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of Engineering, 2019
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ABSTRACT

Variable Number Tandem Repeats (VNTRs) are repetitive sequences of DNA

which exhibit polymorphism in the number of copies of the repeating pattern. As with

the better known SNPs, CNVs, and other mutations, VNTRs are a form of variation

in the genome. Diseases such as Fragile X syndrome, and even behavioral disorders,

such as ADHD, have been attributed to VNTR polymorphisms, where changes in copy

number affect chromosome and protein structure, and gene expression. Microsatellite

(TRs with a pattern length < 7nt) VNTRs are well-characterized and have been used

for DNA fingerprinting. Minisatellite VNTRs (pattern length ≥ 7nt), however, are

a relatively understudied source of genetic variation; computational complexity and

the lack of specialized tools available make detecting and studying them difficult.

The traditional method for examining these features involves targeted amplification

and gel electrophoresis to distinguish array lengths. In this work, I discuss our effort

to discover a comprehensive set of VNTRs using VNTRseek, a tool developed in

Dr. Gary Benson’s lab for detecting VNTRs in silico using whole genome sequencing
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reads. I further discuss the curation and analyses we have performed in order to build

a researcher-oriented tool, the VNTRdb, which allows other researchers access to this

work and enables them to perform similar analyses. Having a tool with which VNTRs

can be detected with relative ease, alongside a well-curated resource for VNTR alleles,

will help promote further research into how they may be related to complex diseases,

natural variation, or other areas of study.
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1

Chapter 1

Introduction

1.1 Motivation and Tandem Repeat Polymorphism

The completion of the Human Genome Project initiated a new age of information –

that of genetic information. Since then, the cost of genome sequencing has dropped

dramatically and a growing number of individuals are having their own genomes se-

quenced. The increasing availability of genetic data has necessitated the development

of new methods and tools to process them, which has in turn led to an increased un-

derstanding of our own genetic code in ways which were not previously possible –

specifically, by elucidating the exact genetic sequence at specific genomic loci on an

individual basis.

Genetic information, stored chemically in the macromolecule DNA, can be rep-

resented easily in textual form using an alphabet consisting of four symbols derived

from the names of the constituent nucleotides: A, C, G, and T. Living systems use

DNA to transmit information from one generation to another to increase their fitness

in meaningful units we call genes. Changes in the genetic code can impact the fitness

of the next generation in a positive way (beneficial), a negative way (deleterious),

or can have no immediately obvious effect at all (neutral). Knowing the genetic se-

quence of humans overall, and on an individual level, can inform us of the ways in

which changes to the genetic code impact everything from our appearance to our

health, or to our response to our environment or pharmaceuticals.

Tandem Repeats (TRs) are regions of genetic sequence which repeat sequen-
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Figure 1·1: An example of a TR with inexact copies. This TR, located
at chr10:11254877-11254944 on GRCh38/hg38, shows sequence differ-
ences from the consensus sequence (in blue, top) in each copy (shown
in gold and stacked for clarity). The differences are highlighted in dif-
ferent colors with the single-letter code for the the nucleotide filled in.
The non-repeating flanking sequence is shown at either side of the TR
in green.

tially – i.e., in tandem. For example, the sequence AGGTCTAAGGTCTAAGGTCTAAGGTCTA

consists of 4 identical and sequential repetitions of the underlying pattern AGGTCTA.

The sequence of repeats is itself referred to as the array, and the number of copies

simply as the copy number. TRs which consist of short (< 7 nucleotides (nt))

patterns are termed microsatellites1, while longer (≥ 7nt) patterned TRs are called

minisatellites.

TRs can have patterns which are very long, ranging into the thousands of bases.

However, for the purposes of this work, we limit our study of TRs to minisatellites

which can which can fit inside a sequencing read. Copies of a pattern are not always

exact, as TR arrays may have many internal sequence changes. Copies are not always

complete, either, and so TRs can have a fractional number of copies (figure 1·1). To

account for variation in copies of the pattern, we generate a consensus pattern for

each TR, and may refer to the consensus pattern as simply the pattern.

About 50% to as much as 69% of the human genome is repetitive (Treangen and

Salzberg, 2011; Koning et al., 2011), with about 3% of the genome consisting of TRs

(Treangen and Salzberg, 2011). Of these, some proportion exhibit polymorphism in

a population, and are known as Variable Number Tandem Repeats (VNTRs).

1Microsatellites are also sometimes called Short Tandem Repeats (STRs) or Simple Sequence
Repeats (SSRs), with different disciplines preferring different terms.



3

In the domain of polymorphic TRs, we generally speak of alleles in terms of the

number of tandem copies (in this work we do not consider substitutions or short indel

variations when distinguishing alleles).

Polymorphism in microsatellite TRs has been extensively studied and several dis-

eases such as Fragile X syndrome (Adinolfi et al., 1999), Huntington’s disease (Mac-

Donald et al., 1993), myotonic dystrophy (Fu et al., 1992), and Friedreich’s ataxia

(Campuzano et al., 1996) have been associated with changes in the typical copy num-

ber. In these diseases, large increases in the copy number – or expansions – result

in a disease phenotype.

The inherent variability of microsatellites has also been exploited in order to de-

termine the provenance of DNA samples in a practice known as DNA fingerprinting

– e.g., forensics teams are able to search for matches between trace DNA left at a

crime scene and samples provided by one or more suspects by comparing the lengths

of a select set of microsatellite loci. The set is chosen with the assumption that the

likelihood of two individuals sharing the exact same profile is extremely low (Kimpton

et al., 1993) (though appropriate set selection and issues with sample collection are

among the points of controversy with the method (Murphy, 2018)). An analagous

methodology for bacteria is called Multiple Loci VNTR Analysis (MLVA) and is one

of the tools employed to trace the origin of pathogenic microbes, with particular suc-

cess in Mycobacterium tuberculosis (Blouin et al., 2012) and others (Belkum, 2007;

van den Berg et al., 2007; Kendall et al., 2010; Haguenoer et al., 2011; Pourcel et al.,

2011; Zaluga et al., 2013; Chalker et al., 2015; Parvej et al., 2019).

Genotypes for both micro- and minisatellites have been challenging to detect.

Software specialized in polymorphic microsatellite detection and typing include tools

such as lobSTR (Gymrek et al., 2012), popSTR (Kristmundsdóttir et al., 2017), hip-

STR (Willems et al., 2017), RepeatSeq (Highnam et al., 2013), and others (McIver
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et al., 2011; Fondon et al., 2012; McIver et al., 2013). All must deal with the ambi-

guities repeat rich regions present when the repeat region exceeds the length of the

sequencing read, as these reads have a reduced information content and can align in

multiple locations within a repeat. Each of these tools employ strategies to deal with

these challenges. LobSTR uses a preprocessing step where the repeat sequence for

each target microsatellite is determined and then the Fast Fourier Transform of the

sequence is calculated to characterize the sequence. It uses non-repeating flanking

sequence information to anchor the repeat, and builds a noise profile of the stutter

noise of the sequence using statistical learning. HipSTR begins with building a model

of the stutter noise profile, and uses that model and an HMM to realign candidate

reads to the candidate haplotypes. PopSTR begins with a step which determines

which reads are considered to be informative. Reads containing a repeat are selected,

and those which cross the barrier between flanking sequence and repeat sequence,

and which also have a mate pair that has been mapped a fixed distance away from

the microsatellite, are considered informative. PopSTR also requires knowledge of

population data for the microsatellite alleles.

All of these methods rely on non-repeating alignment sequence to determine ad-

equate mapping, but they all also make assumptions about the profile of the repeat

sequence. Their models have been developed and designed with short repeating pat-

terns in mind. They may be less well suited towards detection of longer (≥ 7bp)

minisatellite loci as some studies suggest that variability is dependent on copy num-

ber and pattern length, though the latter to a lesser degree (Legendre et al., 2007;

Ames et al., 2008).

Minisatellites have, therefore, been much more challenging to study. Well-known

software tools used in the aligning and mapping of DNA sequences from reads to

genomes, such as BWA (Li and Durbin, 2009b), have a great deal of difficulty aligning
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sequences with insertions or deletions larger than 5bp even when using tools such as

GATK (McKenna et al., 2010), which can help remap misaligned reads (Gymrek

et al., 2012). Building de novo genome assemblies is also challenging, as de novo

assembly is usually performed when no other reference of the target genome exists.

Sample data will carry the allelic diversity of the population, and highly homologous

duplicated sequences are difficult to reconstruct from short reads which provide less

information than longer reads which may be able to span the repeating sequence.

Repeats longer than the reads may be collapsed together, leading to gaps in the

assembly (Treangen and Salzberg, 2011; Steinberg et al., 2014). Even in bacterial

genomes, where repeats comprise somewhere between 5% and 10% of the total genome

size, repeats confound assembly in particular when short reads are used (Acuña-

Amador et al., 2018). Developers of mapping and genome assembly software have all

developed strategies to reduce the effects repeat sequences have on the quality of their

results, such as using information from mate pairs and de Bruijn graphs, calculating

statistics from the known read depth and comparing that to repeat regions (which

will have a much higher apparent read depth), simply using longer reads, or some

combination of these and other strategies (Treangen and Salzberg, 2011; Chin et al.,

2013; Steinberg et al., 2014; Acuña-Amador et al., 2018).

In a recent (Jan 2019) paper, Audano et al. (2019) examine structural variants

(SVs) in the human genome including VNTRs. Their approach discovered over 50

thousand VNTRs, but the analysis was limited to a relatively small sample set of

15 human genomes, and their focus was broader than just VNTRs which our study

specializes in.

Without a specialized tool for the detection of polymorphic minisatellite loci,

researchers may be challenged with drawing conclusions about possibly complex dis-

eases from incomplete or inadequate data. For example, several known VNTRs with
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documented changes in phenotype have been found in exon regions, including VN-

TRs in DRD4 (Grady et al., 2003; Wang et al., 2004; Leung et al., 2017), where

some alleles are thought to be involved in Attention Deficit/Hyperactivity Disorder;

PER3 (Ebisawa et al., 2001; Benedetti et al., 2008; Golalipour et al., 2017), where

copy changes have been associated with age of onset of Bipolar Disorder, and even

Multiple Sclerosis; and GP1BA (Simsek et al., 1994; Mikkelsson Jussi et al., 2001;

Cervera et al., 2007), where some evidence suggests that one allele is involved in

Aspirin Treatment Failure and increased risk of Ischemic stroke. VNTRs have also

been found in promoter regions, such as in the human insulin gene (Bell et al., 1982,

1984) where alleles have been found to vary in frequency in different populations, and

have been implicated in type 2 diabetes, atherosclerosis (Owerbach et al., 1982), and

hypertriglyceridemia (Jowett et al., 1984).

In this study, we detect VNTRs across a variety of genomic regions, such as protein

coding exons, introns, untranslated regions (UTRs), promoter regions, and others (see

chapter 3).

1.2 Summary of dissertation

In chapter 2, I describe VNTRseek (Gelfand et al., 2014) and how the VNTRseek

reference set is produced. In chapter 3, I describe our analysis of 370 WGS samples

from 3682 individuals by VNTRseek. In chapter 4, I describe an online database

constructed to disseminate our VNTR results. Finally in chapter 5 I describe the

conclusions of this work, as well as future directions which may build upon it.

The aims of this dissertation are as follows:

1. Improving the methodology of VNTRseek reference set refinement. VNTRseek

is the main tool used in this work. My first aim focuses on improving how the

2Paired tumor and normal samples were sequenced for two individuals, so they are technically
represented twice.
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reference set and parameter set selection should be performed. I evaluate how

various conditions and parameters affect the outcome of VNTRseek results on

simulated data (chapter 2).

2. Comprehensive study of VNTRs in the human genome using high-throughput

whole genome sequencing data. In this aim I worked on the wide-ranging analy-

sis of 370 samples. I describe VNTR genomic location and context, the variabil-

ity in terms of the number of alleles, the impact the quality of the input data

has on the results, and the challenges in processing increasingly large amounts

of data with a young technology (chapter 3).

3. VNTRdb – A database of VNTRs meant to facilitate the distribution and anal-

ysis of VNTR data in the human genome. In this aim, I worked on the creation

of a user-friendly, researcher-oriented tool to disseminate our curated catalog

of VNTRs via VNTRdb. VNTRdb was created to be independent of species,

built on modern web technology, and with the analyses that researchers would

want to conduct in mind (chapter 4).



Chapter 2

Validation of VNTRseek, improving the

methodology of VNTRseek reference set

refinement, and optimization of

VNTRseek

2.1 How VNTRseek works

As discussed earlier in chapter 1, VNTRseek is a software pipeline designed to detect

TRs and VNTRs in a set of sequencing reads. It was designed for whole-genome

sequencing (WGS) reads, as discussed below, but could be used for exome or RNA

sequencing reads as well. VNTRseek takes as input: 1) a set of reference TRs, and

2) a set of sequencing reads in either gzip-compressed FASTQ (or FASTA) format or

BAM format.

The pipeline runs in 20 steps (table 2.1). Steps are numbered 0-19, with 0 func-

tioning as a preparation step where a MySQL (VNTRseek versions older than 1.10)

or SQLite (starting with version 1.10) database is initialized. Step 1 scans the reads

with TRF (Benson, 1999), which can detect TRs in the read data. The default

TRF parameters are: 2 5 7 80 10 50 2000 (match weight, mismatch penalty, indel

penalty, match probability, indel probability, minimum score, maximum period size).

All of these parameters are hard-coded in the main pipeline script, and are not config-

urable via command line interface or configuration file. Instead, a user is required to

edit the pipeline script to change them. Detected read TRs are filtered for pattern

8
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Step Description

0 Database initialization
1 Run TRF
2 Renumber read TRs
3 Remove redundant read TRs
4 Calculate read TR profiles and cluster with PSEARCH
5 Join clusters produced in parallel in step 4
6 (Unused)
7 Prior to v1.10: Insert reference TR data into database. v1.10+: (Unused).
8 Insert informative reads into database
9 Write out flanking sequences for all clusters. Required for next step.
10 Align flanks
11 Prior to v1.10: Update indistinguishable reference TRs. v1.10+: (Unused).
12 Record mapping information and rank read TRs using flank alignment

results.
13 Calculate edges between clustered TRs
14 (Optional after v1.09) Generate index files to remove PCR duplicates
15 (Optional after v1.09) Remove PCR duplicates using data from step 14
16 Remove multiply mapped read TRs
17 Compute VNTRs and allele support
18 (Unused)
19 Produce output VCF, distribution tables, and tex format report

Table 2.1: Table of steps in VNTRseek.

length (minimum 7nt) and amount of flanking sequence, as we require a minimum of

10nt non-repeat sequence on both sides of the repeat to aid in mapping the reads to a

unique location on the genome. We cannot detect TRs where the pattern is repeated

less than 1.8 times, as below that threshold TRF does not report TRs.

Step 2 is a simple renumbering step, where all detected read TRs are assigned

a unique identifier. This is necessary because step 1 is parallelized by having a

user-determined number of instances of TRF processing reads, and each instance

assigns read IDs starting from “1”. Step 3 eliminates cyclically redundant TRs – TRs

which become identical upon alphabetic rotation of their profiles (see below) – in the

reference and read TRs.

In step 4, Read TRs are assigned to candidate reference TRs using PSEARCH, a

tool written for VNTRseek. These pairings are based on partial matching of the read

TR and reference TR consensus patterns using spaced seed indexing (Ma et al.,



10

2002; Mak and Benson, 2009), a fast method for determining matching “words” in

sequences. Profiles are built from each TR array’s sequence alignment. These profiles

are a sequence of l standard vectors, where l represents a column in the multiple

alignment of the copies in the array. Each vector represents the counts nσ, of the five

possible characters σ ∈ {A,C,G, T,−} in a column where “-” represents a gap. N’s

are ignored. The counts are converted proportionately (normalized) so that they sum

to 10:

 ∑
σ∈{A,C,G,T,−}

nσ

 = 10

A vector of normalized counts is then replaced by the closest “standard compo-

sition vector” via Euclidean distance, where a standard composition vector contains

five positive integers or zero that sum to 10. The standard composition vectors are

all concatenated in the order of the columns of the TR multiple alignment to pro-

duce the normalized profile. A profile of the reverse complement is produced using the

same process, starting with a reverse complement of the TR sequence. The Euclidean

distance score between normalized vectors is itself converted to a weighted distance

score, WD which is then converted to a weighted “pseudo-similarity” score (WS) as

described in (Gelfand et al., 2014) with scores ranging from 0 to 100.

Reference TR to read TR pairings are then confirmed by two more alignment steps:

1) a longest common subsequence (LCS) comparison of consensus patterns, and

2) a profile alignment of the TR array (Gelfand et al., 2014).

Steps 5 through 13 consist primarily of data transformation or filtering steps.

VNTRseek uses a clustering algorithm to group TRs together based on a similarity

score (below) and reduces the number of alignments that need to be performed.

Clusters from step 4 are joined in step 5 since step 4 is a parallel step and the

results of each parallel execution must be merged. Reads which contain TRs of
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interest are stored in the database and a final alignment is computed: an edit-

distance alignment of the flanking sequence, which measures the dissimilarity of

two sequences. Read TR to reference TR mappings are confirmed when a threshold

score is exceeded on all of the alignments, which are also hard-coded defaults: the LCS

must be at least 85% of the shortest sequence and the profiles must share at least 88%

similarity (WS ≥ 88). In versions earlier than 1.09, flanking sequences were required

to have an edit distance score ED ≤ 10% of the combined flank lengths of the read

TR to be considered passing. In versions 1.09 or greater, flanking sequence alignments

can have as many errors as determined by the formula ED ≤ min(8, 0.4 ∗ len). In

other words, the smaller of 8, or 40% of the alignment length. Both flanks are required

to meet this criteria.

PCR duplicates are removed in steps 14 and 15, with PCR duplicate removal

becoming an optional step in v1.10+ due to the increasing popularity of PCR-free

sequencing techniques.

Step 16 finds and removes reads which: contain one TR that maps to multiple

reference TRs with identical scores, contain two TRs that map to reference TRs that

are too far apart, or contain more than two TRs.

Step 17 computes allele support and VNTR calls. The copy number of the read

TRs and reference TRs are compared and alleles are called when the number of reads

supporting (RS) an allele exceed a user-defined threshold (default RS ≥ 2).

VNTRseek reports alleles in terms of the integral copy change with respect to the

reference – i.e., the copies gained/lost (CGL). Therefore, if read TRs are detected

with the same number of copies as their paired reference TR, the allele would be

given as “0”. An increase with respect to the reference of one copy would be given

as “1”, and similarly a loss of one copy would be given as “-1”. Partial copy changes

are rounded to the nearest whole number if the difference is at least 0.8 copies.
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Figure 2·1: An example of a heterozygous VNTR call in sample
HG02282 as visualized by VNTRview. The genotype at this locus
would be reported by VNTRseek as “0/1”, meaning the reference allele
and an allele with one copy gain, with respect to the reference, were
detected.

In final step 19, genotypes are reported in a VCF file. Results can also be extracted

from a database used by the pipeline for intermediate actions, and a web-based vi-

sualization tool – VNTRview – is provided to allow an interactive exploration of the

results1 (figure 2·1).

2.2 Reference set selection and refinement

Reference set selection is a critical part of VNTRseek genotyping. Reference TR loci

may share a high degree of both sequence and flanking sequence similarity, making

them difficult to distinguish computationally. In some instances, the flanking sequence

shares a high degree of similarity with the TR consensus sequence, which may result

in a false positive alternate allele call when the read start is internal to the TR. We

refer to such TRs as indistinguishables: families of related TRs which are difficult

to distinguish. The methods we use to determine indistinguishable TRs are described

further in subsection 2.2.1.

1At the time of this writing, the current release of VNTRview is only compatible with versions
1.08 and 1.09.x of VNTRseek.
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Depending on the application, a specific set of target TRs should be selected so

that the results are limited only to read TRs which map to the targets. Since we are

interested in a whole-genome look at polymorphic TRs, we began with a list of all TRs

in the Genome Research Consortium’s reference Human genome, assembly builds 37

and 38 (GRCh37 and GRCh38, also known as hg19 and hg38, respectively)(Church

et al., 2011; Schneider et al., 2017).

We developed this method on GRCh37 using TRF version 4.07, which detected

1,188,939 repeats. We filtered this initial set on the average TRF score, remov-

ing those with average score per alignment column ≤ 1.3. We removed TRs with

an overlap greater than 20% of the TR’s length with common interspersed repeat

elements such as SINEs, LINEs, LTRs and DNA transposons, as found by Repeat-

Masker (Smit et al., 2013). We also removed redundant TRs using the redundancy

elimination tool of TRDB (Gelfand et al., 2007). If two or more TRs overlap by more

than 50% of their length, the TR with the longer array length is kept. In case of a tie,

the TR with the longest pattern size is kept. We further filtered this set to remove

microsatellites, keeping those with a pattern size ≥ 7bp. The remaining TRs in this

filtered set numbered 230,671 (refset230671).

2.2.1 Parameters for calling indistinguishables

As mentioned previously, indistinguishable TRs are TRs which are either evolution-

arily related and are difficult to distinguish by their sequences, or can be confused for

one another depending on the occurrence of the repeat sequence within a window of

a given length (eg, as in a fixed-length read). We do not eliminate indistinguishable

TRs from our reference set. Instead, we mark them to indicate low-confidence allele

calls.

We determine indistinguishable TRs by mapping the TRs in our filtered set back to

our initial set of all TRs in the reference genome (the unfiltered set). The mapping
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is performed by executing the same procedure that the VNTRseek pipeline uses to

map read TRs to reference TRs. Initially, we used the same thresholds VNTRseek

uses in a standard analysis (WS ≥ 88% and ED ≤ 10%; see section 2.1) in order

to determine if a TR is indistinguishable, with one minor difference: only one flank

needed to pass the ED score test. TRs were called indistinguishable if they clustered

with at least one other reference TR.

However, no well-defined methodology existed to determine optimal parameters

for indistinguishable TR classification. This section describes the development of such

a method: a well-defined, reproducible procedure to identify an indistinguishable TR

set. Our goal was to maximize the detection of problematic TRs while minimizing

the loss of distinguishable TRs, using a reasonable parameter set. We evaluate the

ocurrence of problematic TRs based on the number of false postive calls in the re-

sults of a VNTRseek trial where the input read set consists of unmodified sequences

drawn from the reference TR set, and the unfiltered reference set is used as the input

reference set.

Profile alignments (mentioned above) are useful for comparing repetitive sequences

which have some short sequence variation. The source of the variation can either

be due to instrument error or naturally occurring mutations. An ideal WS cutoff

should allow us to call sequences which are evolutionarily related but genomically

dispersed as indistinguishable, while simultaneously allowing sequences which have

either diverged enough or converged by chance to a similar sequence to still be labeled

as distinguishable. Apart from the 88% cutoff used for a typical VNTRseek run, we

evaluated three other thresholds for WS: 91%, 93% and 95%.

Sequencing read length limits our ability to distinguish TR sequences in some

cases, particularly for long TRs. Non-repetitive flanking sequences have a better

chance of mapping uniquely to a genomic location and are an important factor in
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distinguishing TR loci. VNTRseek allows the user to choose a minimum flank length

(FL) needed to distinguish TRs. Shorter values of FL can lead to more TRs appear-

ing indistinguishable as shorter sequences have lower complexity, but flank length

restrictions can lead to a TR being thrown out if it is simply too long to be spanned

along with the required flanking sequence. We evaluated several values of FL which

might be used in a typical analysis of VNTRseek given the current most frequently

available read lengths: 10, 20, and 50nt. Flanking sequence edit distance, ED, was

also varied: 10%, 20%, and min(8, 0.4∗ len), the latter value being used in a standard

analysis. The lower ED thresholds allow us to examine the effect of being stricter with

reference vs reference comparisons compared to read vs reference. We also evaluated

requiring both flanks to pass the ED test, in addition to just one flank.

Input comprised sequence data from TRs in refset230671, with arrays converted

into their profile representation, and with flanking sequences of length sufficient to

satisfy the FL requirement. We ran the indistinguishable search procedure for each

profile alignment cutoff, at each flank length, requiring either one or both flanks to

pass the ED test for a total of 48 trials (we did not run trials for ED ≤ min(8, 0.4∗len)

at this stage). We produced Venn diagrams of the results for each cutoff, grouping

indistinguishable TRs by flank length (figure 2·2). This allowed us to visualize the

change in indistinguishable counts across parameter sets, as well as the size of the

set called in common across all flank lengths (the intersect). The total number of

indistinguishables across all flank lengths (the union) cannot be displayed easily on a

Venn Diagram, so figure 2·2 has that figure annotated below the percent cutoff used.

Requiring both flanks to be below the ED threshold has the largest effect on the

number of TRs called indistinguishable, as both flanks must share a high degree of

similarity with their corresponding flank to make a call. Increasing the WS cutoff

decreased the number of indistinguishable calls, with an average of nearly half the
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(a) (b)

(c) (d)

Figure 2·2: Overlap of indistinguishable calls at WS thresholds of
88%, 91%, 93%, and 95% and ED thresholds either below 10% the
shared flank length (a and b) or 20% (c and d). We varied how many
flanks were taken into consideration in scoring, either one (a and c) or
both (b and d). The WS thresholds are annotated below each diagram,
and the total number of indistinguishable calls is annotated below that.
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Figure 2·3: Overlap of indistinguishable calls at WS = 91% and
ED ≤ min(8, 0.4 ∗ len). Both flanks were required to pass the ED
cutoff.

number of indistinguishables called in total when comparing the largest and smallest

values of WS with all other parameters fixed. ED level had the next highest impact,

with the number of additional indistinguishable calls dropping with increasing WS.

Flank length however, did not have a linear effect on the number of TRs removed, as

some TRs appear indistinguishable at short lengths but are distinguishable at longer

lengths. As a compromise, we took the union of indistinguishable calls across all flank

lengths.

We chose a WS threshold of 91%: an increase in the WS threshold makes our

classification of indistinguishables more stringent, and taking the union means that

we will consider all TRs called indistinguishable, even if called in just one of the

flank lengths (table 2.2). We decided that the cutoff for ED score should match

the VNTRseek cutoff used in typical analyses, which was ED ≤ min(8, 0.4 ∗ len)

(figure 2·3). We now require both flanks meet this criteria.

TRs which have been clustered together (see 2.1) with other indistinguishable TRs

are considered indistinguishables themselves, even if they were not mapped to another

TR in the unfiltered reference set. We chose to change this criteria and instead base

indistinguishable calling solely on a TR having at least one link to another TR, given

the parameter set. Repeating the procedure with flank lengths 10, 20, and 50nt and

taking the union, results in a final, indistinguishable set.
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Parameter set

Reference set ED Flanks Req. Size of Union

refset230671, GRCh37

10% Single 24451
10% Double 13954
20% Single 34604
20% Double 16943

min(8, 0.4 ∗ len) Double 38736

Table 2.2: Indistinguishable TRs by parameter set. ED column gives
the maximum ED score allowed for flank alignments. The ’Flanks Req.’
column indicates whether one flank (“single”) or both flanks (“double”)
were required to meet the ED threshold. All are run with a 91% WS
threshold. The final row is the set of indistinguishables chosen.

2.2.2 Elimination-based indistinguishable calling

As discussed in subsection 2.2.1, the indistinguishable TRs are difficult to make ac-

curate calls for due to the high degree of similarity these loci share with each other.

This difficulty is in part related to the length of sequence being compared. For most

modern sequencing platforms, read length is fixed at 100, 101, 125, 148, 150, or 250

nt. Given the heterogeneity of read length, we cannot expect to capture all cases in

which a TR may appear indistinguishable with the above method. That TR array

length can be polymorphic in the case of VNTRs adds another layer of complexity.

The method discussed in this section is meant to address the issue of TRs which

result in a VNTR call simply due to their position within a read. It simulates cases

where TRs are spanned by a read with asymmetric flanking sequence lengths (as

opposed to some fixed length as above), or only partially spanned with reads starting

internal to the TR.

Sliding windows of length L (one of 100, 125, 150, or 250 nt) were drawn over

all TRs in refset230671. The first window, R0, starts one read length before the

start of the TR (TRstart − L) and the last window, RL+TRlength, starts at the base

immediately following the last base of the TR (TRstop+ 1).
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Sets of sliding windows were drawn for all the above possible read lengths. Each

set was run through a full run of VNTRseek with reference set refset230671 and at

least 10bp flanks required (up to a maximum of 50bp), but only one read required to

support an allele call. At pipeline completion, all reference TR loci generating reads

which supported a non-reference allele call were retrieved, as well as any reference

TR loci which were called as VNTRs. These retrieved loci were removed from the

reference set because of their ability to cause false positive VNTR calls.

We consider this method to be more effective at eliminating problematic TRs

which were not caught by our initial indistinguishable calling method, as it can cap-

ture TRs which are problematic only due to the combination of read length and

position within a read.

2.3 Validation using simulated reads and VNTRs

We validated VNTRseek performance in order to demonstrate its ability to correctly

identify variants in simulated data. We simulated reads as well as VNTR alleles,

and conducted several VNTRseek trials. We then compare the detected VNTRs and

simulated VNTRs, and collected various statistical measures such as the sensitivity,

specificity, and positive predictive value.

Reads were simulated for the Roche/454 Sequencing GS FLX platform. The 454

GS FLX sequencer was used to produce the Watson (Wheeler et al., 2008) and KB1

genomes (Schuster et al., 2010), which were used in our pilot studies with VNTRseek

(Gelfand et al., 2014). Read locations were determined by a 64-bit Mersenne Twister

pseudo random number generator2 (Matsumoto and Nishimura, 1998) assuming a

diploid genome with chromosome lengths and sequences matching the GRCh37 hu-

man genome reference sequence. Read lengths were drawn randomly from a normal

2Available at www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html

www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html
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distribution as generated using an implementation of the Box Muller Polar transform

method3, assuming a mean length of 261 nt and a standard deviation of 27 nt. The

program which generated the read locations and read lengths was written by Dr.

Gary Benson.

To introduce sequencing errors, we produced a simulated read set which was then

modified by applying error rates derived from empirical data on the 454 GS FLX

sequencer, as described in (Huang et al., 2012). The error rates were homopolymer

length-dependent, with indel error types (overcalls and undercalls) at much higher

frequency than substitution errors, and with the probability of error increasing with

homopolymer length. Error rates were applied on a per-homopolymer basis, with each

homopolymer of length n ≥ 1 having a random chance of being over or undercalled,

and homopolymers of length one having a random chance of undergoing substitution.

To test VNTR detection we simulated VNTRs by creating a modified reference

set. 1118 randomly selected reference TRs (5% random selection frequency) had

their copy number changed by one or two copies added or removed. In each case,

existing copies within a selected reference TR were randomly selected for duplication

or removal. These modifications only affected the copy count and repeat profile of

the sequences.

Using the above parameters, we produced six read sets: three read sets drawn

from the reference genome with no mutations, and a second group of three read sets

produced by modifying the reads of the first three by mutating the sequences as

described previously. All six sets were run on VNTRseek (min flank required = 10,

max flank considered = 50, read support ≥ 1). We compared mapped locations to

read origins, and called VNTRs to simulated VNTRs. Average results for all 6 sets

are shown in table 2.3 while tables 2.4 to 2.7 (taken from (Gelfand et al., 2014)) show

the results for a typical pair of sets.

3Described in www.taygeta.com/random/gaussian.html

www.taygeta.com/random/gaussian.html
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Read Reference TR VNTR
Read Mapping Mapping Calling

Set Sen Spec Sen Spec Sens Spec PPV

Exact 97.5% 99.6% 96.9% 99.2% 95.8% 100%* 96.2%

Error 90.2% 99.5% 94.7% 99.0% 90.9% 100%* 91.6%

Table 2.3: Average accuracy measures for three simulated read sets
generated from the reference genome (Exact) and three sets obtained by
introducing errors into the exact reads (Errors). Read Mapping is the
accuracy of assigning reads to the correct reference TRs, Reference TR
Mapping is the accuracy with which reference TRs are assigned reads,
VNTR Calling is the accuracy of calling VNTRs in a modified reference
set where 1118 randomly selected reference TRs (approximately 0.5%
of the total) were modified by adding or subtracting one or two pattern
copies. PPV is positive predictive value, the fraction of called VNTRs
that were correct. *Specificity for VNTR calling is slightly less than
100%, see tables 2.4 to 2.7.

Randomly Generated Reads

Reference TR Spanning Other TR Spanning

Read Correctly Incorrectly
Set Generated Mapped Generated Mapped

Exact 855,782
100%

834,633 1,607,291 7,048
97.5% 100% 0.4%

Errors 771,335 1,654,643 7,575
90.1% 100% 0.5%

Table 2.4: Results for two typical simulated read sets generated from
the reference genome and mapped back to the reference TRs. Reads
in one set exactly match the reference while reads in the other contain
simulated sequencing errors. Reference TR Spanning reads (positive
set) are those that spanned the locus of a reference TR including at
least twenty nucleotides of flanking sequence on each side. Other TR
Spanning reads (negative set) are those that contained a spanned TR,
but not a reference TR. Incorrectly mapped in this group means the
read was mapped to a reference TR. Incorrectly mapped TR spanning
reads are examined further in table 2.5.
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Reference TR Spanning Reads Not Correctly Mapped

Read Mapped Failed Multiple PCR Failed
Set All Incorrectly TRF Ties Loci Dupes Scoring

Exact 21,149 454 545 13,030 2,556 2,755 1,809
Errors 84,447 783 33,281 12,187 2,275 2,258 33,663

Table 2.5: Fate of reference TR spanning reads (see: table 2.4) not
mapped correctly. A very small number of reads mapped to the wrong
reference. Otherwise, a read was discarded if 1) TRF failed to detect
a TR, 2) (Ties), the same TR mapped to more than one reference
with equal score, 3) (Multi), different TRs in the read mapped to two
references that were not close enough together to be spanned by the
read or mapped to three or more references no matter their spacing,
4) it was eliminated as a PCR duplicate, 5) TR profile or flank scores
failed to meet the thresholds.

Reference TRs

With
Spanning

Reads

With Mapped Reads Without
Spanning

Reads

With Mapped Reads

Read Only
Set Correct Other None None Any

Exact 209,519
100%

203,071 1,923 4,525
20,787
100%

20,639 148
96.9% 0.9% 2.2% 99.3% 0.7%

Errors 198,365 2,783 8,371 20,597 190
94.7% 1.3% 4.0% 99.1% 0.9%

Table 2.6: Reference TR results for two typical simulated read sets,
one exact and the other with the same reads with introduced errors.
Out of 230,306 reference TRs, 209,519 had at least one spanning read
in the simulated data sets (first column). Sensitivity (percent in third
column) is measured as the ratio of reference TRs with only correctly
mapped reads (third column) to reference TRs with spanning reads
(second column). Specificity (percent in seventh column) is measured
as the ratio of unspanned reference TRs which had no reads mapped to
them (seventh column) to all unspanned reference TRs (sixth column).
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Generated VNTRs Unmodified TRs

Read 2-span Called Not Called

Set Correct Incorrect Detected All VNTR PPV

Exact 913 875 1 38 229,188 35 –
100% 95.8% 0.1% 4.2% 100% 0% 96.0%

Errors 913 830 1 83 229,188 76 –
100% 90.9% 0.1% 9.1% 100% 0% 91.5%

Table 2.7: VNTR results for a modified reference set and two typi-
cal simulated read sets, one exact and the other with the same reads
with introduced errors. 1118 randomly selected reference TRs (approx-
imately 0.5% of the total) were modified by adding or subtracting one
or two pattern copies. 913 of these had at least two spanning reads in
the simulated read sets (the minimum required to call an allele). Sen-
sitivity is the ratio of correctly called VNTRs to the total VNTRs with
two spanning reads (column 3). Specificity is the ratio of unmodified
TRs not called as VNTRs to all unmodified TRs (column 6). Given
the large negative set size, an important measure is positive predictive
value (PPV), the ratio of true VNTR calls to all VNTR calls (column
8). In the read set with errors, 8.5% of the VNTR calls were incorrect
(approximately 1 out of 12). When subdivided, this corresponds to ap-
proximately 1 in 20 incorrect calls for singletons and 1 in 2.2 incorrect
calls for indistinguishables. (For both Exact and Errors rows, Called
Correct, Incorrect, and Not Detected add to 914 because in each case,
one indistinguishable VNTR was called with both the correct number
of copies and an incorrect number of copies. PPV reflects a reduction
of one in the correct calls.)
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Overall, VNTRseek performs very well, with high (≥ 90%) sensitivity and specifity

for both read mapping and VNTR calling, even for read sets with errors (tables 2.3

and 2.6). Given the overwhelmingly large negative set (unmodified reference TRs)

compared to the positive set (simulated VNTRs), the positive predictive value (PPV)

is a more appropriate measure to convey VNTRseek performance on VNTR detection,

as it is the fraction of VNTR calls which were correct. For exact reads, the average

PPV was 96.2% and for reads with simulated errors it was 91.6%. Approximately 1 in

20 singleton VNTR calls were wrong, while approximately 1 in 2.2 indistinguishable

calls were wrong, demonstrating the importance of highlighting these classes in the

output.

2.4 Improvements to VNTR Calling Software

In chapter 3 I discuss a comprehensive analysis of over 370 human WGS samples. The

initial portion of the study was conducted on 350 low-coverage (≤ 24x) samples from

the 1000 Genomes Project (The 1000 Genomes Project Consortium, 2012, 2015), 17

genomes from the Illumina Platinum Genomes data set (Eberle et al., 2017a), and

3 genomes comprising a trio of the Yoruban ethnic group (see chapter 3 for more

details). Despite the majority of the input comprising lower coverage data, the total

time for download and analysis of these data sets was over 4 months. The data was

analyzed on a modern compute cluster, with a typical node having 16 CPU cores

available for use. At peak performance, 4 analyses were run simultaneously with 8

processing cores used by each.

Execution time for a single example analysis of approximately 26x coverage (797,113,367

reads at 101nt) was 24.29 hours. With the optimizations described later on in sub-

section 2.4.1, this average analysis was reduced to a 9.45 hour execution time, with

still more room for improvement.
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Inefficient computation accounted for part of the lengthy total processing time.

Frequent runtime errors attributed to differences in the nature of the input data,

lengthy processing times due to remotely executing analyses while using a locally

hosted database server, and various technical issues on the compute cluster all re-

sulted in many lost hours with little advancement in data processing. Fortunately,

each of these setbacks also presented an opportunity to address issues in VNTRseek,

which were only exposed when executing on a shared and distributed system with a

networked file system, or when using data produced by a new source for which we

had not anticipated any significant difference in file format.

2.4.1 Improvements to VNTRseek performance

VNTRseek takes advantage of multiprocessor units by parallelizing input processing

with TRF, profile-based clustering, and within cluster alignments. Typical bottle-

necks in throughput are TRF and PSEARCH (CPU intensive), and reading and

writing files to and from the disk (I/O intensive). A third bottleneck was the relative

instability of the software as we moved from a single-machine environment with low

(≈ 5x) coverage genomes to much larger datasets, which often resulted in many lost

hours of analysis as we tried to determine the issue.

We could address CPU bottlenecks by improving the algorithms used in the two

software tools which expend the most CPU cycles. Improvements to TRF are planned,

notably an implementation of the algorithm developed in Loving et al. (2014) which

leverages the inherent bit-parallelism of vector operations in modern CPU architec-

tures. But these are not in the scope of this dissertation thesis. PSEARCH may

benefit from a code refactor to determine computational bottlenecks in that tool.

However, after a simple code analysis we determined that the benefits from making

improvements to these algorithms and their code bases would be far outweighed by

the undertaking itself, particularly due to the code complexity, and the potential to
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negatively affect the wide userbase of TRF.

We instead decided to resolve I/O bottlenecks, as typical workflows for our analysis

involved using compute clusters with large numbers of compute cores and plenty of

available memory. Storage, however, is much more limiting, both because disk space

can be limited and hard to request but also because the file systems tend to be

networked, specifically using NFS. NFS disk mounts may have a number of issues with

file locking and synchronization, making optimization of IO operations a priority.

The first area we targeted was the input WGS data reading code. This code was

responsible for reading in sequence data in gzip compressed files in either FASTA or

FASTQ format, and then the read information was passed in to TRF. TRF output is

then passed into a conversion program called trf2proclu via UNIX pipes, which also

calculated the TR profiles (see 2.1).

However, this pipeline had a number of issues: all FASTA and FASTQ code was

written from scratch with no testing framework, the pipeline from TRF to trf2proclu

appeared to break periodically with no way to gracefully handle problems, and the

code was too tightly coupled to allow us to expand to accept other file formats. This

code was refactored to decouple the various components.

Code which reads in sequencing files is now separated into functions by input

file format, and is called by code which determines the format. The output of these

functions is always a Perl hash variable which contains the header and sequence of

each read record. This enables us to add more file formats with ease, or simply change

the implementation without affecting other parts of the code. Further, custom written

code was removed in favor of using seqtk (https://github.com/lh3/seqtk) a well-

known, well-tested, and widely used tool for reading both FASTA and FASTQ files,

and converting between them. This means we can use the same function for both

FASTA and FASTQ formats. We also added a function which could be used to read

https://github.com/lh3/seqtk
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SAM/BAM files using samtools (Li and Durbin, 2009a), broadening the appeal and

usability of VNTRseek.

The pipeline between TRF and trf2proclu was simplified, and input and output

was checked for potential errors, such as signals from the operating system which

result in program termination, error in the input format, or duplicate sequences. The

latter was a particularly necessary improvement, as VNTRseek assumes that read

headers are unique, in order to distinguish reads. Some paired end data sets do not

add segment information into their headers (e.g., /1 or /2 tags at the end of the

header) instead relying on the fact that the pairs are distributed in their own file

to indicate the difference. However, input is streamed together in VNTRseek, so

file information is not seen by the time the reads reach downstream processes in the

pipeline. Sequence reading functions were coded so that if headers gave no indication

of their segment, a unique identifier was added to the header before being passed to

TRF.

Some clusters or operating systems place limits on the run time of a process.

VNTRseek was modified so that after 1 million processed records, the TRF and

trf2proclu processes are terminated and new ones started to avoid hitting this limit.

1 million was chosen as a reasonable number which appeard to avoid the issue on our

system, but the user may choose to change this value. We still, however, recommend

that users using FASTA/FASTQ archives first split the input into files with around

1 million reads each anyway, due to the fact that the TRF step of the pipeline will

only parallelize based one the number of files it detects. An alternate method for

parallizing this step is being considered, but has not been implemented while the

performance gain is analyzed.

VNTRseek versions 1.09.x and earlier are notorious for generating large numbers

of files, many of which turn out to be redundant in production scenarios. We refac-
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tored other areas of the code which wrote out many intermediate files in favor of

smaller or fewer writes, no output unless given a specific instruction, or a cleanup

procedure following a step where the output is no longer needed. trf2proclu, for ex-

ample, generated large numbers of files, which could reach gigabytes of storage usage

in large data sets. About half of the files, by number, were redundant as they con-

tained the same information as another output file type. The information in these

files was necessary, however, for calculations further down the pipeline. We moved

the place in which these calculations take place to within trf2proclu itself, and merged

the data following the parallel step, eliminating the need for these files.

Step 8 in the pipeline required rereading all input files, sequentially, in order to

retrieve sequence data for all reads which spanned supported VNTR alleles. This step

was an O(n) search with n being the number of reads in the input set. Storing every

single read would be impractical, so this solution seemed appropriate. We searched

for a different solution which would either eliminate or reduce the need to do an O(n)

search, or reduce it to O(m), where it is expected that m � n as m represents the

number of VNTR allele supporting reads. Thanks to the earlier code refactoring for

step 1, we are able to determine at completion of a TRF/trf2proclu pipeline which

reads span a VNTR allele and record these reads in a compact form. At step 8, only

these files are read, drastically improving performance.

VNTRseek depends on a database to record its results, read sequences, reference

set, and other data. However, most compute clusters do not provide a full relatioal

database management system for users, particularly not for long term use. In versions

1.09.x and earlier, we simply hosted our database locally using MySQL. However,

pushing potentially large amounts of data over the network, sometimes with many

simultaneous analyses, quickly proved to be impractical. While MySQL was an ideal

solution for management of multiple analyses as a queuing system, performance would
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degrade quickly with too much traffic. We put in effort to port VNTRseek over to

SQLite, which is an ideal solution for applications which need to store data locally in

the same way it might use a file to keep some data. While SQLite could not function

as a substitute for the large number of intermediate files VNTRseek produces, due to

SQLite not being designed for parallel writes, it was suitable to replace MySQL for

the output of each analysis. SQLite also allowed us to reduce redundancy as some

reference data, which was recalculated on each analysis, could now be calculated

once and shared among all concurrent analyses which utilized the same reference set

transparently.

Following these changes, the average performance improvement of a typical run

of VNTRseek – measured as the difference in runtimes of an analysis both post

and pre optimizations, and with identical input and environment, divded by the pre

optimization runtime – is ≈ 60%.

2.4.2 Enabling repeat detection in centromere regions using TRF

While using TRF version 4.08 to scan the GRCh38 reference genome shortly after

its release, we encountered a bug where TRF would slow down significantly during

the analysis of centromere regions, and then hang. As a result, we simply excluded

centromeres from further analysis, and our reference set for GRCh38 does not include

TRs from these regions.

Following the majority of the work described in chapter 3, we investigated the

cause. As a C program, TRF must allocate buffers in memory to store data such as

the sequence being analyzed, alignment matrices, and so on. After following memory

allocations and analyzing points in the input data which resulted in the program hang,

we determined that some of our buffers were simply too small to read very long TRs

in the centromere regions, including one exceeding 5 million bp. Since it would be

impractical to constantly allocate large amounts of memory, some allocations being
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impossible on 32-bit systems, portions of TRF were refactored so that any array

which needed to be increased in size was instead coverted to a dynamically allocated

array. The array size was also made to be configurable with a reasonable default, and

documentation was written to include guidance on how to use the new option.



Chapter 3

Comprehensive study of VNTRs in the

human genome using high-throughput

whole genome sequencing data
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Dataset Read Coverage Samples Citation
Length (bp) In Set

1000 Genomes 100–101 5–24x 330 (Consortium, 2012)
CEPH 1463 family 100 48–109x 16 (Inc., 2014; Eberle et al., 2017b)
HapMap Y117 Yoruban trio 250 76–77x 3 (See table 3.6)
WGS500 samples 100 26–112x 8 (Taylor et al., 2015)
CHM1 150 42x 1 (Chaisson et al., 2014)
CHM13 250 137x 1 (Huddleston et al., 2017)
GIAB Ashkenazi trio 250 64–74x 3 (Zook et al., 2016)
GIAB Chinese trio 148–250 117–355x 3 (Zook et al., 2016)
GIAB NA12878 148 306x 1 (Zook et al., 2016)
Tumor/Normal Samples 101 41–95x 4 (Drmanac et al., 2010)

Table 3.1: Datasets. Data from 370 genomes was used. Coverage values refer to “read coverage” – the
product of the number of reads and the average read length, divided by the haploid genome size, as in
the Lander/Waterman equation (Lander and Waterman, 1988). All values are approximate. Some values
for the CEPH 1463 and WGS500 samples, as reported here, are higher than those stated in the original
sources because replicates for the same genome were combined when available. See Data Section for URIs
of data.
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3.1 Introduction

With the increasing availability of whole genome sequencing (WGS) data, researchers

are faced with an ever growing source of data to mine for information. Most modern

WGS pipelines for human data involve mapping to a reference genome directly after

the sequencing experiment. While the most commonly used tools for genome mapping

or assembly may be adequate for detecting single point mutations, they are far less

capable of correctly mapping repetitive DNA making genotyping variability in repeat

sites challenging, and as a result repetitive regions may end up being removed due to

poor mapping quality (Gymrek, 2017). In a previous paper (Gelfand et al., 2014), our

lab introduced a tool for genotyping polymorphic tandem repeats known as Variable

Number Tandem Repeats (VNTRs). These loci vary in copy number, and present

issues for most aligner software which is typically run after a sequencing experiment,

such as BWA-MEM (Li, 2013).

In this paper, we present the results of a wide-ranging, multi-year study into the

variability of VNTRs in the human genome using WGS publicly available data. While

other tools similar to VNTRseek have been developed since our earlier publication,

such as adVNTR (Bakhtiari et al., 2018a), this paper presents what is, to our knowl-

edge, the most comprehensive catalog of polymorphic minisatellites in the human

genome to date, pooling results from over 300 publicly available samples.

Other tools for polymorphic TR typing include tools such as lobSTR (Gymrek

et al., 2012), popSTR (Kristmundsdóttir et al., 2017), and hipSTR (Willems et al.,

2017) which were developed to detect mircrosatellite tandem repeats (pattern size

≤ 6bp) rather than minisatellite repeats (pattern size ≥ 7bp), which are the focus of

this paper. Similar to lobSTR, VNTRseek uses flanking sequences to disambiguate

mapping. popSTR requires prior knowledge of population data, and hipSTR has

a preprocessing step in which a profile of the stutter noise of the repeats is built.
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VNTRseek does not have either of these requirements.

3.2 Materials and Methods

3.2.1 WGS datasets

Ten datasets were used in this study comprising 370 whole genome sequencing sam-

ples (Table 3.1): 330 individuals from the 1000 Genomes Project Consortium (2012);

16 of the 17 member CEPH 1463 family as sequenced by Illumina for their Platinum

Genomes set Inc. (2014); Eberle et al. (2017b); a Yoruban trio (HapMap Y117) se-

quenced using a PCR-free technique; eight individuals from the WGS500 project, a

large-scale craniosynostosis disease association study Taylor et al. (2015) consisting

of two trios (unaffected parents and affected child) plus an unaffected couple whose

affected child has no publicly available data; a Chinese trio (CHB), an Ashkenazi Jew-

ish trio (AJ), and sample NA12878, the remaining CEPH 1463 family member, as

sequenced by the Genome in a Bottle (GIAB) Consortium Zook et al. (2016); two hy-

datidiform mole (CHM) cell line genomes which are essentially haploid: CHM1 Chais-

son et al. (2014) and CHM13 Huddleston et al. (2017), sequenced by The Genome

Center at Washington University School of Medicine; and tumor/normal pairs (breast

invasive ductal carcinoma cell line/lymphoblastoid cell line) from two unrelated in-

dividuals, HCC1187 and HCC2218 (Drmanac et al., 2010). Coverage ranged from

approximately 5x, in several 1000 Genomes samples, to 355x, in the GIAB Chinese

trio child. 358 of our samples were sequenced with read length 100–101bp. The

remaining 12 consisted of either 148 bp or 250 bp reads. Input data consisted of

sequencing data produced on the Illumina platform in FASTQ format.
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3.2.2 TR reference set

Human reference genome GRCh38 (hg38) (Lander et al., 2001) was used to produce

a reference set of TRs in the Tandem Repeats Database (TRDB) (Gelfand et al.,

2007) with the Tandem Repeats Finder (TRF) software (Benson, 1999) and four

quality filtering steps as described in (Gelfand et al., 2014). Centromere regions

were excluded from the reference set. The result was a set of 228,486 reference

TRs (refset228486). The TRs were classified into two subcategories, singletons and

indistinguishables. A singleton TR appears to be unique in the genome based on a

combination of its repeat pattern and flanking sequence. An indistinguishable TR

belongs to a family of genomically dispersed TRs which share highly similar patterns

and flanking sequence and can therefore produce misleading genotype calls.

Indistinguishable TRs were identified using the procedure described in (Gelfand

et al., 2014) i.e., each TR array from the refset228486 was converted into a single

simulated read and all simulated reads were mapped to the original unfiltered TR set

using VNTRseek (Gelfand et al., 2014). Any TR which mapped to a different locus

was labeled indistinguishable. 37,200 TRs were identified as indistinguishable (∼

16.3%). Indistinguishable TRs were not removed from the reference set, but genotype

calls in the output of VNTRseek were flagged if the locus was indistinguishable.

To reduce the number of singleton false positive VNTR calls in this study, two

methods were used to eliminate problematic TR loci from the reference set. The

first involved detecting false mappings of simulated reads and is described in sub-

section 2.2.2. This procedure was conducted for each of the read lengths 100bp,

150bp, and 250bp and produced three separate reference sets (table 3.2), available at

https://dx.doi.org/10.5281/zenodo.1491907. The second method is described

in subsection 3.2.5.

https://dx.doi.org/10.5281/zenodo.1491907
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Singleton Final Reference Expected
Read Length (bp) TRs Removed Set Size Genotyped

100-101 1,704 226,782 153,293
148 1,976 226,510 168,742
250 4,812 223,674 177,864

Table 3.2: Modification of the reference set to reduce false
positive TRs. The original reference set contained 228,486 TR loci,
labeled as singleton or indistinguishable. Using simulated reads gen-
erated from the reference set, singleton TRs that were called as false
positive VNTRs or those which generated reads leading to such a re-
sult were removed (see Materials and Methods). The “Expected Geno-
typed” column is the number of singleton TR loci for which the sum of
array length and minimum flank lengths did not exceed the read length
(for the 100/101bp set, 100 bp was used as read length).

3.2.3 TR Annotation

Reference TRs were annotated with genomic context features in hg38 using the

R packages “GenomicFeatures” (Lawrence et al., 2013) and “VariantAnnotations”

(Obenchain et al., 2014), from Bioconductor version 3.2.3 (Huber et al., 2015). The

packages allow annotation of regions using information from the UCSC genome browser

(Rosenbloom et al., 2015) based on interval overlaps.

A copy of the NCBI RefSeq (curated) interval set (Pruitt et al., 2014), downloaded

from the UCSC browser downloads server (URL: http://hgdownload.soe.ucsc.

edu/goldenPath/hg38/database/ncbiRefSeqCurated.txt.gz), was converted into

GTF format using the UCSC genePredToGtf utility (URL: http://hgdownload.

soe.ucsc.edu/admin/exe/linux.x86_64/genePredToGtf), and imported into R us-

ing the makeTxDbFromGFF function from the “GenomicFeatures” package. Non-protein

coding genes were filtered out from the final interval list. For all RefSeq protein cod-

ing sequences, a TR was classed as: ‘coding’, ‘intron’, ‘3′ UTR’, or ‘5′ UTR’ if the

TR was completely contained by the specified region; ‘splice site’ if it overlapped the

first or last two nucleotides of an intron; ‘promoter’ if any portion of it overlapped a

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/ncbiRefSeqCurated.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/ncbiRefSeqCurated.txt.gz
http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/genePredToGtf
http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/genePredToGtf
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region extending from 2000bp upstream to 200bp downstream of a transcription start

site. Some intragenic TRs overlapped multiple classes, either because they spanned

multiple regions, or because they could be multiply classified due to alternative gene

splicing/transcription start sites. To eliminate overlapping classes, these were labeled

“Promoter and other intragenic” or just “Other intragenic” depending on whether a

promoter was one of the classifications; and ‘intergenic’ if it did not overlap any of

the proceeding regions. Table 3.4 summarizes the annotations. VariantAnnotations

was unable to map 1,212 TRs (54 of which were VNTRs) for unknown reasons and

these were excluded from the table.

We retrieved the GO terms of genes overlapped by “coding” VNTRs, and counted

the number of VNTRs for each term. VNTRs from the 3 most frequent GO terms were

selected and were then searched for in the ClinVar (Landrum et al., 2016), dbSNP

(Sherry, 2001), and PubMed (Noa, 2017) databases for any supporting evidence of

a previously annotated VNTR. If an indel variant was found in any of the above

databases, with a size change expected for the matching locus in our dataset, we

recorded the annotation and any identifiers.

3.2.4 VNTR Detection

Read sets were processed with VNTRseek (Gelfand et al., 2014) (https://github.

com/yzhernand/VNTRseek) using default parameters: a minimum flanking sequence

length of 10 nt on each side of the array, a maximum flank length of 50 nt, and

at least two reads mapped with the same array copy number required to make an

allele call. Output from VNTRseek included two VCF files containing genotype calls,

one reporting all detected TR and VNTR loci, and the other limited to VNTR loci

only. VCF files contained two specialized FORMAT fields: SP, for number of reads

supporting each allele, and CGL, for number of copies gained or lost with respect

to the reference. For example, a CGL of −1 indicated an allele with one less copy

https://github.com/yzhernand/VNTRseek
https://github.com/yzhernand/VNTRseek
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compared to the reference, and a CGL of 0 indicated the reference allele.

3.2.5 Refinement of allele and genotype calls

Marzie Rasekh, a PhD student in the Benson Lab, developed a method to eliminate

likely false positive allele calls and refine genotype calls, which is called mlZ and

summarized briefly here. mlZ is a machine learning approach based on comparison of

the expected and observed number of reads supporting (RS) an allele, the zygosity

as given by VNTRseek, whether or not a gain or loss of one copy is observable, and

other features derived from the model of the expected read support.

Expected read support was determined from a combination of theoretical and ob-

served read support distributions. Theoretical distributions were modeled using the

read length, read coverage, fragment length distribution of a sequencing experiment,

and simulated fragments placed randomly through the genome. The simulated frag-

ments could span heterozygous or homozygous TR loci, and both distributions were

modeled.

Observed read support from VNTRseek results were then sorted into 10bp bins by

the observed array length. Outliers above 3.5 standard deviations (sd) in the homozy-

gous distribution, or below 3.5 sd in the heterozygous distribution, were removed. The

Z-scores for each allele in each distribution were then included as features, along with

all previously mentioned features, in a decision tree which produced a final score and

a revised genotype call.
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Dataset Samples Genotyped Singleton Raw VNTRs Refined VNTRs Reported

TRs TRs All Singleton Multi All Singleton Multi VNTRs

1000 Genomes 330 181,594 153,275 5,140 3,569 4 3,565
CEPH 1463 16 180,496 152,588 2,552 1,651 11 1,640
WGS500 8 177,282 149,989 2,077 1,407 10 1,397
Tumor/Normal 4 177,592 150,545 2,044 1,292 7 1,285
CHM1 1 186,209 159,753 1,763 1,284 167 1,117
CHM13 1 197,502 170,140 2,912 2,155 356 1,799
Yoruban Trio 3 204,189 175,005 5,686 4,388 57 5,385 4,242 — 4,242
Ashkenazi Trio 3 204,270 175,074 4,867 3,712 39 4,582 3,569 — 3,569
Chinese Trio 3 206,934 176,980 6,798 5,035 167 3,991 3,083 — 3,083
NA12878 1 193,185 164,994 3,788 2,635 52 2,176 1,670 — 1,670
Combined 370 211,079 180,127 13,205 9,932 698 11,248 8,457 505 7,952

Table 3.3: TRs and VNTRs detected, by dataset. Genotyped TRs is the number of distinct TR
loci genotyped in at least one individual within a dataset. Singleton TRs are those not annotated as
indistinguishable in the reference set. Raw VNTRs are called by VNTRseek. Refined VNTRs are called
in a post-processing step following mlZ analysis. Multis reported under refined VNTRs are only called in
the remaining genomes, as mlZ processing ignores multis. Within those categories, “All” includes both
indistinguishables and singletons. Multi are singleton loci for which at least three alleles were detected
in a single individual (two in the haploid samples). Reported VNTRs is the number of singleton VNTRs
minus the multis from the initial VNTR calls.
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3.3 Results

3.3.1 TRs and VNTRs Detected

370 sequencing read datasets were analyzed with VNTRseek to discover minisatellite

VNTRs. Table 3.3 summarizes our results. A total of 211,079 TR loci were genotyped

across all samples (92.2% of the TRs in refset228486). 871 loci would not have been

detected since they were not included in any of the read-length-specific reference

sets. 89.7% (14,826) of the remaining 16,536 loci could not be detected because their

arrays were too long to fit within the longest reads in our data sets, even with a loss

of one copy. 13,205 of the genotyped loci were called as VNTRs. Of these, 3,273 were

indistinguishables and were removed from further analyses (except in subsection 3.3.2)

leaving 9,932 Singleton VNTRs. An additional 698 loci (hereafter referred to as

“multi”) were genotyped with more than n alleles in at least one genome (where n is

the ploidy of the sample) and were also removed, for a final count of 9,234 singleton,

non-multi VNTRs. Three VNTRs were called “multi” in over 5% of our sample set

and were not flagged as indistinguishable by VNTRseek: 182621445, 182713833, and

183258087. One was classified by RepeatMasker as “simple repeats” and all were

found within a segmental duplication. The alleles detected for each were consistent

in the sense that they were also called in over 5% of our samples, with one exception:

the +3 allele of TRID 183258087 which was detected only twice.

3.3.2 Genotype and allele refinement

VCF output from ten high-coverage (> 100x), PCR-free, long-read-length (read

length ≥ 148) genomes were post-processed using MLZ. Indistinguishables are in-

cluded, but multi TRs are ignored by mlZ and not processed. The results post-

processing are given in columns 8-11 for the last 5 rows of table 3.3.
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3.3.3 Relationship of detection to coverage and read length

The ability to genotype TR loci was strongly dependent on coverage (Supplementary

Figure 3.S2). Assuming a locus could be genotyped if the read length was at least as

long as the reference array length plus the minimum flanking sequence lengths, the

percentage of singleton TRs genotyped ranged from a low of 23.85% for one of the

1000 Genomes samples (HG01437, 101 bp reads, ∼6x coverage) to a high of 98.02%

for the Chinese trio child (NA24631, 250 bp, ∼355x). The lowest percentage for the

250 bp samples was 95.79% (CHM13, ∼137x).

VNTR discovery was directly related to both coverage and read length. Fig-

ure 3·1a shows a linear relationship between the log of the coverage and the number

of VNTRs detected. Samples from the low coverage 100/101 bp 1000 Genomes dataset

yielded an average of 262 VNTRs and the highest number of VNTRs detected in the

the 100/101 bp samples was 961. In contrast, the longer read datasets produced more

VNTRs. Longer reads can span longer arrays (see subsections 3.3.1 and 3.3.8) and

they also increase the overall probability of detecting shorter arrays and alleles that

have gained in length relative to the reference. In the 250 bp samples, VNTRseek

detected between 1,799 and 3,897 VNTRs (up to 2,849 VNTRs after the refinement

from subsection 3.3.2). Ploidy also has an effect. Both CHM1 and CHM13 have

fewer VNTRs than expected given their coverage and read length. In these haploid

samples, heterozygous loci in the underlying diploid genomes will often exhibit only

the reference allele and will therefore not be counted as VNTRs.

Coverage also affected the ability to detect heterozygosity at a VNTR locus. Fig-

ure 3·1b shows a linear relationship between the log of the coverage and the proportion

of VNTRs that were genotyped as heterozygous. For the highest coverage genomes,

the proportion reached an apparent maximum at just over 50%. Notably, one of

the cancer cell line samples (HC1187) had a significantly reduced proportion of het-
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Figure 3·1: Influence of coverage and read length on geno-
typing. (a) Relationship between log of the coverage and raw VN-
TRs detected. Regression lines were drawn for samples with the same
read length. Points for the 100/101 bp read datasets are well clus-
tered around the lower trend line. Much higher VNTR counts were ob-
tained for samples with read length > 101 bp. Both haploid genomes,
CHM1 (150 bp) and CHM13 (250 bp) have fewer VNTRs than ex-
pected because heterozygous loci with one reference allele will appear
to be VNTRs only about half the time on average. (b) Relationship
between coverage and heterozygous VNTR calls. Low coverage reduces
the probability of finding both alleles when a locus is heterozygous,
leading to erroneous homozygous genotype calls. The fraction of loci
that were called heterozygous peaked at just over 50% for the high cov-
erage genomes. The haploid CHM1 and CHM13 genomes should have
no heterozygous loci (the few singleton loci with more than one allele
were classified as ”multi” and not used in this figure). One cancer cell
line sample had a significantly reduced number of heterozygous VNTR
calls indicating possible wide-spread loss of heterozygosity.
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erozygous calls, despite having a comparable number of detected TRs, normalized

by coverage, with respect to the corresponding normal sample, possibly reflecting

widespread loss of heterozygosity mutations.

Other factors influencing heterozygous VNTR calls are discussed in subsections 3.3.6

and 3.3.2.

3.3.4 Sample support for VNTR calls.

Figure 3·2a shows the distribution of the number of samples that supported each

VNTR genotype call. Close to one-third of the VNTR loci (3,117) were detected

as variant in only one genome sample, suggesting that sampling was not extensive

enough, that many were rare variants, or that many were artifactual.

Supporting the limited sampling hypothesis, 73% of single sample loci (2,277)

were observed in long-read samples, of which there were only nine, and 68% of those

(1,549) had array lengths too long to be detected with 100 bp reads.

Supporting the rare variants hypothesis, for the 1000 Genomes samples, the aver-

age number of VNTR loci/sample not found in any other genome was only 2.52. Out

of a random sample of 10 of these, all appear to be accurate calls (Supplementary

Figures 3.S6-3.S15).

1,127 VNTR loci were detected in at least 5% of the samples (19 samples) and

can be considered common variants. This is likely an underestimate, again because

many of the loci could be detected only in the long read samples.

3.3.5 Distribution of VNTR loci

Across all chromosomes, an average of 60.9 reference set TRs and 3.1 VNTRs were

present every 1 Mb (Supplementary Table 3.S1). VNTR calls exhibited a bias towards

the chromosome ends (centromere TRs were excluded from this study). This was true

even when accounting for the fact that the proportion of reference set loci was also
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biased towards the chromosome ends (Figure 3·2b and Supplementary Figure 3.S1).

In four chromosomes at least 40% of the reference TR loci were located within the

first and last 10Mb (CHRs 19, 20, 21, 22, Supplementary Figure 3.S1a). For VNTR

loci, the bias was even more pronounced, with 11 chromosomes having 40% of the

VNTR loci located within the first and last 10Mb (CHRs 7, 8, 10, 12, 13, 16, 17, 18,

19, 20, 21, 22, Supplementary Figure 3.S1b and Table 3.S1).
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Figure 3·2: VNTR locus characteristics. (a) Number of samples in which a VNTR locus was
observed. Colors in the leftmost bar indicate detection with 100 bp reads, distinguished by datasets, or
long reads (250 bp, 148 bp), distinguished by the array length of the observed VNTR alleles (AL = array
length). The “Long Reads AL ≤ 80bp” category counts loci with only alleles AL ≤ 80bp that were not
seen in 100/101 bp sets. An array length greater than 80 bp could not be observed in the short reads.
Colors in the remaining bars indicate detection with long reads alone (at most 9 samples) or with both
long and short reads. Note binning for number of samples > 10. Close to one-third of the VNTR loci were
detected as variant in only one genome sample (left-most bar). However, nearly half of those were observed
in only the 12 long-read samples and with array lengths too long to be detected with short reads. (Shortest
array length too long in the case of multiple alleles at the same locus.) Using a cut-off of ≥5% of samples
(≥18 samples) for the definition of common variants, 1,127 loci were in this category. (b) Ratio of VNTR
loci to reference TR loci along the chromosomes, binning every 5MB. VNTRs are more common towards
chromosome ends, both in actual counts (Supplemental Figure 3.S1) and in proportion to the number of
reference TRs (shown here). (c) VNTR pattern length distribution (bin size = 2). Inset: Note that the
shortest pattern TRs (7-10 bp) are most likely to be variable, in comparison to their representation in the
reference set, and that pattern lengths around 20 are least likely to be variable.
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3.3.6 VNTR locus and allele characteristics

VNTRs with pattern lengths between 7 bp and 112 bp were detected (Figure 3·2c).

The bulk of the pattern lengths (87.7%) were ≤ 40 bp, and only 5% of patterns were

longer than 54 bp. Compared with the distribution of reference TR pattern sizes, TRs

with very short patterns (7-10 bp) were overrepresented in the VNTRs and those with

pattern sizes around 20 bp were underrepresented.
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Figure 3·3: VNTR allele characteristics. (a) Change in the number of copies in a VNTR allele
relative to the reference. Approximately 64% of variant alleles exhibited a one-copy change relative to
the reference (inset shows the top of the first two bars). Overall, a decrease in copy number was more
frequently detected than an increase. Limited read length favored loss detection, but TR reference set bias
towards arrays with fewer copies favored gain detection. (b) Number of alleles detected per locus across
all datasets. Leftmost bar: 1,442 loci were detected with just one allele, a variant. Second bar: for 70% of
the loci, two alleles were detected, and in the vast majority of those, one of the alleles was the reference
allele. Overall, no reference allele was detected in 2,066 loci. Inset: in 110 loci, five or more alleles were
observed.
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Figure 3·4: VNTR allele characteristics (continued). (a) Number of VNTR alleles (including ref-
erence allele) by length of detected array. (b) Frequency of the most commonly detected allele at a VNTR
locus compared to sample representation. Allele frequency was determined by counting alleles in each
sample in which the locus was genotyped. For a locus typed as homozygous (respectively heterozygous),
the count for the allele was two (one). Blue symbols represent loci where the most frequent allele is a
variant. Circles represent loci with at least five detected alleles.
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A total of 11,667 variant alleles were detected. Of these, approximately 64%

exhibited a single copy gain or loss with respect to the reference (Figure 3·3a) with

loss being slightly more frequent (3,993 loss vs 3,523 gain), as it was overall. Two

opposing conditions influenced detection of gain or loss. Fixed read length favored loss

detection because longer arrays had a lower probability of being spanned by a read.

For example, with the 100 bp reads, 20% of the reference TRs consisted of arrays

that could be detected following a single copy loss, but not a single copy gain. The

TR reference set, however, favored gain detection overall because a high proportion of

the reference TRs contained very few copies. 77.3% contained ≤ 2.8 copies. At this

limit, loss of a single copy would cause the allele to have fewer pattern copies than

the minimum required for detection by TRF, and would therefore not be detectable

by VNTRseek (Supplementary Figure 3.S3). In the cases where read length had little

effect on detection (i.e., short array lengths), a clear bias towards gain was apparent

(Supplementary Figures 3.S4, 3.S5).

Figure 3·3b shows the number of alleles detected per VNTR locus across all sam-

ples. In 22% of loci (2,066), no reference allele was found. Although absence of

reference alleles may have been be due to low coverage or few long read samples, the

presence of cases with high sample coverage suggests that the reference allele could

be rare or incorrect. For example, 137 no-reference VNTR loci were found in 10 or

more samples, and 23 were found in 100 or more samples.

Figure 3·4b displays the relationship between locus allele frequencies and sample

coverage. For many loci (3,240), a variant allele had the highest frequencies. Alleles

and frequencies for each VNTR locus are given in the supplementary material.

Genome Context. 4,849 singleton, non-multi VNTRs overlap genes from the

UCSC RefSeq table (Pruitt et al., 2014; Rosenbloom et al., 2015) by at least one

bp, including potential promoter regions and UTRs. Breaking down the overlap of
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Annotation Singleton TRs VNTRs Percentage

Intergenic 87,502 4,259 4.87
Promoter 3,948 314 7.95
5’UTR 149 8 5.37
Coding 1,466 55 3.75
Splice site 535 70 13.08
Intron 80,295 4,170 5.19
3’UTR 926 26 2.81
Promoter and other intragenic 2,803 240 8.56
Other intragenic 593 38 6.41

Table 3.4: TR and VNTR annotations, by RefSeq gene fea-
tures. Shown are the number of TRs and VNTRs that overlap a given
gene feature. Percentage is the ratio of VNTRs to TRs in each category.
VNTRs are overrepresented in the splice site and promoter categories
relative to other categories. Note, the “Intergenic” annotation applies
to all TRs that do not overlap another category. “Promoter and other
intragenic” applies to TRs which overlap the promoter region of a gene,
or a neighboring gene, and one of the intragenic regions. Some intra-
genic TRs overlapped multiple classes, either because they spanned
multiple regions, or due to alternative gene splicing/transcription start
sites. These are labeled as “Other intragenic”.

TRs by common classes of genomic regions, we see that the majority of these overlap

‘intergenic’ regions, followed by ‘intron’, and ‘promoter’ regions, in decreasing order

(table 3.4). 75 VNTR loci overlapping a coding site (the 55 from the “Coding” row

plus 20 more from the “Other intragenic” row in table 3.4), one has a pattern size

which is not a multiple of 3 according to TRF. This TR primarily overlaps exon 1

of the gene LYSMD4 (Entrez ID 145748) and was detected in one sample, NA24631,

with a loss of one copy. Such a copy number change would result in a reading frame

shift. An alternative transcript of this gene has a transcription start site (TSS)

further downstream than other transcripts for the same gene, placing it directly in

the middle of the reference location of this TR. However, this allele is eliminated by

mlZ post-processing due to poor read support.

Among the intragenic VNTRs, three VNTRs overlap variants annotated in the

ClinVar database. One is a 45-bp VNTR in intron 5 of USH1C and is implicated
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in Usher Syndrome 1 and 1C, though there is conflicting evidence of pathogenicity

(ClinVar Variation ID: 20181, TRID: 182325055) (Savas et al., 2002). Another is a 30-

bp VNTR in the promoter region of MAOA (ClinVar ID: 9968, TRID: 183311386),

where a lower copy number is associated with Autism Spectrum Disorder (ASD)

and antisocial behavior (Cohen et al., 2003). The last is a 12-bp VNTR in the

5’ flanking region of CSTB (ClinVar ID: 55956, TRID: 182814480), where a large

increase in pattern copies is associated with Unverricht-Lundborg syndrome (also

known as EPM1), a neurodegenerative disease (Lafreniére et al., 1997). Wild-type

alleles for the CSTB VNTR are two to three copies (reference has 3 copies), while

pathogenic alleles have over 40 copies. The CSTB VNTR is the only one short enough

to be observed in genomes outside the 250bp samples, and overall we detect the benign

two and three copy alleles. Likewise, for the USH1C VNTR, only benign alleles are

observed as the reportedly pathogenic allele would be too long to be spanned by our

longest reads. A potentially pathogenic allele is observed in one individual of the

Y117 family for the MAOA VNTR, where a 2 copy VNTR is associated with ASD or

antisocial behavior. The individual is heterozygous at that locus and the pathogenic

allele is supported by 8 reads. ClinVar classifies these VNTRs as “microsatellite”

loci while dbSNP classifies the USH1C and MAOA variants as “indels” (the CSTB

VNTR does not appear in dbSNP).

The majority of commonly detected loci (see 3.3.4) are found in intergenic or

intronic regions. Genes of potential interest among the intronic VNTRs are ZNF544

(a zinc finger protein, involved in regulation of RNA polymerase II), TP53 (a tumor

supressor protein), and PCDH15 (a calcium-binding protein in which mutations may

result in hearing loss and Usher Syndrome Type 1F). A selected list of these can be

seen in supplementary table 3.S2.
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Loci All All heterozygous,
Trio genotyped heterozygous Inconsistent all different Inconsistent

in all

Y117 3,485 353 3 56 1
WGS500 Trio 1 221 21 2 0 NA
WGS500 Trio 2 187 26 0 0 NA
CEPH Trios (904, 1013) (35, 61) 0 (0, 3) 0
GIAB AJ Trio 2,901 268 0 30 0
GIAB Chinese Trio 2,302 194 2 9 0

Table 3.5: Consistency with Mendelian inheritance of VNTR
genotypes in trios. Only loci detected in all members of a trio were
considered (column 2). When all genotypes at a locus are called as
heterozgyous, only 7 loci are inconsistent. Requiring that all geno-
types be different as well further significantly reduces the number of
loci under consideration and yields only 1 locus as inconsistent. CEPH
family results are summarized, with the lowest and highest values seen
throughout all 13 trios given in parenthesis.

3.3.7 Consistency of Genotype Inheritance.

Consistency with Mendelian inheritance. Consistency means that the genotype

of a child can be explained as one allele from the mother and one from the father. It

was evaluated for all trios in the datasets, i.e., the two trios in the WGS500 dataset,

the Ashkenazi, Yoruban, and Chinese trios, and all 13 possible trios from the CEPH

1463 family. A locus was considered for evaluation if it was detected in all members

of the trio and called heterozygous in all. A second stricter criterion additionally

required that all three genotypes had to be different. Failure to take these criteria

into consideration could lead to false interpretations of consistency. For example, in

violation of the all called heterozygous criterion, let the mother be A|B, the father be

B|C and the child be A|C. If both parents are detected as heterozygous, but only allele

A is detected in the child, then the genotype appears to be A|A and the result appears

to be inconsistent because the father has no A allele. Similar situations arise when

only one allele is detected in one of the parents. In violation of the all heterozygous

and all different criteria, let the parents be as above, the child be A|B, and all called
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heterozygous. In this case the data are consistent with Mendelian inheritance, but

do not exclude the possibility that VNTRseek is systematically categorizing single

alleles A and B from two independent loci as two alleles from the same locus.

Under both criteria, only a handful of loci were inconsistent (Table 3.5). No

inconsistencies were found in the Ashkenazi and CEPH trios and one WGS500 trio.

The other WGS500 trio, showed two inconsistencies as did the Chinese trio. The

Yoruban trio showed three inconsistencies under the lenient criterion and one under

the strict criterion.

The single Yoruban inconsistency at the strict criterion (locus: TRID 182759931)

appears to be an artifact. The maternal and paternal genotypes were -1/+2 and 0/+2,

respectively, while the child’s genotype was +1/+2. However, the -1 and +1 alleles

had support of only 2 reads each while the other alleles had support consistent with

the coverage and yielding a homozygous genotype in the mother and child (+2/+2 in

the mother – 29 reads, +2/+2 in the child – 33 reads) and a heterozygous genotype

in the father (0/+2 – 13/16 reads). Closer examination of the mapping alignments

showed that the -1 and +1 reads did not fully span the arrays, and the left ends were

mapped incorrectly into the left flank with a number of errors below our threshold.

3.3.8 Characteristics of the reference set that potentially preclude allele

detection

TRs which contain fewer than 2 copies of their pattern would not have copy losses

detected by VNTRseek because the minimum copy number TRF can detect is 1.8.

Approximately 75% of our reference set has a reference copy number of 2.7 or below.

Therefore, whole copy loss in these TRs would be invisible to us. Figure 3·3a shows

how this may be significant, as the most common variant observed is a loss of one

copy with respect to the reference. Additionally, TR alleles with array length plus

minimum flanking sequence longer than a read would not be detected by VNTRseek.
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16% (36,631) of the singleton, non-“multi” TRs in our reference set have a reference

array length longer than 80bp (the maximum array length a 100/101bp read can

span) and 0.04% (10,248) are longer than 230bp (the maximum array length for the

250bp read sets).

3.4 Discussion

We present a thorough investigation of VNTRs in 370 WGS data sets, and detail how

these variants may be significant sources of variation by placing them in a genomic

context and demonstrating their variability.

Given the limitations of both our methods, and the available data, it is clear that

more variants are likely yet to be discovered. Analyzing these will require longer

reads, higher quality data, and in some cases novel methods. Our lab is already

investigating methods to analyze variation in loci where TRF and VNTRseek are

unable to detect TRs. However, we argue that the data presented here are compelling

enough and complete enough so as to act as a resource for further study. The variants

we discovered span all regions of the genome, both coding and non-coding, and most

do not appear in curated databases. We hope that our work enables others to pursue

yet another avenue of research as we uncover more insight into the variability of the

human genome.

The variants discovered here will be made available both in data repositories such

as dbSNP, and our own managed resource, a database of VNTRs.

3.4.1 Data

Data for the 370 genome samples used in this study were obtained from the URLs in

table 3.6.
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Dataset (individuals) URL or Accession numbers

1000 Genomes (330) ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
CEPH 1463 (16) http://www.illumina.com/platinumgenomes/
HapMap Y117 trio (3) https://www.ebi.ac.uk/ena/data/view/PRJEB4252

NCBI BioProject: PRJEB4252
WGS500 (8) https://www.ebi.ac.uk/ena/data/view/PRJEB9151
CHM1 (1) https://www.ncbi.nlm.nih.gov/sra/SRX652547
CHM13 (1) NCBI SRA: SRR1997411, SRR3189741, SRR3189742,

and SRR3189743
GIAB AJ Trio (3) ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

AshkenazimTrio
GIAB Chinese Trio (3) ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

ChineseTrio
GIAB NA12878 (1) ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

NA12878/NIST_NA12878_HG001_HiSeq_300x/
Tumor/Normal Pairs (4) https:

//basespace.illumina.com/projects/38600562

Table 3.6: Links to dataset sources. Datasets used in this study
were collected from publicly available sources. URLs are for the repos-
itories containing the data, or the specific project or experiment page
with download links. In all cases, gzipped FASTQ files were used.

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
http://www.illumina.com/platinumgenomes/
https://www.ebi.ac.uk/ena/data/view/PRJEB4252
https://www.ebi.ac.uk/ena/data/view/PRJEB9151
https://www.ncbi.nlm.nih.gov/sra/SRX652547
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_300x/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_300x/
https://basespace.illumina.com/projects/38600562
https://basespace.illumina.com/projects/38600562


56

Avg. per Mb Fraction in chr ends Total
Chr TRs VNTRs TRs VNTRs TRs VNTRs

chr1 57.18 2.65 0.14 0.29 14,238 661
chr2 64.84 3.01 0.14 0.31 15,757 731
chr3 61.31 2.22 0.10 0.22 12,200 441
chr4 68.91 2.93 0.13 0.34 13,162 559
chr5 63.31 2.73 0.15 0.39 11,522 497

chr6 66.19 3.04 0.16 0.35 11,319 519
chr7 68.34 3.40 0.22 0.41 10,934 544
chr8 68.92 3.27 0.21 0.42 10,062 477
chr9 53.53 2.68 0.24 0.39 7,441 373
chr10 69.34 3.88 0.27 0.48 9,291 520

chr11 62.67 2.92 0.20 0.38 8,523 397
chr12 66.37 3.01 0.20 0.43 8,893 403
chr13 61.70 2.46 0.23 0.44 7,095 283
chr14 53.08 2.40 0.19 0.33 5,733 259
chr15 43.79 1.76 0.16 0.28 4,467 180

chr16 65.82 4.19 0.39 0.60 5,990 381
chr17 66.85 4.95 0.38 0.60 5,615 416
chr18 67.21 3.35 0.32 0.48 5,444 271
chr19 76.54 4.59 0.45 0.59 4,516 271
chr20 69.08 4.14 0.44 0.60 4,490 269

chr21 66.57 3.81 0.40 0.67 3,129 179
chr22 56.24 4.47 0.45 0.61 2,868 228
chrX 46.81 1.43 0.16 0.19 7,349 224
chrY 17.33 0.16 0.25 0.33 1,005 9
Average 60.91 3.06 Total 191,043 9,092

Table 3.S1: Distribution of singleton TRs and VNTRs per
chromosome. Reference TRs and VNTRs are not distributed uni-
formly in the chromosomes. Both are overrepresented in the first and
last 10 Mb of the chromosomes (excluding telomeres) listed as ”chr
ends” above, with the VNTR proportion more pronounced than the
TR proportion. Note that percentages in the chromosome ends natu-
rally increases as the chromosome size decreases.

3.5 Supplementary Material
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TRID Gene Location dbSNP rs ClinVar ID Sample
Calling

PMIDs Comment

183169331 IRF5 Exon 6/9,
Intron 5/7,
Intron 6/9

rs60344245 AW CRS 1631 23049601;
15805103

WGS500 trio unaffected
mother and others. Is
multi in CHM13 only.

182388468 KRT2 Exon 1 rs763805940 HG005 9804344 GIAB Chinese child
182318145 DRD4 Exon 3 rs765323854 HG006 24229552 GIAB Chinese father
182318121 CDHR5 HG005 GIAB Chinese child.

Entrez gene says repeats
are non polymorphic

182574350 GP1BA Exon 2,
Intron 2

rs886038267 255466 HG006 1577776;
26191334

GIAB Chinese father.
ClinVar says likely benign

183311386 MAOA Exon 1 9968 NA19238 12919132 Y117 Mother. ClinVar:
Pathogenic; risk factor

182325055 USH1C Intron 5,
Intron 4

rs55983148 20181 NA19240 11810303 Y117 child. ClinVar:
Conflicting
interpretations of
pathogenicity

182814480 CSTB Promoter rs386833438 55956 HG03616 9054946 Sample: 1000 Genomes,
BEB population. ClinVar:
Pathogenic. 0 and -1
alleles detected.
Literature has +1 as
pathogenic.

182468054 NPAS3 rs1038697388 HG02941 Sample: 1000 Genomes,
ESN population. -1 allele
observed, and supported
by dbSNP.

182610081 FOXK2 Exon 1 rs779355780 NA19239,
NA19240

Sample: 2 members of
Y117 pedigree (Yoruban
trio). -1 allele observed
and supported by dbSNP.

182168889 HES4 Intergenic rs36126598 We find alleles +2 to +6,
dbSNP lists a deletion
and duplication.
Downstream variant.

183178235 NOS3 Intron 5,
Intron 4

rs869109213 NA19239 Associated with
smoking-dependent risk
for coronary artery
disease

rs61722009 NA19240 23176758;
17018701;
9535806

182328935 BDNF Intron 1 rs67192910 CHM13,
NA19238,

NA19239, AJ
Trio,

NA24631,
NA24695

rs931222868 is also a
possible match in dbSNP
for a -2 allele. We only
see the -1 allele.

Table 3.S2: Intragenic or gene-proximal VNTRs observed as
polymorphic in external databases. The closest gene to the locus
is given in the “Gene” column, and the location relative to the gene is
given in the “Location” column. If the gene is known to have multiple
possible transcripts, and the VNTR locus is internal to the gene, the
“Location” column will have a comma separated list of locations. The
closest relevant entry in dbSNP is given in the column of the same
name. Should the variant have been submitted to ClinVar, then its
ID in ClinVar will be given as well. Samples in which the locus has
been observed are listed in the “samples” column. Some VNTRs are
mentioned in literature as being associated with some phenotype, and
relevant PMIDs are listed in the “PMIDs” column. Notes regarding
these VNTRs can be found in the last column, “Comments”.
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Figure 3.S1: TR and VNTR distribution along chromosomes.
(a) Counts of reference TR loci per 5MB. (b) Counts of VNTR loci
per 5MB. VNTRs are more common towards chromosome ends, both
in actual counts and in proportion to the number of reference TRs.
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Figure 3.S3: Limitations of the reference set with respect to
the ability to detect copy gain or loss. We divide the reference
set by the detectability of alleles up to a copy change of ±1. Loci in
the “None” category cannot be detected. The “Loss” category com-
prises loci which can only be spanned by a read with a copy loss of 1.
“Ref” means that only the reference allele can be spanned. “No gain”
means reference and -1 alleles can be spanned, and “No Loss” means
the reference and +1 alleles can be spanned, but the -1 allele cannot
be detected by TRF. “All” indicates that at least the reference, -1, and
+1 alleles are detectable. (a) 100/101 bp reads. (b) 250 bp reads
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Figure 3.S4: Gain and loss of copies for 250bp reads. Top: At
each reference array length (bin size = 1), the numbers of loci which
gained (positive) and lost (negative) copies relative to the reference are
shown. The black line and points are the averages of the two values.
Bottom: Fraction of loci that have two few copies (≤ 2.8) for loss to be
detected by TRF and VNTRseek. Gain is clearly dominant at shorter
array lengths where the effect of read length on the ability to detect
gain is minimal and gain can only be detected for a large fraction of
the loci. At longer array lengths, loss dominates as gain increasingly
would make the arrays longer than the read length.
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Figure 3.S5: Gain and loss of copies for 100/101bp reads. The
effect is similar to that observed for the 250bp reads.
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Figure 3.S6: VNTR unique to the 1000 Genomes HG00362 sample.
Genotype is heterozygous with two observed alleles, 3.3 copies (refer-
ence) and 4.3 copies. Reference is shown at the top, reads below. Green
is flanking sequence. Blue is consensus sequence of reference. Aqua is
consensus sequence of read. Red is tandem copies. Within arrays, color
indicates match with reference consensus sequence. letters or dash indi-
cates difference from consensus. Within flanks, color other than green
indicates difference from reference flanks.
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Figure 3.S7: VNTR unique to the 1000 Genomes HG00236 sample.
Genotype is heterozygous with two observed alleles, 5.4 copies (refer-
ence) and 3.4 copies. Reference is shown at the top, reads below. Green
is flanking sequence. Blue is consensus sequence of reference. Aqua is
consensus sequence of read. Red is tandem copies. Within arrays, color
indicates match with reference consensus sequence. letters or dash indi-
cates difference from consensus. Within flanks, color other than green
indicates difference from reference flanks.
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Figure 3.S8: VNTR unique to the 1000 Genomes HG01991 sample.
Genotype is heterozygous with two observed alleles, 3.2 copies (refer-
ence) and 2.2 copies. Due to the way TRF detects the TRs, the ends of
the TR are slightly inaccurate in the 2.2 copy reads because of the small
number of copies. The 2.2 copy allele has lost the first copy present
in 3.2 copy allele. Reference is shown at the top, reads below. Green
is flanking sequence. Blue is consensus sequence of reference. Aqua is
consensus sequence of read. Red is tandem copies. Within arrays, color
indicates match with reference consensus sequence. letters or dash indi-
cates difference from consensus. Within flanks, color other than green
indicates difference from reference flanks.
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Figure 3.S9: VNTR unique to the 1000 Genomes HG02282 sample.
Genotype is heterozygous with two observed alleles, 2 copies (reference)
and 3 copies. Reference is shown at the top, reads below. Green is
flanking sequence. Blue is consensus sequence of reference. Aqua is
consensus sequence of read. Red is tandem copies. Within arrays,
color indicates match with reference consensus sequence. letters or
dash indicates difference from consensus. Within flanks, color other
than green indicates difference from reference flanks.
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Figure 3.S10: VNTR unique to the 1000 Genomes HG02073 sample.
Genotype is heterozygous with two observed alleles, 3.3 copies (refer-
ence) and 4.3 copies. Reference is shown at the top, reads below. Green
is flanking sequence. Blue is consensus sequence of reference. Aqua is
consensus sequence of read. Red is tandem copies. Within arrays, color
indicates match with reference consensus sequence. letters or dash indi-
cates difference from consensus. Within flanks, color other than green
indicates difference from reference flanks.
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Figure 3.S11: VNTR unique to the 1000 Genomes HG02073 sample.
Genotype is heterozygous with two observed alleles, 2.8 copies (refer-
ence) and 3.8 copies. Reference is shown at the top, reads below. Green
is flanking sequence. Blue is consensus sequence of reference. Aqua is
consensus sequence of read. Red is tandem copies. Within arrays, color
indicates match with reference consensus sequence. letters or dash indi-
cates difference from consensus. Within flanks, color other than green
indicates difference from reference flanks.
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Figure 3.S12: VNTR unique to the 1000 Genomes HG03663 sample.
Genotype is heterozygous with two observed alleles, 5.3 copies (refer-
ence) and 3.3 copies. This TR occurs in a stretch of other short TRs.
Reference is shown at the top, reads below. Green is flanking sequence.
Blue is consensus sequence of reference. Aqua is consensus sequence of
read. Red is tandem copies. Within arrays, color indicates match with
reference consensus sequence. letters or dash indicates difference from
consensus. Brown indicates a gap induced by an insertion relative to
the reference. Within flanks, color other than green indicates difference
from reference flanks.



69

Figure 3.S13: VNTR unique to the 1000 Genomes HG01257 sam-
ple. Genotype is homozygous with one observed alleles, 3.2 copies.
This TR occurs in an A/T rich region. Reference is shown at the top,
reads below. Green is flanking sequence. Blue is consensus sequence of
reference. Aqua is consensus sequence of read. Red is tandem copies.
Within arrays, color indicates match with reference consensus sequence.
letters or dash indicates difference from consensus. Within flanks, color
other than green indicates difference from reference flanks.

Figure 3.S14: VNTR unique to the 1000 Genomes HG01889 sample.
Genotype is heterozygous with two observed alleles, 2.1 copies (refer-
ence) and 3.1 copies. Reference is shown at the top, reads below. Green
is flanking sequence. Blue is consensus sequence of reference. Aqua is
consensus sequence of read. Red is tandem copies. Within arrays, color
indicates match with reference consensus sequence. letters or dash indi-
cates difference from consensus. Within flanks, color other than green
indicates difference from reference flanks.
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Figure 3.S15: VNTR unique to the 1000 Genomes HG02095 sample.
Genotype is heterozygous with two observed alleles, 2.4 copies (refer-
ence) and 3.4 copies. Note the inaccuracy of the TR end in the last
read due to the way TRF detects TRs. Reference is shown at the top,
reads below. Green is flanking sequence. Blue is consensus sequence of
reference. Aqua is consensus sequence of read. Red is tandem copies.
Within arrays, color indicates match with reference consensus sequence.
letters or dash indicates difference from consensus. Within flanks, color
other than green indicates difference from reference flanks.



Chapter 4

VNTRdb – A database of VNTRs meant

to facilitate the distribution and analysis

of VNTR data in the human genome

VNTRdb is a database for Variable Number Tandem Repeats. VNTRdb is

designed for the visualization, curation, and analysis of VNTRs. It is released

under an open license and is written in Perl (with some parts in C for perfor-

mance) using Mojolicious and SQLite. We developed the frontend of VNTRdb

to be intuitive and straightforward to use, focusing on search and presenta-

tion of information. The initial data set available for analysis was produced

in Hernandez et al. (2019). A preview of VNTRdb is currently available at

http://orca.bu.edu/vntrdb.

4.1 Introduction

Variable Number Tandem Repeats (VNTRs) are polymorphic minisatellite loci, with

alleles varying by the number of copies of the tandemly repeating pattern. Due to

their instability (Jeffreys et al., 1985; Kimpton et al., 1993), VNTRs have proven to

be effective for use as genetic markers and have been used to study genetic diversity

(Hasan et al., 2012; Hernandez et al., 2019), and migration and breeding patterns

(Wink, 2006), to identify and distinguish between bacterial strains (Blouin et al.,

2012; Pourcel et al., 2011; Zaluga et al., 2013; Chalker et al., 2015; Parvej et al.,

2019), and to establish paternity/familial relationships (Jeffreys et al., 1991). In the

human genome, VNTRs have been detected both inter and intragenically (Brookes,

2013; Bakhtiari et al., 2018b; Audano et al., 2019; Hernandez et al., 2019) and some
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have been tied to disease phenotypes (Brookes, 2013; Bell et al., 1982, 1984; Cervera

et al., 2007; Leung et al., 2017).

Current resources which track VNTRs are dbSNP (Sherry et al., 2001), dbVar

(MacDonald et al., 2014), and the European Variation Archive (EVA) (Cook et al.,

2016). Using dbSNP and dbVar for VNTRs requires additional filtering to exclude

single nucleotide polymorphisms (SNPs) and overlapping variants of different lengths,

or in the case of dbVar, using external tools such as the NCBI Variation Viewer or

BEDTools (Quinlan, 2002). dbSNP and dbVar also place a greater focus on the exact

sequence composition of the variation, while we consider VNTR alleles in the less

restrictive sense of copy number change. Another database by the name of VNTRDB

is described in literature (Chang et al., 2007), but it focused on bacterial VNTRs and

is now apparently defunct.

At the time of this writing, VNTRdb is populated with data from an analysis of

370 whole-genome sequencing data sets from 368 individuals (chapter 3 and Hernan-

dez et al. (2019)).

4.2 Database design and overview

VNTRdb is primarily written in Perl using the Mojolicious modern web framework

(https://mojolicious.org). VNTRdb perfoms some on-the-fly sequence alignment

when displaying TR diagrams, which is provided by code written in C and borrowed

from VNTRview and VNTRseek (Gelfand et al., 2014). The backend database is

constructed using SQLite and the subset of SQL which that system supports. Some

SQL is used within the codebase, but we primarily rely on the SQL::Abstract package

or the DBIx::Class object-relational mapping (ORM) library to generate SQL queries

from possibly complex queries made to the server.

A user can browse the VNTRdb website by organism, and then browse the avail-

https://mojolicious.org
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(a) (b)

Figure 4·1: Index of VNTRs (a) and samples (b) for human data in
VNTRdb. The “+” icons indicate that the row can be expanded for
further information, as it was unable to display the full contents of the
row in the current screen size. VNTRs can be downloaded in BED and
CSV formats (for any list of VNTRs), or in VCF format (samples only)
from the menu on the upper left.

able data by genome sample, genomic location, or variant locus ID (figure 4·1). Vari-

ants are labeled by their ID in TRDB(Gelfand et al., 2007) and by their VNTRdb

ID, and search can performed using chromosomal coordinates. VNTRdb supplies an

Application Programming Interface (API), allowing programmatic access to the data

from a script or third party resource.

We designed a simple REST API using the OpenAPI 2.0 specification (formerly

known as Swagger, https://www.openapis.org), which allows us to describe the

API as a formatted text file (either YAML or JSON) which is also machine readable.

The VNTRdb website uses the API internally as well, meaning that significant parts

of its functionality are exposed for external developers to use.

4.3 Typical use case examples

Suppose an analysis revealed the potential for a VNTR within the specific region,

denoted using UCSC genome browser chromosomal coordinates, chr11:17527050-

https://www.openapis.org
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17527210. A user would visit the page at http://orca.bu.edu/vntrdb/vntrs/

Homo%20sapiens/hg38 and type in the region into the search bar above the list of

VNTRs (figure 4·1a). The user will then be presented with a list of only those VNTRs

with an overlap of at least one nt with the given region. Searching for VNTRs within

a gene region requires knowing the coordinates of a gene on the reference assembly,

although support for gene names (symbols) is planned.

Alternatively, VNTRdb allows browsing of all samples, and their genotype calls

at every TR reference locus. Researchers interested in particular samples can find

them based on their Coriell ID, population, or other external ID, as in the cases of

CHM1 (Chaisson et al., 2014), CHM13 (Huddleston et al., 2017), and samples from

WGS500 (Taylor et al., 2015) which all have their own identifiers (figure 4·1b).

If a user is interested in the variability of a particular locus, the VNTR informa-

tion page has a display which shows the different alleles that are in the database along

with a multiple alignment between the reference sequence and the individual support-

ing sequences from each sample (figure 4·3). Both sample and VNTR record pages

link out to relevant external sources, including the UCSC genome browser (Tyner

et al., 2017), dbSNP, and ClinVar (figure 4·2). This enables users to check with

more resources if the variant they have found or are interested in, has been described

elsewhere, and to easily inspect the region further.

4.4 Conclusion and continued development

VNTRdb is a powerful tool for the discovery, analysis, and visualization of VNTR

data. We currently do not have plans to allow submission of VNTRs via the web

interface, but are planning a process for submission in some other form.

VNTRdb is under active development, and there are more features we would

like to include. Searching for VNTRs by gene symbol or cytogenic location can be

http://orca.bu.edu/vntrdb/vntrs/Homo%20sapiens/hg38
http://orca.bu.edu/vntrdb/vntrs/Homo%20sapiens/hg38
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(a)

(b)

Figure 4·2: VNTR and sample record pages. Links to external sources
can be found here, as well as additional information on the sample or
VNTR. Genotypes for samples can be downloaded in VCF format.
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Figure 4·3: Example multiple alignment of allele and reference se-
quence. The pane is scrollable and multiple alleles are displayed in
stacked panes, which are collapsible.

performed using data from the UCSC browser, but it may be included as a search

option in VNTRdb (in hg38 only). Further curation of variants in the database is

also planned, as one challenge we experienced in our research was the exact matching

between dbSNP records and variants we detect.

VNTRdb was intentionally designed to be independent of the organisms repre-

sented by the data, though we currently only have human data available. It is de-

veloped under an open license and the server can also be deployed on a self-hosted

server. Our deployment is meant to serve as a well-curated resource for use by others,

but the availability of the code and data allows users to host mirrors. Contributions

to the code are welcome.

4.5 Data availability

A preview of VNTRdb is currently available at https://orca.bu.edu/vntrdb. The

source code will also be available on Bitbucket and GitHub. All data is available in

VCF format (variants), BED format (VNTR loci), and as an SQLite database (all

data).
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Chapter 5

Conclusions

5.1 Discussion

The work performed in this study contributes to our collective understanding of the

diversity of a class of genetic mutations which have been historically poorly under-

stood and understudied. We have developed a tool which automates the process of

VNTR discovery, shown that it can perform with a high degree of accuracy, and

have made significant improvements in its performance, increasing its usefulness and

encouraging its adoption. Already we have received feedback from other researchers

in the field who have either demonstrated interest in the technology, or have already

deployed it in their research. This work has been presented both locally and abroad,

and has been met with a positive reaction overall and interest.

The database discussed in chapter 4 complements the analysis from chapter 3 well

by offering a customized solution to the discovery and further study of these variants

by other researchers.

5.2 Future work

There are several exciting opportunities for further study in this area which can have

a continuing impact on the ever-growing and ever-changing field of genetic sequencing

and testing. Other methods we are developing in our lab can supplement the data

generated by VNTRseek by focusing on array lengths outside the detection range of
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VNTRseek, such as TR arrays which are too long to be spanned by a read, or novel

TRs which would not be detected by VNTRseek since it relies on a target list of loci.

Better alignment methods such as BitPal (Loving et al., 2014) (developed in our lab),

highly parallel graphics processing-based programming methods, and more efficient

storage and design patterns will further improve the performance of VNTRseek and

TRF.

Outside of programming and the human genome, VNTRseek could provide an

opportunity to further explore the mutational landscape of VNTRs in pathogenic

microbes. In chapter 1 we discussed applications of microsatellite loci in disease

tracking. These methods rely on slow “wet-lab” based technology which requires

isolation of specific regions of the bacterial genome. Instead, VNTRseek offers a way

of going from sequencing data directly to a profile of VNTRs which can be used to

make a quick determination, or simply be used to inform on the population structure.
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