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ABSTRACT 

Tropical deforestation is a significant source of CO2 emissions to the atmosphere. 

Quantifying land use changes and associated emissions is critical for reporting and 

reducing emissions of greenhouse gases. In the Colombian Amazon, areas of forest 

conversion estimated at biennial intervals using a combination of dense time series of 

Landsat observations and statistical estimators based on reference data indicate that 

deforestation is modest (87 kha year-1) relative to surrounding countries and regions. 

Other land cover and change areas can also be estimated at biennial intervals, including a 

land cover class representing regrowing secondary forest, which is on average five times 

larger than the forest-to-pasture conversion. Areas of gain and loss of secondary forest 

are very small for this region relative to deforestation.  

 Errors in the detection of change negatively impact the precision of the land 

change area estimates. New methods estimate the uncertainty associated with maps of 

land change, represented as probability maps of omission and commission of change. 

These probabilities are higher in the deforestation frontier of the study area, where the 

fine spatial scale of the disturbances and the low temporal data density make it 

challenging to detect the changes accurately. The presented methods improve our ability 
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to integrate uncertainty into applications that make use land change maps, such as spatial 

carbon models.  

 Methods to estimate emissions based on bias-adjusted areas of land 

change show that net carbon emissions average 10 Tg year-1 (0.22 Mg ha-1 year-1) in the 

entire study area, and can be further disaggregated by the land cover contributing to the 

emissions or removals. This dissertation shows that the conversion from forest to pastures 

has been the largest forest loss pathway in the Colombian Amazon for almost two 

decades. While there is a small carbon offset due to sequestration by regrowing forests, 

conversion to pasture is also the main source of carbon emissions associated with land 

change.  The methods and results presented in this dissertation demonstrate the potential 

of the Landsat archive to enable the quantification of land changes, their uncertainty, and 

their associated carbon emissions, even in areas with relatively infrequent cloud-free 

observations.  
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INTRODUCTION 

 
 

Tropical deforestation accounts for 7 - 14% of the CO2 emissions released into the 

atmosphere by human activities (Achard et al., 2014; Goetz et al., 2015; Harris et al., 

2012). Terrestrial ecosystems currently act as a net sink of carbon despite land use and 

land cover change-related carbon emissions (Le Quéré et al., 2009), but the net flux of 

carbon between land and atmosphere due to land use and land cover change is the most 

uncertain term in the global carbon budget (Houghton et al., 2012). This uncertainty is 

mostly due to inadequate data on carbon density of forests and regional rates of 

deforestation (Baccini et al., 2012a), inadequate methods for monitoring of forest 

degradation (Bullock et al., 2018), inadequate characterization of post-disturbance 

landscapes including processes like regeneration and shifting cultivation (Arneth et al., 

2017), and inadequate treatment of errors and bias in maps derived from remote sensing 

data (Olofsson et al., 2013). The research presented in this dissertation aims to advance 

the monitoring of forests and terrestrial carbon by implementing new and exciting 

approaches to satellite data analysis and statistical inference. Recent methods based on 

analysis of time series of satellite data have the potential to improve our understanding of 

land change by providing information that allow us to reconstruct the land history at the 

pixel level. These kinds of approaches enable a more comprehensive analysis of the 

landscape including the mapping and monitoring of dynamic and transitional land 

processes like vegetation regrowth and degradation, which are inherently difficult to map 

but may result in substantial carbon emissions and/or removals from the atmosphere 



2 
 

 

(Pearson et al., 2017; Poorter et al., 2016). Temporally consistent maps of land cover and 

land change created with time series methods can be used in conjunction with statistical 

methods and reference data to accommodate classification errors and provide bias-

adjusted area estimates of land change with quantified uncertainties. Area estimation is a 

key component to determine the historical carbon fluxes associated with land change, and 

it is typically conducted in conjunction with an accuracy assessment of the land cover 

classes (or changes) being evaluated.  

 

1.1 Time series analysis of remote sensing data 

 
The opening of the Landsat archive in 2008 (Woodcock et al., 2008) has enabled 

the development of new algorithms that rely on dense time series of Landsat observations 

to analyze changes on the land surface. These algorithms use a variety of statistical 

techniques to detect signals that represent a change on Earth’s surface in the form of 

change in land cover, land use and management, or land condition (referred to land 

change throughout this dissertation). Two general approaches have been used to process 

and extract information for remote sensing time series. First, composite-based approaches 

use a statistic (e.g. median) for a fixed number of observations, or the “best” images 

according to some criterion (e.g. cloud cover) (Griffiths et al., 2014; Huang et al., 2010; 

Kennedy et al., 2010). The main advantage of compositing is the avoidance of clouds and 

a reduction of data to be analyzed, which enables large-scale mapping (Hansen et al., 

2013; Kim et al., 2014) but at the expense of losing intra-annual information (e.g. 

seasonality, phenology, etc.). The second category include approaches that use all 
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available observations. Such approaches are more computationally expensive and require 

detailed cloud and cloud shadow screening, but enable the study of phenology and 

seasonality, as well as a more detailed analysis of landscapes that experience rapid 

change (GFOI, 2016). Examples include BFAST (DeVries et al., 2015; Verbesselt et al., 

2010a), CCDC/YATSM (Holden, 2016a; Zhu and Woodcock, 2014a) and CODED 

(Bullock et al., 2018). Furthermore, high frequency observations allow the 

characterization of intra-annual trends and changes, helping distinguish long-term trends 

from short-lived disturbances, or even noise (Verbesselt et al., 2010b; Zhu, 2017). Such 

methods have enabled the separation of spectrally similar land cover classes that differ in 

their seasonal patterns, improving the mapping of forest types and ecosystem state and 

dynamics (Pasquarella et al., 2018, 2016). Time series analysis allows the continuous 

tracking of land change activities, which enables a more comprehensive characterization 

of the land history –such as the detection of subtle transitions like forest recovery and 

forest degradation (Bullock et al., 2018; Kennedy et al., 2010) – compared to traditional 

mapping methods. In addition, the use of temporal segments allows for the creation of 

temporally consistent land cover maps that are less subject to the spectral variability in 

the data. Temporally consistent maps are important for the continuous monitoring of land 

cover classes, as they facilitate the comparisons of maps over time. The use of temporal 

segments also opens the possibility to characterize carbon dynamics at the pixel level. 

While these methods have been tested and proven useful in many locations around the 

world, few published articles have applied time series algorithms that use all the available 
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observations in a tropical region, where the lower historical data availability and the 

higher incidence of clouds may hamper their utility.  

 

1.2 Area estimation  

 
Even with modern image-processing techniques and high quality remote sensing 

data, maps created using remote sensing data will always exhibit some degree of error. 

Errors arise from imperfections in the input data, training data and the mapping process, 

and from the inherently complex task of classifying continuously varying landscape 

features, often without clear boundaries, into discrete map classes. Because the effect of 

classification errors, estimating the area of a specific map class by methods that sum 

pixel values for map units assigned to that class (referred to as “pixel-counting”) is a 

biased procedure that produces erroneous area estimates because the effects of 

classification errors are ignored (GFOI 2016). To accommodate the effects of map 

classification errors, areas of landscape features require estimation by application of an 

unbiased estimator to sample data (Olofsson et al., 2014). The use of unbiased estimators 

is therefore crucial for applications that require reliable values of land change area and 

their uncertainty, such as those related to carbon emission reporting. The uncertainty in 

area estimates is expressed as a confidence interval that is estimated using the variance 

estimator corresponding to the sample design. The sampling design should be chosen to 

take into account the specific objectives and priorities of the analysis (e.g. estimation of 

stable or change area, or map accuracy). Several designs are available but stratified 

random sampling is commonly used as it satisfies multiple designs criteria (Olofsson et 
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al., 2014). Once the sample is generated, reference land conditions are recorded at each 

sample unit. Recommendations, examples and good practices for estimating the area of 

land change are available in the literature (Olofsson et al., 2014), and have become 

standard practice for reporting of map accuracies and estimating areas of change. The 

body of literature applying these principles as well as time series algorithms is ample 

(Table 1-1.). However, most of these studies have been conducted in the United States 

with relatively few examples from REDD+ countries, with the exception of those 

pertaining to the Mexican carbon monitoring system (Gebhardt et al., 2014) and the 

Peruvian forest monitoring system (Potapov et al., 2014).  

 
Article Algorithm Mapping 

frequency 
Sampling design Area estimation LCC Scale 

(Cohen et 
al., 2016) 

TimeSync 
only 

Annual, 
1985-
2012 

Two stage cluster 
sampling. 
Stratified by 
ecoregion. 
Interpreted 
annually. 

Annual, sample 
based 

Forest 
disturbance 
by type 

CONUS 

(Masek et 
al., 2013) 

VCT 
Annual, 
1985-
2005 

Stratified random, 
based on forest 
types 

Annual, sample 
based 

Forest 
disturbance 
by type 

CONUS 

(Hansen et 
al., 2014) 

Multi-
temporal 
spectral 
metrics 

2006-2010 Stratified sampling 
(bare cover, forest 
cover) 

One period with 
CI’s. Annual, 
probably from 
maps. 

Forest cover CONUS 

(Hansen et 
al., 2013) 

Multi-
temporal 
spectral 
metrics 

Annual, 
2000-
2015 

Stratified random 
for accuracies and 
errors. 

Annual, map based Forest gain 
and loss 

Global 

(DeVries 
et al., 
2015) 

BFAST Annual, 
1999–2013 

No sampling Annual, map based Forest loss 
and 
regrowth 

Peru, two 
path/rows 
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Article Algorithm Mapping 
frequency 

Sampling design Area estimation LCC Scale 

(Olofsson 
et al., 
2016) 

CCDC One period, 
1986-2011 

Stratified random, 
based on map 
classes 

One period, sample 
based 

Multiple 
land cover 
classes 

New 
England 

(Sleeter et 
al., 2013) 

NLCD 
1973–2000, 
4 change 
intervals of 
∼7 years 

Stratified random 
based on 
ecoregions 

Annual, but based 
in the ∼7 year 
period 

Multiple 
land cover 
classes 

CONUS 

(Griffiths 
et al., 
2014) 

Multi- 
method 

1985-2010 at 
5 year 
intervals 

Stratified
 rando
m, frequency not 
clear. 

Per mapping period Forest 
disturbance 
and 
recovery 

Carpathian 
ecoregion 

(Gebhardt 
et al., 
2014) 

Multi-
temporal 
spectral 
metrics 

1993–2008 
at 
∼3 year 
intervals 

Stratified random 
area-weighted 
sampling, based 
on previous LC 
map. Timing 
unclear. 

Per mapping period Multiple 
land cover 
classes 

Mexico 

(Potapov 
et al., 
2014) 

Multi 
temporal 
spectral 
metrics 

2000-2011, 
single period 

Two stage 
stratified random 
cluster sampling 

Single period with 
map based annual 
values 

Forest loss Peruvian 
amazon 

(Yin et al., 
2014) 

LandTrendr 
(MOD- 
Trendr) 

2000-2011, 
Annual 

Disproportionate 
stratified estimator. 

Validation only. Multiple 
land cover 
classes 

Inner 
Mongolia 

(Kennedy 
et al., 
2012) 

LandTrendr 1985-2008, 
Annual 

Random Validation only Forest 
disturbance 
by type 

NW USA 

Table 1-1. Previous studies that use time series methods and statistical sampling to derive area estimates. 

 
 

1.3 REDD+, the IPCC and greenhouse gas emissions reporting 

 
REDD+ is an international mechanism created by the parties of the United Nations 

Framework Convention on Climate Change (UNFCCC) in 2005 that seeks to mitigate 

climate change by curbing carbon emissions from land change. Originally, REDD 
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(Reducing Emissions from Deforestation and forest Degradation) was designed to create 

a financial value for the carbon stored in forests, offering monetary incentives for tropical 

countries to reduce their rates of forest loss (UN-REDD, 2016). The “plus” sign was 

added to extend the reach of REDD to include sustainable forest management, 

conservation of forests and enhancement of carbon sinks (the full name of REDD+ is 

[REDD] and the role of conservation, sustainable management of forests and 

enhancement of forest carbon stocks in developing countries). Countries that participate 

in REDD+ are responsible for submitting a national forest reference emission level 

(FREL) that constitutes their carbon emissions baseline, usually based on historical 

trends. Future payments to the country are tied to their ability to demonstrate a reduction 

of emissions over a given period relative to their FREL. For this reason, methodologies to 

estimate both the reference levels and the subsequent emissions need to be consistent and 

transparent, and estimates unbiased and with known uncertainty. The ability to provide 

uncertainty estimates is only possible if uncertainties are quantified for changes in carbon 

stock and land area. Two main approaches have been identified to provide systematic and 

periodical estimates of carbon emissions and removals for REDD+ reporting: the stock 

change, and the gain/loss approach. The former requires estimates of standing carbon at 

times 1 and 2, which typically require forest inventories, whereas the latter is based on 

the product of emission factors (i.e. carbon content per unit area per land cover type) and 

activity data (i.e. estimated areas of REDD activities that cause carbon emissions or 

removals – synonymous with land change) (GFOI, 2016). Because of a lack of long-term 

national forest inventories and the need to account for other land cover classes besides 
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forest, methods to estimate carbon emissions and removals in the tropics typically rely on 

the gain/loss approach. The Intergovernmental Panel on Climate Change (IPCC) 

guidelines provide three tiers of approaches to estimate emissions and removals. Tier 1, 

or the “default method”, relies on default emission factors; Tier 2 requires country-

specific emission factors; whereas Tier 3 includes higher-order methods with estimates of 

carbon emissions and removals being tracked in space and time, often through the use of 

models (GFOI, 2016). Higher tiers are desirable because they can provide estimates of 

greater certainty than lower tiers when properly implemented, but they come at the cost 

of an increase in their complexity. Therefore, the selection of an initial tier must be done 

considering the country circumstances. 

Similarly, for representation of land, the IPCC provides three approaches: 

Approach 1 does not include any direct data on land change but simply country-scale area 

estimates of stable land categories; Approach 2 requires a land change matrix but without 

a spatial representation; whereas Approach 3 requires a spatially and temporally explicit 

representation of land categories and conversions (GFOI, 2016). Similar to the multiple 

tiers for estimation of carbon emissions and removals, higher-level approaches are 

desirable because they provide a more accurate and precise representation of a country’s 

land change trajectories, which is essential to estimate emissions associated with them, 

particularly in developing countries.  

Regardless of the tier or approach, central to a country’s REDD+ reporting is a 

MRV (Monitoring, Reporting and Verification) system, which aims at communicating 

mitigation procedures and estimation approaches (Cancun COP). The MRV system of a 
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country includes approaches for national forest monitoring in accordance with the IPCC 

Tier system (IPCC, 2006). At the core of a robust and transparent MRV system is the 

concept of good practice, which requires that national greenhouse gas inventories should 

not neither over- nor under-estimates as far as can be judged and uncertainties reduced 

as far as is practicable (IPCC, 2006). As explained in Section 1.2, statistical methods are 

available for the quantification and reduction of uncertainty, particularly for the 

estimation of areas of change. However, estimates of area bias and accuracy pertain to the 

entire study area, and do not provide information at the pixel level. The result is a 

mismatch between higher-level tier methods that rely on spatially explicit, often pixel-

level, and methods for accommodation of bias and uncertainty. To overcome this 

mismatch, approaches are needed that inform issues of bias and uncertainty at the pixel-

level in order for Tier 3 methods to comply with the IPCC reporting criteria. 

 

 
1.4 Study area 

 
The study area corresponds to the Colombian Amazon region as defined by the 

Sinchi Amazonic Institute of Scientific Research (Instituto Amazónico de Investigaciones 

Científicas) (Figure 1-1). The area, which is mostly covered by tropical rainforest, makes 

up more than two thirds of the forest area of Colombia (Galindo et al. IDEAM, 2014). 

The Colombian Amazon contains substantial carbon stocks and is one of the most 

biodiverse regions in the world (Asner et al., 2012; Duivenvoorden, 1996; Olson and 

Dinerstein, 2002; Orme et al., 2005). 
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Figure 1-1. Study area and Landsat scenes processed.  The Landsat WRS-2 path and row are displayed for 
each scene. The total area of study region is 46,822 kha 

 
Multiple studies have attempted to identify general patterns of land use in this area. 

Sánchez-Cuervo et al. (2012) documented vegetation recovery in the Andes and a 



11 
 

 

significant loss of woody vegetation in the northern boundary of the Amazon region 

between 2001 and 2010. Sy et al. (2015) attributed smallholder crop and mixed 

agriculture as the main drivers of deforestation, and underlined the importance of other 

wooded lands in the process. Armenteras et al. (2006) and Etter et al. (2006b) identified 

colonizing agriculture (colonización agrícola) in the Colombian Amazon, characterized 

by pasture establishment and cattle ranching along the deforestation frontier as the main 

cause of ecosystem change in the region. Etter et al. (2006a) found that areas that 

experienced deforestation were partially offset by regenerating vegetation between 1999 

and 2002, which was further corroborated by Aide et al. (2013), again, emphasizing the 

separation of primary and secondary forest, and the monitoring of post-disturbance 

landscapes. These practices increase the forest fragmentation and make land cover 

patterns more “patchy”, spontaneous and unplanned than those documented in the 

neighboring countries of Brazil and Ecuador (Armenteras et al., 2006). The relationship 

between fires and forest fragmentation has also been studied (Armenteras et al., 2017). 

These studies have improved our understanding of the drivers of change and overall 

changes in the Colombian Amazon, but no regional maps of the dynamics and patterns of 

conversion between multiple land categories over time have been produced. Estimates of 

carbon emissions exist but only for deforestation in irregularly spaced periods, and their 

uncertainty has not been reported (Ramírez-Delgado et al., 2018; Yepes et al., 2011). The 

national forest and carbon monitoring system, led by the National Institute of Hydrology, 

Meteorology and Environmental Studies (IDEAM), has a strong remote sensing 

component. Its development has vastly improving the country’s capabilities to report 
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areas of forest and forest loss at biennial intervals, as well as their associated carbon 

emissions. However, the focus on accurate detection of forest and forest loss has 

translated into less attention to changes between more detailed land cover classes, 

particularly those that may contribute to carbon removals such as regrowing secondary 

forests. While the rate of deforestation is less than in Brazil and Ecuador (FAO, 2010), 

the presence of more complex spatio-temporal dynamics of clearing, abandonment and 

regrowth, make the Colombian Amazon a relevant landscape to analyze. 

 

1.5 Structure of this dissertation 

 
This dissertation explores the use of dense time series of Landsat observations to 

improve the understanding of land change in the Colombian Amazon for the last eighteen 

years, particularly as it relates to carbon emissions and the REDD+ reporting process. It 

builds on current techniques to demonstrate the continuous estimation of areas for 

multiple land change activities and the carbon fluxes resulting from them, and provides 

guidance and recommendations for future similar studies. It also explores the use of 

methods to measure uncertainty in the detection of change in time series of Landsat 

observations.  
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1.5.1 Continuous monitoring of land change activities and post-disturbance dynamics 

from Landsat time series: A test methodology for REDD+ reporting 

 
The provision of credible evidence of reductions in the extent of land change 

activities that release carbon to the atmosphere is a key component to the success of 

REDD+. With the rates of land change typically being very small relative to the total 

study area, sampling-based approaches for estimation of annual or biennial areas have 

proven problematic, especially when comparing area estimates over time. In this chapter, 

I present a methodology for monitoring and estimating areas of land change activity at 

high temporal resolution that is compliant with international guidelines. I also provide a 

set of recommendations and lessons learned that could improve similar efforts in the 

future, helping make the reporting required for REDD+ more feasible. 

 

1.5.2 Spatial representation of the probability of errors in maps of land change 

 
Remote sensing-based maps provide spatially explicit information that is of 

importance in many subsequent analyses, for example, estimation of carbon emissions 

and evaluation of biodiversity. The classification errors in these maps limits their use for 

such analysis without accounting for their negative impacts. While sampling techniques 

can accommodate the effects of classification errors, the sampling-based estimates of bias 

and uncertainty provide no information about individual pixels. Available methods that 

aim to quantify classification uncertainty at the pixel-level do not account for uncertainty 

in the detection of changes. Approaches that provide spatial information on uncertainty in 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/land
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/temporal-resolution
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change maps are therefore needed but are with a few exceptions nonexistent in the 

literature. In this chapter, a method is presented for estimation of pixel-level probability 

of omission and commission of change in maps produced using the CCDC algorithm. 

The relationship between error probabilities and the actual incidence of omission and 

commission errors is analyzed.  

 

1.5.3 Carbon emissions associated with land conversions and recovery of disturbed 

landscapes 

 
Previous efforts to characterize the carbon dynamics in the Colombian Amazon have 

focused on estimating the average emissions over irregular periods due to deforestation 

activities and without reporting their uncertainty. In this chapter, I present the results 

from applying two approaches for estimating carbon fluxes in the study area using the 

areas calculated from “pixel counting” (biased) and estimated areas (bias-adjusted) of 

land change for each biennial period, calculated as explained in Chapter 2. Net and gross 

carbon fluxes per period and land change class are reported, as well as the instantaneous 

and delayed emissions from different pools, obtained from one of two approaches 

applied. I also present time-aggregated estimates of carbon fluxes with reduced 

uncertainties and discuss future avenues for a more accurate representation of processes 

such as carbon removals due to secondary forest regrowth.  
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CONTINUOUS MONITORING OF LAND CHANGE ACTIVITIES 

AND POST-DISTURBANCE DYNAMICS FROM LANDSAT TIME SERIES 

 
 

2.1 Introduction 

 
 Current tropical deforestation has been estimated to account for 7-14% of the 

annual CO2 emissions released into the atmosphere by human activities whereas intact 

tropical primary forests sequester an equal amount (Achard et al., 2014; Goetz et al., 

2015; Harris et al., 2012; Houghton et al., 2012). However, recent research suggests that 

a reduction in carbon density of tropical primary forest due to disturbance exceeds the 

emissions from deforestation, with the result that tropical forests are becoming a net 

source of carbon to the atmosphere (Baccini et al., 2017). The need for a reduction of 

emissions is thus more urgent than ever. Efforts to reduce global deforestation have led to 

the establishment of international frameworks like the (UN-REDD, 2016) that stipulate 

financial incentives to countries for reducing carbon emissions from tropical 

deforestation and forest degradation. For such frameworks to be successful, robust 

approaches that provide estimates of carbon emissions and removals with proper 

uncertainty metrics are required (IPCC, 2003). As mentioned in Section 1.3, methods to 

estimate carbon emissions and removals in the tropics typically rely on a gain/loss 

approach. Three tiers, from lower to higher complexity, are provided by the IPCC for the 

estimation of emission and removals. Similarly, the IPCC provides three approaches for 

the representation of land, with higher approaches increasing in complexity and leading 

to a spatial representation of land categories and conversions.  Following the Cancun 
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Agreement of the United Nations Framework Convention on Climate Change 

(UNFCCC), countries that wish to report carbon emissions and removals under the 

requirements of IPCC guidelines need to create a system for Measurement, Reporting and 

Verification (MRV) for communication of the mitigation procedures and estimation 

approaches (UNFCCC, 2018). The national MRV system includes approaches for 

national forest monitoring in accordance with the IPCC Tier system (IPCC, 2006). 

While tropical deforestation and associated carbon emissions have been extensively 

studied during the last three decades (Achard et al., 2002; Baccini et al., 2012a; Brown, 

1997a; DeFries et al., 2002; FAO, 1993; Hansen et al., 2013), the last couple of years 

have witnessed remarkable developments in environmental remote sensing. The opening 

of the Landsat archive in 2008 (Woodcock et al., 2008) has allowed for production of 

global maps of forest cover change (Hansen et al., 2013; Kim, 2010) and time series 

analysis of satellite data to study changes on the land surface (see for example Kennedy 

et al., 2010; Verbesselt et al., 2010; Zhu and Woodcock, 2014). New missions with 

global acquisition strategies and free data policies are already in orbit (Sentinel-2A, -2B 

and Landsat-8) and more are forthcoming (Landsat-9, -10 and Sentinel-2C, -2D). In 

addition, statistical protocols for unbiased estimation of area have become an integral part 

of forest and land cover monitoring (McRoberts, 2011; Olofsson et al., 2013; Stehman, 

2013). Together, these advancements enable a more comprehensive analysis of land 

change that meets the highest requirements of IPCC for land representation. Still, there 

are relatively few studies in the scientific literature focused on the use of these methods 

for advancing operational forest monitoring in MRV systems. Notable exceptions are the 
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Guyana MRV system that conforms to the IPCC Approach 3 for multiple land cover 

classes (GFOI, 2014); the national forest monitoring system of Peru that employs 

Landsat-based time series analysis and unbiased estimation of forest cover change 

(Potapov et al., 2014); the PRODES system of Brazil (Instituto Nacional de Pesquisas 

Espaciais (INPE), 2016) based on manual interpretation of Landsat imagery; and the 

Mexican MAD-MEX system (Gebhardt et al., 2014) that uses time-series analysis, 

segmentation and approaches for statistical inference. Colombia has experienced an 

increase in forest monitoring capacity with a Government agency (Instituto de 

Hidrología, Meteorología y Estudios Ambientales, IDEAM) dedicated to the 

establishment of a forest monitoring system (IDEAM, 2016). The Colombian system is 

built upon good practices in remote sensing and sampling-based estimation, including 

stratified estimation and implementation of new algorithms that make use of the Landsat 

archive. The aforementioned forest monitoring systems are impressive and have provided 

valuable information on the state of tropical forests. Still, what is missing is a system that 

tracks the conversions between the six IPCC land categories, including the dynamics of 

post-disturbance landscapes, at high temporal and spatial resolution, coupled with 

unbiased estimation protocols for provision of biennial estimates of activity data. 

In this Chapter I test a methodology for continuous monitoring and estimation of 

areas of land cover and land change that is compliant with IPCC Approach 3 for 

representation of land. The methodology builds on recent advancements in the field of 

environmental remote sensing, using algorithms for time series analysis (Zhu and 

Woodcock, 2014a) and estimation protocols (Olofsson et al., 2013; Stehman, 2013). The 
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performance of the methodology is tested for the Colombian Amazon (Study area, 

section 1.4) between 2001 and 2016. 

 

 

2.2 Methodology 

 

2.2.1 Time series analysis of land conversion 

 
 All available terrain-corrected (L1T), surface reflectance images from the TM, 

ETM+, and OLI sensors onboard Landsat-5, -7 and -8 with a cloud cover of less than 

80% were downloaded from the EROS Center Science Processing Architecture (ESPA) 

website (USGS, 2010) for the 25 Landsat path and rows covering the study area (Figure 

1-1). Because of a data gap around the mid-1990s (Figure 2-1), only data acquired after 

1997 were used. This yielded a total of 5,184 images that were stacked chronologically to 

create time series of surface reflectance.  

  

 

Figure 2-1. Time series of short-wave infrared observations (the SWIR1 band) acquired by Landsat -5-, 7 
and -8 of a pasture in the Colombian Amazon.  A clear gap in available observations can be seen between 
1992 and 1997. Landsat WRS-2 path 7, row 59; coordinates 73.9290 W, 1.9687 N. 
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A Python implementation of the Continuous Change Detection and Classification 

(CCDC) algorithm was applied to each Landsat pixel in each of the 25 Landsat path and 

rows from 1997 to 2016. CCDC (and YATSM, the Python implementation used in this 

study) searches for “breaks” in a time series by monitoring for change in the residuals of 

the forecast from statistical models (Holden, 2016a; Zhu et al., 2012; Zhu and Woodcock, 

2014a). The models predict the surface reflectance for any given date, and if the 

difference between observed and predicted reflectance across multiple bands is sustained 

for a certain number of consecutive observations, a change is flagged by the algorithm. 

After a change is detected, this process is repeated for the remaining observations in the 

time series iteratively. The time segments are subsequently classified in a supervised 

manner using a random forest classifier (Breiman, 2001) with time series model 

coefficients as input features, and training data.  This approach enables identification of 

land categories before and after land change activities are detected. Two masking 

procedures were applied to reduce the number of cloudy observations in the data. The 

first procedure filters cloudy observations as flagged by Fmask (Zhu and Woodcock, 

2012). The second procedure uses two multi-temporal methods similar to the Tmask 

procedure (Zhu and Woodcock, 2014b) that search for noise and remove it during the 

model-fitting phase.  

Of importance to the stated objectives is the ability of the algorithm to track post-

disturbance landscape dynamics; an example is provided in Figure 2-2, which shows a 

pixel located along the deforestation frontier of the Colombian Amazon. Figure 2-2 
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shows an example of colonizing agriculture which is common along the deforestation 

frontier: Primary Forest,  present from the start of the time series, is converted to Pasture 

in 2005 which in turn is abandoned a year or two after its creation and Secondary Forest 

is allowed to regenerate. The regeneration is evident by the decreasing trend in the time 

series of shortwave infrared reflectance, but in 2011, the regenerated forest is again 

converted to Pasture which appears to be the prevailing land use until the end of the time 

series. The situation in Figure 2-2 is a rather common example of the landscape dynamics 

in the region. It is included to showcase the ability of the algorithm to detect the activities 

on the land surface including the timing, and importantly, to identify the condition of 

post-disturbance landscapes. It is important because: 1) these dynamics have a profound 

impact on the terrestrial carbon budget and will, if not identified correctly, result in 

erroneous estimates of carbon emissions and removals; and 2) many current forest 

monitoring systems in the tropics are limited to mapping and estimating forest loss and 

gain (Espejo and Jonckheere, 2017) without the ability to provide a complete picture of 

the landscape dynamics. An underlying hypothesis of the presented research is that 

CCDC, as illustrated in Figure 2-2, will be able to map land conversions and post-

disturbance landscapes across the study area such that the resulting map data can be used 

to stratify the landscape in a way that allows for sufficiently precise estimation of activity 

data at annual or biennial frequency. 

 



21 
 

 

 

Figure 2-2. Time series of observations of SWIR1 surface reflectance measured by Landsat TM, ETM+, 
OLI band 5 (blue dots; upper) and snippets of Landsat composites in NIR-SWIR1-RED band combination 
(lower). CCDC predictions of surface reflectance are plotted as solid lines and detected breaks as vertical 
black lines. (Landsat path-row 6-59, pixel coordinates: 72.1795 W, 1.4725 N). 

 

Given the low density of satellite data in the study area, only simplified time 

series models could be used for change detection. The time series models included one 

harmonic to account for annual variability, which is the only major seasonal fluctuation 

observed in this area. The Red, Near- and Infrared bands were used to detect changes in 

the time series. The time series segments were required to have at least nine valid 

observations, and five consecutive observations were required to flag a change when the 

prediction differed from the observed. Training data were collected manually over ten 

Landsat paths and rows to account for the natural variability in each of the land 

categories, particularly in the Forest category. Training data were identified using 

Landsat imagery and the TSTools plugin for QGIS (Holden, 2016b; QGIS Development 
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Team, 2009). In total, 420 training polygons were collected, with the total number of 

training pixels per land category being approximately proportional to the mapped area of 

the category, based on initial test maps produced and refined iteratively. Training data 

were obtained for the six IPCC land categories: Forest, Grassland, Urban, 

Pastures/Crops, Water and Other (mostly river sandbanks and rocky surfaces), plus a 

seventh category: Secondary Forest. The term Secondary Forest is used for the 

remainder of the manuscript to describe vegetation that exhibited a clear temporal pattern 

of regeneration but without having fully recovered to the state of a primary forest, as 

illustrated in Figure 2-3. It should be noted that even though I use the term “secondary”, 

the forest might have been disturbed more than once. Grassland and Pasture were 

defined as separate map classes because the former is mostly natural while the latter is 

the result of direct human intervention and the most common post-deforestation land 

category. An additional map class denominated All classes to unclassified was assigned 

for pixels where the time series presented a break with a labeled segment prior to it, but 

no segment fitted afterwards. Training polygons labeled Forest were mostly collected in 

areas where the presence of stable primary forest with a closed homogenous canopy 

forest was evident and thus required no formal definition. This decision was corroborated 

by looking at the individual pixel time series, which displayed a stable, flat trend centered 

on surface reflectance around 0.15 in the Landsat SWIR1 band, as seen in Figure 2-4. 

Polygons labeled Secondary Forest were collected using a similar approach, only 

selecting pixels with segments that showed a clear negative slope with reflectance around 

0.20 in the SWIR1 band following a disturbance event. A single classifier created from 
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the training dataset across the study area was applied to the time series segments for 

creation of land cover annual maps from 2001 to 2016 for each Landsat scene. This 

allowed for an initial training and stabilization period between the start of the time series 

in 1997 and the beginning of the analysis to find change, in 2001. Annual maps were 

mosaicked in sequential order from low to high WRS-2 path and row number (i.e. north 

to south, east to west), discarding the relatively small overlap zones of each previous 

scene in order to simplify the process. 
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Figure 2-3. Example pixel showing the process of Secondary Forest regrowth after a short lived forest 
disturbance in the year 2000.  The first row shows two images corresponding to the year 1994 and 2015. A 
comparison of only those two images would omit the ongoing vegetation recovery process. The second row 
shows the forest recovery over time, but classifying those images individually would result either in a 
Pasture label for the first two, or a Forest label for the last two. This example illustrates the importance of 
using dense time series of Landsat observations to accurately represent processes of vegetation recovery 
and regrowth. Landsat images are in RGB NIR-SWIR1-RED band combination. The most recent high 
resolution image was obtained from Google Earth. Latitude: 1.3458, Longitude: -71.8890 

 

2.2.2 Area estimation  

 
Areas retrieved by pixel-counting in maps will be incorrect because of 

classification errors. Therefore, areas and their confidence intervals need to be estimated 

by applying unbiased estimators to sample data of reference observations (GFOI, 2016; 
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Stehman, 2000). A sample-based approach to area estimation is emphasized by the IPCC 

Good Practice Guidelines for reporting within the UNFCCC treaty (IPCC, 2003, preface; 

GFOI 2014, p. 25): “inventories for the land use, land-use change and forestry sector that 

are neither over- nor underestimates so far as can be judged, and in which uncertainties 

are reduced as far as practicable”. In statistical terms, the first criterion is related to bias; 

an estimator is characterized as unbiased if it produces a parameter estimate such that the 

mean value taken over all possible samples is equal to the population parameter (Cochran 

1977). Still, if several random samples are selected, the estimates obtained from each of 

the samples will be different because of the randomization of the selection, even if using 

an unbiased estimator. This uncertainty is characterized by construction of a confidence 

interval, which relates to the second IPCC criterion.  

In this study, a stratified design and estimation approach (Cochran, 1977; 

Olofsson et al., 2013) were implemented. Stratified random sampling was chosen to 

target the sampling of areas exhibiting land change activity, which as informed by the 

maps, were a very small proportion of the study area. Further, the stratified estimator has 

proven efficient when applied to categorical observations (GFOI, 2016). The 

stratification contained six stable land strata and five land change strata representing 

mapped land dynamics between 2001 and 2016 (Table 2-1). ). The All-classes-to-

unclassified class was included in the stratification, but its area was not estimated. A 

buffer stratum corresponding to mapped forest in close proximity (< 90 m) to mapped 

transitions from Forest-to-Pasture was added to the stratification and used as a part of the 

sampling design to diminish the impact of omission errors. The buffer stratum was added 
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because the Forest stratum occupied 86% of the study area, and any pixels in this stratum 

identified in the reference classification as exhibiting land change activity (i.e. omission 

errors of change activities in the map) will carry a large area weight and dramatically 

reduce the precision in area estimates of land change activities. 

The total sample size was determined using the stratified variance estimator 

solved for n as described in Cochran (Cochran, 1977) with a target standard error of 0.3% 

(equivalent of 1.6 Mha, or a 95% confidence interval of ± 3.1 Mha) of the Forest-to-

Pasture class, which had a mapped area of 0.87% (4.5 Mha) of the total area between 

2001 and 2016. In other words, the sample size was selected to achieve a margin of error 

of 60% if using the stratum area as an indication of the area estimate. While a margin of 

error (defined here as the half width of the 95% confidence interval divided by the 

estimate) of 60% seems high, it must be recognized that estimating an area that is 

assumed to be less than one percent of the study area is inherently difficult. For example, 

targeting a margin of error of 25% would have resulted in a sample size of almost 6,000 

sampling units. Hence, the motivation behind these numbers was mainly practical and a 

compromise between precision and available human resources. Targeting a 60% margin 

of error gave a total sample size of 1,050 sample units that were allocated to strata 

following “good practices” for estimation of area of change (Olofsson et al., 2014): 50 

and 75 units were allocated to the smaller strata and the remaining 400 units were 

allocated to the larger Forest stratum. The sampling assessment unit was a 30 m × 30 m 

Landsat pixel which was chosen to coincide with the minimum mapping unit.  
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A reference observation was provided for each unit in the sample by examining a 

time series of Landsat observations of surface reflectance using the TSTools plugin for 

QGIS (Holden, 2016b; QGIS Development Team, 2009). Examples of pixels labeled as 

forest in the reference sample can be seen in Figure 2-5. The legend of reference 

observations (Table 2-1) was based on the stratification legend to facilitate estimation of 

area, and was recorded along with time of change (if any). Multi-temporal very-high 

resolution imagery was used if available, and the following measures were taken to 

increase the interpretation confidence: the interpreters were carefully trained to 

understand and identify the land dynamics in the region; strata information was not made 

available to the interpreter during the collection of reference observations; and the 

reference label was assigned one of three levels of confidence. Labels with the lowest 

confidence, or labels on which interpreters disagreed, were double-checked at a later 

stage and modified. A stratified estimator was applied to the sample data for estimation 

of area with 95% confidence intervals following Olofsson et al. (2013). To assess the 

effectiveness of the buffer stratum to contain omission errors, areas with 95% confidence 

intervals were also estimated without using the buffer stratum (i.e. by combining the 

buffer and Stable Forest map classes and using the resulting class as the Forest stratum in 

the calculations). An overview of this workflow can be seen in Figure 2-4. 
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Figure 2-4. Overview of the workflow used to estimate areas, accuracies and uncertainty using maps 
created from time series of Landsat imagery as a source of stratification and manually collected reference 
data.  
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Figure 2-5. Examples of stable forest in time series of Landsat SWIR1 surface reflectance for a pixel in a) 
an area of intact primary forest, b) the edge between forest and shrublands and c) a riparian forest next to 
natural grasslands. Landsat subsets in RGB NIR-SWIR1-RED band combination are shown for dates near 
the beginning and end of the time series, respectively. High resolution imagery (zoomed) of the example 
pixels from Bing Maps are shown to the right of the Landsat images. 
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Stratum name Description Wh nh 

Stable forest  Stable forest.  85.70  400 

Stable grassland  Stable natural grassland.  2.81  75 

Stable Urban + 
Stable other 

Areas that show stable urban cover, as well as other bright surfaces 
like exposed rock and sand 0.08  50 

Stable pasture-
cropland Stable human introduced pasturelands and croplands.  4.91  75 

Stable secondary 
forest 

Areas that show sustained vegetation regrowth over the course of 
two years or more. 1.06  50 

Stable water  Stable water bodies.  1.29  50 

Forest to pasture  Areas that experienced conversion from forest to pastures or 
croplands. 1.40  50 

Forest to 
secondary forest 

Areas that experienced a brief conversion to pastures or croplands 
that were abandoned shortly thereafter and display a regrowing 
trend. 

0.26  50 

Gain of secondary 
forest  

Areas that experienced a conversion from pastures, grasslands, 
urban, water and other to secondary forest. 0.11  50 

Loss of secondary 
forest  

Areas of secondary forest that were converted to any other class 
(except to forest). 0.23  50 

Other to other  Other transitions that are not relevant.  0.45  50 

All to unclassified  Areas of classes other than forest and secondary forest that 
experienced a disturbance but have no class label afterwards. 0.35  50 

Buffer  Areas of stable forest that were assigned to a ’buffer’ stratum 
surrounding the Forest to pasture stratum. 1.37  50 

Table 2-1. Strata names and their description, strata weight (Wh [%]) based on the map of stable and 
change classes between 2001 and 2016, and number of sample units allocated to strata (nh). The areas of the 
All to unclassified and Buffer strata were not estimated. The term “stable” implies the presence of a single 
land cover class during the entire period being analyzed. 

 

Central to reporting of trends in carbon emissions and removals from land surface 

activities is the ability to provide estimates at high temporal frequency. The UNFCCC 

requires reporting at annual or biennial time intervals (GFOI, 2016), which complicates 

the estimation of land change activities as the areas are often very small at such short 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/strata
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intervals. In this study, the most common activity was the conversion of forest to 

pastures, which was mapped as occupying 0.87% of the study area over 16 years. At 

annual intervals, the area of this activity would average less than a tenth of a percent. 

Even at biennial intervals, the area will be small from an estimation perspective. The 

situation of estimating small areas in the presence of large strata of stable land cover is a 

complicated issue in many national forest monitoring systems aimed providing area 

estimates of land change activity data for reporting within the REDD+ mechanism 

(Espejo and Jonckheere, 2017). To explore solutions and to provide better guidance on 

this issue, two approaches were investigated for area estimation. The first approach uses 

only one sample for all sixteen years of the study period that is analyzed such that area 

estimates are obtained for biennial intervals. The analysis is based on the construction of 

a ratio estimator and indicator functions as described in Stehman (2014); code and 

documentation are provided in a GitHub repository 

https://github.com/parevalo/workflow. While this approach requires only a single sample, 

it requires continuous reference observations for the entire 2001-2016 time period at each 

sample location. I introduce the term “continuous reference observations” to distinguish 

from observations at only one point in time or at shorter time interval. In this case, the 

reference observations were collected in biennial intervals. The second approach is based 

on the selection of a sample for each time interval for which area estimates are required; 

for biennial reporting, seven independent samples were required and obtained from each 

biennial strata map (annual reporting would have required fifteen samples which I did not 

have the resources to provide). Stratified estimators were constructed for each sample 

https://github.com/parevalo/workflow
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such that independent estimates were provided for each two-year period. I selected seven 

samples of equal size and allocation by stratified random sampling using the design 

described above (i.e. 1,050 units allocated to the study area according to the 

recommendations in Olofsson et al. (2014) and shown in detail in Appendix B). I 

hypothesize that the single-sample-approach will save time and cost as the collection of 

sample data is often a time-consuming process but result in less precise estimates. I 

hypothesize a lesser precision because the stratification of the study area is based on the 

change map 2001-2016, which makes strata are less likely to correspond to the targeted 

land change activities at any given biennial interval. The result is an increased likelihood 

of having very few, or even zero, reference observations of land change activities 

(Forest-to-Pasture for example) for certain biennial intervals, especially in the beginning 

of the study period. Whether estimates obtained using the single-sample-approach have 

similar or better precision than those obtained from the multiple-samples-approach (i.e. 

smaller standard errors), and whether the single-sample-approach results in such large 

uncertainty that independent samples are required for each time interval, were key 

questions to be answered in this research. 

 

  

2.3 Results 

 
The products generated in this study were: (i) a map of land categories and 

conversions for the time period 2001-2016 (Figure 2-6); (ii) annual map products of the 

IPCC land categories and biennial maps of stable categories and their conversions; and 
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(iii) biennial area estimates with 95% confidence intervals of activity data, i.e. the IPCC 

land categories of the most prevalent activities involving conversions to and from Forest, 

Secondary Forest and Pasture.   

 

 

Figure 2-6. Map of IPCC land categories including conversions between 2001 and 2016 detailing: A) areas 
of conversion from forest to pasture, and B) areas with evidence of secondary forest and heterogeneous 
land changes.  

 

Central to this study are the biennial area estimates with 95% confidence intervals of 

stable land categories and conversions shown in Figure 2-7. As expected, it was found 

that the multiple-samples-approach of collecting sample data that represented each time 

interval yielded more precise estimates than the single-sample-approach (Figure 2-9, 

Appendix A and C). With the single-sample-approach, several biennial area estimates of 
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land change activities were highly uncertain and at times not significantly different from 

zero (Appendix A and C). The margins of error, calculated as the half width of the 95% 

confidence interval divided by the area estimate (Figure 2-9 and Appendix C), were in 

general smaller with the multiple-samples-approach for the area estimates of the land 

change activities. Although a few individual area estimates were not significantly 

different from zero even with biennial sample data, the precision of estimates was 

considerably higher and sufficient to construct temporal trajectories of the more 

important and prevalent activities, including Forest-to-Pasture and Forest-to-Secondary 

Forest. Note however that even with the multiple-samples-approach, the Forest-to-

Pasture estimate for 2003-2005 was highly uncertain and the 2001-2003 and 2009-2011 

periods were not significantly different from zero. To complement these figures, the 

Forest-to-Pasture and Forest-to-Secondary-Forest classes were combined to estimate a 

join Deforestation class, show in Figure 2-8, for which all the biennial estimates are 

different from zero.  

The use of a buffer stratum was highly effective at diminishing the impact of 

omissions of observed deforestation activities present in the Forest stratum. For example, 

the standard error of the biennial area estimates of Forest-to-Pasture decreased between 

54% and 98%. The effect on other land change activities, which were also substantial 

with the exception of Gain-of-Secondary-Forest, can be seen in Table 2-2. Note the use 

of a buffer stratum does not decrease the precision in area estimates. 
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 Forest to pasture Forest to sec. forest Gain of sec. forest Loss of sec. forest 
Period No buffer Buffer No buffer Buffer No buffer Buffer No buffer Buffer 

2001 - 2003 316 104 184 104 0.8 0.8 11.8 11.8 
2003 - 2005 355 53 36 36 12.3 12.3 0.5 0.5 
2005 - 2007 327 7 130 4 1.3 1.3 12.8 12.8 
2007 - 2009 272 10 241 8 49.2 49.2 92.6 13.7 
2009 - 2011 223 103 159 15 36.4 36.4 98.4 36.7 
2011 - 2013 285 10 157 6 2.7 2.7 2.3 2.3 
2013 - 2015 255 15 128 9 5.6 5.6 6.3 6.3 

Table 2-2. Comparison of standard error of areas in kha per period for the change strata, with and without 
the buffer stratum. 
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Figure 2-7. Biennial area estimates with 95% confidence intervals (dashed lines) for stable and change 
classes, estimated from the reference data using the multiple-samples-approach. Cross markers represent 
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values that are statistically different from zero (i.e. confidence interval does not include zero). Colored 
areas represent consecutive periods with confidence intervals that do not contain zero. The red continuous 
line represent areas obtained directly from the map by pixel-counting.  The years on the x-axes represent 
the middle of each biennial period for visualization purposes (02 for 2002, 04 for 2004 and so on). The y-
axes were set to aid in the visualization of the areas (but kept similar in rows where the same scale was 
sensible) given the large differences in magnitude. The panel for the Other-to-other class was removed, as 
it did not contain any relevant information  

 

 

Figure 2-8. Biennial area estimates with 95% confidence intervals for the combined Forest to pasture and 
Forest to secondary forest classes (called Deforestation here), estimated from the reference data using the 
multiple-samples-approach. Cross markers represent values that are statistically different from zero (i.e. 
confidence interval does not include zero). Colored areas represent consecutive periods with confidence 
intervals that do not contain zero. The red continuous line represent areas obtained directly from the map 
by pixel-counting.  The years on the x-axes represent the middle of each biennial period for visualization 
purposes (02 for 2002, 04 for 2004 and so on). 
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Figure 2-9. Comparison of margins of error of the biennial Forest-to-Pasture area estimates obtained by 
multiple-samples-approach (with the Buffer stratum) and single-sample-approach. 

 

The overall accuracy of the map 2001-2016 was 94.1% (± 0.81%). Class-specific 

accuracies of biennial area estimates were highly variable (Table 2-3 and Table 2-4). Not 

surprisingly, higher accuracies were obtained for larger map classes including stable land 

categories and lower accuracies for the change classes.  
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 2001- 2003- 2005- 2007- 2009- 2011- 2013- 
 2003 2005 2007 2009 2011 2013 2015 
Other to other 4 0 0 4 0 4 4 

Stable forest 99 98 98 99 98 98 99 
Stable grassland 87 91 89 89 92 92 91 

Stable Urban + Stable other 42 32 44 22 20 42 24 
Stable pasture-cropland 81 89 84 92 81 95 85 
Stable secondary forest 30 24 42 58 54 12 38 

Stable water 86 78 72 68 92 76 56 
Forest to pasture 62 64 58 38 38 48 40 

Forest to secondary forest 50 28 34 52 58 24 22 
Gain of secondary forest 4 4 2 10 6 2 2 
Loss of secondary forest 8 6 22 28 20 8 18 

Table 2-3. User’s accuracy for each class and period, in percentage. 

 

 2001- 2003- 2005- 2007- 2009- 2011- 2013- 
 2003 2005 2007 2009 2011 2013 2015 
Other to other 100 0 0 98  22 100 

Stable forest 99 99 99 99 99 98 98 
Stable grassland 90 72 76 89 83 85 88 

Stable Urban + Stable other 85 95 87 99 86 91 60 
Stable pasture-cropland 83 76 73 83 80 76 73 
Stable secondary forest 45 46 48 64 53 29 51 

Stable water 97 97 98 94 94 96 86 
Forest to pasture 21 23 49 48 24 54 59 

Forest to secondary forest 8 11 37 22 20 22 7 
Gain of secondary forest 36 6 10 2 2 3 1 
Loss of secondary forest 7 100 16 20 9 26 29 

Table 2-4. Producer’s accuracy for each class and period, in percentage. 
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2.4 Discussion 

 
The analysis provided evidence of a small but steady decline in primary forest 

driven by conversion to pasture. Although subtle and low, the rate of this conversion was 

estimated to have increased during the period (excluding the very uncertain area estimate 

for 2003-2005). Overall, these results are consistent with the official national estimates of 

forest cover loss (Cabrera et al., 2011) and with the spatial patterns of land cover change 

reported in previous studies (Armenteras et al., 2006; Etter et al., 2006a, 2006b). To 

properly model the carbon emissions and removals, estimating the rate of primary forest 

to pasture is important but not sufficient – the fate of the post-disturbance landscape will 

determine if, when, and how the carbon emitted by the forest conversion activity is offset 

by secondary activities such abandonment and forest regeneration that remove 

atmospheric carbon. I found that the area of primary forest that was converted to pasture, 

but that reverted back to forest during the study period (i.e. Forest-to-Secondary-Forest), 

never reached above 60 kha per period -- in comparison, the area estimates of Forest-to-

Pasture were never below 60 kha per period. If treating the conversion of forest to 

pastures as “forest loss” and not accounting for the post-disturbance dynamics involving 

pasture abandonment and secondary forest regeneration, the implications of land change 

activities on terrestrial carbon dynamics would be mischaracterized.  

Along with the establishment of pasture, illicit cropland is an important driver of 

deforestation in the Colombian Amazon. According to Government statistics, coca 

plantations affect a much smaller area than forest to pasture conversion in the Colombian 

Amazon (UNODC, 2016) but our observations indicate that coca plantations are more 
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likely to be abandoned. Pasture and coca were not separated but the latter was included in 

the pasture category. The decision to not distinguish coca from pasture was driven by the 

focus of this study on the mapping and estimation of IPCC land categories -- both coca 

and pasture were considered as belonging to the IPCC Cropland category (GFOI, 2016) -

- and because of the similarity in spectral signature between coca and pasture. However, 

because of the observed difference in the post-disturbance dynamics between coca and 

pasture, an article exploring the drivers and patterns of the land change dynamics in the 

region is currently in preparation in which separate area estimates are provided for coca 

and pasture.  

In addition to the dynamics of conversion between forest and pasture, individual 

rates of gain and loss of Secondary Forest were monitored and estimated. These 

dynamics are typically a result of conversion from pastures to secondary forest, and vice 

versa. Except for a dip from 2010 to 2012, the combined effect of Secondary Forest 

dynamics resulted in a stable area of Secondary Forest without any obvious trend 

throughout the study period (Figure 2-7 h-j).  

 

2.4.1 Comparison of sampling approaches 

 
 Of importance to this study and future potential applications of the presented 

methods is the estimation protocol. While maps are essential for stratifying the study area 

to guide the sampling, the results communicated to decision makers within frameworks 

and treaties such as REDD+ and UNFCCC are not obtained directly from maps but 
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estimated from sample data. As explained earlier, even the most sophisticated 

classification approach will not generate map products that are free of errors, which 

necessitates a sampling-based approach to area estimation. The importance of sampling-

based estimation in a remote sensing context has been explained and illustrated in several 

articles (McRoberts, 2011; Olofsson et al., 2014; Stehman, 2013) and international 

guidance documents (GFOI, 2016, 2014), but few studies have explored methods for 

providing a time series of estimates. A notable exception is Cohen et al. (2016), who 

provided annual estimates of forest disturbance across the U.S. by two-stage cluster 

sampling with primary sampling units stratified by forest area. Also, Potapov et al. (2017) 

presented annual area estimates of forest cover loss in Bangladesh using a single sample 

with continuous reference observations. Because international treaties and climate 

negotiations require annual or biennial reporting (GFOI, 2016), the topic of estimating 

areas at high temporal frequency will need further exploration by the remote sensing 

community. The collection of sample data is often an arduous task and approaches that 

relieve practitioners of the burden of collecting such data are needed. Therefore, I tested a 

single-sample-approach similar to that of Cohen et al. (2016) and Potapov et al. (2017) in 

which only one sample is selected but reference conditions on the land surface are 

observed for the entire study period. Such an approach provides sample data for any point 

in time during the study period, which – in theory – allows for estimation of area for any 

time interval using a ratio estimator and indicator functions (Stehman, 2014). But as 

originally hypothesized, I found that only a few or no sample units at annual and biennial 

intervals were located in areas of the land change activities of interest, partly because of 
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their very small area. As a result, several biennial estimates of Forest-to-Pasture and 

Forest-to-Secondary Forest were not significantly different from zero (i.e. area estimates 

had negative lower confidence bounds) or displayed large levels of uncertainty. The 

approach of using sample data representing each time interval generated more precise 

estimates but required examination of 1,050 sample units in each of the seven samples 

selected (i.e. 1,050 × 7 sample units). Even with such a large amount of sample data, 

some biennial area estimates of land change activities were not significantly different 

from zero (Figure 2-7). This finding is different from that of Cohen et al. (2016) and 

Potapov et al. (2017) who were able to use a single sample for annual estimation. 

However, the former study used a very large sample of 7,200 units, and the latter used 

only sample units mapped as forest cover loss for estimation of annual change dynamics, 

thus not including omissions of forest loss in the forest and non-forest strata, which, as 

evident by this study, often has a detrimental impact on precision of estimates. Still, the 

results presented here should not be taken as evidence that the single-sample-approach 

will not work for providing a time series of estimates. Our result is just one example and 

others have already shown its utility (Potapov et al., 2017; Stehman 2014). As discussed 

further below, of importance to the lack of success of the single-sample-approach is the 

sheer size of the land categories of interest – even the most prevalent activity, Forest-to-

Pasture, was just a tenth of a percent of the study area annually. In a situation where the 

area of the land change of interest is larger, as is often the case, I recommend an 

investigation into the feasibility of the single-sample-approach. Also, in a comparison of 

the margins of error between the approaches of single and multiple samples, the single-
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sample-approach yielded smaller errors for two out of seven years (Tables C-6 and C-7 in 

Appendix C). With an increased focus on the reporting of activities at high temporal 

frequency, more research is needed to explore these types of approaches to inference of 

time series of area estimates.  

Finally, a word about the issue of cost of sampling approaches discussed above. 

An underlying assumption of the discussion is that cost is synonymous with time and 

directly related to sample size. As a result, the single-sample-approach is assumed less 

costly simply because of the smaller sample size. But to use a single sample requires an 

assessment of land surface events over the entire estimation period (fifteen years in the 

case of the presented study). In rapidly changing landscapes, such an assessment would 

be time-consuming and could potentially eliminate the cost saving of the single-sample-

approach. 

 

2.4.2 Stratification and omission errors 

 
 An important difference between this study and Cohen et al. (2016) and Potapov 

et al. (2017) is the size of the land change activities of interest in relation to the study 

area. In the former studies, forest disturbance activities occupied 1.5-4.5% and 4-9% of 

the forest area per year respectively, whereas the corresponding numbers in this study are 

about a quarter of a percent. Inferring information about such a small part of a population 

by sampling is difficult in general and often associated with large uncertainty; the same 

statistical problem is encountered in many medical and public health studies concerned 
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with the prevalence of rare conditions, behaviors and diseases among large populations 

(Rahme & Joseph, 1998). In general, the problem is a consequence of the difficulty 

involved in achieving a sampling that results in sufficient precision in estimates of the 

phenomenon of interest (e.g. area of deforestation, prevalence of a disease, or votes in an 

election) across the entire population. In the context of using remote sensing to map and 

estimate areas of land change activities, a map depicting the spatial distribution of change 

is normally used to stratify the study area (i.e. the population) with the aim of ensuring 

sufficient sampling of activities. As witnessed in several countries, if very large strata are 

present, like Forest in this study, in which activities are observed (i.e. omission errors in 

the map used as stratification), the impact can be substantial (Espejo & Jonckheere 2017). 

From the formulas of the stratified estimator and the associated variance estimator 

(Cochran 1977, Eqs. 5.1 and 5.7), it can be deduced that the impact of omission errors is 

a result of the size of the stratum in which the errors occur in combination with the 

sampling intensity: the larger the stratum and the lower the sampling intensity, the higher 

the impact of omitted land change activity, especially if the activity data stratum is small. 

That is exactly the situation in this study: a land change activity stratum of less than a 

percent of the study area, and a forest stratum of 80% with low sampling intensity 

because of a relatively small sample size (less than 40%, or 400 out of 1,050, of the 

sampling units were allocated to the Forest stratum). By creating a buffer stratum around 

map classes of land change activity with a much smaller area but with higher sampling 

intensity that hopefully contains the activities omitted in the map, the impact of omission 

errors in the map is reduced. This approach has been successfully explored in other 
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studies of land change activities in support of REDD+ (Potapov et al., 2017), and our 

results further support the recommendation of using a buffer stratum to reduce the impact 

of omission errors. The number and area weight of omission errors “captured” by the 

buffer stratum are presented in the confusion matrices in Appendix B. The issue of the 

impact of omission errors further highlights the importance of sample allocation when 

designing a stratified sample; a larger sample size in large strata will reduce the impact of 

omission errors (i.e. a sample allocated proportionally to the strata area) when sampling 

for area estimation (Stehman, 2012). As more and more countries and studies are facing 

issues related to omission errors and precision in estimates of land change activity data, 

combined with an increasing number of studies highlighting the efficiency of buffer 

strata, more research is needed on how to define buffer strata. For example, a larger 

buffer would capture more errors but its stratum weight would increase with its size; this 

in turn could be balanced by increased sampling intensity, but that would raise cost. How 

to best define the buffer spatially for optimal efficiency? These relevant questions require 

better answers if remote sensing is to reach its full potential for greenhouse gas reporting. 

Stratified random sampling was used to select the location of the sample units for 

the single-sample- and multiple-sample-approach. The main benefit of using a 

stratification when estimating land change is the ability to target the sampling to ensure a 

sample size in each category that is large enough to produce sufficiently precise area 

estimates (GFOI, 2016, p. 126). But for stratified sampling, achieving an allocation of 

sample units to strata that is proportional to the strata weights would require a very large 

sample size simply because some strata are very small. The result is often that fewer 
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sample units are allocated to large strata relative their weights. As discussed above, the 

impact of omission errors is a result of the size of the stratum in which the errors occur in 

combination with the sampling intensity. Hence, in a situation as in this study with a very 

large forest stratum (90%) and very small land change stratum (<1%), simple random 

sampling merits consideration. The standard errors of the area estimates that would have 

occurred for simple random sampling were approximated by using the variance estimator 

for simple random sampling (Cochran 1977, p. 26) and the area proportions estimated 

from the stratified random sample (Table C-5 in Appendix C). For the biennial area 

estimates of Forest-to-Pasture, the standard errors would have been two times larger on 

average if using simple random sampling instead of a stratified random sampling, and 

more than four times larger for certain intervals (although smaller than stratified random 

sampling for two out of the seven bi-annual estimates) -- hence, a substantial benefit was 

gained by the stratified design. The result supports the recommendations of Olofsson et 

al. (2014, p. 47) and GFOI (2016, p. 126) of employing a stratified design when aiming at 

estimating areas of land change activity. 

Area estimates and the uncertainty in estimates are of primary importance to this 

study but because of the impact of omission errors on estimates, user’s and producer’s 

accuracy (Table 2-3 and Table 2-4) of map classes need mentioning.  The complement of 

omission error is producer’s accuracy and for some of the map classes, especially the 

ones involving land change activities, large omission errors were observed as illustrated 

by the error matrices in Appendix B. Look for example at the error matrices for 2001-

2003 in Tables B-1 and B-2: even though 31 out of 50 sample units allocated to the 
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Forest-to-Pasture stratum were correct, the one single omission of Forest-to-Pasture in 

the Forest stratum represents an area of 114 Mha (or a 0.22 proportion of the study area)! 

In comparison, the 31 units correctly classified as Forest-to-Pasture represent an area of 

40 Mha (0.077). The very large area proportion represented by this single omission error, 

in addition to a very low Producer’s accuracy of 20.7% (Table 2-4), yields a large 

confidence interval that includes zero (because the 2001-2003 estimate was not 

significantly different from zero, it was not plotted in Figure 2-7h). Note that the buffer 

stratum in this case “captures” 11 sample units observed as Forest-to-Pasture that 

otherwise would have been present in the Forest stratum to further decrease the precision 

of the area of Forest-to-Pasture. The total area represented by these 11 units was 20 Mha 

(0.037).   

 

2.5 Conclusions 

 
The Colombian Amazon has experienced a continuous level of deforestation but at a 

small rate of less than 0.3% of the study area, or around 103 kha, for the 2013 – 2015 

period. The deforestation, primarily driven by establishment of pasturelands, was 

estimated to have increased after 2005. Some of the post-deforestation landscapes did not 

stay deforested but were abandoned and reverted back to secondary forest. I estimated 

that around 29 kha per year of the pasturelands were quickly abandoned in the 2013 – 

2015 period, -- hence, less than the equivalent of 30% of the post-deforestation 

landscapes was estimated to have begun to regenerate. These results show that the fate of 

post-disturbance landscapes can be monitored and estimated with the presented 
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methodology, but that more work is needed to further reduce the uncertainties. Increasing 

sample size, improving map accuracy and introducing buffer strata are all viable 

approaches to increase precision. The latter option was tested and it was found that the 

addition of a buffer stratum to capture omission errors had a marked effect on reducing 

the uncertainty on area estimates. Guidelines for how to design buffer strata in other 

situations with different distributions of strata weights, sample size, map accuracies etc. 

require more research. Finally, it was determined that the use of a single sample to 

estimate the area of land change activities at biennial frequency did not achieve 

acceptable levels of precision. Higher precision was achieved when sample data were 

collected for each time interval for which area estimates were desired.  

 

  



50 
 

 

SPATIAL REPRESENTATION OF THE PROBABILITY OF 

ERRORS IN MAPS OF LAND CHANGE  

 
 

3.1 Introduction 

 
The topic of uncertainty in classifications of remote sensing data has been studied 

extensively, but approaches that provide information on pixel-level confidence in maps of 

change in land cover are scarce. Khatami et al. (2017a) provide a comprehensive review 

of the main approaches used to characterize the local quality of land cover maps. The 

authors indicate that a common approach is to use the probabilities of class membership 

as a metric of the classification confidence, including posterior probabilities from 

maximum likelihood classifiers (Brown et al., 2009; Foody, 1992), decision trees and 

random forest (Liu et al., 2004; Loosvelt et al., 2012), soft output of support vector 

machines (Giacco et al., 2010), relevance vector machine (Foody, 2008) and boosting 

methods (McIver and Friedl, 2001), among others. Besides using the probabilities of a 

single class, other approaches use the difference between the first and second largest class 

membership values (Prasad and Arora, 2014), or the membership values of all classes 

using entropy metrics (Dehghan and Ghassemian, 2006; Loosvelt et al., 2012; Shadman 

Roodposhti et al., 2019). The idea behind these approaches is that a higher probability of 

class membership, or the more dominant a single class membership is relative to those of 

other classes, the greater the certainty associated with that class. These methods have 

been applied to the global land cover MODIS product for assigning classification 

confidence and providing the second most likely class, as well as for map correction 
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based on ancillary data (Friedl et al., 2010, 2002). Despite their potential, examples of the 

use of classification confidence information analysis based on the underlying land cover 

maps are rare in the literature.  

As noted by Khatami et al. (2017a), the kind of classification quality metrics 

mentioned above are different than accuracy metrics, even though they might be 

correlated in some cases. To fill this gap, researchers have investigated methods to 

spatialize classification accuracy using empirical methods that link accuracy with 

independent variables, often employing a logistic regression because the dependent 

variable is dichotomous (Burnicki, 2011; Carmel, 2004). Another approach used for this 

purpose is to spatially interpolate classification accuracy of test data (Comber et al., 

2012; Comber, 2013; Foody, 2005). Khatami et al. (2017a, 2017b) presented an approach 

based on the interpolation of a sample of binary reference observations (i.e. correct or 

incorrect map label) using a surface fitting function applied to spatial and spectral 

domains. The methods proposed by Khatami et al. (2017a, 2017b) outperformed their 

own benchmark methods and successfully demonstrated a technique to predict accuracies 

at unsampled locations. What is missing from all these methods are approaches that 

inform the level of confidence in pixels mapped as change. It is the change in land use 

and land cover that is of primary importance in many remote sensing applications. Per-

pixel accuracy or change confidence values could be used to account for the spatial 

accuracy of the input maps in applications such as carbon modelling (Quaife et al., 2008), 

urban land-use mapping (Cockx et al., 2014) and hydrological models (Miller et al., 

2007), or used to propagate uncertainty in numerical models. 
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Maps that depict changes on the land surface are of importance for a range of 

applications, topics and studies. For example, tropical countries that participate in the 

REDD+ framework rely almost exclusively on remote sensing for monitoring land cover 

change and the carbon emissions associated with them (GFOI, 2016). Remote sensing has 

the advantage over surveys and inventories of providing wall-to-wall coverage of the 

study area at little or no cost, but translating spaceborne measurements of reflected 

sunlight into complex land-surface processes is inherently difficult and results are bound 

to be imperfect. Errors in maps of land change limit the potential of remote sensing 

science to contribute to policy and decision-making. To advance the utility of remote 

sensing-based maps, several articles published in remote sensing journals since 2010 

have described the importance of area and map accuracy estimation (McRoberts and 

Walters, 2012; Olofsson et al., 2014; Stehman, 2013) but estimates of area bias and map 

accuracy do not provide information about whether an individual pixel in the map was 

correctly classified as change or not. The lack of pixel-level information is an issue when 

the spatial representation of mapped features is of interest -- which is often the case and 

maybe the reason for why a map was made in the first place!   

The repositories of satellite data with a spatial resolution that readily captures 

human activities on the land surface are growing and becoming increasingly accessible 

(e.g. Landsat and Sentinel-2). Data availability in combination with powerful computing 

platforms (e.g. Google Earth Engine) and open source software (e.g. GDAL, QGIS) 

allow users to process large quantities of data and creating a wide array of spatial 

products. Thus, a move towards spatially explicit products is natural. Examples are 
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plentiful in the literature of applications for which spatial patterns of land change are 

essential input: assessments of the edge effects of fragmented forests in studies of 

biogeochemical cycles (Smith et al., 2018); studies of the effect of land change on 

biodiversity (O’Connor et al., 2015); and impact assessments of forest damage on 

protected areas (Gillespie et al., 2015) to mention a few. Another area of importance in 

this context is national carbon accounting. For monitoring of terrestrial carbon emissions 

within the REDD+ framework, the highest tier of methodological approaches is typically 

spatially explicit, such that the land cover and associated carbon dynamics are tracked at 

the level of individual pixels (or segments or stands) (GFOI, 2016; IPCC, 2006).  Pixel-

based methods for REDD+ reporting are being explored or used in Indonesia, Kenya and 

Mexico (GFOI, 2016). In support of REDD+ in Mexico, a spatially-explicit version of 

the CBM-CFS3 model (Kurz et al., 2009) was used to quantify emission and removals 

associated with pixel-level forest change (Mascorro et al., 2015). Pixel-level change in 

forest cover was provided as input to the model in the form of three sets of maps for 

which population-level accuracy was estimated from sample data; the omission error of 

forest change in the maps ranged from 77% to 85% and the commission error from 38% 

to 63%. If the sample data reflect true conditions, the estimated accuracy reported in 

Mascorro et al. (2015) entails that up to 85% of the actual forest change in the study area 

was missing in the map, and up to 63% of the forest change depicted in the maps was not 

observed in the sample data. This example is not unique and is not included to criticize 

Mascorro et al. (2015), but rather to highlight a problematic situation. If land change 

maps – more or less accurate – are to be used directly in subsequent pixel-level analysis 
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of the impact of change on carbon dynamics, biodiversity, ecosystem services, 

socioeconomics, etc., attention to errors and uncertainty is required. Otherwise, the result 

is an analysis that is – more or less – driven by classification errors.  

In this chapter I present a method that provides pixel-level probabilities of 

omission and commission of change. The method is based on an analysis of the residuals 

of the time segments generated in Chapter 2, and is applied over the entire study area. 

 

3.2 Methods 

 

3.2.1 Estimating the probabilities of errors of omission and commission 

 
Recently, methods have been implemented to test all time segments for missing 

breaks (an omission test) and to remove spurious breaks (a commission test) over time 

series of Landsat data (Bullock et al., 2019). The omission test is based on the cumulative 

sum (CUSUM) of ordinary least square regression (OLS) residuals –originally introduced 

by Brown et al. (1975) and further extended for use with OLS residuals by Ploberger and 

Krämer (1992)– returns the probability of observing the data under the null hypothesis of 

no structural change (Seabold and Perktold, 2010). The Chow test of equality between 

sets of coefficients in two linear regressions (Chow, 1960) is used to test for commission 

errors, and retrieves the probability associated with the test statistic, which follows the F 

distribution. The Chow test is used to determine the presence of structural break in a 

period known a priori, such as the break in the time series detected by a change detection 

algorithm. Common omission and commission errors in the study area are exemplified in 



55 
 

 

Figure 3-1 and Figure 3-2, respectively. Similar approaches have been used in other 

change detection algorithms that operate on Landsat time series. For example, 

LandTrendr (Kennedy et al., 2010) identifies potential vertices that indicate changes in 

the time series, and then creates a set of segments connecting them, thus describing the 

broad temporal trajectory of the data. These segments are subsequently merged into 

simpler models by removing vertices that result in the least increase on the mean standard 

error of the regression model, resembling the commission test mentioned above. On the 

other hand, the BFAST algorithm (Verbesselt et al., 2010a) decomposes the time series 

into trend, seasonal and noise components. Prior to the fitting of piecewise linear model 

and estimation of break points using the Bai and Perron method (2003), this algorithm 

test whether one or more points are occurring using an OLS residuals-based Moving 

SUM (MOSUM) test. This test is functionally similar to the omission test mentioned 

previously. These type of algorithms rely on the use of a fixed probability to determine 

the occurrence of an omission or commission error. In contrast, the methods I present 

here calculate the probability associated with a potential omission or commission event 

before a decision to split or merging segments is made.  
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Figure 3-1. Landsat time series (SWIR1) and model results showing the omission of change around 1993. 
The darker color represents forest, the green color represents pastures. Images correspond to 1992-359 
(left) and 1993-041 (right). Latitude: 1.44972, Longitude: -71.93989. RGB: NIR, SWIR1, RED. 

 

Figure 3-2. Landsat time series (SWIR1) and model results showing the commission of change around 
2004. The area shows stable, continuous forest. Images correspond to 2002-234 (left) and 2010-280 (right). 
Latitude: -0.85516, Longitude: -72.82126, RGB: NIR, SWIR1, RED. 
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The omission test was applied to every time segment fit by the original run of 

CCDC (Chapter 2), but only the first short wave infrared (SWIR1) observations were 

used for the test. This choice was made because the omission errors of primary interest 

are related to the conversion of primary forest to pastures, which should be easily 

detectable in the SWIR1 Band. The commission test was applied to every pair of 

subsequent temporal segments for the entire time range. For example, a pixel for which 

three time segments were fit by the CCDC algorithm would have three omission and two 

commission probability values. Unlike the omission test, I used a multivariate version of 

the commission test that calculates the F-statistic per band and then computes a weighted 

mean that is used to derive the probability, as described in Bullock et al. (2019). I applied 

the test over the Red, NIR, SWIR1 and SWIR2 observations. I use this modified version 

as a more robust way to test for the presence of commission errors, given that the CCDC 

algorithm was run specifying a minimum of nine observations to fit a segment (instead of 

the default of 16), making commission errors more likely.  

 

3.2.2 Relationship between probabilities of omission and commission errors 

 
Once the probabilities were calculated, I tested if they were related to the presence 

of actual omission or commission errors using two approaches. In the first approach, I 

obtained the probabilities for segments intercepting the year 2010 because I expect both 

types of errors to be easier to detect towards the second half of the study period, when the 

changes or lack thereof should be easily identifiable in the time series. The probabilities 
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were obtained for all pixels and reclassified into six bins as shown in Table 3-1 in the 

next section. In the case where more than one break occurs for a single pixel, only the 

first break was considered. The bins were assigned to focus attention on probabilities 

closer to one as an attempt to determine the point at which most true omission or 

commission events are detected. Omission probabilities were masked to sample only 

those pixels that were located in the Stable Forest stratum in 2010, while commission 

probabilities were masked to sample pixels that had undergone change in the 2001-2016 

period. One sample for each type of error was selected under stratified random sampling 

using the bins as strata; 20 sampling units were allocated per bin. For each unit in the 

samples, the fitted temporal segments were manually inspected along with the time series 

of Landsat data to determine the presence or absence of the respective omission or 

commission errors. I expected to see a higher incidence of omission and commission 

errors in the bins that represent the highest probabilities for each type.  

The second approach leveraged the biennial maps and reference data of stable and 

change land cover classes collected for the analysis described in Chapter 2 to explore the 

relationship between omission and commission events as recorded in the reference data 

and the calculated omission and commission probabilities. For each biennial period 

between 2001 and 2015, map and reference labels were compared to determine the 

presence of omission and commission errors and relabeled as follows:  

- Sample units that displayed stable map labels and change reference labels were 

considered Omission examples. 
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- Sample units that displayed change map labels and stable reference labels were 

considered Commission examples.   

- Sample units that displayed both change map and reference labels (independent 

from whether the map and reference labels matched or not) were considered 

Change. 

- Sample units that displayed both stable map and reference labels (independent 

from whether the map and reference labels matched or not) were considered 

Stable.  

Omission probabilities for sample units labeled as Omission and Stable were filtered 

to include only those that were not flagged as change by the change detection algorithm. 

In turn, commission probabilities for sample units labeled as Commission, Change and 

Stable were filtered to include only those that were flagged as change by the algorithm. 

For this reason, the Stable units were considered as Commission for this case only, as the 

presence of an actual change flag indicates that the algorithm assigned a change when 

there was none, according to the map and reference labels. Box-plots and mean values 

with 95% confidence intervals were calculated from the values obtained in this 

procedure.  

Finally, data on the first and second most likely classes as well as their predicted 

class probabilities were calculated from each of the time segments. Classification of time 

segments was performed using the Scikit-learn implementation of random forest 

(Pedregosa et al., 2011). Class probabilities were computed as the mean predicted class 

probability of the trees in the forest. Class probabilities from the second most likely class 
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were subtracted from those of the most likely class as a way to represent the confidence 

in the assigned label. Therefore, values closer to one are indicative of higher confidence 

of the classifier in the assigned label, and values closer to zero represent lower 

confidence in the assigned label. I will refer to this measure as class membership 

confidence. A map of class membership confidence for 2010, as well as a map of the 

number of clear observations per pixel were created to aid in the interpretation of the 

results. 

Class probabilities and class membership confidence values, either calculated as 

explained previously (using a random forest classifier) or using other classification 

methods (e.g. posterior probabilities of a Maximum-Likelihood classifier) are 

fundamentally different from the omission and commission probabilities calculated in 

this chapter. Omission and commission probabilities pertain to the change event (detected 

or not) in the time series, while class probabilities represent the confidence in the label 

assigned by the classifier to a given temporal segment, not the change. Furthermore, the 

two types of probabilities are not necessarily related. For example, in Figure 3-1, a 

random forest classifier could assign a label of Pasture with a class probability of 0.4 to 

the temporal segment, but this number alone is not useful to determine if a change was 

omitted and what was the probability of such omission. Similarly, in Figure 3-2, the 

classifier could assign a label of Forest with a class probability of 1 to both temporal 

segments, but it is not possible to determine the probability of an error of commission of 

change from these numbers alone. 
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3.3 Results  

 
The maps of omission and first commission probabilities for the year 2010 are shown in 

Figure 3-3 and Figure 3-4, respectively. Figure 3-5 shows the map of the number of clear 

observations per pixel after removing cloudy and shadowed observations as flagged by 

Fmask. The map of class membership confidence in 2010 is shown in Figure 3-6. Figure 

3-7 and Figure 3-8 show the aggregated distribution of the omission and commission 

probability values for all the biennial periods analyzed. The results of the interpretation of 

the omission and commission samples are shown in Table 3-1 and Table 3-2, 

respectively. The tables indicate a clear positive relationship between probabilities and 

the actual presence of omission and commission errors; the errors of omission and 

commission are concentrated in the bins with the highest probabilities of omission and 

commission. 

 

Bin Omission probability Omission NO Omission YES 

1 0 - 0.3 20  

2 0.3 - 0.6 20  

3 0.6 - 0.8 19 1 

4 0.8 - 0.9 16 3 

5 0.9 - 0.95 6 10 

6 0.95 – 1 6 13 

Table 3-1. Count of absence (NO) or presence (YES) of break omission per probability bin. Showing only 
the units that were labelled as high confidence. 
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Bin Commission probability Commission NO Commission YES 

1 0 - 0.3 15  

2 0.3 - 0.6 9 4 

3 0.6 - 0.8 1 4 

4 0.8 - 0.9 5 6 

5 0.9 - 0.95 2 10 

6 0.95 - 1 2 9 

Table 3-2. Count of absence (NO) or presence (YES) of commission error per probability bin. Showing 
only the units that were labelled as high confidence. 

 

 

Figure 3-3. Map of omission of change probabilities for temporal segments intersecting 2010. Insets are 
retained to match those in Figure 2-5, where more detailed the land categories and their conversions are 
presented.  
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Figure 3-4. Map of the commission of change probabilities for breaks in the 2009 - 2011 period. Insets are 
retained to match those in Figure 2-5, where more detailed the land categories and their conversions are 
presented. 
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Figure 3-5. Number of cloud-free observations per pixel calculated per scene, without taking into account 
the overlap across them.  The time series of most of the scenes in the Northeast area start in 1980’s, while 
for the rest of the scenes they start between 1997 to 2000, explaining the large difference in the number of 
clear observations.  
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Figure 3-6. Map of class membership confidence in 2010. Insets are retained to match those in Figure 2-5, 
where more detailed the land categories and their conversions are presented.  

 

 

Figure 3-7. Distribution of omission probabilities per change status class, shown as a boxplot (left) and as 
the mean with 95% confidence intervals (right). 
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Figure 3-8. Distribution of commission probabilities per change status class, shown as a boxplot (left) and 
as the mean with 95% confidence intervals (right). 

  

 

3.4 Discussion 

 

3.4.1 Omission and commission probability maps and samples 

 
The map of omission probabilities (Figure 3-3) reflects the expected distribution 

pattern of higher incidence of omitted changes near the deforestation frontier (Insets A 

and B).  The map of commission probability (Figure 3-4) shows lower overall values than 

the omission map. This pattern is also expected, considering that most of the study area 

corresponds to the Stable Forest class, in which commission errors of change cannot 

occur. Both the commission and omission map have seams along the edges of certain 

Landsat footprints with varying degrees of intensity. The seams occur because the 

number of clear observations per footprint for the study period vary dramatically, as seen 
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in Figure 3-5. The seams are also influenced by the clipping of the footprints along the 

WRS-2 boundaries, which results in the inclusion of the far edges of the footprints where 

fewer observations are available.  

The sample data show an overall positive relationship between the presence of 

omission or commission errors and their corresponding probability values, although the 

relationship is stronger for the omission probabilities. The absence of omission errors in 

the higher probability bins and the presence of errors in low bins are caused by unfiltered 

clouds and shadows, or by edges between very distinct classes. Commission probabilities 

show a slightly weaker relationship with the actual incidence of commission errors. In 

many cases, the presence or absence of commission errors in unexpected probability bins 

is caused by noise in time series and differences in temporal data density that trigger false 

detection of change. These results do not represent the inability of the test to capture the 

commission of changes but rather highlight the issue of noise in the time series and its 

negative effect on change detection. For example, pixels in Stable Forest with a relatively 

high density of observations early in the time series, combined with unfiltered noise, 

exhibit a higher degree of detection of a spurious change and misclassification of time 

segments due to a changing slope, which is uncharacteristic of time segments in forests 

(Figure 3-9). In addition, a comparison of the sample data for both types of errors 

revealed a higher proportion of sample units for the commission probabilities that were 

removed because of low confidence in the reference label. The removed sample units 

corresponded to cases where the occurrence of change (or lack thereof) could not be 

determined accurately. This included agricultural fields and pastures that cannot be 
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characterized in full detail given the low temporal density of the Landsat series in this 

region (Figure 3-10). Detected changes in river sandbanks that experience seasonal 

flooding were also excluded from the sample results. Overall, assessing the presence of 

commission errors was a more challenging task than assessing the occurrence of omission 

errors, which tend to be more conspicuous. 

 

Figure 3-9. Time series (SWIR1) showing a commission of change in 2007 caused by an unscreened cloud 
and lower data density.  Dark, orange and brown pixels correspond to forest, green and bright orange pixels 
represent pastures or croplands, and white pixels represent clouds. The commission probability for that 
change is 0.41 and 0.02 for the next one in 2012. Images show three points in time for the stable forest 
period: 2001-236 (left), 2006-154 (center) and 2009-146 (right). Latitude:-0.85516, Longitude: -72.82126. 
RGB: NIR, SWIR1, RED. 
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Figure 3-10. Time series (SWIR1) showing a sample unit with medium low confidence in the 
interpretation of occurrence of commission of the change in 2007. The segments and reflectance values are 
clearly different but the time series and the images show agricultural cycles (lighter colors) that are difficult 
to characterize given the low data density. Darker orange pixels represent denser vegetation. The 
commission probability for that change is 0.28.  Images correspond to 2003-299 (left), 2007-054 (center) 
and 2012-052 (right). Latitude: 1.23088, Longitude: -75.30760. RGB: NIR, SWIR1, RED. 

 

Landsat time series in the tropics have a large number of cloudy or shadowed 

observations, and their removal is essential for the change detection algorithm to behave 

properly. I applied two masking procedures, Fmask (Zhu and Woodcock, 2012) and 

Tmask (Zhu and Woodcock, 2014b), and while they removed a significant proportion of 

the noise, they did not mask all the unwanted observations. The issue is compounded by 

the fact that some of the cloudiest spots in the study area are those that have the largest 

historical land cover changes (Northwest area, Figure 3-5). This phenomenon translates 

into areas of change with a lower number of available observations, resulting in higher 

frequency of omission errors, and higher numbers of available observations in areas with 
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little or no change, that along with unfiltered noise result in commission errors. A 

common example of this behavior for the omission errors include relatively sparse time 

series in the northwestern region of the Colombian Amazon, where clearly visible 

changes from forest to pastures are obscured by the presence of a few noisy points near 

the dates of change, and therefore appear as gradual transitions to the algorithm. In the 

case of commission errors, a common occurrence is the presence of noise in early time 

series of stable forest in the Northeast section of the Colombian Amazon, prompting the 

incorrect detection of change. An example of an omission error due to a transition that 

appears gradual to the change detection algorithm can be seen in Figure 3-9. The first 

observation in this example corresponds to a cloud shadow that was not masked by any 

of the noise filtering mechanisms. The model fit for the training period, shown in the first 

panel, has a slope that is artificially higher due to that initial point with low (but not 

unusual) value. This model is used to predict the next consecutive observations and test 

for change, but the test is rejected and a new model is fitted including new observations. 

This processed is repeated (second to fourth panel) but subtle increases in slope for each 

iteration results in smaller residuals when the prediction passes the date of true change 

(1993) and consequently, in an error of omission in the change detection. The last panel 

shows the definitive segments fitted by the CCDC algorithm, with a break being detected 

only until the year 2000. 

 



71 
 

 

 
Figure 3-11. Time series (SWIR1) showing an omission of change that should have been detected in 1993. 
The error is caused by the gradual increase in surface reflectance as seen by the change detection algorithm 
with each new observation included in each consecutive model.  Longitude-71.9849, Latitude 1.482737. 
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3.4.2 Analysis of biennial reference labels 

 
The analyses of omission and commission probabilities using the previously 

created biennial maps and reference labels of stable and change land cover classes show a 

similar pattern as the samples interpreted in this study. Omission probabilities have 

significantly (at a 95% confidence level) higher values for sample units with confirmed 

omission events compared to those that are stable (Figure 3-7). The outliers in the Stable 

class with high probability values in Figure 3-7 are almost exclusively sample units with 

a single time segment during the study period that omit change outside of the biennial 

period analyzed, and thus appear as stable both in the map and the reference data. The 

phenomenon occurs because the omission probabilities are calculated per time segment 

and not per biennial period, resulting in high probability values that extend beyond the 

time when the error actually occurred.  

 
The analysis of commission probabilities presents a less clear distinction between 

classes as shown by the box-plots in Figure 3-8. The commission class overlaps with the 

change class, but the former displays a broader distribution of values and outliers with 

higher probabilities compared to the latter. The confidence intervals around the mean 

show a clear separation between the classes, but both plots show evidence of a majority 

of values concentrated in the very low ranges of probability. The results suggest that it is 

challenging to characterize commission errors in a continuous probability scale. 

However, a closer inspection at the time series of multiple units with very low 

commission probabilities but labeled as stable in the reference data and change by the 
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maps, show time segments that are very different from each other due to unfiltered noise. 

The effect of this noise can result in at least two outcomes. The first is to generate an 

actual commission error, caused by a dramatic change in the slope of one of the resulting 

segments, therefore resulting in a low commission probability when the segments before 

and after the break are compared by the Chow test (A similar behavior is seen in Figure 

3-10). The second potential outcome is to modify the timing of a break when it actually 

occurs, causing the map to show change while the reference data does not, and therefore 

appearing as a commission error (Figure 3-12). Both cases seem to indicate that 

commission errors are more likely to occur as a result of unfiltered noise in the time 

series compared to omission errors; therefore, the commission probability distribution 

will be more skewed toward smaller values than in the case of omission probabilities. 

Ultimately, comparing the coefficients of two time segments might provide suboptimal 

results if one of the time segments represents the wrong trend or incorrect timing of 

change. This contrasts with the simplicity of the omission test, which operates over a 

single segment. 
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Figure 3-12. Time series of the SWIR1 band for one of the biennial sample units. A change is incorrectly 
detected in 2002 and therefore mapped as change for the 2001 – 2003 period, while the reference labels for 
that period indicate a stable class. Orange and brown pixels represent stable vegetation, green represents 
pastures and white and pink represent clouds. The commission probability for that change is 0.03.  Images 
correspond to 1999-168 (left), 2000-051 (center) and 2000-147 (right). The first two images show 
unfiltered noise that contributed to fitting a time segment with a positive slope, also preventing the correct 
detection of change. Latitude: 1.35867, Longitude: -74.48269. RGB: NIR, SWIR1, RED. 

 

3.4.3 Applications of omission and commission probability maps 

 
The first logical use of maps of omission and commission probabilities is to simply 

determine which pixels in a change map are omission and commission errors. Omission 

probabilities can be regarded as a property of the stable periods in the time series while 

commission probabilities are a property of the detected changes, and therefore both are of 

interest to users of land cover and land cover change maps.  

 Omission probabilities can also be used to aid in the stratification of change maps 

for area estimation, because they provide an independent source of information to 
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construct buffer zones around areas of change that “capture” omission errors in the 

largest map classes (e.g. omission errors in the change from forest to pastures in the 

Colombian Amazon). These buffer zones are demonstrated to diminish the negative 

effects of omission errors in the standard errors of area estimates (Arévalo et al., 2019; 

Potapov et al., 2017). The construction of such buffer zones could be done by selecting 

the omission probabilities that exceed a certain threshold around areas of change. The 

delimitation of these areas could be further refined by filtering the selected pixels to those 

that present class membership probabilities below a given threshold. This targeted 

approach would result in buffer zones with a small area proportion compared to other 

classes in the map, particularly the largest one (such as forest in this study), maximizing 

their effectiveness. The determination of thresholds for that purpose could be done 

through a similar sampling exercise to the one conducted in this study.  

Finding the optimal probability value at which most omission and commission 

errors are represented can also be used to break a time segment or merge two of them into 

a single one, respectively. Previous research on the use of the omission and commission 

tests in dense time series of Landsat observations (Bullock et al. 2019) has shown the 

utility of these tests for finding missed or incorrect breaks during post-processing. 

However, this approach used a fixed high-probability value as the threshold for assigning 

or removing breaks, and the authors advocate for a less conservative selection of those 

parameters. It is possible that the optimal probability value to determine the existence or 

lack of breaks varies across different circumstances, for example, in places with different 

temporal data densities. Modifying the time segments this way has the potential to 



76 
 

 

improve classification results because the new segments would represent the land cover 

dynamics more accurately. Furthermore, new omission and commission probabilities can 

be calculated for the modified segments, still providing valuable information about the 

uncertainty in the detection of change events. The order in which these tests are applied 

and its consequences on correct detection of change (or lack thereof) is still an issue that 

needs to be addressed, but our results and the approach used by Bullock et al. (2019) 

seems to indicate a greater benefit to applying the omission test first followed by the 

commission test. 

Omission and commission probabilities, as well as class membership confidence 

values can also be used to represent errors in spatially explicit carbon models. For 

example, a system that tracks emissions and sequestration of carbon associated with land 

conversions at the pixel-level require omission and commission error probabilities to 

ensure that modeled carbon emissions are not the results of classification errors. In that 

system, a pixel mapped as stable forest that exhibits a high probability of being an 

omission error and low confidence in the class label should probably be treated as a forest 

loss event. Conversely, the emissions associated with a pixel mapped as forest loss 

should be weighted down or assumed to be zero if the commission probabilities are high 

and the class membership confidence is low for one or two of the segments. 

Alternatively, using a similar approach to the delimitation of buffer zones to contain the 

effect of omission errors, the probabilities could be used to stratify the study area into 

homogeneous zones where changes (or lack thereof) are believed to be highly likely (or 

unlikely). Areas estimated for these zones and their uncertainty could be used in a 



77 
 

 

traditional carbon bookkeeping model, where zones with higher probabilities of change 

errors receive a special treatment different from the zones with lower probabilities. For 

instance, more conservative emission rates could be used for zones believed to have 

higher probabilities of commission errors, because the changes that would release carbon 

to the atmosphere would not be as prevalent as the maps indicate.  

 

3.5 Conclusions 

 
An approach to characterize the probability of omission or commission of change 

in pixels of maps of land cover and land change was presented. It was found that the 

omission probabilities represent the probability the change detection algorithm having 

omitted the detection of a change on the land surface, whereas the commission 

probabilities represent the probability of the change detection algorithm having detected 

false change. The relationship between commission probabilities and actual commission 

errors in the maps was weaker than that of the omission errors. The techniques used to 

calculate omission and commission probabilities are sensitive to noise in the time series 

and extra measures must be taken to remove noise beforehand. Error probability maps 

would be useful in a range of applications in which the uncertainty in the presence and 

timing of change detection is important.  
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CARBON EMISSIONS ASSOCIATED WITH LAND 

CONVERSIONS AND RECOVERY OF DISTURBED LANDSCAPES 

 
 

4.1  Introduction 

 
Emissions associated with land use and land cover change account for around a 

tenth of the annual CO2 emissions released into the atmosphere by human activities 

(Achard et al., 2014; Harris et al., 2012; Houghton et al., 2012). But the net carbon fluxes 

of tropical ecosystems remain poorly quantified, with different approaches indicating 

either an overall sink or a modest net source (Arneth et al., 2017; Baccini et al., 2017; 

Houghton et al., 2012). Reducing the uncertainty in these fluxes and their attribution is an 

essential but challenging task given the magnitude and complexity of the problem. While 

tropical deforestation and the carbon emissions resulting from it have been extensively 

studied during the last few decades (Achard et al., 2002; Baccini et al., 2012a; Brown, 

1997b; DeFries et al., 2002; Hansen et al., 2013; Tyukavina et al., 2015), carbon 

dynamics associated with more subtle land transitions have been less explored, 

contributing to the uncertainty in the fluxes. An abandoned landscape following a 

disturbance is a good example of a transition that is hard to study with more traditional 

methods because of the gradual change in the spectral signal associated with recovery of 

the disturbed landscape. Monitoring the fate of the disturbed landscape requires frequent 

observations over a long period, a situation unattainable in the tropics until recently. In 

traditional approaches to carbon accounting, disturbed forests are usually assumed to 

either regrow or stay in the disturbed state (Kuemmerle et al., 2011; Tyukavina et al., 
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2015); little attention has been paid to characterizing the post disturbance landscape in 

more detail, thus leading to an incomplete representation of the carbon dynamics. Recent 

work has attempted to address this issue by focusing on the role of secondary forest and 

regrowing vegetation in carbon sequestration (Chazdon et al., 2016; Schwartz et al., 

2017) and its effect on global carbon sink dynamics (Pugh et al., 2019).  

A range of methods exist to estimate the carbon stocks in land ecosystem and 

quantify the emissions associated with land change, including process-based models, 

comparison of wall-to-wall biomass maps and bookkeeping models. Process-based 

models rely on the understanding of biophysical and ecological processes (Fisher et al., 

2014; Friedlingstein et al., 2006; Houghton et al., 2012; Piao et al., 2009; Pongratz et al., 

2009). These models are typically global in scope, essential for improving our 

understanding of global carbon cycle feedbacks and necessary to generate climate 

projections. Wall-to-wall biomass maps are generated by empirically relating in-situ 

measurements of biomass (or rather, estimates by allometry) to data acquired through 

active-sensors, such as Lidar metrics or radar imagery and, in turn, to coarse-resolution 

optical satellite imagery (Baccini et al., 2012a, 2017, 2018; Mitchard et al., 2013; Saatchi 

et al., 2011). While valuable to estimate carbon stocks and emission benchmarks, most 

biomass maps only cover short periods because consistent and repeated Lidar or radar 

measurements in the required spectral frequency are not available at a global scale, 

therefore restricting the possibility to track carbon pools directly and periodically over 

large areas. Upcoming missions such as GEDI and BIOMASS (Dubayah, 2018; Le Toan 

et al., 2011; Stysley et al., 2016) will contribute to this issue, but their temporal coverage 
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will be limited and therefore will not enable a continuous monitoring of tropical 

aboveground biomass that can be sustained in the future.  

An alternative approach to study the effects of land change on carbon dynamics is 

through carbon accounting or bookkeeping models. A bookkeeping model can estimate 

carbon emissions and sequestration at multiple temporal and spatial scales, effectively 

enabling the calculation of change in terrestrial carbon storage associated with a 

particular land cover class, or as a result of land change. Models like those proposed by 

Houghton et al. (1983, 1999, 2001) and Moore et al. (1981) rely on the availability of 

rates of land change in combination with information on terrestrial carbon accumulation 

and emissions. Bookkeeping models track the fluxes between multiple carbon pools using 

empirical data. They have been used to quantify carbon dynamics at the global (Baccini 

et al., 2012a; Houghton and Nassikas, 2017; Quéré et al., 2018), regional (Baumann et 

al., 2017; Houghton and Hackler, 2006; Loarie et al., 2009; Toomey et al., 2013), and 

national and subnational level (Andersen et al., 2016; Carlson et al., 2012; Kuemmerle et 

al., 2011; Numata et al., 2010; Olofsson et al., 2011, 2010). Operational carbon 

bookkeeping models suggested as compliant with IPCC Tier 3 (i.e. spatially explicit) 

include the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3; (Kurz et 

al., 2009) and the Australian Full Carbon Accounting Model (Australian Government, 

2017). CBM-CFS3 is a stand-based model that estimates emissions and removals by 

integrating forest inventory data and growth curves with spatial data on forest 

management and disturbances. The FullCAM model requires pixel-based activity data 

and relies on an integrated suite of process-based models.  
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Having to choose between process-based models, comparison of wall-to-wall 

biomass maps and various bookkeeping models present challenges for estimation of 

carbon fluxes for REDD+ and MRV purposes. For example, process-based methods often 

require detailed parameterization rarely attainable at the scale of the national or regional 

remote sensing studies. Single wall-to-wall biomass mapping can be used to derive 

emission factors, but with the exception of the moderate resolution maps of AGB created 

by Baccini et al. (2012b), their sporadic availability restricts their use for detailed 

continuous carbon monitoring and reporting. Spatially explicit carbon bookkeeping 

models have been successfully applied in Canada and Australia, but they can be difficult 

to implement in the tropics because of demanding input data that are not readily available 

in many countries. Furthermore, meeting the IPCC reporting criteria related to 

uncertainty and bias in a pixel-based approach is inherently difficult, as estimates of area 

bias and uncertainty pertain to whole populations (i.e. study areas) and are not directly 

related to pixel-level information, as explained in Chapter 3. For these reasons, two 

methods of lesser complexity are typically employed by countries to estimate their FREL 

and subsequent emissions for REDD+ reporting: the stock change and the gain/loss 

approach. As detailed in Section 1.3, the stock change approach allows the direct 

estimation of changes in wood carbon stocks and is typically conducted in non-tropical 

countries with an operational forest inventory program. The gain/loss approach requires 

information on activity data (areas that experience land change) and emission factors 

(carbon contents per area unit per land class), and it is typically used in tropical countries. 

This method may not properly account for gradual and non-linear carbon fluxes, such as 
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the carbon emitted due to forest degradation, or the carbon sequestration caused by forest 

regrowth, because it usually relies on average values that may result in over or under 

estimation of the carbon that is emitted to or removed from the atmosphere. 

Given the availability of methods and input data available for the estimation of 

carbon fluxes, an aspect that deserves more attention is the effect of methodological 

choices on the estimated values of those fluxes. Previous research has indicated that 

choices related to the temporal evolution, state of carbon stocks at the beginning of the 

period, the temporal attribution of fluxes, and the treatment of fluxes prior to the study 

period may significantly affect the estimation of carbon fluxes (Hansis et al., 2015). 

Research to evaluate the effects of different scenarios of temporal attribution of carbon 

emissions resulting from land change (Davis et al., 2014) suggests that the choice of 

attribution depends on the purpose of the emission accounting. An approach to 

monitoring land cover and conversions based on Landsat time series, combined with 

sample-based estimates of area bias and uncertainty, provides us with an array of data 

that can be used in multiple ways to estimate carbon emissions associated with land 

change. For example, a carbon accounting model could use areas of land cover and 

change calculated directly from maps by “pixel counting” (not recommended), or ideally 

estimated using an unbiased estimator applied to sample data, as shown in Chapter 2. 

Furthermore, maps of change could be used in spatially explicit bookkeeping approaches, 

as previous attempts have shown (Gebhardt et al., 2014; Kurz et al., 2009), but 

application in tropical ecosystems using remote sensing-based maps as inputs has 
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resulted in large classification errors biasing the estimation of carbon emissions 

(Mascorro et al., 2015).  

Previous research on carbon stocks and fluxes in Colombia have assessed the 

Aboveground Biomass (AGB) at the national (Anaya et al., 2009; Rodríguez-Veiga et al., 

2019) and regional levels in the Chocó and Amazon region (Asner et al., 2012; Meyer et 

al., 2019) using remote sensing data from optical, radar and Lidar sensors. There is little 

research on the AGB values for secondary and regrowing forest, but Saldarriaga et al. 

(1988) found AGB values ranging from 44 Mg ha-1 for ten-year-old stands to 326 Mg ha-

1 for mature forests. The country presented its official emission factor for deforestation 

activities in their national FREL (MADS and IDEAM, 2014), calculated using country-

specific allometric models and accounting for national and regional circumstances 

(Alvarez et al., 2012; Phillips et al., 2016, 2011a, 2011b). Carbon emissions at the 

national level were estimated for the period 2005-2010 by Yepes et al. (2011), and along 

with other periods of variable length in Ramírez-Delgado et al. (2018). These reports are 

valuable and constitute a milestone in terms of the national reporting of deforestation and 

associated emissions. However, they do not provide any measures of uncertainty on the 

estimates, and the results for earlier periods are not comparable with each other due to 

significant methodological differences. Therefore, estimating the carbon fluxes associated 

with multiple land conversions at different levels of temporal aggregation and providing 

uncertainty on the estimates would contribute to fill these gaps and provide a set of future 

recommendations to further reduce uncertainty. The objectives of this chapter are: i) to 

estimate the gross and net carbon emissions and removals in the Colombian Amazon for 
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the period 2001 -2015 at different levels of temporal aggregation, and ii) to analyze the 

differences in the carbon emissions and removals resulting from applying a gain/loss 

approach and a simple carbon bookkeeping model over biased and bias-adjusted areas of 

land change. 

 

 
 

4.2 Methods 

 
Carbon emissions and removals were calculated for each biennial period using two 

different approaches. The first method is the gain/loss approach, multiplying the 

emissions factors per land change class presented in Table 4-1 by two different sets of 

activity data. The first set corresponded to change areas calculated directly from each 

biennial map through “pixel-counting”, also referred to as “biased areas”. The second set 

corresponded to the biennial bias-adjusted areas and 95% confidence intervals, as 

described in Chapter 2. These data were also aggregated into longer periods (three, two 

and one period) using error propagation techniques (IPCC, 2006, vol. 1, Chapter 3). The 

data were aggregated to study the effect on overall uncertainty in emissions and removals 

relative to various study periods. Net emission values with 95% confidence intervals per 

biennial and aggregated periods were calculated by a Monte Carlo simulation, using the 

mean and confidence intervals of the areas of land change to parametrize a normal 

distribution per change class and period. From each probability distribution, a sample of 

10,000 random numbers was drawn, and then multiplied by the emission factors. The 

resulting values for all change classes per period were added together to obtain a 
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distribution of net emission values, from which the mean and standard error were 

calculated. The standard error was calculated as the square root of the variance of the 

resulting distribution. A Monte Carlo approach was used instead of a simpler propagation 

technique because the areas and confidence intervals for each biennial period are not 

independent. 

The emission factor used for deforestation activities was the one reported by the 

Colombian Government for their FREL submitted to the UNFCC (MADS and IDEAM, 

2014), corresponding to an AGB of 273.15 ± 9.8 Mg ha-1 (SE= 1,8%) for Tropical Rain 

Forest. Emission factors for the classes Secondary Forest and Gain of secondary forest 

were derived from the values reported in Poorter et al. (2016), who estimated an average 

AGB of 122 Mg ha−1 after twenty years of forest recovery for the Neotropics, 

corresponding to 6.1 Mg ha−1 yr−1. Based on this information, an AGB gain value of 12.2 

Mg ha-1 was used for each biennial period. For the Loss of Secondary forest class, it was 

assumed that the secondary forest would have a biomass of half that of a mature forest. 

Therefore, a value of 136.57 Mg ha-1 was used. AGB values were multiplied by 0.47 to 

calculate the carbon emitted or sequestered (MADS and IDEAM, 2014). For the gain/loss 

approach it was assumed that all carbon was instantaneously released to the atmosphere 

as a result of conversion from Forest to Pasture, Forest to Secondary Forest and Loss of 

Secondary Forest. While it is known that some of the carbon may be emitted at a later 

time after a land cover conversion, instantaneous release of carbon was assumed in order 

to associate the emissions with the activities during a given period. This is helpful to 

understand the immediate effect of land change dynamics on the carbon budget, as it 
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allows us to associate any emissions due to land change to the time when the land change 

occurs.  

The second approach is a simplified carbon bookkeeping method adapted from 

Reinmann et al. (2016), which employs commonly used carbon bookkeeping approaches 

(Houghton et al., 1983; Moore et al., 1981) and freely available online at 

https://github.com/xjtang/CBookie/. The two sets of biennial change areas used for the 

gain/loss approach were also used as inputs for this model. However, in contrast to that 

approach, carbon emissions were disaggregated into different fractions allocated as 

burned, deadwood left as slash, durable products, and converted to elemental carbon 

through burning, plus an unreleased category representing delayed carbon emissions. 

This disaggregation was done as a way to evaluate the potential contributions of these 

pools to immediate and delayed emissions over time, compared to the instantaneous 

emissions assumed in the gain/loss approach. Values for these fractions and their rates of 

decay were taken from Houghton et al. (2000). Fractions were assigned as follows: 0.2 

for burned , 0.7 for slash, 0.08 for durable and 0.02 for elemental (Carvalho et al., 1998; 

Fearnside et al., 1993). Rates of decay were assigned as follows: Durable products 

decayed with a constant rate of 0.1 year-1, elemental carbon decayed at 0.001 year-1 and 

dead wood left on site (slash) decayed exponentially at a rate of 0.1 year-1, following 

those used in Houghton et al. (2000). The model requires initial AGB values for each 

period to determine the carbon emissions associated to forest cover loss during that 

period, or to determine the total forest regrowth at the end of the period. AGB values for 

the deforestation activities were the same used in the gain/loss approach, but AGB values 

https://github.com/xjtang/CBookie/


87 
 

 

of Secondary forest were calculated as follows. Carbon sequestration for the Secondary 

forest and Gain of secondary forest classes followed a log growth curve presented in 

Poorter et al. (2016). The initial AGB value for the Secondary forest class was the same 

as in the first approach (136.57 Mg ha-1) for each biennial period, while the initial AGB 

value per period for the Gain of secondary forest class was assumed to be zero. 

Therefore, the biomass value for the Secondary Forest class at the time of loss was 

determined by the log function mentioned previously after regrowing during each 

individual biennial period. This effectively assumes the Secondary Forest at the 

beginning of each period to be approximately 20 years old, as the true age of secondary 

forest in the study area is currently unknown. A summary of the values used in the two 

approaches is presented in Table 4-1. An additional run of the bookkeeping model 

without the disaggregation into emission fractions was performed, replacing the AGB 

value for the Secondary forest class for 68 Mg ha-1 (half of the value of 136 Mg ha-1 used 

initially), to determine the contribution of this class to the carbon removals if I assumed 

younger tree stands in this class. 
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Land cover change 

class 
Type Gain/loss approach Accounting approach 

Forest to pasture Emission 273.15 Mg  ha−1 273.15 Mg ha−1  

Forest to secondary 

forest 
Emission 273.15 Mg ha−1  273.15 Mg ha−1  

Secondary forest Removal 

6 Mg ha−1 yr−1 based 

on annual rates from 

Poorter et al. (2016) 

Based on log function 

from Poorter et al. 

(2016), starts at 136.6 

Mg ha−1  

Gain of secondary forest Removal 

6 Mg ha−1 yr−1 based 

on annual rates from 

Poorter et al. (2016) 

Based on log function 

from Poorter et al. 

(2016), starts at 0 Mg 

ha-1 

Loss of secondary forest Emission 136.6 Mg ha−1 yr−1 

Based on log function 

from Poorter et al. 

(2016) 

Table 4-1. Total AGB values used to calculate carbon emissions and removals for each land cover change 
class and approach. 

 

4.3 Results 

 
The carbon emissions and removals calculated using the different approaches are 

presented below. All the fluxes are expressed as total Tg C per time period (left axis) and 

Mg C ha-1per biennial period (right axis), obtained by dividing the total flux by the area 
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of the study region (46,821,572 ha). ‘Single year’ labels in the x-axis represent the 

middle of each biennial period.  

4.3.1 Gain / loss approach 

 
Emissions and removals calculated from bias-adjusted areas with 95% confidence 

intervals are shown in Figure 4-1. In addition, the estimated Deforestation area (Figure 

2-7), which considers Forest to Pasture and Forest to Secondary Forest as a single class,  

was used to calculate the emissions as shown in Figure 4-2. A comparison of the mean 

carbon emissions and removals calculated from areas of change obtained from bias-

adjusted areas, as well as mapped areas through “pixel-counting” are shown in Figure 

4-3. Confidence intervals are shown –even when they contain zero– in order to illustrate 

their effect on the estimated net emissions. Finally, margins of error for the estimated net 

emissions per original and aggregated period are shown in Table 4-2. 

Because there were seven biennial periods, the aggregation into three and two 

periods was done using only six biennial periods at a time, to avoid a misleading 

comparison of periods with different lengths. For this reason, two sets of estimates were 

created for each set of longer periods: one starting in 2001 and ending in 2013, and 

another starting in 2003 and ending in 2015. The results of the aggregation into three 

periods are shown in Figure 4-4 and Figure 4-5. Figure 4-6 and Figure 4-7 show the 

results of the aggregation into two periods. The aggregation using all of the biennial 

periods is shown in Figure 4-8.  
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Figure 4-1. Carbon emissions and removals calculated using the gain/loss approach, obtained from bias-
adjusted areas with 95% confidence intervals.  The continuous line represents net mean emissions per 
period calculated using a Monte Carlo sampling approach, and the green fill represents its 95% confidence 
interval.  
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Figure 4-2. Carbon emissions and removals calculated with the gain/loss approach using bias-adjusted 
areas with 95% confidence intervals. The Forest to pasture and Forest to secondary forest have been 
merged into a single class called Deforestation. The continuous line represents net mean emissions per 
period calculated using a Monte Carlo sampling approach, and the green fill represents its 95% confidence 
interval.  
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Figure 4-3. Carbon emissions and removals calculated using the gain/loss approach, with activity data 
from bias-adjusted areas (left bar per period) and with mapped areas through “pixel-counting” (right bar per 
period). 95% confidence intervals are shown for the net estimates of the bias-adjusted values. 
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Figure 4-4. Carbon emissions and removals calculated with the gain/loss approach using bias-adjusted 
areas with 95% confidence intervals. The six biennial periods starting in 2001 and ending in 2013 have 
been merged into three periods.  The continuous line represents net mean emissions per period calculated 
using a Monte Carlo sampling approach, and the green fill represents its 95% confidence interval. 
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Figure 4-5. Carbon emissions and removals calculated with the gain/loss approach using bias-adjusted 
areas and their 95% confidence intervals. The six biennial periods starting in 2003 and ending in 2015 have 
been merged into three periods.  The continuous line represents net mean emissions per period calculated 
using a Monte Carlo sampling approach, and the green fill represents its 95% confidence interval. 
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Figure 4-6. Carbon emissions and removals calculated with the gain/loss approach using bias-adjusted 
areas and their 95% confidence intervals. The six biennial periods starting in 2001 and ending in 2013 have 
been merged into two periods.  The continuous line represents net mean emissions per period calculated 
using a Monte Carlo sampling approach, and the green fill represents its 95% confidence interval. 
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Figure 4-7. Carbon emissions and removals calculated with the gain/loss approach using bias-adjusted 
areas with 95% confidence intervals. The six biennial periods starting in 2003 and ending in 2015 have 
been merged into two periods.  The continuous line represents net mean emissions per period calculated 
using a Monte Carlo sampling approach, and the green fill represents its 95% confidence interval. 
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Figure 4-8. Carbon emissions and removals calculated with the gain/loss approach using bias-adjusted 
areas with 95% confidence intervals. The seven biennial periods have been merged into one. The marker 
represents net mean emissions for the entire aggregated period, calculated using a Monte Carlo sampling 
approach, and the error bar represents its 95% confidence interval.  
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Starting period Biennial periods Three periods Two periods One period 

2001 
0.53 

0.50 0.52 
0.34 

2003 0.43 0.41 

Table 4-2. Mean margin of error of the net emission estimate for each original and aggregated period. 
(Margin of error = half width of confidence interval / area estimate). 

 

4.3.2 Carbon bookkeeping 

 
Carbon emissions and removals calculated with the carbon bookkeeping model, 

using the bias-adjusted areas of land change, as well as the areas obtained from the maps 

through “pixel-counting” are shown in Figure 4-9, disaggregated based on their source 

pool. Emissions are shown in darker colors while unreleased emissions are shown in 

lighter colors. Figure 4-10 shows the aggregated emissions and removals under the 

scenario of the Secondary forest class regrowing from an initial AGB of 68 Mg ha-1. 

In these two figures, the unreleased values per period represent the contribution of 

that period to the unreleased pool, because the values for the unreleased and other 

fractions were calculated as the difference between cumulative values reported by the 

bookkeeping model. Showing the contribution to the unreleased fraction per period 

facilitates the comparison with the gain/loss approach results, because the sum of the 

released and unreleased emissions per period in the bookkeeping results should be almost 

identical to those from the gain/loss approach, because the same emission factors for 

deforestation activities were used in both cases. The calculation of emitted and 
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unreleased carbon per period from cumulative values caused two periods (2005-2007 and 

2011-2013) to present unreleased carbon values that are negative (bias-adjusted areas,  

Figure 4-9 and Figure 4-10). For example, the cumulative unreleased emissions for the 

slash fraction up to the 2011-2013 period were slightly larger than the cumulative 

emissions up to 2013-2015, resulting in a negative ‘contribution’ of the 2011-2013 to the 

unreleased slash pool when the difference was calculated. 

 
Figure 4-9. Carbon emissions and removals disaggregated by product, calculated with a carbon accounting 
model applied to change areas obtained from bias corrected areas (left bar per period) and “pixel-counting” 
(right bar per period). 
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Figure 4-10. Carbon emissions and removals per biennial period calculated with a carbon accounting 
model applied to bias corrected change areas, assuming that all secondary forest regrows from an initial 
AGB of 68 Mg ha-1. 

 
 

4.4 Discussion 

 
 The effect of the uncertainty of land change area on the estimation of carbon 

emissions and removals calculated using the gain/loss approach is illustrated in Figure 

4-1; the estimated carbon emissions vary greatly because of the substantial uncertainty in 

the estimated areas of forest loss. The first and fifth periods (2001-2003, 2009-2011) 
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exhibit the largest uncertainty simply because the area estimate of the main carbon-

emitting activity, Forest to pastures, is associated with very large uncertainty, with the 

95% confidence intervals of the area estimates 2001-2003 and 2009-2011 including zero 

(i.e. I cannot infer that the areas are significantly different from zero). An alternative 

version of this figure showing emissions from Deforestation reveals a decrease in net 

emissions between the 2003-2005 period and the 2005-2007 period, followed by an 

increase in the period 2007- 2009, and stable emissions until 2015, excluding the highly 

uncertain 2009-2011 period (Figure 4-2). For both figures, small removals of atmospheric 

carbon by regrowing Secondary Forest are usually followed by emissions of similar 

magnitude from Loss of secondary forest, although only three of those losses have 

confidence intervals that do not include zero. Other removals associated with the Gain of 

secondary forest are negligible. While the aggregation of area estimates of deforestation 

activities into a Deforestation class results in estimates that are different from zero for all 

periods, it has an imperceptible effect on the calculation of the net emissions and 95% 

confidence intervals. Both original and Deforestation net estimates are different from 

zero and display equivalent levels of precision, suggesting that the estimation of the 

Deforestation class might be unnecessary for the estimation of net emissions. In addition, 

a comparison of the mean carbon emissions calculated from these bias-adjusted areas 

with those obtained from “pixel counting” (Figure 4-3) shows visible differences in the 

trend of emissions. Even if the two highly uncertain estimates are ignored, net emissions 

from bias-adjusted areas are higher than those obtained from “pixel-counting” areas 

except for the last period. On average, 20.9 Tg C (0.45 Mg C ha-1) are emitted per 
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biennial period according to the bias-adjusted area results, contrasting with 11.3 Tg C 

(0.24 Mg C ha-1) for the emissions derived from mapped areas. These results are a direct 

reflection of the area trends shown in Chapter 2, and highlight the importance of using 

bias-adjusted area estimates to get a more accurate depiction of the land change dynamics 

and their related carbon emissions. 

 The aggregation of emissions into longer periods was effective at reducing the 

uncertainty around most gross and net estimates of carbon emissions and removals 

(Figure 4-4 to Figure 4-8, Table 4-2). In the three-period aggregation, the bounds of the 

confidence intervals on the net emissions were driven by the large uncertainty in the 

Forest to Pasture estimate for the first and fifth periods. As seen in Figure 4-4, when the 

aggregation starts in 2001, the area estimates representing 2001-2003 and 2009-2011 

have the largest confidence intervals. A similar situation is observed in the period 2007-

2011 of Figure 4-5, with the aggregation starting in 2003. Even with the reduction in 

uncertainty in both cases, it is not possible to assess the direction of the trend in the net 

and most of the gross estimates. This also holds true for the aggregation into two periods, 

where the overall uncertainty is reduced when the aggregation starts in 2003 (Figure 4-7) 

but the trend in emissions cannot be established. 

The net emission between the years 2001 and 2015 in the study area was 145.3 Tg 

C,  corresponding to an average of 10.38 Tg C year-1 (0.22 Mg C ha-1 year-1) according to 

the aggregated results for the entire study period (Figure 4-8). In comparison, the average 

annual emission based on the national FREL, calculated for the Colombian Amazon 

Biome for the period 2000-2012, was 10.64 Tg C year-1 (0.23 Mg C ha-1 year-1) (MADS 
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and IDEAM, 2014). The analysis provides evidence of average annual carbon emissions 

highly consistent with those reported by the Colombian government for the FREL and in 

their national reports (Ramírez-Delgado et al., 2018). However, the results presented here 

include estimates of the uncertainty in the emissions associated with the land change 

classes for each biennial and aggregated interval, as well as for the net emissions, while 

the official estimates do not. The small differences between the total emissions can be 

attributed to multiple factors. First, the total mapped area was slightly larger in this study 

(46,821,572 ha vs 45,896,100 in the FREL) because a different boundary definition for 

the Amazon Region was used. Second, the FREL uses a smaller value of mean annual 

forest loss area than the results presented in this chapter (82,863 ha vs 87,016 ha). 

Finally, the net emissions shown in this chapter include the carbon removals from the 

atmosphere due to forest regrowth, while the value reported in the FREL does not. 

The results of running the bookkeeping models with biased (“pixel-counted”) and 

bias-adjusted areas of change offer an insight into the carbon dynamics when emissions 

are not assumed to be instantaneous. As expected, lower emissions per period, compared 

to the gain/loss approach, can be seen in Figure 4-9, as emissions go into the unreleased 

pool for delayed release. Emissions calculated from bias-adjusted areas present a less 

clear temporal pattern of immediate and delayed emission from slash than those 

calculated from “pixel-counting”, which show a steady increase in emissions from this 

pool. In both the bias and bias-adjusted cases, the emissions associated with durable 

products can be seen increasing over time, while the emissions from elementary carbon 

are not even visible at the scale of the figure. In turn, removals due to the Secondary 
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forest and Gain of secondary forest classes are mostly uniform for the biased areas, while 

they peak in the 2007-2009 period for the biased-adjusted, simply following the pattern in 

the magnitude of the areas. Overall, the net emissions per period are higher for the results 

from bias-adjusted areas than for the areas calculated from “pixel-counting”. As 

mentioned previously, the clear differences between the estimates from these two types 

of change areas are due to the different magnitude of the areas that go into the 

bookkeeping model, but also caused by the very large emissions associated with 

deforestation in earlier periods for the bias-adjusted case, because their delayed emissions 

carry through the entire study period. For example, the biased and bias-adjusted areas are 

similar in the period 2005-2007, but the large unreleased emissions from earlier periods 

result in higher emissions associated with slash for the bias-adjusted areas compared with 

the biased areas. This situation contrasts with the gain/loss approach, for which the total 

emissions in that period are roughly similar in both cases (Figure 4-3).  

While the use of biased areas based on “pixel-counting” goes against established 

recommendations (Olofsson et al., 2014), they were included in this study to illustrate the 

potential difficulties involved in the estimation and reporting of carbon emissions for 

REDD+. Using biased areas may result in over or under estimation of carbon emissions, 

as shown in Figure 4-3 and Figure 4-9, where net emissions from bias-adjusted areas are 

higher. However, using sample-based estimates of area can be challenging because it is 

difficult to obtain precise estimates, particularly when the change areas are small. The 

complexity of achieving a higher precision in the area estimates is compounded by the 

requirement to report at annual or biennial time intervals. Alternatives to increase the 
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precision of area estimates include the increase in sample size, the increase in the 

accuracy of the maps used for stratification of the sample, and the inclusion of a buffer 

stratum around areas of change that minimizes the impact of omission errors on the 

estimates, as explained in Chapter 2. Those buffers can be obtained from maps of 

omission probability, using the methodology detailed in Chapter 3. With these and other 

tools, efforts to increase the precision of carbon emissions should focus on the reduction 

of the uncertainties in the estimates of change areas. 

Other sources of uncertainty in the estimation of carbon emissions result from the 

choice of land cover classes and changes included in the analysis, as well as the 

parameters used to calculate their emission factors. To illustrate this situation, the 

bookkeeping model was run with a lower starting biomass (68 Mg ha-1) for the Secondary 

forest class, which assumes younger forest stands (Figure 4-10). The increased carbon 

removals –on average three times higher than those using the higher starting biomass- 

highlight the importance of parameter selection for the function chosen to simulate forest 

regrowth, and the importance of including a Secondary forest class, as it has the potential 

to offset part of the emissions in the study area. For the bookkeeping model I assumed a 

starting AGB value of 136.57 Mg ha-1 for the Secondary Forest class –representing tree 

stands twenty years old– that was used for every biennial period to simplify the analyses. 

This assumption was made because the age of the oldest secondary forests in the study 

area is unknown and the time series for most of the Landsat scenes covering the study 

area start only until the year 1997. Other potential initial mean AGB values were 

calculated for the pixels labelled as Secondary forest in the year 2001 and 2016 using the 
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AGB datasets for the year 2001 from Baccini et al. (2018) and for the year 2016 from 

Rodríguez-Veiga (2019), respectively. For 2001, the mean AGB value was 211.7 Mg ha-

1, but it was only 38 Mg ha-1 for the year 2016. For reference, the mean AGB for stable 

forest calculated from Baccini et al. (2018) was 283.7 Mg ha-1. The large disparity in the 

results could be attributed to different techniques employed to estimate the AGB values 

in the two maps, as well as the low accuracy of the mapped Secondary Forest areas for 

these two periods (Table 2-3 and Table 2-4). These low accuracies could result in forests 

being misclassified as Secondary Forest early in the time series, explaining the higher 

mean AGB value when compared to 2016, when pastures could have been misclassified 

as Secondary Forest. None of these values were used in the bookkeeping model, as they 

would result in drastically different removals of carbon from the atmosphere, but this 

situation highlights the importance of accounting for the age and estimating the growth 

rates of secondary forests in the study region. 

In contrast to the non-spatial model presented above, a spatially explicit carbon 

bookkeeping model operating on the time segments would not depend on manually 

setting the initial AGB for the Secondary Forest class. Initial values for the biomass in 

each land cover class can be taken from an AGB map like the one created by Baccini et 

al. (2018). Secondary Forest is assumed to start growing from a biomass of zero, and the 

AGB for any point in time is calculated using a regrowth function and the length of the 

time segment. In addition, a spatial model would make it possible to accommodate the 

spatial variability in the emission fractions, incorporating the knowledge on the locations 

in the study area where wood extraction (Southwest) or fires (Northeast) are more 
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common. A drawback of this method is that it relies exclusively on the land cover class 

labels recorded in the time segments or maps used as inputs, and the low accuracies for 

certain land cover classes would produce biased emission estimates. An example of this 

situation is observed in the model used in Mascorro et al. (2015), where pixel-level 

change was provided as an input to the model, but up to 85% of the actual forest change 

was missing from the map, according to their sample data. Such issues need to be 

resolved before these type of spatial approaches can be used widely. Developing methods 

to adjust the input areas or emissions obtained from spatial models to match the 

emissions obtained from bias-adjusted areas is a future research avenue. 

 

4.4.1 Future directions 

 
A main limitation of this study is the uncertainty around biennial estimates of land 

change, which drives the uncertainty in the emissions estimated from them. These 

uncertainties are reduced when periods are aggregated, but they are still large enough that 

their temporal trend cannot be determined confidently. While having area and emissions 

estimates with high uncertainty is better than not knowing the uncertainty at all, an 

increase in the precision of the area estimates is desirable, particularly if the goal is to 

prove a reduction in emissions over time. Another limitation stems from the assumptions 

regarding the spatial distribution and the initial values of AGB for some of the land cover 

classes considered, particularly the Secondary forest class. More attention should be paid 

to determining the approximate age of tree stands, particularly prior to and at the 
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beginning of the time series. The creation of a forest baseline map using imagery 

obtained between 1970 – 1990 would contribute to this goal. With this information on 

stand age, the model could be modified to keep track of different secondary forest 

fractions with varying ages, instead of assuming Secondary Forest regrowth from the 

same starting conditions in each biennial period. Regarding the forest class, AGB values 

disaggregated by forest type are available (Yepes et al., 2011) and may contribute to a 

more accurate depiction of carbon fluxes, particularly in areas closer to the Andes where 

the plant communities are different than in the lower lands. Upcoming results from the 

National Forest Inventory program should provide updated information on AGB contents 

for some of these different forest types in the study area, as well as rates of regrowth. 

Single values of AGB per class were used for the analyses presented in this 

chapter, but if more data from other sources can be collected, probability distributions 

could be constructed and used for sampling in a Monte Carlo approach, allowing the 

propagation of uncertainty in the AGB values. The standard error of the AGB of forest 

for the Colombian Amazon was reported in the national FREL, but it was not included in 

any of the calculations, as the effect of the AGB variability in the final emissions would 

be negligible compared to the effect of the uncertainty in the area estimates. However, if 

the uncertainties in the estimated areas were reduced, the propagation of uncertainty in 

the AGB values would be necessary.  

Similarly, uncertainty was not accounted for in the bookkeeping model. One of 

the objectives of this study was to calculate and analyze the instantaneous and potential 

delayed emissions due to land conversion, which to my knowledge has not been done in 
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the study region. This analysis would be greatly enriched by running the bookkeeping 

model in a Monte Carlo simulation, sampling from distributions representing the land 

change areas, as well as the different parameters such as emission factors and regrowth 

rates. This type of simulation could contribute to determine the uncertainty in the carbon 

emissions calculated through the bookkeeping method, as well as the potential of 

Secondary Forest for carbon removals. 

Finally, the analysis presented in this chapter focused on the carbon dynamics 

associated with land change, but other stable land cover classes may also contribute to 

total emissions. For example, natural fires are common in the natural grasslands present 

in the study area and nearby, but while their magnitude and frequency have been studied, 

their contribution to carbon emissions have not (Armenteras et al., 2017). Fire is also 

known to be more frequent and intense in fragmented landscape forests, where its 

occurrence results in a higher degree of biomass combustion (Armenteras et al., 2013). I 

assumed the emission fraction due to fire to have a value of 0.2 in the bookkeeping model 

based on the literature, but more attention is needed to determine if this and the other 

fraction values are truly representative of the study area. It may be possible to determine 

and assign these values in a spatially explicit way. Other information that could be used 

in the bookkeeping model corresponds to soil organic carbon from primary forest, 

degraded and improved pasture systems (Mosquera et al., 2012a, 2012b), as well as 

coarse woody debris dynamics after forest to pasture conversion (Navarrete et al., 2016). 

 



110 
 

 

4.5 Conclusions 

 
Net carbon emissions in the Colombian Amazon average 10.38 Tg year-1 (0.22 Mg 

C ha-1 year-1), with a total of 145.3 (± 48.47) Tg C emitted between 2001 and 2015. 

These results are consistent with official national estimates, but provide a measure of 

uncertainty around the estimated net and gross values per land change class. The 

conversion from forest to pasture contributes most of the emissions and the regrowth of 

secondary forest accounts for most of the removals from the atmosphere. The aggregation 

of biennial periods into longer periods contributes to a reduction in the uncertainty 

around the net and gross emissions, particularly for the classes that represent the smallest 

areas of change. However, even after the period aggregation it is not possible to 

determine the direction of the emission trends. The regrowth of secondary forest has the 

potential to offset a considerable fraction of the gross emissions, but more research is 

needed to parametrize the regrowth curve with more accurate values of AGB based on 

the true age of the secondary forest stands. A reduction in the uncertainty of estimates of 

area is needed to increase the precision in the estimated carbon fluxes. 

 

 

 

 
.
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CONCLUSION 

 
Accurate reporting of greenhouse gas emissions and removals due to land cover 

change depends on the proper quantification of land change areas and their uncertainty. 

The opening of the Landsat archive has enabled the continuous monitoring of the land 

surface through algorithms that detect temporal trends, as well as gradual and sudden 

changes over time. At the same time, a set of best practices and guidance has become 

available to estimate areas of change and their resulting emissions in a transparent and 

statistically robust way. Combining the vast information contained in the Landsat archive 

and this set of good practices, this dissertation presents the results of the continuous 

estimation of areas of change and carbon emissions and removals in the Colombian 

Amazon, as well as the estimation of errors in the detection of changes. 

 

 
5.1 Key findings 

 
This dissertation presents a methodology for the continuous estimation of areas of land 

cover change and their uncertainties using time series of Landsat data, unbiased 

estimators of area and biennial reference data (Chapter 2). Building upon the time series, 

methods to estimate the probability of errors of omission and commission of change are 

presented (Chapter 3). Finally, making use of the land change areas estimated in Chapter 

2, carbon emissions and removals resulting from these land conversions are estimated 

(Chapter 4). The key findings of this work are summarized as follows: 
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• The Colombian Amazon has experienced low deforestation rates in the last 

decade compared to neighboring countries, driven by the establishment of 

pastures that sometimes are abandoned and left to regrow. It is possible to 

estimate very small areas of change at biennial intervals, including the gain and 

loss of secondary forest, but uncertainties need to be addressed. 

• Probabilities of omission and commission of change in time series of Landsat data 

can be calculated using statistical approaches. Omission probabilities represent 

the probability of a time segment having omitted the detection of a change in the 

time series, while commission probabilities represent the probability of the 

change detection allocating a false change. 

• Net carbon emissions average 10.38 Tg year-1 (0.22 Mg ha-1 year-1) in the study 

area, with conversion from forest to pastures contributing to most of the carbon 

emissions, and regrowth of secondary forest contributing to most of the removals 

from the atmosphere. Secondary forest has the potential for offsetting a 

considerable fraction of the emissions.  

 

Overall, this dissertation contributes to the understanding of land cover changes in the 

Colombian Amazon and their resulting carbon emissions and removals. In addition, it 

provides methods and valuable lessons to quantify and reduce the uncertainty in the 

detection of changes in time series of Landsat data, and the land change area estimated 

from them. Furthermore, the results from Chapter 2 and 4 illustrate the inherent 

difficulties of reporting at the annual or biennial intervals required by the REDD+ 
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mechanism, particularly for countries with a high forest coverage and low forest 

conversion areas. The high uncertainty in the estimated carbon emissions was a direct 

result of the uncertainty in the area of changes. This uncertainty can be reduced by: 1) 

increasing the accuracy of the maps used as strata for the sample selection, improving its 

efficiency; 2) increasing the sample size and the allocation to the largest class, in this case 

Forest, and 3) creating multiple forest strata with different area weights to minimize the 

effects of omission errors. A better stratification can be attained by using the omission 

and commission probabilities developed in Chapter 3 to determine the areas where 

omission errors are more likely to occur, and isolate them into a separate forest stratum 

with a small map proportion that reduces the negative effect of the ‘captured’ omission 

errors.  

The long-term viability of the REDD+ program as a mechanism to effectively 

decrease emissions from deforestation and degradation will depend on the reduction of 

the uncertainties in areas of change and the carbon emissions resulting from them. 

However, the results presented here indicate that even if a moderate reduction in 

uncertainty is achieved, annual reporting of emissions resulting from multiple land cover 

changes beyond forest gain and loss seems implausible, especially for countries with low 

deforestation and low technical capabilities. The challenge to report at such small time 

intervals is further illustrated by the reduced number of countries that have reported 

within the REDD+ mechanism, and by the lack of examples of countries receiving 

payments in exchange for proving a reduction in emissions. Continuous monitoring of 

land change activities is possible but more challenging than previously thought, and if 
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uncertainties cannot be further reduced through the practical recommendations provided 

above, reporting requirements might need to be modified to permit the estimation of 

carbon emissions over longer periods. Donor agencies and governments will also need to 

be aware of the challenges associated with the estimation of carbon emissions at such 

short intervals if they want their contributions to end in useful and opportune results.  

A reduction of the uncertainty in emissions from land cover change is also essential 

for constraining the global carbon budget. Unlike individual countries, the continuous 

estimation of areas of forest gain and loss at the global scale in shorter periods is a more 

plausible task because the combined areas of change are larger and easier to estimate with 

higher certainty, although the mapping and sample interpretation efforts required to 

accomplish that task are not small. However, the uncertainty in carbon stocks for the 

areas undergoing change is likely to be the largest source of uncertainty in the emission 

estimates, and needs to be addressed with a combination of data from optical, lidar and 

radar sensors, field plot data and robust statistical or machine-learning techniques. 

Additionally, the location of land changes and biomass stocks are of great interest. 

Spatial measures of uncertainty are needed to maximize the utility of maps of change and 

biomass stocks while accounting for their errors. A first attempt to generate such spatial 

measures of uncertainty was presented in Chapter 3, but further research is required. 
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5.2 Recommendations for future work 

 

5.2.1 Continuous monitoring of land change activities and post-disturbance dynamics 

from Landsat time series 

 
In Chapter 2 I estimated the areas of land cover and their changes with quantified 

uncertainty, but for some biennial periods and classes the uncertainty was very high and 

sometimes included zero. While this behavior is unsurprising given the small fractional 

areas that I attempted to map and estimate, higher efficiency in the estimation would be 

achieved with more accurate maps of land change, as mentioned previously. In this study, 

undesired clouds and noise were persistent even after multiple steps aimed at filtering 

them, both prior and during the execution of the change detection algorithm. Considering 

the relatively low number of historical cloud-free images in the area, it is important to 

preserve as many images as possible without discarding valuable information. However, 

this goal is at odds with the need to filter unwanted noise, as more aggressive filtering 

algorithms will almost inevitably discard usable data. Future analysis of similar 

characteristics will require the application of other algorithms that can successfully filter 

additional clouds and shadows, or the use of a change detection algorithm that is more 

robust to noise. Time series with more cloud-free and shadow-free observations, and with 

well distributed values across time will result in a better detection of changes, which in 

turn will benefit the classification of the temporal segments. Another step that can 

improve the accuracy of the final maps is the establishment of labelling rules that enforce 

expected land cover transitions while discarding improbable ones. For example, 
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conversions from forest to pastures are the most likely change to occur, but the inverse is 

very unlikely in the span of fifteen years. The accuracy of the secondary forest class 

could be improved by a similar rule-enforcing system, given that the classification of this 

class is mostly dependent on the slope of the time segment. A metric derived from the 

relationship between the length and the slope of the temporal segment could be used to 

enforce that time segments labelled as Secondary Forest meet certain desired 

characteristics. In addition, other improvements could be made to the classification 

process itself, such as the inclusion of the amplitude of the harmonic terms or texture 

information as additional training features to the classifier. Once these steps have been 

conducted and more accurate maps are generated after additional cloud and shadow 

screening, recommendations such as the use of a buffer stratum to capture omission 

errors and increase in the sample size of the largest class will contribute to a more 

efficient estimation of areas of change. 

 

5.2.2 Spatial representation of the probability of errors in maps of land change 

 
Chapter 3 demonstrated the use of two methods to determine the probability of 

time segments presenting errors of omission of change, or the probability of commission 

of change between two adjacent segments. Similar to the findings in Chapter 2, more 

effective techniques are needed to filter clouds and shadows, in order to obtain 

probabilities of omission or commission of change that truly represent the conditions in 

the time series, instead of reflecting the unpredictable spikes and changes in temporal 
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data density caused by noise. Another related aspect that deserves attention is the 

relationship between temporal data density and the probabilities of omission and 

commission of change. The number of total and clear observations are known vary as a 

function of time (less or no observations between 1993-1997 and more after 2013) and 

season (less clear observations in rainy vs dry season), but the cloud and shadow removal 

of data points results in time series with varying temporal data density for any point in 

time. The effect of the data density variability caused by these factors on the accurate and 

timely detection of changes is unknown.  

The methods presented in Chapter 3 are currently used as the basis for some 

change detection algorithms (such as BFAST), or as post-processing steps to combine or 

split temporal segments (CCDC). The time segments used in this study had undergone a 

post-processing step to remove unwanted breaks, resulting in a smaller probabilities of 

commission for the newly created segments. The effect of splitting or merging temporal 

segments prior to the calculation of omission and commission probabilities on these new 

segments was not analyzed here, but needs to be addressed. In addition, the distribution 

of omission and commission probabilities over time needs to be tested and analyzed with 

a set of multiple samples distributed across time, because previous research indicates that 

breaks detected by the omission test occur more often in the middle of the time series 

(Bullock et al., 2019; Robbins et al., 2011). Finally, the application of the methods 

presented in Chapter 3 is closely tied to the CCDC algorithm, but additional research is 

needed to determine if and how it can be extended to other algorithms, particularly if they 

do not use all available Landsat observations, or use anniversary images or composites. 
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5.2.3 Carbon emissions associated with land cover change 

 
A major motivation for this dissertation is to advance the monitoring of carbon 

dynamics associated with land change activities. The research presented in Chapter 4 is 

the first step towards implementing a carbon bookkeeping model “on top” of the 

monitoring system presented in Chapter 2, such that carbon dynamics are computed at the 

pixel level following land activities as informed by the CCDC/YATSM algorithm. A 

complicated but important component of such a framework will be estimation of bias and 

uncertainty. Most carbon bookkeeping models suitable for a gain/loss approach to 

estimating carbon emissions operate on estimates pertaining to large areas and large time 

spans (Houghton et al., 2012; Kuemmerle et al., 2011; Olofsson et al., 2011). For the 

modeling of carbon emissions to be spatially explicit, estimates of area bias and 

uncertainty at the population scale need to be spatialized. For example, a conversion of 

primary forest to pasture followed by  regeneration of forest would trigger a release of 

carbon from the logged primary forest and soil according to the emissions curves used in 

the model, followed by sequestration of carbon by the recovering forest according to a 

pre-defined growth curve. The methods and results presented in Chapter 3 could provide 

information on omission and commission of change that could be used to propagate bias 

and uncertainty information to estimates of carbon emission and removals at the pixel 

level. However, more research is needed to determine how that propagation would work, 

and how to accommodate the effect of misclassification in the time segments that go into 
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the bookkeeping model. Another issue that requires attention is the carbon content 

(emissions factors) of landscapes experiencing recovery or degradation. While recent 

studies in the Amazon have started to provide such important data (Longo et al., 2016; 

Poorter et al., 2016), more measurements are needed to better understand the carbon 

dynamics of post-disturbance landscapes. Finally, the inclusion of forest degradation in 

future analyses would enhance our understanding of the changes in the landscape and 

their effects on carbon emissions. Forest degradation is defined by the IPCC as the 

process leading to long-term loss of carbon but without a change in land cover (GFOI, 

2014). Forest degradation was not accounted for in this dissertation, but recent research 

has been conducted in the Amazon Basin to characterize forest degradation using time 

series of degradation indices (Bullock et al., 2018).  
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APPENDIX A. Biennial area estimates calculated from reference data 

obtained for a single stratified random sample, using indicator functions  

 

Biennial area estimates and 95% confidence intervals (dotted lines) for stable and 

change classes defined in the stratification, calculated from reference data obtained for a 

single stratified random sample, using indicator functions as explained in (Stehman, 

2014). This sample was drawn from the strata map calculated between 2001 and 2016. 

Cross markers represent values that are statistically different from zero (i.e. confidence 

interval does not include zero). The red continuous line represents mapped areas (i.e. 

pixel-counting).  Time represents the middle year of each biennial period for 

visualization purposes (e.g. 02 = 2002). The y-axes were set independently to aid in the 

visualization of the areas given the large differences in magnitude, and may be different 

from those in Figure 2-6. The panel for the “Other to other” class was removed, as it did 

not contain any relevant information. 
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Figure A-1. Biennial area estimates and 95% confidence intervals (dotted lines) for stable and change 
classes defined in the stratification, calculated from reference data obtained for a single stratified random 
sample 
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APPENDIX B. Confusion matrices for each of the periods, in sample counts 

and area proportion. 
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Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat 

For. 
to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Oth. to Oth. 2 3 13 4 12 7 2 7 0 0 0 50 0.12 
For. 0 397 0 0 1 0 0 1 1 0 0 400 88.47 

Grass. 0 5 65 0 5 0 0 0 0 0 0 75 3.03 
Urban 0 4 10 21 3 1 11 0 0 0 0 50 0.13 
Past. 0 5 3 0 61 6 0 0 0 0 0 75 5.23 

Sec. For. 0 18 1 0 15 15 0 0 0 0 1 50 1.26 
Wat 0 7 0 0 0 0 43 0 0 0 0 50 1.35 

For. to Past. 0 3 0 0 6 0 0 31 10 0 0 50 0.12 
For. to Sec. For 0 2 0 0 8 4 0 10 25 1 0 50 0.04 
Sec. For. Gain 0 2 0 0 21 24 0 1 0 2 0 50 0.04 

To Uncl. 0 5 1 0 30 2 10 0 1 1 0 50 0.00 
Sec. For. Loss 0 1 0 0 13 6 1 16 5 4 4 50 0.03 

Buff 0 32 0 0 4 0 0 11 3 0 0 50 0.17 

Table B-1. Confusion matrix in sample counts for period 2001-2003. 

 

 
Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat For. to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Ot. Ot 0.0049 0.0073 0.0318 0.0098 0.0293 0.0171 0.0049 0.0171 0.0000 0.0000 0.0000 50 0.12 
For. 0.0000 87.808 0.0000 0.0000 0.2212 0.0000 0.0000 0.2212 0.2212 0.0000 0.0000 400 88.47 
Grass. 0.0000 0.2020 2.6264 0.0000 0.2020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 75 3.03 
Urban 0.0000 0.0107 0.0267 0.0561 0.0080 0.0027 0.0294 0.0000 0.0000 0.0000 0.0000 50 0.13 
Past. 0.0000 0.3489 0.2093 0.0000 4.2561 0.4186 0.0000 0.0000 0.0000 0.0000 0.0000 75 5.23 
Sec. For 0.0000 0.4538 0.0252 0.0000 0.3782 0.3782 0.0000 0.0000 0.0000 0.0000 0.0252 50 1.26 
Wat 0.0000 0.1883 0.0000 0.0000 0.0000 0.0000 1.1569 0.0000 0.0000 0.0000 0.0000 50 1.35 
For.Past. 0.0000 0.0074 0.0000 0.0000 0.0148 0.0000 0.0000 0.0766 0.0247 0.0000 0.0000 50 0.12 
For. Sec 0.0000 0.0017 0.0000 0.0000 0.0069 0.0034 0.0000 0.0086 0.0214 0.0009 0.0000 50 0.04 
Sec.Gain 0.0000 0.0016 0.0000 0.0000 0.0172 0.0197 0.0000 0.0008 0.0000 0.0016 0.0000 50 0.04 
To Uncl. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 50 0.00 
Sec.Loss 0.0000 0.0005 0.0000 0.0000 0.0065 0.0030 0.0005 0.0080 0.0025 0.0020 0.0020 50 0.03 
Buff 0.0000 0.1088 0.0000 0.0000 0.0136 0.0000 0.0000 0.0374 0.0102 0.0000 0.0000 50 0.17 

Table B-2. Confusion matrix in area proportions for period 2001-2003. 
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Oth. 
to 

Oth. 
For. Grass. Urban Past. Sec. 

For. Wat 
For. 

to 
Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Oth. to Oth. 0 1 11 1 20 8 4 4 1 0 0 50 0.11 
For. 0 394 4 0 2 0 0 0 0 0 0 400 88.23 

Grass. 0 0 68 0 5 1 0 1 0 0 0 75 3.04 
Urban 0 6 14 16 4 1 9 0 0 0 0 50 0.13 
Past. 0 0 1 0 67 4 0 2 1 0 0 75 5.34 

Sec. For. 0 6 2 0 27 12 0 1 1 1 0 50 1.30 
Wat 0 10 1 0 0 0 39 0 0 0 0 50 1.34 

For. to Past. 0 3 0 0 8 0 0 32 7 0 0 50 0.15 
For. to Sec. For 0 2 1 0 5 3 0 23 14 2 0 50 0.05 
Sec. For. Gain 0 0 2 0 21 23 0 1 1 2 0 50 0.04 

To Uncl. 1 0 0 8 16 1 21 1 0 2 0 50 0.00 
Sec. For. Loss 3 0 2 0 23 2 0 13 3 1 3 50 0.03 

Buff 0 31 0 0 4 0 0 15 0 0 0 50 0.21 

Table B-3. Confusion matrix in sample counts for period 2003-2005. 

 
Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat For. to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Ot. Ot 0.0000 0.0022 0.0242 0.0022 0.0440 0.0176 0.0088 0.0088 0.0022 0.0000 0.0000 50 0.11 
For. 0.0000 86.909 0.8823 0.0000 0.4412 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 400 88.23 
Grass. 0.0000 0.0000 2.7588 0.0000 0.2029 0.0406 0.0000 0.0406 0.0000 0.0000 0.0000 75 3.04 
Urban 0.0000 0.0158 0.0369 0.0422 0.0105 0.0026 0.0237 0.0000 0.0000 0.0000 0.0000 50 0.13 
Past. 0.0000 0.0000 0.0713 0.0000 4.7741 0.2850 0.0000 0.1425 0.0713 0.0000 0.0000 75 5.34 
Sec. For 0.0000 0.1566 0.0522 0.0000 0.7045 0.3131 0.0000 0.0261 0.0261 0.0261 0.0000 50 1.30 
Wat 0.0000 0.2688 0.0269 0.0000 0.0000 0.0000 1.0483 0.0000 0.0000 0.0000 0.0000 50 1.34 
For.Past. 0.0000 0.0088 0.0000 0.0000 0.0234 0.0000 0.0000 0.0938 0.0205 0.0000 0.0000 50 0.15 
For. Sec 0.0000 0.0021 0.0010 0.0000 0.0052 0.0031 0.0000 0.0239 0.0146 0.0021 0.0000 50 0.05 
Sec.Gain 0.0000 0.0000 0.0017 0.0000 0.0180 0.0197 0.0000 0.0009 0.0009 0.0017 0.0000 50 0.04 
To Uncl. 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 50 0.00 
Sec.Loss 0.0021 0.0000 0.0014 0.0000 0.0158 0.0014 0.0000 0.0089 0.0021 0.0007 0.0021 50 0.03 
Buff 0.0000 0.1325 0.0000 0.0000 0.0171 0.0000 0.0000 0.0641 0.0000 0.0000 0.0000 50 0.21 

Table B-4. Confusion matrix in area proportions for period 2003-2005. 
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Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat 

For. 
to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Oth. to Oth. 0 2 5 3 23 8 0 8 0 0 1 50 0.08 
For. 0 393 3 0 4 0 0 0 0 0 0 400 88.13 

Grass. 0 2 67 0 6 0 0 0 0 0 0 75 3.06 
Urban 0 1 15 22 2 1 9 0 0 0 0 50 0.13 
Past. 0 2 2 0 63 8 0 0 0 0 0 75 5.50 

Sec. For. 0 12 0 0 16 21 0 0 0 0 1 50 1.37 
Wat 0 13 1 0 0 0 36 0 0 0 0 50 1.35 

For. to Past. 0 0 0 0 14 0 0 29 6 1 0 50 0.12 
For. to Sec. For 0 2 0 0 6 9 0 13 17 3 0 50 0.04 
Sec. For. Gain 0 1 0 0 14 34 0 0 0 1 0 50 0.03 

To Uncl. 2 4 0 1 30 5 7 0 0 0 1 50 0.00 
Sec. For. Loss 0 4 0 0 19 7 0 7 1 1 11 50 0.03 

Buff 0 29 0 1 5 0 0 13 2 0 0 50 0.18 

Table B-5. Confusion matrix in sample counts for period 2005-2007. 

 

 
Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat For. to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Ot. Ot 0.0000 0.0032 0.0080 0.0048 0.0367 0.0128 0.0000 0.0128 0.0000 0.0000 0.0016 50 0.08 
For. 0.0000 86.586 0.6610 0.0000 0.8813 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 400 88.13 
Grass. 0.0000 0.0816 2.7350 0.0000 0.2449 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 75 3.06 
Urban 0.0000 0.0026 0.0394 0.0577 0.0052 0.0026 0.0236 0.0000 0.0000 0.0000 0.0000 50 0.13 
Past. 0.0000 0.1467 0.1467 0.0000 4.6198 0.5866 0.0000 0.0000 0.0000 0.0000 0.0000 75 5.50 
Sec. For 0.0000 0.3278 0.0000 0.0000 0.4371 0.5737 0.0000 0.0000 0.0000 0.0000 0.0273 50 1.37 
Wat 0.0000 0.3497 0.0269 0.0000 0.0000 0.0000 0.9685 0.0000 0.0000 0.0000 0.0000 50 1.35 
For.Past. 0.0000 0.0000 0.0000 0.0000 0.0329 0.0000 0.0000 0.0681 0.0141 0.0023 0.0000 50 0.12 
For. Sec 0.0000 0.0015 0.0000 0.0000 0.0045 0.0068 0.0000 0.0098 0.0128 0.0023 0.0000 50 0.04 
Sec.Gain 0.0000 0.0006 0.0000 0.0000 0.0083 0.0201 0.0000 0.0000 0.0000 0.0006 0.0000 50 0.03 
To Uncl. 0.0000 0.0001 0.0000 0.0000 0.0006 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 50 0.00 
Sec.Loss 0.0000 0.0020 0.0000 0.0000 0.0097 0.0036 0.0000 0.0036 0.0005 0.0005 0.0056 50 0.03 
Buff 0.0000 0.1023 0.0000 0.0035 0.0176 0.0000 0.0000 0.0459 0.0071 0.0000 0.0000 50 0.18 

Table B-6. Confusion matrix in area proportions for period 2005-2007. 
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Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat 

For. 
to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Oth. to Oth. 2 2 5 0 14 9 3 8 1 5 1 50 0.10 
For. 0 396 1 0 2 1 0 0 0 0 0 400 87.77 

Grass. 0 1 67 0 7 0 0 0 0 0 0 75 3.06 
Urban 0 1 15 1

1 
0 2 21 0 0 0 0 50 0.13 

Past. 0 1 1 0 69 2 0 0 0 2 0 75 5.61 
Sec. For. 0 13 0 0 7 29 0 0 0 0 1 50 1.39 

Wat 0 16 0 0 0 0 34 0 0 0 0 50 1.34 
For. to Past. 0 2 0 0 10 8 0 19 8 0 3 50 0.21 

For. to Sec. For 0 0 1 0 1 3 0 17 26 1 1 50 0.04 
Sec. For. Gain 0 0 0 0 6 38 0 0 1 5 0 50 0.03 

To Uncl. 1 2 1 2 21 10 4 0 0 9 0 50 0.00 
Sec. For. Loss 0 1 0 0 15 9 0 7 4 0 14 50 0.04 

Buff 0 28 0 0 5 0 0 9 7 0 1 50 0.28 

Table B-7. Confusion matrix in sample counts for period 2007-2009. 

 
Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat For. to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Ot. Ot 0.0042 0.0042 0.0105 0.0000 0.0294 0.0189 0.0063 0.0168 0.0021 0.0105 0.0021 50 0.10 
For. 0.0000 86.887 0.2194 0.0000 0.4388 0.2194 0.0000 0.0000 0.0000 0.0000 0.0000 400 87.77 
Grass. 0.0000 0.0408 2.7322 0.0000 0.2855 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 75 3.06 
Urban 0.0000 0.0026 0.0389 0.0285 0.0000 0.0052 0.0544 0.0000 0.0000 0.0000 0.0000 50 0.13 
Past. 0.0000 0.0748 0.0748 0.0000 5.1586 0.1495 0.0000 0.0000 0.0000 0.1495 0.0000 75 5.61 
Sec. For 0.0000 0.3601 0.0000 0.0000 0.1939 0.8034 0.0000 0.0000 0.0000 0.0000 0.0277 50 1.39 
Wat 0.0000 0.4291 0.0000 0.0000 0.0000 0.0000 0.9119 0.0000 0.0000 0.0000 0.0000 50 1.34 
For.Past. 0.0000 0.0084 0.0000 0.0000 0.0418 0.0335 0.0000 0.0795 0.0335 0.0000 0.0126 50 0.21 
For. Sec 0.0000 0.0000 0.0009 0.0000 0.0009 0.0026 0.0000 0.0146 0.0223 0.0009 0.0009 50 0.04 
Sec.Gain 0.0000 0.0000 0.0000 0.0000 0.0035 0.0223 0.0000 0.0000 0.0006 0.0029 0.0000 50 0.03 
To Uncl. 0.0001 0.0002 0.0001 0.0002 0.0016 0.0008 0.0003 0.0000 0.0000 0.0007 0.0000 50 0.00 
Sec.Loss 0.0000 0.0009 0.0000 0.0000 0.0130 0.0078 0.0000 0.0061 0.0035 0.0000 0.0121 50 0.04 
Buff 0.0000 0.1567 0.0000 0.0000 0.0280 0.0000 0.0000 0.0504 0.0392 0.0000 0.0056 50 0.28 

Table B-8. Confusion matrix in area proportions for period 2007-2009. 
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Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat 

For. 
to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Oth. to Oth. 0 4 6 2 14 6 8 5 3 0 2 50 0.10 
For. 0 394 1 0 3 1 0 1 0 0 0 400 87.51 

Grass. 0 2 69 0 4 0 0 0 0 0 0 75 3.06 
Urban 0 2 13 10 2 2 21 0 0 0 0 50 0.13 
Past. 0 3 4 0 61 5 0 0 0 1 1 75 5.84 

Sec. For. 0 15 0 0 7 27 0 0 1 0 0 50 1.40 
Wat 0 4 0 0 0 0 46 0 0 0 0 50 1.34 

For. to Past. 0 1 0 0 18 1 0 19 8 0 3 50 0.22 
For. to Sec. For 0 4 0 0 6 5 0 6 29 0 0 50 0.04 
Sec. For. Gain 0 0 0 0 10 37 0 0 0 3 0 50 0.03 

To Uncl. 0 0 5 1 20 6 11 0 0 3 4 50 0.01 
Sec. For. Loss 0 1 0 0 20 10 0 5 4 0 10 50 0.05 

Buff 0 35 0 0 3 3 0 5 3 0 1 50 0.28 

Table B-9. Confusion matrix in sample counts for period 2009-2011. 

 

 
Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat For. to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Ot. Ot 0.0000 0.0080 0.0120 0.0040 0.0279 0.0120 0.0160 0.0100 0.0060 0.0000 0.0040 50 0.10 
For. 0.0000 86.194 0.2188 0.0000 0.6563 0.2188 0.0000 0.2188 0.0000 0.0000 0.0000 400 87.51 
Grass. 0.0000 0.0817 2.8173 0.0000 0.1633 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 75 3.06 
Urban 0.0000 0.0053 0.0345 0.0265 0.0053 0.0053 0.0557 0.0000 0.0000 0.0000 0.0000 50 0.13 
Past. 0.0000 0.2335 0.3113 0.0000 4.7469 0.3891 0.0000 0.0000 0.0000 0.0778 0.0778 75 5.84 
Sec. For 0.0000 0.4208 0.0000 0.0000 0.1964 0.7574 0.0000 0.0000 0.0281 0.0000 0.0000 50 1.40 
Wat 0.0000 0.1068 0.0000 0.0000 0.0000 0.0000 1.2283 0.0000 0.0000 0.0000 0.0000 50 1.34 
For.Past. 0.0000 0.0044 0.0000 0.0000 0.0783 0.0044 0.0000 0.0827 0.0348 0.0000 0.0131 50 0.22 
For. Sec 0.0000 0.0031 0.0000 0.0000 0.0047 0.0039 0.0000 0.0047 0.0225 0.0000 0.0000 50 0.04 
Sec.Gain 0.0000 0.0000 0.0000 0.0000 0.0053 0.0194 0.0000 0.0000 0.0000 0.0016 0.0000 50 0.03 
To Uncl. 0.0000 0.0000 0.0011 0.0002 0.0045 0.0014 0.0025 0.0000 0.0000 0.0007 0.0009 50 0.01 
Sec.Loss 0.0000 0.0010 0.0000 0.0000 0.0193 0.0097 0.0000 0.0048 0.0039 0.0000 0.0097 50 0.05 
Buff 0.0000 0.1973 0.0000 0.0000 0.0169 0.0169 0.0000 0.0282 0.0169 0.0000 0.0056 50 0.28 

Table B-10. Confusion matrix in area proportions for period 2009-2011. 
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Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat 

For. 
to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Oth. to Oth. 2 3 11 3 17 3 3 6 0 0 2 50 0.07 
For. 0 393 2 0 4 1 0 0 0 0 0 400 87.27 

Grass. 0 2 69 0 4 0 0 0 0 0 0 75 3.06 
Urban 1 0 10 21 3 1 14 0 0 0 0 50 0.14 
Past. 0 2 0 0 71 2 0 0 0 0 0 75 6.09 

Sec. For. 0 22 0 0 22 6 0 0 0 0 0 50 1.42 
Wat 0 12 0 0 0 0 38 0 0 0 0 50 1.33 

For. to Past. 0 9 1 0 9 1 0 24 3 2 1 50 0.20 
For. to Sec. For 0 10 0 0 6 6 0 16 12 0 0 50 0.03 
Sec. For. Gain 0 2 0 0 9 36 0 0 0 1 2 50 0.02 

To Uncl. 1 0 9 2 27 3 4 1 0 1 2 50 0.04 
Sec. For. Loss 0 1 0 0 22 10 0 11 0 2 4 50 0.04 

Buff 1 23 0 0 13 0 0 10 3 0 0 50 0.28 

Table B-11. Confusion matrix in sample counts for period 2011-2013. 

 

 
Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat For. to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Ot. Ot 0.0026 0.0040 0.0145 0.0040 0.0224 0.0040 0.0040 0.0079 0.0000 0.0000 0.0026 50 0.07 
For. 0.0000 85.743 0.4364 0.0000 0.8727 0.2182 0.0000 0.0000 0.0000 0.0000 0.0000 400 87.27 
Grass. 0.0000 0.0816 2.8145 0.0000 0.1632 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 75 3.06 
Urban 0.0027 0.0000 0.0275 0.0577 0.0082 0.0027 0.0384 0.0000 0.0000 0.0000 0.0000 50 0.14 
Past. 0.0000 0.1625 0.0000 0.0000 5.7678 0.1625 0.0000 0.0000 0.0000 0.0000 0.0000 75 6.09 
Sec. For 0.0000 0.6267 0.0000 0.0000 0.6267 0.1709 0.0000 0.0000 0.0000 0.0000 0.0000 50 1.42 
Wat 0.0000 0.3204 0.0000 0.0000 0.0000 0.0000 1.0145 0.0000 0.0000 0.0000 0.0000 50 1.33 
For.Past. 0.0000 0.0365 0.0041 0.0000 0.0365 0.0041 0.0000 0.0974 0.0122 0.0081 0.0041 50 0.20 
For. Sec 0.0000 0.0066 0.0000 0.0000 0.0040 0.0040 0.0000 0.0106 0.0079 0.0000 0.0000 50 0.03 
Sec.Gain 0.0000 0.0007 0.0000 0.0000 0.0032 0.0128 0.0000 0.0000 0.0000 0.0004 0.0007 50 0.02 
To Uncl. 0.0008 0.0000 0.0075 0.0017 0.0224 0.0025 0.0033 0.0008 0.0000 0.0008 0.0017 50 0.04 
Sec.Loss 0.0000 0.0008 0.0000 0.0000 0.0173 0.0079 0.0000 0.0087 0.0000 0.0016 0.0032 50 0.04 
Buff 0.0056 0.1289 0.0000 0.0000 0.0729 0.0000 0.0000 0.0561 0.0168 0.0000 0.0000 50 0.28 

Table B-12. Confusion matrix in area proportions for period 2011-2013. 
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Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat 

For. 
to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Oth. to Oth. 2 1 22 2 14 2 0 7 0 0 0 50 0.05 
For. 0 396 0 0 4 0 0 0 0 0 0 400 86.78 

Grass. 0 0 68 0 7 0 0 0 0 0 0 75 3.00 
Urban 0 4 18 12 2 4 9 0 0 1 0 50 0.12 
Past. 0 2 3 0 64 5 1 0 0 0 0 75 6.19 

Sec. For. 0 16 0 0 15 19 0 0 0 0 0 50 1.40 
Wat 0 21 1 0 0 0 28 0 0 0 0 50 1.32 

For. to Past. 0 5 0 0 17 1 0 20 5 1 1 50 0.32 
For. to Sec. For 0 8 1 0 10 7 0 12 11 0 1 50 0.02 
Sec. For. Gain 0 2 0 0 16 29 0 0 0 1 2 50 0.01 

To Uncl. 0 0 4 3 30 4 2 0 0 3 4 50 0.29 
Sec. For. Loss 0 0 0 0 20 7 0 8 6 0 9 50 0.07 

Buff 0 30 0 0 5 5 0 8 2 0 0 50 0.43 

Table B-13. Confusion matrix in sample counts for period 2013-2015. 

 

 
Oth. 

to 
Oth. 

For. Grass. Urban Past. Sec. 
For. Wat For. to 

Past. 

For. 
to 

Sec. 
For 

Sec. 
For. 
Gain 

Sec. 
For. 
Loss 

(nh) (Wh) 

Ot. Ot 0.0018 0.0009 0.0200 0.0018 0.0127 0.0018 0.0000 0.0064 0.0000 0.0000 0.0000 50 0.05 
For. 0.0000 85.915 0.0000 0.0000 0.8678 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 400 86.78 
Grass. 0.0000 0.0000 2.7208 0.0000 0.2801 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 75 3.00 
Urban 0.0000 0.0097 0.0436 0.0291 0.0048 0.0097 0.0218 0.0000 0.0000 0.0024 0.0000 50 0.12 
Past. 0.0000 0.1650 0.2475 0.0000 5.2798 0.4125 0.0825 0.0000 0.0000 0.0000 0.0000 75 6.19 
Sec. For 0.0000 0.4487 0.0000 0.0000 0.4206 0.5328 0.0000 0.0000 0.0000 0.0000 0.0000 50 1.40 
Wat 0.0000 0.5556 0.0265 0.0000 0.0000 0.0000 0.7408 0.0000 0.0000 0.0000 0.0000 50 1.32 
For.Past. 0.0000 0.0325 0.0000 0.0000 0.1104 0.0065 0.0000 0.1299 0.0325 0.0065 0.0065 50 0.32 
For. Sec 0.0000 0.0029 0.0004 0.0000 0.0037 0.0026 0.0000 0.0044 0.0040 0.0000 0.0004 50 0.02 
Sec.Gain 0.0000 0.0004 0.0000 0.0000 0.0028 0.0051 0.0000 0.0000 0.0000 0.0002 0.0004 50 0.01 
To Uncl. 0.0000 0.0000 0.0230 0.0173 0.1726 0.0230 0.0115 0.0000 0.0000 0.0173 0.0230 50 0.29 
Sec.Loss 0.0000 0.0000 0.0000 0.0000 0.0281 0.0098 0.0000 0.0112 0.0084 0.0000 0.0126 50 0.07 
Buff 0.0000 0.2564 0.0000 0.0000 0.0427 0.0427 0.0000 0.0684 0.0171 0.0000 0.0000 50 0.43 

Table B-14. Confusion matrix in area proportions for period 2013-2015. 
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APPENDIX C. Area estimates, standard errors and margin of errors 

calculated from biennial samples and single sample using indicator functions. 

 
 2001- 2003- 2005- 2007- 2009- 2011- 2013- 

2003 2005 2007 2009 2011 2013 2015 

Other to other 2.3 1.0 0.0 2.0 0.0 5.5 0.9 

Stable forest 41736.8 40967.1 41017.9 41186.8 40854.7 40787.2 40916.1 

Stable grassland 1366.9 1805.8 1693.5 1440.6 1589.6 1547.2 1442.9 

Stable Urban + Stable other 30.8 20.8 30.9 13.4 14.4 29.6 22.5 

Stable pasture-cropland 2413.1 2929.5 2949.2 2900.6 2774.2 3566.5 3383.5 

Stable secondary forest 394.6 319.8 564.8 591.5 673.4 276.0 490.0 

Stable water 558.0 506.1 464.6 455.5 609.8 496.4 401.1 

Forest to pasture 173.1 191.8 65.6 78.3 163.4 85.0 103.2 

Forest to secondary forest 131.1 64.4 16.1 47.3 52.5 17.3 29.0 

Gain of secondary forest 2.1 14.3 2.7 77.0 37.5 5.1 12.3 

Loss of secondary forest 12.7 1.0 16.2 28.5 52.0 5.7 20.1 

Table C-1. Areas in kha estimated from biennial samples. 

 
 2001- 2003- 2005- 2007- 2009- 2011- 2013- 
 2003 2005 2007 2009 2011 2013 2015 

Other to other 0.0 3.4 0.8 5.0 4.0 25.1 0.0 
Stable forest 41930.6 41715.7 41582.4 41518.0 41285.5 41058.3 40854.8 
Stable grassland 1391.8 1395.2 1398.6 1398.6 1399.4 1378.3 1378.3 
Stable Urban + Stable other 85.1 78.3 77.5 77.5 81.7 82.5 83.1 
Stable pasture-cropland 2124.9 2189.5 2274.5 2349.9 2600.8 2809.9 2960.5 
Stable secondary forest 727.8 799.9 905.5 862.9 834.6 892.2 967.8 
Stable water 509.2 512.7 509.2 505.0 501.0 497.0 500.6 
Forest to pasture 34.4 25.4 61.2 36.9 72.4 41.2 39.0 
Forest to secondary forest 12.2 47.5 9.8 12.1 14.6 0.0 17.2 
Gain of secondary forest 3.4 46.2 2.1 11.1 1.0 0.0 10.6 
Loss of secondary forest 2.1 7.7 0.0 44.6 26.4 37.1 9.7 

Table C-2. Areas in kha estimated from a single sample. 
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2001- 2003- 2005- 2007- 2009- 2011- 2013- 
2003 2005 2007 2009 2011 2013 2015 

Other to other 1.6 0.5 0.0 1.4 0.0 3.1 0.6 
Stable forest 203.5 255.7 282.0 216.8 263.2 281.7 219.0 
Stable grassland 80.2 215.1 192.1 120.2 132.9 151.3 82.5 
Stable Urban + Stable other 4.9 4.2 4.8 3.6 3.8 4.7 5.8 
Stable pasture-cropland 162.1 181.6 241.2 177.1 221.8 225.2 244.0 
Stable secondary forest 86.5 77.7 102.9 122.9 137.8 119.4 96.2 
Stable water 31.5 37.4 40.5 42.1 24.7 38.4 58.7 
Forest to pasture 103.8 52.7 6.9 10.4 102.9 10.3 15.1 
Forest to secondary forest 103.7 35.7 3.7 8.5 15.0 5.6 8.7 
Gain of secondary forest 0.8 12.3 1.3 49.2 36.4 2.7 5.6 
Loss of secondary forest 11.8 0.5 12.8 13.7 36.7 2.3 6.3 

Table C-3. Standard error of area in kha estimated from biennial samples. 

 
 2001- 2003- 2005- 2007- 2009- 2011- 2013- 
 2003 2005 2007 2009 2011 2013 2015 

Other to other 0.0 3.4 0.8 3.6 3.4 18.2 0.0 
Stable forest 141.2 132.2 129.7 130.0 135.6 151.7 182.5 
Stable grassland 66.2 66.2 66.3 66.3 66.3 68.2 68.2 
Stable Urban + Stable other 24.0 23.6 23.6 23.6 23.8 23.8 23.8 
Stable pasture-cropland 162.0 163.1 164.3 163.4 169.8 178.0 177.2 
Stable secondary forest 103.3 107.0 112.5 110.0 106.4 121.4 159.3 
Stable water 37.1 37.2 37.1 36.9 36.8 36.7 36.8 
Forest to pasture 16.3 13.0 33.9 16.1 33.9 16.4 16.2 
Forest to secondary forest 8.1 31.2 7.8 5.2 8.4 0.0 10.6 
Gain of secondary forest 3.4 32.5 1.5 10.1 1.0 0.0 8.1 
Loss of secondary forest 2.1 4.6 0.0 31.0 13.0 30.8 4.9 

Table C-4. Standard error of area in kha estimated from a single sample. 
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2001- 2003- 2005- 2007- 2009- 2011- 2013- 
2003 2005 2007 2009 2011 2013 2015 

Other to other 10.1 6.6 0.9 9.4 0.0 15.7 6.2 
Stable forest 449.6 477.9 476.1 470.1 481.8 484.2 479.7 
Stable grassland 243.3 278.2 269.8 249.5 261.7 258.3 249.7 
Stable Urban + Stable other 37.1 30.5 37.1 24.5 25.3 36.3 31.7 
Stable pasture-cropland 319.5 349.9 351.0 348.3 341.1 383.3 374.1 
Stable secondary forest 132.1 119.0 157.7 161.4 172.0 110.6 147.0 
Stable water 156.8 149.4 143.2 141.8 163.8 148.0 133.2 
Forest to pasture 87.7 92.3 54.1 59.1 85.2 61.5 67.7 
Forest to secondary forest 76.4 53.6 26.8 45.9 48.4 27.8 36.0 
Gain of secondary forest 9.7 25.3 10.9 58.6 40.9 15.1 23.5 
Loss of secondary forest 23.8 6.6 26.9 35.7 48.1 16.0 29.9 

Table C-5. Approximate standard error of area in kha from simple random sampling for each biennial 
period. 

 
 2001- 2003- 2005- 2007- 2009- 2011- 2013- 
 2003 2005 2007 2009 2011 2013 2015 

Other to other 137.2 110.4 136.6 134.8  108.8 137.2 
Stable forest 1.0 1.2 1.3 1.0 1.3 1.4 1.0 
Stable grassland 11.5 23.3 22.2 16.3 16.4 19.2 11.2 
Stable Urban + Stable other 31.4 39.9 30.6 52.4 51.5 31.0 50.1 
Stable pasture-cropland 13.2 12.2 16.0 12.0 15.7 12.4 14.1 
Stable secondary forest 43.0 47.6 35.7 40.7 40.1 84.8 38.5 
Stable water 11.1 14.5 17.1 18.1 8.0 15.2 28.7 
Forest to pasture 117.5 53.9 20.5 25.9 123.3 23.8 28.7 
Forest to secondary forest 155.0 108.8 44.4 35.2 56.1 63.2 59.0 
Gain of secondary forest 75.3 167.7 95.7 125.3 190.5 105.5 89.0 
Loss of secondary forest 181.7 110.8 155.4 94.4 138.5 78.2 61.6 

Table C-6. Margin of error estimated from biennial samples. (Margin of error = half width of confidence 
interval / area estimate). 
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2001- 2003- 2005- 2007- 2009- 2011- 2013- 
2003 2005 2007 2009 2011 2013 2015 

Other to other  196.0 196.0 141.8 163.0 141.7  

Stable forest 0.7 0.6 0.6 0.6 0.6 0.7 0.9 
Stable grassland 9.3 9.3 9.3 9.3 9.3 9.7 9.7 
Stable Urban + Stable other 55.2 59.0 59.6 59.6 57.1 56.5 56.1 
Stable pasture-cropland 14.9 14.6 14.2 13.6 12.8 12.4 11.7 
Stable secondary forest 27.8 26.2 24.4 25.0 25.0 26.7 32.3 
Stable water 14.3 14.2 14.3 14.3 14.4 14.5 14.4 
Forest to pasture 93.0 100.7 108.6 85.6 91.9 78.0 81.6 
Forest to secondary forest 130.3 128.7 155.3 84.0 113.1  121.6 
Gain of secondary forest 196.0 137.6 137.2 178.5 196.0  148.6 
Loss of secondary forest 196.0 115.7  136.5 96.3 163.0 98.8 

Table C-7. Margin of error estimated from a single sample. (Margin of error = half width of confidence 
interval / area estimate). 
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