters Estimated from Stellar Evolution Models . . . . . 134

5.4 Starspot Parameter Extraction . . . . . . . . . . . . . . . . . . . . . 136

5.4.1 Starfish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4.2 Mix Model Implementation with Starfish . . . . . . . . . . . 138

x



5.4.3 My Implementation and Parameter Extraction . . . . . . . . . 139

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5.1 Starfish Output and Testing . . . . . . . . . . . . . . . . . . . 141

5.6 Comparison With Models . . . . . . . . . . . . . . . . . . . . . . . . 152

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 Conclusions 159

References 167

Curriculum Vitae 183

xi



List of Tables

2.1 The Template Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Photometry of Templates . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Spectral Indices Used by PyHammer . . . . . . . . . . . . . . . . . . . 50

3.1 Spectra-type grid of subdwarf targets . . . . . . . . . . . . . . . . . . 62

3.2 Photometry for all subdwarf targets . . . . . . . . . . . . . . . . . . . 74

3.3 Derived subdwarf parameters . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Target list and measured v sin i values . . . . . . . . . . . . . . . . . 103

4.2 Radius prediction methods . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Significance of radius inflation . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Photometry of 2MASS J23270216+2710367 . . . . . . . . . . . . . . 135

5.2 Model Effective Temperatures . . . . . . . . . . . . . . . . . . . . . . 136

5.3 Starfish Results by Echelle Order . . . . . . . . . . . . . . . . . . . . 144

xii



List of Figures

1.1 Mass – Radius relation for EBs in the literature . . . . . . . . . . . . 19

1.2 Compiled Teff – radius relation, showing metallicity dependence for

the first time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Scenarios for magnetic inflation, as predicted by Chabrier et al. (2007) 23

2.1 Sample of spectra spanning the entire main sequence spectral sequence

(O through L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Sample of the template spectra for the main-sequence, low-mass spec-

tral types at solar metallicity . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Labeled spectra M2 spectrum . . . . . . . . . . . . . . . . . . . . . . 37

2.4 The effect of metallicity variations on the spectra for a range of spectral

subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Surface gravity comparison between dwarf and giant templates . . . . 39

2.6 Color-color diagrams for the photometry of all of the main sequence

templates color by metallicity . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Color-color diagrams showing the main sequence (dwarf; blue) versus

giant (red) luminosity classes . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Difference between PyHammer radial velocity and the previously mea-

sured radial velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.9 Comparison between the PyHammer spectral type and metallicity esti-

mate and the actual spectra type and metallicity . . . . . . . . . . . 51

2.10 Screenshot of PyHammer GUIs . . . . . . . . . . . . . . . . . . . . . . 53

xiii



3.1 Color selection process used to choose the targets listed in Table 3.1 . 59

3.2 Comparison between Fe/H values measured here and those previously

measured in the literature . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Example iSHELL K-band spectra of Gl 411, LHS 2163 and LHS 482 66

3.4 Example of spectra and their respective best-fit model spectra . . . . 67

3.5 Comparison between temperatures measured in this work and those

from the literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Comparison between my temperatures and those reported in Gaia DR2 70

3.7 Example spectral energy distribution used to determine the bolometric

flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Radius versus effective temperature for all the stars in the sample . . 78

3.9 2MASS and Gaia broadband color to radius relations . . . . . . . . . 84

3.10 Absolute Ks-band versus radius relation recalibrated using my new

stellar sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.11 Example of the R2/D2 internal consistency check . . . . . . . . . . . 88

3.12 Spectra with peculiar spectral features . . . . . . . . . . . . . . . . . 89

4.1 Example IGRINS and iSHELL spectra from the sample . . . . . . . . 97

4.2 Example cross-correlation function and FWHM relation to determine

a v sin i value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Comparison between literature v sin i values and v sin i values mea-

sured in this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Probability distribution functions of R sin i for a single star assuming

different sin i cutoff values . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 Likelihood functions for a range of sin i cutoff values . . . . . . . . . . 114

4.6 Likelihood function marginalized over the sin i cutoff nuisance parameter115

xiv



4.7 Resulting likelihood functions from using differing linear limb darken-

ing coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.8 Marginalized likelihood PDFs for different radius estimates . . . . . . 117

4.9 Differential rotation relations from the literature plotted alongside an

example target with a large offset between the rotational period and

the period derived from the v sin i value . . . . . . . . . . . . . . . . . 121

4.10 Likelihood PDFs for different radius estimates with the stellar sample

split into two mass bins . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1 Starfish best-fit reconstructed model spectrum compared to IGRINS

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Example showing an order well fit by the model and one with a poor

model fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3 Example of noise parameterization from Starfish . . . . . . . . . . . . 143

5.4 Triangle plot for a single IGRINS order . . . . . . . . . . . . . . . . . 145

5.5 Starspot and photosphere effective temperature and spot filling frac-

tion derived from different orders . . . . . . . . . . . . . . . . . . . . 146

5.6 MCMC simulation walkers splitting into two photosphere temperature

regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.7 Combined distribution of the spot and photosphere temperatures from

all good orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.8 Combined distribution of the spot covering fraction from all good orders150

5.9 Temperature and filling fraction distributions including the faculae . . 151

5.10 Model and observed spectra for each order . . . . . . . . . . . . . . . 155

5.11 Model and observed spectra for each order . . . . . . . . . . . . . . . 156

5.12 Model and observed spectra for each order . . . . . . . . . . . . . . . 157

5.13 Model and observed spectra for each order . . . . . . . . . . . . . . . 158

xv



List of Abbreviations

2MASS Two micron All-Sky Survey

APOGEE Apache Point Observatory Galactic Evolution Experiment

BOSS Baryon Oscillation Spectroscopic Survey

BIC Bayesian Information Criterion

DCT Discovery Channel Telescope

DBSP The Palomar Double Spectrograph

FWHM Full Width at Half Maximum

IGRINS Immersion Grating Infrared Spectrograph

IRAF Image Reduction and Analysis Facility

IRSA NASA/IPAC Infrared Survey Archive

IRTF Infrared Telescope Facility

LBOI Long Baseline Optical Interferometry

MCMC Markov Chain Monte Carlo

MIST Mesa Isochrones and Stellar Tracks

Pan-STARRS Panoramic Survey Telescope and Rapid Response System

PDF Probability Distribution Function

SDSS Sloan Digital Sky Survey

TESS Transiting Exoplanet Survey Satellite

WFIRST Wide-Field Infrared Survey Telescope

WISE Wide-Field Infrared Survey Explorer

xvi



1

Chapter 1

Introduction

Excerpts from this Chapter are similar to sections published by Kesseli et al.

(2017), Kesseli et al. (2018), and Kesseli et al. (2019).

M dwarfs are the most abundant stars in the Galaxy, comprising over 70% of all

stars by number and dominating the stellar population of the Milky Way (Bochanski

et al. 2010). There is also evidence that M dwarf stars are the dominant components

of the stellar populations of other galaxies (e.g., Conroy & van Dokkum 2012), making

M dwarf stars the most common type of star in the Universe.

M dwarf stars are dwarf stars that lie on the main sequence in a Hertzsprung-

Russell Diagram. Stars that lie on the main sequence are actively fusing hydrogen

into helium in their cores and therefore are not still collapsing as pre-main sequence

stars nor have they exhausted their core hydrogen supplies as giant stars. M dwarfs

were historically categorized by the appearance of molecules in their spectra (Can-

non & Pickering 1901) and “M dwarf" referred to the coolest category of dwarf star

known at the time. M dwarf stars have masses ranging from 0.08 MSun to approx-

imately 0.6 MSun. M dwarf stars have correspondingly small radii that typically

range from about 0.1 RSun to 0.6 RSun and are much dimmer than Sun-like stars,

with luminosities ranging from 10−3 LSun to 0.2 LSun. Finally, they have cooler sur-

face temperatures and redder colors than Solar-type stars, with surface temperatures

ranging from about 2500 to 4200 Kelvin.
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1.1 Motivation

Even with the ubiquity of M dwarf stars, precise determinations of their fun-

damental parameters are challenging. Radii are particularly difficult to determine

because M dwarf stars are intrinsically small and faint, leading to only a few di-

rect radius measurements using long-baseline optical interferometry (< 20, and only

three with spectral types later than M3.5; Ségransan et al. 2003; Demory et al.

2009; Boyajian et al. 2012; von Braun et al. 2014; Rabus et al. 2019). Other M

dwarf radius measurements come from eclipsing binary stars (EBs). However, many

of these systems reveal radii that are as much as 10 − 15% larger than theoretical

predictions from stellar evolutionary models, and are on average inflated by 5− 10%

(e.g., Torres & Ribas 2002; Kraus et al. 2011; Han et al. 2017). It does not seem

that binarity is responsible for the inflation. Morales et al. (2008) found evidence

that single stars were 3% cooler and therefore 5% larger than model predictions by

using the Stefan-Boltzmann method to determine radii (see Section 1.4.3), while the

limited results from long-baseline optical interferometry also show evidence of the

radii being inflated by about 5% compared to models.

Inaccurate stellar radii are a problem for exoplanet characterization because

the accuracy and precision of the radius on a transiting exoplanet is limited by the

accuracy and precision of the radius on the star. If stellar radii are in error by 15%,

a significant fraction of the planets that appear to be rocky super-Earths would be

gaseous mini-Neptunes. M dwarf stars appear to host more short-period exoplanets

than any other type of star (Dressing & Charbonneau 2015) and are heavily targeted

by ongoing planet finding missions such as NASA’s Transiting Exoplanet Survey

Satellite (TESS ). With TESS ’s 27-day baseline for photometric observations, the

majority of the discovered exoplanets will be close to their host star. This means that

the majority of the habitable zone planets will be around cooler M dwarf stars, since
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even close-in planets can have temperate enough climates to support liquid water

(Muirhead et al. 2018). By observing and characterizing M dwarf stars, uncertainties

in derived exoplanet parameters can be reduced and trends in how stellar properties,

such as spectral type and metallicity, correlate with planet occurrence rates can be

discovered.

More accurate and precise stellar radius measurements will also improve stellar

parameter estimates from upcoming exoplanet microlensing surveys, such as the one

to be performed by the Wide Field Infrared Survey Telescope (WFIRST ). WFIRST

will monitor Galactic bulge stars and look for brightening indicative of lensing by

intervening foreground objects. A planet in orbit around the lensing star can be

detected as a secondary perturbation (Gaudi 2012). A large fraction of WFIRST ’s

exoplanet microlensing events will display finite source effects (Zhu et al. 2014), where

sharp features of the lens’ magnification pattern resolve the finite angular size of the

background source star (e.g., Witt & Mao 1994) and allow for measurement of the

ratio of the angular source radius to the angular Einstein radius. Knowledge of the

angular source radius, for example from the use of color-surface brightness relations

(Yoo et al. 2004; Kervella & Fouqué 2008; Boyajian et al. 2012), allows the ratio to be

converted into a measurement of the angular Einstein radius and gives a constraint

on the mass of the lens (Gould 1994; Nemiroff & Wickramasinghe 1994). However,

to do this the sizes of the background bulge source stars need to be known, of which

the vast majority will be M dwarfs.

In addition to being important for exoplanet characterization, accurate radii

provide an observable to test the accuracy of stellar structure and stellar evolutionary

models. M dwarf stars represent an especially interesting part of parameter space

for model testing because the transition from partially convective to fully convective

energy transport takes place in the middle of their spectral sequence (Reid et al.



4

1995; Chabrier & Baraffe 1997). Higher mass M dwarf stars have a radiative core

and a convective exterior like the Sun, while in lower mass M dwarf stars convection

is the dominant form of energy transport throughout the star. Along with testing

how well models can capture the fully-convective boundary, the lowest mass M dwarfs

also allow theoretical tests of the effects of core electron degeneracy pressure on the

radii (Cassisi & Salaris 2019). If models and observations do not agree, there is

potentially some piece of physics within these stars which is not accurately captured

in the modeling process.

1.2 M dwarf Parameters

Before discussing M dwarf radii in detail, I will review other M dwarf funda-

mental parameters that will be important throughout this dissertation.

1.2.1 Spectral Types

Historically, a star’s spectral type was used to estimate a star’s fundamental

parameters. The M spectral sequence is characterized by the appearance of large

molecular features, especially titanium oxide (TiO) in optical spectra (Cannon &

Pickering 1901; Kirkpatrick et al. 1991). Spectral types of low-mass stars are usually

determined by comparing mid-resolution optical or IR spectra to template spectra of

known spectral types. Once a spectral type is determined, many relations exist for

converting the spectral type to a rough estimate of the star’s fundamental parameters,

such as mass, temperature and radius (Cox 2000).

Although spectral types are useful, and in many instances are the only available

way to estimate a star’s fundamental parameters, spectral types only correspond

directly to temperature, and even the derived temperature can be misleading because

of the possibility of spots being present on the stellar surface (see Chapter 5). A
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relatively wide range of metallicities, masses, and radii can correspond to a single

spectral type. For example, I found that a low-metallicity and a high-metallicity star

of the same spectral type (both M3 dwarfs) can range in radius estimates by up to

a factor of five (see Section 3.6 and Kesseli et al. 2019). Therefore, using a spectral

type to determine any physical parameter should be used as an initial estimate.

1.2.2 Metallicity

The metallicity of a star is a measurement of the bulk chemical composition of

all elements heavier than hydrogen and helium. By convention, astronomers refer

to these heavier elements as “metals" ([m/H]). An [m/H] of +0.5 dex means that

a star has 100.5 times each element’s solar abundance. Often [m/H] is estimated

by deriving the iron-to-hydrogen fraction, [Fe/H]. While it may seem inaccurate to

assign abundances of all metals based solely on the abundance of iron, this is actually

relatively accurate due to the metallicity enrichment history of the Galaxy. After the

Big Bang, the early Universe was composed nearly entirely of hydrogen and helium.

As the Universe aged, massive stars created mainly alpha-process elements (or simply

alpha elements; e.g., C, O, Ne, Mg, Si, etc.) during fusion. The short lifetimes and

explosive deaths of these massive stars rapidly distributed these elements throughout

the first galaxies (e.g., Woosley & Weaver 1995). As time passed and lower mass stars

began to migrate off the main sequence, and Type Ia supernovae, which involve an

exploding white dwarf, became the dominant form of elemental enrichment in the

Galaxy. Type Ia supernovae created a different ratio of elements and increased the

ratio of Fe to alpha elements (Johnson 2019). The consequence of this enrichment

process is a correlation between different elemental abundances in the Galaxy (Spite

et al. 2005). This means that metallicity is also related to age, since older stars

formed when the Galaxy had yet to be enriched by heavier elements, and ages can
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be estimated by taking into account both the bulk metallicity as well as the alpha

to Fe ratio (Veyette & Muirhead 2018).

Precise metallicities of M dwarfs are notoriously difficult to determine because

much of their spectra are dominated by deep molecular features due to their low

surface temperatures. This results in a lack of a true continuum and few unblended

atomic iron lines, which are used to measure metallicities in solar-type stars. Unlike

in higher mass stars, metallicities cannot be determined by comparisons to models

because of incomplete lists of line opacities. In addition, a lack of knowledge of input

parameters for pressure broadening becomes problematic for the complex, molecular-

rich atmospheres of low-mass stars (Allard et al. 2012; Husser et al. 2013).

Recently, however, many groups have successfully used widely separated binaries

or common proper motion stars that contain an F, G, or K star and an M dwarf

companion to empirically calibrate M dwarf metallicities (e.g., Rojas-Ayala et al.

2010, 2012; Terrien et al. 2012; Mann et al. 2013a; Newton et al. 2014). These studies

created relations that convert equivalent width or spectral indices of spectral features

that are measurable in M dwarf stars (such as Na, Ca, and K) to bulk metallicity

estimates. These techniques can precisely determine M dwarf metallicities for the

first time and usually have uncertainties ranging from about 0.08 to 0.15 dex.

Even with all these advances there are still areas for improvement in M dwarf

metallicity studies. While bulk metallicities are now possible, individual elemen-

tal abundances, which are common in solar-type stars, are still under development.

Veyette et al. (2017) recently published a method to determine Ti and Fe abundances

using high resolution Y -band spectra, but this method is only valid for a small range

of temperatures and for only two elements. These techniques are also limited to near

solar-metallicity stars and almost no work has been done to calibrate metallicity

relations for abundances less than −0.5 dex.
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1.3 Interior Structure and Magnetic Field Generation in M
dwarfs

The interior structure of M dwarf stars differs from Sun-like stars due to a

transition from a combination of convective and radiative energy transport in Sun-

like stars to transport completely dominated by convection in lower-mass M dwarfs.

This interior structure change is important to discuss here because it affects how

the magnetic fields are generated within the star and therefore on the magnetic field

strengths of M dwarf stars.

1.3.1 M dwarf Structure

In Sun-like stars and higher mass M dwarf stars, energy in the core is transported

primarily by radiation, and energy in the exterior of the star is transported primarily

by convection. For convection to occur, the Schwarzschild criterion states that

∣∣∣∣dTdr
∣∣∣∣
act

>

∣∣∣∣dTdr
∣∣∣∣
ad

(1.1)

meaning that the actual temperature gradient has to be larger than the adiabatic

temperature gradient. In the outer layers of Sun-like stars the temperature is cool

enough that the opacity increases due to partial ionization, causing a steep temper-

ature gradient and creating a convective outer envelope. However, in the interior of

the star radiation is transporting the bulk of the energy. The boundary between the

radiative layer and the convective layer is called the tachocline. For stars of lower

mass, the tachocline is deeper into the star as the convective conditions are met

closer to the center of the star because of increasing opacities and lower tempera-

tures. Finally, for the lowest mass stars, the tachocline disappears and convection

is the dominant form of energy transport throughout the star (Chabrier & Baraffe

1997). The exact mass at which the tachocline disappears is still not exactly known
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and different estimates place the transition at masses between 0.23− 0.4MSun (e.g.,

Chabrier & Baraffe 1997; Baraffe & Chabrier 2018; MacDonald & Gizis 2018; Rabus

et al. 2019).

1.3.2 Magnetic Field Generation

Large scale magnetic fields in stars are generated through a dynamo process in

which electrically conducting fluids generate and maintain a magnetic field (Parker

1975). In Sun-like stars the tachocline is thought to be essential to generate the large-

scale magnetic field though the αΩ dynamo process (Ossendrijver 2003). The α effect

arises from the stretching and strengthening of magnetic fields during the interaction

of convection and rotation, and generates a poloidal magnetic field from a toroidal

magnetic field. The Ω effect again arises from the stretching and strengthening of

magnetic fields, but this time due to differential rotation shears at the tachocline,

and a toroidal field is generated from a poloidal field. Both of these effects rely on the

rotation of the star to generate the necessary shearing and stretching of the fields,

and together these effects work to amplify and sustain large scale magnetic fields.

Global magnetic field generation on fully convective M dwarfs is still not fully

understood due to the fact that fully convective M dwarfs do not have a tachocline

and cannot therefore support the Ω process. One might then expect that fully con-

vective M dwarf stars cannot generate strong global magnetic fields; however, obser-

vations of magnetic fields on fully convective M dwarf stars show clear evidence of

magnetism (see Section 1.3.3). Recent modeling results from Browning (2008) can

now produce large scale magnetic fields through the α effect alone (α2), but more

work is required to confirm these findings.
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1.3.3 Observations of Magnetic Field Strengths

It has long been inferred that M dwarf stars have strong magnetic fields due

to observations of frequent flares and signatures of magnetic activity. The strong

magnetic fields cause flares when magnetic fields reconnect and release large amounts

of stored magnetic energy. M dwarf flares are observed to be 100 to 1000 times more

energetic than the largest solar flares, and they produce large amounts of X-ray and

UV flux (Youngblood et al. 2017). Magnetic activity signatures refer to emission

from Hα or Ca H and K lines, and a magnetically active M dwarf is one that shows

Hα in emission while an inactive M dwarf shows Hα in absorption or not at all.

On the Sun, the intensity of Hα or Ca H and K emission is directly correlated to

magnetic field strength (Leighton 1959; Skumanich et al. 1975), and so emission from

these lines in spectra of other stars has long been used as an indirect determination

of magnetic field strength (Wilson 1968). Both early-type (partially convective) and

late-type (fully convective) M dwarf stars are observed to be magnetically active. In

a survey of over 50,000 M dwarf stars from the Sloan Digital Sky Survey, West et al.

(2011) found that about 10− 15% of early-type M dwarfs (spectral types M0 to M4)

were magnetically active, while over 50% of late-type M dwarfs (spectral types >

M5) were magnetically active.

Direct detections of magnetic fields on M dwarf stars using the Zeeman effect

have revealed kiloGauss scale surface magnetic fields that are often more than one

thousand times stronger than those present on the Sun (e.g., Saar & Linsky 1985).

The Zeeman effect causes a splitting of degenerate atomic levels due to the interaction

of the electron’s orbital magnetic moment with an external magnetic field. The

separation in wavelength of the split line is directly proportional to the magnetic

field strength. Recently, the Zeeman effect has been utilized to not only measure

the average surface magnetic field, but also to resolve magnetic structure on stellar
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surfaces through Zeeman Doppler imaging (ZDI). ZDI measures periodic modulations

of Zeeman signatures such as polarized light to resolve the topological magnetic field

structure (Donati et al. 2006; Morin et al. 2010). Again, this technique showed

that both early-type and late-type M dwarfs seem to host strong magnetic fields.

Unfortunately, ZDI cannot be used to determine magnetic field structure on many

stars as it is observationally expensive and can only be done on the brightest nearby

stars.

Lastly, it is pertinent to make the connection between magnetic field strength,

stellar rotation, and age. In Sun-like stars a simple relation between rotation period

and magnetic field strength exists (Skumanich 1972), where more rapidly rotating

stars have stronger magnetic fields due to the dynamo generation process as discussed

in Section 1.3.2. Rapidly rotating stars are also younger than slowly rotating stars

since as stars age they shed angular momentum, and so in Sun-like stars an age

can be estimated simply with a rotation period or magnetic field strength (Barnes

2003). West et al. (2015) found that M dwarfs with rotation periods less than 5

days were all magnetically active, providing evidence that rotation and magnetism

are correlated in M dwarfs. However, Newton et al. (2016) showed that a one-to-

one relation between rotation and magnetic activity does not exist for late-type M

dwarfs and instead a period dichotomy is present. Newton et al. (2016) interpreted

the dichotomy as evidence that late-type M dwarfs continue to rotate rapidly and

have strong magnetic fields for up to 5 Gyr and then quickly lose angular momentum

and rotate with periods greater than about 40 days. This further suggests that

magnetic field generation in late-type M dwarf stars is not produced by the same

mechanism as in Sun-like stars.
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1.4 Observations of M dwarf Radii

In the following sections I will detail the most common ways that radii of M

dwarf stars are observationally determined. As previously mentioned, precise and

accurate radii of M dwarf stars are difficult to determine, and so I will also discuss

the limitations of each method.

1.4.1 Eclipsing Binaries

Most measurements of M dwarf radii are from eclipsing binaries– binary stars

that happen to be oriented in a configuration such that the stars pass in front of and

behind each other during their orbit as viewed from our perspective. This chance

configuration allows for precise, model-independent measurements of masses and radii

by combining photometric time-series data with radial velocities derived from spectra.

Radial velocities are determined by observing periodic Doppler shifts in the

spectrum throughout the orbit of the binary system. If the stars are comparable

in brightness and it is possible to distinguish both pairs of spectral lines, then both

radial velocity shifts can be measured and the system is called an SB2. The two

radial velocities can be used to derive information on the masses and the semimajor

axes of the orbits. With radial velocity measurements throughout the orbit, the

ellipticity of the orbit can also be determined by modeling the shape of the radial

velocity curve.

Photometric time-series data, or light curves, show periodic dips in brightness

as the stars are eclipsed by each other. The period of the orbit can easily be measured

from the time between mid-eclipses. The ratio of the eclipse depths and the time

between the start of a transit and full depth of a transit gives information on the

stellar radii. The inclination of the system can be determined by modeling the eclipse

shape to see if the stars are in a grazing orbit or a near-perfect, edge-on orbit.



12

By combining all of the information from the radial velocity measurements and

the light curves, the masses, radii, eccentricity, semimajor axes, and period of the

system can be measured to a precision better than 5% (e.g., Torres et al. 2010; López-

Morales 2007). While I have simplified the explanations of how the parameters are

determined, in reality there are degeneracies between many of these parameters and

a careful reduction process is required to achieve the above quoted 5% uncertainty.

While EBs can give precise, model-independent parameters, the measurements

are observationally expensive. Eclipsing binaries require a chance orientation and

so to find them a large number of targets need to be photometrically monitored at

a high cadence. Before the late 2000s only 3 SB2 systems containing an M dwarf

star were known, but with recent surveys such as TESS and Kepler this number has

significantly increased. Additionally, to determine the radial velocities to a high pre-

cision, high-resolution spectral observations are needed at multiple times throughout

the orbit of the binary system. Since M dwarf stars are dim, long exposure times are

required to build up enough signal to accurately measure radial velocities.

Even with good data there are still significant sources of astrophysical noise that

complicate the process of deriving masses and radii. The surfaces of M dwarf stars

are heavily spotted, which introduces photometric variability into the light curves,

making it difficult to precisely model the eclipses (Torres & Ribas 2002). M dwarf

stars also flare frequently (Hilton et al. 2010; Davenport et al. 2019), and while

removing flares from the light curves is possible it can add noise to the photometric

data points.

Furthermore, the way in which the stellar parameters are extracted from the

light curves is also subject to sources of uncertainty. Morales et al. (2010) showed

that if magnetic cool spots on active M dwarf stars are preferentially distributed near

the poles (as seen by Granzer et al. 2000; Jeffers et al. 2007; Strassmeier 2009), the
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radii could be overestimated by up to 6% by parameter extraction codes that assume

circular stellar disks when modeling EB light curves. In addition, reanalysis of EB

data from multiple groups has oftentimes lead to vastly different stellar parameters,

calling into question the accuracy of parameters extracted from all EBs (e.g., Han

et al. 2017).

Finally, these stars are all binaries and may not have properties that are repre-

sentative of single star. Disk disruption and/or tidal effects from close binaries could

alter the evolutionary history of EBs (Meibom et al. 2006; Morgan et al. 2012).

1.4.2 Long Baseline Optical Interferometry

Long baseline optical interferometry (LBOI) is another common method for

obtaining precise measurements of M dwarf radii. LBOI measurements directly re-

solve the disk of the target to determine a radius. To gain the angular resolution

required to resolve a stellar disk, multiple telescopes are spread out across a wide

area, effectively increasing the diameter of the telescope dish. The light from the

many telescopes is passed through vacuum tubes and combined coherently so the

wavelengths are matched to an accuracy of less than one micron (Monnier 2003). An

interferometer records the interference fringes created by combining the light. To de-

termine the angular diameter of a star the fringe contrast or “visibility" is measured.

The visibility is the fringe amplitude divided by the average intensity, and the shape

of the visibility curve is directly related to the size of the star; a larger stellar angular

diameter corresponds to a smaller visibility for a set baseline.

LBOI requires extremely stable conditions, both at the telescope and in the

atmosphere. Small distortions or alterations to the mirror angles can lead to changes

in the fringing patterns. Atmospheric turbulence can cause wavefront distortions and

can lead to the telescope no longer being diffraction limited and potentially faulty

measurements. To avoid this problem, the telescopes often take short exposures and
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quickly move between observations of a target star and observations of a calibrator

star located nearby so that the turbulence in the targeted area of the sky can be

characterized (Boyajian et al. 2012). Due to these short exposures the target star

has to be exceptionally bright.

A few facilities are capable of performing long baseline optical inteferometry,

including the Center for High Angular Resolution Astronomy (CHARA) array, the

Palomar Testbed Interferometer (PTI), the Naval Precision Optical Interferometer

(NPOI), and the Very Large Telescope Interferometer (VLTI). CHARA is currently

the most powerful optical interferometer in the world and using a 331 m baseline, it

can resolve angular diameters as small as 0.4 mas in the V band (ten Brummelaar

et al. 2005). In order to successfully determine angular diameters, CHARA has a

limiting magnitude of 7 in the H or K band. This leaves only the closest 5 or so

late-type M dwarfs for which this method is possible, which does not allow for much

exploration of interesting areas of parameter space.

1.4.3 Stefan-Boltzmann Law

The radii of stars can be determined by combining effective temperatures and

bolometric luminosities via the Stefan-Boltzmann law

R =
√
Lbol/4πσT 4

eff (1.2)

where R is the radius, Lbol is the luminosity, and Teff is the effective temperature.

This method can be used to determine radii for a large number of stars as it is not

observationally expensive (like EBs) and does not require particularly bright sources

(like LBOI).

To determine Lbol, the bolometric flux and the parallax are combined in the

following equation
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Lbol = 4πD2Fbol (1.3)

where D is the distance and is simply the inverted parallax. Prior to Gaia, parallaxes

for a large number of M dwarfs were not available, but now upwards of a million M

dwarfs have precise parallax measurements (Gaia Collaboration et al. 2018). The

bolometric flux is the flux in all wavelengths emitted by the star. To determine

bolometric fluxes, bolometric corrections have been historically used to convert a

flux in a single band to the bolometric flux (e.g., Bessell & Brett 1988). This method

is prone to large uncertainties, as stars with the same flux in one band can have

vastly different bolometric fluxes due to changes in parameters such as metallicity,

surface gravity, etc. With the wealth of data from all-sky surveys, it is now possible

to obtain photometry spanning the UV (GALEX ), to the optical (Gaia, SDSS, and

pan-STARRS), to the near- and mid-IR (2MASS and WISE, respectively) for many

sources. With photometry covering a large wavelength region, the bolometric flux

can be obtained simply by integrating under a curve connecting the photometry

point.

Effective temperatures are often estimated by comparing spectra to models or

by using relationships between photometric color and effective temperature. As men-

tioned in Section 1.2, model spectra of M dwarf stars still cannot correctly match

every spectral feature, but they can capture the overall behavior and can fit the

majority of the dominant spectral features. Because of this, moderate-resolution

spectra with wide wavelength coverage, not single spectral features, are often used

for the model fits. By using an entire spectrum to calculate a temperature, effects

from spurious model features or changes in line depths due to differences in elemen-

tal abundance, bulk metallicity, or magnetism (Zeeman broadening) are mitigated.
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Even by using large parts of the spectrum, model fits still have uncertainties of at

least 60 K and often up to 150 K (Mann et al. 2013c; Rajpurohit et al. 2016, e.g.,).

While color-to-Teff relations do not rely on models, there are many other sources

of uncertainty that are associated with them. Recent studies have used a sample of

calibrator stars with effective temperatures known to a high precision and fit color

relations to these stars (e.g., Mann et al. 2015). The precise effective temperatures

were determined by combining LBOI radii with bolometric luminosities (determined

with broadband photometry as mentioned above) to estimate the effective tempera-

ture using Equation 1.2. Unfortunately, color is susceptible to changes in metallicity

and, so, all of these relations are metallicity dependent. In addition, they have not

been calibrated to the lowest mass stars. If targets are confined to a spectral type of

∼M0−M5 and a metallicity within ∼0.5 dex of solar metallicity, uncertainties are as

low as 47 K, but outside of this limited parameter space uncertainties can be much

higher.

By taking into account the uncertainties from the measurement of the bolomet-

ric luminosity and effective temperature, I found that radii cannot be estimated to

a ∼10% precision using this method (Kesseli et al. 2019). Therefore, this method

can be useful when estimating radii for a large sample of stars and looking for gen-

eral trends present in the data, but is less useful for getting an accurate and precise

measurement of a single star, or detecting changes in radii less than ∼ 10%.

1.5 Radii from Stellar Evolutionary Models

Stellar evolution codes in their most basic form solve the equations of stellar

structure and and energy transport. Stellar evolution models of low-mass stars have

historically been challenging and often did not agree with data. In the past, gray

atmospheres were used as an approximation for the surface boundary conditions, but
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this approximation was shown to not be valid for low-mass stars (Allard & Hauschildt

1995; Chabrier & Baraffe 2000; Feiden & Chaboyer 2012). Modern codes solve for

the interior structure and then use state-of-the-art stellar atmosphere models as the

surface boundary conditions, which has yielded much better results for K- and M-

type stars (e.g., Feiden & Chaboyer 2012; Chen et al. 2014). Models of low-mass

stars have also been complicated by the fact that many opacity lists do not extend to

low enough temperatures (e.g., Iglesias & Rogers 1996), and unlike solar-mass stars,

are unable to use an analytic equation of state due to non-ideal contributions at the

high plasma densities present in their interiors (Dotter et al. 2007).

Stellar isochrones are the usable output of a stellar evolution model. They

relate intrinsic properties such as the mass, radius, and effective temperature at a

single age to observables such as magnitudes. Currently many groups are developing

stellar isochrones, some of the prominent ones being BHAC (Baraffe et al. 1997,

2015), Yonsei-Yale (Demarque et al. 2004), Padova (Bressan et al. 2012; Chen et al.

2014), Dartmouth (Dotter et al. 2008; Feiden & Chaboyer 2014), MIST (Choi et al.

2016), and Victoria-Regina (VandenBerg et al. 2006). Isochrones from each of these

groups are all computed in generally the same way, but small differences such as

which atmosphere models are used for the boundary conditions, which code is used

to calculate equations of state, or what mixing length value is used can differ between

them. All of these models show general agreement to within 5− 10% for most of the

parameters computed for the isochrones; however, different groups have specialized

in different parts of parameter space. For example, the BHAC and MIST groups have

computed pre-main sequence isochrones for low-mass stars (Baraffe et al. 2015; Choi

et al. 2016), while most of the other groups only have isochrones starting at 1 Gyr for

low-mass stars. Recently, significant work has been done with the Dartmouth models

to include effects from strong magnetic fields (Feiden & Chaboyer 2012, 2014). The
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Dartmouth models are also the only ones to contain abundance variations beyond

a simple bulk metallicity change (small α element variations are available in Dotter

et al. 2008), although the MIST models are in the process of incorporating even more

abundance variations such as carbon enhancement.

1.5.1 Comparisons between model radii and observed radii

Radii of stars determined using EBs are often 10− 15% larger than theoretical

predictions from stellar evolutionary models, and are on average inflated by ∼ 6%

(e.g., Torres & Ribas 2002; Kraus et al. 2011; Han et al. 2017; Parsons et al. 2018).

A few examples of stars with radii inflated by up to 3 times the predicted radius are

present in the literature (e.g., Çakırlı et al. 2013). However, Han et al. (2017) have

since shown that examples such as these all seem to be a problem with the parameter

extraction and the radii of these stars are actually consistent with the rest of the EBs

(see Figure 1.1).

It does not seem to be only binary stars that are larger than model predictions,

and there is evidence that single stars also show radius inflation. Boyajian et al.

(2012) combined all of the K and M dwarfs with radii from LBOI into one sample

and determined that these stars are larger than models by an average of 5%. Morales

et al. (2008) determined radii using the Stefan-Boltzmann method for about 700

single star and found that K and M dwarfs were on average 3% cooler than models

predicted, and in turn about 6% larger than models predicted.

1.6 Hypotheses for M dwarf Radius Discrepancies

Several theories have been suggested to explain these discrepancies between

models and observations. The two most prominent theories involve inaccurate metal-

licities or enhanced magnetic fields.
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Fig. 1.1: Results of EB masses and radii from the literature (compiled by Han et al.
2017; blue points) and Dartmouth stellar evolutionary models (colored lines). Han
et al. (2017) found that the radii of the EBs with the largest radius inflation were
incorrect, drawing into question all of the hyper-inflated radius results. This however
does not change the fact that many of the EBs show radii that are larger than the
models predict, with models predicting values that are on average 6% smaller than
EB measurements.

1.6.1 Metallicity

The metallicity of stars is theorized to alter their radii since metallicity controls

the opacity of the atmosphere, which modifies the equilibrium configuration for a

given luminosity (Burrows et al. 1993). Additionally, in metal-poor stars the pho-

tosphere is expected to lie deeper in the star where the gas temperature is higher,

leading to smaller radii for a given effective temperature (Teff). Since metallicity

estimates for M dwarf stars are still relatively new and have relatively high uncer-

tainties, if the EBs in Figure 1.1 are all slightly more metal-rich than their derived

metallicities show, then the 5−10% discrepancy could potentially be explained.
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The effect of metallicity on radii has been predicted theoretically, and models

from every group mentioned in Section 1.5 show that lower metallicity M dwarf

stars have smaller radii for a given luminosity and temperature. Even with clear

theoretical predictions, the metallicity−radius effect has proven difficult to confirm

observationally. Berger et al. (2006) found that the deviations between model radii

(with an assumed fixed mass) and radii of six low-mass stars determined using LBOI

correlated with metallicity. However, López-Morales (2007) found no metallicity

correlation for radius discrepancies between models and observations of six low-mass

eclipsing binaries. Boyajian et al. (2012) published a compiled sample of all the low-

mass radii from LBOI and saw no trend in radius with metallicity for a given mass,

luminosity, or temperature. Finally, using the largest data set of M dwarf radii to

date, Mann et al. (2015) saw clear evidence of a metallicity trend in a temperature

versus radius plot (Figure 1.2), and slight evidence for a metallicity trend in an

absolute Ks-band versus radius plot. It is important to note that all of these studies

used near-solar metallicity stars that only ranged from−0.5 to +0.3 dex in metallicity,

which undoubtedly played a role in the difficulty to observationally confirm the role

of metallicity on radii.

1.6.2 Magnetism

There are two main mechanisms proposed to explain how ignoring magnetic

fields in the models leads to underestimated radii. Chabrier et al. (2007) used stel-

lar models to demonstrate that rotation-induced surface magnetic fields can lead to

larger radii of low-mass stars by two scenarios: (1) strong magnetic fields inhibit con-

vective flows, and (2) magnetic cool spots decrease the overall effective temperature

of the star, and thus increase the radius as the luminosity is unchanged.

Mixing length theory is used to model energy transport by convection in stellar

interiors by approximating the energy flux carried by a convective bubble. The
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Fig. 1.2: Teff versus radius relation from Mann et al. (2015). Clear evidence of
a trend with metallicity is seen in the residual plot, where the higher metallicity
stars all sit above the dotted blue metallicity-independent empirical relation and the
metal-poor stars sit below the dotted blue line. This was the first clear confirmation
that radii are metallicity dependant for a fixed effective temperature. Reprinted with
permission from Mann et al. (2015).

mixing length parameter, α, is the ratio between average distance a convective bubble

moves before it is dissipated and the pressure scale height. To model the effects of

scenario (1), Chabrier et al. (2007) decreased α. In regions where convection is

nearly adiabatic, changing the mixing length has little effect on heat transport and

therefore little effect on the radius of the star. However, in regions where convection is

superadiabatic, decreasing alpha leads to a higher fraction of heat being transported

by radiation, steeper temperature gradients, and in turn cooler effective temperatures

and larger radii. Superadiabaticity is inversely proportional to density squared and

less dense regions (like the outer convective zones in Sun-like stars and early-M

dwarfs) are superadiabatic, while the exteriors of the lowest mass M dwarfs are still

too dense to become superadiabatic. For this reason, Chabrier et al. (2007) predicted
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that lower the mass of the star, the less it would be affected by scenario (1) and that

in fully convective M dwarfs inflation would be primarily due to spots (see Figure

1.3).

To estimate how much scenario (2) would affect the radii of M dwarfs, Chabrier

et al. (2007) assumed that some fraction of the surface of the star is covered in cool

spots. The flux emerging from the star is a combination of a flux from the spot or

spots and a flux from the quiescent photosphere

Ftot = Fphot(1− β) + Fspotβ = σT 4
phot(1− β) + σT 4

spotβ (1.4)

where β is the spot covering fraction and is defined as the area of the spots over the

area of the quiescent photosphere, or β = Sspot/Sphot, F is the flux, and Tphot and

Tspot are the effective temperatures of the photosphere and spot, respectively. Next,

Chabrier et al. (2007) assumed that a spotted star and an unspotted star of the

same mass would have the same luminosity, and therefore derived how much larger

the radius would need to be to offset the lower flux emitted from the spotted star.

R2
unspotted

R2
spotted

= 1− β + β
T 4

spot

T 4
phot

(1.5)

Chabrier et al. (2007) found that scenario (2) alone could inflate the radii of M

dwarf stars seen in EBs, but only with a large spot covering fraction of 30-50% of

the stellar surface (see Figure 1.3). This estimate was a simple test since Chabrier

et al. (2007) did not know spot temperatures or have any realistic estimates of spot

covering fractions.

The work of Chabrier et al. (2007) has been updated and tested more thoroughly

since its publication. Feiden & Chaboyer (2014) used the Dartmouth Magnetic Stellar

Evolution Tracks and Relations (DMSETR; Feiden & Chaboyer 2012) to explore

both of these scenarios in greater detail. Instead of modeling scenario (1) using
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Fig. 1.3: Figure from Chabrier et al. (2007) showing the effect of decreasing the mix-
ing length (α) and increasing fraction of the surface covered in cool spots (β) on the
radii of M dwarf stars. The effect of decreasing the mixing length parameter greatly
increases the radii for a given mass of partially convective stars (M > 0.35MSun)
but does not increase the radii of fully convective stars (M < 0.35MSun) at all. The
points on the plot are measured radii of EBs from the literature. Reprinted with
permission from Chabrier et al. (2007).

a decreased mixing length parameter, they modeled how the magnetic field could

stabilize convection and found that it could inflate the radii of fully convective stars

by 5-6% if extremely strong interior magnetic fields were invoked (40 MG). However,

theoretical predictions of interior field strengths concluded that the above-quoted

field strengths were unreasonably large (Browning et al. 2016). On the other hand,

MacDonald & Mullan (2017) used a similar approach to that of Feiden & Chaboyer
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(2014), but found interior magnetic fields strengths on the order of 10 kG could

inflate the radii of fully convective stars to a similar degree as seen in EBs.

Observational evidence for strong magnetic fields causing larger than expected

radii can be seen in studies of EBs. EBs with measured radii tend to have short orbital

periods, because of observational biases, and are synchronously rotating. Stars that

are rotating more rapidly have stronger magnetic fields due to the dynamo process,

and so EBs are preferentially selected to have strong magnetic fields. It follows that

if the magnetic inflation scenario is correct, EBs would be on average slightly more

inflated than radii of single stars observed through LBOI, which is exactly what is

seen. Furthermore, in a survey of six EBs, Kraus et al. (2011) found some evidence

that the radii of the stars in shorter period binary systems were slightly more inflated

than the radii of the stars in longer period EBs. Both of these pieces of evidence are

highly disputed and neither offer any evidence as to the mechanism (i.e., whether the

above scenario (1) or (2) is responsible for the radius inflation) behind the mismatch

between the models and observations.

To disentangle the roles of the two scenarios proposed to inflate the radii and

to determine whether the inflation seen in EBs is real, and not some product of

the difficulty in extracting accurate parameters (see Section 1.4.1), a large sample of

single stars with accurate radii is required. If partially convective and fully convective

stars are inflated to the same degree, then it follows that scenario (2) is most likely

responsible for the majority of the radius inflation. With a sample that spans many

different rotation periods, a potentially new and more accurate radius relation which

includes a rotation parameter can also be developed. Deducing the role of magnetism

on radii will help provide constraints for future modeling and provide insights into

the physics present on these small stars.
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1.7 Concluding Remarks

For the bulk of my dissertation I explored the role of different fundamental

parameters on the radii of M dwarf stars. However to start, I examined how to

determine these fundamental parameters and developed tools to estimate metallicity,

spectral type and surface gravity of low-mass stars (Chapter 2). In Chapter 3 I

quantified the effects of metallicity on M dwarf radii to determine if metallicity

variation could be causing the discrepancies between models and observations. I

found that while stars with different metallicities and the same Teff can have vastly

different radii, the discrepancies in the mass – radius relation are not likely to be due

to metallicity. Next, I explored how strong magnetic fields and rapid rotation can

alter the radii of M dwarf stars (Chapter 4). I calculated that rapidly rotating stars

are on average 10-16% larger than models predict. I then explored the mechanism

causing the radius discrepancy observed in the rapidly rotating stars and determined

if magnetic starspots could completely account for these stars being larger than model

predictions (Chapter 5). I found that spots alone could sufficiently suppress Teff and

inflate the radii compared to what models predicted. Finally, I summarized the

results in Chapter 6 and discussed the degree to which metallicity and magnetism

were responsible for the radius discrepancies and scatter in the mass – radius diagram

of M dwarf stars.



26

Chapter 2

Spectral Templates and a Method for
Estimating Metallicities

A similar version of this Chapter was published in the Astrophysical Journal

Supplements by Kesseli et al. (2017).

2.1 Introduction

Empirical stellar spectral libraries are crucial for many areas of astronomical

research. These include, but are not limited to, simple assignment of stellar spectral

types by-eye, more complicated machine learning spectral typing, and modeling the

spectral energy distributions and stellar populations of galaxies. The determination

of stellar properties such as surface gravity, metallicity and effective temperature

is often completed by comparisons to empirical templates with known parameters,

or modeled spectra. In the modern age of large surveys, data sets will be so large

that individual analyses will be unfeasible and machine learning or other statistical

techniques will become increasingly important. To accurately train machines, data

sets with known properties that cover the entire range of parameter space are needed.

With the advent of the Large Synoptic Survey Telescope (LSST) and many

other large surveys, photometric data sets of unprecedented size will be available

to astronomers. LSST will not include a spectrograph, and so the characterization

of stellar parameters must be based entirely on the available photometric data. In

preparation for LSST, Miller (2015) created a machine learning technique, which
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was taught to determine metallicities solely from photometric colors, using Sloan

Digital Sky Survey (SDSS) stellar spectra with log g, [Fe/H], and Teff measurements

from the Segue Stellar Parameters Pipeline (SSPP; Lee et al. 2008). The pipeline,

however, is only quoted to be accurate for spectral types F through mid-K (it may be

accurate outside this temperature range, but this requires further testing), excluding

a large portion of stellar parameter space.

Empirical spectral libraries have a rich history in stellar astronomy (e.g., An

Atlas of Digital Spectra of Cool Stars: Turnshek et al. 1985; Pickles: Pickles 1998;

ELODIE: Prugniel & Soubiran 2001), but none of them include a very large range

of M-star properties. Because of the complex molecular rich atmospheres of low-

temperature stars, estimates of log g and [Fe/H] have only become accurate within

the last few years (e.g., Rojas-Ayala et al. 2010; Terrien et al. 2012; Mann et al.

2013a; Newton et al. 2014), and were therefore unavailable when these libraries were

assembled. The ELODIE library is also limited by its small wavelength coverage

(3900 – 6800 Å), which does not include many of the longer-wavelength features nec-

essary for studying low-mass stars’ metallicities and surface gravities (e.g., Na I at

8200 Å). Numerous groups have used SDSS to create partial libraries of specific effec-

tive temperature regions because of the wide wavelength coverage and vast number

of spectroscopic and photometric observations available. In the solar mass regime

(4,500 – 7,500 K), Lee et al. (2008) created the Sloan Extension for Galactic Explo-

ration and Understanding (SEGUE) SSPP and estimated Teff , log g, and [Fe/H] for

over 100,000 stars. In the low-mass regime, Hawley et al. (2002) first assembled a

sample of M, L and T dwarf single object spectra. Bochanski et al. (2007) improved

upon the sample by creating co-added templates for active and non-active low-mass

stars (M0-L0), and Schmidt et al. (2014) extended the templates through the spec-

tral subtype of L6. Savcheva et al. (2014) expanded the library further by compiling
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co-added templates of low-mass (and low-metallicity) subdwarfs. However, there is

no single source library that covers parameter space in the low-mass regime (M dwarf

metallicities and surface gravities).

Synthetic template libraries are also used widely throughout astronomy and

are extremely useful tools, since parameters such as log g, [Fe/H], and Teff are

model inputs and can span a wider parameter space than any empirical template

library. Many of these complete model libraries are available to the public (e.g.,

Kurucz: Kurucz 1979; BT Settl: Allard et al. 2012). However, the models must

use simplifications such as assumptions of plane parallel atmospheres, local thermal

equilibrium, etc., to create these synthetic spectra (Husser et al. 2013). Synthetic

stellar spectra are also limited because of incomplete lists of line opacities and a

lack of knowledge of input parameters for pressure broadening models (Allard et al.

2012; Husser et al. 2013). This is especially problematic for the complex, molecular-

rich atmospheres of low-mass stars, where the model spectra do not exactly match

the observed spectra across all wavelengths. Empirical libraries are therefore still

extremely important both to constrain models and to use in regimes where the models

are limited.

In this chapter, I present a library of empirical stellar spectra for spectral types

O5-L3, focusing solely on the lower-mass templates. For more detail on how the

higher mass templates were created see Kesseli et al. (2017). My library separates out

luminosity classes (dwarf and giant) for spectral types A0 through M8, and contains

metallicity bins for spectral types A3 through M8. I do not include white dwarfs in

my sample; several catalogs of SDSS white dwarfs can be found in other studies (e.g.,

Kleinman et al. 2013). This stellar template library spans stellar parameter space

and contains wavelength coverage that is not available in other empirical libraries.

Along with the templates, I have released a revised version the “Hammer" spectral
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type facility (Covey et al. 2007a), dubbed “PyHammer". The original code assigned

an automatic spectral type by measuring a variety of spectral lines/features and

performing a least-squares minimization. The code also allowed the user to complete

visual spectral fitting. I have rewritten the code in Python, using my templates for

comparison, and I have augmented the code to assign a metallicity, in addition to a

spectral type. I have also included a GUI for visual spectral typing.

2.2 Methods

I created the templates via co-addition of individual stellar spectra from Sloan

Digital Sky Survey’s (SDSS) Baryon Oscillation Spectroscopic Survey (BOSS). BOSS

contains over 500,000 well-calibrated stellar spectra spanning wavelengths 3,600 –

10,400 Å at a resolution of R ∼ 2000 (Covey et al. 2007b). To create the empirical

catalog I selected and co-added spectra in bins of metallicity ([Fe/H]), surface gravity,

and spectral type.

To ensure the quality of all of the spectra and photometry, I applied some basic

quality cuts within my initial SDSS CasJobs Query1. I measured the signal-to-noise

in each of the five photometric bands, and I included the object if the median value of

the five signal-to-noise values (from each band) was greater than ten. I also required

that the spectra to be classified as stars (not galaxies or QSOs). I required that

the errors in the photometry be less than 0.1 mag in each individual band that is

included in the final co-added photometry, and that the photometry in that band was

not flagged for being deblended, contaminated by a cosmic ray, or saturated. Finally,

I required the extinction in the r -band to be less than 0.25 mag for the object to be

included. I found that this latter requirement effectively removed any spectra that

were visibly altered by extinction.

1http://skyserver.sdss.org/CasJobs
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Once the spectra were selected, I visually classified each of the spectra using

the “Hammer" spectral type facility (Covey et al. 2007a). I then calculated a radial

velocity (Section 2.2.1) to shift each spectrum into its rest frame before further

spectral analysis and/or co-addition. I separated the spectra into metallicity (Section

2.2.3) and surface gravity (Section 2.2.2) bins when applicable. There are some

holes in the template coverage across parameter space, where I could not find BOSS

spectra at all the metallicity/spectral type/surface gravity values. Once separated,

each spectrum was cataloged and co-added to create empirical spectral templates

(Section 2.2.4).

In the following sections I only discuss the techniques I used to estimate pa-

rameters of the M-type stars. I discuss all the other spectral types in the published

version of the paper (Kesseli et al. 2017).

2.2.1 Radial Velocity

To determine the radial velocities, I chose to perform my own cross correla-

tion with the M dwarf template library from Bochanski et al. (2007), for spectral

subclasses K5 through M9, and Schmidt et al. (2014) for the L dwarfs. The cross

correlation method examines three regions of the spectrum (5000–6000 Å, 6000–7000

Å, and 8000–9000 Å), and for each region performs a cross correlation. The min-

imum of the cross correlation function is recorded, and a sigma clipped median of

the measurements from all the regions is reported as the radial velocity. I calcu-

lated an uncertainty from the standard deviation of all the individual radial velocity

measurements (in each region) added in quadrature with the precision at which ra-

dial velocities can be calculated from BOSS’s spectral resolution. I take this radial

velocity precision to be ∼ 7 km s−1 as determined by Bochanski et al. (2007) in

a comparison with high precision radial velocity measurements of Hyades cluster

members. In the comparison with the Hyades cluster, Bochanski et al. (2007) found
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radial velocities that were on average 4 km s−1 more precise than the standard SDSS

pipeline’s radial velocities. For the templates with a signal-to-noise ratio (SNR) > 10

I found a median uncertainty of 9±0.5 km s−1. The radial velocity code used to com-

pute these values will be available with the PyHammer code. Further descriptions

of the code, and tests of its accuracy are given in Section 2.4.

2.2.2 Surface Gravity

To distinguish low-temperature dwarfs from giants I followed the steps in

Bochanski et al. (2014). Since giants are intrinsically bright, and thus have to be at

large distances in SDSS, they will not exhibit observable proper motions. To isolate

main sequence stars, I required that the proper motion in RA or Dec be greater than

two times the error in the proper motion, while the giant stars must have proper

motions less than two times the error in the proper motion. This proper motion cut,

however, introduces a high percentage of extra-galactic source contamination in the

giant category because elliptical galaxies’ spectra often resemble M stars (since M

giants are the main observable constituent), and also will not have any measurable

proper motion. Bochanski et al. (2014) note this problem in isolating M giants, and

use a g− i, i−K color cut (Equation 5 in Bochanski et al. 2014), which Peth et al.

(2011) show effectively separates the two populations. Main sequence and giant stars

also occupy distinct locations on the J − K, J − H color diagram (Bessell & Brett

1988). To use the IR color cuts (Equations 1 – 3 in Bochanski et al. 2014) that make

use of the dwarf-giant distinction in IR color space, I matched all of the SDSS targets

with the corresponding targets from the Two micron All-Sky Survey (2MASS). This

provided me with J , H, and K-band photometry for each object. Bochanski et al.

(2014) concluded that using all of the M giant photometric and proper motion cuts

returns approximately ∼ 20− 50% M giants (contaminants include dwarfs, galaxies,

and other sources). Contamination in the M dwarf category should be minimal, since



32

any giant close enough to have a measured proper motion would saturate the SDSS

detectors.

To remove the remainder of the non-giant contaminants from my M giant cat-

egory, I resorted to visual inspection of the spectra. I found a few carbon star and

extragalactic sources, which could easily be identified spectroscopically. To spec-

troscopically distinguish dwarfs from giant stars, I focused on the gravity sensitive

features, Na I (8200 Å) and the calcium triplet (∼8600 Å). The Na I doublet is ex-

tremely sensitive to gravity (Schlieder et al. 2012) and is only strong in dwarf stars,

while the calcium triplet is more prominent in giant stars (Jones et al. 1984). After

my spectroscopic classification, I conservatively removed ∼ 75% of the selected stars

and I expect the vast majority of my remaining spectra are true M giants.

2.2.3 Metallicity

Low mass stars’ molecule rich atmospheres and distinct lack of a true continuum

make it extremely difficult to measure metallicities. Recent work using M dwarfs with

wide binary FGK companions has led to several new techniques for estimating M

dwarf metallicities. Mann et al. (2013a) used∼ 120 absorption features in K5 through

M4 dwarfs to estimate metallicities to a precision of < 0.1 dex for the metallicity

range −1.04 <[Fe/H]< +0.56. I employed the Mann et al. (2013a) method and

measured metallicities for over 3,000 individual M dwarfs (no giants) with spectral

types through M4. Each spectrum was then separated into a metallicity bin: [Fe/H]

< −1.0; -1.0 < [Fe/H] < −0.5; −0.5 < [Fe/H] < 0.0; 0.0 < [Fe/H] < 0.5; and [Fe/H]

> 0.5.

The majority of methods for determining the metallicity for late-type M dwarfs

(M5-M8) use IR spectral features (e.g., Mann et al. 2014; Newton et al. 2014), which

are not within the BOSS spectral coverage. Newton et al. (2014) also showed that

the spread in the J−K color around the stellar locus in a J−K,H−K color diagram
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is primarily due to metallicity. I therefore separated the M dwarf spectra (again, not

giants) into rough metallicity bins using IR color cuts from Equation 15 in Newton

et al. (2014), which have a precision between 0.1 dex and 0.5 dex. I created three

metallicity bins: [Fe/H] < −0.5; −0.5 < [Fe/H] < 0.0; and [Fe/H] > 0.0. Even

though the uncertainties are relatively high, the overlap between the high and low

metallicity bins should be minimal since the difference in metallicity between the low

and high metallicity bin is greater than the 0.5 dex uncertainty stated by Newton

et al. (2014).

2.2.4 Co-adding

The BOSS spectra are logarithmically spaced and in vacuum wavelengths. Us-

ing the radial velocities determined as described above, I shifted all of the spectra

into their rest frames. I used a similar method to Bochanski et al. (2007), except

my wavelength grid was spaced evenly in logarithmic space (intervals of 5 km s−1)

instead of linearly spaced. The flux was then inserted (without interpolation) into

the appropriate location on the flux grid corresponding to the shifted wavelength.

The flux grids were then normalized to the flux at 8000 Å. The spectral resolution

is increased in this process because the shifts in radial velocity can be measured to

precisions of ∼ 5− 10 km s−1 and were added into a grid with a spacing of 5 km s−1.

The process is essentially combining many low resolution spectra into a higher reso-

lution template, and is similar to the “drizzle" process used to combine astronomical

images (Bochanski et al. 2007). During the co-addition, I also corrected for a spike

in flux located around 5600 Å present in many of the spectra, caused by stitching

the spectra from the red and blue BOSS cameras together. Finally, I trimmed the

grids at 3650 Å and 10200 Å, to avoid areas that were not complete after the radial

velocity shifts. I also propagated the uncertainty reported by BOSS for each spec-
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trum throughout this process and calculated the standard deviation of the co-added

templates at each spectral channel for each template.

2.3 Stellar Template Library

Here, I present 324 templates of spectral types O through M. One template of

each spectral type is shown in Figure 2.1. A subset of the template spectra are shown

in Table 2.1; the full table is available for download in the online journal. Each entry

displays the number of BOSS spectra co-added to create the template, along with

measurements of 29 spectral indices. The spectral indices, which are ratios of the flux

in the region of the absorption feature divided by the continuum flux, are the features

used by PyHammer to estimate the spectral type and metallicity. Figure 2.2 shows

a subset of the template spectra for the lowest mass templates. All of the spectra

are available in fits formats online2. For those interested in the complete sample, all

the individual BOSS spectra co-added for each template are available in a Zenodo

repository4, organized by the spectral type, luminosity class, and metallicity. Figure

2.3 shows an M2 spectrum with all of the prominent absorption features labeled.

Figure 2.4 shows an expanded view of the Ca II K and Na I D metal sensitive

features in different regions of the spectra (3933 and 5890 Å, respectively). The Ca

II K line is prominent in high-temperature stars, while the Na I D lines are almost

absent. In low-temperature stars, the trend is the opposite. I found that the Na I D

lines are a useful metallicity indicator for F through early M-type stars, and the Ca

II K line is a useful metallicity indicator for A and F stars. The higher metallicity

spectra have deeper absorption features (larger equivalent widths) for both of these

features. In the bottom panel of Figure 2.4, the lowest metallicity templates also

2github.com/BU-hammerTeam/PyHammer
https://doi.org/10.5281/zenodo.344471
4https://doi.org/10.5281/zenodo.344471
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Fig. 2.1: Example of one spectrum per spectral type, where each spectrum is at solar
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all normalized at 8000 Å.
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0

2

4

6

8

10

N
or

m
al

iz
ed

Fl
ux

+
C

on
st

.

M9

L1

Fig. 2.2: Sample of the template spectra for the main-sequence, low-mass spectral
types at solar metallicity ([Fe/H] = 0.0). The spectra are all normalized at 8000
Å, and a constant is added to each template to improve readability. The late-type
M and L stars have different scales because most of their flux is concentrated red-
ward of 8000 Å, where the normalization occurs. I therefore put them on a separate
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temperature templates are available in FITS format in the online journal
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([Fe/H] = 0.0). All the prominent absorption features are labeled for each spectrum.
The ‘V’ shapes are used instead of lines to show large molecular bands.

show few features outside of the neutral sodium D doublet and are virtually flat for

the F6 and G5 spectra. The K3 and M1 spectra have few low-metallicity spectra

that are co-added to create the templates, and are therefore more noisy than their

higher metallicity counterparts, yet still show a lack of real absorption features.

Figure 2.5 is similar to Figure 2.4 except it shows differences between dwarf and

giant spectra for a range of spectral types. The top panel of Figure 2.5 shows the

entire spectrum for both a dwarf and a giant for the spectral classes G5, K3 and M0.

The continua (even without features) are slightly different, with more flux in giants

coming from the red end, and more flux in the dwarfs coming from the blue end of the

spectrum. The bottom panels show a closer look at three absorption features, which

which are sensitive to surface gravity (bottom left: Mg b/MgH and Na I D, bottom

right: Ca II triplet). The Mg b and MgH feature around 5100 Å is absent in metal

poor giants, weaker in Population I giants as compared to dwarfs, and prominent

in dwarfs (Helmi et al. 2003). The M giant does not include a metallicity estimate,
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Fig. 2.5: Surface gravity comparison between dwarf and giant templates of the
same metallicity ([Fe/H] = -1.0 for the G5 and K3, [Fe/H] = -0.5 for the M0 dwarf,
unknown metallicity for M0 giant). The red line shows the giant template, and the
blue line shows the dwarf template. Panel (a) shows the entire spectrum, while
panel (b) shows the expanded region around the Na I D lines (5900Å) and Mg
b/MgH feature (5200Å), and panel (c) shows the zoomed in region around the Ca
II triplet. All of these lines are known to be sensitive to surface gravity, which is
confirmed in my templates.
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Table 2.1. The Template Spectra

File Name Number of Co-Added Spectra CaK NaD1 Halpha TiO8440

O5 10 1.015 1.013 0.892 0.912
B6 5 0.986 1.019 0.834 1.029

A6_-0.5_Dwarf 3 0.953 1.003 0.788 0.979
F6_+0.0_Dwarf 29 0.648 0.965 0.881 0.985
G6_-1.5_Giant 13 0.587 0.975 0.922 0.987
K5_-0.5_Dwarf 11 0.588 0.781 0.954 0.991
M4_+0.5_Dwarf 7 1.010 0.672 1.053 0.902

L1 34 0.613 1.391 1.043 0.683

1spectral indices for any doublets (e.g., Na I D) are for the blended feature and therefore include
both lines

but because the Mg/MgH feature is absent, I assumed it is a sub-solar metallicity

giant. The Na I D lines are also often used as an age indicator since the feature is

extremely strong in dwarfs and nearly non-existent in giants (Schlieder et al. 2012).

Alkali atoms in general are all extremely sensitive to density because the sole valence

electron can easily be perturbed by small changes in pressure (Schlieder et al. 2012),

making sodium transitions good surface gravity (and age) indicators. Lastly, the

equivalent width of the calcium triplet around 8600 Å is known to be larger in giants

than in dwarfs (Jones et al. 1984), which my spectra show in the bottom left panel.

In the sample, I found low-metallicity K giants, but no high-metallicity K giants

or late-type M giants (of any metallicity). Stellar evolution models show that low-

and high-metallicity giants occupy two different temperature regimes. Stars with

lower metallicity become hotter giants since they cannot cool as efficiently, while

higher metallicity giants can cool more quickly and therefore occupy the late-type

M giant regime (Girardi et al. 2004; Bressan et al. 2012). With the stellar evolution
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models in mind, the lack of late-type giants is expected in the SDSS data; there is a

strong bias in the metallicity of the giants that can be observed with SDSS. Because

of the sight lines observed in the SDSS footprint, the most distant stars (i.e., giants)

are located at high Galactic latitudes. The stars located at large distances above the

Galactic plane are on average between 0.5 and 1.0 dex more metal poor than their

closer counterparts (West et al. 2011). Therefore, in SDSS I did not expect to see

many (high metallicity) M-type giants, which is validated by Covey et al. (2008) who

found that less than 2% of stars redder than a spectral type of K5 in a magnitude

limited SDSS field were giants.

Along with the spectra, I report average photometric colors for each template.

Table 2.2 shows a sample of my templates with the photometry information. The full

table, which includes each template with all of the color information and associated

uncertainties, is available to download in ascii format in the online journal. The colors

are averaged over each individual spectrum co-added in a template, after those with

bad photometry are removed (i.e., flagged for being deblended, containing a cosmic

ray, or saturated). The RMS is the standard deviation of all of the colors for the

individual spectra, and the σ is the propagated uncertainty in photometry provided

by SDSS. On average, the low metallicity templates have bluer colors than the high

metallicity templates. A comparison with Covey et al. (2007a) indicates that the

colors are comparable.

From Figure 2.6 it is clear that low-metallicity stars are bluer on average. The

overall trends (ignoring metallicity) are almost identical to those shown in Covey

et al. (2007a), however when metallicity information is added, the spread in the

main sequence is almost entirely due to metallicity. The top two plots in Figure

2.6 show an especially significant distinction between the low and high-metallicity

stars, which demonstrates that the u-g color is extremely useful for differentiating
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Fig. 2.6: Color-color diagrams for the photometry of all of the main sequence tem-
plates. Each template is colored by its metallicity, except for the O5-A2 and L star
templates, which are not separated by metallicity bins, and are colored black. A com-
parison with Covey et al. (2007a) shows similar results. There is a clear trend with
metallicity, especially in the top two plots, where lower metallicity templates show
bluer colors on average compared to the high-metallicity templates of the same spec-
tral type. Only the three color space combinations that display the most separation
among metallicity bins are plotted here.
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Fig. 2.7: Color-color diagrams showing the main sequence (dwarf; blue) versus
giant (red) luminosity classes. To compare the two accurately I only show a single
metallicity bin in each plot (top two: [Fe/H] = 0.0, bottom: [Fe/H] = -1.0). Some of
the giants (A type and M type) are not separated by metallicity and are shown in all
figures. The giants show significant deviation from the dwarfs at spectral types later
than mid-K for all metallicity bins available. In the bottom plot, the F stars show
a similar trend in the u-g vs i-z color-space, and are noticeably separated from the
dwarfs. There is no clear separation in color-space for the G or A giants, and they
are indistinguishable from the dwarfs in all of my plots.
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metallicities. This trend is valid from F dwarfs through mid-type M dwarfs (∼M4).

The A stars seem to follow to the same trend, however the photometry is not as

spread out in that region of color-space, making it extremely difficult to distinguish

metallicities accurately. Beyond the mid-type M dwarfs, the light emitted in the u-

band is too faint to report an accurate u-band measurement. Other studies of stars

in the SDSS (e.g., Ivezić et al. 2008) have observed color trends with metallicity

in the past, however metallicity information for low-mass stars was not available for

those studies.

Figure 2.7 shows three color-color diagrams demonstrating the color difference

between luminosity classes. In general, all of the plots show that giants emit more

light in redder wavelengths than dwarfs. To ensure this trend is not an effect of

extinction, I compared the average extinction of each template in each band (provided

by the SDSS database). I found the difference in average extinction between the dwarf

and giant templates to be smaller than the propagated errors in extinction provided

by SDSS, leading me to conclude that any significant change in color is not an effect

of extinction and is, therefore, a real physical effect. For the higher temperature stars

(F/G), the trend only exists for bins of low metallicity because there are not many

templates for high-metallicity giants at high temperatures, and for low-temperature

stars (K/M) the trend exists only for high metallicities because there are not many

low-temperature, low-metallicity dwarf templates. However, with a complete set of

data, I expect this trend to persist for all metallicity bins. The greatest separation

between dwarf and giant stars occurs in the lowest temperature stars (K/M). K and

M stars contain many large molecular features and absorption lines, so this prominent

color difference can be attributed to the surface gravity affecting the strength of many

of these lines. The higher temperature stars do not show any separation in most cases

(A-type, G/K-type), and a slight separation around i− z = 0.1 (F-type stars).
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2.4 PyHammer: A Tool for Spectral Parameter Extraction

In this section, I discuss the automatic and visual spectral typing code, dubbed

“PyHammer" in detail. PyHammer is based on the “Hammer" by Covey et al.

(2007a). The code automatically outputs best estimates for the radial velocity, spec-

tral type, and metallicity (when metallicity information is available: A3 - M8). Here,

I also present the methods for determining these estimates, tests to determine the

accuracy/precision of these methods, and the resulting accuracy for each parame-

ter that is determined. The is also a visual, or “by-eye", spectral typing feature of

PyHammer allows the user to visually compare the input spectrum to any of the

template spectra in a GUI window. The PyHammer code is available for the public

on GitHub5.

The general procedure of the code is to first interpolate the input spectrum

onto the same wavelength grid as my templates and convert to vacuum wavelengths

(if necessary) to allow for direct comparison. Then, I measure spectral indices and

color regions and I make an initial estimate of the spectral type using these indices.

With my initial spectral type estimate, I can determine the radial velocity by cross

correlating the spectrum with the corresponding template. I then shift the input

spectrum to its rest frame, and re-measure the 34 spectral indices to determine a

more accurate estimate of the spectral type and metallicity.

The radial velocity cross correlation method is based on an IDL procedure xcorl

(Mohanty & Basri 2003; West & Basri 2009), which was translated into python by

Theissen & West (2014). The cross correlation method examines three regions of the

spectrum (5000-6000 Å, 6000-7000 Å, and 7000-8000 Å), and performs a cross cor-

relation for each region. The shift that produces a minimum in the cross-correlation

5github.com/BU-hammerTeam/PyHammer
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Table 2.2. Photometry of Templates

Sp Type [Fe/H] u-g RMSu−g σu−g g-r RMSg−r σg−r r-i RMSr−i σr−i i-z RMSi−z σi−z

O5V - -0.24 0.14 0.02 -0.51 0.02 0.02 -0.36 0.02 0.02 -0.31 0.02 0.02
O7V - -0.31 0.05 0.01 -0.47 0.01 0.01 -0.32 0.01 0.01 -0.34 0.02 0.02
A3V +1.0 1.2 0.04 0.02 -0.02 0.05 0.02 -0.08 0.01 0.02 -0.05 0.04 0.03
A3V 0.0 1.17 0.01 0.01 -0.07 0.03 0.01 -0.12 0.02 0.01 -0.07 0.02 0.01
A3V -0.5 1.12 0.04 0.02 -0.09 0.02 0.01 -0.1 0.02 0.01 -0.09 0.02 0.02
G2V 0.0 1.23 0.04 0.01 0.44 0.02 0.01 0.15 0.01 0.01 0.07 0.01 0.01
G2V -0.5 1.19 0.03 0.01 0.43 0.01 0.01 0.16 0.0 0.01 0.06 0.01 0.01
G2V -1.0 0.97 0.01 0.01 0.41 0.02 0.01 0.14 0.01 0.01 0.05 0.01 0.01
G2V -2.0 0.95 0.04 0.01 0.41 0.02 0.01 0.18 0.02 0.01 0.08 0.01 0.01
M0V 1.0 2.84 0.05 0.04 1.29 0.05 0.01 0.57 0.03 0.01 0.3 0.02 0.01
M0V 0.5 2.59 0.03 0.01 1.28 0.01 0.0 0.58 0.01 0.0 0.35 0.01 0.0
M0V 0.0 2.46 0.03 0.01 1.26 0.01 0.0 0.56 0.01 0.0 0.33 0.01 0.0
M6V 0.5 2.61 0.02 0.02 1.5 0.0 0.0 1.74 0.0 0.0 0.96 0.0 0.0
M6V 0.0 2.07 0.0 0.03 1.48 0.01 0.0 1.65 0.01 0.0 0.94 0.0 0.0
M6V -0.5 2.3 0.05 0.02 1.48 0.01 0.0 1.62 0.01 0.0 0.88 0.01 0.0
F0III -0.5 1.25 0.01 0.02 0.27 0.0 0.01 0.07 0.02 0.01 0.05 0.0 0.02
F0III -1.0 1.21 0.03 0.01 0.2 0.03 0.01 0.05 0.02 0.01 0.01 0.01 0.01
F0III -1.5 1.16 0.05 0.01 0.18 0.03 0.01 0.04 0.02 0.01 0.02 0.01 0.01
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function is recorded and a sigma-clipped median of the measurements from all the

regions is reported as the radial velocity.

To test the radial velocity code, I compared the measured radial velocities to

previously measured radial velocities across the full spectral range. To validate the

radial velocities for the low-temperature stars, I compared the radial velocities of the

West et al. (2011) sample of M dwarfs, derived by cross correlation with Bochanski

et al. (2007) M dwarf templates, to my measured radial velocities. The M dwarf radial

velocities reported in the sample (BOORV field) are accurate to ∼10 km s−1. For

the higher temperature stars, I compared my radial velocities to the radial velocities

derived from the SDSS pipeline, which are accurate to 10 –15 km s−1, making this

comparison the least accurate. The results are shown in Figure 2.8.

To assign an initial estimate of the spectral type and metallicity, I compared the

input spectrum to the template spectra in the following manner. I first measured 34

spectral indices (Table 2.3) from each individual spectrum that was used to create

the templates. For all spectra of a given spectral type and metallicity (i.e., each

template), I measured the weighted mean and variance of each index for all of the

co-added spectra, where the weight is the variance in the index value due to uncer-

tainties in the observed spectrum. I repeated this process for all spectral types and

metallicities. To reduce computation time, the results of this procedure were saved

to an external file and not repeated each time the code was run.

I compared the input spectrum to each template by computing a chi-squared

value that compares the spectral indices measured from the input spectrum to the

weighted mean indices described above. The variance used in the chi-squared calcu-

lation is the variance among indices of multiple stars of the same template type as

described above. I reported the spectral type and metallicity of the template that

produces the minimum chi-squared as the initial estimate. I chose to use indices



48

−100 −50 0 50 100

RV Difference: SSPP - XCORL (km/s)

0.00

0.05

0.10

0.15

0.20

0.25

Fr
a
ct

io
n

(a)

G Dwarfs

−100 −50 0 50 100

RV Difference: DR7 - XCORL (km/s)

0.00

0.05

0.10

0.15

0.20

0.25

Fr
a
ct

io
n

(b)

M Dwarfs

−100 −50 0 50 100

RV Difference: SDSS - XCORL (km/s)

0.00

0.05

0.10

0.15

0.20

0.25

Fr
a
ct

io
n

(c)

O and B stars

Fig. 2.8: Comparison between my measured radial velocities and (a) the radial
velocities determined by the SSPP for the G dwarfs, (b) by cross correlation with
Bochanski et al. (2007) templates using West et al. (2011) DR7 sample for the M
dwarfs, and (c) the SDSS pipeline for the O and B stars. The radial velocities for
the G stars have a median difference of -1 km s−1 and “1-sigma" (68%) of the data
falls between -10.0 and 7.9 km s−1. The M dwarfs have a median difference of 2
km s−1 and 68% of the data fall between -7.1 and 10.8 km s−1. The O/B stars are
significantly more spread out, and have a median difference of -1.6 km s−1, with
upper and lower limits of “1-sigma" at -22.7 and 10.7 km s−1. My radial velocity
measurements are therefore comparable in uncertainty to the previous methods for
calculating radial velocities.
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instead of doing a chi-squared minimization of the entire spectrum because spectral

indices are normalization independent, robust against missing data, and take less

computational time.

I tested the automatic spectral typing by running the code on the individual

spectra that were used in constructing the templates and compared the estimated

metallicity and spectral type to the actual metallicity and spectral type I determined.

The results are shown in Figure 2.9. Both comparisons show good agreement, with

over 50% of the estimates exactly the same as the determined spectral types and

metallicities. The spread in both comparisons is also extremely small, with the

standard deviation being 1.5 spectral subtypes in the spectral-type comparison, and

0.4 dex in the metallicity comparison. I conclude that even without the additional

visual inspection, the automatic spectral typing and metallicity estimates are within

one metallicity bin and one spectral subtype over 80% of the time.

Detailed instructions on running PyHammer as well as more advanced features

of the code are provided in the README file in GitHub, and in the ‘Help’ menu

(available when the visual classification GUIs are displayed). Here, I will give a

brief overview of how to run the code and a description of some of the features

available. After starting the code (type “python pyhammer.py" on the command

line), an initial GUI window will appear, allowing the user to enter the name of (or

create) the input and output files, specify a path to the spectra files, skip straight

to the by-eye spectral typing (as opposed to doing the automatic spectral typing

first), and apply a signal-to-noise cut-off. Skipping directly to the eye check stage

should only be done if the automatic spectral typing has already been completed at

an earlier time. If the user does not skip the automatic spectral typing, the program

determines the radial velocity, metallicity and spectral type and writes these to the

output file (PyHammerResults.csv by default). If the user supplies a signal-to-noise
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Table 2.3. Spectral Indices Used by PyHammer

Spectral Index Numerator (Å) Denominator (Å)

Ca II K 3923.7 - 3943.7 3943.7 - 3953.7
Hδ 4086.7 - 4116.7 4136.7 - 4176.7

Ca I 4227 4216.7 - 4236.7 4236.7 - 4256.7
G-band 4285.0 - 4315.0 4260.0 - 4285.0
Hγ 4332.5 - 4347.5 4355.0 - 4370.0

Fe I 4383 4378.6 - 4388.6 4355.0 - 4370.0
Fe I 4404 4399.8 - 4409.8 4414.8 - 4424.8

Hβ 4847.0 - 4877.0 4817.0 - 4847.0
Mg I 5152.7 - 5192.7 5100.0 - 5150.0
Na D 5880.0 - 5905.0 5910.0 - 5935.0

Ca I 6162 6150.0 - 6175.0 6120.0 - 6145.0
Hα 6548.0 - 6578.0 6583.0 - 6613.0

CaH2 6814.0 - 6845.0 7042.0, 7046.0
CaH3 6960.0 - 6990.0 7042.0 - 7046.0
TiO5 7126.0 - 7135.0 7042.0 - 7046.0

VO 7434 7430.0 - 7470.0 7550.0 - 7570.0
VO 7445 7350.0 - 7400.0, 0.56251; 7510.0 - 7560.0, 0.4375 7420.0 - 7470.0
VO-B 7860.0 - 7880.0, 0.5; 8080.0 - 8100.0, 0.5 7960.0 - 8000.0

VO 7912 7900.0 - 7980.0 8100.0 - 8150.0
Rb-B 7922.6 - 7932.6, 0.5; 7962.6 - 7972.6, 0.5 7942.6 - 7952.6
Na I 8177.0 - 8201.0 8151.0 - 8175.0
TiO8 8400.0 - 8415.0 8455.0 - 8470.0

TiO 8440 8440.0 - 8470.0 8400.0 - 8420.0
Cs-A 8496.1 - 8506.1, 0.5; 8536.1 - 8546.1, 0.5 8516.1 - 8526.1

Ca II 8498 8483.0 - 8513.0 8513.0 - 8543.0
CrH-A 8580.0 - 8600.0 8621.0 - 8641.0

Ca II 8662 8650.0 - 8675.0 8625.0 - 8650.0
Fe I 8689 8684.0 - 8694.0 8664.0 - 8674.0

FeH 9880.0 - 10000.0 9820.0 - 9860.0
Color Region 1 4550-4650 4160-4210
Color Region 2 5700-5800 4160-4210
Color Region 3 7480-7580 4160-4210
Color Region 4 9100-9200 4160-4210
Color Region 5 10100-10200 4160-4210

1Indices with more than one numerator entry contain two numerator regions and a
weight for each region, e.g. lower limit of region 1 – upper limit region 1, weight of region
1; lower limit of region 2 – upper limit of region 2, weight of region 2
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Fig. 2.9: Comparison between the hammer automatically estimated spectral types
(left) and metallicities (right) and the actual spectral types and metallicities I de-
termined for the individual BOSS spectra that were used to make the templates.
The spectral type estimate returns the correct value more than 50% of the time,
and the metallicity estimate returns the correct value upwards of 60% of the time.
The spread in the spectral type is extremely small, with a standard deviation of 1.5.
The standard deviation in the metallicity is 0.4 dex, which is smaller than one of my
metallicity bins.

cut-off, any spectrum with a median signal to noise ratio (calculated simply as the

median flux divided by the median uncertainty over the entire spectrum) lower than

the specified value is written to RejectSpectra.csv. There is an example input file

(exampleInputFile.txt) and a few spectra in the test_case folder to demonstrate how

the input file should be set up, and to aid the first time user.

A screenshot of the GUI for the visual spectral typing is shown in Figure 2.10.

The GUI allows the user to display the spectra and the templates on the same plot,

allowing for direct comparisons. All of the normal matplotlib graphing buttons are

functional, and shown in the top left corner of the GUI in Figure 2.10. By pushing

the magnifying glass button, the user can zoom in on specific regions of the spectrum.

While zoomed in the user can use the four sided arrow to scroll. Finally, by pressing

the home button, the graph will be taken to the original view. In the ‘Options’
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menu at the top of the screen there are four different viewing options for the graph.

The user can choose to display or not display the template RMS (in transparent

blue). The user can also smooth the spectrum, and lock the smoothing since by

default every new spectrum loaded will be unsmoothed. The smoothing option runs

a simple boxcar smoothing over the input spectrum, which reduces noise and allows

for easier comparisons for low signal to noise spectra. Finally, if the spectra are from

the SDSS, the user can choose to remove the known false spike in the spectra at 5580

Å, created by the stitching together of the red and blue ends of the spectra.

Along with simply clicking through different templates on the bottom part of the

GUI shown in Figure 2.10, there are many options designed to make visual spectral

typing easier. The ‘Earlier’ and ‘Later’ buttons change the spectral subtype by one

each time, where ‘Earlier’ scrolls to lower numbered subtypes (e.g., M4 to M3 or M0

to K7), and the ‘Later’ to higher numbered subtypes. While the ‘Lower’ and ‘Higher’

buttons change the metallicity by one bin (0.5 dex) with each click. There are also

buttons with other options, which have been adopted from the original Hammer code.

The ‘Odd’ button allows the user to input their own note into the space where the

spectral type would normally be stored. I set a few standard ‘odd’ spectral types like

white dwarf (Wd), white dwarf+M dwarf binary (Wdm), carbon star, galaxy (Gal)

and unknown, but the user may also type anything he or she would like into this

space. Finally, the user can proceed to the next spectrum from their input list or

return to a previous spectrum using the ‘Back’, ‘Next’ buttons. Each of these buttons

also has a keyboard shortcut so the entire visual spectral typing can be done with

only a keyboard (to speed up the process). For more information on the keyboard

shortcuts go to the ‘Help’ menu and click on the ‘Keys’ tab in the PyHammer Help

window.
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Fig. 2.10: Screenshot showing the two GUIs used for the by-eye spectral typing. The
top GUI screen allows the user to display templates of different spectral type and
metallicity. The bottom GUI screen initially displays the best guess template (in
black), along with the standard deviation from all the co-added individual spectra
at each wavelength (in semi-transparent blue). The spectrum from the user’s input
list is displayed in red.
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2.5 Summary

I have compiled a new empirical stellar template library using data taken with

the SDSS BOSS spectrograph,. My template library:

• Covers spectral types O5 through L3

• Includes dwarf and giant separation for spectral types A0 through M8

• Contains metallicity [Fe/H] bins for spectral types A3 through M8

• Reports averaged photometric colors (in SDSS bands) for all the co-added stars

in each template, along with a propagated errors and standard deviations

Along with the templates, I have released the PyHammer code for assigning a

spectral type and metallicity automatically (or by visual inspection). This code is

based on the “Hammer" spectral typing facility, written by Covey et al. (2007a), but

includes metallicity information and is written in Python. The automatic spectral

typing portion of code returns the exact spectral type I determined using the original

“Hammer" code and the metallicity I determined using the methods described in

Section 2.2.3 over 50% of the time. The spread in the spectral type was 1.5 spectral

sub-types, and a spread in the metallicity was 0.4 dex. Visual spectral typing allows

for direct comparison between input spectra and my empirical templates in an easy

to use GUI. The code is available on GitHub4.

The library of empirical stellar spectra will be important for a wide range of

research topics from extragalactic to galactic astronomy, planetary system stellar

characterization, and even as an astronomical teaching tool. With large photometric

surveys such as LSST, machine learning techniques will become increasingly impor-

tant for characterizing large amounts of data quickly and efficiently. Along with

4github.com/BU-hammerTeam/PyHammer
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releasing the templates, I provided lists of the individual BOSS spectra co-added to

construct each template. This combination of information will be an ideal training

set for machine learning, and can extend the work of Miller (2015) on F, G, and

K stars to both higher and lower mass stars. This catalog represents the first em-

pirical template library with metallicity and surface gravity separation for low-mass

(M-type) stars. The catalog and the “PyHammer" spectral typing facility will be a

useful tool for the community as a whole.
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Chapter 3

The Effects of Metallicity on M dwarf Radii

A similar version of this Chapter was published in the Astronomical Journal as

Kesseli et al. (2019).

3.1 Introduction

M subdwarfs are low-metallicity M dwarf stars and are identified by their po-

sition to the left of the main sequence on a color magnitude diagram (Sandage &

Eggen 1959). Their metal-poor compositions are a characteristic of their old age,

and therefore M subdwarfs make up a significant portion of the stellar populations

of the Galaxy in the halo and bulge (e.g., Gizis 1997; Lépine et al. 2003; Burgasser

et al. 2003). As discussed in Chapter 1.6.1, the low metallicity of the subdwarfs is

theorized to alter their sizes, and metal-poor stars are expected to have smaller radii

than solar-metallicty stars.

Previous studies have discovered and classified many M subdwarfs, but less has

been done to determine their physical parameters (e.g., radii and effective tempera-

tures). Gizis (1997) first introduced a classification scheme for M subdwarfs based on

the molecular line strength ratios between the optical CaH (∼6830 and 6975 Å) and

TiO5 (∼7130 Å) bands and separated M subdwarfs into three categories: the solar

metallicity dwarfs (dM), the metal-poor subdwarfs (sdM), and the very metal-poor

extreme subdwarfs (esdM). Lépine et al. (2007) increased the sample of known metal



57

poor M dwarfs to over 400 objects and expanded the classification to include a new

even more metal-poor class, ultra subdwarfs (usdM).

Since then, Jao et al. (2008) devised a separate classification scheme for subd-

warfs, based on physical parameters (effective temperature, metallicity and surface

gravity), by comparing spectra to stellar atmosphere models. Exact values of these

physical parameters could not be determined until recently because previous model

atmospheres were unable to reproduce many of the molecular features present in the

atmospheres of cool stars. However, Rajpurohit et al. (2014, 2016) found that the

recently updated PHOENIX stellar atmosphere models (Allard et al. 2012) success-

fully reproduced many of the features in low metallicity stars and were therefore able

to make estimates of the metallicity, surface gravity and temperature of a limited

sample of M subdwarfs.

In this Chapter I present stellar radii for a greatly expanded sample of M sub-

dwarf stars. In Section 3.2 I describe how I chose the sample, and I describe my

Palomar DBSP observations and data reduction procedure. The radii are calculated

by combining Teff and Lbol using the Stefan-Boltzmann equation. I detail my method

for determining the metallicity in Section 3.3, the effective temperature in Section

3.4, and the bolometric luminosity in Section 3.5. Finally, in Section 3.6 I present

color and effective temperature relations that can be used to determine the radii of

other M subdwarf stars.

3.2 The Sample

I constructed a grid of bright, nearby subdwarf spectra covering large ranges

in spectral type and metallicity, allowing me to fully characterize a broad subset

of these objects. Knowledge obtained from this nearby subset can then be used to

deduce radii for more distant examples using photometric information alone.
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The sample of subdwarfs spans the spectral classes of ∼K7 through ∼M7. I use

the Lépine et al. (2007) subdwarf subclasses – subdwarfs (sd), extreme subdwarfs

(esd), and ultra subdwarfs (usd) to roughly separate objects in the metallicity ranges

log([Fe/H]) ≈ −0.5, −1.0, and −1.5, respectively. Many known late-K through late-

M subdwarfs were classified before the Lepine et al. system was established, so some

were typed against the earlier Gizis (1997) two-subclass system. Others pre-date

both of these papers and are classified using a mixture of systems.

Rather than rely on published types, I combed the literature for objects classified

as subdwarfs. I identified ∼250 in all, most of which are relatively bright, nearby

sources found by various proper motion surveys. I then tabulated their optical,

2MASS, and WISE magnitudes. Using the J − Ks vs. J−W2 diagram, I plotted

these objects together with known dwarfs of solar metallicity, the subdwarf standards

of Lépine et al. (2007), and the theoretical subdwarf tracks (see Figure 1 from Zhang

et al. 2017) to pseudo-categorize each as d, sd, esd or usd. This color-color diagram is

shown in the top panel of Figure 3.1. After removing those that appeared to be solar-

metallicity dwarfs and those too far south to be observed with the 200 inch telescope

at Palomar, I was able to sort the distribution of candidates by R magnitude and

J−W2 color, the latter being a proxy for temperature or spectral type. Using this

list, I created a target list having three objects in each integral spectral type bin.

Three objects per bin were required to mitigate the effects of unresolved binarity on

the Lbol determination and to have a crude assessment of the cosmic scatter per bin.

One object in each bin was chosen to be the Lépine et al. (2007) standard itself, and

the other two were generally chosen to be the brightest (and therefore most easily

observable) at R band. This final observing list is shown in Table 3.1 as well as in

Figure 3.1.
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Fig. 3.1: Top: J −Ks versus J−W2 diagram, used to separate the compiled ∼250
selected subdwarfs into the metallicity classes of d, sd, esd, and usd. The targets
ultimately selected are colored circles, the Lépine et al. (2007) subdwarf standards are
shown as colored stars, and the full original sample is shown as translucent squares.
Note that one of the Lepine usd standards has dwarf-like colors; this star is LHS
1691 and I believe that its 2MASS J-band color is not correct. This star is also an
outlier in later figures, such as Figure 3.9. Middle: R magnitude versus J−W2
color diagram. Bottom: R-band magnitude versus spectral type diagram. A target
without a known spectral type is shows as a ‘?’ on this plot. This plot illustrates
how I tried to target two bright sds, esds, and usds for each spectral type estimate.
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Prior to my spectroscopic observations, I created finder charts at the 2017.8

epoch of each source, using the source’s 2MASS position and its published proper

motion. Any source confused with a bright background source at my epoch was

replaced with the next brightest star in the spectral bin. One of the subdwarf stan-

dards, LSR J1918+1728 (esdM3), is contaminated at my epoch of observation and

was therefore skipped.

In order to facilitate spectral classification comparisons and to provide checks

of radius measurements for stars similar to those in Mann et al. (2013b), I observed

two to three solar metallicity dwarfs in each spectral subtype bin, as well. These are

also listed in Table 3.1.

Data were taken during six separate nights between August of 2017 and January

of 2018, using DBSP on the 200-inch Hale Telescope at Palomar Observatory. DBSP

is a moderate resolution optical spectrograph that uses a dichroic to split light into

separate red and blue channels that are observed simultaneously (Oke & Gunn 1982).

The observer can choose from four different dichroics and can choose the grating

angle to set the wavelength coverage and spectral resolution. For all of the nights I

chose the dichroic that split the light at a wavelength of 6800Å. For the blue side I

used a 600/4000 grating and for the red side a 600/10000 grating. I chose grating

angles of ∼ 29◦ and ∼ 32◦, leading to a wavelength coverage of ∼ 3900− 6950Å and

∼ 6610− 9970Å and a mean resolving power of ∼2,000 and ∼3,000 for the blue and

red sides, respectively.

I performed all of the data reduction using the python command line tool for

IRAF (PyRAF). Bias subtraction, flat fielding, spectral extraction, cosmic ray re-

moval, wavelength calibration and flux calibration were performed on the red and

blue images separately. Wavelength calibration frames using a Fe-Ar lamp for the
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blue side and a He-Ne-Ar lamp for the red side were taken at the beginning of each

night.

The red and blue wavelength scales were separately shifted to rest by cross

correlation with a model stellar spectrum of spectral type M1 for the hotter stars

and M5 for the cooler stars. I next stitched the spectra together by normalizing

the spectra to each other at the stitch point. The stitch point was chosen by visual

inspection of each spectrum to be a point with relatively low noise and free of any

large absorption features, and with a wavelength between 6650− 6775Å.

For a small subset of my targets, I also obtained high resolution near-infrared

spectra from iSHELL (Rayner et al. 2012) on NASA’s 3.0-meter Infrared Telescope

Facility (IRTF) on Mauna Kea, Hawaii. I used the wider slit width, giving a spectral

resolution of about R∼35,000 for my chosen wavelength region (2.09− 2.38µm). In

total I collected spectra of three dwarfs, four subdwarfs, one extreme subdwarf and

one ultra subdwarf, to test my metallicity estimate techniques (see Section 3.3 for

details). I completed the data reduction of the iSHELL spectra using the Spextool for

iSHELL package1. Spextool (Cushing et al. 2004) has been updated in the newest

release to be compatible with iSHELL data, and performs dark subtraction, flat

fielding, order tracing and extraction, linearity correction and returns a wavelength

solution calibrated using ThAr lamps. I removed telluric absorption features using

the xtellcor (Vacca et al. 2003) function, which is also part of the larger Spextool

reduction package.

3.3 The Metallicity of Subdwarfs

As discussed in Sections 1.6.1 and 2.2.3, precise metallicities of M dwarfs are

difficult to determine. In Section 2.4 I discussed a tool I created to estimate metallic-

1http://irtfweb.ifa.hawaii.edu/research/dr_resources/

http://irtfweb.ifa.hawaii.edu/research/dr_resources/
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Table 3.1. Spectra-type grid of subdwarf targets

Sp. Type Dwarfs Subdwarfs Extreme Ultra
Range Subdwarfs Subdwarfs
(1) (2) (3) (4) (5)

K7-8 Gl 143.1 LHS 1703* LHS 3276* LHS 1454*
— LHS 170 LHS 104 LSR J0621+3652
— LHS 173 LHS 522 LSR J2115+3804

M0-0.5 Gl 270* LHS 12* LHS 360* LHS 2843*
— LHS 42 LHS 489 LHS 182
— LHS 174 LHS 2355 LSR J1956+4428

M1-1.5 Gl 229A* LHS 2163* LHS 1994* LHS 1863*
Gl 908 LHS 482 LHS 364 LHS 518
— LHS 178 LHS 318 LSR J2205+5353

M2-2.5 Gl 411* LHS 228* LHS 2326* LHS 1691*
Gl 393 LHS 2852 LHS 3555 LSR J0020+5526
— LHS 20 LHS 161 WISE J0707+1705

M3-3.5 Gl 436* LSR J0705+0506* [LSR J1918+1728*] [LHS 325*]
Gl 109 LHS 272 LHS 1174 LSR J0522+3814
Gl 388 LHS 156 LHS 3263 LHS 3382

M4-4.5 Gl 402* LHS 2674*/LHS 504* LSR J1340+1902* LHS 1032*
Gl 447 NLTT 3247 LHS 375 LHS 4028
LHS 3255 LHS 3409 LHS 3090 LHS 453

M5-5.5 Gl 51* LHS 2061* LHS 2405* LHS 2500*
[LP 467-16] LHS 3189 LHS 515 LSR J2122+3656
— LHS 3390 LHS 2096 LHS 205a

M6-6.5 Gl 406* [LHS 2746*] LHS 2023* LSR J0621+1219*
Teegarden LHS 1166 2MASS J0822+1700 LHS 1625
— LHS 1074 LHS 1742a LHS 1826

M7-7.5 — LHS 377 — —

Note. — An asterisk indicates a spectral standard. The three spectral standards in braces
were not, however, observed: LSR J1918+1728 because it was confused at the observation epoch
with a background star, LHS 2746 because it was too faint for the observing conditions, and
LHS 325 because of a typographical error in the observing list. LP 467-16 was observed but was
later determined to be a binary and I therefore do not list parameters for it. A few of the object
names are abbreviated in the table: “Teegarden” is Teegarden’s Star; “2MASS J0822+1700” is
2MASS J08223369+1700199, and “WISE J0707+1705” is WISEA J070720.50+170532.7.
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ities of M dwarfs and in Section 1.6.1 I mentioned other novel techniques to do this.

Unfortunately, these methods are focused on solar-metallicity or near-solar metal-

licity stars and are not calibrated for the low metallicities present in this sample.

Therefore, here I used two different methods: one to determine the metallicity of

the dwarf and dwarf/subdwarf stars ([Fe/H] > −0.5 dex), and another to determine

the metallicities of the more metal-poor subdwarfs, as well as the extreme and ultra

subdwarfs.

For the near solar metallicity stars the majority of the previously-mentioned

methods (see Section 1.6.1) use spectral features in the near-infrared, while here my

spectra are optical. Mann et al. (2013a) published [Fe/H] relations that utilized

optical spectra; however, their relations are highly dependent on the Na doublet at

8200Å, which is contaminated by telluric features in my spectra and therefore it is

difficult to measure an equivalent width. Because of this, I used the near-infrared

color relation from Newton et al. (2014) to estimate [Fe/H] for all the dwarfs and

subdwarfs in the sample. Figure 3.2 shows how the photometric [Fe/H] compares to

spectroscopic estimates of [Fe/H] from Gaidos et al. (2014) and Mann et al. (2015)

for the 10 overlapping objects. I find a mean scatter of 0.15 dex and I adopt this as

the uncertainty in [Fe/H] for the dwarfs and subdwarfs.

Low-metallicity extreme and ultra subdwarfs are often categorized using a ζ

parameter, which relates the CaH2 (6814−6846 Å) and CaH3 (6960−6990 Å) band

ratios to the TiO5 (7126−7135 Å) band, since the CaH band is primarily sensitive

to temperature while the TiO5 band is sensitive to both temperature and metallicity

(Dhital et al. 2012). Using high resolution spectra of subdwarfs and extreme subd-

warfs, Woolf et al. (2009) determined a relationship between ζ and [Fe/H]. I used this

relation and measured a ζ value and hence [Fe/H] for each of the stars in the sample.

The relation was recalibrated by Mann et al. (2013c), but I find that the change in
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Fig. 3.2: Comparison between my values of [Fe/H] and previously measured literature
[Fe/H] values for the 10 overlapping objects. My values of [Fe/H] were determined
photometrically using the near-IR color to metallicity relation from Newton et al.
(2014). The literature values of [Fe/H] were determined spectroscopically by Gaidos
et al. (2014) and Mann et al. (2015), both using the method outlined in Mann
et al. (2013a). I find that the photometric metallicities show the same trend as the
spectroscopic metallicities and that there is no bias towards over or underestimating
the metallicities using photometric relations. The black solid line represents a one-
to-one fit, and shows where all the points would lie if my photometrically determined
[Fe/H] values matched the literature values exactly. I find a mean scatter around
this line of 0.15 dex, and I adopt this value as the uncertainty for all of my [Fe/H]
values determined using this method.

the derived value of [Fe/H] is significantly smaller than the quoted uncertainty of

the relation (0.3 dex), and so I report the original [Fe/H] values determined with the

Woolf et al. (2009) relation.

As an extra check, I used the high-resolution (R∼35,000) near infrared iSHELL

spectra of three dwarfs, four subdwarfs, one extreme subdwarf and one ultra subd-

warf, to test the metallicities determined with the above methods. Figure 3.3 shows

an example of the high resolution spectra and how the sodium doublet changes with
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metallicity. I calculated metallicities using the relation presented in Newton et al.

(2014) that uses the equivalent width of the sodium doublet at 2.2 µm to determine

the metallicity with an uncertainty of 0.12 dex. I find that these metallicities agreed

with the metallicities previously reported by Mann et al. (2015) for the three dwarf

stars, and that the metallicities I derive from the high resolution spectra are consis-

tent with the metallicities derived using the Woolf et al. (2009) relation. One of the

extreme subdwarfs (LHS 173) has a metallicity reported from the APOGEE Stellar

Parameters and Chemical Abundances Pipeline (ASPCAP) (Schmidt et al. 2016).

My derived metallicity from the ζ parameter and the metallicity from (ASPCAP)

are within 0.05 dex, which further validates my derived metallicites.

3.4 Determining Effective Temperatures

To calculate the effective temperature, I fit each spectrum to the BT-SETTL

model grid using a method similar to that of Mann et al. (2013b, 2015). The BT-

SETTL grid was created using the PHOENIX stellar atmosphere code (Allard et al.

2012). I chose to use the BT-SETTL grid that utilized the Caffau et al. (2011) solar

abundances (CIFIST grid2) since Mann et al. (2013b) found that this grid of abun-

dances gave the smallest errors in effective temperature when comparing model-fit

effective temperature values to precisely known effective temperatures determined

through long baseline optical interferometry in combination with the Stefan Boltz-

mann Law (see Section 1.4.2 and 1.4.3).

The model grid I used contained effective temperatures ranging from 2600 to

4500 K in 100 K bins, metallicities ranging from −2.5 to +0.5 dex in 0.5 dex bins,

and surface gravities (log g) of 4.5, 5.0, or 5.5 dex [cm s−2]. This was the smallest-

resolution grid publicly available for the CIFIST models.

2https://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011/

https://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011/
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Fig. 3.3: iSHELL K-band spectra of Gl 411, LHS 2163, and LHS 482. The spectra
have all been shifted to rest by cross correlation with model templates. The left
plot is centered on the sodium doublet (2.2 µm) and the right plot is centered on
the CO bandhead (2.3 µm). These plots show the effect of decreased metallicity on
these line strengths and how I can use the sodium doublet to estimate the stellar
metallicity. I also note that LHS 482 is rotationally broadened, which is intriguing
since low metallicity (−0.75 dex) is reminiscent of old age while rapid rotation is
reminiscent of youth (West et al. 2015). This is the only star in the iSHELL sample
which shows rotational broadening and I merely note it here as a potential future
target of interest.

To compare the models to an observed spectrum I convolved the models with a

Gaussian kernel. I used the full width at half maximum (FWHM) of the spectrum

and converted to the standard deviation (σ ' FWHM/2.355), which was then used

as the standard deviations of the Gaussian kernel. I then determined a goodness-of-

fit statistic (G) for each model k, given by the following equation from Cushing et al.

(2008):



67

4000 5000 6000 7000 8000 9000 10000
Wavelength (Å)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d 
Fl

ux
 +

 C
on

st

LHS 1625

Gl 393

Data
Best Fit Model

Fig. 3.4: Example of two of my spectra (black) and their respective best-fit model
spectra (red). The gray regions are the regions that have weights of zero. The four
regions red-ward of 6800 Å are excluded due to telluric features. The region between
∼6400−6600Å is a region where there is a known issue with a poorly modeled TiO
absorption band (Reylé et al. 2011). The region around 5000Å does not match the
majority of the spectra (regardless of effective temperature or metallicity), and the
scaling of the MgH band is particularly problematic. LHS 1625 has a spectral type
of usdM6, a best-fit effective temperature of 3400 K, a best-fit log(g) of 5.5, and a
[Fe/H] of −1.5. Gl 393 has a spectral type of dM2, a best-fit effective temperature
of 3500 K, a best-fit log(g) of 5.0, and a [Fe/H] of 0.0.

Gk =
n∑
i=1

(
wi(Fi − CkFi,k)

σi

)2

(3.1)

where n is the total number of data pixels, wi is a weight assigned to each data pixel,

Fi is the flux density of each data pixel, Fi,k is the flux density of each model k pixel,

σi is the uncertainty in each data pixel, and Ck is a normalization constant. For

absolute flux calibrated stars, Ck is equal to R2/D2; however, since R is unknown,

I followed Mann et al. (2013b) and set this constant so that the mean of F and Fk
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were the same. The model spectrum chosen as the best fit (and therefore the effective

temperature estimate) was the one which minimized the goodness-of-fit statistic (G).

The weights wi were set to either 0 or 1 so as to exclude regions in the spectra

that were contaminated by telluric features, or regions where models did not accu-

rately fit observed spectra of low-mass stars. These regions are shown with gray

boxes in Figure 3.4. More details on which regions were excluded and why are given

in the caption for Figure 3.4.

To test the accuracy of these effective temperature measurements I compared

them to the effective temperatures of stars in my sample that have previous litera-

ture values (Figure 3.5). The technique in Mann et al. (2015) has been calibrated

against effective temperatures derived using long baseline optical interferometry and

shows typical uncertainties of 60 K, but does not contain subdwarf stars. Effective

temperature estimates from Rajpurohit et al. (2014, 2016) measure the effective tem-

peratures by fitting mid-to-high resolution optical and near-IR spectra to the same

BT-Settl model grid as used here, but only measure effective temperatures for a

small subset of M subdwarf stars. My effective temperature estimates are consistent

with all three previous literature effective temperature methods and show a mean

fractional deviation of less than 1%. I find that 83% of the measurements fall within

1σ of the literature values and all of the measurements fall within 2σ of the literature

measurements, leading me to conclude that my estimates are accurate.

I also compared the effective temperatures to those reported by Gaia DR 2

(Andrae et al. 2018). Andrae et al. (2018) use an empirically trained machine learning

algorithm to determine a relation between Gaia G-, R-, and B-band photometry and

previously determined Teff measurements in the literature. I find that the effective

temperatures listed in Gaia DR2 are higher than my effective temperatures by 10%

on average, and that the discrepancy is larger for cooler stars (see Figure 3.6). This
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Fig. 3.5: Comparison between my temperatures and those measured by previous
studies. If my values and the literature values are exactly the same the fractional
difference on the bottom plot would be exactly 0.0 (black solid line). The fractional
difference is defined as the literature effective temperature minus my measured ef-
fective temperature divided by my effective temperature. I find a mean fractional
difference of 0.3% (dotted line). All of my effective temperatures deviate from pre-
vious literature values by 100 K or less except for one which deviates by 150 K. The
100 K mismatches seen between my values and those of Rajpurohit et al. (2014) are
probably due to the coarse grid size (100 K) of both studies.
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Fig. 3.6: Comparison between the temperatures reported here and those reported
in Gaia DR2 (Andrae et al. 2018). Gaia overestimates the temperatures by a mean
value of 10%, however the temperatures below ∼ 3200 K are overestimated by an
even greater amount (almost 20%).

discrepancy is not surprising because the stars in this sample are at the edge of

parameter space included in the machine learning training; the vast majority of the

stars had near solar metallicities (95% had [Fe/H] > −0.82 dex) and Teff above 4000

K. Because of this, I do not use Gaia DR2 temperatures for any of the remaining

analysis.
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3.5 Measuring the Bolometric Luminosity

I obtained broad-band photometry for all of the sources in the sample, spanning

the blue end of the optical region to mid-IR wavelengths. Optical photometry was ob-

tained from the Sloan Digital Sky Survey’s 12th data release (SDSS DR12; Alam et al.

2015), the Pan-STARRS1 survey (Chambers et al. 2016), and from Gaia’s Red and

Blue Photometers (Gaia Collaboration et al. 2016). All of the near-infrared (NIR)

photometry was obtained from the 2MASS All-Sky Point Source Catalog (2MASS

PSC; Skrutskie et al. 2006), with one source supplemented from the corresponding

Reject Table (this source is noted in Table 3.2). The Wide-Field Infrared Survey

Explorer (WISE; Wright et al. 2010) AllWISE Point Source Catalog served as the

source of mid-IR photometry. BothWISE and 2MASS photometry were downloaded

from IRSA3.

I imposed quality cuts to ensure that the photometry was accurate, and I exam-

ined each source by eye to ensure that there was no major background contamination.

I only used SDSS photometry that had been flagged as “clean", which selects the pri-

mary photometry for each source and rejects sources with any deblending problems,

interpolation issues or saturation. The main issue with much of the Pan-STARRS

photometry is the relatively high saturation limit, which is conservatively estimated

to be 14.5, 15, 15, 14, and 13 for the g, r, i, z, and y filters, respectively. Many

fields are quoted to have reliable photometry up to a magnitude brighter than this,

but to be conservative I chose to include only photometry brighter than these limits

by at most a half magnitude, and only when there was no other indication of poor

photometry (e.g., bad quality flags, or PSF did not include the entire source). For

both WISE and 2MASS data I did not include any photometry that was flagged as

contaminated, saturated, or had a quality flag indicating that the photometry had

3http://irsa.ipac.caltech.edu/frontpage/

http://irsa.ipac.caltech.edu/frontpage/
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a signal-to-noise ratio (SNR) less than five. I also visually inspected the WISE W3

andW4 bands, and did not include any photometry from these bands when the source

was not visually discernible from the background. Since there are no quality flags

for the Gaia DR2 data, I followed guidelines from Evans et al. (2018) and eliminated

any sources with a color excess exceeding 1.3 + 0.06(GBP - GRP)2, where GBP is the

Gaia blue-band magnitude and GRP is the Gaia red-band magnitude. This relation

removes any sources that have been affected by severe crowding, or calibration and

processing issues. The final compiled photometry for each target is listed in Table

3.2.

I converted magnitudes to flux densities using the equation

Fν = Fν0 × 10−m/2.5 (3.2)

where Fν is the flux density, m is the magnitude, and Fν0 is the zero magnitude

flux density. Gaia, 2MASS and WISE magnitudes are given in the Vega photomet-

ric system, and Fν0 is a constant that gives the same response as Vega for a given

frequency (ν). The zero magnitudes for 2MASS and WISE are given in the Ex-

planatory Supplements4,5, and for Gaia they were calculated using the Gaia B- and

R-band filters and a model of Vega by the SVO Filter Profile Services6. For WISE,

I used the zero magnitudes derived using a constant power-law spectrum, as recom-

mended in the documentation since the sources were not steeply rising in the mid-IR.

Pan-STARRS photometry is given in the AB magnitude system (Oke & Gunn 1983)

and thus has a constant zero magnitude flux for all bands. The SDSS magnitude

system was intended to be an AB system, but is known to require slight adjustments

(Fukugita et al. 1996), which are given in Holberg & Bergeron (2006). To convert

4https://www.ipac.caltech.edu/2mass/releases/allsky/doc/sec6_4a.html
5http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4_4h.html
6http://svo2.cab.inta-csic.es/svo/theory/fps/index.php?mode=browse

https://www.ipac.caltech.edu/2mass/releases/allsky/doc/sec6_4a.html
http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4_4h.html
http://svo2.cab.inta-csic.es/svo/theory/fps/index.php?mode=browse
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SDSS magnitudes to fluxes, I used the equations provided by the SDSS documenta-

tion7 since the SDSS magnitudes are asinh magnitudes, not pogson magnitudes, and

Equation 3.2 therefore cannot be used.

I converted Fν to Fλ using Fλ = Fν(c/λ
2
c), where c is the speed of light and λc

if the center of each filter bandpass, and given in Table 3.2. These final values of Fλ

are the photometry values shown in Figure 3.7 and are what I used for the remainder

of the calculations involving photometry.

Once the photometry was converted to physical flux densities, I used these points

to anchor a spectrum. I chose to use the BT-SETTL model spectra throughout, since

the flux calibration of the blue end of the spectra has known issues and there are

large telluric absorption features contaminating the red side of the spectra. The

best-fit BT-SETTL model from my effective temperature estimates (see Section 3.4)

was normalized to fit the photometry. The normalization constant was determined

by generating synthetic photometry from the model spectrum in a method similar to

that of Filippazzo et al. (2015). The synthetic photometry was generated from the

best-fit model spectrum using filter transmission curves from the SVO Filter Profile

Services and the following equation

Fλ,synth =

∫
T (λ)Fλ,model(λ)dλ∫

T (λ)dλ
(3.3)

where T (λ) is the transmission curve from SVO, interpolated onto the same wave-

length grid as the model spectrum (Fλ,model). The normalization constant was then

found by minimizing the squared difference between the synthetic and catalog pho-

tometry. The optimal minimization (and hence value of the normalization constant)

was determined using the scipy routine, scipy.optimize.minimize_scalar.

7http://www.sdss.org/dr12/algorithms/magnitudes/

http://www.sdss.org/dr12/algorithms/magnitudes/
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Table 3.2. Photometry for all subdwarf targets

Star SDSS u σu SDSS g σg Pan-STARRS g σPS1 g Gaia GBP σGBP
Pan-STARRS r σPS1 r ...*

0.35 µm 0.48 µm 0.481 µm 0.5044 µm 0.617 µm

LHS1032 22.5 0.3 19.03 0.03 18.71 0.02 18.15 0.018 17.211 0.003
LHS104 17.06 0.01 14.48 0.02 – – 13.969 0.001 – –
LHS1074 24.1 1.1 20.18 0.02 19.84 0.02 19.25 0.06 18.374 0.004
LHS1166 22.4 0.3 19.99 0.02 19.64 0.01 19.22 0.06 18.247 0.003
LHS1174 21.1 0.1 18.03 0.02 17.81 0.006 17.28 0.01 16.378 0.004
LHS12 15.75 0.01 13.1950 0.0005 – – 12.492 0.002 – –
LHS1454 – – – – 17.17 0.005 16.788 0.007 15.931 0.002
LHS156 – – – – 15.651 0.001 15.205 0.003 – –
LHS161 18.39 0.02 15.55 0.02 15.368 0.001 14.926 0.004 – –
LHS1625 – – – – 20.13 0.03 19.48 0.02 18.52 0.01
LHS1691 – – – – 18.352 0.003 17.803 0.009 16.874 0.004
LHS170 – – – – – – 10.891 0.001 – –
LHS1703 17.82 0.03 15.18 0.04 14.846 3.0E-04 14.496 0.0020 – –

Note. — *See online version of Kesseli et al. (2019) or email the author for full table, which includes all 88 objects and all photometry
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The bolometric luminosity was determined from

Lbol = 4πD2

∫ 500 µm

0.1 µm

C × Fλdλ (3.4)

where C is the normalization constant determined above, Fλ is the model flux, and

D is the distance determined from Gaia DR2 parallaxes (Gaia Collaboration et al.

2018). Instead of using the inverted parallax to obtain D, I used the distances

reported by Bailer-Jones et al. (2018) for Gaia DR2, which are publicly available

within the Gaia archive external catalog, external.gaiadr2_geometric_distance.

The Bailer-Jones et al. (2018) distances are more reliable because they account for

the nonlinearity of the transformation from parallax to distance. This nonlinearity

is corrected using a Bayesian distance prior that varies as a function of galactic lon-

gitude and latitude. Finally, I used a simple trapezoidal integration (numpy.trapz)

to numerically integrate Fλ over the stated wavelength range.

To determine how the model parameters (Teff , [Fe/H], and log g) influenced

the bolometric luminosity calculation, I investigated the ways in which varying these

parameters altered my estimates of Lbol. I found that by changing the model by one

grid point, log10(Lbol/LSun) changed by an average of 0.008 ± 0.005, 0.007 ± 0.005,

and 0.002 ± 0.002 for a change in Teff of 100K, and [Fe/H] and log g of 0.5 dex,

respectively. If all three are changed in conjunction, the change in log10(Lbol/LSun)

was on average 0.015± 0.008; however, I do not expect the estimates to deviate this

substantially in all three parameters. These errors are larger than the propagated

uncertainties, and so I adopt the change of all three parameters in conjunction as a

conservative estimate of the uncertainty in the bolometric flux (the uncertainty in

the parallax is then incorporated to determine the total uncertainty in Lbol).

I also compared the ways in which the use of real spectra versus models al-

tered the values of Lbol. Three of my targets had previously published spectra that
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Fig. 3.7: Spectral energy distribution (SED) of LHS 377. The red points show all the
available photometry for the source, converted into Fλ. The errorbars from the photometry
are plotted but are similar than the points. The blue points are the synthetic photometry
created using the filter bandpasses and gray model spectrum. The synthetic photometry
and the model are both multiplied by the normalization constant C. To determine the
bolometric flux and in turn the bolometric luminosity, I integrate under the gray model
multiplied by C.

spanned the near- and mid-IR (LHS 1174, LHS 377, LSR J2122+36, all from the

SpeX Prism Spectral Libraries (Burgasser 2014)8). In combination with the optical

spectra reported here, a majority of the flux-contributing region of the SED was

covered by real spectra. I found that by using the real spectra instead of the best-fit

model, log10(Lbol/LSun) changed by 0.01. This value is well within the uncertainties

I adopted based on changing the model, so I conclude that using a model instead of

a real spectrum is indeed valid (as long as the above uncertainties are included).

8http://pono.ucsd.edu/~adam/browndwarfs/spexprism/

http://pono.ucsd.edu/~adam/browndwarfs/spexprism/
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3.6 Results and Updated Radius Relations

The effective temperatures (calculated in Section 3.4) and bolometric lumi-

nosities (calculated in Section 3.5) were combined to determine a radius using the

Stefan-Boltzmann Law: R =
√
Lbol/(4πσT 4

eff). The derived parameters (including

Teff , Lbol, and R) for all of the sources are given in Table 3.3. Figure 3.8 shows

how the radii change with decreasing metallicity for a given effective temperature.

I find that stellar evolutionary models from Baraffe et al. (1997) accurately predict

the radii of low-metallicity subdwarfs. For a given effective temperature, the radius

can deviate by a factor of almost five for a change in metallicity of 2.5 dex.

3.6.1 Color Relations

Broadband colors are readily available for a massive number of sources thanks

to surveys such as Gaia and 2MASS. I therefore present Gaia and 2MASS color-to-

radius and absolute magnitude-to-radius relations for my sources. Figure 3.9 shows

different optical and IR color-to-radius relations. I find that J −K is not well fitted

by a simple equation, but both Gaia R − J and Gaia R − B can be fitted with

equations relating these colors to the stellar radius. I chose a decreasing exponential

equation to describe the data, which was physically motivated by the fact that the

stellar radii cannot collapse to sizes smaller than 0.1RSun due to degeneracy pressure.

The following exponential describes the data:

R = A e−[b(color)+c[Fe/H]] (3.5)

where the best fit constants for Gaia R − J are 5.02, 2.04, and -1.06 and for Gaia

B −R are 4.0, 1.17, and −1.04 for A, b, and c, respectively. Even with a metallicity

dependent relation I still find a scatter in the radius of ∼ 20%.
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Fig. 3.8: Results of the effective temperature and radius determinations of all the
stars in my sample (star markers), as well as previously determined effective tem-
peratures and radii from Mann et al. (2015) (circle markers). The points are colored
by their metallicity ([Fe/H]). The empirically determined relation from Mann et al.
(2015) for solar metallicity stars is shown as a blue line, while the relations from the
Baraffe stellar evolutionary models (Baraffe et al. 1997) are shown in black. The sub-
dwarfs fall along the stellar evolution curves and thus validate the predicted factor
of four or more change in radius for extreme and ultra subdwarfs for a given effective
temperature.
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Table 3.3: Derived subdwarf parameters

Star Spectral Teff σT log(Lbol σlog(Lbol
Radius σR [Fe/H] σ[Fe/H] [Fe/H]

Name Class (K) (K) /LSun) /LSun) (RSun) (RSun) method

2MASSJ0822+1700 usdM6 3200 100 −3.139 0.031 0.088 0.006 −1.4 0.3 Spec
Gl109 dM3 3400 100 −1.783 0.058 0.37 0.033 −0.1 0.08 Lit1

Gl143.1 dK7 4000 100 −1.044 0.011 0.626 0.033 0.17 0.15 Phot
Gl229A dM1 3600.0 100 −1.271 0.035 0.595 0.041 0.02 0.08 Lit1

Gl270 dM0 3900 100 −1.141 0.011 0.589 0.03 0.23 0.15 Phot
Gl388 dM3 3400 100 −1.643 0.02 0.435 0.027 0.15 0.08 Lit1

Gl393 dM2 3500 100 −1.597 0.01 0.432 0.025 −0.18 0.08 Lit1

Gl402 dM4 3200 100 −2.105 0.013 0.288 0.019 0.16 0.08 Lit1

Gl406 dM6 2700 100 −2.995 0.007 0.145 0.011 0.25 0.08 Lit1

Gl411 dM2 3400 100 −1.704 0.037 0.405 0.029 −0.38 0.08 Lit1

Gl436 dM3 3600 100 −1.638 0.015 0.39 0.023 0.01 0.08 Lit1

Gl447 dM4 3200 100 −2.43 0.014 0.198 0.013 −0.02 0.08 Lit1

Gl51 dM5 2900 100 −2.346 0.013 0.266 0.019 0.22 0.08 Lit2

Gl908 dM1 3600 100 −1.596 0.011 0.409 0.023 −0.45 0.08 Lit1

LHS1032 usdM4 3400 100 −2.775 0.02 0.118 0.007 −1.4 0.3 Spec
LHS104 esdK7 3900 100 −1.711 0.006 0.306 0.016 −1.29 0.3 Spec
LHS1074 sdM6 3200 100 −2.88 0.028 0.118 0.008 −0.52 0.3 Spec

Continued

1Mann et al. (2015)
2Gaidos et al. (2014)
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Star Spectral Teff σT log(Lbol σlog(Lbol
Radius σR [Fe/H] σ[Fe/H] [Fe/H]

Name Class (K) (K) /LSun) /LSun) (RSun) (RSun) method

LHS1166 sdM6 3100 100 −2.924 0.024 0.12 0.008 −0.39 0.3 Spec
LHS1174 esdM3 3400 100 −2.513 0.013 0.16 0.01 −1.31 0.3 Spec
LHS12 d/sdM0 3900 100 −1.642 0.019 0.331 0.018 −0.33 0.15 Phot
LHS1454 usdK7 3800 100 −2.262 0.012 0.171 0.009 −1.59 0.3 Spec
LHS156 sdM3 3500 100 −2.403 0.009 0.171 0.01 −0.64 0.3 Spec
LHS161 esdM2 3700 100 −2.166 0.006 0.201 0.011 −1.1 0.3 Spec
LHS1625 usdM6 3400 100 −2.809 0.041 0.114 0.009 −1.64 0.3 Spec
LHS1691 usdM2 3400 100 −2.429 0.014 0.176 0.011 −1.8 0.3 Spec
LHS170 esdK7 4300 100 −1.123 0.008 0.495 0.023 −1.28 0.3 Spec
LHS1703 esdK7 3900 100 −1.587 0.012 0.352 0.019 −1.1 0.3 Spec
LHS173 esdK7 4100 100 −1.305 0.016 0.441 0.023 −0.94 0.18 Lit2

LHS174 sdM0 3800 100 −1.434 0.32 0.442 0.165 −0.63 0.3 Spec
LHS1742a esdM6 3300 100 −2.912 0.333 0.107 0.042 −0.97 0.3 Spec
LHS178 d/sdM1 3600 100 −1.795 0.013 0.326 0.019 −0.29 0.3 Spec
LHS182 usdM0 3700 100 −2.128 0.085 0.21 0.024 −1.66 0.3 Spec
LHS1826 usdM6 3300 100 −2.94 0.019 0.104 0.007 −1.73 0.3 Spec
LHS1863 usdM1 3600 100 −2.015 0.01 0.253 0.014 −1.59 0.3 Spec
LHS1994 esdM1 3700 100 −1.844 0.017 0.291 0.017 −1.13 0.3 Spec
LHS20 d/sdM2 3500 100 −2.26 0.011 0.202 0.012 −0.28 0.15 Spec

Continued

2Schmidt et al. (2016)
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Star Spectral Teff σT log(Lbol σlog(Lbol
Radius σR [Fe/H] σ[Fe/H] [Fe/H]

Name Class (K) (K) /LSun) /LSun) (RSun) (RSun) method

LHS2023 esdM6 3200 100 −2.917 0.022 0.113 0.008 −1.15 0.3 Spec
LHS205a usdM5 3400 100 −2.783 0.028 0.117 0.008 −1.43 0.3 Spec
LHS2061 sdM5 3300 100 −2.691 0.019 0.138 0.009 −0.76 0.3 Spec
LHS2096 esdM5 3300 100 −2.852 0.018 0.115 0.007 −1.25 0.3 Spec
LHS2163 sdM1 3600 100 −1.661 0.017 0.38 0.022 −0.56 0.12 iSHELL Spec

LHS228 sdM2 3500 100 −2.32 0.019 0.188 0.012 −0.55 0.3 Spec
LHS2326 esdM2 3300 100 −2.353 0.009 0.204 0.013 −0.98 0.3 Spec
LHS2355 usdM0 3800 100 −2.393 0.014 0.147 0.008 −1.76 0.3 Spec
LHS2405 d/sdM4 3500 100 −1.604 0.011 0.429 0.025 −0.24 0.15 Spec
LHS2500 usdM5 3100 100 −2.845 0.039 0.131 0.01 −1.88 0.3 Spec
LHS2674 sdM4 3300 100 −2.573 0.022 0.158 0.01 −0.57 0.3 Spec
LHS272 sdM3 3400 100 −2.431 0.01 0.175 0.011 −0.72 0.3 Spec
LHS2843 esdM0 3500 100 −2.068 0.015 0.251 0.015 −1.26 0.3 Spec
LHS2852 sdM2 3400 100 −1.767 0.01 0.377 0.023 −0.05 0.12 iSHELL Spec

LHS3090 usdM4 3400 100 −2.609 0.015 0.143 0.009 −1.5 0.3 Spec
LHS318 esdM1 3600 100 −2.25 0.01 0.193 0.011 −1.3 0.3 Spec
LHS3189 d/sdM1 3100 100 −2.72 0.022 0.151 0.01 −0.57 0.15 Phot
LHS3255 dM4 3100 100 −2.177 0.009 0.283 0.018 −0.15 0.15 Phot
LHS326 esdM3 3700 100 −2.147 0.007 0.206 0.011 −1.18 0.3 Spec
LHS3263 esdM3 3700 100 −2.369 0.019 0.159 0.009 −1.22 0.3 Spec
LHS3276 esdK7 3900 100 −1.741 0.014 0.295 0.016 −1.18 0.3 Spec

Continued
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Star Spectral Teff σT log(Lbol σlog(Lbol
Radius σR [Fe/H] σ[Fe/H] [Fe/H]

Name Class (K) (K) /LSun) /LSun) (RSun) (RSun) method

LHS3382 usdM3 3400 100 −2.472 0.013 0.167 0.01 −1.38 0.3 Spec
LHS3390 sdM5 3300 100 −2.708 0.014 0.135 0.008 −0.83 0.3 Spec
LHS3409 d/sdM4 3200 100 −2.635 0.019 0.157 0.01 −0.31 0.12 iSHELL Spec
LHS3555 usdM2 3300 100 −2.842 0.022 0.116 0.008 −1.78 0.3 Spec
LHS360 esdM0 3700 100 −1.96 0.013 0.255 0.014 −0.96 0.3 Spec
LHS364 usdM1 3600 100 −2.491 0.014 0.146 0.008 −1.54 0.3 Spec
LHS375 esdM4 3400 100 −2.697 0.01 0.129 0.008 −1.27 0.3 Spec
LHS377 sdM7 3000 100 −2.993 0.019 0.118 0.008 −0.41 0.3 Spec
LHS4028 usdM4 3500 100 −2.692 0.018 0.123 0.007 −1.64 0.3 Spec
LHS42 esdM0 3800 100 −1.756 0.008 0.306 0.016 −0.96 0.12 iSHELL Spec

LHS453 usdM4 3300 100 −2.799 0.026 0.122 0.008 −1.77 0.3 Spec
LHS482 sdM1 3600 100 −1.929 0.026 0.279 0.018 −0.75 0.12 iSHELL Spec

LHS489 usdM0 3600 100 −2.299 0.017 0.182 0.011 −1.88 0.3 Spec
LHS504 d/sdM5 3100 100 −2.588 0.026 0.176 0.012 −0.18 0.3 Spec
LHS515 esdM5 3400 100 −2.8 0.014 0.115 0.007 −1.08 0.3 Spec
LHS518 sdK7 3900 100 −1.671 0.018 0.32 0.018 −0.79 0.3 Spec
LHS522 usdK7 3900 100 −2.027 0.127 0.212 0.033 −1.41 0.3 Spec
LSRJ0020+5526 sdM2 3700 100 −2.194 0.015 0.195 0.011 −0.7 0.3 Spec
LSRJ0522+3814 usdM3 3500 100 −2.655 0.01 0.128 0.007 −1.63 0.3 Spec
LSRJ0621+1219 usdM6 3300 100 −2.912 0.014 0.107 0.007 −1.65 0.3 Spec
LSRJ0621+3652 usdK7 3700 100 −2.091 0.008 0.219 0.012 −1.38 0.3 Spec

Continued
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Star Spectral Teff σT log(Lbol σlog(Lbol
Radius σR [Fe/H] σ[Fe/H] [Fe/H]

Name Class (K) (K) /LSun) /LSun) (RSun) (RSun) method

LSRJ0705+0506 sdM4 3400 100 −2.451 0.013 0.171 0.01 −0.64 0.15 Phot
LSRJ1340+1902 esdM4 3300 100 −2.698 0.016 0.137 0.009 −1.15 0.3 Spec
LSRJ1956+4428 usdM0 3600 100 −2.465 0.008 0.15 0.008 −1.56 0.3 Spec
LSRJ2115+3804 usdK7 3700 100 −2.174 0.007 0.199 0.011 −1.62 0.3 Spec
LSRJ2122+3656 esdM5 3300 100 −2.802 0.011 0.122 0.008 −1.34 0.3 Spec
LSRJ2205+5353 usdM1 3600 100 −2.384 0.009 0.165 0.009 −1.55 0.3 Spec
NLTT3247 dM4 3200 100 −2.475 0.026 0.188 0.013 −0.09 0.15 Phot
Teegarden dM6 2700 100 −3.137 0.001 0.123 0.009 −0.31 0.08 Lit1

WISE0238+3617 usdM3 3300 100 −2.807 0.015 0.121 0.008 −1.56 0.3 Spec
WISE0707+1705 usdM2 3600 100 −2.57 0.012 0.133 0.008 −1.65 0.3 Spec
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I also fit color to metallicity relations for my sample. Like previous studies (e.g.,

Mann et al. 2013a; Newton et al. 2014; Mann et al. 2015) I find that J−Ks gives the

best fit for a single color to [Fe/H] relation, and find the following best-fit equation:

[Fe/H] = 4.22(J −Ks)− 3.86 (3.6)

where the 1-σ scatter is 0.37 dex.
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Fig. 3.9: 2MASS and Gaia broadband colors versus stellar radius. Stars with similar
colors show large variations in radius for different metallicities. Overplotted on the
two plots on the right are my new color−Radius relations for metallicity values of 0.0
(orange), −0.5 (green), −1.0 (cyan), and −1.5 (blue). Even with these metallicity
dependent relations I find a 1−σ scatter of ∼ 20% in the radius. The fits are given
in Equation 3.5.

3.6.2 Absolute Magnitude Relations

Previous studies have found that the scatter in radius relations due to metal-

licity can be reduced (or even eliminated) by using absolute infrared photometry

versus radius relations (MKs− Radius: e.g., Boyajian et al. 2012; Mann et al. 2015).

However, the spread in metallicity explored in previous studies was only about 1.0

dex (from +0.5 to −0.5 dex). Here, I calculate absolute K-band magnitudes for the
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complete sample and I find that, while there is significantly less scatter for radii de-

termined using an MKs− Radius relation, the relation is still metallicity dependent

(see Figure 3.10). For the lowest metallicity stars ([Fe/H] < −1.0 dex), I measure

radii that are on average 10% smaller than the radii that would be determined using

theMK− Radius relation that does not include metallicity as a parameter (Equation

4: Mann et al. 2015). Equation 5 of Mann et al. (2015) gives a relation that includes

metallicity as a parameter:

R = (a+ bMKs + cM2
Ks

)× (1 + f [Fe/H]), (3.7)

where they find best fit values of 1.9305, -0.3466, 0.01647, and 0.04458 for a, b, c, and

f , respectively. I find that this relation fits the data better, but still overestimates

the radii of the low-metallicity (< 0.5 dex) stars by an average of 5%. I use the data

reported here to determine new coefficients that are valid for [Fe/H] values down

to -2.0 dex, and find values of 1.875 ± 0.05, −0.337 ± 0.01, 0.0161 ± 0.0009, and

0.079± 0.01 for a, b, c, and f , respectively. The scatter in the residuals of the MKs−
Radius relation is 6% and is valid for MKs values of 4 to 11 and metallicities from

+0.5 dex to −2.0 dex.

The absolute Ks-band relation greatly reduces the uncertainty in the radius

compared to the color−radius relation (Equation 3.5) and so I recommend using it

to obtain more accurate radii whenever possible.

3.7 Discussion

3.7.1 Internal Consistency Check

I performed a self-consistency check on the radius determinations by comparing

the apparent flux levels in each spectrum to the flux of the best fitting model, scaled

by the dilution factor R2/D2, to determine the apparent flux from the model at
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Fig. 3.10: Absolute Ks-band versus radius relation for the entire sample of stars. In
black is the best fit relation from Mann et al. (2015), which is valid for stars with
[Fe/H] > −0.6 and does not include metallicity as a parameter. In blue, I plot the
metallicity dependent relation, which has the form of Equation 3.7, extrapolated past
its tested metallicity limit (−0.6 dex) at a value of −1.0 dex. I find that while this
better fits the data, it still over-predicts the radii of the lowest metallicity stars in the
sample. In red, I plot the new metallicity dependent relation at a value of −1.0 dex.
The bottom panel shows the residuals between my data and the our new relation.
While there is still some intrinsic scatter, it is no longer correlated with metallicity.
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Earth. Plotted in Figure 3.11 is an example of this consistency check. Any target for

which the observed flux calibrated (black) spectrum fell outside of the R2/D2±σR2/D2

scaled model (transparent blue) was noted as being inconsistent.

I find that 9 out of the 88 spectra fall outside of the 1 − σ errorbars: Gl 436,

Gl 447, Gl 51, LHS 170, LHS 375, LHS 2843, LHS 2852, LHS 3189, LHS 3255, LHS

3555. These 9 targets are some of the most extreme outliers in Figure 3.8, which

suggests that the true scatter in the Teff−Radius relation is actually smaller than

what is shown in Figure 3.8. The majority of this discrepancy most likely is due to

the uncertainty in Teff , and for the one source with previously determined parameters

(Gl 436) this is the case; my Teff estimate differs by ∼150 K from what Mann et al.

(2015) report and thus my radius estimate differs by 0.06 RSun. I hypothesize that

the radius discrepancy in a few of the sources is due to inaccurate metallicities,

which leads to poor fits to the models. LHS 170 is the hottest star in my sample,

and for that reason its metallicity estimate may not be accurate since the methods

used for determining metallicity for my sample are only valid for spectral types later

than ∼K7. LHS 2852 has differing spectroscopic and photometric metallicities even

though it is in a part of parameter space where both methods should be valid, leading

me to conclude that there is potentially something unusual about its metallicity.

Because almost 90% of the sources pass my internal consistency check, I am

confident that the overall trends observed in the data are accurate. I conclude that

the 1σ errorbars are not underestimated, and if anything they are overestimated.

3.7.2 Variations in Chemical Abundances

Many of the spectra have unusual spectral features that are not reproduced

by the stellar atmosphere models, or have colors and spectroscopic metallicities

that are at odds. Figure 3.12 shows these spectra with the features in question

labeled. 2MASS J0822+1700 contains prominent Rb I lines (first noted in Lépine
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Fig. 3.11: An example of the internal consistency check. The flux calibrated observed
spectrum is plotted in black, while the R2/D2 scaled model is plotted in teal. The
two more transparent teal spectra show the model spectrum scaled using the 1σ
uncertainties on the radius. Note the large mismatch between the scaled model and
the data around 7500 and between 9000 and 10000 Å is due to telluric contamination
in the spectra.

et al. (2004)), which are not seen in any other spectra in this sample or in the models.

Rb is a slow neutron capture (s-process) element formed during the AGB phase of

stellar evolution, so these interesting objects could have formed near an AGB star

and hence be polluted by an overabundance of Rb compared to [Fe/H]. This effect

has been seen in warmer halo stars that exhibit enhancements in s-process elements

(Beers & Christlieb 2005).

WISE 0238+3617 has a significantly broader Na doublet (labeled Na ‘D’ in

Figure 3.12) than any of the other spectra, as well as a deeper Na I doublet (∼ 8200

Å), deeper K I lines, and weaker Ca II lines. Kirkpatrick et al. (2016), who first
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Fig. 3.12: Figure showing three of the spectra that have peculiar features. 2MASS
J0822+1700 has Rb I lines that are not seen in any other spectra. WISE 0238+3617
has an extremely broad Na ‘D’ doublet, slightly stronger Na I and K I, as well as
weaker Ca II lines. LHS 1691 has a particularly weak MgH band and the bluest end
of the spectrum is noticeably smoother than spectra of similar spectral type.

published its spectrum, theorized that the broad Na doublet was indicative of an

extremely low metallicity (< −2.0 dex). The extremely broad Na doublet could be

indicative of an over-enhancement of Na. Na is produced during C burning in SN II,

so this star could have environmental enhancement, but more information is needed

to verify this claim.

LHS 1691 has weak absorption from the MgH band compared to other spectra

of similar spectral type. Evidence for two populations of metal poor stars with

different Mg abundances (low- and high-Mg groups) has been seen by many groups
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in the halo population (e.g., Hayes et al. 2018). The weak MgH absorption in LHS

1691 suggests that this star is potentially part of a low-Mg population. There are

other stars in my sample with varying strengths in MgH for similar spectral types,

which could be indicative of the spread in the [Mg/Fe] versus [Fe/H] measured by

Hayes et al. (2018) (see Figure 3 in Hayes et al. 2018). Since Mg is an α element,

publicly available models with varying α abundances for single [Fe/H] values would

be useful to better model subdwarfs and estimate α abundances for different stars.

Some of the spectra also have spectroscopic features that are reminiscent of

subdwarfs (little TiO absorption), but near-IR colors that would point towards a

dwarf star metallicity when the relation from Newton et al. (2014) is applied. LHS

1691 is the most extreme of these cases, where spectroscopically it is classified as

an ultra subdwarf (−1.8 dex), but the photometric metallicity relation estimates a

metallicity of +0.3 dex. Other stars that exhibit this behavior but are not as extreme

are: WISE 0238+3617, LHS 2843, LHS 3382, and LHS 104. It is unclear what causes

this interesting effect and I merely note it here. I expect to explore theis further at

a later time.

All of the above-mentioned unusual spectral features lead me to conclude that

a single metallicity value with corresponding α abundance cannot always reproduce

observed features in the spectra, and that in reality the chemical composition of the

stars in my sample is more complex than I had assumed.

3.8 Summary

I found that for a given temperature, an ultra subdwarf can be smaller than a

dwarf star by up to a factor of five, and that the Baraffe et al. (1997) stellar evolution

models are in agreement with the data, providing some of the first validation of these

models for the lowest stellar temperatures and metallicities. I also presented relations
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that can be used to convert direct observables, such as color and absolute K-band

magnitude, to stellar radii for metallicities down to−2.0 dex with radius uncertainties

of ∼ 20% and 6%, respectively.
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Chapter 4

The Effects of Strong Magnetic Fields on M
dwarf Radii

A similar version of this Chapter was published by the Astronomical Journal in

Kesseli et al. (2018).

4.1 Introduction

Measurements of M dwarf radii from EBs reveal sizes that are as much as

10−15% larger than theoretical predictions from stellar evolutionary models, and are

on average inflated by ∼ 5% (e.g., Torres & Ribas 2002; Kraus et al. 2011; Han et al.

2017). As discussed in Chapter 1.6.2, several studies have proposed that the larger-

than-expected radii of M dwarf stars in EBs are a result of activity and enhanced

magnetic fields (often around a few kiloGauss for M dwarf stars; Donati et al. 2006;

Chabrier et al. 2007; López-Morales 2007). Alternatively, the inflation may solely

be an effect present in EBs due to differing evolutionary histories or inaccuracies in

parameter extraction from EB data (see Section 1.4.1 for more details).

Magnetic field strength and magnetic activity have long been known to be cou-

pled to rotation (Parker 1955), and more recent observations affirm that M dwarf

stars with rotation periods less than ∼5 days all show evidence of magnetic activity

through chromospheric emission (e.g., West et al. 2015; Newton et al. 2017). In this

scenario, EBs are preferentially inflated because of observational biases: they tend

to have short orbital periods (P < 5 days) and are correspondingly synchronously
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rotating. To account for inflation suggested by this theory, studies such as Kraus

et al. (2011) have suggested adding a rotation parameter into Mass−Radius relations
for M dwarfs.

A large fraction of single M dwarfs are also found to be rapid rotators. New-

ton et al. (2016) found that more than one-third of the mid-to-late M dwarf stars

with measured rotation periods in the MEarth survey have rotational periods less

than one day. If rotation-induced magnetic fields cause larger-than-expected radii

in EBs, then a large number of single stars should also have larger-than-expected

radii. As of now, there is not a sample of rapidly rotating single stars with precise

radius measurements; the mid-to-late M dwarf stars for which interferometric radii

measurements are available (Proxima Centauri and Barnard’s Star; Boyajian et al.

2012) have rotation periods around 80-130 days (Benedict et al. 1998).

To determine the effects of rapid rotation (and hence strong magnetic fields)

have on the radii of stars, a sample of rapidly rotating, single, fully convective stars

needs to be studied to determine the level of inflation present. In this Chapter, I test

the role of rapid rotation on M dwarf radii by measuring the statistical distribution

of radii modulated by the inclination (sin i) of 88 single, rapidly rotating M dwarfs.

To determine the R sin i distribution, I combined photometric rotation periods

with v sin i values that I measured in this work. My measurements of v sin i are

obtained through rotational broadening of absorption lines. The measured v sin i and

published rotational periods (Prot) are related to the stellar radius (R) as follows:

R sin i = v sin i Prot / (2π) (4.1)

In the following sections I will detail how I determined each of these values and

then how I used the R sin i distribution to determine the amount of radius inflation

present in the sample.
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4.2 Literature Rotation Periods

All of the photometric rotation periods are from the MEarth survey (Charbon-

neau et al. 2009). Since 2008, MEarth has been photometrically monitoring close

to 2000 targets selected to be mid-to-late (M3−M6) M dwarf stars with an average

photometric precision of 1.5% (Berta et al. 2012; Dittmann et al. 2014). The survey

was designed to find transiting exoplanets around nearby M dwarf stars, however

Newton et al. (2016) used the photometry to determine rotation periods by fitting

modulations due to starspots passing into and out of view.

I selected stars that had a secure periodic detection of photometric modulation

(class ‘A’ or ‘B’ rotators from Newton et al. 2016). I also required the stars to

have a period of less than 5 days, to ensure they were all magnetically active and

had v sin i values that could be resolved with the spectrographs that I used. A large

portion of the sample have H-α measurements, and every star with a measurement is

magnetically active (Newton et al. 2017). I only observed stars with Ks-band magni-

tudes brighter than 11, since fainter magnitudes required significantly longer exposure

times and often returned poorer SNRs. To isolate the single stars, I eliminated from

the sample any stars that were flagged as binaries by Newton et al. (2017), which

includes both removal of blended or elongated PSFs and sources flagged as being

overluminous for their given color. The multiplicity fraction of M dwarf stars is not

precisely known, however current estimates state that 26± 3% of M dwarf stars are

multiples (Duchêne & Kraus 2013). 23% of the targets in my sample were flagged as

binaries, leading me to conclude that binaries and multiples have been removed from

the sample. I also visually inspected all the cross-correlation functions to look for

multiple peaks and found only one of the targets to be a previously unknown spec-

troscopic binary (noted in Table 4.1). Finally, because MEarth stars were selected

to be mid-to-late M dwarf stars, all of the stars in the sample have mass estimates
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reported in Dittmann et al. (2014) that put them around or past the fully convective

limit (M? . 0.4MSun). After these cuts, I was left with 110 potential targets from

Newton et al. (2016), 83 of which I observed, and 7 more that had precise v sin i

measurements from the literature (discussed in more detail in Section 4.3.2).

4.3 Rotational Broadening

4.3.1 Observations and Data Reduction

Data were collected between October 2016 and November 2017 using the Immer-

sion GRating INfrared Spectrograph (IGRINS; Park et al. 2014) on Lowell Observa-

tory’s 4.3-meter Discovery Channel Telescope (DCT) at and the 2.7-meter Harlan J.

Smith Telescope at McDonald Observatory. I also used iSHELL (Rayner et al. 2016)

on NASA’s 3.0-meter Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii.

IGRINS is a high-resolution (R ' 45,000) infrared spectrograph that simultaneously

collects H and K -band spectra (Mace et al. 2016). iSHELL has a spectral reso-

lution of 75,000 at my chosen wavelength region in the K -band (2.26 − 2.55µm).

The instrument, telescope and observation date for each target are shown in Table

4.1. Exposure times were chosen in order to achieve a signal-to-noise ratio (SNR)

of ∼100. I found that spectra with a SNR significantly lower than 100 yielded large

uncertainties in the final calculated v sin i value and, hence, yielded less precise radius

estimates.

With the spectral resolution of IGRINS and iSHELL, I was able to resolve

rotational broadening for v sin i values larger than ∼3−4 km s−1 and ∼1−2 km s−1,

respectively. In order to resolve rotational broadening in the largest number of stars,

I used IGRINS to observe stars with rotation periods less than a day (vrot & 10 km

s−1) and iSHELL to observe stars with rotation periods between one and five days

(3 . vrot . 10 km s−1).
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I performed the data reduction of IGRINS spectra using the publicly available

pipeline (Lee et al. 2017).1 The pipeline automatically performs dark subtraction, flat

fielding, and subtracts out sky emission (i.e., OH airglow) using an ABBA nodding

pattern. The pipeline also returns a wavelength solution, calculated using the OH

emission lines before their removal. The final product is a 1-D spectrum, which

is calibrated but still contains telluric absorption features. I completed the data

reduction of the iSHELL spectra using the Spextool for iSHELL package2. Spextool

(Cushing et al. 2004) was originally created for reduction of SpeX data; however,

it has been updated in the newest release to be compatible with iSHELL data. I

used the xspextool function to perform the dark subtraction, flat fielding, order

tracing and extraction, linearity correction and wavelength extraction. xspextool

also returns a wavelength solution calibrated using ThAr lamps.

Large parts of the H and K-bands are dominated by telluric lines. I removed

telluric absorption features using the xtellcor function (Vacca et al. 2003), which is

also part of the larger Spextool reduction package. Since Spextool is not formatted

for IGRINS spectra, I utilized xtellcor_general for telluric correction of IGRINS

spectra. xtellcor_general can be used with any instrument, given the spectral

resolution, an A0 standard spectrum, and a target spectrum. A0 standard stars

were taken throughout the night during all observations and were required to deviate

in airmass from the target by less than 0.2. Examples of my reduced and telluric

corrected spectra are shown in Figure 4.1.

4.3.2 v sin i Calculation

The method I used to determine v sin i values is similar to that of many pre-

viously published studies (e.g., West & Basri 2009; Muirhead et al. 2013; Reiners

1https://github.com/igrins/plp
2http://irtfweb.ifa.hawaii.edu/research/dr_resources/

https://github.com/igrins/plp
http://irtfweb.ifa.hawaii.edu/research/dr_resources/
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Fig. 4.1: IGRINS and iSHELL spectra from the sample, centered on the 1-0 vibra-
tional CO bandhead (∼ 2.3µm). The blue line shows a rapidly rotating M dwarf with
a measured v sin i of 29.8 km/s (J06052936+6049231) taken with IGRINS. The green
line below shows a slowly rotating M dwarf (J04560354+4313556) also taken with
IGRINS. The rapidly rotating M dwarf clearly has much broader and shorter absorp-
tion lines than the slowly rotating M dwarf. The bottom red line shows the same
slowly rotating M dwarf star (again, J04560354+4313556) but taken with iSHELL.
The difference in broadening between the two spectra of J04560354+4313556 is en-
tirely due to the resolution difference between the spectrographs. This plot demon-
strates why I was able to observe slower rotators with iSHELL.

et al. 2017). To determine the rotational broadening, I compared the rapidly rotat-

ing M dwarf stars to slowly rotating M dwarf stars (P > 50 days), also from the

Newton et al. (2016) sample. In the slowly rotating stars, the rotational broadening

is undetectable, and any broadening seen is due to the intrinsic broadening of the

spectrograph (see Figure 4.1 for an example of how the change in resolution of the

two spectrographs broadens the spectra).

To start, the slow rotators were artificially broadened using the v sin i kernel,

rotBroad, available in the PyAstronomy library.3 The rotational broadening kernel

3https://github.com/sczesla/PyAstronomy

https://github.com/sczesla/PyAstronomy
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requires a linear limb darkening coefficient (µ) as input. I referred to Claret et al.

(2012) to determine the appropriate value of µ, and found that for my sample of stars

(2900 . Teff . 3400) and for H and K-band observations, the linear limb darkening

coefficient varies between ∼ 0.3− 0.4. So as to not have the choice of limb darkening

coefficient bias the final results, I treated it as a nuisance parameter in the Bayesian

analysis (see Section 4.4.2 for details). For all of the reported v sin i values, I used a

coefficient of 0.35 since it falls in the middle of the allowed range.

Next, to determine the v sin i value, the artificially broadened slow rotators

were cross-correlated with the original unbroadened spectrum of the slow rotator.

The width of the cross-correlation function monotonically increases with increasing

rotational broadening. I created a relation between the full width at half maximum

(FWHM) of the cross-correlation function to the v sin i input value of the kernel used

to artificially broaden the spectrum. I then cross-correlated the fast rotators to the

slowly rotating M dwarf star and interpolated from the FWHM relation to determine

a v sin i value for each fast rotator. Example cross-correlation functions, showing

the artificially broadened spectra cross-correlated with the unbroadened spectrum

(blue-yellow), and the rapidly rotating target spectrum cross-correlated with the

unbroadened spectrum (red), are shown in Figure 4.2.

I performed this analysis on individual orders and excluded orders that:

• had low signal-to-noise: the first and last few orders of all spectra are excluded

as well as any orders with obvious noise spikes

• were dominated by telluric features

• contained large atomic features (i.e., Na doublet ∼ 2.2µm), which are subject

to non-Gaussian pressure broadening and therefore can lead to over-estimated

v sin i measurements
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Fig. 4.2: Top: Resulting cross-correlation function between a slowly rotating M4.9
(Alonso-Floriano et al. 2015) dwarf star (J04560354+4313556) and a rapidly rotating
M5.9 (Shkolnik et al. 2009) dwarf star (J10204406+0814234), as well as the slow
rotator with a few artificially broadened spectra. The darkest blue lines have the
smallest v sin i kernel applied to the slow rotator’s spectrum, while the yellow lines
used the largest v sin i kernel. Bottom: My relation for the measured FWHM
versus the v sin i value for the stars mentioned above. The blue plus signs show
the measured FWHM values for the artificially broadened slow rotators, and the
black line shows the interpolated relation. The red dashed line shows the measured
FWHM of the rapid rotator, and the interpolated v sin i value. For this specific order
I measure a v sin i of 16.75 km s−1.
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I found that the CO bands (∼ 2.3µm) were ideal for this calculation and re-

turned especially precise measurements of v sin i. The relatively high mean molec-

ular weight of CO and the low Landè g factors for these particular CO transitions

reduce the dependence of the line widths on magnetic fields and pressure broaden-

ing, respectively. For spectra obtained with iSHELL all of my v sin i measurements

were obtained from orders containing CO band features. For spectra obtained with

IGRINS, the CO bands dominated about half the orders that were used. Because

of this, I am confident that the broadening I measured is due to rotation and not

magnetic or pressure broadening. Uncertainties were calculated from the standard

deviation between v sin i measurements in different orders.
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Fig. 4.3: Previously recorded literature values of v sin i compared to v sin i values
measured in this work. The fractional difference in the bottom panel is given by the
v sin i (this work) divided by the v sin i from the literature.

Some of my targets have measured v sin i values in the literature, and I compared

my results to these previous measurements. These are shown in Figure 4.3 and listed

in Table 4.1. Although I found a similar trend in the data, the spread is larger than
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the reported uncertainties. Even with this spread, I am confident in my measurements

because I achieved the greatest agreement (74% of points within 1σ, all within 2σ)

between surveys that used the spectrographs with the highest resolution (R ∼ 57, 000,

Davison et al. 2015; R > 80, 000, Reiners et al. 2017; R ∼ 65, 000, Fouqué et al.

2018). All the points with greater levels of discrepancy were measurements taken

with spectrographs with lower resolution than my survey (R < 45, 000).

Because of the consistent measurements with both Reiners et al. (2017) and

Fouqué et al. (2018), I added 7 of their v sin i measurements to my sample. These

measurements met all of the criteria listed in Section 4.2, but I did not measure a

v sin i value for these objects. This increased my total sample to 88 stars. The targets

added from Reiners et al. (2017) and Fouqué et al. (2018) are listed in Table 4.1.

4.4 The Bayesian Statistical Approach

I combined my measured v sin i values with rotation periods using Equation 4.1,

and in a method similar to that of previous studies (Jackson et al. 2009, 2016, 2018),

I determined the average inflation (if any) of the radii of the stars in comparison

to previously published radius predictions. Unlike previous studies, however, here I

used a completely Bayesian framework for the statistical analysis.

In the following analysis the predicted radius is referred to as Rp. Table 4.2

outlines how I arrived at Rp and how I have labeled each method in the below text.

All methods began with absolute Ks-band magnitudes (MKs) for each star, which

were determined by combining 2MASS apparent Ks-band magnitudes with parallax

measurements reported in Dittmann et al. (2014). MKs was transformed into a radius

directly, or first into a mass (using an MKs - Mass relation) and subsequently into

a radius (using a Mass-Radius relation). I have also denoted which relations use

empirical data and which relations are from stellar evolutionary models.
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The Dartmouth Stellar Evolution Model isochrones utilize the updated 2012

photometric systems and were created using the online Web Tool 4. The Padova

stellar evolutionary models were obtained using the online5 using PARSEC v1.0.

The Mesa Isochrones and Stellar Tracks (MIST) models were generated using the

online web interpolator6. All three of the stellar evolutionary models used a 5 Gyr

isochrone and a metallicity of 0.14 dex (i.e., the average metallicity of rapid rotators

with metallicities estimated in Newton et al. 2014). The BHAC model used a 5

Gyr isochrone as well, however super-solar metallicity isochrones are not publicly

available so I used the solar metallicity isochrone. I chose a 5 Gyr isochrone because

I do not have individual age estimates, and previous studies that compared radii to

model predictions almost exclusively used this age (e.g., Boyajian et al. 2012; Han

et al. 2017). I discuss the effects of changing the metallicity and age of the isochrone

in Section 4.6.

My goal was to estimate the percentage by which the radii are inflated given

the predicted radii (Rp) and the measured R sin i values of the sample. Thereafter, I

refer to these as Rp and Rsini, respectively, where the boldface text indicates that

these are arrays of values. I introduced an inflation parameter (η), which can take a

value ranging from 0.9 to 1.25 (corresponding to a radius inflation of -10% through

25%). To simulate different levels of radius inflation, each value in Rp was multiplied

by η then compared to Rsini.

4http://stellar.dartmouth.edu/models/isolf_new.html
5http://stev.oapd.inaf.it/cgi-bin/cmd_3.0
6http://waps.cfa.harvard.edu/MIST/interp_isos.html

http://stellar.dartmouth.edu/models/isolf_new.html
http://stev.oapd.inaf.it/cgi-bin/cmd_3.0
http://waps.cfa.harvard.edu/MIST/interp_isos.html
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Table 4.1: Target list and measured v sin i values

2MASS name Observation Telescope Instrument Prot v sin i σv sin i Previous Previous Reference
Date (UT) (d)1 (km/s) (km/s) v sin i σv sin i

Continued

J00243478+3002295 24 Sept 2017 DCT IGRINS 1.077 13.0 0.5 12.2 0.8 F172

J00304867+7742338 24 Sept 2017 DCT IGRINS 0.137 30.5 0.9
J00544803+2731035 2 Aug 2017 IRTF iSHELL 1.697 9.0 0.7
J01015952+5410577 25 Sept 2017 DCT IGRINS 0.278 31.9 0.9 30.6 3.1 R173

J01533076+0147559 10 Nov 2017 DCT IGRINS 0.199 34.3 3.3
J01534955+4427284 26 Sept 2017 DCT IGRINS 0.216 47.6 2.9
J01564570+3033288 2 Aug 2017 IRTF iSHELL 1.581 6.7 0.8
J01584517+4049445 24 Sept 2017 DCT IGRINS 0.486 21.8 0.5
J02032864+2134168 11 Nov 2017 DCT IGRINS 0.32 27.7 1.5
J02071032+6417114 1 Sept 2017 IRTF iSHELL 1.177 11.3 0.9 11.4 1.0 F17
J02170993+3526330 25 Sept 2017 DCT IGRINS 0.276 23.5 0.7 28.2 0.7 J094

J02204625+0258375 24 Sept 2017 DCT IGRINS 0.503 20.7 0.4 23.3 0.7 J09
J02351494+0247534 26 Sept 2017 DCT IGRINS 0.472 7.9 0.7
J02364412+2240265 25 Sept 2017 DCT IGRINS 0.37 12.7 1.4 11.2 1.4 F17
J02514973+2929131 26 Sept 2017 DCT IGRINS 0.895 19.2 1.7
J03205965+1854233 24 Sept 2017 DCT IGRINS 0.614 8.4 1.1 8.0 - R025

J03284958+2629122 6 Nov 2017 IRTF iSHELL 3.235 2.8 0.4
J03304890+5413551 14 Nov 2017 DCT IGRINS 0.117 47.7 2.1

2Fouqué et al. (2018)
3Reiners et al. (2017)
4Jenkins et al. (2009)
5Reid et al. (2002)
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2MASS name Observation Telescope Instrument Prot v sin i σv sin i Previous Previous Reference
Date (UT) (d) (km/s) (km/s) v sin i σv sin i

J03360868+3118398 24 Sept 2017 DCT IGRINS 0.856 15.7 0.4
J03425325+2326495 26 Sept 2017 DCT IGRINS 0.834 8.3 0.7 12.7 0.5 D136

J03571999+4107426 12 Nov 2017 DCT IGRINS 0.567 6.5 0.8
J04121693+6443560 6 Nov 2017 IRTF iSHELL 1.594 7.2 0.2
J04140201+8215360 10 Nov 2017 DCT IGRINS 0.277 17.0 0.8
J04171852+0849220 25 Sept 2017 DCT IGRINS 0.185 37.3 1.1
J04201254+8454062 12 Nov 2017 DCT IGRINS 0.695 15.2 0.7
J04302527+3951000 12 Nov 2017 DCT IGRINS 0.718 14.2 0.5 13.6 0.8 F17
J04333393+2044461 11 Nov 2017 DCT IGRINS 0.335 27.1 2.0
J04434430+1505565 14 Nov 2017 DCT IGRINS 0.419 22.3 0.5
J04490464+5138412 12 Nov 2017 DCT IGRINS 0.724 9.7 0.7
J05041476+1103238 11 Nov 2017 DCT IGRINS 0.842 10.8 1.4
J05062489+5247187 10 Nov 2017 DCT IGRINS 0.648 14.5 1.1
J05405390+0854183 10 Nov 2017 DCT IGRINS 0.332 15.5 0.6
J05595569+5834155 11 Nov 2017 DCT IGRINS 0.951 9.2 1.7
J06000351+0242236 6 Nov 2017 IRTF iSHELL 1.809 5.7 0.4 5.8,5.9 0.3,1.4 D157,F17
J06052936+6049231 10 Nov 2017 DCT IGRINS 0.31 29.7 2.6
J06073185+4712266 28 Jan 2017 DCT IGRINS 0.862 20.8 0.8
J06235123+4540050 6 Nov 2017 IRTF iSHELL 2.515 6.7 0.6
J06481555+0326243 12 Nov 2017 DCT IGRINS 0.458 9.2 0.7
J07454039+4931488 11 Nov 2017 DCT IGRINS 0.253 18.5 1.8
J07464203+5726534 30 Jan 2017 DCT IGRINS 0.82 17.6 0.8

6Deshpande et al. (2013)
7Davison et al. (2015)
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2MASS name Observation Telescope Instrument Prot v sin i σv sin i Previous Previous Reference
Date (UT) (d) (km/s) (km/s) v sin i σv sin i

J07555396+8323049 11 May 2017 HJS8 IGRINS 1.107 13.4 1.2
J08012112+5624042 11 Nov 2017 DCT IGRINS 0.117 66.0 0.5
J08055713+0417035 10 Nov 2017 DCT IGRINS 0.176 29.7 1.5
J08212804+5220587 12 Nov 2017 DCT IGRINS 0.472 12.7 0.4
J08294949+2646348 28 Jan 2017 DCT IGRINS 0.459 9.6 0.8 8.1,10.5,11.4 1.1,1.5,0.7 D989,R17,F17
J08505062+5253462 6 Nov 2017 IRTF iSHELL 1.754 9.6 1.1 13.1 0.7 J09
J08593592+5343505 29 Jan 2017 DCT IGRINS 0.581 26.9 0.8
J09002359+2150054 30 Jan 2017 DCT IGRINS 0.439 15.5 0.4 20.0,14.3,15.0 0.6,1.5,1.0 J09,R17,F17
J09245082+3041373 10 Nov 2017 DCT IGRINS 0.373 44.9 3.1
J09535523+2056460 30 Jan 2017 DCT IGRINS 0.615 10.1 0.6 16.5 0.4 J09
J09585650+0558000 29 Jan 2017 DCT IGRINS 0.453 22.3 0.4
J09591880+4350256 30 Jan 2017 DCT IGRINS 0.755 22.5 0.7
J10011109+8109226 11 May 2017 HJS IGRINS 0.302 21.3 3.1
J10024936+4827333 29 Jan 2017 DCT IGRINS 0.268 18.4 0.4
J10030191+3433197 30 Jan 2017 DCT IGRINS 0.859 11.9 0.2
J10204406+0814234 10 Nov 2017 DCT IGRINS 1.087 17.1 1.0
J10252645+0512391 12 Nov 2017 DCT IGRINS 0.102 59.9 2.1
J10521423+0555098 30 Jan 2017 DCT IGRINS 0.692 13.6 0.4 19.1 0.2 J09
J11005043+1204108 30 Jan 2017 DCT IGRINS 0.298 28.6 1.3 26.5 0.8 D13
J11224274+3755484 8 May 2017 HJS IGRINS 0.358 13.3 0.8
J11432359+2518137 10 Nov 2017 DCT IGRINS 1.326 13.5 0.9 13.7 0.9 F17
J11483548+0741403 28 Jan 2017 DCT IGRINS 0.708 14.0 0.5
J12041256+0514128 29 Jan 2017 DCT IGRINS 0.154 23.0 0.5

8Harlan J. Smith
9Delfosse et al. (1998)
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2MASS name Observation Telescope Instrument Prot v sin i σv sin i Previous Previous Reference
Date (UT) (d) (km/s) (km/s) v sin i σv sin i

J12185939+1107338 30 Jan 2017 DCT IGRINS 0.491 16.3 0.4 9.2,15.6 1.9,0.8 D98,F17
J12265737+2700536 28 Jan 2017 DCT IGRINS 0.733 4.0 0.7 13.5 0.6 D13
J13003350+0541081 29 Jan 2017 DCT IGRINS 0.6 16.9 0.5 16.8,15.6 2.1,0.8 D98,F17
J13093495+2859065 28 Jan 2017 DCT IGRINS 0.215 48.6 1.1 51.3 1.5 F17
J13533877+7737083 - - - 1.231 - - 8.9 1.5 R17
J14224340+1624464 29 Jan 2017 DCT IGRINS 0.889 8.0 0.5
J14311348+7526423 30 Jan 2017 DCT IGRINS 0.631 14.3 0.4
J15163731+5355457 30 Jan 2017 DCT IGRINS 0.525 19.2 0.4
J15164073+3910486 30 Jan 2017 DCT IGRINS 0.581 16.3 0.4
J16400599+0042188 - - - 0.311 - - 31.0 0.8 F17
J16402068+6736046 - - - 0.378 - - 10.8 0.7 F17
J18021660+6415445 11 May 2017 HJS IGRINS 0.28 10.3 0.9 11.3,13.2 1.5,1.2 R17,F17
J18315610+7730367 - - - 0.861 - - 15.8 0.7 F17
J18481752+0741210 - - - 2.756 - - 2.4 1.5 R17
J19510930+4628598 May 2017 HJS IGRINS 0.593 22.9 0.5 22.1 0.9 F17
J20045709+0321076 17 Oct 2016 DCT IGRINS 0.788 12.0 0.5
J22482247+1232105 17 Oct 2016 DCT IGRINS 0.633 7.7 1.1
J22502051+5136265 24 Sept 2017 DCT IGRINS 0.883 11.0 0.5
J22541111+2527562 18 Oct 2016 DCT IGRINS 0.356 8.7 0.5
J23025250+4338157 18 Oct 2016 DCT IGRINS 0.348 29.0 1.5
J23270216+2710367 25 Sept 2017 DCT IGRINS 0.922 13.0 0.5
J23310587+084231410 25 Sept 2017 DCT IGRINS 1.647 9.1 0.8
J23383392+0624518 19 Oct 2016 DCT IGRINS 0.251 31.7 1.1
J23512227+2344207 - - - 3.211 - - 5.2 0.9 F17

10Spectroscopic Binary
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2MASS name Observation Telescope Instrument Prot v sin i σv sin i Previous Previous Reference
Date (UT) (d) (km/s) (km/s) v sin i σv sin i

J23545147+3831363 - - - 4.755 - - 3.6 1.5 R17
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In Bayesian inference, oftentimes there are parameters in the model that are not

parameters of interest— called nuisance parameters. There are two such parameters

in my analysis. The first is a cutoff in the sin i value. By using spot modulation to

determine stellar rotation periods, an inclination bias may have been introduced into

the sample since stars with pole-on orientations are not detectable: the spots do not

rotate into and out of view and therefore do not cause photometric modulation. I

used the variable κ to represent the cutoff below which I do not measure any sin i

values. The linear limb darkening coefficient (µ), which was used as an input to the

v sin i kernel, was treated as the second nuisance parameter. In Section 4.4.2 I show

how I marginalized over these parameters so they are not included in the final results,

but for now I leave them in the analysis.

I determined the most likely value of η using Bayes’ theorem. Following the

notation of Gregory (2005), I construct the following form of Bayes’ theorem:

p(η, µ, κ|Rsini,Rp) =
p(η, µ, κ|Rp) p(Rsini|η, µ, κ,Rp)

p(Rsini|Rp)

=
88∏
j=1

p(η, µ, κ|Rp,j) p((R sin i)j|η, µ, κ,Rp,j)

p((R sin i)j|Rp,j)
,

(4.2)

where the subscripted and unbolded symbols represent values for an individual star,

which are each multiplied together in the product to get the posterior probability

function, (p(η, µ, κ|Rsini,Rp)). The posterior probability function is a probability

distribution for different values of η (and κ, µ), given the data (Rsini) and assuming

that Rp is correct. The most likely value of η is given by the peak of the posterior

probability function. Any previously known information about inflation can be in-

corporated into the prior, p(η|Rp). Because I did not have much information on how

likely different inflation values were, I used a uniform prior for the analysis (the
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Table 4.2. Radius prediction methods

Method Name MKs - Mass Mass - Radius MKs - Radius Reported in
Reference Reference Reference

Benedict+Boyajian Benedict et al. (2016)∗ Boyajian et al. (2012)∗ None None
Mann15 None None Mann et al. (2015)∗ None

Dittmann14 Delfosse et al. (2000)∗ Boyajian et al. (2012)∗ None Dittmann et al. (2014)
Newton16 Delfosse et al. (2000)∗ Bayless & Orosz (2006)∗ None Newton et al. (2016)

Benedict+Dartmouth Benedict et al. (2016)∗ Dotter et al. (2008) † None None
Dartmouth None None Dotter et al. (2008)† None

Benedict+Padova Benedict et al. (2016)∗ Bressan et al. (2012)† None None
Benedict+MIST Benedict et al. (2016)∗ Choi et al. (2016)† None None
Benedict+BHAC Benedict et al. (2016)∗ Baraffe et al. (2015)† None None

∗Empirically derived relation

†Stellar Evolutionary Model
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exact choice of prior is discussed in more detail in Section 4.5). The likelihood

function is given by p(Rsini|η, µ, κ,Rp) and is the probability of obtaining the data.

Lastly, p(Rsini|Rp) is the normalization factor and is the integrated probability over

all values of η, µ and κ, within their respective prior boundaries.

4.4.1 Constructing the Likelihood Function

To construct the likelihood function, I combined a series of probability distribu-

tion functions (PDFs) to determine p((R sin i)j|η, µ, κ,Rp,j) for each star. Here I will

not discuss the nuisance parameters, µ and κ, Discussion of µ and κ will be given in

the next section (4.4.2). For the remainder of this section, I used the radii obtained

using the Dittmann et al. (2014) method from Table 4.2 as Rp, and in Section 4.5 I

show the results from other radius predictions.

I followed the formalism of Gregory (2005) for combining PDFs to construct the

likelihood functions. I start by defining the variables I used throughout:

x = sin i (4.3)

y = (R sin i)j (4.4)

z = η ×Rp,j sin i (4.5)

where x and z are variables with different probabilities and y is my measurement.

I calculated the PDFs for x and, subsequently, z. The PDFs are written using the

notation fX(x), where X is the proposition that the value x is within x+ dx.

fX(x) =
x√

1− x2
dx (4.6)
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fX(x) gives the geometric probability of measuring sin i, assuming a randomly ori-

ented rotational axis with uniform probability over a sphere. The PDF for z is more

complicated, and I first combined the PDFs of Rp,j and x. The PDF of Rp,j is a

normal Gaussian of the form:

fRp(r) =
1√

2πσ2
r,j

exp
−(r − ηRp,j)

2

2σ2
r,j

(4.7)

where σr,j is the uncertainty associated with each radius estimate (here 5%;

Dittmann et al. 2014). fX(x) and fRp(r) are then combined using a product dis-

tribution.

fZ(z) =

∫ ∞
−∞

fX(x)fRp(z/x)
1

|x|dx (4.8)

I combined the measurement uncertainty associated with y with the PDF to create

the final likelihood function for an individual star. I combined the measurement

uncertainties with fZ(z) using a convolution given by

p((R sin i)j|η, µ, κ,Rp,j) =

∫ ∞
−∞

dzfZ(z)fE(y − z) (4.9)

where fE(y−z) is the PDF of the measurement uncertainty and given by the following

normal Gaussian distribution

fE(y − z) =
1√

2πσ2
m,j

exp
−(y − z)2

2σ2
m,j

(4.10)

where σm,j is the uncertainty associated with each of my (R sin i)j measurements,

and includes both the propagated uncertainties in my v sin i measurements and the

uncertainties in the periods reported by Newton et al. (2016). Combining Equations
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4.10 and 4.8 with Equation 4.9, I obtained the final equation for the likelihood

function

p((R sin i)j|η, µ, κ,Rp,j) =

∫ z=∞

z=−∞

∫ x=1

x=0

1√
4π2σ2

m,jσ
2
r,j

x√
1− x2

1

|x|×

exp

(−(z/x− ηRp,j)
2

2σ2
r,j

+
−(y − z)2

2σ2
m,j

)
dz dx.

(4.11)

Since Equation 4.11 cannot be integrated analytically, I integrated it numer-

ically using the scipy integrate.dblquad function, which is specifically tailored

for numerical integration of double integrals. The value returned by the integral for

p((R sin i)j|η, µ, κ,Rp,j) is the probability of the data given the model for one single

(R sin i)j measurement. I repeated this integration for each object and combined the

probabilities by multiplying all the individual probability values together. Then, to

construct the likelihood function I again repeated the process for the entire range of

η to obtain a probability of measuring the data for each η in the inflation range.

4.4.2 Marginalizing Over Nuisance Parameters

To remove the nuisance parameters from the final likelihood function, I inte-

grated over them to create a marginalized likelihood function. This is given mathe-

matically by the following:

p(η|Rsini,Rp) =

∫ κ=0.4

κ=0.0

∫ µ=0.4

µ=0.3

dκ dµ p(η, µ, κ|Rsini,Rp) (4.12)

I first explored the sin i distribution bias (κ). I cut off the tail of the sin i PDF

used in the likelihood function analysis at a range of sin i values from 0.0 through

0.4. The PDFs for the R sin i distributions for a single star are shown in Figure 4.4.
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Fig. 4.4: Probability distribution functions of R sin i for a single star. This star
was assigned a radius of 0.2 RSun. The purple line (sin i cutoff of 0.0) shows the
full R sin i expected distribution that I used in all my previous analyses. Larger sin i
cutoffs show what the PDF would look like if I assumed that the sample from Newton
et al. (2016) did not include stars with inclinations close to pole-on. The larger the
sin i cutoff, the more biased the sample is against pole-on inclinations.

Following in my likelihood analysis as before, I created likelihood functions,

but this time for a range of sin i cutoff values. The resulting likelihood functions are

shown in Figure 4.5. The figure shows that the most likely sin i cutoff is 0.2, meaning

that the Newton et al. (2016) sample does not include stars with inclinations within

∼ 12◦ of pole-on. Given my data, it is unlikely that there exists a sin i cutoff &0.25,

and there exists a sharp drop off in probability at this point.

I integrated over κ at each value of η and plotted the marginalized likelihood

function in Figure 4.6. Also plotted in the same figure is the original likelihood

function where I did not consider the effects of a sin i cutoff. I found that there is

a slight shift in the likelihood function to smaller values of radius inflation, however
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Fig. 4.5: Likelihood functions for a range of sin i cutoff values. By looking at a single
sin i cutoff row, it is clear that the likelihood function peaks around 5% inflation,
consistent with my previous results. There is also a maximum probability at a sin i
cutoff of 0.2, with a sharp drop-off after 0.25.

this shift is smaller than the resolution of the grid and significantly smaller than the

error bars. Therefore, the effects from any sin i bias present in literature rotation

periods are not significant and are not the cause of the measured radius inflation.

I performed the same analysis for the limb darkening coefficient as I did for the

sin i cutoff value. According to Claret et al. (2012), my stellar sample covers a range

of linear limb darkening coefficients from µ ∼ 0.3− 0.4 for observations in K-band. I

therefore calculated v sin i values for a range of linear limb darkening coefficients from

0.3 to 0.4 and integrated over the limb darkening coefficients to obtain a marginalized

likelihood function. I was left with a likelihood function that depends only on the

parameter of interest (η). I show the likelihood functions for different values of µ

and the marginalized likelihood function in Figure 4.7.
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Fig. 4.6: Marginalized likelihood function (red) and original likelihood function
(blue). The peak of the likelihood function is shifted slightly to lower radius inflation
values for the marginalized likelihood function, however the shift is less than 0.5%
(the resolution of our grid), and both functions peak at the same radius inflation
value.

4.5 Results

Here, I performed the same steps of constructing a likelihood function but in-

stead of using the radius values in Dittmann et al. (2014), I used other radius values

and relations. The results of my Bayesian analysis for each method are shown in Fig-

ure 4.8. This figure shows that the least amount of discrepancy between the observed

data and results is Benedict+Boyajian, which combines the most recent empirically

derived mass and radius relations. All of the empirical relations show better agree-

ment between the observed data and radius predictions than the radius predictions

that utilize stellar evolutionary models.

To determine the statistical significance of whether an inflated model is pre-

ferred, I employed both the odds ratio and the Bayesian information criterion (BIC).
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Fig. 4.7: The resulting likelihood functions using a linear limb darkening coeffi-
cient of 0.3 (red) and 0.35 (yellow) and 0.4 (magenta), and the likelihood function
marginalized over the limb darkening coefficient (grey). By using a limb darkening
coefficient at the top and bottom of the range set by my stellar sample, the peak
likelihood is changed by ∼ 1%. This value is within the 1-sigma error bars for the
likelihood function.

The odds ratio tests the relative probabilities of two theories and takes into account

both likelihoods and priors. This serves to penalize theories that are more complex

and explore more parameter space, however it can be a problem if the prior is not

well defined, since different priors can significantly change the odds ratio. As stated

previously I used a uniform prior since I did not have much specific prior information

on inflation. In this case, the odds ratio is equal to the Bayes factor (B10). The BIC

on the other hand is an approximation of the log of the Bayes factor, but does not

require a prior. It still penalizes complex theories, however, by taking into account

the number of free parameters.

I used the equation for the Bayes factor derived in Eq. 3.24 of Gregory (2005):
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Fig. 4.8: Results from the marginalized likelihood PDFs for the different radius
estimates in Table 4.2. The central blue point for each method denotes where the
peak of the likelihood function falls. The error bars are one sigma error bars and
show where 68% of the combined probability lies. All of the methods that use
empirical relations instead of stellar evolutionary models show significantly lower
levels of discrepancy between the data and the predicted radius values.

B10 ≈
L(η̂)δη

L(η0)∆η
, (4.13)

where η is the free parameter (the inflation percent in this case), L(η̂) is the likelihood

at the maximum inflation, L(η0) is the likelihood at 0% inflation, δη is the RMS about

the maximum inflation of the likelihood function, and ∆η is the width of the uniform

prior. I tried two different priors. For prior 1, I chose the radius inflation range to be

between 0 and 15% since these are the results often quoted from EBs (e.g., Torres

& Ribas 2002). For the second prior I used the entire explored range of parameter

space (from −10% to 25%, where the negative sign denotes a deflated radius).
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Table 4.3. Significance of radius inflation

Method Name Radius Under- Odds Ratio P-value Odds Ratio P-value ∆BIC Statement of
prediction (%) (Prior 1) (Prior 1) (Prior 2) (Prior 2) Significance

Benedict+Boyajian 5+2.5
−2 0.991 - 0.431 - -0.424 No evidence

of inflation
Mann15 6.5+2.5

−2 3.33 0.032 1.45 0.12 0.788 Positive evidence
of inflation

Dittmann14 6+3
−2 2.966 0.038 1.290 0.15 0.567 Positive evidence

of inflation
Newton16 7+3

−2 8.882 0.009 3.862 0.026 1.663 Positive evidence
of inflation

Dartmouth 12.5+3.5
−2.5 2.9× 103 1.11× 10−5 1.27× 103 2.76× 10−5 7.276 Strong evidence

of inflation
Benedict+Dartmouth 13 +3

−2.5 8.37× 104 2.92× 10−7 3.64× 104 7.14× 10−7 10.72 Very Strong evidence
of inflation

Benedict+Padova 16.5+3
−2 1.48× 107 1.21× 10−9 6.45× 106 2.9× 10−9 16.0 Very Strong evidence

of inflation
Benedict+MIST 10+3

−2 240.8 1.76× 10−4 104.7 4.57× 10−4 4.96 Strong evidence
of inflation

Benedict+BHAC 12.5+3
−2 1.97× 104 1.38× 10−6 8.57× 103 3.41× 10−6 9.27 Strong evidence

of inflation
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To calculate the BIC I used the Schwarz criterion as stated in Kass & Raftery

(1995):

BIC = −2× ln(L(η)) + k × ln(N), (4.14)

where k is the number of free parameters (one for the model with inflation and zero

for the model with a fixed inflation of 0%) and N is the sample size. I then calculated

the BIC for both L(η̂) and L(η0) and subtracted them to obtain ∆BIC. As stated in

Kass & Raftery (1995), ∆BIC is approximately equal to two times loge of the Bayes

factor. Kass & Raftery (1995) also provide a detailed analysis of the way in which

both the Bayes factor and the BIC translate to statements of statistical significance.

Finally, to allow for easier interpretation of the results, I translated our Bayes

factors into frequentist p-values using the equation Bij = −(e p ln(p))−1, where

p is the p-value and p < e (Sellke et al. 2001). The results are summarized in

Table 4.3. I found that all three predictions that involve stellar evolutionary models

show ‘Strong’ to ‘Very Strong’ evidence that the observed M dwarf stars are larger

than model radius estimates. The radii reported in both Newton et al. (2016) and

Dittmann et al. (2014) show 2- to 3-σ levels of discrepancy between the quoted radii

and the measured radii (where the measured radii are on average 6− 7% larger than

reported radii). However, when I used the newest empirical relations from Benedict

et al. (2016) and Boyajian et al. (2012) I found that neither the odds ratios nor the

BIC can rule out the null hypothesis (i.e., that there is no inflation). Even though the

maximum likelihood occurs for radii 5% larger than the relations predict, the increase

in total probability is insufficient to overcome the penalty imposed by adding a free

parameter.
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4.6 Potential Biases

To ensure that my results are accurate and that there was no bias in the sample,

I explored all of the possibilities I imagined where this could occur.

4.6.1 Differential Rotation

Because spots are primarily located at high latitudes on M dwarf stars (Barnes

et al. 2015), and v sin i measurements are primarily sensitive to equatorial rotation,

any discrepancies between the measured v sin i values and spot modulation periods

could be due to differential rotation. However, both observations and models of

differential rotation on low-mass, rapidly rotating stars yield extremely small shear

values which cannot account for the discrepancies that I found. Using Kepler data of

more than 10,000 stars, Reinhold & Gizon (2015) showed that there is a relationship

between the horizontal rotation shear and the rotation period, where stars with faster

rotation periods exhibited smaller shears. Reinhold & Gizon (2015) also found that

stars categorized as having the most stable rotation period (deviations less than 0.001

days) all had periods of less than 10 days, and the distribution peaked at periods

less than 1 day. This same result has also been found previously with smaller data

sets (e.g., Hall 1991; Donahue et al. 1996).

A relationship between differential rotation and effective temperature was found

by Barnes et al. (2005), where stars with cooler effective temperatures were found to

have less differential rotation. Models of differential rotation provide further evidence

that the shear decreases with increasing rotation period and decreasing mass (Küker

& Rüdiger 2011). Therefore my sample of low-mass rapidly rotating stars should

have little, if any, differential rotation since I am exploring the parameter space that

is least affected by rotational shears. In Figure 4.9 I show the relation from Reinhold



121

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Pole Rotation Period (days)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
q
u
a
to

r 
R

o
ta

ti
o
n
 P

e
ri

o
d
 (

d
a
y
s)

Empirical Differential Rotation: Reinhold +2015
No Differential Rotation

Fig. 4.9: The polar rotation period (minimum rotation period) determined through
spot modulation and reported in Newton et al. (2016) versus the equatorial rotation
period (maximum rotation period) determined through our v sin i measurements.
The solid line, where both periods are the same, is the expected result for no differ-
ential rotation. The dotted line shows the relation from Reinhold & Gizon (2015).
The empirical relation from Küker & Rüdiger (2011) has even smaller deviations from
the line showing no differential rotation, therefore I do not display it on this plot.
A target with a large deviation between the rotational and v sin i period is shown
in blue, with observed errors. To calculate an equivalent period from the measured
v sin i I assumed sin i = 90◦, which gave the largest equivalent period (i.e., minimizes
the difference between the two periods). I can conclude that differential rotation
cannot account for the observed discrepancy.

& Gizon (2015) to illustrate that differential rotation cannot account for the larger

rotational broadening values compared to rotational periods.

4.6.2 Isochrone Age and Metallicity

Since the stars in my sample are rapid rotators and are magnetically active,

they are also likely to be young. There is evidence that M dwarf stars do not follow

an exact Skumanich-like relation between rotation period and age (Skumanich 1972).

Rather, instead a rotation period dichotomy exists for these objects (Newton et al.
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2016). West et al. (2008) found that, up to an age of 5−7 Gyr, fully convective M

dwarf stars can continue to be magnetically active and retain rotation periods of

less than 10 days. After an age of 5 − 7 Gyr, it appears that these objects shed

angular momentum and they rapidly migrate to rotational periods that are greater

than ∼30 days (Newton et al. 2016). This makes precise gyrochonology difficult for

these stars. However, for M dwarfs it is well established that rapid rotators are on

average younger than are slow rotators (West et al. 2008, 2015). I therefore did not

explore the use of isochrones with ages greater than 5 Gyrs.

I explored a number of scenarios with isochrones of younger ages. Using a 1 Gyr

isochrone from the Dartmouth models, I found almost the same likelihood function,

however with a 0.5% increase to even higher levels of inflation. Both the MIST and

BHAC models offer isochrone grids down to ages of a few million years. I found

changes of less than 1% in the most likely inflation at an age of 500 Myrs for both

sets of models. At 250 Myrs, the MIST models return an η of 4.5%, which is no

longer statistically significant. Performing the same analysis for the BHAC models,

I found that at 200 Myrs I still measured an η value of 9%, and it was not until

120 Myrs that I no longer measured a statistically significant value of η. It is highly

unlikely that all of the stars in the sample are this young since none of the stars

are associated with star clusters or moving groups, and parallax measurements from

Dittmann et al. (2014) indicate that the stars are located on the main-sequence.

Further evidence that age is not the sole contributing factor of the observed inflation

comes from comparison with rotation periods that are seen in young clusters such

as the Pleiades and NGC 2516. For mid-to-late M dwarfs, neither of these young

(∼ 120−150 Myrs) clusters are observed to contain stars with rotation periods longer

than about 1.5 to 2 days (Scholz et al. 2011; Rebull et al. 2016a,b), however many of

the stars in my sample that have the largest observed mismatch between the rotation
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period and the rotational broadening have rotation periods in the 1 − 5 day period

regime and are therefore probably older than 150 Myrs. It is possible that some of the

stars have ages of 200− 300 Myrs since they would be almost indistinguishable from

main-sequence stars and some of the measured inflation could be due to age. This

would not, however, explain the similarity between the R sin i distribution and radii

from interferometry, which are measured on older, slowly rotating stars. Therefore,

the majority of the observed inflation is not due to age.

In a study of the metallicity of the MEarth sample, Newton et al. (2014) found

the average metallicity of the rapidly rotating stars to be 0.14± 0.1 dex. Therefore,

in my analysis I adopted a metallicity of 0.14 dex when comparing to isochrones. I

found that, by using a solar metallicity isochrone, the average inflation changed by

1 − 1.5%. Since this change in metallicity is more than one standard deviation and

it can only account for a small amount of the observed inflation, I conclude that

metallicity alone cannot be responsible for the inflation I find in my sample.

4.6.3 Microturbulence

Microturbulence is another mechanism by which the spectra of stars can be

broadened, and some of the broadening I measured could be due to microturbulence

rather than rotational broadening. This would not be a problem if microturbulence

affected the spectra of the slowly rotating templates and the rapid rotators to the

same degree. However, microturbulence could potentially affect the spectra of the

young rapid rotators to a greater degree. I performed a simple order of magnitude

test to determine the degree to which microturblence would be required to relieve the

5− 6% discrepancy between empirical relations and our R sin i measurements. For a

simple order of magnitude estimate, I assumed that microturbulence and rotational

broadening added in quadrature. I then estimated that the total broadening (vtot)

is related to the broadening from microturblence and rotation as follows: vtot =
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√
v2
rot + v2

micro. I found that in order to negate a 5% offset between data and empirical

relations or models, microturblence needed to contribute 4 km/s of broadening. Since

microturbulence is estimated to contribute 1−2 km/s of broadening to low-mass stars

(Reid & Hawley 2005), it is unlikely that the entire offset between empirical relations

and my measured R sin i values is due to microturbulence. However, a 1−2 km/s of

broadening could account for about 0.5−1.5% of the discrepancy between the radius

prediction methods and the data, and the true values of η for each method (see

Figure 4.8) could be about 0.005-0.015 smaller.

4.7 Discussion

I found that stellar evolutionary models under-predict the radii of low-mass stars

by between 10 and 16.5% depending on the model, and that including radius inflation

is strongly favored over model predictions that lack radius inflation. This is higher

than the average inflation seen in EB systems (∼ 5% from a literature compilation

in Han et al. 2017), so I tested whether this inflation was consistent over the whole

mass range. I split the data into two mass bins containing a roughly equal number

of targets, one with stars with masses in the range 0.08MSun < M < 0.18MSun and

the second with stars with masses in the range 0.18MSun < M < 0.4MSun. I then

computed separate likelihood functions for each of these, results of which are shown in

Figure 4.10. Compared to different stellar evolution models, I found that the higher

mass bin had an average radius inflation of 5−7+4.5
−3.5%, which is consistent with results

from EBs. In the lower mass bin, I found that the average inflation was 13−17.5+4
−3%

depending on the model used. In this low mass range there are few known EBs and

only two stars with long baseline optical interferometry measurements with which to

calibrate models.
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Fig. 4.10: Same as Figure 4.8, but with the stellar sample split into two similarly
sized mass bins. The lower mass bin contains stars with 0.08MSun < M < 0.18MSun,
while the higher mass bin contains stars with 0.18MSun < M < 0.4MSun. I find
that the lower mass stars are significantly more inflated than the higher mass stars
when compared to models. The lower mass stars are inflated by 13+4

−3% compared to
the MIST models and 17.5+3.5

−3 % compared to the Dartmouth models, and 15.5+4
−3%

compared to the BHAC models. The higher mass stars are only inflated by 5.5+4.5
−3 %

compared to MIST models, 7+4.5
−3.5% compared to the Dartmouth models, and 7.5+5

−3%
compared to the BHAC models. The empirical relations do not show the same trend
that the lower mass stars are more inflated than the higher mass stars and for both
empirical relations the points are within one standard deviation of each other.

The radius inflation I find for the higher mass bin is consistent with that found

for in partially convective EBs, so I conclude that radius inflation is not a symptom

of binarity (or the way in which parameters are extracted from EBs). I also find that

there is no significant change in the amount of inflation compared to models across

the fully convective boundary, and that the higher mass bin shows similar levels

of inflation as to partially convective stars. However, for stars at the very end of
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the main sequence, stellar evolutionary models severely underestimate stellar radii.

While this could be an issue of age (i.e., the lowest mass stars may not have evolved

onto the main sequence yet and are therefore still contracting), it is also possible that

models of the lowest-mass stars are inaccurate. More work is needed to validate this

result and determine why stellar evolutionary models underestimate the radii of the

lowest mass stars by 15− 20%.

Since partially convective and fully convective stars are inflated by similar

amounts, this can be used to provide constraints on models. It is unclear whether

strong magnetic fields can inhibit convection and inflate radii in fully convective stars

to the ∼10% seen here and in EBs. For example, MacDonald & Mullan (2017) state

that they can produce radius inflation at the ∼ 10% level by modeling the stabiliza-

tion of convection with magnetic fields on the order or 10 kG. Feiden & Chaboyer

(2014) argue that if they use a similar method to ?, they require unreasonably large

magnetic fields to inflate the radii by even 5%. The data I present here are con-

sistent with the results from MacDonald & Mullan (2017), but in the scenario put

forth by Feiden & Chaboyer (2014), magnetic spots would be required to produce

the observed inflation in fully convective stars. More exploration of spot modeling

would increase our understanding of the problem and help distinguish between the

two modeling frameworks.

Radii reported in Newton et al. (2016) and Dittmann et al. (2014), and radii

calculated using the relations in Mann et al. (2015) under-predict the radii of the

stars in my sample by 6−7%, but only with a moderate level of statistical significance

(2 − 3σ). When I used the most recent empirical MKs−Mass relation (Benedict

et al. 2016) and Mass−Radius relation (Boyajian et al. 2012), I found no statistically

significant evidence that a model with inflation describes the data better than a

model without inflation. The Mass−Radius relation I used to determine these radii
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was calibrated using slowly rotating stars. Using this relationship on my rapidly

rotating sample returns statistically consistent results, leading me to conclude that

if rotation inflates the radii of fully convective rapidly rotating stars, it does so by

less than 5+2.5
−2 %.

Further evidence that rotation does not significantly affect the radii is given

by the fact that slowly and rapidly rotating stars are inflated by similar amounts

compared to models. I calculated updated mass estimates for Proxima Centauri and

Barnard’s Star using Ks-band magnitudes and distances reported in Boyajian et al.

(2012), and applying the MKs−Mass relation from Benedict et al. (2016). I then

used a relation from the Dartmouth code for solar metallicity and ages of 5 Gyrs

and 10 Gyrs for Proxima Centauri and Barnard’s Star, and found models under-

estimated the radii for both stars by 3-4% compared to the optical interferometry

radius measurements from Boyajian et al. (2012). Further evidence of slowly rotat-

ing mid-to-late M dwarf stars with inflated radii was noted by Irwin et al. (2011),

who measured the radii of a long period (41 day orbital period) EB, and found the

component radii to be inflated by 4%. My bin of higher mass stars is inflated by an

average of between 5 and 7%, depending on the model used, which is consistent with

3−5% radius inflation of slowly rotating stars.

4.8 Summary

Magnetically active, rapidly rotating, fully convective M dwarf stars are on

average 10−16% larger than predictions from stellar evolutionary models. When the

sample is broken up into two mass bins, however, the lowest mass M dwarfs are 15−
17% larger than models, while the larger mass bin is only 5−7% larger than models.

The 5− 7% radius inflation is consistent with previously published results from EBs

and LBOI. I find that the larger radii of the lowest-mass is not completely due to
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their young age because to mitigate any discrepancy with age effects the stars would

have to be significantly younger than expected. Finally, by comparing to empirical

relations I conclude that the Benedict et al. (2016) and Boyajian et al. (2012) relations

are accurate (to an uncertainty of ∼ 5%) for rapidly rotating, magnetically active,

fully-convective M dwarf stars. These relations had not been thoroughly tested at the

very low-mass end of the main sequence until now. Boyajian et al. (2012) explicitly

warned that their relations may not be accurate for spectral types later than M4.

My work therefore provides evidence that the relations hold to within uncertainties

of ∼ 5%, even at the end of the main sequence (M ∼ 0.08MSun) for the most rapidly

rotating and magnetically active stars.
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Chapter 5

Can Starspots Explain Magnetic Stellar
Inflation?

5.1 Introduction

Magnetic spots are cool regions of suppressed flux and enhanced magnetic fields

on the surface of the Sun and other stars. Spots have been directly detected on the

Sun for hundreds of years, and more recently they have been detected on the surfaces

of other stars (e.g., Monnier et al. 2007). If the surface of a star is spotted, spots

rotate in and out of view as the star rotates, and a periodic change in brightness will

occur. Periodic rotational modulation has been measured in thousands of M dwarfs,

demonstrating the spotted nature of these stars (McQuillan et al. 2013; Newton et al.

2016). The fact that M dwarf stars are spotted is unsurprising given the fact that

they host strong magnetic fields (see Section 1.3.3), and starspots are a manifestation

of concentrated magnetic energy.

Determining precise spot temperatures, spot covering fractions, and spot config-

urations on M dwarf surfaces is significantly more complicated than solely deducing

their presence. Some insight into spot properties can be gained by analyzing the vast

light curve data sets that show rotational modulation of M dwarf stars. Jackson &

Jeffries (2013) analyzed Kepler light curves and predicted the sizes and distributions

of spots on the surfaces of M dwarfs. Newton et al. (2017) found a relation between

Hα equivalent width and the semi-amplitude of rotational modulation of mid-to-late
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M dwarf stars. They found that as the Hα equivalent width became more negative

(more emission and hence more magnetically active), the semi-amplitude of rota-

tional modulation increases. That is, as the stars become more magnetically active,

they have higher spot covering fractions and show more rotational modulation. New-

ton et al. (2017) found that this relation held true for all but the most active stars,

where the relation reversed, and an increase in magnetic activity lead to smaller

semi-amplitudes of rotational modulation. Newton et al. (2017) interpreted this as

evidence that the most magnetically active stars have spot covering fractions ≥ 50%.

Single light curves can also be analyzed in more depth by using computationally in-

tensive programs to gain insight into spot parameters, instead of analyzing vast sets

of light curves with simple diagnostic statistics (e.g., Davenport et al. 2015; Morris

et al. 2018).

Vogt (1979, 1980) and Ramsey & Nations (1980) were the first to use spectral

features to infer starspot properties on the surfaces of solar-type stars. Since the stars

in the studies were solar-type stars, absorption from molecules should not have been

present in the spectra due to the fact that molecules can only form in the atmospheres

of stars with surface temperatures below ∼4000 K. Nevertheless, TiO was detected

in absorption in the spectra of many Sun-like stars, which was attributed to the

presence of a cooler spot spectrum.

This technique has been used more recently to estimate spot covering fractions

for hundreds of G, K, and early-type M dwarfs in the Pleiades cluster (Fang et al.

2016). Fang et al. (2016) concluded that active M dwarf stars have spot covering

fractions of 40− 50%. Fang et al. (2016) also found evidence for spot temperatures

that were about 500 K less than the quiescent photosphere temperatures on early-

type M dwarf stars. Unfortunately, this technique becomes impossible for mid-to-late
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M dwarf stars because TiO already dominates their spectra, making it difficult to

constrain spot parameters by using its strength.

Gully-Santiago et al. (2017) used an approach similar to the TiO method to

measure spectral signatures from a cool spot or cool spots on the surface of a T Tauri

star. However, instead of simply using the TiO band, they used the entire H and

K spectral bands and modeled the spectrum as a combination of a hot photosphere

and a cool spot. Because this technique uses large regions of wavelength space, it

has higher potential to be applicable to later-type M dwarf stars since it does not

rely on a single molecular band such as TiO, which becomes saturated for cooler M

dwarfs.

Finally, Barnes et al. (2015) used a new spectral analysis technique and pub-

lished starspot properties for an M5 dwarf and an M9 dwarf. Using a spectral

resolution of ∼90,000 Barnes et al. (2015) reconstructed Doppler imaging maps from

small radial velocity jitters produced by starspots on the surfaces of these two fully

convective M dwarf stars. Their study found that the best fit spot temperatures were

of order 200 to 300 K less than the best fit photosphere temperatures.

In Chapter 4, I showed that rapidly rotating, magnetically active, fully con-

vective M dwarf stars are on average 10 − 16% larger than model determination.

As discussed in Section 1.6.2, Chabrier et al. (2007) predicted that spots are the

primary mechanism that can inflate the radii of fully convective stars, because de-

creasing the mixing length parameter has little to no effect on their radii. In this

chapter I will show how I determined a spot temperature and spot covering fraction

for a single rapidly rotating, magnetically active, fully convective M dwarf, using

an approach similar to that of Gully-Santiago et al. (2017). I then compared the

measured spot temperature and spot covering fraction to model predictions of the

temperature to determine whether the radius discrepancy could be solely attributed
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to spots or whether another mechanism of radius inflation was necessary to resolve

the observed radius inflation.

5.2 Target Selection

I performed the starspot analysis on a single star, 2MASS J23270216+2710367.

In the future I plan to extend this work to multiple stars, but that is not within the

scope of this dissertation. The target was selected from my sample of fully convective

rapidly rotating M dwarfs in Chapter 4. The data used in this Chapter are the same

as the data used in Chapter 4; i.e., high resolution H- andK-band spectra taken with

the IGRINS instrument on the Discovery Channel Telescope. For more information

about the observation and data reduction technique, see Section 4.3.1.

Since this initial analysis was to be performed on only a single star, I chose

a star that represented the best case scenario for spot detection: the highest spot

covering fraction and the highest spot to photosphere temperature contrast. All of

the stars in my sample had clearly detected rotation periods and, so, they are all

spotted to some extent since a rotation period can only be detected as spots rotate

into and out of view. However, to choose a star with a high spot covering fraction, I

limited my selection to the most magnetically active stars, since Newton et al. (2017)

demonstrated that magnetic activity and spot covering fractions were directly corre-

lated. Newton et al. (2017) measured Hα equivalent widths for a large portion of the

MEarth sample, so I selected only targets that had Hα equivalent width measure-

ments less than -6 Å, which represented the most magnetically active ∼ 10% of all

the stars from my sample. Fang et al. (2016) measured a trend in spot to photosphere

temperature contrast, where the higher the photosphere temperature the larger the

spot to photosphere temperature contrast. Although this relation was mostly for G-

and K-type stars, as an initial guess I assumed this was the case for M dwarfs as well.
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I therefore selected the star with the highest estimated mass (while still being below

the fully convective limit of ∼ 0.35 MSun) that satisfied the Hα equivalent width cut.

The star meeting these criteria was 2MASS J23270216+2710367.

5.3 Properties of 2MASS J23270216+2710367

5.3.1 Empirically Derived Parameters

2MASS J23270216+2710367 was classified as an M5 dwarf with a metallicity of

0.11± 0.1 by Newton et al. (2014). Newton et al. (2016) measured a rotation period

of 0.922 days, and Newton et al. (2017) measured an Hα equivalent width of -8.63

Å and a radial velocity of −4± 4 km/s. I measured a rotational broadening (v sin i)

of 13 ±0.5 km/s for this object (Kesseli et al. 2018). Using the 2MASS Ks-band

magnitude of 9.421 and the Gaia distance of 33.465 pc (Bailer-Jones et al. 2018), I

calculated an absolute Ks-band magnitude of 6.798. I used the MKs–Radius relation

I obtained in Chapter 3 (Equation 3.7) and the calculated metallicity to derive a

radius of 0.334 RSun. I used the MKs–Mass relation from Benedict et al. (2016) to

calculate a mass of 0.34 MSun. Finally, using Equation 4.1, I estimated the inclination

to be 57◦ (where 0◦ is parallel to the rotation axis).

I was also able to obtain information on the Teff of 2MASS J23270216+271036

from a previously published value in the literature and by using a new empirical color-

to-effective temperature relation. Newton et al. (2015) used equivalent widths of

temperature sensitive features in the H-band to estimate a temperature of 3251± 86

K for 2MASS J23270216+2710367. Mann et al. (2015) found that a V − J color

relation, which included a metallicity dependence, could predict the Teff with an

uncertainty of only 43 K. I used this relation to estimate a Teff of 3216.4± 43 K for

2MASS J23270216+2710367. It is important to note that while previous studies have

been able to derive an estimate of Teff , they could not distinguish between a spot
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temperature and a photosphere temperature, reporting only a single temperature for

the star. With only a single temperature reported for the star and no spot covering

fraction, it is impossible to distinguish between global inhibition of convection and

local inhibition of convection through spots.

5.3.2 Parameters Estimated from Stellar Evolution Models

I determined the Teff values that different stellar evolution models predicted so

that I would be able to compare the model Teff values to the Teff values that I mea-

sured. I first calculated the bolometric luminosity of 2MASS J23270216+2710367

and then used models to estimate the effective temperature for the given bolometric

luminosity. It is vital to use the bolometric luminosity to calculate the model temper-

ature because to solve for the radius inflation (Rmodel/Rtrue) using the temperature I

will infer later in this chapter (Ttrue), the bolometric luminosity input into the model

(Lmodel) and the observed bolometric luminosity (Ltrue) need to be the same.

Lmodel

Ltrue

=
4π R2

model σ T
4
model

4π R2
true σ T

4
true

= 1 (5.1)

To calculate the bolometric luminosity I used the method I presented in Section

3.5. Table 5.1 lists all the photometry that I collected to generate an SED. I used the

same quality cuts as in Section 3.5, which lead me to exclude all but the g-band of

Pan-STARRS1 due to saturation and the WISE W4 band due to a low SNR. I then

converted all the magnitudes to fluxes. I tested both integrating directly over the

photometry points, as well as integrating over a BT-SETTL model spectrum that

was anchored to the photometry points. I tested BT-SETTL models with a range

of effective temperatures and metallicities, and I found that changing the model did

not significantly change the calculated bolometric luminosity. Table 5.3 shows the



135

Table 5.1. Photometry of 2MASS J23270216+2710367

band Central Wavelength (µm) Magnitude Uncertainty

SDSS u 0.35 18.134 0.016
SDSS g 0.48 15.657 0.004

Pan-STARRS1 g 0.481 15.4266 0.0047
Gaia B 0.5044 15.0443 0.0037
SDSS r 0.62 14.124 0.003
SDSS i 0.76 12.823 0.000
Gaia R 0.7692 12.0789 0.0019
SDSS z 0.91 11.747 0.004
2MASS J 1.235 10.274 0.021
2MASS H 1.662 9.705 0.022
2MASS K 2.159 9.421 0.018
WISE 1 3.35 9.262 0.022
WISE 2 4.60 9.066 0.019
WISE 3 11.56 8.873 0.027

different bolometric luminosities I calculated for 2MASS J23270216+2710367 using

the slightly different methods.

Next, I used the different bolometric luminosities to estimate model effective

temperatures. I generated isochrones from the Mesa Isochrones and Stellar Tracks

(MIST v1.2; Choi et al. 2016) using the online web interpolator1 and from the Dart-

mouth stellar evolution models using the online web tool2 (Dotter et al. 2008). For

both model grids I used a metallicity of 0.11 dex (Newton et al. 2014). Newton

et al. (2016) determined constraints on MEarth star ages by analyzing the galactic

velocity dispersion for different rotation period bins and found that stars with rota-

tion periods less than a day had an average estimated age of 0.5+0.4
−0.2 Gyrs. However,

this is solely an estimate for the population, and ages of individual low-mass stars

are difficult to determine precisely. The MIST models allow for a wide range of age

inputs, so I tested age values of 0.2, 0.5, 1, and 5 Gyrs. The Dartmouth models offer

1http://waps.cfa.harvard.edu/MIST/interp_isos.html
2http://stellar.dartmouth.edu/models/isolf_new.html

http://waps.cfa.harvard.edu/MIST/interp_isos.html
http://stellar.dartmouth.edu/models/isolf_new.html


136

Table 5.2. Model Effective Temperatures

Lbol MIST Teff MIST Teff MIST Teff Dartmouth Teff

(logLSun) (0.2 Gyr) (0.5 Gyr) (1.0 Gyr) (1.0 Gyr)

Lbol simple -1.8978 3383 K 3382 K 3378 K 3385 K
Lbol BT SETTL high temp. -1.9697 3310 K 3327 K 3322 K 3362 K
Lbol BT SETTL low temp. -1.9259 3354 K 3363 K 3360 K 3377 K

isochrones down to an age of 1 Gyr, so I only tested this single age isochrone for the

Dartmouth models. Table 5.3 shows all the different derived effective temperatures

from the models. All of the temperatures are within 65 K of each other and are

consistent. For the rest of the analysis I used a model temperature of 3359± 25 K,

which represents the mean of all the model temperatures with an uncertainty equal

to the standard deviation between them.

5.4 Starspot Parameter Extraction

To derive starspot and photosphere temperatures, as well as spot filling frac-

tions, I compared individual spectral orders of 2MASS J23270216+2710367 to a

pre-computed grid of PHOENIX model atmospheres (Husser et al. 2013), which are

available on the Göttingen Spectral Library Website3. The modeling process used

the Starfish code presented in Czekala et al. (2015), which was modified to measure

spot parameters by Gully-Santiago et al. (2017). In Section 5.4.1, I discuss the basics

of the Starfish code, but for a more complete and in depth explanation the reader

should refer to Czekala et al. (2015). In Section 5.4.2 I detail how this code has been

modified by Gully-Santiago et al. (2017) to measure spot parameters. Finally, in

Section 5.4.3 I explain my implementation of this code.

3http://phoenix.astro.physik.uni-goettingen.de/?page_id=15

http://phoenix.astro.physik.uni-goettingen.de/?page_id=15
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5.4.1 Starfish

Starfish is a Bayesian modular framework that infers stellar properties from

spectra. The stellar parameters are determined by forward modeling an observed

spectrum using a pre-computed grid of synthetic model spectra. Since the grid is

sparsely sampled in Teff , [Fe/H], and log g, but the observed spectrum can be any

combination of these parameters, Czekala et al. (2015) developed a spectral “emula-

tor" that smoothly interpolates over the model grid. A simple linear interpolation is

insufficient, as Czekala et al. (2015) found that linear interpolation results in a pos-

terior that is peaked at the model gridpoints, biasing the derived stellar properties.

Instead, the emulator decomposes the model spectra into a set of eigenspectra using

principal component analysis (PCA). Gaussian processes is then used to determine

optimal weights associated with each eigenspectrum as a function of Teff , [Fe/H], and

log g. A linear combination of the eigenspectra can then be used to reconstruct any

arbitrary combination of the physical parameters necessary.

Along with the intrinsic physical parameters (Teff , [Fe/H], and log g), there

are “extrinsic" parameters that also shape the spectrum, including the instrumental

broadening profile, the rotational broadening of the star (v sin i), the radial velocity

of the star (vr), the flux dilution (Ω), and any residual shape in the spectrum. The

model is computed to return the flux at the stellar surface, but the observed star is

some distance away and so the flux is diluted by Ω = (R/D)2, where R is the star’s

radius and D is the distance. To account for this effect, the model spectrum is simply

multiplied by Ω. Before the new reconstructed model spectrum can be compared to

the observed spectrum, the model is Doppler shifted to rest and convolved with

the two broadening kernels: one for the instrumental broadening and one for the

rotational broadening. Oftentimes there is a residual shape in the spectrum that is

not physical and is left over from poor flat fielding, blaze correction or flux calibration.
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This is taken into account by multiplying the model by a 3rd degree Chebyshev

function. After this process, the model is sampled onto the same grid as the observed

spectrum so the two can be compared directly.

The resulting model is compared pixel-by-pixel to the observed spectrum using

a likelihood calculation, in which larger residuals are penalized, but covariances in

the residual spectrum are allowed through an Npix×Npix covariance matrix. The co-

variance matrix characterizes measurement uncertainty and any correlated residuals

using a global noise kernel. The residual structure can then be down-weighted in the

likelihood calculation so as not to bias the final estimated parameter results. This

process is repeated using a Markov Chain Monte Carlo (MCMC) simulation with a

blocked Gibbs sampler, where Teff , log g, [Fe/H], v sin i, vr, and Ω are optimized,

while the Chebyshev coefficients and noise parameterization coefficients are treated

as nuisance parameters and marginalized over.

Since this is a Bayesian analysis, a prior can be specified for each parameter,

and any known information about the star can be incorporated. I will discuss the

priors I used to determine my best-fit parameters in Section 5.4.3.

5.4.2 Mix Model Implementation with Starfish

Gully-Santiago et al. (2017) altered Starfish to accommodate starspots by

adding in a second model spectrum with a different Teff and Ω, but identical values

for all the other parameters (log g, [Fe/H], v sin i, vr, and Chebyshev coefficients). It

is assumed that spots simply emit at some effective temperature (Tspot) that is lower

than the effective temperature of the photosphere (Tphot). While a two component

temperature model likely does not capture all of the complexities of a star’s photo-

sphere since faculae are not included, this simple model does capture the dominant

behavior of flux suppression by starspots.
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In the updated version of Starfish, the final composite model spectrum is a

combination of the two model spectra, given by:

Smix = ΩspotB(Tspot) + ΩphotB(Tphot), (5.2)

where B(T ) is the spectral radiance from the hot or cool model. B(T ) already

accounts for the fact that a hotter model produces more flux than a cooler model.

The spot covering fraction, β, can then be calculated using the flux dilution values,

Ω:

β = Ωspot/(Ωphot + Ωspot). (5.3)

Gully-Santiago et al. (2017) also updated the MCMC process to include the two

new free parameters and they switched the core sampling technique from a Gibbs

sampler to an emcee ensemble sampler (Foreman-Mackey et al. 2013). The reason

for the sampler switch was to account for the fact that the two new parameters

made the MCMC sampling much more correlated than it had been previously, which

necessitated that all the parameters be fit simultaneously.

Gully-Santiago et al. (2017) tested and validated this new framework on an

early M-type T Tauri star, LkCa 4.

5.4.3 My Implementation and Parameter Extraction

I used the Gully-Santiago et al. (2017) updated Starfish code to estimate Tspot,

Tphot, and β for 2MASS J23270216+2710367. As the first step in determining these

parameters, I downloaded the grid of models for effective temperatures ranging from

2300−4000 K, log g = 5.0 and 5.5, and [Fe/H] = −0.5, 0.0, 0.5. The parameter range

of the downloaded spectra greatly exceeded the actual range of expected values for
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each parameter so the MCMC sampling could fully explore parameter space without

hitting an edge of the grid.

I fitted each echelle order of the spectrum separately so that the process could

be parallelized and computational the time reduced. I applied the Starfish spectral

“emulator" to the grid of models in a wavelength range corresponding separately

to each order. After this step, I was able to quickly create a reconstructed model

spectrum of any IGRINS spectral order for any combination of log g, Teff , and [Fe/H].

Since 2MASS J23270216+2710367 has been thoroughly characterized already,

and I was only interested in obtaining values for Tspot, Tphot, and β, I applied Gaussian

priors or I fixed any parameters with values in the literature. I used the [Fe/H] value

calculated by Newton et al. (2014) to fix the metallicity to 0.11 dex. Czekala et al.

(2015) found that the residuals associated with small changes in log g were negligible

compared to residuals introduced by model imperfections and recommended fixing log

g for main sequence stars. Using the mass and radius of 2MASS J23270216+2710367,

I estimated log g to be ∼5.0 dex, so I fixed it to that value. I added Gaussian priors

for both v sin i and vr from the values published in the literature (Kesseli et al. 2018;

Newton et al. 2014). I used mean values of 13.0 and −4.0 and uncertainties of 0.5

and 4.0, for v sin i and vr respectively. I did not fix these values because I found it

useful to use v sin i and vr as checks to ensure the code was working correctly.

I chose to apply few priors to the temperatures and flux scaling factors to avoid

biasing the results in any way. However, I did specify that the spot temperature

must be lower than the photosphere temperature.

To determine an initial starting point of the MCMC simulation for the tem-

peratures, flux scaling factors (Ω), Chebyshev coefficients, and noise parameters, I

compared data in a single order to reconstructed model spectra and hand-tuned these

values to come up with an initial guess for each parameter. In a few orders I also
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Fig. 5.1: The spectrum for a single IGRINS order (black) compared to the best-fit
model spectrum (magenta). The best-fit spectrum is composed of a hot component
(here about 3200 K; blue) and a cool component (here about 2600 K; orange). The
component spectra have the same metallicity (fixed at 0.11 dex), log g (fixed at 5.0),
radial velocity, and v sin i. Many of the features seen in the hotter spectrum (blue)
are clearly seen in the data, but these features are not as clearly defined as in the
hot spectrum. By adding in the smaller and more continuous spectral features in the
cooler spectrum (orange), the model fits the data much better.

checked that initializing the MCMC simulation to different starting values lead to

a similar answer, and indeed found that initializing the parameters to different, yet

still reasonable values, did not make a significant difference in the final parameter

estimation.

5.5 Results

5.5.1 Starfish Output and Testing

The MCMC simulations were run separately in each order, allowing me to check

orders individually and then to compare the orders to each other to ensure that
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Fig. 5.2: On the bottom I show an example of an order with data (gray) that is
well fit by the model (red), while on the top, the model cannot correctly reproduce
the opacities and line strength present in this order. The poor performance of the
model atmosphere at some wavelengths is a known problem, and while the models
are state-of-the-art, they still have trouble correctly reproducing parts of the spectra
of low-mass stars due to missing molecular opacities. The numbers listed are the
reduced χ2 values. I did not use orders with a reduced χ2 value greater than 1.5.

different orders were producing consistent results. To check each order individually,

I plotted the best-fit reconstructed spectra of the hot and cool components separately,

along with the combined best-fit spectrum, and compared them to the data to be

certain that the model and data were consistent (see Figure 5.3). This process was

repeated and the best-fit reconstructed spectra were examined for each order. I

found that in some orders there were many spectral features that the model could

not reproduce, while in other orders the model successfully reproduced almost every
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Fig. 5.3: Residual spectrum showing the data divided by the best fit model (gray)
and the simulated noise set by the three noise parameters given in Starfish (red). The
true residuals and the simulated residuals have a similar length scale for correlated
residual noise, as well as a similar amplitude. Both also show larger amplitudes
towards the edges of the order, as expected.

spectral feature. To remove orders with poor model agreement, I computed a reduced

χ2 statistic between the model and data to quantify the goodness of fit. Orders with

a reduced χ2 greater than 1.5 were not included in the rest of the spectral analysis,

so that regions for which the model was inaccurate would not bias the results.

Along with checking the physical parameters, I also inspected the nuisance

parameters. To ensure that the parameters used by Starfish to account for the noise

and any correlated residuals in the spectrum were converging to reasonable values,

I plotted a random draw of the reconstructed noise parameterization and the true

residual (Figure 5.2). Figure 5.2 demonstrates that Starfish can accurately capture

the noise and any correlated residuals that are present in the spectrum.
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Table 5.3. Starfish Results by Echelle Order

Order Number Central Wavelength (µm) Reduced χ2 Tphot (K) Tspot (K) β

9 1.688 1.03 3123+173
−152 2715+127

−78 49%
10 1.658 1.20 3737+185

−611 2700+67
−80 68%

11 1.643 1.50 3083+83
−98 2736+106

−71 39%
12 1.629 1.36 3135 +66

−109 2775+104
−70 47%

13 1.614 1.86 2944+179
−69 2813+73

−82 47%
14 1.600 0.99 3140+108

−121 2695+131
−58 47%

15 1.587 1.95 3055+87
−61 2762+157

−142 22%
16 1.573 0.83 3259+147

−61 2595 +71
−108 51%

17 1.560 0.64 3147+102
−94 2866+237

−217 37%
18 1.547 0.68 3086+152

−49 2878+105
−206 35%

19 1.534 0.88 3146+94
−62 2890+114

−224 41%
20 1.522 1.29 3227+305

−68 2698+135
−77 45%

I also constructed triangle plots for each order. The triangle plots show the

results of the MCMC simulation for all of the physical free parameters, including

both effective temperatures, both Ω values, the v sin i value, and the radial velocity.

An example of a triangle plot for a single order is shown in Figure 5.4. The v sin i

and vr values were similar to what had previously been reported in all cases, lending

confidence to my results. An interesting second peak in Tphot, centered at ∼3750
K, can be clearly seen in Figure 5.4. This second temperature peak corresponds

to a lower filling fraction, and a smaller second peak in log10Ω can also be easily

distinguished. If this feature was only present in a single order, it would not be

significant, but a similar second peak can be seen in five different orders (see Figure

5.5).

Figure 5.5 shows the results of all of the MCMC simulations for 12 different

orders. Some of the orders show little overlap between the spot and the photosphere

probability distributions (orders with the central wavelength of 1.688, 1.643, 1.6,

1.573, 1.522 µm), while others show varying degrees of overlapped distributions (or-

ders with the central wavelengths of 1.534, 1.547, and 1.560). In orders that are



145

Fig. 5.4: Triangle plot showing the results of the MCMC simulation for a single
IGRINS order. This order is the same order as shown in Figure 5.3 and has a central
wavelength of 1.643 µm.
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Fig. 5.5: Top: Probability distributions of the starspot temperature (orange) and
photosphere temperature (blue) for 12 IGRINS orders, referred to by the central
wavelength of the order. The distributions show the full MCMC simulation. Values
that are more probable have wider distributions, and the mean value for each param-
eter is shown by a horizontal line. The gray boxes are the orders which had reduced
χ2 values larger than 1.5 and were not used in any of the analysis. The majority of
the orders show consistent behavior, with a mean photosphere temperature of ∼3100
K and a mean spot temperature of ∼ 2650 K. Bottom: Probability distributions for
the spot covering fraction calculated for each order using Equation 5.3.

dominated by a single large molecular feature such as FeH, the temperature differ-

ence between the photosphere and the spot manifests in the spectrum as all the

molecular lines deepening or becoming more shallow together. A single temperature,

or overlapping spot and photosphere temperature distributions, might then be mea-

sured instead of two separate temperature distributions. This is almost exactly what

Figure 5.5 shows, with many of the overlapping orders showing both temperatures

falling between 2600 K and 3300 K, with a best-fit spot and photosphere temper-

ature around 2950 K. If this exercise is applied to more stars in the future, I can

use only the orders that give good constraints on both the spot temperature and the
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photosphere temperature, and exclude orders where there are not enough unique line

strength changes, leading to overlapping temperature distributions.

In Figure 5.5, the majority of the orders exhibit a best-fit spot temperature of

∼2750 K and a best-fit photosphere temperature of ∼3200 K. However, the orders

centered at 1.688, 1.658, 1.643, 1.6, 1.522 µm all show a second temperature peak

in the photosphere temperature close to 3750 K. This peak always corresponds to a

smaller Ω value and hence a smaller covering fraction. I interpret this second high

temperature region of increased probability as a detection of faculae on the stellar

surface. On the Sun, cool spots are always accompanied by faculae, or small bright

regions with hotter temperatures. I did not initially include a third temperature in

the MCMC simulation because observational evidence suggested that spots were the

dominant feature in magnetically active stars (Lockwood et al. 2007). This does not

mean faculae are not present; this means only that spots must have a significantly

larger covering fraction, since Lockwood et al. (2007) found that on rapidly rotating

active stars, the overall effective temperature decreased during times of increased

activity indicators.

To further test the validity of this second temperature peak, I completely re-

moved all of the temperature priors (the spot no longer had to be cooler than the

photosphere), and I started the MCMC simulation of a single order at many random

temperature initializations. In each case, three temperature regimes emerged. Figure

5.6 shows one of these cases, where the photosphere and the spot temperature each

split into two or three different temperatures.

I combined all the probability distributions from the individual orders in Figures

5.7 and 5.8. Again, a second photosphere peak is clearly discernible. If this second

peak is ignored, I derive a photosphere temperature of 3216 ± 228 K and a spot

temperature of 2759 ± 154 K. These plots include all orders, even the ones with
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Fig. 5.6: MCMC walkers showing a simulation for 1 order. The walkers exploring
Tphot (Teff) clearly find three regions of higher probability: one which corresponds
to where the spot was previously detected, another which corresponds to where the
photosphere was previously detected, and a third higher temperature region. The
walkers exploring Tspot (Teff,2) also find the high temperature region. In this case I
did not put any priors on the temperatures so there was nothing stopping the Teff

and Teff,2 walkers from overlapping.
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Fig. 5.7: Combined probability distributions of the spot temperature (orange) and
photosphere temperature (blue) for all IGRINS orders that had a reduced χ2 value
less than 1.5. I found a mean photosphere temperature of 3216± 144 K and a spot
temperature of 2769 ± 182 K, but a peak photosphere temperature around 3250 K
and a peak spot temperature around 2700 K. The probability distribution for the
spot temperature is slightly elongated due to the orders where the spectrum is fit
best by a single temperature, as discussed above. The spot distribution then falls off
sharply due to the prior specifying that the spot be cooler than the photosphere.

overlapping spot and photosphere temperatures. I find a spot covering fraction of

43± 10%.

By tracing the individual walkers that separated into the three different tem-

perature regimes, I was able to confirm that the higher temperature faculae region is

associated with the elongated tail in Figure 5.8. The lowest point in the probability

distribution in Figure 5.7 appears around 3500 K. I therefore called anything with

a temperature less than 3500 K the photosphere and anything with a temperature

greater than 3500 K faculae. This separation is shown in the top panel of Figure 5.9.

Next, I determined which part of Figure 5.8 corresponded to the high temperature

faculae (bottom panel of Figure 5.9). As expected, the lower covering fraction tail of
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Fig. 5.8: Combined probability distribution of the spot covering fraction for all the
IGRINS orders that had Reduced χ2 values less than 1.5. I find a mean spot covering
fraction of 43 ± 10%. The tail at high spot covering fractions is due to the second
photosphere temperature peak that has a small flux scaling factor.

the distribution was due to the high temperature distribution. Even though Figure

5.9 hints at a low covering fraction of faculae, it is not trivial to determine the exact

value of Ω for all three temperature components since only two spectra of different

temperatures are being fit simultaneously. Adding a third temperature spectrum

greatly increases the computational time, and has even more of a tendency to overfit

the data. In the future, this is something I can attempt, but it is not within the

scope of this thesis, and for the remaining sections I will simply use the single spot

temperature, photosphere temperature, and spot covering fraction.

The derived temperatures and filling fraction are consistent with previous in-

dications that highly active M dwarfs can have spot covering fractions close to 50%

(Newton et al. 2017) and spot temperatures that are between 200− 500 K less than

photosphere temperatures (Barnes et al. 2015; Fang et al. 2016). Furthermore, I

estimated the photosphere temperature to be 3216± 228 K, which is consistent with
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Fig. 5.9: Top: The same distribution as Figure 5.7, but with the photosphere
distribution separated into two regimes. I used a cutoff temperature of 3500 K to
distinguish the facula distribution from the photosphere distribution. Bottom: Dis-
tribution of the photosphere filling fraction from the parts of the MCMC simulation
with Ω values corresponding to photosphere temperatures (blue), and for only the Ω
values corresponding to the faculae temperatures (magenta). The faculae correspond
to a lower filling fraction, as expected. The actual covering fraction of the faculae
is not accurately represented in the plot since only two temperature components
are assumed to derive these values, when in reality with the faculae included three
temperature components and covering fractions would be present.
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the literature temperature estimate of 3251 K from Newton et al. (2015) and the em-

pirically derived temperature estimate of 3216 K derived using Mann et al. (2015).

5.6 Comparison With Models

By comparing the effective temperature estimated by the model to the pho-

tosphere temperature derived with Starfish, I determined whether spots alone are

responsible for inflation or if global inhibition of convection is also present. If I de-

tected low spot covering fractions and a photosphere temperature that was lower

than the model predictions, then some form of global inhibition of convection would

be primarily responsible for the observed inflation. Alternatively, a detection of a

photosphere at a similar temperature to the model effective temperature, combined

with a significant spot detection, would suggest that spots alone can inflate the radii

of fully convective stars. Finally, a detection of spots and a photosphere temper-

ature significantly lower than the model temperature would suggest a combination

of global and local flux suppression. I detected a mean photosphere temperature of

3216± 228 K with a peak around 3250 K, while the models suggest a photosphere of

3359± 25 K. These two temperature are within 1-σ of each other and so a detection

of any global inhibition of convection is not statistically significant, and contributes

at most 5 and 8%.

With a more accurate spot temperature, photosphere temperature, and spot

covering fraction, I was able to estimate how much larger 2MASS J23270216+2710367

would be than one would expect from the unspotted model. To do this, I used the

following equation

(1/η)2 =
R2

model

R2
true

=
T 4

phot βphot + T 4
spot βspot

T 4
model

, (5.4)
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where η is the percentage radius inflation (see Chapter 4) and β is the covering

fraction of the spot or photosphere. Using the best-fit parameters, I calculated an

inflation percentage of 19%. An inflation percentage of 19% means that the spots are

contributing 10 – 15% of the inflation and are the dominant mechanism of inflation

for this star.

The estimated inflation percentage is larger than my results from Chapter 4, in

which I showed that rapidly rotating fully convective M dwarf stars were on average

10–15% larger than models predicted, and shows a higher level of inflation than any

of the stars from the most recent EB results (Parsons et al. 2018). A potential

explanation for the larger-than-expected radius is that I omitted the temperature

contribution from the faculae, which would raise the overall temperature of the star

and mitigate some of the inflation.

My results are consistent with the modeling results from Chabrier et al. (2007).

Due to the fact that this star is right on the edge of the fully-convective boundary,

it is expected that some of the temperature discrepancy is due to global inhibition

of convection, but that the majority is due to spots. This is the first observational

evidence that confirms the Chabrier et al. (2007) modeling result, and future work to

further confirm the theory could determine whether spots on partially convective M

dwarf stars could explain discrepancies seen in EB observations or whether a global

temperature change is required to match those observations. Furthermore, these

results suggest that by adding spots to models, models would be able to predict M

dwarf radii more accurately. However, before changes to models can be implemented

it is imperative to determine how the spot temperatures and spot covering fractions

change with parameters such as mass and magnetic activity.
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5.7 Summary

I deduced that one of the most magnetically active M dwarf stars has spots

covering ∼45% of its surface. The spots are ∼400 K cooler than the quiescent

stellar surface. I found evidence that faculae may be present on the surface of this

star, but to confirm their existence and to determine exact covering fractions, more

testing is required. Using my derived spot properties, I calculated that 2MASS

J23270216+2710367 is ∼19% larger than an unspotted model predicts. This value

is larger than the 10–15% radius inflation that I measured in Chapter 4 when I

compared the radii of rapidly rotating fully convective M dwarfs to model estimates,

but it is not significantly larger. By adding effects of faculae, the discrepancy may

be mitigated. In 2MASS J23270216+2710367 spots seem to be primarily responsible

for the inflation. This suggests that models would be able to predict the radii of

M dwarfs more accurately if spots were included. However, to correctly incorporate

spots into the models, more information on the ways in which spot properties change

with mass and magnetism is necessary.
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Fig. 5.10: Similar to Figure 5.3, I am showing the spectra for a the first three
IGRINS orders (black) compared to the best-fit model spectrum (magenta). The
best-fit spectrum is composed of a hot component (blue) and a cool component
(orange).
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Fig. 5.11: Same as Figure 5.10



157

15800 15825 15850 15875 15900 15925 15950 15975
Wavelength (Å)

2.0e-14

4.0e-14

6.0e-14

8.0e-14

1.0e-13

Fl
ux

data
cool spec
hot spec
composite

15675 15700 15725 15750 15775 15800 15825
Wavelength (Å)

3.0e-14

4.0e-14

5.0e-14

6.0e-14

7.0e-14

8.0e-14

9.0e-14

1.0e-13

1.1e-13

Fl
ux

data
cool spec
hot spec
composite

Fig. 5.12: Same as Figure 5.10
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Fig. 5.13: Same as Figure 5.10
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Chapter 6

Conclusions

The goal of my dissertation was to determine the cause of the discrepancy

between models and observations of M dwarf radii. Observations of M dwarf stars

from LBOI, EBs, and those derived using the Stefan Boltzmann method all show

evidence that models are under predicting the stellar radii by an average of 5-10%

for a given mass (Torres & Ribas 2002; Morales et al. 2008; Boyajian et al. 2012).

The two main hypotheses evoked to explain this discrepancy involve the effects of

(1) metallicity, and (2) magnetism.

Metallicity controls the opacity of the atmosphere; in metal poor stars, hy-

drostatic equilibrium is achieved at a smaller radius. Theory predicts that for a

given temperature, luminosity, or mass, low metallicity stars will be smaller than

high metallicity stars. Mann et al. (2015) confirmed that the radii of M dwarfs were

metallicity dependent when temperature was held constant, but observations had yet

to determine whether M dwarf radii were metallicity dependent when luminosity or

mass was held constant.

Strong magnetic fields are thought to inhibit convection and lead to cooler

surface temperatures, and thus larger radii. M dwarf stars are known to host strong

surface magnetic fields that have been measured to be over a thousand times stronger

than the Sun’s surface magnetic field (e.g., Donati et al. 2006). The inhibition of

convective flux can either be localized, occurring around magnetic cool spots on

the star’s surface, or it can occur throughout the convective envelope, lowering the
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temperature of the entire stellar surface (which can be modeled by decreasing the

mixing length parameter, α). However, decreasing the mixing length parameter has a

significant effect only on higher mass M dwarfs. This is because lower mass M dwarfs

(M . 0.35 MSun) are so dense that convection is still efficient, despite a decrease in

α. Therefore, it is predicted that spots on the surfaces of low-mass M dwarfs are the

dominant cause of radius inflation via magnetic fields.

To test both of these radius-altering mechanisms, I measured radii of two differ-

ent statistical samples of M dwarf stars – one selected to test metallicity effects, and

the other to test magnetic effects. Both surveys contained observations of more than

85 stars, resulting in large statistical samples with which the parameters of interest

could be investigated.

To determine the effect of metallicity on the radii of M dwarfs, I measured the

radii of 88 stars using the Stefan Boltzmann method. The stars were specifically

selected to include many targets with metallicities less than −1.0 dex and spectral

types that spanned K7 though M7. It was important that many of the stars that

were selected had extremely low metallicities. This is because previous studies had

only tested near-solar metallicity stars, and this led to conflicting results regarding

the effect of metallicity on M dwarf radii. I found that for a given temperature, a

star with a metallicity of −2.0 dex can be smaller than a solar metallicity star by up

to a factor of five. This large metallicity effect was predicted by the Baraffe et al.

(1997) stellar evolution models, but had not been confirmed observationally. Since

the models are in agreement with my data, these results provide the first validation

of the models for the lowest stellar temperatures and metallicities. While this was

not the first time that M dwarf radii were shown to be metallicity dependent for

a given temperature, the extent to which metallicity alters the radii had not been

observed previously.
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I also tested the degree to which the radii dependent on metallicity when other

parameters were held constant. I found that, similar to temperature, radii for a

given color were highly metallicity dependent. Previous studies demonstrated that

absolute Ks band to radius relations seemed to be insensitive to metallicity and

showed the least scatter, leading to the most accurate radius estimates (Boyajian

et al. 2012; Mann et al. 2015). In agreement with these previous studies, I found

that an absolute Ks band to radius relation returned the least scatter and the most

accurate radii. Unlike previous studies, however, I found a slight metallicity depen-

dence. The lowest metallicity stars in the sample were at most 10-15% smaller than

the highest metallicity stars in the sample. Therefore, while a Ks-to-radius relation

is metallicity dependent, in order to see any change in the radius, an extremely large

change in metallicity is required (> 2.0 dex). To aid in future determinations of

low-metallicity M dwarf radii, I presented relations that can be used to convert these

direct observables (color and MKs) to radii. I updated an existing absolute Ks-band

magnitude-to-radius relation such that the relation is valid for spectral types between

K7 and M7, and metallicities down to −2.0 dex, with an uncertainty of only 6%.

Absolute Ks-band magnitude and mass are tightly correlated (Benedict et al.

2016) and metallicity dependency in recent MKs − −Mass relations is negligi-

ble (Mann et al. 2019). Therefore, one would expect that there would be lit-

tle metallicity-dependent scatter in a Mass–Radius plot since there is not much

metallicity-dependent scatter in the MKs–Radius relation. To test this hypothe-

sis I calculated mass estimates for all of the stars in my sample using a relation from

(Benedict et al. 2016). As expected, to obtain an offset of 10-15%, a change in metal-

licity of more than 2.0 dex is required. Since evidence for radius inflation is primarily

found for nearby solar-metallicity stars, I conclude that metallicity is unlikely to be

the main cause of the radius discrepancies in Mass–Radius diagrams.
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Next, to determine the role of magnetism on the radii of M dwarf stars, I tested

the degree to which magnetically active, rapidly rotating, fully convective M dwarf

stars were inflated compared to stellar evolution models and empirically determined

relations. To do this, I developed a technique to measure the statistical distribution

of a large number of M dwarf radii modulated by the rotational inclination (R? sin i)

of single, rapidly rotating M dwarf stars. To calculate R? sin i for each target star,

I combined photometric rotation periods (Prot) from the literature with rotational

broadening measurements (v sin i) that I obtained. By assuming the inclinations were

randomly oriented on the sky, I was able to extract information about the stellar radii

using a Bayesian modeling approach.

I found that the magnetically active, rapidly rotating, fully convective M dwarf

stars were on average 10 − 16% larger than predictions from stellar evolutionary

models. The most recent results of all compiled EBs in the literature show an average

inflation of 6%, with a peak inflation of 12% (Parsons et al. 2018). Radii measured

through LBOI also show an average inflation of 5% (Boyajian et al. 2012). The results

from EBs, LBOI, and those presented here have a large range of rotation periods,

and presumably magnetic field strengths, due to the fact that most of the LBOI

stars are slowly rotating and the EBs have a range of rotation periods. Therefore,

I conclude that all M dwarfs with near-solar metallicity are on average larger than

model predictions.

When I split the sample into two mass bins, I found the larger mass stars

(M > 0.18 MSun) to be only 5 − 7% larger than the model predictions, while the

lowest mass stars were 13 − 17% larger than the model predictions. I argued that

the larger radii of the lowest-mass stars are not completely due to their young age,

but some of the 13− 17% inflation could be due to these very low-mass stars having

not settled onto the main sequence.
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I also compared my rapidly rotating, magnetically active stars to empirical

relations and found that the most recent relations from Benedict et al. (2016) and

Boyajian et al. (2012) are consistent to within ∼ 5%. The Bayesian analysis showed

a peak inflation compared to the empirical relations of 5%, meaning that the stars

in my sample could be 5% larger than the stars used by Boyajian et al. (2012). This

result was, however, not statistically significant. The stars used to determine the

empirical relations had much slower rotation periods than the stars in my sample, so

if the 5% discrepancy between my stars and the stars used in Boyajian et al. (2012) is

real, it could be due to rotation and magnetic field strength. However, any potential

change due to rotation can only inflate the radii by ∼ 5%.

Finally, to determine whether the radius inflation I measured was due to local-

ized starspots or a decrease in the mixing length, I determined spot properties on one

of the rapidly rotating magnetically active stars in my sample. To do this, I looked

for spectral signatures of two different photospheric temperatures in a high resolu-

tion infrared spectrum using a spectral analysis tool, known as Starfish. To obtain

constraint on the role of spots on radius inflation, I then compared the temperatures

derived from the observations to temperature predictions from models.

I found evidence that one of the most magnetically active M dwarf stars in

my sample had spots covering almost 50% of its surface. The spots are ∼400K
cooler than the quiescent stellar surface. When photosphere temperature priors were

relaxed, I also found evidence of faculae on the surface of this star; however, more

testing is required to confirm this result.

When I compared these temperatures to those given by models, I found that

the photosphere temperature is consistent to within ∼1-σ, leading me to conclude

that spots are the dominant source of radius inflation in this star. If global inhibition

of convection exists at all, it contributes at most 5-8%. For stars of even lower mass



164

than I studied, this percentage should to decrease. Therefore, my work shows that

models should include effects of spots to predict stellar parameters more accurately

in the future.

I used my derived spot parameters to calculate how much larger this star would

be than predicted by models. The result was that this star would be inflated by

19% compared to an unspotted model. 19% is potentially overestimated due to the

effects of faculae not being included. I previously predicted that even slowly rotating

M dwarfs are inflated by 3–5%. Assuming this to be true, I can calculate their spot

covering fraction using my measured spot and photosphere temperatures. I find that

between 13 and 20% of the surface of a star needs to be covered in spots to inflate

the star by 3-5%. I propose that all M dwarfs are spotted to some degree, which is

confirmed by rotational modulation detected in the light curves of even the slowest

rotators with periods of 100 days (Newton et al. 2017). I expect slow rotators to

be ∼3-5% larger than model predictions and have spot covering fractions of about

10-20%, while rapid rotators are 15-20% larger than model predictions and have spot

covering fractions of ∼50%. This result can explain all of the scatter seen in the most

recent Mass–Radius diagram (e.g., Parsons et al. 2018).

In summary, I demonstrated that metallicity can significantly effect the radii

of M dwarf stars if parameters such as effective temperature or color are used to

determine the radii. Parameters such as MKs and mass are, however, only slightly

metallicity dependent. Therefore, any scatter in the Mass–Radius diagram is likely

not attributed to metallicity effects. I also found that magnetically active, rapidly

rotating, fully convective stars were on average 10 − 16% larger than model predic-

tions. I argue that any effect of rotation on the radii of M dwarfs can at most inflate

the radii by 5 − 10%, and that all radii (even those of slow rotators) are inflated

by 3 − 5% on average. Next, I measured a starspot temperature that was ∼400 K
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less than the photosphere and a spot covering fraction close to 50% on a single M

dwarf. This lead to the conclusion that the star’s radius is ∼ 19% larger than model

predictions. I determined that spots were the primary cause of radius inflation, but

that global inhibition of convection could account for up to 5–8% of the inflation. In

even lower-mass stars I expect that spots alone are the cause of any radius inflation.

Finally, I provided evidence that an MKs–Radius relation is the most accurate way

to determine radii of stars empirically. It is valid to within 5− 10% for both a large

range of metallicities and a large range of rotation periods, even at the lowest-mass

end of the main sequence.
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