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ABSTRACT

Recent advances in Neural Machine Translation (NMT) systems have achieved impressive results

on language translation tasks. However, the success of these systems has been limited when applied

to similar low-resource tasks, such as language correction. In these cases, datasets are often small

whilst still containing long sequences, leading to significant overfitting and poor generalization. In

this thesis we study issues preventing widespread adoption of NMT systems into low resource tasks,

with a special focus on sequence correction for both code and language. We propose two novel

techniques for handling these low-resource tasks. The first uses Generative Adversarial Networks to

handle datasets without paired data. This technique allows the use of available unpaired datasets

which are typically much larger than paired datasets since they do not require manual annotation.

We first develop a methodology for generation of discrete sequences using a Wasserstein Generative

Adversarial Network, and then use this methodology to train a NMT system on unpaired data. Our

second technique converts sequences into a tree-structured representation, and performs translation

from tree-to-tree. This improves the handling of very long sequences since it reduces the distance

between nodes in the network, and allows the network to take advantage of information contained

in the tree structure to reduce overfitting.
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Chapter 1

Introduction

Automated translation has become an increasingly studied domain among machine learning re-

searchers. Neural network based translation systems, or neural machine translation (NMT) systems,

cover a growing set of machine learning methods which translate data from one domain to another.

These methods include prominent, state of the art, results for language translation [1, 2, 3, 4, 5, 6, 7].

These successes have prompted researches to apply NMT systems to other similar tasks, such as

correction. However, adoption of NMT into real world applications beyond language translation has

been slow, struggling to compete with more traditional, non-neural, approaches, and convolutional

neural network based methods. In this thesis, we study the application of NMT to correction tasks,

focusing on methods to improve the performance of these systems.

The ability to communicate across language through translation has been of interest to scholars

since antiquity, with the first major translation of the western world widely regarded to be the

translation of the Hebrew bible into Greek in the 3rd century [8]. The need for translations has only

grown throughout the ages. In todays multicultural, and by extension multi-lingual, world, the need

for accurate translation cannot be understated. This same need also extends to language correction,

which helps to produce grammatically correct and understandable text. Language correction is of

particular interest in scientific domains, where the desire to have literature published in a common

language has led to a significant rise in publications by non-native speakers.

The study of Natural Language Processing, and as a sub-field the automation of translation and

correction systems, has been highly studied by computer science faculty for some time. Interest in

translation systems dates back to the 1950’s, where growing work in mainstream linguistics lead

researchers to produce the first successful systems [9]. Since then, improvements in processing of

grammars and semantics has lead to many very impressive systems including database systems such

as LIFER/LADDER [10], semantic based systems such as KL-ONE [11], and probability based

systems such as Hidden Markov Models [12].

The resurgence of neural networks in machine learning research has also lead to an increased
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interest in NMT systems. These systems use a neural network to model the probability of generating

an output sequence given an input sequence. Recent NMT systems have outpaced prior methods

for language translation [5, 6, 7], achieving significant improvements on many benchmark machine

translation tasks. However, the success of these systems often relies upon very large datasets, which

makes them difficult to use for less common, and lower resource tasks.

This thesis focuses on the challenge of applying recent NMT systems to correction tasks, which

are often significantly lower resource than their translation counterparts. It attempts to improve

performance on these systems in two ways: a) training the system on much larger unpaired datasets

using a generative adversarial network, b) using tree representations of the data to improve the

networks understanding of the underlying grammar.

1.1 Machine Translation on Low Resource Data

NMT systems model the probability of outputs based on an input. Real data, such as language, is

incredibly complex, which makes accurately modeling probabilities a difficult task. This complexity

can be a major issue when dealing with low resource datasets, which often are not large enough to

be representative of the distribution from which they were drawn. This means that a model trained

from scratch on a low resource dataset will not be able to accurately model the distribution of real

data, and therefore has limited performance regardless of the model chosen.

Most current techniques for handling low resource datasets involve use of additional data. Ad-

ditional data is most commonly used for pre-training, or transfer learning, where a network is first

trained on a larger similar dataset and then used as the initial state for a network trained on the low

resource dataset. A popular example of this for NMT systems is monolingual pre-training, where

the network is first trained as a language model on a large monolingual dataset [13].

Work in this thesis attempts to give our NMT systems additional information by supplying them

with a more informative representation of the data. The Tree Transformer method, explained in

chapter 5 uses prior work on sequence to tree parsers to produce tree representations of the data.

These tree representations contain information about the grammatical structure of the data, giving

the network the ability to understand the grammar and thus improving performance on low-resource

tasks.
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Table 1.1: Approximate dataset sizes for translation and correction datasets

Dataset Description Size

WMT 2014 English to German 4M
WMT 2018 English to German 41M

CONLL 2014 English Language Correction 50K
LANG 8 English Language Correction 1M (300K Corrections)
SATE IV C/C++ Code Correction 50K

1.2 Correction

In addition to the myriad of new translation systems, correction based systems have also become

more prevalent. Neural network based correction systems follow the same design as translations

systems by translating from incorrect sequences to correct ones.

One of the most common usages for correction systems is the task of grammar error correction

(GEC), which seeks to automatically correct grammatically incorrect sentences into correct ones.

Successful approaches to GEC could be very useful to non-native speakers writing in a foreign

language. Additional applications of these systems includes replacement of current spelling and

grammar checkers, and in interactive teaching of foreign languages.

Automatic correction of code is also an increasingly popular domain, including both the repair

of bugs and security vulnerabilities. Current methods for detection and repair of vulnerabilities in

code are time consuming and expensive, requiring companies to hire large numbers of verification

engineers. Automatic code correction could assist, or replace, these engineers by identifying and

repairing security vulnerabilities in code prior to release, potentially avoiding millions of dollars of

reparation costs.

The datasets currently available for language and code correction systems are small, and there-

fore low-resource. Table 1.1 shows the relative sizes of the WMT language translation dataset to

correction datasets used in this thesis. The most recent WMT dataset for English to Germain

translation contains 41 Million sentence pairs. In contrast, CONLL 2014, which is still the most

commonly used English correction dataset, contains around 50K pairs. For correction datasets to

be comparable in size to their translation counterparts they would need to be increased in size by

several orders of magnitude.

1.3 Paired vs Unpaired data

Typical training data for NMT systems is provided in pairs. Each pair provides an input sequence

and the desired output sequence it should be translated into. This allows training by providing the



4

system with the input sequence and then computing the error between the output of the system and

the desired output. Conversely to paired data, unpaired data does not provide links between input

and output data-points. Instead, unpaired data consists simply of sets of input and output data.

This makes the problem far more difficult and requires an alternative approach.

Interest in systems which utilize unpaired data is motived by the fact that unpaired data is

generally much easier to obtain than paired data. Paired data typically requires some form of hand

annotation. For example, the language correction dataset CONLL 2014 was created by having three

reviewers review a large quantity of essays and then pooling their corrections. This need for hand

annotation makes the generation of large datasets challenging, leading to much smaller datasets

for less common tasks, such as correction. However, generating unpaired data requires only that

examples are labeled as either input or output data, i.e. either incorrect or correct in the case of

correction. This can often be achieved using readily available automated methods, allowing the

creation of very large datasets with relative ease.

1.4 Contributions

This thesis makes the following contributions

• We design a system which uses a Wasserstein Generative Adversarial Network (WGAN) with

an added conditional loss functions to train a NMT system. With this system we train a

network to successfully correct software vulnerabilities.

• We develop the Tree-Transformer, a transformer based architecture which operates on tree

data, translating from Tree-to-Tree. We show improved performance using this system on

both code correction and language correction tasks.

• We compare and contrast methods for the use of a WGAN (WGAN) in generation of discrete

sequences, including novel architectures, regularization techniques, and handling of embed-

dings. Methods considered are compared using a dataset created from a Probabilist Context

Free Grammar, which allows us to compute more robust metrics than are typical of GAN

techniques.

• We rigorously prove that the Wasserstein-1 distance cannot be used to directly train a language

model which outputs probabilities.



5

• We are the first to generate realistic text using a GAN. We train a system on the One Billion

Word dataset with a novel use of pre-trained embeddings between generator and discriminator.

1.5 Thesis Outline

The rest of the thesis is organized as follows.

Chapter 2: Background. This chapter outlines background for the techniques used in the

rest of the thesis. It contains details on notations used, neural language modeling and NMT sys-

tems, generative adversarial networks including Wasserstein generative adversarial networks, and

transformer networks.

Chapter 3: Improved Generation of Discrete Sequences using Wasserstein Genera-

tive Adversarial Networks. This chapter discusses the issues with, and provides a methodology

for, using a GAN to generate sequences of discrete data. It starts by discussing difficulties with us-

ing a WGAN based system to train a language model and proves that minimizing the wasserstein-1

distance to train a NMT system does not produce correct probabilities. It then provides alternative

approaches to this system. Using a generated dataset, it compares these alternatives, different gen-

erator and discriminator architectures, and several novel regularization techniques. Finally, using

the best architecture from these comparisons we train a network to output realistic text on the one

billion word dataset.

Chapter 4: Learning to Repair Software Vulnerabilities with Generative Adversarial

Networks. This chapter builds on chapter 3 to train a NMT system using a WGAN. The chapter

first outlines the GAN based system used, which includes a NMT system as the generator. Next, it

adds novel loss functions which serves to condition the output of the NMT system on its input. The

chapter then outlines the full system, including autoencoder pre-training and curriculum learning

procedures. This system is then used to train a network which can correct security vulnerabilities

in code.

Chapter 5: Tree-Transformer: A Transformer-Based Method for Correction of Tree-

Structured Data. This chapter develops the tree-transformer system, which uses tree structured

data to improve performance of NMT systems. The chapter provides the necessary modification

to the popular transformer architecture for use on tree-structured data, including the design of a

tree-convolution block which gives nodes access to the tree structure. The tree-transformer is then

used on both a code correction dataset and two benchmark grammar correction datasets. For all

three datasets we show improved performance over past NMT systems.
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Chapter 6: Conclusion. This chapter summarizes the contributions, strengths, and weak-

nesses of the proposed methods from the previous chapters.



Chapter 2

Background

2.1 Variable Notation

This thesis primarily deals with sequential data. The total length of a sequence is represented with an

uppercase T , while individual time-steps are represented using the lowercase t. Although sequences

do not have to be over time, for example text is over a series of words, the convention is to refer to

steps along the sequence dimension as time-steps, and represent them using t. To avoid confusion

with probability notation both vectors and sequences of vectors are represented using lower case.

The notation used is as follows:

• T - total number of time-steps for a sequence

• t - a particular time-step for a sequence, for example
∑T−1

t=0 xt

• xt - the tth vector in the sequence of vectors x.

• x - a sequence of vectors xt, i.e. [x0, x1, ...xT−1]

Many previous works use x as an input vector and y as the desired output vector. Unfortunately

the names adopted for NMT are not compatible those for GANs. As such, we adopt the following

naming convention:

• x - network input

• P(X) - distribution of network input

• r - desired output

• P(R) - distribution of desired output

• y - network output, sequence of probability vectors

• r̄ - candidate vector for r, generally created by sampling each yt

• z - sequence of noise vectors

7
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2.2 Recurrent Neural Networks

RNN’s handle sequences of arbitrary length by utilizing a recursive process. At each step t, they

maintain a state vector, st, based on the input for time step t, xt, and the previous state vector,

st−1:

st = σ(xtU + st−1W ), (2.1)

where σ is a non-linearity, commonly a sigmoid or hyperbolic tangent. Unfortunately, these non-

linearities are a primary cause of the gradient vanishing problem, since their derivative with respect to

their inputs is maximally 0.25 for sigmoid, and 1.0 for hyperbolic tangent. Thus gradients propagated

through these non-linearities will generally shrink [14]. This finding prompted the creation of the

Long Short-Term Memory unit (LSTM) [15], which has become the defacto standard for RNN’s,

written as:

ft = σ(xtU
f + st−1W

f ),

it = σ(xtU
f + st−1W

f ),

ot = σ(xtU
f + st−1W

f ),

ut = tanh(xtU
c + st−1W

c),

ct = ft � ct−1 + it � ut,

st = ot � tanh(ct).

LSTM modifies equation 2.1 with the additional hidden state ct. Key to combating the gradient

vanishing problem, the transition from ct−1 to ct does not involve a non-linearity, and instead is

only modified through element wise multiplication. Access to ct is controlled by two gates ft and it.

ft (the forget gate) controls to what extent the previous state ct−1 is retained, while it (the input

gate) updates ct based on the computations in ut. Information is extracted from ct using the output

gate, ot. Thanks to this setup, information can be written into the c state and extracted many

time steps later, only passing through two non-linearities. In theory, this lack on non-linearities

in the path of ct gives LSTM’s the ability to handle temporal dependencies of an arbitrary length.

However, in practice computational difficulties often involve frequent modifications to ct, with inputs

and outputs both passing through a non-linearity. LSTMs allow handling of sequences which are

far longer than default RNNs, but the gradient vanishing problem is still an issue for LSTMs when

sequence lengths are in the tens to hundreds.

For simplicity, RNNs (including LSTMs) are often represented as a function of their input and
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their past hidden state, or st = f(xt, st−1). We will use this notation going forward.

2.3 Neural Language Modeling

Neural language models (NLMs) use a neural network to model language as a conditional distribution

over a fixed vocabulary. NLMs approximate a real probability distribution P(R) given a set of

samples r, which are assumed to be drawn independently from P(R). P(R) can be factored as

P(R) =

T∏
t=0

P(Rt = rt|r<t). (2.2)

The conditional distribution P(R) is typically modeled using a RNN. The RNN produces a

sequence of probability vectors, yt, which each approximate P(Rt). Put more concretely, we desire

yti = P(Rt = rti|r<t) ∀t, i, where rti is the ith possible output for the tth timestep. The use of an

RNN allows conditioning each output, yt, on previous inputs, r<t, through the state vector st. This

can be written as:

st = f(rt−1, st−1),

yt = Softmax(Wst).
(2.3)

In the above equation, st and yt are conditioned on the previous time-step through the input rt−1,

and on all prior time-steps through the state st−1.

Approximating P(Rt) using yt is usually achieved by minimizing the negative log likelihood

(NLL) between the outputs yt and the samples rt, given as:

L(rt, yt) = −
N∑
i=1

P(Rt = rti) log(yti),

where the sum is over all of the N possible discrete outputs. P(Rt = rti) is the probability of the

ith possible output at time t and yti is the ith output of the probability vector yt.

In equation 2.3, the input rt−1 can come from one of two places. If the desired r is known, for

example during training, than rt−1 can be set to its given value. This technique is called teacher

forcing [16], since rt−1 remains unchanged regardless of the value of yt−1. In cases where r is

unknown, such as testing, we can sample the previous outputs yt−1, producing a candidate vector

r̄t−1 and use this as an approximate value for rt−1.
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Figure 2·1: Sequence to Sequence network with encoder (blue) and decoder (red)

2.4 Neural Machine Translation

Neural Machine Translation (NMT) systems extend NLMs by also conditioning the produced output

on an input sequence x. They model the conditional probability P(R = r|x) of transforming input

sequence x into output sequence r. r can be factored it into a conditional distribution following

equation 2.2 as:

P(R = r|x) =

T∏
t=0

P(Rt = rt|r<t, x).

NMT systems model this conditional distribution using an encoder and decoder approach, with an

RNN for each part. The encoder reads the input sequence in order, producing each output as:

ht = fe(xt, ht−1).

The decoder follows the same procedure as NLMs by predicting the outputs P(Rt = rt|r<t, x) one

at a time, following equation 2.3. Conditioning the decoders state, st, on the input, x, is achieved

by setting the initial state, s−1, to be the final encoder state hT . This encoder and decoder setup

are shown in figure 2·1

2.5 Attention

The vanilla NMT network, as described previously in 2.4, has significant issues with gradient van-

ishing. At worst case information must propagate from the first node in the encoder, x0, to the

last node in the decoder, yT . Additionally, any information passed from encoder to decoder must

be through the final encoder state hT , which limits information transfer based on the state size.

These issues are improved through the use of an attention mechanism [6, 7], shown in figure 2·2.

Attention mechanisms provide each decoder state direct access to selected encoder states. Attention

is computed as a weighted sum of values, v, with weights determined using a score function between

queries, q, and keys, k. Typically in NMT, k = v = h and q = s. Attention can be written as:
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Figure 2·2: Attention mechanism attached to sequence to sequence network

αij =
exp(score(qi, kj))∑T
t=1 exp(score(qi, kt))

,

ai =

T∑
j=1

αijvj .

(2.4)

In the case where every ai can be computed in parallel this can be simplified using matrix

notation as:

a = Softmax(score(Q,K))V.

Common choices for score functions are:

• General - cit = Woσ(Wqqi +Wkkt)

• Dot - cit = qTi kt

With attention the network output, yt, is computed by combining the attention output with the

current decoder state:

yt = Softmax(W2σ(Waai +Wssi)).

2.6 Transformer

The Transformer model of Vaswani et. al. [5] is an attention only system which forgoes the inter-layer

connections of RNN networks in favor of attention. The transformer model has become increasingly

popular because it trains very quickly. The training speedup of the Transformer over RNNs is largely

due to the removal of the inter-layer RNN connections which allow all outputs of each decoder layers

to be computed in parallel during training.
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The transformer consists of three types of sub-layers, attention, self-attention, and feed-forward.

Attention layers work similarly to those described in section 2.5, with queries from the decoder states

and keys and values from the encoder states. The Transformer uses a scaled dot-product attention

mechanism:

a = softmax(
QKT

√
dk

)V,

where dk is the dimension of k. Self attention sub-layers are identical to attention layers except

querys, keys, and values all come from the same location, either the encoder or decoder state.

Finally, feed-forward layers combine two fully-connected layers with a non-linearity in between:

FFN(x) = W2ReLU(W1x).

All sub-layers in the Transformer are wrapped with a layer-norm and residual connection:

Layer-Norm(x+ Sub-Layer(x)).

Encoder layers are made up of a self-attention sub-layer followed by a fully-connected sub-layer.

Decoder layers contain a self-attention, attention and then feed-forward sub-layers. The default

Transformer model contains 6 encoder/decoder layers.

2.7 Generative Adversarial Networks

Generative Adversarial Networks (GANs) were originally proposed by Goodfellow et al [17] as a way

to generate realistic images from random noise. This is achieved by framing learning as a 2-person

minimax game between a generator G(·) and a discriminator D(·). The generator learns to generate

realistic looking samples by minimizing the performance of the discriminator, whose goal in turn

is to maximize its own performance on discriminating between generated samples G(z) and real

samples r.

The original GAN loss of Goodfellow et al. [17] is written as:

LGAN(D,G) =Er∼P(R=r)[log D(r)]

+Ez∼P(Z=z)[log(1−D(G(z))].

where the optimal generator is:

G∗ = arg min
G

max
D
LGAN (D,G).
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This formulation is known to approximate the Jensen-Shannon (JS) divergence between the real

distribution P(R) and the generated one P(G). However, when the support of the distributions of

generated and real data do not overlap, the JS divergence is constant, and has a zero gradient, making

the minimization of equation 2.7 by gradient decent impractical [18]. This is a prohibitive problem

when dealing with discrete data because the distributions will never overlap since the support of the

real samples r is a union of zero dimensional manifolds.

An alternative method was proposed by Arjovsky et al. [19]. Instead of JS, they approximate

the Wasserstein-1 metric, or Earth-Movers (EM) distance. The Kantorovich Dual form for the

Wasserstein-1 metric can be written as:

W1(P(R),P(Y )) = sup
‖f‖L≤1

Er∼P(R)[f(r)]− Ey∼P(Y )[f(y)], (2.5)

where the supremum is over all 1-Lipschitz functions.

Using a discriminator neural network, D, for f , and a generator network, G, to map from an

input distribution Z to the generated distribution Y , gives us the easily commutable Wasserstein

GAN (WGAN) loss function:

LWGAN(D,G) = Er∼P(R)[D(r)]− Ez∼P(Z)[D(G(z))], (2.6)

where the discriminator function D must be constrained to be 1-Lipschitz. Unlike JS, EM distance

linearly decreases as P(G(z)) approaches P(R), even for cases where their supports are disjoint.

Most recent work using WGANs have enforced the Lipschitz constraint on the discriminator

through a regularization term with a gradient penalty (WGAN-GP), first introduced by Gulrajani

et al. [20]. This approach penalizes the l2 norm of the gradient at the inputs to the discriminator,

modifying the WGAN formulation of equation 2.6 as follows:

LWGAN(D,G) =Er∼P(R)[D(r)]− Ez∼P(Z)[D(G(z))]

+λEŷ∼P(Ŷ )[(‖∇ŷD(ŷ)‖2 − 1)2].
(2.7)

Ideally we would like to enforce this gradient penalty everywhere. However this is impractical.

Typically, ŷ is chosen linearly between pairs of points G(z) and r.
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Chapter 3

Improved Generation of Discrete Sequences using

Wasserstein Generative Adversarial Networks

3.1 Introduction

Generative Adversarial Networks (GANs) [17] have proven to be a valuable tool for generating data

using neural networks. They have enabled generation of very realistic and diverse samples of high-

dimensional continuous data [21]. However, application of GAN methods to domains with discrete

data, such as natural language, has proven more difficult. So far, GAN based language models

have struggled to produce realistic examples of natural language, especially in comparison to other

language modeling techniques [22, 23, 24, 25, 26].

GAN based methods for language generation are appealing because of the diversity of samples

they produce. This diversity can be largely attributed to the fact that GANs match distributions

rather than focusing on the reproduction of individual samples. In the context of language modeling,

this means GAN methods should be far more robust to exposure bias than other neural network

methods, making GANs appealing in cases where large training corpora are not available.

In addition to the advantages of GAN based approaches, other approaches are simply unusable

for many applications. For example, several recent works have applied GANs in order to train Neuro

Machine Translation models without paired data [27, 28, 29]. The absence of paired data means

the desired translation for a given input is unknown, which precludes the use of traditional neural

language modeling techniques. However, GAN approaches can overcome this limitation by using the

adversarial objective of the GAN to match the distribution of translated outputs to the distribution

of real sequencess in the output language. This approach requires an adversarial objective capable

of handling discrete data, and would benefit heavily from improved GAN based training of language

models. We will discuss this approach in detail in chapter 4.

This chapter addresses the problem of generating sequences using GANs, first by providing some

theoretical background on the problem and then through a series of experimental results. The
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chapter is broken up as follows. Section 3.2 studies the reasons why a GAN approach cannot be

applied directly to a probabilistic neural language model, and rigorously proves this issue as it

relates to the minimization of the Wasserstein-1 distance when using probabilistic outputs. It then

provides some alternative approaches, their merits and their difficulties. Section 3.3 describes the

architectures we used for our experiments, taking insight from section 3.2 and including several novel

architectures, improved regularization, and handling of embeddings. Finally, section 3.4 contains

experiment descriptions and results. We test our networks on two datasets. First on a dataset

generated from a probabilistic context free grammar, which allows us to provide far more rigorous

metrics than are typical of GAN experiments. Second, we test our most promising networks on real

data taken from the Google One Billion Word dataset [26], and show that we are able to generate

realistic looking English sentences of modest length. To the best of our knowledge we are the first

to generate realistic looking text using a GAN without network pretraining.

3.2 Training a Language Model with WGAN

Recall from section 2.3 that neural language models typically output a probability vector at each

timestep. This is useful in order to compute the probability of each output and for certain metrics

like perplexity. We would like to train such a language model using a Wasserstein GAN, with the

language model taking the place of the generator in equation 2.6. Such a model is shown in figure

3·1. Unfortunately, training a language model with a WGAN in this way does not work as desired,

causing the outputs of the language model to not accurately represent the distribution of real data.

This if formalized in the following lemma, with the proof included in appendix 3.A.

Lemma 3.2.1. If r are samples from a discrete non-conditional distribution, P(R), over N finite

values, and if y is a probability vector of length N , then minimizing EM(r, y) is equivalent to solving

for y such that y = P (R = r) iff P (R = rk) = 1.0 for some k or P (R = ri) = P (R = rj) ∀{i, j}.

Lemma 3.2.1 proves that EM cannot be use to directly generate probability vectors from samples.

Intuitively, the lemma holds because EM uses the `2 distance metric between pairs of points. Since

the gradient of `2 distance is constant, the probability vector y is pulled more forcefully towards

those real points, r, which occur with higher probability. A graphical view of this for a probability

vector of length 2 is shown in figure 3·2
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Figure 3·1: GAN system for training a language model. The language model is
used as the generator to produce G(Z).

3.2.1 Alternative Approaches

Lemma 3.2.1 makes the naive approach of attaching the WGAN discriminator onto a standard neural

language model not viable. However, several alternative approaches exist.

Policy Gradient

One approach is to sample from y at each time-step, yielding r̄t, and use this as input to the

discriminator. This way the discriminator compares samples r to samples r̄. Difficulty arises because

the sampling operation is non differentiable, and therefore prevents updating the generator by using

the gradient of equation 2.7. One way to address this is to use a policy gradient approach, which

treats the output of the discriminator as a reward in a reinforcement learning setting [23, 30]. A major

downside to this approach is that rewards are provided for entire sequences, meaning updates to the

generator do not provide information on which parts of the output sequence the discriminator thinks
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are incorrect. This results in long convergence times and low accuracies. Some success has been

had with this approach, particularly when it comes to generation of discrete images [31]. However,

generation of sequences seems to be a much harder problem, and to the best of our knowledge no

one has been able to generate realistic looking text using policy gradient based methods without

pretraining.

Added Noise

Another approach to address the problem in lemma 3.2.1 is to modify the language model to include

an input noise vector, zt, at each time-step, sampled uniformly from a Gaussian distribution. In-

cluding input noise means generator outputs, yt, are determined both by the previous outputs and

by the noise:

st = RNN(r̄t−1, zt, st−1),

yt = Softmax(Wst).
(3.1)

In theory, the inclusion of zt allows the network to achieve an EM distance of 0 when yt directly

approximates rt, i.e. yt approximates sampling from P(R). The addition of the noise vector zt can

be thought of as moving the stochastic part of the network from the sampling operation to the noise

vector z.

The approach of adding zt is similar in nature to the GAN approach used to generate images,

which utilizes a single noise vector z as input. However, one caveat with adding the noise vector zt

to a language model is that it no longer produces a probability vector as output, instead it directly

approximates samples. I.e., we expect yt to be close to a one-hot vector, and vary based on zt. This

makes it is impossible to accomplish some computations typical of language models. For example,

we can no longer compute the probability, or perplexity, of a particular output. In many applications

where directly training using NLL is not available this trade off may be acceptable.

Gumbel-Softmax

We would be remiss not to mention the Gumbel-Softmax approach of Jang et al. [32] and Maddison

et al. [33]. This approach uses Gumbel noise to approximate sampling from an output probability

vector, thus applying noise to the output of the generator. Ideally, this should allow generation of

probability vectors whilst still providing samples to the discriminator. Unfortunately, our experi-

ments with Gumbel-Softmax in section 3.4 showed significantly reduced performance over the added
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input noise approach. We attribute this to the fact that the final Softmax used by Gumbel-Softmax

still produces outputs which are often far from one-hot vectors, leading to many of the same problems

which occur when trying to generate probabilities directly using WGAN.

`22 WGAN

One possible solution to the issues in lemma 3.2.1 arises if we consider additional distance metrics.

Equation 2.5 can be relaxed for an arbitrary distance metric as:

W(P(R),P(Y )) = sup
f
Er∼P(R)[f(y)]− Ey∼P(Y )[f(x)],

subject tof(R)− f(y) ≤ c(y, r).
(3.2)

where c(y, r) is a cost function requiring that c(x, x) = 0 ∀x.

The EM distance can be written in this form by considering c(y, r) = ‖y − r‖. An alternative

would be to use c(y, r) = ‖y − r‖2, or the squared-`2 distance. In fact, reworking the proof from

Lemma 3.2.1 with this metric yields a gradient of 0 when y = P(R), suggesting that minimizing the

Wasserstein-1 distance with this cost function would place y at the desired location.

However, the relaxed equation 3.2 no longer contains the 1-Lipschitz constraint on F which

was present in equation 2.5. Thus, finding a minimum of equation 3.2 only constrains f at points

which exist either in P(R) or P(Y ). For disjoint distributions, the value of f between any pairs of

points (y, r) is not defined and the path between them may be highly non-convex, making gradient

decent from y to r impractical. This issue of disjoint distributions is shared with the original GAN

formulation, and was discussed briefly in section 2.7. One solution is to add Gaussian noise to y

and r, which makes the distributions overlap [18]. This added noise could be effective here as well,

but has proven a difficult technique to use. Additionally, extending the use of squared-`2 to the

generation of sequences of probability vectors is non-trivial.

3.3 Architecture

This section describes the various GAN architectures we considered. We explored both RNN and

CNN variants for generators and CNN variants for discriminators. We did not explore RNN dis-

criminators because the majority of current frameworks do not support second order derivatives for

RNN’s, which are necessary for the regularization term in WGAN-GP (equation 2.7).

Enforcing 1-Lipschitz through regularization in equation 2.7 necessitates the ability to linearly

interpolate between all pairs of points y and r. However, sequence of text vary in length, making
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(a) Cross Entropy (b) EM (Wasserstein-1 `2) (c) Wasserstein-1 `22

Figure 3·2: Loss for length 2 probability vector. Real probability P(R = r0) is
shown on the x-axis. P(R = r1) = 1− P(R = r0). Network output x0 is shown on
the y-axis, with y1 = 1−y0. Minimum of the loss is shown by the red lines. For both
Cross Entropy and Wasserstein-1 `22 the minimum loss occurs when y0 = P(R = r0)
. However, for EM distance the minimum loss occurs when y is 1-hot and follows
the maximum value of r.

it impossible to interpret between arbitrary sentences. Thus applying WGAN-GP to text requires

all sentences are either clipped or padded out to a common fixed length. Many previous GAN

approaches do not take advantage of this fact [24, 25]. In the following sections we explore several

different generator and discriminator architectures, many of which are made possible because of this

fixed length.

3.3.1 Generators

Generator architectures are shown in figure 3·3. Our RNN generator (figure 3·3a) is a close as

possible to a traditional language model with the necessary modifications for added noise. The

network consists of n Long Short-Term Memory (LSTM) layers [15] each with a hyperbolic tangent

(Tanh) non-linearity. These layers are followed by two fully connected layers, with a Tanh non-

linearity in between and Softmax at the output. For each time-step, the network takes as input

a noise vector z, and the clamped previous output r̄t−1. Generator outputs, yt are passed to the

discriminator directly. However, yt may not be strictly one-hot so we clamp it to the closest one hot

vector before using it as input to the next time-step:

r̄t = OneHot(Argmax(yt)).

Note that Argmax is non-differentiable, and we do not propagate gradients back through r̄t, which

is consistent with standard neural language models.

We also tested a typical 1D CNN generator, shown in figure 3·3b, which is based roughly off

the DCGAN architecture [21]. This architecture take as input a single noise vector z which is up-

sampled to T using 1D Transpose Convolution layers with stride 2. This is followed by two fully
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(a) RNN Generator
(b) Convolution-Transpose Generator

Figure 3·3: Generator architectures. (a): RNN (LSTM) based architecture, simi-
lar to a language model but with the addition of input Gaussian noise z. (b): Convo-
lution based generator. 1-D version of DCGAN architecture which uses transpose-
convolution operators for upsampling.

connected layers with Tanh non-linearity and Softmax output. The CNN generator does not include

any feedback from one yt to another, instead producing the entire y sequence in parallel.

3.3.2 Discriminators

Discriminator architectures are shown in figure 3·4. We explore a CNN discriminator architecture

similar to the text classification network proposed by Zhang et al [34], shown in 3·4a. For this

network, the input is passed to two convolution layers with a stride of 1. The output of these

convolutional layers is then passed through a temporal max pooling which combines all time-steps

into a single output vector. Finally, this output is run through a series of fully connected layers, the

last of which has no non-linearity and only a single output neuron.

The temporal max-pooling in the text classification network is required to handle variable length

sequences. However, since the WGAN-GP formulation requires fixed length discriminator input,

this max pooling is no longer necessary and can be replaced with a concatenation along the time

domain instead. Networks with this modification in our experiments are labeled as ”Cat”.

Fixed length inputs also allow us to explore DCGAN based discriminators, shown in figure 3·4b.

These architectures are similar in many ways to the text classifications one, except for their use of

convolutions with a stride of 2, which down-sample over the time dimension. When padding for these

layers is chosen correctly they produces only a single time-step output from the last convolutional

layer, removing the need for concatenation or max pooling before the output fully connected layers.
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(a) Convolution Discriminator
(b) Convolution Downsampling Discrimi-
nator

Figure 3·4: Discriminator architectures. (a): Convolutional discriminator which
uses a temporal max pooling layer to combine all time-steps. (b) Convolutional
discriminator which uses a stride of 2 to downsample at each layer. Similar to a 1-
D DCGAN style discriminator. (c) RNN based discriminator which reads in inputs
in series.

3.3.3 Regularization

We attempt to improve stability of WGAN training by modifying regularization. Typically WGAN-

GP regularization follows equation 2.7, with ŷ sampled linearly between pairs of points y and r,

given as:

ŷ = ε ∗ y + (1− ε) ∗ r.

We vary this interpolation by sampling ε as the first output from a Dirichlet distribution with

concentrations (α, 1.0). An α < 1.0 causes ε to be concentrated closer to 1, and thus ŷ closer to y,

which puts additional emphasis on ensuring gradients close to generated data points are correct.

We also combat instability in training with a novel regularization term which penalizes the

distance of D(r) from 0:

ZeroReg = δ ∗D(r)2. (3.3)

Note that if D is 1-Lipschitz the value D(y) of generated points y are limited by the closest real

value point r. In other words, D(y) ≤ supr∈P(R=r)D(r) + ‖r − y‖. When δ is large, D(r) is forced

to 0 for all r, which in turn means D(y) is the distance between y and the closest r. This makes the

gradient ∇yD(y) point directly toward the closest r, creating a system which very stably moves all

y’s toward real valued points. However it also incurs mode dropping since this system accounts for

only the distance between y and its closest r and does not match the distributions P(Y ) and P(R).
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Because of this, we found small values of δ to be practical choices, with best results occurring when

δ is annealed to be greater than zero only toward the end of training. This effectively creates two

stages of training. First δ = 0 allows the generated distribution to spread out over the distribution

P(R), with some instability. Then the regularization term is applied which clamps generated points

to real valued points, producing realistic outputs.

3.3.4 embedding domain

Many neural language modeling systems have achieved improved performance through the use of

pretrained embedding vectors, for example word-to-vec [35]. Embedding vectors are useful to cast

from the high dimensional vocabulary space to an embedding space with a more manageable size.

For our models we use a pretrained embedding vectors at the interface between the generator and

discriminator. This is achieved by having the Generator produce outputs, y, in the embedded space

directly, which can then be used as input to the discriminator. By having the generator output

in the embedding space it can also take advantage of the pretrained embedding space, which puts

similar words close together. Additionally, by outputting in the smaller embedding space we avoid

handling the very large vocabulary space. Candidate generated vectors r̄t are produced from the

embedded outputs by locating the closest embedding vector to the produced output yt.

3.4 Experiments

3.4.1 Context Free Grammar

We created a dataset for evaluation from a probabilistic context free grammar (PCFG). CFG’s define

a formal grammar with a group of one-to-many rules, called productions. PCFGs extend CFGs by

adding a probability for each production. These probabilities allow us to increase the difficulty of

the dataset by ensuring a high degree of variance across the probabilities of outputs.

The PCFG we use is included in Appendix 3.B. It contains 21 Non-Terminals and 39 Terminals.

When unrolled so that each production is unique their are a total of 1174 productions. From the

PCFG we randomly generate 1M training examples up to a max length of 25. Examples which are

less than length 25 are zero padded out to 25. Random generation is accomplished by starting at

the root node of the CFG and expanding in a depth-first manner until terminals are reached. The

choice of which rule to expand at each production is made using the probabilities in the PCFG.

The PCFG defines all possible strings which can be generated by the grammar, which allows us

to compute metrics which are unavailable on real data. We can fit generated output to the PCFG
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to determine first if the output could be generated by the PCFG, and then the set of productions

which generate it. The set of productions used for a given output, known as its parse-tree, allows

us to take advantage of coverage metrics defined for trees. We compute the following metrics:

1. Accuracy (Acc) - the percentage of outputs of the GAN which are valid outputs of the CFG

2. Production Coverage (PC) - the percentage of productions in the unrolled PCFG which

were reached using parse-trees for generated outputs.

3. Edge Coverage (EC) - the percentage of edges between productions in the unrolled PCFG

which were reached using generated outputs. A values of 1.0 means the network generated all

possible outputs of the PCFG.

4. Sum Production Jensen-Shannon Divergence (SPJS) - The sum of Jensen-Shannon

divergences for all productions in the CFG. The Jensen-Shannon divergence for each production

is computed by comparing the production probabilities in the CFG to estimated probabilities

from the parse-trees of generated data. This metric is a proxy for the true Jensen-Shannon

divergence between the generated and real distributions, since the true divergence is infinite

unless all possible outputs are capable of being generated.

Note that we compute PC, EC and SPJS on the unrolled PCFG of 1174 productions. Also, because

PC, EC, and SPJS require a parse tree they can only be computed using outputs which fit the CFG.

Non valid outputs are used only to compute accuracy, and discarded before computation of PC, EC,

and SPJS. As such, these metrics should be treated with care on results with low accuracy values.

We train our networks using the RMSPROP optimizer and batch size of 512. The discriminator is

updated 10 times per generator update with learning rates of 5x10−4 and 2.5x10−4 for discriminator

and generator respectively. Networks are trained for a total of 200 epochs. The first two epoch are

used to initialize the discriminator, and the generator is not updated during this time. The generator

learning rate is decreased by 0.4 at epochs 100, 130, 160, 175, and 190. Results for our experiments

are shown in table 3.1. All experiments were run 10 times and then metrics were computed on 1M

outputs from each run. We report the mean and standard deviation across the runs for the four

metrics described above.

The first set of experiments compares the Added Noise, Gumbel Softmax, and Policy Gradient

approaches. All three methods used an identical generator and discriminator network. For Gumbel

Softmax we followed the methods of Jang et al. [32] as closely as possible. We annealed the
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temperature parameter on the output Softmax as:

max(0.5, e−rt),

where t is the iteration and r is 1e− 5. For Policy Gradient we follow the methodology of Yu et al.

[23]. The Added Noise method seems to perform significantly better than either the Gumbel Softmax

or Policy Gradient methods. We attribute the stark difference in accuracy’s to the limitations of the

Gumbel Softmax and Policy Gradient approaches described in section 3.2

The second set of experiments compare the baseline model, of an RNN Generator and CNN

discriminator, to other possible architectures. We draw several conclusions from this section. First,

we found a significant drop in performance for CNN based generators (DC Gen) over RNN ones.

The best performing CNN Generator is shown in the results table, but this performance drop was

seen across the large array of CNN architectures we tried, varying kernel and number of hidden

layers. This suggests that modeling text sequentially is important. Secondly, replacing the temporal

max pooling with a concatenation operator (Cat) seems to increase performance on all metrics.

We believe this is because the concatenation allows the discriminator to more easily achieve the

1-Lipschitz constraint than with max pooling. Thirdly, performance using a DC like Discriminator

(DC Disc) is mixed, showing a decrease in Accuracy but an increase in SPJS and EC. Lastly, results

using a ReLU on the second to last layer of the discriminator showed decreased performance. This

is somewhat counterintuitive, since the linearity of the ReLU would seem to pair well with the

1-Lipschitz constraint.

The third set of experiments explores additional regularization techniques, applied to the baseline

model. Increasing WGAN regularization, lambda, from the default 10 to 100 (lambda100) seems to

have a positive effect on SPJS and EC, with a small impact on Accuracy. This effect is amplified when

regularization is moved more heavily toward generated data points by setting α to 0.3 (lambda100

α0.3). This combination achieved the best Sum Jensen Shannon of all of our models. Conversely,

added regularization on the distance of real data points from 0 (δ1.0) shows an increase in Accuracy

at a cost of SPJS and EC. The loss of SPJS and EC was mitigated slightly by annealing delta over

the course of training (δ1.0 ann), where delta is held at 0 until epoch 100 and then annealed as:

min(1.0, ec(epoch−100)),

where c is chosen to be log(0.1)/100. This was improved further through the addition of concatena-
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Table 3.1: PCFG results

Architecture Gen Hidden FC Disc Hidden Inter FC α λ δ Acc SPJS PC EC
Type Size Kernel Stride Act Size Act Type Size Kernel Stride Act Type Size Act

Baselines

Added Noise RNN 3x256 - - Tanh 1x256 Tanh Conv 2x256 3 1 ReLU Max Pool 1x256 Tanh 1.0 10 0.0 0.973 (0.009) 1.194 (0.465) 1.0 (0.0) 0.973 (0.02)
Policy Gradient 0.892 (0.13) 8.72 (1.626) 0.998 (0.002) 0.943 (0.014)
Gumbel-Softmax 0.677 (0.023) 18.93 (3.105) 0.993 (0.003) 0.917 (0.012)

Architecture Variations

Cat Cat 0.987 (0.004) 0.671 (0.526) 1.0 (0.0) 0.994 (0.008)
DC Gen Conv 2 ReLU 0.757 (0.013) 4.59 (0.708) 0.997 (0.006) 0.987 (0.008)
DC Disc 3x256 2 - - - 0.965 (0.014) 0.847 (0.462) 1.0 (0.0) 0.990 (0.012)
Disc ReLU ReLU 0.863 (0.031) 3.686 (0.892) 1.0 (0.0) 0.932 (0.025)
DC Disc Tanh 3x256 2 - - 0.967 (0.009) 0.892 (0.355) 1.0 (0.0) 0.988 (0.015)
DC Disc ReLU 3x256 2 - - ReLU 0.887 (0.008) 2.558 (1.415) 1.0 (0.0) 0.952 (0.031)
Gen No FC - - 0.975 (0.008) 1.067 (0.380) 1.0 (0.0) 0.974 (0.019)
Gen ReLU ReLU 0.971 (0.014) 0.638 (0.079) 1.0 (0.0) 0.994 (0.003)

Regularization Variations

α0.3 0.3 0.984 (0.003) 1.214 (0.442) 1.0 (0.0) 0.965 (0.017)
λ100 100 0.971 (0.002) 0.671 (0.525) 1.0 (0.0) 0.994 (0.008)
δ1.0 1.0 0.992 (0.007) 4.89 (2.669) 0.996 (0.007) 0.949 (0.029)
δ1.0 ann 0.0-1.0 0.996 (0.005) 4.56 (2.469) 0.996 (0.007) 0.951 (0.028)
α0.3 λ100 0.3 100 0.975 (0.004) 0.419 (0.296) 1.0 (0.0) 0.998 (0.001)
δ1.0 ann Cat Cat 0.0-1.0 0.997 (0.003) 0.658 (0.330) 1.0 (0.0) 0.987 (0.015)
δ1.0 ann α0.3 λ100 0.3 100 0.0-1.0 0.991 (0.004) 1.136 (0.5139) 1.0 (0.0) 0.980 (0.018)

tion (δ1.0 ann Cat), which achieves the best accuracy of any of our models.

3.4.2 One Billion Word

We test our networks on real world data from the 1-billion word dataset [26]. We followed a modern

language modeling approach and model the data at the sub-word level using a BPE encoding with

a vocab size of 50,000 [36]. The BPE is computed on the entirety of the 1-billion word dataset, and

then used to segment the sentences into sub-words. We then train embedding vectors of size 512 on

the sub-word encoded sentences using a skipgram model [35]. These embedding vectors are used in

two ways. For both models they are used as an embedding for the inputs r̄ in the generator. For the

+EmbOut model, embeddings are also used at the interface between generator and discriminator as

described in section 3.3.4. For GAN training we use the BPE-encoded sentences, but either clip or

pad them out to a length of 10 words.

We trained generative models using an RNN generator and CNN discriminator with added input

noise. The model is similar to the baseline model in the previous section, but we found that we

needed to increase the size of the network to achieve reasonable results. We increased the size of all

the generator layers to 1024 neurons and use a 3 layer LSTM. We also increased the discriminator

layers to 512 and used 3 convolutional layers. We use the same training hyperparameters as the

previous section, except we use a batch size of 1024 and only initialize the discriminator over the

first epoch, since each epoch contains significantly more data than our CFG dataset. Generated

examples are shown in table 3.2.

Our models are able to generate fairly realistic English sentences. Significantly more realistic

results are generated when the generator and discriminator share the pretrained embedding domain.

Without the embedding, the network struggles to handle the large 50, 000 word vocabulary, and to

put words in the correct order.
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Table 3.2: Example Outputs on One Billion Word Dataset. The Baseline model
uses a RNN generator with added noise and CNN discriminator. The Baseline
+EmbOut model adds that the generator outputs in the embedding domain.

Architecture Examples

Baseline Its they will be people from points at a ,
I has with already court smithsonian , instead to be
For was too unacceptable , one of which the house
This on the political , the , buchan was return

Baseline + EmbOut Indeed you know the driver.
Detainees said it was by the world hills .
Mr. biden is left to reassemble the government powerhouse.
Peterborough will get a third-largest rousing to make her patrols.

3.5 Conclusion

In this chapter we studied the production of discrete sentences using a GAN framework. We first

proved that a WGAN system cannot be directly used to generate probability vectors as outputs, and

then described several alternative approaches to avoid this issue. We then explored several potential

architectures including additions to WGAN regularization and using a pretrained embedding to

interface generator and discriminator. We tested these networks on data generated from a PCFG,

which allows rigorous comparison between different network architectures. Finally, we applied our

best architecture to the Google One Billion Word dataset and generated realistic looking English

sentences using only a pretrained embedding.

Although this chapter makes some significant progress, GAN based training of discrete sequences

is a difficult problem and is far from solved. We hope the techniques described in this chapter will

inspire continued research in this area.
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3.A Proof of Lemma 3.2.1

Proof. Since y is a fixed probability vector, we can replace Ey∼P(Y )[f(y)] in 2.5 with f(y). Equation

2.5 is then maximized if for every point r ∼ P(R) the distance f(r)− f(y) is maximized. Since f is

bounded as 1-lipshitz this is simply the distance between points r and y or ‖r − y‖. We can thus

rewrite equation 2.5 as

W (P(R),P(Y )) =

∑
r∼P(R)

‖r − y‖

N

=

N∑
i=0

∑
r=vi

‖r − y‖

N

=

N∑
i=0

P(R = vi)‖vi − y‖

where vi is the ith possible value of r. Here we are using the fact that each sample r must be drawn

from a set of N discrete values.

Minimizing the Wasserstein-1 distance is thus equivalent to solving

min
y

∑
v∈V

P(R = v)‖v − y‖,

where V is the set of all possible values of r, represented as one-hot vectors. V can also be thought

of as points on the N-dimensional standard simplex, with y laying somewhere on the interior of that

simplex.

Let vil be the lth element of the ith vertex, or

vil =
{

1 if i = l
0 otherwise

and β be an indicator variable defined as

βij =
{ −1 if i = j

1 otherwise

We can compute the derivative of the kth element of yk:

27
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∂

∂y
k

N∑
i=0

P(R = vi)‖vi − y‖

=

N∑
i=0

P(R = vi)
1

2‖vi − y‖
∑
l

2(vil − yl)
∂

∂yk
vil − yl

=

N∑
i=0

P(R = vi)
∑
l

βkl(vil − yl)

‖vi − y‖

=

N∑
i=0

P(R = vi)[
∑
l

βkl(vil)−
∑
l

βkl(yl)]

‖vi − y‖

=

N∑
i=0

P(R = vi)[βki − (1− 2yk)]

‖vi − y‖

Letting F (i) = P(R=vi)
‖vi−y‖

=

N∑
i=0

F (i)[βki − (1− 2yk)]

=

N∑
i=0

F (i)βki −
N∑
i=0

F (i)(1− 2yk)

=

N∑
i=0

F (i)βki −
N∑
i=0

F (i) +

N∑
i=0

F (i)2yk

= −2F (k) + 2yk

N∑
i=0

F (i)

F (k) = yk

N∑
i=0

F (i)

P(R = vk)

‖vk − y‖
= yk

N∑
i=0

P(R = vi)

‖vi − y‖

Letting y = P(R) and thus yk = P(R = vk) .

yk
‖vk − y‖

= yk

N∑
i=0

yi
‖vi − y‖

1

‖vk − y‖
=

N∑
i=0

yi
‖vi − y‖

0 =

N∑
i=0

yi − vik
‖vi − y‖
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This holds iff yk = 0 or yk = 1 or yi = yj ∀i, j. Which means y, and by extension P(R) must be

one-hot or must generate all values with equal probability. In all other cases, the gradient will not

be zero, which concludes the proof.

3.B Probabilistic Context Free Grammar

PCFG used for 3.4.1. Non terminals are represented using capital letters and terminals in quotes.

Each production consists of the starting non-terminal on the left followed by lists of terminals and

non terminals separated by ”—” on the right. Probabilities for each rule are shown in square

brackets.

PCFG =

S → SOS PHRASE EOS [1.0]

SOS → ’1’ [1.0]

EOS → ’2’ [1.0]

PHRASE → NP VPP [0.8] | NP VPP CONJADV NP VPP [0.2]

NP → Det Nom [0.7] | PropN [0.3]

Nom → Adj N [0.4] | N [0.6]

VPP → VP [0.5] | VP PRO VP [0.3] | VP CONJP [0.2]

PP → P NP [1.0]

PropN → ’3’ [0.4] | ’4’ [0.5] | ’5’ [0.1]

Det → ’6’ [0.6] | ’7’ [0.4]

N → ’8’ [0.1] | ’9’ [0.1] | ’10’ [0.2] | ’11’ [0.2] | ’12’ [0.4]

Adj → ’13’ [0.25] | ’14’ [0.2] | ’15’ [0.4] | ’16’ [0.1] | ’17’ [0.05]

V → ’18’ [0.2] | ’19’ [0.2] | ’20’ [0.1] | ’21’ [0.1] | ’22’ [0.4]

VPT → ’23’ [0.3] | ’24’ [0.3] | ’25’ [0.1] | ’26’ [0.05] | ’27’ [0.25]

PRO → ’28’ [0.75] | ’29’ [0.25]

CONJP → CONJ CV VPT NPRO [1.0]

CV → ’30’ [0.9] | ’31’ [0.1]

CONJ → ’32’ [0.5] | ’33’ [0.5]

P → ’34’ [0.2] | ’35’ [0.8]

NPRO → ’36’ [0.4] | ’37’ [0.6]

CONJADV → ’38’ [0.9] | ’39’ [0.1]
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Chapter 4

Learning to Repair Software Vulnerabilities with

Generative Adversarial Networks

4.1 Introduction

As discussed in chapter 1, one of the main issues preventing the adoption of NMT techniques for

many applications is a lack of training data. We address this problem by adopting an approach

that removes the need for paired data by using Generative Adversarial Networks (GANs) [17]. We

keep a traditional NMT model as the generator, and replace the typical negative likelihood loss with

an adversarial discriminator, building on the methods discussed in chapter 3. This discriminator

is trained to distinguish between generated outputs and real examples of desired output, and so it

serves as a proxy for the discrepancy between the generated and real distributions.

This approach has three main difficulties. We discussed in chapter 3 that sampling from the

output of traditional NMT systems, in order to produce discrete outputs, is non-differentiable. As

a solution we follow the Added Noise methodology discussed in chapter 3, by adding an input noise

vector to the decoder of the NMT system which allow it to directly estimate samples from the

target distribution. Secondly, adversarial training does not guarantee that the generated output

will correspond to the input (i.e. the generator is trained to match distributions, not samples).

To enforce the generator to generate useful outputs we condition our generator on the input by

incorporating two novel generator loss functions. Thirdly, the domains we consider are not bijective,

i.e., for repair tasks a bad sample can have more than one repair, and conversely a good one can be

broken in more than one way. This motivates our choice of conditional loss functions, since previous

loss functions do not handle this limitation. We should note that although the experiments in this

chapter are on source code, the approach and the techniques proposed in this chapter are application-

agnostic in that they can be applied to other similar problems, such as correcting grammar errors or

converting between negative and positive sentiments (e.g., in online reviews.). Additionally, while

software vulnerability repair is a harder problem than detection, our proposed repair technique can
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leverage the same datasets used for detection and yields a much more explainable and useful tool

than detection alone.

4.2 Related Work

4.2.1 Software Repair

Much research has been done on automatic repair of software. Here we describe previous data-driven

approaches (see [37] for a more extensive review of the subject). Two successful recent approaches

are that of Le et al. [38] and Long and Rinard [39]. Le et al. mine a history of bug fixes across

multiple projects and attempt to reuse common bug fix patterns on newly discovered bugs. Long

and Rinard learn and use a probabilistic model to rank potential fixes for defective code. These

works, along with the majority of past work in this area, require a set of test cases which is used to

rank and validate produced repairs. Devlin et al. [40] avoid the need for test cases by generating

repairs with a rule based method and then ranking them using a neural network. Gupta et al. [41]

take this one step further by training a NMT model to directly generate repairs for incorrect code.

Hence, the work in [41] most closely resembles our work, but has the major drawback of requiring

paired training data.

4.2.2 Sequence Generation using GANs

As discussed in chapter 3, one of the main issues in applying GANs to NMT tasks is the handling

of discrete data (e.g. text). Typically, the output of a NMT network uses a softmax to produce a

probability vector over the set possible outputs. This probability vector is then sampled to produce

an output token. This sampling operation is non-differentiable and therefore prevents us from

using the gradients of the discriminator to train the generator. A few approaches have had success

despite this difficulty. One such approach is that of Yu et al. [23], which treats the output of

the discriminator as a reward in a reinforcement learning setting. This allows the sampling of

outputs from the generator since gradients do not need to be passed back through the discriminator.

However, since a reward is provided for the entire sequence, gradients computed for the generator do

not provide information on which parts of the output sequence the discriminator thinks is incorrect,

resulting in long convergence times. Several other approaches have had success with directly applying

an adversarial discriminator to the output of a sequence generator without sampling. Both Press

et al. [25] and Rajeswar et al. [24] are able to generate fairly realistic looking sentences of modest

length in this way using Wasserstein GAN [19].
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Another issue we must consider is that the output of the generator should be conditioned upon

the input. This is implicit with NMT since we have pairs of data, but is not enforced with the

adversarial loss in a GAN. Work has been done on how to condition a GAN’s generator on an input

sequence x instead of a random variable. This can easily be performed when paired data is available,

by providing the discriminator with both x and G(x)/y, thereby formulating the problem as in the

conditional approach of Mirza and Osindero [42, 43]. However, this is clearly more difficult when

pairs are not available. One approach is to enforce conditionality through the use of dual generators

which translate between domains in opposite directions. For example, Gomez et al. apply the cycle

GAN [44] approach to cipher cracking [28]. They train two generators, one to take raw text and

produce ciphered text, and the other to undo the cipher. Having two generators allows Gomez et al.

to encrypt raw data using the first generator, then decrypt it with the other, ensuring conditionality

by adding a loss function which compares this doubly translated output with the original raw

input. Lample et al. [27] adopt a somewhat similar approach for Neural Machine Translation.

They translate using two encoder/decoder pairs which convert from a given language to a latent

representation and back respectively. They then use an adversarial loss to ensure that the latent

representations are the same between both languages, thus allowing translation by encoding from

one language and then decoding into the second. For conditionality they adopt a similar approach

to Gomez et al. by fully translating a sentence from one language to another, translating it back,

and then comparing the original sentence to the produced double translation.

The approaches of both Gomez et al. and Lample et al. rely on the ability to transform a sentence

across domains in both directions. This makes sense in many translation spaces as there are a finite

number of reasonable ways to transform a sentence in one language to a correct one in the other.

This allows for a network which finds a single mapping from every point in one domain to a single

point in the other domain, to still cover the majority of translations. Unfortunately, in a sequence

correction task, one domain contains all correct sequences, while the other contains everything not

in the correct domain. Therefore, the mapping from correct to incorrect is not one-to-one, it is one

to many. A single mapping discovered by a network would fail to elaborate the space of all bad

functions, thus enforcing conditionality only on the relatively small set of bad functions it covers. As

such we propose to enforce conditionality using a self-regularization term on the generator, similar

in nature to that used by Shrivastava et al. [45] to generate realistic looking images from simulated

ones.
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Figure 4·1: Block diagram of GAN approach.

4.3 Approach

Our approach aims to combine a traditional NMT model with a GAN for training. As such our

generator consists of a standard LSTM based NMT system with an attention mechanism similar

to that of Luong et al [7]. Our discriminator uses a convolution based approach, since they have

been shown to be easier to train and to generally perform better than RNN based discriminators

[43]. The output of our generator is used directly as the input to the discriminator (no sampling).

A block diagram of the approach is show in figure 4·1.

4.3.1 Domain Mapping with Self-Regularization

In the context of sequence correction, we need to constrain our generated samples G(x) to be a

corrected versions of x. Therefore, we have the following two requirements: (1) correct sequences

should remain unchanged when passed through the generator; and (2) repaired sequences should be

close to the original corresponding incorrect input sequences.

We explore two regularizers to address these requirements. As our first regularizer we train our

generator as an autoencoder on data sampled from correct sequences. This directly enforces item

(1), while indirectly enforcing item (2) since the autoencoder loss encourages subsequences which

are correct to remain unchanged. The autoencoder regularizer is given as

LAUTO(G) = Er∼P (r) [−r log(G(r)).] (4.1)

As our second regularizer, we enforce that the frequency of each token in the generated output

remains close to the frequency of the input tokens. This enforces item (2) with the exception that it

may allow changes in the order of the sequence, e.g., arbitrary reordering does not increase this loss.
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However, the GAN loss alleviates this issue since arbitrary reordering produces incorrect sequences

which differ heavily from p(r). Our second regularizer is given as

LFREQ(G) = Ex∼P (x)[

n∑
i=0

‖freq(x, i)− freq(G(x), i)‖22 ]. (4.2)

where n is the size of the vocabulary and freq(x, i) is the frequency of the ith token in x.

4.3.2 Putting It All Together - Proposed GAN Framework

The generator in our network consists of a standard NMT system with an attention mechanism

similar to that of Luong et al [7]. For all experiments the encoder and decoder consist of multi-

layer RNNs utilizing Long Short-Term Memory (LSTM) units [15]. We use a dot-product attention

mechanism as per [7]. We use convolution based discriminators since they have been shown to be

easier to train and to generally perform better than RNN based discriminators [43]. Additional

network details are provided in Appendix 4.A

We have two different regularized loss models given as:

L(D,G) = LWGAN(D,G) + λLAUTO(G) (4.3)

L(D,G) = LWGAN(D,G) + λLFREQ(G) (4.4)

where LAUTO(G) and LFREQ(G) are defined in Section 4.3.1. We also experiment with the unreg-

ularized base loss model where we set λ = 0.

4.3.3 Autoencoder Pre-Training

We rely heavily on pre-training to give our GAN a good starting point. Our generators are pre-

trained as de-noising autoencoders on the desired data [46]. Specifically we train the generator with

the loss function:

LAUTO PRE(G) = Er∼P (r) [−r log(G(r̂)), ] (4.5)

where r̂ is a noisy version of the input created by dropping tokens in r with small probability (eg.

0.2) and randomly inserting and deleting n tokens, where n is a small fraction sequence length (eg.

0.03).
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4.3.4 Curriculum Learning

Likelihood based methods for training NMT systems often utilize teacher forcing during training

where the input to the decoder is forced to be the desired value regardless of what was generated

at the previous time step [16]. This allows stable training of very long sequence lengths even at the

start of training. Our adversarial method cannot use teacher forcing since the desired sequence is

unknown, and must therefore always pass a sample of the previous output as the next input. This

can lead to unstable training, since errors early in the output will be propagated forward, potentially

creating gibberish in the latter parts of the sequence. To avoid this problem we adopt a curriculum

learning strategy where we incrementally increase the length of produced sequences throughout

training. Instead of selecting subsets of the data for curriculum training, we clip all sequences to

have a predefined maximum length for each curriculum step. Although this approach relies on the

discriminator being able to handle incomplete sentences, it did not degrade the performance as long

as the discriminator was briefly retrained after each curriculum update.

4.4 Experiments

GAN methods have often been criticized for their lack of easy evaluation metrics. Therefore, we focus

our experiments on datasets which contain paired examples. This enables us to meaningfully evaluate

the performance of our approach, even though our GAN approach does not require pairs to train.

These datasets also allow us to train NMT networks and use their performance as an upper bound to

our GAN based approach. We start our experiments by exploring two hand-curated datasets, namely

sequences of sorted numbers and Context Free Grammar (CFG), which help highlight the benefits

of our proposed GAN approach to address the domain mapping problem. We then investigate the

harder problem of correcting errors in C/C++ code. All of our results are given in Table 4.1.

4.4.1 Sorting

In order to show the necessity of enforcing accurate domain mapping we generate a dataset where

the repair task is to sort the input into ascending order. We generate sequences of 20 randomly

selected integers (without replacement) between 0 and 50 in ascending order. We then inject errors

by swapping n selected tokens which are next to each other, where n is a (rounded) Gaussian random

variable with mean 8 and standard deviation 4. The task is then to sort the sequence back into its

original ascending order given the error injected sequence. This scheme of data generation allows

us to maintain pairs of good (before error injection) and bad (after error injection) data, and to
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compute the accuracy with which our GAN is able to restore the good sequences from the bad. We

refer to this accuracy as ‘Sequence Accuracy’ (or Seq. Acc.). In order to assess our domain mapping

approach and evaluate the usefulness of our self-regularizer loss functions defined in Section 4.3.1,

we also compute the percentage of sequences which have valid orderings but not necessarily valid

domain mappings, which we refer to as ‘Order Accuracy’ (or Order Acc.).

It is clear from the results in Table 4.1 that the vanilla (base) GAN easily learns to generate

sequences with valid ordering, without necessarily paying attention to the input sequence. This leads

to high Order Accuracy, but low Sequence Accuracy. However, adding Auto or Freq loss regularizers,

as in (4.3) and (4.4), significantly improves the Seq. Acc., which shows that these losses do effectively

enforce correct mapping between source and target domains.

4.4.2 Simple Grammar

For our second experiment, we generate data from a simple Context Free Grammar similar to that

used by Rajeswar et al. [24]. The specifics of the CFG is provided in Appendix 4.B. Our good data

is selected randomly from the set of all sequences which satisfy the grammar and are less than length

20. We then inject errors into each sequence, where the number of errors is chosen as a Gaussian

random variable (zero thresholded and rounded) with mean 5 and standard deviation 2. Each error

is then randomly chosen to be either a deletion of a random token, insertion of a random token, or

swap of two random tokens.

The network is tasked with generating the original sequence from the error injected one. This

task better models real data than the sorting task above, because each generated token must follow

the grammar and is therefore conditioned on all previous tokens. The results in Table 4.1 show that

our proposed GAN approach is able to achieve high CFG accuracy, in terms of generating correct

sequences that fit the CFG. In addition to CFG accuracy, we also compute BLEU scores based on

the pairs before and after error injection. We should note that our random error injection process

results in many bad examples corresponding to a specific good example or vice verse, i.e., mappings

are not bijective. Having multiple bad examples in the dataset paired with the same good example

contributes to the slightly lower BLEU scores, since the network can only map each bad input to a

single output. This issue appears frequently in real world repair datasets, since code sequences can

be repaired or broken multiple different ways. Our GAN approach performs well on this CFG dataset

suggesting that it can handle this issue for which cycle approaches are not appropriate [28, 27, 44].
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4.4.3 SATE IV

SATE IV is a dataset which contains C/C++ synthetic code examples (functions) with vulnerabilities

from 116 different Common Weakness Enumeration (CWE) classes, and was originally designed to

explore performance of static and dynamic analyzers [47]. Each bad function contains a specific

vulnerability, and is paired with several candidate repairs. There is a total of 117, 738 functions of

which 41, 171 contain a vulnerability and 76, 567 do not. We lex each function using our custom

lexer. After lexing, each function ranges in length from 10 to 300 tokens.

Using this data, we created two datasets to perform two different experiments, namely paired

and unpaired datasets. The paired dataset allows us to compare the performance of our GAN

approach with a NMT approach. In order to have a dataset which is fair for both GAN and NMT

training, we created paired data by taking each example of vulnerable code and sampling one of its

repairs randomly. We iterate this process through the dataset four times, pairing each vulnerable

function with a sampled repair, and combine the resulting sets into a single large dataset. We

should mention that although the paired dataset includes labeled pairs, those labels are not utilized

for GAN training. For the unpaired dataset, we wanted to guarantee that a given source sequence

does not have a corresponding target sequence anywhere in the training data. To achieve this, we

divided the data into two disjoint sets by placing either a vulnerable function or its candidate repairs

into the training dataset with equal probability. Note that this operation reduces the size of our

training data by half. For testing, we compute BLEU scores using all of the candidate repairs for

each vulnerable function. We use a 80/10/10% train/validation/test split.

As shown in Table 4.1, our proposed GAN approach achieves progressively better results when

we add (a) curriculum training, and (b) either LAUTO or LFREQ regularization loss. The Base +

Cur + Freq model proves to be the best among different GAN models, and performs reasonably

close to the NMT baseline, which is the upper performance bound. The results on the unpaired

dataset are fairly close to those achieved by the paired dataset, particularly in the Base case, even

though they are obtained with only half of the training data. Some code examples where our GAN

makes correct repairs are provided in Table 4.2, with additional examples Appendix 4.C.

4.5 Conclusions

We have proposed a GAN based approach to train an NMT system for discrete domain mapping

applications. The major advantage of our approach is that it can be used in the absence of paired

data, opening up a wide set of previously unusable data sets for the sequence correction task. Key
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Table 4.1: Results on all experiments. Cur refers to experiments using curriculum
learning, while Auto and Freq are those using LAUTO and LFREQ, respectively.
Sate4-P and Sate4-U denote paired and unpaired datasets, respectively.

Sorting CFG Sate4-P Sate4-U
Model Seq Acc. Order Acc BLEU-4 CFG Acc BLEU-4 BLEU-4
NMT
Base 99.7 99.8 91.3 99.3 96.3 N/A
Base + Cur 99.7 99.8 90.2 98.9 96.4 N/A
Proposed GAN
Base 82.8 96.9 88.5 98.0 84.2 79.3
Base + Auto 98.9 99.6 88.6 96.5 85.7 79.2
Base + Freq 99.3 99.7 88.3 97.5 86.2 79.5
Base + Cur 81.5 98.0 88.4 98.9 88.3 81.1
Base + Cur + Auto 96.2 98.0 88.5 97.8 89.9 81.5
Base + Cur + Freq 98.2 99.1 88.6 96.3 90.3 81.3

Table 4.2: Successful Repairs: (Top) This function calls sprintf to print out two
strings, but only provides the first string to print. Our GAN repairs it by providing
a second string. (Bottom) This function uses a variable again after freeing it. Our
GAN repairs it by removing the first free.

With Vulnerability Repaired

void CWE685 Function Call With Incorrect
Number Of Arguments() {

char dst[DST SZ];
sprintf (dst, ”%s %s”, SRC STR);
printLine(dst);
}

void CWE685 Function Call With Incorrect
Number Of Arguments() {

char dst[DST SZ];

sprintf (dst, ”%s %s”, SRC STR, SRC STR);
printLine(dst);
}

void CWE415 Double Free malloc free
struct 31() {

twoints ∗data;
data = NULL;
data = (twoints ∗)malloc(100 ∗ sizeof(twoints));

free(data);

{
twoints ∗data copy = data;
twoints ∗data = data copy;
free(data);
}
}

void CWE415 Double Free malloc free
struct 31() {

twoints ∗data;
data = NULL;
data = (twoints ∗)malloc(100 ∗ sizeof(twoints));

{
twoints ∗data copy = data;
twoints ∗data = data copy;
free(data);
}
}

to our approach is the addition of two novel generator loss functions which enforce accurate domain

mapping without needing multiple generators or domains to be bijective. We also have discussed,

and made some progress, toward handling discrete outputs with GANs. We note that this problem

is far from solved, however, and will likely inspire more research. Even though we only apply our

approach to the problem of source code correction, it is applicable to other sequence correction

problems, such as Grammatical Error Correction or language sentiment translation, e.g., converting

negative reviews into positive ones.
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4.A Network and Training Details

Here we provide additional network and training details useful for experimental replication. All of

the networks used in this chapter use a similar architecture but vary in the number and size of layers.

4.A.1 Network Architecture

For all the experiments, we use identical networks for the Generator in our GAN model as well as in

the NMT model in our seq2seq baseline. Thus when we refer to generator in the rest of the section

it applies to both models. Our network architecture is shown in Figure 4·2.

Our generator consists of two RNNs, an encoder and a decoder. For Sorting and CFG exper-

iments, the generator RNNs contain 3 layers of 512 neurons each. For Sate4, it contains 4 layers

of 512 neurons each. The encoder RNN processes the input sequence and produces a set of hidden

states ht. The final hidden state hT is used as the initial state to the decoder RNN which generates

outputs st one at a time, feeding its outputs back as input to t1 until an end of sequence character

is produced. The decoder and encoder are linked using global dot product attention as per [7].

All networks share the same discriminator architecture. Discriminator inputs (s0, s1...sT ) each

in Rk are concatenated into a matrix G in RT×k. They are then passed through a single 1D

convolutional layer with 300 filters each of sizes of 3, 7, and 11. These outputs are then aggregated

and fed into a max pooling operation over the entire sequence length. This is fed into two fully

connected layers, the first with 512 neurons, and the second with a single neuron, the output of the

discriminator.

4.A.2 Training

We first train our generator as a denoising autoencoder for which we use the Adam optimization

algorithm with a learning rate of 10−4. The same pretrained network is used to initialize the

generator for all GAN and seq2seq networks.

GAN networks are trained using the RMSprop optimization algorithm. Learning rates are ini-

tialized to 5 ∗ 10−4 for the discriminator and 10−5 for the generator. We train the discriminator

39
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Figure 4·2: (Left) Generator consisting of N encoder layers feeding N decoder
layers. Outputs from the encoder are also used as inputs to the attention mechanism
with the query coming from the decoder output. (Right) Discriminator consisting
of N convolution layers, a temporal max pooling, and N fully connected layers.

15 times for every generator update. Seq2seq models are trained using the Adam optimizer with

a learning rate of 10−4. We experimented extensively with varying the learning rate but found

that increasing the discriminator learning rate made it unstable causing its accuracy to decrease.

Increasing the generator learning rate causes it to update to quickly for the discriminator, meaning

the discriminator would not remain close to optimal and therefore gradients through it were not

reliable. In order to ensure that the discriminator starts at a good initial point, we initialize it by

training it alone for the first 10 epochs. The generators learning rate is decayed by a factor of 0.9

every 10 epochs. In models where we employ curriculum learning, this decay is only performed after

the curriculum is completed. Networks are trained for 200, 400, and 1000 epochs for the sorting,

CFG, and SATE4 experiments, respectively.

Our curriculum clips each sequence to a given length. We step up the curriculum length either

when the discriminator accuracy falls below 55% or after 40 epochs, whichever comes first. Sort-

ing and CFG curriculum starts at sequence length 5 and is increased by 2 at each step. SATE4

curriculum starts at length 75 and is increased by 5 at each step.

4.B Context Free Grammar

Our simple CFG experiment uses the following CFG. Each line is a production rule with possible

sequences separated by |. Symbols in quotes are terminals.
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S: SOS NP VP EOS

SOS: ’1’

EOS: ’2’

NP: Det Nom | PropN

Nom: Adj N | N
VP: V NP | V NP PP

PP: P NP

PropN: ’3’ | ’4’ | ’5’

Det: ’6’ | ’7’

N: ’8’ | ’9’ | ’10’ | ’11’ | ’12’

Adj : ’13’ | ’14’ | ’15’ | ’16’ | ’17’

V: ’18’ | ’19’ | ’20’ | ’21’

P: ’22’ | ’23’

4.C Repair Examples

Here we provide additional selected examples of source code correctly and incorrectly repaired by

our GAN model. Tables 4.3-4.6 show successfull repairs, and Tables 4.7-4.8 show failures.

Table 4.3: Successful Repair - This functions reads the index of an array ac-
cess from a socket and returns the memory at the index. The vulnerable function
only checks the lower bound on the array size. Our GAN repairs it by adding an
additional check on the upper bound.

With Vulnerability Repaired

void CWE129 Improper Validation Of
Array Index() {

int data;
data = −1;
{

ifdef WIN32 WSADATA wsa data;
int wsa data init = 0;
endif int recv rv;
struct sockaddr in s in ;
SOCKET connect socket = INVALID SOCKET;
char input buf[CHAR ARRAY SIZE];
do {

ifdef WIN32 if (WSAStartup(MAKEWORD(2, 2),
&wsa data) != NO ERROR) break;

wsa data init = 1;
endif connect socket = socket(AF INET, SOCK STREAM,

IPPROTO TCP);
if (connect socket == INVALID SOCKET)

break;
memset(&s in, 0, sizeof( s in));
s in . sin family = AF INET;
s in .sin addr.s addr = inet addr(”127.0.0.1”);
s in . sin port = htons(TCP PORT);
if (connect(connect socket, (struct sockaddr ∗)\&s in,

sizeof( s in)) ==
SOCKET ERROR)

break;
recv rv = recv(connect socket, input buf,

CHAR ARRAY SIZE, 0);
if (recv rv == SOCKET ERROR || recv rv == 0)

break;
data = atoi(input buf);
} while (0);
if (connect socket != INVALID SOCKET)

CLOSE SOCKET(connect socket);
ifdef WIN32 if (wsa data init) WSACleanup();
endif
}
{

int data copy = data;
int data = data copy;
{

int data buf[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
if ( data > = 0 ) {

printIntLine(data buf[data]) ;
} else {

printLine(”ERROR: Array index is negative”);
}
}
}
}

void CWE129 Improper Validation Of
Array Index() {

int data;
data = −1;
{

ifdef WIN32 WSADATA wsa data;
int wsa data init = 0;
endif int recv rv;
struct sockaddr in s in ;
SOCKET connect socket = INVALID SOCKET;
char input buf[CHAR ARRAY SIZE];
do {

ifdef WIN32 if (WSAStartup(MAKEWORD(2, 2),
&wsa data) != NO ERROR) break;

wsa data init = 1;
endif connect socket = socket(AF INET, SOCK STREAM,

IPPROTO TCP);
if (connect socket == INVALID SOCKET)

break;
memset(&s in, 0, sizeof( s in));
s in . sin family = AF INET;
s in .sin addr.s addr = inet addr(”127.0.0.1”);
s in . sin port = htons(TCP PORT);
if (connect(connect socket, (struct sockaddr ∗)&s in,

sizeof ( s in)) ==
SOCKET ERROR)

break;
recv rv = recv(connect socket, input buf,

CHAR ARRAY SIZE, 0);
if (recv rv == SOCKET ERROR || recv rv == 0)

break;
data = atoi(input buf);
} while (0);
if (connect socket != INVALID SOCKET)

CLOSE SOCKET(connect socket);
ifdef WIN32 if (wsa data init) WSACleanup();
endif
}
{

int data copy = data;
int data = data copy;
{

int data buf[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
if ( data > = 0 && data < 10 ) {

printIntLine(data buf[data]) ;
} else {

printLine(”ERROR: Array index is out−of−bounds”);
}
}
}
}
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Table 4.4: Successful Repair - This function attempts to accept a socket and use
it before it has bound it. Our GAN approach repairs the function by reordering the
bind, listen, and accept into the correct order.

With Vulnerability Repaired

void CWE666 Operation on Resource in Wrong
Phase of Lifetime accept listen bind () {

{
char data[100] = ””;
ifdef WIN32 WSADATA wsa data;
int wsa data init = 0;
endif int recv rv;
struct sockaddr in s in ;
char ∗replace;
SOCKET listen socket = INVALID SOCKET;
SOCKET accept socket = INVALID SOCKET;
size t data len = strlen(data);
do {

ifdef WIN32 if (WSAStartup(MAKEWORD(2, 2),
&wsa data) != NO ERROR) break;

wsa data init = 1;
endif listen socket = socket(AF INET, SOCK STREAM,

IPPROTO TCP);
if ( listen socket == INVALID SOCKET)

break;
memset(&s in, 0, sizeof( s in));
s in . sin family = AF INET;
s in .sin addr.s addr = INADDR ANY;
s in . sin port = htons(TCP PORT);

accept socket = accept(listen socket, NULL,

NULL);

if (accept socket == SOCKET ERROR)

break;

if ( listen ( listen\ socket, LISTEN\ BACKLOG)
== SOCKET\ ERROR)

break;

if (bind(listen socket, (struct sockaddr *)& s in,

sizeof(s in)) == SOCKET ERROR)

break;

recv rv = recv(accept socket, (char ∗)data + data len,
(int)(100 − data len − 1), 0);

if (recv rv == SOCKET ERROR || recv rv == 0)
break;

data[recv rv] = ’\0’;
replace = strchr(data, ’\r’) ;
if (replace)
∗replace = ’\0’;

replace = strchr(data, ’\n’);
if (replace)
∗replace = ’\0’;

} while (0);
if ( listen socket != INVALID SOCKET)

CLOSE SOCKET(listen socket);
}
}

void CWE666 Operation on Resource in Wrong
Phase of Lifetime accept listen bind () {

{
char data[100] = ””;
ifdef WIN32 WSADATA wsa data;
int wsa data init = 0;
endif int recv rv;
struct sockaddr in s in ;
char ∗replace;
SOCKET listen socket = INVALID SOCKET;
SOCKET accept socket = INVALID SOCKET;
size t data len = strlen(data);
do {

ifdef WIN32 if (WSAStartup(MAKEWORD(2, 2),
&wsa data) != NO ERROR) break;

wsa data init = 1;
endif listen socket = socket(AF INET, SOCK STREAM,

IPPROTO TCP);
if ( listen socket == INVALID SOCKET)

break;
memset(&s in, 0, sizeof( s in));
s in . sin family = AF INET;
s in .sin addr.s addr = INADDR ANY;
s in . sin port = htons(TCP PORT);

if (bind(listen socket, (struct sockaddr*)&s in,

sizeof(s in)) == SOCKET ERROR)

break;

if ( listen ( listen socket , LISTEN BACKLOG)
== SOCKET\ ERROR)

break;

accept socket = accept(listen socket, NULL,

NULL);

if (accept socket == SOCKET ERROR)

break;

recv rv = recv(accept socket, (char ∗)data + data len,
(int)(100 − data len − 1), 0);

if (recv rv == SOCKET ERROR || recv rv == 0)
break;

data[recv rv] = ’\0’;
replace = strchr(data, ’\r’) ;
if (replace)
∗replace = ’\0’;

replace = strchr(data, ’\n’);
if (replace)
∗replace = ’\0’;

} while (0);
if ( listen socket != INVALID SOCKET)

CLOSE SOCKET(listen socket);
}
}

Table 4.5: Successful Repair - This function has a buffer allocated which is too
small for the resulting data write. Our GAN repairs it by increasing the amount of
memory allocated to the buffer.

With Vulnerability Repaired

void CWE131 Incorrect Calculation Of
Buffer Size() {

wchar t ∗data;
data = NULL;

data = (wchar t ∗)malloc( 10 ∗ sizeof(wchar t));
{

wchar t data src[10 + 1] = SRC STRING;
size t i , src len ;
src len = wcslen(data src);
for (i = 0; i < src len; i++) {

data[i ] = data src[i ];
}
data[wcslen(data src)] = L ’\0’;
printWLine(data);
free(data);
}
}

void CWE131 Incorrect Calculation Of
Buffer Size() {

wchar t ∗data;
data = NULL;

data = (wchar t ∗)malloc(( 10 + 1 ) ∗ sizeof(wchar t));

{
wchar t data src[10 + 1] = SRC STRING;
size t i , src len ;
src len = wcslen(data src);
for (i = 0; i < src len; i++) {

data[i ] = data src[i ];
}
data[wcslen(data src)] = L ’\0’;
printWLine(data);
free(data);
}
}
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Table 4.6: Successful Repair - This function calls sprintf to print out two strings,
but only provides the first string to print. Our GAN repairs it by providing a second
string.

With Vulnerability Repaired

void CWE685 Function Call With Incorrect
Number Of Arguments() {

char dst[DST SZ];
sprintf (dst, ”%s %s”, SRC STR);
printLine(dst);
}

void CWE685 Function Call With Incorrect
Number Of Arguments() {

char dst[DST SZ];

sprintf (dst, ”%s %s”, SRC STR, SRC STR);
printLine(dst);
}

Table 4.7: Incorrect Repair - This function tries to print out from data which has
not been fully initialized. Our GAN corrects this by fully initializing the variable,
but then attempts to call a variable identifier instead of making the appropriate
function call.

With Vulnerability GAN Attempted Repaired Golden Repair

void CWE457 Use of
Uninitialized Variable() {

double ∗data;
data = (double ∗)ALLOCA(10 ∗

sizeof(double));
{

int i ;
for (i = 0; i < (10 / 2); i++) {

data[i ] = (double)i;
}
}
{

int i ;
for (i = 0; i < 10; i++) {

printDoubleLine(data[i]);
}
}
}

void CWE457 Use of
Uninitialized Variable(){

double ∗data;
data = (double ∗)ALLOCA(10 ∗

sizeof(double));
{

size t i ;
for (i = 0; i < 10; i++) {

data[i ] = (double)i;
}
}
{

int i ;
for (i = 0; i < 10; i++) {

static five(data[i]) ;

}
}
}

void CWE457 Use of
Uninitialized Variable() {

double ∗data;
data = (double ∗)ALLOCA(10 ∗

sizeof(double));
{

int i ;
for (i = 0; i < 10; i++) {

data[i ] = (double)i;
}
}
{

int i ;
for (i = 0; i < 10; i++) {

printDoubleLine(data[i]) ;

}
}
}

Table 4.8: Incorrect Repair - This function encounters an integer underflow by
assigning a random value to a char and then subtracting 1. If the random value
is 0 this will underflow the char. The given golden repair in this case is simply to
change the random char to a known value. However, our GAN gets confused. It
instead modifies the rand function in an unknown way and proceeds to free the data
rather then print it.

With Vulnerability GAN Attempted Repaired Golden Repair

void CWE191 Integer
Underflow() {

unsigned char data;
data = ’ ’ ;
data = (unsigned char)rand();

{
unsigned char result =

data − 1;
printHexUnsignedCharLine(result);
}
}

void CWE191 Integer
Underflow(){

unsigned char data;
data = ’ ’ ;
data = (unsigned char)

rand((unsigned int)data) ;

{
char data = data ;

free(data) ;

}
}

void CWE191 Integer
Underflow() {

unsigned char data;
data = ’ ’ ;

data = 5 ;

{
unsigned char result =

data − 1;
printHexUnsignedCharLine(result) ;

}
}
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Chapter 5

Tree-Transformer: A Transformer-Based Method

for Correction of Tree-Structured Data

5.1 Introduction

Most machine learning approaches to correction tasks operate on sequential representations of input

and output data. Generally this is done as a matter of convenience — sequential data is readily

available and requires minimal effort to be used as training data for many machine learning mod-

els. As discussed in the previous chapters, sequence-based machine learning models have produced

prominent results in both translation and correction of natural language [6, 5, 4, 2, 1, 3, 48, 13].

Many sequential data types can also be more informatively represented using a tree structure.

One common method to obtain tree-structured data is to fit sequential data to a grammar, such as

a Context Free Grammar (CFG). The use of a grammar ensures that generated trees encode the

higher-order syntactic structure of the data in addition to the information contained by sequential

data. Examples of tree-structured data from text and code are show in figure 5·1.

In this chapter, we trained a neural network to operate directly on trees, teaching it to learn

the syntax of the underlying grammar and to leverage this syntax to produce outputs which are

grammatically correct. Our model, the Tree-Transformer, handles correction tasks in a tree-based

encoder and decoder framework. The Tree-Transformer leverages the popular Transformer architec-

ture [5], modifying it to incorporate the tree structure of the data by adding a parent-sibling tree

convolution block. To show the power of our model, we focused our experiments on two common

data types and their respective tree representations: Abstract Syntax Trees (ASTs) for code and

Constituency Parse Trees (CPTs) for natural language.



45

Figure 5·1: Examples of tree-structured data. Left: constituency parse tree for
English text. Right: abstract syntax tree for code.

5.2 Related Work

5.2.1 Tree Structured Neural Networks

Existing work on tree-structured neural networks can largely be grouped into two categories: en-

coding trees and generating trees. Several types of tree encoders exist [49, 50, 51, 52]. The seminal

work of Tai et al. [49] laid the ground work for these methods, using a variant of a Long Short Term

Memory (LSTM) network to encode an arbitrary tree. A large body of work has also focused on

how to generate trees [53, 54, 55, 56, 57, 58, 59, 60]. The work of Dong et al., [53] and Alvarez-Melis

and Jaakkola [54] each extend the LSTM decoder popular in Neuro Machine Translation (NMT)

systems to arbitrary trees. This is done by labeling some outputs as parent nodes and then forking

off additional sequence generations to create their children. Only a small amount of work has com-

bined encoding and generation of trees into a tree-to-tree system [61, 62]. Of note is Chakraborty

et al. [62] who use a LSTM-based tree-to-tree method for source code completion.

To our knowledge our work is the first to use a Transformer-based network on trees, and apply

Tree-to-Tree techniques to natural language and code correction tasks.

5.2.2 Code Correction

Code correction was discussed in chapter 4, with related work in section 4.2.1. Some information is

repeated here for completeness.

There is extensive existing work on automatic repair of software. However, the majority of this

work is rule-based systems which make use of small datasets (see [37] for a more extensive review

of these methods). Two successful, recent approaches in this category are that of Le et al., [38] and

Long and Rinard [39]. Le et al. mine a history of bug fixes across multiple projects and attempt
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to reuse common bug fix patterns on newly discovered bugs. Long and Rinard learn and use a

probabilistic model to rank potential fixes for defective code. Unfortunately, the small datasets used

in these works are not suitable for training a large neural network like ours.

Neural network-based approaches for code correction are less common. Devlin et al. [40] generate

repairs with a rule-based method and then rank them using a neural network. Gupta et al. [41]

were the first to train a NMT model to directly generate repairs for incorrect code.

5.2.3 Grammatical Error Correction

Grammatical Error Correction (GEC) is the task of correcting grammatically incorrect sentences.

This task is similar in many ways to machine translation tasks. However, initial attempts to apply

NMT systems to GEC were outperformed by phrase-based or hybrid systems [63, 64, 65].

Initial, purely neural systems for GEC largely copied NMT systems. Yuan and Brisco [2] pro-

duced the first NMT style system for GEC by using the popular attention method of Bahdanau et

al. [6]. Xie et al. [4] trained a novel character-based model with attention. Ji et al. [1] proposed

a hybrid character-word level model, using a nested character level attention model to handle rare

words. Schmaltz et al. [3] used a word-level bidirectional LSTM network. Chollampatt and Ng [48]

created a convolution-based encoder and decoder network which was the first to beat state of the

art phrased-based systems. Finally, Junczys-Dowmunt et al. [13] treated GEC as a low resource

machine translation task, utilizing the combination of a large monolingual language model and a

specifically designed correction loss function.

5.3 Architecture

Our Tree-Transformer architecture is based on the Transformer architecture of Vaswani et al. [5],

modified to handle tree-structured data. The transformer architecture is described in section 2.6.

Our major change to the Transformer is the replacement of the feed forward sublayer in both the

encoder and decoder with a Tree Convolution Block (TCB). The TCB allows each node direct

access to its parent and left sibling, thus allowing the network to understand the tree structure.

We follow the same overall architecture for the Transformer as Vaswani et al., consisting of self-

attention, encoder-decoder attention, and TCB sub layers in each layer. Our models follow the 6

layer architecture of the base Transformer model with sublayer outputs, dmodel, of size 512 and tree

convolution layers, dff , of size 2048.
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Figure 5·2: Tree-Transformer model architecture.
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Figure 5·3: Tree-Transformer State Transfer

5.3.1 Parent-Sibling Tree Convolution

Tree convolution is computed for each node as:

TCB(xt, xp, xs) = relu(xtWt + xpWp + xsWs + b)W2 + b2.

The inputs xt, xp, and xs all come from the previous sublayer, xt from the same node, xp from the

parent node, and xs from its left sibling. In cases where the node does not have either a parent (e.g.

the root node) or a left sibling (e.g. parents first child), the inputs xp and xs are replaced with a

learned vector vp and vs respectively.

In addition to the TCB used in each sub layer, we also use a TCB at the input to both the

encoder and decoder. In the encoder this input block combines the embeddings from the parent,

the sibling and the current node (p, s, and t). In the decoder, the current node is unknown since it

has not yet been produced. Therefore, this block only combines the parent and sibling embeddings,

leaving out the input xt from the equation above.

The overall structure of the network is shown in Figure 5·2. The inputs to each TCB come from

the network inputs, x/y, for the input blocks, and from the previous sublayer, saL/aL, for all other

blocks.

5.3.2 Top-Down Encoder and Decoder

Both our encoder and decoder use a top-down approach where information flows from the tree’s root

node down toward to the leaf nodes, as shown in Figure 5·3. Thus, leaf nodes have access to a large

sub-tree, while parent nodes have a more limited view. An alternative approach would be to use a

bottom-up encoder, where each node has access to its children, and a top-down decoder which can

disseminate this information. This bottom-up/top-down model is intuitive because information flows

up the tree in the encoder and then back down the decoder. However, we found that utilizing the

same top-down ordering for both encoder and decoder performed better, likely because the symmetry
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in encoder and decoder allows decoder nodes to easily attend to their corresponding nodes in the

encoder. This symmetry trivializes copying from encoder to decoder, which is particularly useful in

correction tasks where large portions of the trees remain unchanged between input and output.

5.3.3 Generating Tree Structure

In order to generate each tree’s structure, we treat each set of siblings as a sequence. For each set

of siblings, we generate each node one at a time, ending with the generation of an end-of-sequence

token. The vocabulary used defines a set of leaf and parent nodes. When a parent node is generated,

we begin creation of that nodes children as another set of siblings.

5.3.4 Depth First Ordering

As with any NMT system, each output value yt is produced from the decoder and fed back to

subsequent nodes as input during evaluation. Ensuring inputs yp and ys are available to each node

requires that parents are produced before children and that siblings are produced in left-to-right

order. To enforce this constraint, we order the nodes in a depth-first manner. This ordering is

shown by the numbering on nodes in Figure 5·4. The self attention mechanism in the decoder is

also masked according to this order, so that each node only has access to previously produced ones.

5.3.5 No Positional Encoding

The Transformer architecture utilizes a positional encoding to help localization of the attention

mechanisms. Positional encoding is not as important in our model because the TCB allows nodes

to easily locate its parent and siblings in the tree. In fact, we found that inclusion of a Positional

Encoding caused the network to overfit, likely due to the relatively small size of the correction

datasets we use. Given this, our Tree-Transformer networks do not include a Positional Encoding.

5.4 Why Tree Transformer

In this section we motivate the design of our Tree-Transformer model over other possible tree-based

architectures. Our choice to build upon the Transformer model was two-fold. First, Transformer-

based models have significantly reduced time-complexity relative to Recurrent Neural Network

(RNN) based approaches. Second, many of the building blocks required for a tree-to-tree trans-

lation system, including self-attention, are already present in the Transformer architecture.
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5.4.1 Recurrent vs Attention Tree Networks

Many previous works on tree-structured networks used RNN-based tree architectures where nodes

in layer L are given access to their parent or children in the same layer [53, 54, 62]. This state

transfer requires an ordering to the nodes during training where earlier nodes in the same layer must

be computed prior to later ones. This ordering requirement leads to poor time complexity for tree-

structured RNN’s, since each node in a tree needs access to multiple prior nodes (e.g. parent and

sibling). Accessing the states of prior nodes thus requires a gather operation over all past produced

nodes. These gather operations are slow, and performing them serially for each node in the tree can

be prohibitively expensive.

An alternative to the RNN type architecture is a convolutional or attention-based one, where

nodes in layer L are given access to prior nodes in layer L−1. With the dependence in the same layer

removed, the gather operation can be batched over all nodes in a tree, resulting in one large gather

operation instead of T . From our experiments, this batching resulted in a reduction in training time

of two orders of magnitude on our largest dataset; from around 2 months to less than a day.

5.4.2 Conditional Probabilities and Self Attention

The Tree-Transformer’s structure helps the network produce grammatically correct outputs. How-

ever, for translation/correction tasks we must additionally ensure that each output, yt, is condition-

ally dependent on both the input, x, and on previous outputs, y<t. Conditioning the output on the

input is achieved using an encoder-decoder attention mechanism [6]. Conditioning each output on

previous outputs is more difficult with a tree-based system. In a tree-based model like ours, with

only parent and sibling connections, the leaf nodes in one branch do not have access to leaf nodes

in other branches. This leads to potentially undesired conditional independence between branches.

Consider the example constituency parse trees shown in Figure 5·4. Given the initial noun phrase

”My dog”, the following verb phrase ”dug a hole” is far more likely than ”gave a speech”. How-

ever, in a tree-based model the verb phrases do not have direct access to the sampled noun phrase,

meaning both possible sentences would be considered roughly equally probable by the model.

We address the above limitation with the inclusion of a self-attention mechanism which allows

nodes access to all previously produced nodes. This mechanism, along with the depth-first ordering

of the node described in section 5.3.4, gives each leaf node access to all past produced leaf nodes.
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Figure 5·4: Example Constituency Parse Tree. The index of the node in depth-
first ordering is shown in the bottom left of each node. Note: leaf nodes in the verb
phrase do not have access to leaf nodes in the left noun phrase without self-attention

Our model fits the standard probabilistic language model of equation 2.2:

P(R = r|x) =

T∏
t=1

p(rt|r<t, x),

where t is the index of the node in the depth first ordering.

5.5 Training

This section describes the training procedure and parameter choices used in our model. We trained

our models in parallel on 4 Nvidia Tesla V-100 GPU’s. Trees were batched together based on size

with each batch containing a maximum 20, 000 words. We used the ADAM optimizer with inverse

square root decay and a warm up of 16, 000 steps. A full list of hyperparameters for each run is

included in the supplementary material.

5.5.1 Regularization

The correction datasets we used in this chapter are relatively small compared to typical NMT

datasets. As such we found a high degree of regularization was necessary. We included dropout of

0.3 before the residual of each sub layer and attention dropout of 0.1. We also added dropout of

0.3 to each TCB after the non-linearity. We applied dropout to words in both source and target

embeddings as per [13] with probabilities 0.2 and 0.1 respectively. We included label smoothing with

εls = 0.1

5.5.2 Beam-Search

Because of the depth-first ordering of nodes in our model, we can use beam search in the same way

as traditional NMT systems. Following equation 2.2, we can compute the probability of a generated

sub-tree of t nodes simply as the product of probabilities for each node. We utilize beam-search
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during testing with a beam width of 6. Larger beam widths did not produce improved results.

5.6 Experiments/Results

5.6.1 Code Correction

We trained our Tree-Transformer on code examples taken from the NIST SATE IV dataset [47].

SATE IV contains around 120K C and C++ files from 116 different Common Weakness Enumera-

tions (CWEs), and was originally designed to test static analyzers. Each file contains a bad function

with a known security vulnerability and at least one good function which fixes the vulnerability.

We generate Abstract Syntax Trees (ASTs) from these functions using the Clang AST framework

[66, 67].

To provide a representation which is usable to our network, we tokenize the AST over a fixed

vocabulary in three ways. First, high level AST nodes and data types are represented by individual

tokens. Second, character and numeric literals are represented by a sequence of ASCII characters

with a parent node defining the kind of literal (e.g. Int Literal, Float Literal). Finally, we use

variable renaming to assign per function unique tokens to each variable and string. Our vocabulary

consists of 403 tokens made up of 60 AST tokens, 23 data type tokens, 256 ASCII tokens, and 64

Variable tokens.

Using the SATE IV dataset requires pre-processing, which we do during data generation. First,

many of the SATE IV functions contain large amounts of dead code. In these cases, the bad and

good functions contain largely the same code, but one path will be executed during the bad function

and another in the good one. To make these cases more realistic, we removed the dead code. Second,

although each file for a particular CWE contains unique functions at the text level, many of them

are identical once converted to AST with renamed variables. Identical cases comes in two flavors:

one where a bad function is identical to its good counterpart, and one where multiple bad functions

from different files are identical. The first occurs commonly in SATE IV in cases where the bad

and good functions are identical except for differing function calls. Since we operate at the function

level, examples of this case are not useful and are removed. The second case occurs when bad

functions differ only in variable names, strings, or function calls. To handle this, we compare all

bad functions tree representations and combine identical bad functions into a single bad tree and

a combination of all good trees from its component functions, with duplicate good trees removed.

After pre-processing the data, we retain a total of 32, 316 bad functions and 47, 346 good functions.

These are split 80/10/10 into training/validation/testing.
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Table 5.1: SATE IV Results

Architecture Precision Recall F0.5

4-layer LSTM 51.3 53.4 51.7
Transformer 59.6 86.1 63.5
Tree-Transformer 84.5 89.4 85.4

To our knowledge this processing of the SATE IV dataset is new. As such, we compare our net-

work to two NMT systems operating on sequence-based representation of the data; a 4 Layer LSTM

with attention and a base Transformer model. These sequence-based models use a representation

with an almost identical vocabulary and tokenization to our tree representation but they operate

over the tokenized sequence output of the Clang Lexer instead of the AST.

During testing, we utilized clangs source-to-source compilation framework to return the tree

output of our networks to source code. We then compute precision, recall, and F0.5 scores of source

code edits using the MaxMatch algorithm [68]. Results are given in Table 5.1. Our Tree-Transformer

model performs better than either of the other two models we considered. We believe this is because

source code is more naturally structured as a tree than as a sequence, lending itself to our tree-based

model.

5.6.2 Grammar Error Correction

We applied our tree-based model as an alternative to NMT and phrase-based methods for GEC.

Specifically, we encoded incorrect sentences using their constituency parse trees, and then generated

corrected parse trees. Constituency parse trees represent sentences based on their syntactic structure

by fitting them to a phrase structured grammar. Words from the input sentence become leaf nodes

of their respective parse trees, and these nodes are combined into phrases of more complexity as we

progress up the tree [69, 51]

A large amount of research has focused on the generation of constituency parse trees [70, 71, 72].

We utilize the Stanford NLP group’s shift-reduce constituency parser [73] to generate trees for

both incorrect and correct sentences in our datasets. These are represented to our network with

a combined vocab consisting of 50K word level tokens and 27 parent tokens. The parent tokens

come from the part of speech tags originally defined by the Penn Treebank [74] plus a root token.

Following recent work in GEC [13, 48], the word level tokens are converted into sub-words using a

Byte Pair Encoding (BPE) trained on the large Wikipedia dataset [75]. The BPE segments rare

words into multiple subwords, avoiding the post-processing of unknown words used in many existing

GEC techniques.
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We test our network on two GEC benchmarks: the commonly used NUCLE CoNLL 2014 task

[76], and the AESW dataset [77]. CoNLL 2014 training data contains 57K sentences extracted from

essays written by non-native English learners. Following the majority of existing GEC work, we

augment the small CoNLL dataset with the larger NIST Lang-8 corpus. The Lang-8 data contains

1.1M sentences of crowd sourced data taken from the Lang-8 website, making it noisy and of lower

quality than the CoNLL data. We test on the 1, 312 sentences in CoNLL 2014 testing set and use

the 1, 381 sentences of the CoNLL 2013 testing set as validation data. For evaluation we use the

official CoNLL M2scorer algorithm to determine edits and compute precision and recall [68].

We also explore the large AESW dataset. AESW was designed in order to train grammar

error identification systems. However, it includes both incorrect and corrected versions of sentences,

making it useful for GEC as well. AESW contains 1.2M training, 143K testing, and 147K validation

sentences. The AESW data was taken from scientific papers authored by non-native speakers, and

as such contains far more formal language than CoNLL.

GEC Training

For GEC we include a few additions to the training procedure described in Section 5.5. First, we

pre-train the network in two ways on 100M sentences from the large monolingual dataset provided

by [63]. We pre-train the decoder in our network as a language model, including all layers in the

decoder except the encoder-decoder attention mechanism. We also pre-train the entire model as a

denoising-autoencoder, using a source embedding word dropout of 0.4.

For loss we use the edit-weighted MLE objective defined by Junczys-Dowmunt et al. [13]:

MLE(x, y) = −
T∑

t=1

λ(yt)logP (yt|x, y < t),

where (x, y) are a training pair, and λ(yt) is 3 if yt is part of an edit and 1 otherwise. We compute

which tokens are part of an edit using the python Apted graph matching library [78, 79, 80].

During beam-search we ensemble our networks with the monolingual language-model used for

pre-training as per [4]:

s(y|x) =

T∑
t=1

logP(Yt = yt|x, y<t) + αlogPlm(Yt = yt|y<t),

where α is chosen between 0 and 1 based on the validation set. Typically, we found an alpha of 0.15

performed best. Networks with α > 0 are labeled with +Mon-Ens
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Table 5.2: CoNLL 2014 results

Architecture Precision Recall F0.5

Prior State-of-the-art Approaches

Chollampatt and Ng 2017. 62.74 32.96 53.14
Junczys-Dowmunt and Grundkiewicz. 2016 61.27 27,98 49.49

Prior Neural Approaches

Ji et al. 2017 - - 45.15
Schmaltz et al. 2017 - - 41.37
Xie et al. 2016 49.24 23.77 40.56
Yuan and Briscoe. 2016 - - 39.90
Chollampatt and Ng. 2018 65.49 33.14 54.79
Junczys-Dowmunt et al. 2018 63.0 38.9 56.1

This Work

Tree-Transformer 57.39 28.12 47.50
Tree-Transformer +Mon 58.45 30.42 49.35
Tree-Transformer +Mon +Mon-Ens 57.84 33.26 50.39
Tree-Transformer +Auto 65.22 30.38 53.05
Tree-Transformer +Auto +Mon-Ens 59.14 43.23 55.09

Table 5.3: CoNLL 2014 Example Output

Input In conclusion , we could tell the benefits of telling genetic risk to the carriers relatives overweights the costs .

Labels In conclusion , we can see that the benefits of telling genetic risk to the carrier’s relatives outweighs the costs .
In conclusion , we can see that the benefits of disclosing genetic risk to the carriers relatives outweigh the costs.
In conclusion , we can see that the benefits of revealing genetic risk to the carrier’s relatives outweigh the costs .

Network In conclusion , it can be argued that the benefits of revealing genetic risk to one ’s relatives outweighs the costs .

CoNLL 2014 Analysis

Results for CoNLL 2014 are provided in Table 5.2. Our Tree-Transformer achieves significantly

higher recall than existing approaches, meaning we successfully repair more of the grammar errors.

However, our precision is also lower which implies we make additional unnecessary edits. We at-

tribute this drop to the fact that our method tends to generate examples which fit a structured

grammar. Thus sentences with uncommon grammar tend to be converted to a more common way

of saying things. An example of this effect is provided in table 5.3.

AESW Analysis

Results for AESW are provided in Table 5.4. We achieve the highest to date F0.5 score on AESW,

including beating out our own sequence-based Transformer model. We attribute this to the fact

that AESW is composed of samples taken from submitted papers. The more formal language used

in this context may be a better fit for the structured grammar used by our model.

5.7 Conclusion

In this chapter we introduced the Tree-Transformer architecture for tree-to-tree correction tasks. We

applied our method to correction datasets for both code and natural language and showed an increase
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Table 5.4: AESW results

Architecture Precision Recall F0.5

Prior Approaches

Schmaltz et al. 2017 (Phrased-based) - - 38.31
Schmaltz et al. 2017 (Word LSTM) - - 42.78
Schmaltz et al 2017 (Char LSTM) - - 46.72

This Work

Transformer (Seq to Seq) 52.3 36.2 48.03
Tree-Transformer 55.4 37.1 50.43

in performance over existing sequence-based methods. We believe our model achieves its success by

taking advantage of the strong grammatical structure inherent in tree-structured representations.

For the future we hope to apply our approach to other tree-to-tree tasks, such as natural language

translation. Additionally, we intend to extend our approach into a more general graph-to-graph

method.
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5.A hyperparameters

Hyperparameters utilized are listed in tables 5.5 and 5.6. Default hyperparameters are listed at the

top of each table. A blank means the run utilized the default hyperparameter. An explanation of

hyperparemeters follows.

• N - number of layers

• dmodel - size of sublayer outputs - see [5]

• dff - size of inner layer in TDB/FF for Tree-Transformer/Transfomer

• h - Number of attention heads

• dk - Size of keys in attention mechanism

• dv - Size of values in attention mechanism

• pdrop - Dropout probability between sub-layers

• pdattn - Dropout probability on attention mechanism - see [5]

• pdff - Dropout probability on inner layer of TDB/FF for Tree-Transformer/Transfomer

• pdes - Source embedding word dropout probability

• pdet - Target embedding word dropout probability

• εls - Label Smoothing ε

• lr - Learning Rate, We use isr learning rate as per [5]. As such this learning rate will never be

fully met, maximum learning rate depends upon warmup.

• warmup - number of steps for linearly LR warmup

• train steps - total number of steps for training

57
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Table 5.5: Model Parameters

Architecture N dmodel dff h dk dv pdrop pdattn pdff pdes pdet εls

default 6 512 2048 8 64 64 0.3 0.1 0.3 0.2 0.1 0.1

SATE IV

LSTM 4 1024 N/a
Transformer
Tree-Transformer

GEC Pretraining

Monolingual
Autoencoder 0.4

Conll 2014

Tree-Transformer
Tree-Transformer +Mon
Tree-Transformer +Mon +Mon-Ens
Tree-Transformer +Auto
Tree-Transformer +Auto +Mon-Ens

Aesw

Transformer
Tree-Transformer

Table 5.6: Training Parameters

Architecture lr warmup train steps Mon Auto Mon-Ens EW-MLE Time (Hours)

default d
−0.5
model

4000 100k - - - -

SATE IV

LSTM 40
Transformer 18
Tree-Transformer 22

GEC Pretraining

Monolingual 500k 38
Autoencoder 500k 50

Conll 2014

Tree-Transformer 16000 3 26
Tree-Transformer +Mon 16000 X 3 26
Tree-Transformer +Mon +Mon-Ens 16000 X X 3 26
Tree-Transformer +Auto 16000 X 3 26
Tree-Transformer +Auto +Mon-Ens 16000 X X 3 26

Aesw

Transformer 16000 X X 3 19
Tree-Transformer 16000 X X 3 25

• Mon - Initialized from monolingual pre-trained network

• Auto - Initialized from autoencoder pre-trained network

• Mon-Ens - Ensemble trained network with monolingual netword during beam search as per

[4]

• EW-MLE - Use edit-weight MLE objective function as per [13]

• Time (Hours) - Total training time



Chapter 6

Conclusion

This chapter provides concluding remarks on the previous three chapters, including discussion on

contributions, strengths, weaknesses, and future work.

6.1 Summary and Contributions

• Chapter 3 presented methodology for training a language model with a WGAN. We first

illustrated difficulties with directly training a language model with a WGAN and proved that

we cannot train a language model to generate probabilities in this way. We then explored three

alternative solutions which allow training of a language model with a WGAN. We presented

an analysis of these alternatives on a dataset generated from a context free grammar, which

showed that the added noise method performed the best of the three. We also explored both

RNN and CNN generator architectures, several CNN based discriminator architectures, and

two novel regularization techniques. Finally, we used the best performing network on the

context free grammar dataset, plus a novel use of pertained embeddings, to train on the one

billion word dataset, producing realistic English sentences.

• In Chapter 4 we designed a system which uses a WGAN and conditional losses to train a NMT

system on unpaired data. We tested two different losses to enforce conditionality between the

input and output of the NMT system, one which uses an autoencoder loss on real data,

and one which penalizes differences in the frequency of tokens between input and output.

Additionally, we used autoencoder pre-training to initialized the network and during training

used curriculum learning to incrementally step up sequence lengths. We trained our network

to correct vulnerabilities in code using the SATE IV datasets, and achieved results close to

those obtainable using paired data.

• Chapter 5 introduced the Tree-Transformer, a Transformer based approach which operates on

tree structured data. We discussed the architecture of the system, including the addition of

59
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the Tree Convolution Block which allows the network to operate on the tree structure. We

also illustrated the necessity for encoder-decoder attention in allowing the decoder access to

the encoder, and for self-attention which enforces conditional ordering of nodes in the tree.

We then tested the system on the SATE IV dataset for code correction, illustrating signifi-

cantly improved results over sequence based methods. We also tested the tree-transformer on

benchmark datasets for grammar error correction, showing improved performance over passed

models, especially in recall.

6.2 Strengths, Weaknesses, and Further Research

6.2.1 Improved Generation of Discrete Sequences using Wasserstein Generative Ad-

versarial Networks

Using the method presented in chapter 3 we are able to produce realistic sentences using a GAN

without pre-training. To the best of our knowledge, this is the first time this has been accomplished.

However, one major downside to our approach is that it produces samples (e.g. one-hot outputs)

instead of probabilities. As such we cannot compute the probability of a particular output, nor

use those probabilities to compute metrics like perplexity, which are common for language modeling

tasks. One potential solution for this is a transfer learning approach, which uses our trained generator

to train a new network which does produce probabilities. This could be achieved by using the samples

outputted from our generator as the desired output from a new neural language model. Training in

this way can be done quickly by initializing the new neural language model’s parameters to those of

the generator, excluding the parameters used for added noise.

The ability to train without any pre-training is an important aspect to showing the robustness of

our WGAN method. However, our results are likely to improve with pre-training. Additionally, our

method may have difficulty competing with the standard neural language model approach, which

can be trained to output probabilities directly from monolingual data. The model in this chapter

provides a necessary first step toward the work in chapter 4, which allows for the training of a neuro

machine translation system in the absence of paired data.

6.3 Learning to Repair Software Vulnerabilities with Generative Adver-

sarial Networks

One of the major strong suits of the approach presented in chapter 4 is that we can use it on very

large, unpaired datasets, which should be relatively easy to obtain. Additionally, since the model
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matches the distributions of generated outputs to the distribution of real data it is fairly robust to

false positives in the labeling of incorrect data. This allows us to consider groups of data as inputs.

For example, a dataset could be formed by using sets of essays by native speakers as the desired

data, and essays from non-native speakers as input data. Unfortunately, since data gathered in this

way is unpaired it cannot be used to compare to current neural machine translation baselines. As

such, in this thesis we chose datasets which have paired data for comparison, and leave unpaired

datasets for future work.

For future work we would like to test our method on additional datasets and tasks. One such

task is grammar error correction, of which their are several datasets available including CONLL

2014 and AESW, which were explored in chapter 5. Also, unpaired data gathering should also allow

us to obtain datasets which are much larger than the grammar error correction datasets which are

currently available.

Our approach allows us to train a NMT system in the absence of paired data, but does have some

limitations, mainly because of its use of a GAN. Similarly to what was discussed in the previous

section, the network does not produce probabilities, but instead samples. This makes it impossible

to use techniques like beam search to produce the highest probability output, or to provide the top N

corrections for a particular input. Additionally, because the system uses a WGAN it can be difficult

to train, necessitating careful balancing of training iterations and learning rate between generator

and discriminator. The results presented in this dissertation are the end result of many tuning runs,

and achieving similar performance on new datasets will likely also necessitate a reasonably large

amount of hyperparameter tuning.

6.4 Tree-Transformer: A Transformer-Based Method for Correction of

Tree-Structured Data

One of the main advantages of the Tree-Transformer model presented in chapter 5 is its speed. The

ability to compute all nodes in a layer in parallel results in speedup of several orders of magnitude

over similar RNN or LSTM based approaches. Additionally, the transformer model is a highly used

model in the literature, and is known to achieve very high accuracy, making the Tree-Transformer

design more accessible and understandable for future researchers.

One downside of the Tree-Transformer approach is that it is dependent upon the ability to

translate from sequence to tree and back again. In the task of grammar error correction this makes

the networks performance dependent upon the parser used to translate sentences into parse trees.
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Further more, since these parsers are generally only trained on correct sentences their behavior on

incorrect sentences is undefined. This is mitigated somewhat by the plasticity of the network, which

allows the network to learn some of the quirks and inaccuracies of the parser on incorrect data.

For the task of code correction the Tree-Transformer is dependent on the abstract syntax tree

parser. However, parsing for code is less of a problem than for language because abstract syntax trees

use a well defined grammar. Instead, the main difficulty of code correction is returning corrections

made to the abstract syntax tree to source code. Some recent work has enabled source code to be

updated from the abstract syntax tree [66, 67], but this is still an open research area and additional

work is likely necessary before the Tree-Transformer could be used in production on code.

For future work, we would like to explore the use of the Tree-Transformer on language transla-

tion. Specifically, many language pairs still have very low-resource datasets, for example English to

Romanian. These low-resource pairs could likely benefit from the Tree-Transformers ability to use

the underlying grammar.
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