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Abstract

The structures and stabilities of hollow gold clusters are investigated by

means of density functional theory (DFT) as topological duals of carbon

fullerenes. Fullerenes can be constructed by taking a graphene sheet and

wrapping it around a sphere, which requires the introduction of exactly 12

pentagons. In the dual case, a (111) face-centred cubic (fcc) gold sheet can be

deformed in the same way, introducing 12 vertices of degree �ve, to create

hollow gold nano-cages. This one-to-one relationship follows trivially from

Euler’s polyhedral formula and there are as many golden dual fullerene

isomers as there are carbon fullerenes. Photoelectron spectra of the clusters

are simulated and compared to experimental results to investigate the

possibility of detecting other dual fullerene isomers. The stability of the

hollow gold cages is compared to compact structures and a clear energy

convergence towards the (111) fcc sheet of gold is observed.

The relationship between the Lennard-Jones (LJ) and sticky-hard-sphere

(SHS) potential is investigated by means of geometry optimisations starting

from the SHS clusters. It is shown that the number of non-isomorphic struc-

tures resulting from this procedure depends strongly on the exponents of the

LJ potential. Not all LJ minima, that have been discovered in previous work,

can be retrieved this way and the mapping from the SHS to the LJ struc-

tures is therefore non-injective and non-surjective. The number of missing

structures is small and they correspond to energetically unfavourable minima

on the energy landscape. The optimisations are also carried out for an ex-

tended Lennard-Jones potential derived from coupled-cluster calculations for

the xenon dimer, and, although the shape of the potential is not too di�erent

from a regular (6,12)-LJ potential, the number of minima increases substan-

tially.

Gregory-Newton clusters, which are clusters where 12 spheres surround

and touch a central sphere, are obtained from the complete set of SHS clusters.

All 737 structures result in an icosahedron, when optimised with a (6,12)-LJ

potential. Furthermore, the contact graphs, consisting only of atoms from the

outer shell of the clusters, are all edge-induced sub-graphs of the icosahedral

graph. For higher LJ exponents the symmetry of the potential energy surface

breaks away from the icosahedral motif towards the SHS landscape, which

does not support a perfect icosahedron for energetic reasons. This symmetry

breaking is mainly governed by the shape of the potential in the repulsive

region, with the long-range attractive region having little in�uence.
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1 Introduction

1.1 Nanotechnology

Not many scientists can claim to have envisioned an entirely new �eld of

physics, but it is not an overstatement to say that the �eld of nanotechnology

was developed in large parts due to one of the most brilliant physicists of

the 20th century, Richard Feynman. In his talk “There’s Plenty of Room at

the Bottom—An invitation to enter a new �eld of physics”
[1]

he challenges

scientists to construct devices and compounds that only consist of a few tens

or hundreds of atoms. Such objects usually turn out to be a few nanometres

(10−9
m) in diameter, giving rise to the �eld’s name. It is astounding to read

through the transcript of Feynman’s talk from today’s perspective, as it is

�lled with ideas that have become a reality now. For example, he devises the

miniaturisation of the computer and even mentions the concept of a facial

recognition system. One of the reasons Feynman gives for the usefulness of

nanoscience is cost e�ectiveness. Scaling everything down in size decreases

the amount of materials needed drastically. As a side e�ect one ends up with

much smaller and potentially more powerful devices and less waste.

Feynman noted that in order to e�ectively use nano-scale devices one needs

to be able to investigate these small structures down to the atomic level, some-

thing that was not possible with the electron microscopy methods available

at the time. This became a practical reality with the invention of the scanning

tunneling microscope (STM) in 1981,
[2]

which secured its inventors the Nobel

prize in 1986. Figure 1.1a shows an image produced with such a microscope.

One problem with STM imaging is that it only works on conductive surfaces.

However, this was resolved with the introduction of the atomic force micro-

scope (AFM), which does not rely on a tunnelling current to produce atomic

resolution.
[4]

The technology was perfected to such a degree that it became

possible to move individual atoms and arrange them in almost any pattern

imaginable (�gure 1.1b).
[3]

In the last part of his talk, Feynman speaks about how “atoms on a small

scale behave like nothing on a large scale, for they satisfy the laws of quantum

mechanics”. This property has found application in so-called nano-particles,

which refers to molecules or chemical compounds in general with the size of

a few nanometres. Belonging to this group are for example the Buckminster-

fullerenes (or short fullerenes) discovered by Kroto
[5]

or carbon nano-tubes,
[6]

and their discovery helped fuelling the push for nanotechnology even further.

1
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(a) (b)

Figure 1.1 (a) STM image of a clean gold (100) surface showing atomic res-

olution. The ridges are a result of surface reconstructions. The image is part

of the public domain. (b) STM image of Xenon atoms arranged on a nickel

(110) surface in a pattern resembling the IBM logo. Reprinted by permission

from Springer Nature Customer Service Centre GmbH: Springer Nature, “Po-

sitioning Single Atoms with a Scanning Tunnelling Microscope”,
[3]

©1990.

It was however not until the beginning of the 21st century, that nanotechnol-

ogy gained traction by securing public funding, e.g. from the National Nan-

otechnology Initiative, a U.S. American federal government program. This in-

crease in research funding gave rise to many interesting scienti�c projects like

the “Nanocar”
[7]

or Graphene transistors.
[8]

Today, the technology is present

in many consumer products with over 800 goods reported to contain nan-

otechnology.
[9]

1.2 Cluster Science

A term that is often used for chemical compounds in nanotechnology is clus-

ter, but the de�nition of this term is still debated. Originally, it was proposed

as “an appropriate one [term] for a �nite group of metal atoms which are held

together mainly, or at least to a signi�cant extent, by bonds directly between

the metal atoms, even though some non-metal atoms may also be intimately

associated with the cluster”.
[10]

However, this de�nition limits itself only to

the fraction of metal atoms in the periodic table and the term is not neces-

sarily used in this form today. The most accurate de�nition of a cluster is

perhaps given through size, as almost any chemical compound with a �nite
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number of atoms of 2–10n (n / 7) atoms is referred to as a cluster.
a[11,12]

Therefore, clusters are structures, that are of intermediate size, bridging the

gap between small molecules and bulk solids, and they appear naturally when

discussing nucleation phenomena and nano-particles.

Clusters can be divided into several groups that are characterised by the

type of atoms comprising the cluster and therefore its electronic bonding

situation. For example, molecular clusters, which, due to their closed

electronic shells, mainly interact inter-molecularly via weak van-der-Waals

forces. However, the intra-molecular interactions are usually of covalent

nature. Such clusters are found for simple molecules, such as water,
[13]

ammonia
[14]

or carbon dioxide.
[15]

Without these attractive intermolecular

interactions there would not be a condensed phase. In contrast,

semi-conductor clusters are bound much more strongly by covalent

interactions. Their name stems from the type of atoms that make up the

cluster as they are semi-conductors in the solid state. Most famously, this

group includes the already mentioned carbon fullerenes,
[5]

but also other

semi-conductors like silicon
[16]

and germanium.
[17]

If a cluster is not

monoatomic and the di�erence in the electronegativity of the atoms is large

enough, the covalent bonding situation can change to ionic.

Figure 1.2 Buckminsterfullerene C
60

.

In this thesis, two types of clusters are considered, monoatomic metal and

rare gas clusters. The bonding situation in metal clusters is particularly inter-

esting, because of the high degree of delocalisation and non-directional bond-

ing. To describe this situation, several bonding models have been developed.

The most simple one is perhaps the liquid drop model which approximates the

metal cluster as a uniform conducting sphere, i.e. it is a classical electrostatic

model. The liquid drop model does not give rise to an electronic structure,

a

It should be noted that very large organic compounds like peptides are usually not consid-

ered clusters, and should be exempt from this de�nition.
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which is resolved in the spherical jellium model. In this model the cluster is

modelled as a uniform, positively charged sphere �lled with an electron gas,

which is solved using the Schrödinger equation. This gives rise to quantised

electron energy levels and therefore an electronic shell structure. For metal

clusters of not too many atoms it is also possible to use accurate quantum

chemical methods, which will be introduced in chapter 3.

Rare gas clusters can form at very low temperatures, when the average ki-

netic energy of the rare gas atoms is smaller than the weak dispersive forces

between them. The reason they interact so weakly is because of their closed

shell electronic structures, allowing for neither covalent nor ionic bonding.

As dispersive interactions are a correlation e�ect of the electrons, it is di�-

cult to describe them accurately with quantum chemical methods. However,

the interaction can be approximated by simple models like, for example, the

London formula.

Vdisp = −C6

r6
, C6 =

3α2I

4 (4πε0)2 (1.1)

Here, I is the ionisation potential and α is the atomic polarisability. In com-

bination with a term describing the repulsive contribution to the energy, the

Lennard-Jones potential can be derived, which agrees well with structural

and energetic predictions for rare gas clusters. The Lennard-Jones potential

will be explained in more detail in chapter 5.

1.3 The Potential Energy Surface

A question that naturally arises when studying clusters bound by a certain

potential is “how many stable structures exist for a given number of atoms

N”, and related to this “what is the most stable structure”. For this, it is useful

to investigate this problem from a mathematical point of view. If the move-

ment of the atomic nuclei is decoupled from the electronic movement (Born-

Oppenheimer approximation, section 3.2), the nuclei can be said to move on a

potential energy hypersurface. This potential energy surface (PES) is a multi-

dimensional function of all 3N atomic coordinates and it maps each point of

con�guration space to an energy value depending on the chosen potential. A

stable structure on this hypersurface corresponds to a local minimum, with

the most stable structure being represented by the global minimum. Thus, the

question of how many stable structures there are is equivalent to the ques-

tion of how many local minima can be supported by the multi-dimensional

potential energy surface. An example for such a hypersurface is shown in

�gure 1.3a. The distribution of the minima on the hypersurface can be in-

vestigated by dividing the con�guration space into basins of attraction as

shown in �gure 1.3b. A basin of attraction marks an area (or hyper-area for

multi-dimensional PESs) in which the enveloped minimum (blue dots) can be
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(a) (b)

Figure 1.3 (a) Example of a two-dimensional potential energy landscape and

(b) the same hypersurface represented with contour lines. Red lines mark the

boundaries of the basins of attraction around the minima (blue dots) and tran-

sition states (green dots). Reprinted �gures with permission from the Amer-

ican Physical Society: “Power-Law Distributions for the Areas of the Basins

of Attraction on a Potential Energy Landscape”,
[18]

©2007 by the American

Physical Society.

reached from any point of con�guration within the basin of attraction by fol-

lowing a steepest-descent path. These basins of attraction therefore tile the

energy landscape, and it was found that this tiling is very similar to that of

Apollonian packings.
[18]

The results also suggested that this is a universal fea-

ture of PESs, independent of the underlying potential. Furthermore, the area

of the basins seems to correlate with the depth of the corresponding mini-

mum, which makes �nding the global minimum on a PES a little bit easier as

it should correspond to the largest basin of attraction by area.

The question of stable structures can also be tackled from a di�erent point

of view, namely that of graph theory. Under the assumption that the atoms

in a cluster are connected, the question becomes “how many

non-isomorphic connected graphs exist for a speci�c number of vertices N”.

This problem is also known as the Graph isomorphism problem and no

analytic solution is known. However, it can be attempted to derive upper

and lower bounds within which the solution must lie. As graphs can be

represented by adjacency matrices (chapter 2.1), the maximum

number of such matrices can be used as a loose upper bound, i.e.

2N(N−1)/2 = O
(
exp
{
N2
})

di�erent matrices exist.
[19]

Some observations

suggest
[20]

that the growth is exponential, to be precise asymptotically

exponential.
[21,22]

Another interesting question with special importance for chemistry is the
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number of contacts or bonds a cluster can form. This question is

fundamentally linked to the Gregory-Newton problem, which asks “how

many spheres can be arranged around a central sphere of the same size such

that they all touch the central sphere”. As proven by Schütte et al.
[23]

there

can be no more than 12 spheres satisfying these conditions simultaneously.

1.4 Outline

In this thesis, three projects, in which clusters are investigated with both

mathematical and physical models, will be presented.

In the �rst project (chapter 7), a special type of metal cluster is investi-

gated. The gold clusters are hollow triangulations of spheres and can there-

fore be created by wrapping a cut-out from a (111) face-centred cubic sheet

of gold around a sphere. Graph-theoretically, they are related to fullerenes

as they represent their geometric duals. The structures and energies of the

clusters are investigated with quantum mechanical methods and their growth

behaviour is examined. Furthermore, photoelectron spectra are simulated and

compared to previous experimental results.

The second project (chapter 8) is concerned with the investigation of a re-

lation between two interaction potentials employed in cluster science. The

�rst one is the sticky-hard-sphere (SHS) potential, which is not continuous,

thus the stable clusters have to be searched by means of graph theoretical

methods through the adjacency relation. The form of this potential repre-

sents the mathematical limit of the Lennard-Jones (LJ) potential with respect

to the exponents approaching in�nity. Starting from the structures obtained

by the sticky hard sphere potential geometry optimisations are carried out

with LJ potentials with growing exponents and investigated with respect to

the convergence of the total number of unique structures towards the SHS

limit and their asymptotic exponential growth behaviour.

In the last project (chapter 9), the special case of the Gregory-Newton clus-

ters is revisited. First, the question is posed if very soft (small exponents) LJ

potentials allow a 13th sphere to pack with equal distance around a central

sphere. The set of SHS clusters is again used as a starting point for the next

part. It is searched for Gregory-Newton type clusters, which are then anal-

ysed by graph theoretical means. The aim was to understand if the graphs

spanned by the 12 surrounding spheres are sub-graphs of the icosahedral

graph. The reason for this investigation is linked to the fact that under the

conditions of the sticky hard sphere potential icosahedral symmetry cannot

be realised. However, this is known to be a very stable structural motif for LJ

systems. Therefore, the point at which the symmetry of the PES breaks and

the icosahedron is not supported by the PES is investigated. Finally, the set

of SHS clusters was analysed for Gregory-Newton clusters where one sphere

enters the second coordination shell. Here, the focus was put on �nding the
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shortest distance this sphere can have to the central sphere.





Part I

Theoretical Background





2 Graph Theory

Graph theory is used intensively in this thesis, therefore a small introduction

to this �eld is provided. Graph theory is a powerful mathematical tool to de-

scribe relations between pairs of objects. Its biggest advantage is the broad

range of applicability in �elds like computer science, biology, social sciences

and of course physics and chemistry. In the following sections the focus will

be put on introducing graph theory in general and demonstrating its useful-

ness in the scope of this thesis. If not mentioned otherwise the chapter is

mainly based on standard books on graph theory by West
[24]

and Balakrish-

nan.
[25]

2.1 The Definition of a Graph

The foundations for graph theory were laid out by Euler in his famous so-

lution to the Königsberg Bridge Problem.
[26]

The problem at hand was con-

cerned with a speci�c bridge layout that connected the island Kneiphopf with

the rest of the mainlands of the city of Königsberg via seven bridges. The

A B

C

D

(a)

A B

C

D

(b)

Figure 2.1 The Königsberg Bridge Problem. (a) Schematic representation

of the bridge layout of Königsberg with the river Pregel (blue), landmasses

(green) and bridges (red), and (b) respective graph drawing.

bridge layout is depicted schematically in �gure 2.1a. Is it possible for a citi-

zen of Königsberg to leave home, cross each bridge exactly once and return?

The answer is no and it was proven by Euler using a reduction of the problem

as shown in �gure 2.1b. Landmasses are reduced to circles and their connec-

tions via bridges is shown as lines between them. This simpli�cation makes

it easy to realise why the answer to the formerly posed question is no. It is

11
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clear that each landmass would need to be connected by an even number of

bridges for the desired traversal to exist.

Mathematically, a graph G is a triple that contains a vertex set N(G), an

edge set E(G), and a relation that associates two vertices (not necessarily

distinct) with each edge, i.e. it connects pairs of vertices via their endpoints.

Edges can form a loop by having both endpoints at the same vertex and mul-

tiple edges can connect the same vertices. However, simple graphs do not

contain loops or multiple edges and are more important for most practical

applications. A simple graph can now be de�ned by a set of unordered pairs

of vertices by de�ning each edge as e = uv or e = vu with u and v being the

endpoints (or vertices) of the edges. Then, neighbouring or adjacent vertices

are those that share an edge.

Graphs are often just represented as a graph drawing such as �gure 2.1b,

however, sometimes it can be useful to introduce a matrix representation.

A simple graph G with vertex set N(G) = {v1, v2, . . . , vn} and edge set

E(G) = {e1, e2, . . . , em} can be de�ned by writing an adjacency matrix A
that encodes the edge-connectivity of the vertex set, i.e. A is a n× n matrix

where each matrix element Aij represents the number of edges that connect

vi and vj . For the Königsberg Bridge problem one possible adjacency matrix

that corresponds to ordering the vertices alphabetically by their label is:

A =


0 1 2 2
1 0 1 1
2 1 0 0
2 1 0 0

 . (2.1)

An adjacency matrix is always symmetric and it can be used to easily deter-

mine the vertex degree, that is the number of edges connected to a particular

vertex, by calculating the sum over all entries in the corresponding row or

column.

Alternatively, the incidencematrix M is ann×mmatrix where each matrix

element Mij is either 1 or 0 depending on whether vi is an endpoint of ej . If

the matrix element Mij is 1 the vertex vi and edge ej are incident.

The labelling of the vertices in �gure 2.1b is arbitrary and so is the ordering

of the rows and columns in the adjacency matrix. It is clear that a di�erent

ordering still describes the same graph object and should therefore have no

in�uence on the properties of the graph. Permutation of the vertex labelling

for a given simple graph G that turns the vertex set N(G) into the vertex set

N(H) is called a bijection. If such a bijection exists the graphs G and H are

isomorphic to each other. This property is important for the discussion of a

speci�c type of cluster later on in this thesis (chapter 5.3.1).

If it is possible to order the vertices of a simple graph in such a way that

only two consecutively listed vertices are adjacent, the graph can be called a

path. An extension of this concept is the cycle, that requires an equal number
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of vertices and edges so that the graph can be drawn as a circle of sequentially

listed vertices. Consequently, removing an edge from a cycle always yields

a path. In many applications (e.g. road networks) it is not necessary for the

whole graph to represent a path or a cycle, but it is only important whether

the graph contains a path or a cycle. If the graph G contains the graph H , H
is called a sub-graph of G. This requires the vertex set of H to be contained

in N(G) (N(H) ⊆ N(G)) as well as the edge set E(H) (E(H) ⊆ E(G)) as

well as the assignment of the endpoints to be the same.

The Königsberg Bridge Problem is not only concerned with the nature of

the bridging network, but more so with how to traverse over it. In graph theo-

retical terms the desired solution is called a closed trail, which is a special case

of a walk, where no edge can be repeated (i.e. no bridge can be crossed twice)

and the endpoints have to be the same vertex.
a

A walk describes a way to tra-

verse over a graph by de�ning a list of vertices and edges v0, e1, v1, . . . , ek, vk
where the endpoints for each edge ei have to be vi−1 and vi (1 ≤ i ≤ k). One

possible trail (excluding one bridge) is shown in �gure 2.2a. For simple graphs

A B

C

D

(a) A,D-trail

A B

C

D

(b) C,A-walk

A B

C

D

(c) A,C-path

Figure 2.2 Example of one possible (a) trail, (b) walk and (c) path over the

bridges of Königsberg. Traversal is in direction of the arrows. Red edges

indicate not-traversed bridges.

walks and trails can be speci�ed by listing only vertices, as there can only be

one incoming and one outgoing edge per vertex and no loops. A short hand

notation for such a trail or walk can be given by stating its endpoints, e.g.

A,D-trail, however there is usually more than one way this trail could be laid

out. While trails don’t allow for repeated traversal of one edge, paths require

all vertex traversals to be distinct.

The de�nition of a path can also be used to de�ne whether a graph is con-

nected. In simple terms a graph is connected if there is a path leading from

each vertex to each other one, hence, for all u, v ∈ N(G) there must be a u, v-

path for G to be connected. An example of a disconnected graph is shown

in �gure 2.3. The maximally connected sub-graphs of a graph are called its

a

A graph that contains such a closed tail traversing all edges is also called Eulerian in honour

of of Euler’s signi�cant contribution to solve this long-standing problem.
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A B

C

D

Figure 2.3 Example of a disconnected graph with two components. The ver-

tex B has no path to any of the other vertices, therefore the graph is discon-

nected. Adding one edge from B to any other vertex would make this graph

connected. As a result from being disconnected the graph consists of two

components (dashed lines; one contains only the vertex B and the other one

contains the other three vertices.

components. In �gure 2.3 the vertex B forms one component, while the rest

of the vertices form a second one. The vertex B is an isolated vertex as it is

of degree zero. A graph consisting of only isolated vertices is called a trivial

graph with each vertex forming its own trivial component.

Adding edges to any graph either reduces the number of components by

1 or 0, and therefore the minimum number of components is at least n−m.

This can be seen by considering a trivial graph of n vertices and adding m
edges such that the number of components k changes by one with each of the

m edges. An edge that increases the number of components upon deletion is

also called a cut-edge.

An important concept utilised in chapter 9 of this thesis is that of induced

sub-graphs. If a list of vertices T is removed from a graph G the vertex-

induced sub-graphH with the vertex setN(H) = N(G)−T is obtained. All

edges incident to the removed vertices need to be removed as well. Remov-

ing the edge set S results in the edge-induced sub-graph I with the edge set

E(I) = E(G)− S, which leaves the vertex set unchanged.

2.2 Planar Graphs

Planar graphs are of particular importance in chemistry and physics, espe-

cially when studying clusters and complexes that are related to polyhedral

arrangements. A planar graph G is de�ned as a graph that can be drawn

such that none of its edges intercept (except at vertices to which both edges

are incident). If a planar graph is drawn in that way it’s called a plane graph,

while any way of drawing that graph in the 2D plane may be referred to as a

planar embedding.

The importance of planar graphs in cluster sciences stems from the fact that
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they are related to convex polyhedra. According to Steinitz’s fundamental the-

orem on convex types a graph G is isomorphic to a graph G(P ) of a convex

polyhedron P if G is planar and 3-connected. A connected graph G is said

to be k-vertex-connected (or k-connected) if it has more than k vertices and

remains connected whenever fewer than k vertices are removed. A famous

special case is a cubic graph with every vertex having degree three. Steinitz’s

theorem can be illustrated by the following procedure. Take a convex polyhe-

dron like the icosahedron and remove one face (�gure 2.4a). Imagine the rest

(a) (b)

(c)

Figure 2.4 Stretching and �attening of a icosahedron surface with one re-

moved face. (a) Icosahedron with on removed face in the centre, (b) stretching

of the hole in the surface, (c) fully �attened surface shows a plane graph.

of the polyhedron being made of a rubber material such that it is deformable

and stretchable. Take the area of the removed face and stretch it such that

the rest of the polyhedron can sit inside the stretched face (�gure 2.4b). After

�attening the object, what is left is what looks like a planar embedding of a

graph.
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Notice how no connections were broken in the process, which means the

resulting graph accurately represents the connectivity of the original polyhe-

dron.

A plane graph sections the area of the graph into regions (or faces), one of

which is exterior while all others are interior. The exterior region is the only

one that is not �nite. A region is enclosed by a closed walk and its degree is

equal to the number of edges contained in the walk.

A relation between the number of vertices |N |, regions |F | and edges |E|
in a planar graph is given by Euler’s polyhedral formula.

|N | − |E|+ |F | = 2 (2.2)

There exist a large amount of proofs for this formula, one of which was pub-

lished shortly after Euler’s death by Cauchy.
[27]

Take any graph derived from

a convex polyhedron like the cubic graph shown in �gure 2.5a. As shown in

(a) 8− 12 + 6 = 2 (b) 8− 17 + 11 = 2 (c) 8− 16 + 10 = 2

Figure 2.5 (a) Graph of a cube, (b) triangulation of the internal regions of the

same graph, (c) removal of one face and edge.

�gure 2.5b, add edges such that every internal region becomes a triangle. This

procedure increases both E and F , therefore not a�ecting the result of equa-

tion (2.2). In the �nal step of the proof, the triangles are removed one by one

starting from the outside boundary of the graph. This can either be achieved

by removing one edge and a face as shown in �gure 2.5c or two edges, one ver-

tex and one face, again leaving equation (2.2) unchanged. In the end, only one

internal region will remain: a triangle. This triangle will always result from

the procedure described above no matter which planar graph the procedure

was started from. Equation (2.2) for this triangle is 3 − 3 + 2 = 2, therefore

proving Euler’s relation to be true. The result 2 of Euler’s polyhedral formula

is true for convex polyhedra and is also called the Euler characteristic χ. The

formula can be extended to other objects via this value. It is directly related

to the genus g of an object via the relation

χ = 2− 2g. (2.3)

Even for disconnected graphs the formula can be modi�ed and expressed in

terms of the number of connected components k of the graph.

|N | − |E|+ |F | = k + 1 (2.4)
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Euler’s polyhedral formula is very simple, but nevertheless very powerful.

For example, it shows a symmetry between the number of regions and the

number of vertices in a graph, because exchangingN and F does not change

its result. This property is known as duality. The geometric dual of a graph

G′ has |N | faces and |F | vertices, while the edge count remains unchanged.

It can be constructed by considering the neighbouring regions of an edge e.
If e is between regionA andB, then the corresponding dual edge e′ connects

the vertices a and b of the dual graph G′. Repeating this procedure for all

edges of G results in a graph that is its geometric dual.

2.3 Graph Matching

In chapter 9 the concepts of isomorphism and sub-graph isomorphism are

used to investigate similarities of a certain class of clusters to the icosahedral

graph. Such a procedure is required to �nd a mappingM between the vertices

of two graphs, which depends on the external constraints imposed on it. Such

a mapping is a bijection and can be expressed by ordered pairs of vertices

(a, b).

M = {(a1, b1), (a2, b2) . . . } (2.5)

Mappings have to be created vertex by vertex, so initially all mappings start

as partial mappings that only contain a subset of the vertices of both graphs.

This mapping can be found by simply computing all possible partial solu-

tions, that satisfy the desired isomorphism type. However, this becomes in-

creasingly expensive for larger graphs and more e�cient methods have been

developed. The VF algorithm,
[28]

for example, uses feasibility rules to rule out

partial mappings that will de�nitely not result in a mapping with the desired

properties. This can reduce the size of the problem substantially, as dead-end

solutions will be removed early in the procedure. The VF algorithms mem-

ory footprint has been improved in the VF2 implementation,
[29]

which is the

version included in the boost graph library
[30]

utilised in this thesis.





3 �antum Chemistry

An accurate description of atoms and molecules is given by the Schrödinger

equation and its relativistic extensions. The following chapter introduces the

fundamentals of quantum mechanics and their application to chemistry in

terms of approximate solutions to the Schrödinger equation. If not noted

otherwise the content is based on standard books by Jensen,
[31]

Szabo and

Ostlund
[32]

and Holthausen and Koch.
[33]

3.1 The Schrödinger Equation

The beginning of the 20th century marked a very important stepping stone

for modern theoretical sciences. Discoveries like Planck’s energy quantisa-

tion based on black body radiation
[34]

or the discovery of the wave particle

dualism by de Broglie
[35]

lead to a complete reformulation of the physical laws

governing the smallest of particles. Erwin Schrödinger established a frame-

work based on Hamiltonian mechanics that set the wave function Ψ(x, t) at

the centre of attention.
[36]

It contains all information about the system and

its evolution in time. For ground-state calculations it is usually su�cient to

look at solutions to the time-independent Schrödinger equation.

HΨ = EΨ (3.1)

In this eigenvalue equation the Hamilton operator H acts on the wave func-

tion Ψ resulting in a solution for the total energy E of the system.

The wave function is a function of all spatial r and spin coordinates ω of

all the particles in the system.
a

The combination of these coordinates will be

denoted x on the following pages.

x = {r, ω} (3.2)

The square of the wave function is usually interpreted as a probability den-

sity, i.e. the probability of �nding an electron anywhere in space is set to

one (normalisation condition). This interpretation is also referred to as Born’s

interpretation of the wave function.
[37,38]∫

|Ψ(x)|2dx1dx2 . . . dxN = 〈Ψ(x)|Ψ(x)〉 = 1 (3.3)

a

The spin is treated in a more consistent way by the Dirac equation.

19
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The information contained in the wave function can be accessed by an op-

erator O acting on the wave function and forming an eigenvalue equation.

In equation (3.1) this operator is the Hamilton operator, but it could be any

(self-adjoint) operator connected to a physical observable. Generally, the ex-

pectation value of any operator 〈O〉 is de�ned as

〈O〉 =
〈Ψ(x)|O|Ψ(x)〉
〈Ψ(x)|Ψ(x)〉

, (3.4)

or for normalised wave functions

〈O〉 = 〈Ψ(x)|O|Ψ(x)〉 . (3.5)

For a system of N electrons and M nuclei the non-relativistic Hamilton op-

erator in atomic units has the form

H =Te + Vee + Tn + Vnn + Ven

=− 1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j>i

r−1
ij −

1

2

M∑
A=1

∇2
A

mA

+
M∑
A=1

M∑
B>A

ZAZB
rAB

+
N∑
i=1

M∑
A=1

ZA
riA

.

(3.6)

riA denotes the distance between particles i (electron) andA (nucleus),mA is

the mass of nucleusA and ZA is its charge. The operator contains the kinetic

energy of the electrons Te, the electron repulsion Vee, the kinetic energy of

the nuclei Tn, the nucleon repulsion Vnn and the electron-nucleus attraction

Ven. Additional operators may be added for external �eld perturbations.

3.2 The Born-Oppenheimer Approximation

For quantum chemical applications the coupling of the movement of the elec-

trons and nuclei is usually neglected. This is possible because the atomic mass

mA is so much greater than the electronic massmi, resulting in much smaller

velocities for nuclei compared to electrons.
[39]

Therefore, the electrons can

be considered to be moving in a static �eld of nuclei, meaning the nuclear ki-

netic term Tn can be neglected and the nuclear repulsion term Vnn becomes a

constant. The resulting electronic Hamilton operator He describes electrons

moving in a �eld of positive point charges.

He = Te + Vee + Ven (3.7)

Solving the Schrödinger equation for this operator yields the electronic wave

function Ψe. It depends explicitly on the electronic coordinates and spin, but
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only parametrically on the nuclear coordinates, therefore spanning a poten-

tial energy surface upon which the nuclei move. To get the total energy of

the system, the constant repulsion between the nuclei has to be added to the

electronic operator.

H = He + Vnn (3.8)

3.3 The Hartree-Fock Approximation

An analytical solution to the Schrödinger equation in the framework of the

Born-Oppenheimer approximation for systems containing more than one

electron is not attainable. The solution has to be obtained approximately by

appropriate methods; one such approximation is given by the Hartree-Fock

equations. This set of equations determines the energy variationally from a

wave function expressed as a Slater determinant ΦSD.
[40,41]

ΦSD =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) · · · φN (x1)
φ1(x2) φ2(x2) · · · φN (x2)

.

.

.

.

.

.

.
.
.

.

.

.

φ1(xN ) φ2(xN ) · · · φN (xN )

∣∣∣∣∣∣∣∣∣ (3.9)

Here, the φi denote one-electron spin-orbitals and xi = {ri, ωi} are spatial

(ri) and spin (ωi) coordinates of the electrons. A Slater determinant obeys the

Pauli exclusion principle for fermions, which requires the electronic wave

function to be anti-symmetric with respect to interchanging the coordinates

of any two electrons.

In the Hartree-Fock approximation the energy of a single Slater determi-

nant is used as an approximation for the total energy of the system. As ex-

plained previously, the energy of a wave function can be determined by the

action of the Hamilton operator on the wave function. The Hamilton operator

in the Born-Oppenheimer approximation from equation (3.8) can be rewritten

in terms of one-electron operators hi.

H =

N∑
i

hi +

N∑
j>i

1

|ri − rj |

+ Vnn

hi = −1

2
∇2
i −

M∑
A

ZA
|rA − ri|

(3.10)

hi depends only on the kinetic energy of electron i and its potential energy in

the �eld of allM nuclei. When hi acts on a Slater determinant the result is the

respective matrix element hi. Only parts of the Slater determinant without



22 3 Quantum Chemistry

permutation of electron coordinates can give a non-zero contribution to the

eigenvalue.

h1 = 〈φ1(x1)φ2(x2) . . . φN (xN )|h1|φ1(x1)φ2(x2) . . . φN (xN )〉
= 〈φ1(x1)|h1|φ1(x1)〉 〈φ2(x2)|φ2(x2)〉 . . . 〈φN (xN )|φN (xN )〉
= 〈φ1(x1)|h1|φ1(x1)〉

(3.11)

The remainder of the Hamilton operator from equation (3.10) depends on

two electron coordinates, therefore, it is convenient to de�ne a two-electron

operator gij with the matrix elements gij = r−1
ij . Its action on the part of

the Slater determinant with no permutation of electron coordinates results in

the Coulomb integral and the corresponding matrix element Jij , which can

be interpreted as the classical Coulomb repulsion.

J12 = 〈φ1(x1)φ2(x2) . . . φN (xN )|g12|φ1(x1)φ2(x2) . . . φN (xN )〉
= 〈φ1(x1)φ2(x2)|g12|φ1(x1)φ2(x2)〉 . . . 〈φN (xN )|φN (xN )〉
= 〈φ1(x1)φ2(x2)|g12|φ1(x1)φ2(x2)〉

(3.12)

As gij depends on the coordinates of two electrons it also yields non-zero

matrix elements for parts of the Slater determinant, where two electron co-

ordinates have been swapped.

K12 = 〈φ1(x1)φ2(x2) . . . φN (xN )|g12|φ2(x1)φ1(x2) . . . φN (xN )〉
= 〈φ1(x1)φ2(x2)|g12|φ2(x1)φ1(x2)〉 . . . 〈φN (xN )|φN (xN )〉
= 〈φ1(x1)φ2(x2)|g12|φ2(x1)φ1(x2)〉

(3.13)

Kij is called the exchange integral and has no classical interpretation. As

swapping coordinates in the Slater determinant changes its sign, the result of

the exchange integral has a negative sign. The total energy of the system is

now given by the sum over all integrals described above.

E =

N∑
i=1

hi +
1

2

N∑
i=1

N∑
j=1

(Jij −Kij) + Vnn (3.14)

De�ning operators Ji and Ki for Coulomb and exchange integral

equation (3.14) becomes

E =
N∑
i=1

〈φi|hi|φi〉+
1

2

N∑
i=1

N∑
j=1

( 〈φi|Jj |φi〉 − 〈φi|Kj |φi〉) + Vnn (3.15)

Ji |φj(xj)〉 = 〈φi(xi)|gij |φi(xi)〉 |φj(xj)〉
Ki |φj(xj)〉 = 〈φi(xi)|gij |φj(xi)〉 |φi(xj)〉 .

(3.16)

For the purpose of quantum chemical calculations the energy of an arbitrary

Slater determinant is usually not useful. More interesting, however, is to �nd
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the Slater determinant that minimises the energy under the boundary condi-

tion of keeping the orthonormality condition between spin orbitals. In other

words, we try to �nd the derivative of equation (3.15). Minimising the energy

under external boundary conditions can be achieved using Lagrange multi-

pliers. With their help it is possible to de�ne the Fock operator fi, which is

an e�ective one-electron operator.

fi = hi +

N∑
j

(Jj −Kj) (3.17)

The action of the Fock operator on an element of the Slater determinant yields

the Hartree-Fock equations.

fi |φi〉 =

N∑
j

λij |φj〉 (3.18)

λij are Lagrange multipliers remaining from the constrained minimisation.

They can be re-written in matrix form and subsequently diagonalised by a

unitary transformation. This yields the canonical Hartree-Fock equations.

fi
∣∣φ′i〉 =

N∑
j

εi
∣∣φ′j〉 (3.19)

εi are orbital energies of the electrons. According to Koopman’s theorem

they can be interpreted as ionisation energies for occupied (and sometimes

electron a�nities for unoccupied) states. The Fock operator depends on all

occupied states, making it a pseudo eigenvalue equation. Hence, solutions

have to be found iteratively starting from and arbitrary set of orbitals. After

a set of convergence criteria has been met, the e�ective potential is said to

remain unchanged, creating a self-consistent �eld (SCF) solution.

Solving the canonical Hartree-Fock equations numerically for larger sys-

tems will be possible in the future, but is too costly with the algorithms cur-

rently available. Instead, they are solved using an analytical basis set expan-

sion to approximate the unknown molecular orbitals. The basis functions are

usually chosen to agree with the underlying physics of the system. For exam-

ple, periodic plane waves are usually used when periodic boundary conditions

are required. For calculations in the gas phase the basis functions are usually

exponential functions centred at the nuclei. In this case the approximation is

called linear combination of atomic orbitals (LCAO). Technically, a basis set

expansion is not an approximation, but as one is limited to a �nite amount

of basis functions P the expansion does not give an exact expression for a
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molecular orbital φi. For a set of P basis functions χα the expansion can be

expressed as follows.

φi =

P∑
α

cαiχα (3.20)

This leads to the Hartree-Fock equations expressed in the basis set approxi-

mation.

fi

P∑
α

cαiχα = εi

P∑
α

cαiχα

P∑
α

cαi 〈χα|fi|χβ〉︸ ︷︷ ︸
Fαβ

= εi

P∑
α

cαi 〈χα|χβ〉︸ ︷︷ ︸
Sαβ

(3.21)

These are the Roothaan-Hall equations
[42,43]

which are usually written in ma-

trix form.

FC = SCε (3.22)

F is the Fock matrix, S is the overlap matrix and C contains the orbital coef-

�cients. These equations have to be solved iteratively and to reduce compu-

tational cost the �rst step usually involves calculating a density matrix D.

D =

occ. MO∑
i

cµicνi (3.23)

D can be used to generate a Fock matrix, which will be diagonalised yield-

ing a new set of orbital coe�cients. These will be used to generate a new

generation of the density matrix. This procedure will be repeated until the

coe�cients of the new generation are equal (up to a certain precision) to the

ones of the parent generation. This marks the end of the SCF cycle.

3.4 Density Functional Theory

The Hartree-Fock method belongs to the class of mean �eld approximations,

which implies that the electrons do not interact directly with each other, but

each electron is moving in a mean �eld created by all the other electrons. The

Hartree-Fock energyEHF is therefore never exact for a multi-electron system

even in the in�nite basis set limit. The di�erence to the exact energy E0 was

�rst named electron correlation energy Ecorr by Löwdin.
[44]

Ecorr = E0 − EHF (3.24)
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Even though the correlation energy only attributes for about 1 % of the total

electronic energy, it is an important contribution in molecular systems when

small changes in energy are involved. A multitude of methods has therefore

been developed to treat electron correlation more accurately. They can gen-

erally be subdivided into post-Hartree-Fock methods and density functional

theory (DFT). While post-Hartree-Fock methods rely on a Hartree-Fock wave

function (or its multi-reference analogues) as a starting point, DFT is in prin-

ciple a wave function free method. It establishes a connection between the en-

ergy of the system and the (one-particle) electron density ρ(r) instead of the

complex wave function that depends on the coordinates of all particles. The

electron density is an observable and a positive real function, which makes

DFT easier to grasp than wave function based methods. However, the elec-

tron density is related to the wave function via its square.

ρ(r) = N

∫
· · ·
∫
|Ψ(x1,x2, . . . ,xN )|2 dω1dx2 . . . dxN (3.25)

Equation (3.25) describes the probability density of �nding one of theN elec-

trons in the volume dr1. As electrons are indistinguishable the probability of

�nding any of theN electrons in the volume dr1 is equal toN times the prob-

ability of �nding a speci�c electron in that volume. A justi�cation for using

the electron density instead of the wave function was found by Hohenberg

and Kohn in 1964.
[45]

3.4.1 Hohenberg-Kohn Theorems

The �rst Hohenberg-Kohn theorem implies that the ground state electron

density de�nes a unique external potential that contains all information about

the system (there is a one-to-one mapping between the ground state density

and the external potential). If two external potentials are di�erent they cannot

lead to the same ground state electron density. From this, the total energy of

a system can be expressed as follows.

E0 [ρ0(r)] = T [ρ0(r)] + Eee [ρ0(r)] + ENe [ρ0(r)] (3.26)

The aforementioned external potential corresponds to ENe [ρ0(r)], which is

the only system-dependent term of equation (3.26). The system-independent

terms for the kinetic energy T [ρ0(r)] and the electron-electron interaction

Eee [ρ0(r)] can be combined to the Hohenberg-Kohn functional FHK [ρ0(r)].

E0 [ρ0(r)] =

∫
drρ0(r)VNe + FHK [ρ0(r)] (3.27)

If the exact Hohenberg-Kohn functional would be known, equation (3.27)

would be an exact solution to the Schrödinger equation. In practice, there

are no exact expressions for T [ρ0(r)] or Eee [ρ0(r)] known. However, the
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latter can be expressed in terms of a classical Coulomb term J [ρ] and a non-

classical energy contribution Enc [ρ].

Eee [ρ] = J [ρ] + Enc [ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

r12
dr1dr2 + Enc [ρ] (3.28)

The second Hohenberg-Kohn theorem warrants that a trial energy density ρ̃
always yields an energy greater or equal to the exact ground state energy.

E0 ≤ E [ρ̃] (3.29)

It is equivalent to the variational theorem
b

in wave function theory. However,

it is only valid for the exact Hohenberg-Kohn functional, which is unknown.

A practical solution to this problem was given in 1965 by Kohn and Sham.
[46]

3.4.2 Kohn-Sham Theory

One of the biggest problems in orbital free DFT is the poor description of the

kinetic energy term. Kohn and Sham realised it would be easier to describe

it in terms of a reference system of non-interacting electrons. Their kinetic

energy TS can be expressed in terms of one-electron orbitals φi, called Kohn-

Sham (KS) orbitals.

TS = −1

2

N∑
i

〈φi|∇2
i |φi〉 (3.30)

The electron density resulting from the KS orbitals ρS(r) is required to be

equal to the (in principle exact) ground state density of the real system ρ0(r).

ρS(r) = ρ0(r) (3.31)

For such a system the Coulomb interaction between electrons and nuclei

can be calculated exactly. The only terms remaining unknown are the non-

classical contribution to the electron-electron interaction Enc and a contri-

bution to the kinetic energy because of electron correlation TC . These terms

can be combined to the exchange-correlation term EXC .

E [ρ] = TS [ρ] + J [ρ] + EXC [ρ] + ENe [ρ] (3.32)

=− 1

2

N∑
i

〈φi|∇2
i |φi〉+

1

2

N∑
i

N∑
j

∫∫
dr1dr2|φi(r1)|2 1

r12
|φj(r2)|2

+ EXC [ρ]−
N∑
i

∫
dr1

M∑
A

ZA
r1A
|φi(r1)|2

(3.33)

b

The variational theorem states that no trial wave function can result in a smaller energy

than the exact ground state wave function.
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Similar to Hartree-Fock theory, the minimal energy can be calculated using

Lagrange multipliers. The potential terms from equation (3.33) can be com-

bined to an e�ective potential VS , which allows for the de�nition of a Kohn-

Sham operator fKS analogous to the Fock operator in Hartree-Fock theory.

VS(r1) =

∫
dr2

ρ(r2)

r12
+ VXC(r1)−

M∑
A

ZA
r1A

(3.34)

fKS = −1

2
∇2 + VS(r1) (3.35)

fKSφi = εiφi (3.36)

These are the Kohn-Sham equations and they have to be solved in an iterative

procedure, because of the Kohn-Sham operator depending on the occupied

orbitals. The unknown Kohn-Sham orbitals are usually expanded in terms

of basis functions such that the equations can be expressed in matrix form,

similar to the Roothaan-Hall equations. The Fock matrix is replaced by the

Kohn-Sham matrix FKS.

FKSC = SCε (3.37)

3.4.3 Exchange and Correlation Functionals

The key to solving the Kohn-Sham equations is the exchange-correlation en-

ergy EXC. Over the years there have been a large number of proposals for its

analytical form, the oldest being the local density approximation (LDA). It is

based on the uniform electron gas (Thomas-Fermi model) for which analytical

functionals for exchange and correlation are known.

ELDA

XC [ρ] =

∫
ρ(r)εXC [ρ(r)] dr (3.38)

The exchange-correlation energy functional εXC [ρ(r)] is weighted with the

probability of �nding an electron at this point in space. After separation of

the exchange and correlation parts the exchange energy can be described by

a term developed by Slater.

εXC [ρ(r)] = εX [ρ(r)] + εC [ρ(r)] (3.39)

ELDA

X [ρ] = −CX
∫
ρ(r)

4
3 dr (3.40)

However, no simple formula for the correlation term is known.

LDA describes the inhomogeneous electron density by dividing it up into

small homogeneous volumes. An improvement over LDA can be made if the

homogeneous electron density is expanded in a Taylor series. Truncating

after the �rst term gives the LDA approximation, including one more term
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is called the gradient expansion approximation (GEA). Because GEA does

not correctly describe the exchange-correlation hole function it gives worse

results than LDA.

A break-through for theoretical chemistry has been achieved with the in-

troduction of the generalised gradient approximation (GGA) by Becke and

Perdew. It uses the GEA hole functions and tailors them to physically mean-

ingful boundary conditions.

In this work the PBE functional by Perdew, Burke and Ernzerhof,
[47,48]

which belongs to the group of GGA functionals, was used for most calcu-

lations. They published both correlation and exchange expressions for this

functional.

3.4.4 Dispersion Corrections

Long-range dispersive e�ects are part of the correlation energy and most DFT

functionals can only describe these e�ects to a very limited degree. Grimme

et al. developed a method that can be used in conjunction with most density

functionals.
[49]

It relies on the calculation of a dispersive energy contribution

Edisp (and gradient contribution for optimisations) that can be added to the

DFT energy EDFT. The dispersion energy is always of attractive nature and

therefore has a negative sign by convention.

E = EDFT + Edisp (3.41)

In the third generation dispersion correction (D3), which was used in this

work, the calculation of Edisp involves solving a two- and three-body term.

The two-body term E(2)
is more important and is only a function of the dis-

tance between two nuclei rAB .

E(2) =
∑
AB

s6
CAB6

(rAB)6 fdmp,6(rAB) + s8
CAB8

(rAB)8 fdmp,8(rAB). (3.42)

Using only the �rst term (London dispersion) in equation (3.42) is equal to the

second generation dispersion correction D2.
c s6 and s8 are functional speci�c

parameters that need to be adjusted for each di�erent DFT functional. The

damping functions fdmp,6 and fdmp,8 are necessary to cut o� the interaction at

short distances including the repulsive region, where the density functional

without dispersion performs well. The CAB6 dispersion coe�cient is calcu-

lated by averaging over the dipole polarisabilities α of the hydrides of the

elements A and B. The contributions of the hydrogen atoms have to be sub-

tracted. The value of CAB6 can be used to calculate CAB8 and CAB9 , the latter

is contained in the three-body (Axilrod-Teller-Muto) term.

c

The calculation of C6 parameters is carried out di�erently for D2.
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Usually, a zero damping approach is used for the damping function.

fdmp,n =
1

1 + 6
(

rAB
sr,nrAB0

)−αn (3.43)

The name comes from the limit of the damping function which approaches

zero with rAB going to zero. Alternatively, the Becke-Johnson damping func-

tion
[50]

can be used.

3.5 Periodic Boundary Conditions

When dealing with the electronic description of solids and crystals the peri-

odic symmetry needs to be taken into consideration. This is done by describ-

ing the solid state system with an in�nite three-dimensional grid containing

cells which are translation invariant. In the following sections the concept of

reciprocal space and its application to problems involving periodic boundary

conditions is explained.

3.5.1 Spatial and Electronic Structure

The geometry of a crystal can be described in real and reciprocal space. In real

(con�guration) space the crystal lattice can be created by the lattice vector R
acting on the atoms contained in the primitive unit cell.

R = n1a1 + n2a2 + n3a3 (3.44)

Here, ai are basis vectors of the lattice and ni are integers. As the number

of atoms in this system is in�nite the total energy is also going to be in�nite,

and only the energy per unit cell is meaningful. To solve this problem the

electronic structure is usually treated in reciprocal space. Instead of solving an

in�nitely large problem, reciprocal space allows to transform the system into

in�nitely many sub-systems, with each sub-system having a �nite solution.

Real and reciprocal space are connected by a Fourier transformation, which

leads to the reciprocal lattice parameters bi, that relate to the real space lat-

tice vectors via the vector cross product ·× · normalised with respect to the

volume of the primitive unit cell Vp.

b1 =
2π

Vp
(a2 × a3), b2 =

2π

Vp
(a3 × a1), b3 =

2π

Vp
(a1 × a2) (3.45)

Translation in reciprocal space is therefore de�ned as:

K = k1b1 + k2b2 + k3b3, (3.46)

where ki are integer values and can be combined into the wave vector k.
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The lattice vector in reciprocal space K is related to R via exp{iKR} = 1
and the corresponding basis vectors in real and reciprocal space must satisfy

the condition aibi = 2πδij .
In reciprocal space the primitive unit cell is also called the Brillouin zone,

which can be constructed by applying a Wigner-Seitz construction to the real

space primitive unit cell.

3.5.2 Bloch Conditions

As the same structural motif is repeated periodically throughout the in�nite

system, the same must apply to the inter-atomic potential V .

V (r + R) ≡ V (r) (3.47)

The periodic wave function for the band n can be expressed using the Bloch

theorem.

Ψn(k, r) = exp{ikr}unk(r) (3.48)

The periodic information is encoded in the Bloch factor unk(r), which needs

to satisfy the condition that it takes on the same value for r + R as for r.

The wave function of an electron in the periodic potential of the crystal is

then described by the Bloch function Ψnk(r + R).

Ψnk(r + R) = exp{ikR}unk(r) (3.49)

The function exp{ikR} is also called a plane wave.

3.6 Basis Sets

Both the Hartree-Fock approximation and DFT are usually solved in a basis

set expansion of analytical functions. For molecules in the gas phase an atom-

centred approach is usually the method of choice as most of the density is

located around the nucleus. Depending on the nature of the system it can be

bene�cial to use a di�erent approach, like plane waves often used in periodic

boundary calculations.

3.6.1 Atom-Centred Basis Functions

The most common type of basis functions used in molecular calculations are

Gaussian-type orbitals (GTOs) and Slater-type orbitals (STOs) which mainly

di�er by the computational cost associated with them. STOs are derived from

the exact solutions to the hydrogen atom and therefore depend parametrically

on the three quantum numbers n, l, m.

χζS ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)rn−1e−ζSr (3.50)
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The functions are split up into a radial part only depending on the spheri-

cal coordinate r and the orbital coe�cient ζS and an angular part Yl,m(θ, ϕ)
which are spherical harmonics only depending on the angles θ and ϕ. STOs

describe the cusp and the exponential decay in the core region well, but

don’t have analytical solutions for three- or four-centre two-electron inte-

grals. They are usually only used when very high accuracy is required or in

density functional theory codes.

GTOs use the same spherical harmonics to describe the angle dependent

part, but contain a Gaussian function to describe the r-dependent term.

χζG,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r2n−2−leζGr
2

χζG,lx,ly ,lz(x, y, z) = Nxlxylyzlze−ζr
2

(3.51)

In the core region the function is continuous and its derivative is zero and

therefore it gives a worse description of the system. However, it is possible

to combine multiple GTOs in a linear combination to approximate the shape

of the STO.

χSTO ≈
∑
i

aiχ
GTO

i (3.52)

In addition to this expansion it is typical to use more than one function per

atomic orbital to improve the �exibility of the basis set and therefore the de-

scription of the orbital. This is done by choosing di�erent values for the vari-

able ζ and combining them to one orbital. Basis sets with two basis functions

per orbital are called "double zeta" basis sets, three basis functions yield a

"triple zeta" basis set etc.

The inner electrons have the largest contribution to the total energy of a

molecule. However, for questions about chemical reactivity or catalytic ac-

tivity the valence regions are of far greater importance than the core regions.

It is therefore bene�cial to use split-valence basis sets that use more basis

functions to describe the valence region and basis set contractions in the core

regions. This usually leads to a smaller computational cost without losing

much in accuracy.

3.6.2 Plane Wave Basis Functions

For calculations involving periodic boundary conditions the wave function

is usually expanded into a plane wave basis set. Atom-centred basis func-

tions can also be used, but plane waves have the advantage of having intrinsic

translational symmetry. Plane waves are not centred around a speci�c atom

but �ll the whole unit cell. Crystal orbitals can be constructed in the same
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way molecular orbitals are created: by a linear combination of plane waves.

Φn(k,K) =
∑
K

Cn(k,K) exp{i(k + K)r}

= exp{ikr}
∑
K

Cn(k,K) exp{iKr}
(3.53)

The oscillation frequency of a plane wave is correlated with its kinetic en-

ergy. The size of the basis set is therefore usually de�ned by setting a max-

imum kinetic energy cut-o� value. A correct description of the core region

would require a very large cut-o� value, because of the high number of radial

nodes in the core orbitals. To avoid this complication, core regions are usually

described using pseudo-potentials or the projector-augmented wave (PAW)

method described in section 3.7.2.

3.7 Description of Core Electrons

The e�ect of the innermost electrons, also called core electrons, on chemical

bonding and properties is of indirect nature. The interaction between ele-

ments happens mainly due to their valence electrons, but the e�ect of the

core electrons on those valence states is still very important to get an accu-

rate description of the system. However, because of the large number of nodal

planes in those orbitals it is often necessary to use a lot of basis function to

describe them properly. To reduce computational cost, the e�ect of the inner

electrons is often modelled in terms of an e�ective potential. This also comes

with the advantage that scalar relativistic e�ects can be included as part of

the interaction potential. The advantages of these potentials is especially pro-

nounced for heavier elements, because of their sheer amount of core electrons

and the increasing importance of relativistic e�ects.

3.7.1 E�ective Core Potentials

An e�ective core potential (ECP), or sometimes called a pseudo potential, is

an approximation that allows to compute accurate properties of atoms at a

much lower cost by not treating core electrons explicitly. The quality of such

a potential is assessed by the number of valence electrons that make up the

ECP. This gives rise to the small- and large-core ECPs that are often used for

example for the transition metals. For instance, the large-core ECP for silver

has only 11 electrons in the valence shell, while the small-core approxima-

tion includes additional s and p states for a total 19 valence electrons. The

small-core potential can improve the quality of energetic and other property

calculations signi�cantly.

An ECP has to be based on all-electron calculations that describe the system

to the desired accuracy (for example including or excluding scalar relativistic
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and/or spin-orbit e�ects). It also requires the valence functions to be replaced

by a set of pseudo-functions that show the correct behaviour in the valence

region, but do not contain radial nodes in the core region. The core electrons

are not treated explicitly and are replaced by an e�ective potential, that is

parametrised to model the correct interaction potential between the valence

and the core region and keeps the valence electrons out of the core. Di�erent

potential forms for di�erent angular momenta can be included (semi-local

approximation). The parameters for an e�ective core potential must be �tted

to all-electron functions such that the valence pseudo-orbitals match those of

the all-electron calculation in the valence region (shape consistency).

As atomic orbitals are usually described by Gaussian functions, it is com-

mon practice to use the same type of functions to generate an e�ective core

potential. For example, the Stuttgart pseudo-potentials use Gaussian func-

tions in a semi-local ansatz to describe the core region.
[51]

VECP(r) = −Q
r

+
∑
lj

Vlj(r)Plj

Vlj(r) =
∑
k

Blj,k exp
{
−βlj,kr2

} (3.54)

For each combination of orbital l and total angular momentum quantum num-

ber j = l± 1/2 (if spin-orbit is included) a local potential Vlj(r) expanded in

terms of Gaussian functions is de�ned. The parameters Blj,k and βlj,k have

to be adjusted such that they give the correct results for the valence orbitals

and/or the valence spectrum (in the latter case these are called energy consis-

tent pseudopotentials) with respect to the all-electron calculation. For large

r the semi-local Gaussian expansion approaches zero and the−Q
r term, with

the charge of the core Q, becomes dominant.

3.7.2 Projector-Augmented Wave Method

The PAW method was developed by Blöchl
[52]

and is used in conjunction with

a plane wave basis set. The method uses a projection scheme to project the

all-electron wave function |Ψ〉 into a pseudo Hilbert space by utilising pseudo

wave functions |Ψ̃〉. Often considered a pseudo potential method, it is tech-

nically not part of this group as all electrons are still treated explicitly.

The valence region is described by the plane wave basis set, while the core

region is approximated by partial wave functions φi that can be derived from

atomic calculations. The contributions of the partial wave functions to the

core electron density are also optimised during the SCF cycle via the wave

function coe�cients. The all electron wave function can be calculated from

the partial wave functions and the so called projector functions 〈p̃i|.

|Ψ〉 = |Ψ̃〉+
∑
i

(
|φi〉 − |φ̃i〉

)
〈p̃i|Ψ̃〉 (3.55)
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The projector functions must be chosen such that∑
i

|φ̃i〉〈p̃i| = 1, (3.56)

which implies that the projector functions must be orthonormal to the pseudo

partial wave functions φ̃i.
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Whether one uses quantum chemical methods or simple two-body potentials

to investigate the properties of molecules and clusters, �nding the coordinates

of all atoms that minimise the chosen energy function is almost always the

starting point of all calculations. Methods for geometry optimisation have

been used in all parts of this thesis and will therefore be explained in more

detail in the following chapters. If not mentioned otherwise the theory is

based on Fletcher’s
[53]

introductory book.

Finding the set of coordinates x ∈ RN that minimise a given energy func-

tion is an optimisation problem. There are a multitude of methods available

that are all suited for di�erent types of problems. In the following sections the

theory of local minimisation will be discussed in terms of a general objective

function f that can be replaced with any continuous energy function.

4.1 General Considerations about Minima

The objective function f is said to have a minimum value (or simply minimum)

at the set of coordinates x∗, which is called a minimiser of the objective func-

tion f . Usually, optimisation procedures locate local minimisers, while the

problem of �nding global minimisers is considerably more di�cult and re-

quires clever algorithms. General de�nitions of local minimisers can be for-

mulated in form of strict local minimisers (f(x) > f(x∗)) or isolated local

minimisers (x∗ is the only local minimiser in its neighbourhood).

The de�nition becomes simpler when one only considers smooth functions

as the minimisers can be characterised in terms of �rst and second derivatives.

A smooth function needs to be continuous and continuously di�erentiable,

therefore, a vector of �rst partial derivatives ∇f(x) = g(x) must exist for

any x.

∇f(x) =


∂f/∂x1

∂f/∂x2
.
.
.

∂f/∂xn

 (4.1)

A twice continuously di�erentiable function additionally allows for the de�-

nition of a matrix of second partial derivatives∇2f(x) = G(x) also called a

35
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Hessian matrix.

∇2f(x) =


∂2f(x)

/
∂x1

2 ∂2f(x)
/
∂x1∂x2 . . . ∂2f(x)

/
∂x1∂xn

∂2f(x)
/
∂x2∂x1 ∂2f(x)

/
∂x2

2 . . . ∂2f(x)
/
∂x2∂xn

.

.

.

.

.

.

.
.
.

.

.

.

∂2f(x)
/
∂xn∂x1 ∂2f(x)

/
∂xn∂x2 . . . ∂2f(x)

/
∂xn

2


(4.2)

Most interatomic potentials have smooth potential energy landscapes, which

justi�es this simpli�cation.

To derive conditions for a point to be a local minimiser consider any line

through the minimiser x∗:

x(α) = x∗ + αs. (4.3)

Using the chain rule the derivative
df
dα can be expressed as

df
dα = sT∇f .

a
At

x∗ (α = 0) the objective function f has a slope of zero and a non-negative

curvature, which means sT∇f(x∗) = 0. Following the same argument for

the second derivative a second condition sT∇2f(x∗)s ≥ 0 can be derived. As

these conditions must be true for all s we can for example consider the case

s = e1, with e1 being a unit vector, to see that

g∗ = 0 (4.4)

sTG∗s ≥ 0. (4.5)

Note that g∗ = g(x∗) and G∗ = G(x∗) are used to simplify the notation.

In the following sections this short hand notation will also be extended to

the objective function f and general points x(k)
, i.e. f (k),g(k),G(k), · · · =

f
(
x(k)

)
,g
(
x(k)

)
,G
(
x(k)

)
, . . . .

Equations (4.4) and (4.5) are necessary (but not su�cient) conditions for lo-

cal minimisers. In fact, as equation (4.4) is derived from �rst-order variations

in f it is considered a �rst order necessary condition, while equation (4.5) is

considered a second-order necessary condition. It can be shown that su�-

cient conditions for local minimisers are equation (4.4) and sTG∗s > 0.
[53]

The reason for this minor change for the second-order condition is that equa-

tion (4.5) also holds true for points of zero curvature. In other words the

su�cient conditions for a local minimiser are the gradient to be zero and the

Hessian matrix to be positive de�nite at x∗.
In practice, minimisation schemes usually locate x∗ that only ful�l the �rst

condition g∗ = 0. As those points can either refer to minima, maxima or sad-

dle points they are called stationary points. A located stationary point has

to be checked for his character, but it is usually not feasible to check equa-

tion (4.5) as it can not be checked numerically. In this work the eigenvalues

of G∗ are used to verify local minimisers, which have to be positive.

a d
dα

=
∑
i

d
dα
xi(α) ∂

∂xi
=

∑
i si

∂
∂xi

= sT∇
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4.2 Properties of Optimisation Algorithms

To have any practical usefulness an iterative optimisation algorithm should

obey a few requirements. For instance, the algorithm should move steadily

towards the local minimiser x∗ and converge quickly to a user-de�ned con-

vergence criterion. The rate of convergence, decisive for the performance of

the algorithm, can be quanti�ed by de�ning the error

∆x(k) = x(k) − x∗. (4.6)

Here, x(k)
denotes the kth iterate with x(1)

referring to the starting point of

the iterative procedure. The local convergence rate can then be given as the

fraction of the Euclidean norm || · || of the errors of consecutive steps.∣∣∣∣∆x(k+1)
∣∣∣∣∣∣∣∣∆x(k)
∣∣∣∣p ≤ a, a > 0 (4.7)

The rate of convergence a must be positive and p de�nes the order of con-

vergence, most importantly linear convergence (p = 1) and quadratic conver-

gence (p = 2). An algorithm is generally desired to convergence quadratically

towards x∗, however, linear convergence can be acceptable in case the rate

constant is low.

An optimisation algorithm is usually based on a model that approximates

the objective function and allows for the prediction of the location of x∗. The

methods used in this work belong to the group of quadratic models and use

a line search approach to locate the local minimiser. Focus will therefore be

put on this kind of approach. The idea of a line search relies on a user-de�ned

starting point x(1)
and is restricted to search for a minimiser along coordinate

directions. In a line search procedure the kth iteration requires

1. to determine the search direction s(k)
,

2. minimise f
(
x(k) + αs(k)

)
with respect to α and

3. to set the new iterate x(k+1) = x(k) + α(k)s(k)
.

Step 1 depends on the chosen method, while step 2 is independent of the

chosen method and corresponds to the line search step. Step 2 is solved by

sampling f(x) along the line s(k)
and, in practice, needs to be terminated

when a convergence criterion is met. This is because an exact line-search,

which corresponds to sampling f
(
x(k) + αs(k)

)
until the true minimum has

been found, is not possible to be implemented with a �nite amount of steps.

Especially for points far from x∗ it is sensible to choose loose convergence

criteria and tighten them around x∗.
The line-search convergence criterion is usually not a user-de�ned value,

however, the termination criterion ε of the optimisation procedure needs to
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be supplied by the user. There are several possibilities of choosing a conver-

gence test with the most obvious approach being to test for convergence in

the minimum value f (k) − f∗ ≤ ε or the minimiser itself

∣∣∣x(k)
i − x∗i

∣∣∣ ≤ εi.

However, these criteria require knowledge of exact minimiser or minimum

value of the objective function and it is easy to see, that this is paradoxical. A

more useful criterion can be based on the Euclidean norm of the gradient at

the kth iterate ∣∣∣∣∣∣g(k)
∣∣∣∣∣∣ ≤ ε. (4.8)

4.3 �adratic Models

An optimisation method is said to be derived from a quadratic model if the

method approximates the objective function by a quadratic function around

the minimiser. A quadratic model has to be applied iteratively to a general

function to lead to convergence. Applied to a quadratic function it can be

shown that it should locate the minimiser in a �nite amount of steps. The use

of a quadratic model has several advantages and most successful methods are

based on it. The most obvious way to derive a quadratic model is probably by

using information from both the gradient and the second derivatives, which

gives rise to the Newton-Raphson method (or quasi-Newton-Raphson if sec-

ond derivatives are estimated). However, it is possible to build a quadratic

method without using second derivatives and one such example is the conju-

gate gradient method.

4.3.1 Newton-like Methods

As mentioned above, a quadratic model can be derived by including informa-

tion from the second derivatives, which in the case of Newton-like methods

is achieved by truncating a Taylor expansion of the objective function around

the iterate minimiser x(k)
.

f
(
x(k) + δ

)
≈ q(k)(δ) = f (k) + g(k)Tδ +

1

2
δTG(k)δ (4.9)

Here, δ = x − x(k)
and q(k)(δ) is the quadratic approximation of the ob-

jective function around x∗. The next step in the optimisation x(k+1)
is then

chosen based on δ = δ(k)
which minimises q(k)(δ). It can be shown, that the

derivative ∇q(k)(δ) can be expressed as

∇q(k)(δ) = G(k)δ + g(k), (4.10)

and it is said to be 0 at δ = δ(k)
. The last condition results in n × n linear

equations that can be solved programmatically, and the result can be used to

construct the next iterate x(k+1) = x(k) + δ(k)
.
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In practice Newton’s method is usually implemented in combination with

a line-search algorithm. Because it is not guaranteed that the iterates

{
f (k)

}
decrease towards the minimum value, it can be useful to de�ne the direction

of search as

s(k) = −G(k)−1
g(k). (4.11)

If G is positive de�nite so is G−1
and s is a descent direction.

Problems arise if G is not positive de�nite, which can happen if the current

iterator is far from the local minimiser. In that case it is still possible to calcu-

late a search direction and search along positive and negative direction to �nd

a lower f (k)
. This means, however, that the approximating quadratic func-

tion does not necessarily possess the same minimum as the objective func-

tion. One possible solution proposed by Goldstein and Price
[54]

is to iterate

in a steepest descent direction s(k) = −g(k)
in case the Hessian matrix is not

positive de�nite. Nonetheless, this method is prone to oscillatory behaviour

that would be introduced into the optimisation iteration.

If the Hessian matrix is almost positive de�nite a feasible approach might

be to modify G(k)
to make it positive de�nite. A better search direction can

be de�ned by adding a small multiple ν of a unit matrix I.
[55–57]

s(k) = −
(
G(k) + νI

)−1
g(k)

(4.12)

In this approach the quadratic information is still used, but no oscillatory be-

haviour is being introduced. Instead of modifying the Hessian matrix with

multiples of the unit matrix it can also be modi�ed more generally with a

diagonal matrix D, which is advantageous in case the Hessian matrix is in-

de�nite.
[58,59]

Finally, the problem can be solved by computing a negative curvature de-

scent direction by solving

s(k)TG(k)s(k) < 0 (4.13)

s(k)Tg(k) ≤ 0 (4.14)

for s(k)
.
[60]

4.3.2 �asi-Newton Methods

Especially for quantum chemical potentials like Hartree-Fock or density func-

tional theory potentials the evaluation of a full Hessian matrix can be very

computationally expensive. It can therefore be useful to just use an approxi-

mation for the Hessian matrix. In the most simple case this results in a �nite
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di�erence Newton method where G(k)
is approximated in terms of di�er-

ences of the gradient vector with respect to each coordinate direction ei.

∆g
(k)
i =

1

hi

[
g
(
x(k) + hiei

)
− g(k)

]
(4.15)

G(k) ≈ G =
(
∆g

(k)
1 ∆g

(k)
2 · · · ∆g

(k)
n

)
(4.16)

The approximated matrix needs to be symmetrised by calculating

1
2

(
G + G

T
)

. However, this approach has some disadvantages, e.g. the

symmetrised matrix is not guaranteed to be positive de�nite and for the

calculation of G the gradient has to be evaluated n times making this

approximation potentially as expensive as the exact Hessian calculation.

The class of quasi-Newton methods tries to avoid these problems by ap-

proximating G(k)−1
with a symmetric positive de�nite matrix H(k)

, which

can then be updated in each iteration. The kth iteration of a quasi-Newton

optimisation requires to

1. determine the search direction s(k) = −H(k)g(k)
,

2. minimise f
(
x(k) + αs(k)

)
in a line-search procedure,

3. set the new iterate x(k+1) = x(k) + α(k)s(k)
and

4. update H(k)
.

The initial choice of H(1)
is not important as long as the matrix is symmetric

and positive de�nite. Simply choosing a unit matrix is su�cient, which turns

the �rst step of the optimisation into a steepest descent step as s(k) = −g(k)
.

The method is practically identical with a line-search Newton-like method,

with the di�erence being the representation of the matrix of second deriva-

tives. The step in the procedure that de�nes and updates H(k)
is therefore

very important for quasi-Newton methods. The goal is that updating H(k)

in each iteration to H(k+1)
results in a good approximation for G(k)−1

. Us-

ing equation (4.10) and choosing x = x(k+1)
such that δ(k) = x(k+1) − x(k)

it is easy to see that in the quadratic approximation the di�erence between

the gradient vectors γ(k) = g(k+1) − g(k)
is mapped to the distance vector

between the points by the Hessian matrix.

γ(k) = G(k)δ(k)
(4.17)

However, x(k)
is only known after the line-search completed, which means

that H(k)
(the inverse of G(k)

) does not map them properly. Yet, this relation

can be used to improve the approximated inverse Hessian matrix for the next

step H(k+1)
.

H(k+1)γ(k) = δ(k)
(4.18)
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This is the so-called quasi-Newton condition and the di�erences in di�erent

quasi-Newton methods lie within the way this condition is ful�lled compu-

tationally.

One way to generate H(k+1)
is to update H(k)

by adding a symmetric rank

one matrix E(k) = auuT
.

H(k+1) = H(k) + auuT
(4.19)

Using equation (4.18) it can be seen that u is proportional to δ(k) −H(k)γ(k)

with a proportionality constant of auTγ(k)
. Since the proportionality can

just be chosen to be one by changing a, it follows that u = δ(k) −H(k)γ(k)

and hence the formula for updating H(k)
can be expressed as

H(k+1) = H +
(δ −Hγ)(δ −Hγ)T

(δ −Hγ)Tγ
. (4.20)

The superscript (k) has been omitted on the right sight to improve readability

and this notation will be adopted for following update formulae as well. Orig-

inally, this formula was proposed by multiple people independently.
[60–62]

It

is natural to assume that this formula could be improved by introducing a

second independent change to H(k)
.

H(k+1) = H(k) + auuT + bvvT
(4.21)

Unfortunately, the expressions for u and v can not be established as easily

as before. However, u = δ(k)
and v = H(k)γ(k)

have shown to be sensible

choices and give rise to the Davidon-Fletcher-Powell (DFP) formula.
[63,64]

H
(k+1)
DFP = H +

δδT

δTγ
− HγγTH

γTHγ
(4.22)

The probably most successful quasi-Newton method is based on the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) formula,
[65–69]

which is closely related to

the DFP formula.

H
(k+1)
BFGS = H +

(
1 +

γTHγ

δTγ

)
δδT

δTγ
−
(
δγTH + HγδT

δTγ

)
(4.23)

The relation can be illustrated by denoting H−1
as B and substitute in equa-

tion (4.23).

B
(k+1)
BFGS = B +

γγT

γTδ
− BδδTB

δTHδ
(4.24)

The similarity to equation (4.22) is obvious. Because both formulae are related

by exchanging γ ↔ δ and B↔ H, they are called dual or complementary.
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In quantum chemistry an improvement of the BFGS method (or any optimi-

sation method) can be achieved by de�ning internal redundant coordinates q
based on bond lengths, angles and dihedral angles.

[70–72]
The transformation

from the cartesian to the internal redundant coordinate space can be carried

out using the Wilson W matrix, which is de�ned in terms of the displace-

ments in internal redundant ∆q and cartesian coordinates ∆x.

∆q = W∆x (4.25)

This can be used to transform the gradient vector and Hessian matrix into

internal redundant coordinates.

WTgq = gx (4.26)

WTHqW + W′Tgq = Hx (4.27)

The �rst derivative of the Wilson matrix W′
is calculated analytically. It was

shown that this approach can reduce the number of steps needed to optimise

various organic molecules signi�cantly.
[73]

4.3.3 Conjugate Gradient Methods

The origin of the Newton-like and quasi-Newton methods being the quadratic

model is conceptually obvious. There are however methods that belong to

this group, but don’t rely on calculating or approximating a matrix of second

derivatives. One of those methods is the conjugate gradient method. As the

name suggests, they take advantage of the concept of conjugacy of the search

vectors s(1), s(2), . . . , s(n)
and the Hessian matrix G, i.e.

s(i)TGs(j) = 0, ∀i 6= j. (4.28)

It should be noted that quadratic termination is only guaranteed for exact

line searches. The conjugate gradient method tries to combine the conjugacy

property with the steepest descent method, therefore the �rst step is equal to

s(1) = −g(k)
(4.29)

and for successive iterations

s(k+1) = component of − g(k+1)
conjugate to s(1), s(2), . . . , s(n). (4.30)

From the conjugacy condition (4.28) it follows that s(k+1)
can be calculated

from a Gram-Schmidt orthonormalisation.

s(k+1) = −g(k+1) + β(k)s(k)
(4.31)

β(k) =
g(k+1)Tg(k+1)

g(k)Tg(k)
(4.32)
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This is also known as the Fletcher-Reeves (FR) method.
[74]

One advantage

of the FR method over the quasi-Newton methods is that it does not need

any matrix calculation, which can be seen in equation (4.32). However, the

procedure is not guaranteed to terminate for non-quadratic functions. There

are several ways that try to resolve this disadvantage, one of which is a simple

reset of the search direction to the steepest descent direction. If the iterates

converge towards a region that is approximated well by a quadratic function,

then a reset of the search direction may improve the overall convergence of

the method.

Another solution to the aforementioned problem is to use a di�erent ex-

pression for β(k)
. One possible modi�cation is

β(k) = −g(k+1)Tg(k+1)

g(k)Ts(k)
, (4.33)

which results in a stronger descent property s(k)Tg(k) < 0. Another notable

mention is the formula by Polak and Ribiere
[75]

shown in equation (4.34).

β(k) =

(
g(k+1) − g(k)

)T
g(k+1)

g(k)Tg(k)
(4.34)

4.4 Implementation for Two-Body Interaction

Potentials

In the special case of optimising the geometry of a collection of objects in

three-dimensional space that interact via a given potential some modi�ca-

tions have to be made to use the previously described methods. In the fol-

lowing paragraphs the mathematical background for the implementation of

potentials that only depend on the distance between two objects like Lennard-

Jones (LJ) and extended Lennard-Jones (eLJ) for the program Spheres (chap-

ter 6) is explained. The physical objects in this case are called spheres and

the optimisation procedure tries to locate the minimiser corresponding to the

lowest total energy of the system.

Let xi be the Cartesian coordinates of sphere i and the collection of all the

coordinates of all N spheres in the system shall be denoted X.

X =
(
x1 x2 · · · xN

)
=

x1 x4 · · · x3N−2

x2 x5 · · · x3N−1

x3 x6 · · · x3N


xi =

x3i−2

x3i−1

x3i

 (4.35)
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The distance between two spheres i and j is now given by the norm rij of the

distance vector rij .

rij = xi − xj =

x3i−2 − x3j−2

x3i−1 − x3j−1

x3i − x3j


(4.36)

|rij | = rij =
√

(x3i−2 − x3j−2)2 + (x3i−1 − x3j−1)2 + (x3i − x3j)2

(4.37)

The energy of the system is a function of all sphere coordinates X, but it can

be rewritten in terms of an energy function ε(rij) that only depends on the

distance between two spheres.

E(X) =

N∑
i

N∑
j>i

ε(rij) (4.38)

The gradient of the system is a vector of 3N scalars, where each component

refers to the gradient with respect to each coordinate x. The derivative with

respect to the mth coordinate xm can be expressed as in equation (4.39) by

using the chain rule for derivatives.

∂E(X)

∂xm
=

N∑
i

N∑
j>i

∂ε(rij)

∂rij

∂rij
∂rij

∂rij
∂xm

(4.39)

It is clear, that the terms that contain vectors are separated from the energy

function. This means that the energy term can be exchanged easily with-

out having to change all parts of the routine. The �rst term represents the

derivative of the energy function with respect to the distance between two

spheres. The second term can be rewritten in terms of the normalised form

of the distance vector rij , which follows directly from equations (4.36) and

(4.37).

∂rij
∂rij

=
rij
rij

(4.40)

The last term is responsible for the right sign of the gradient component and

is best explained by giving an example. Firstly, if xm is neither in sphere

i nor in j its result is a zero vector making the whole expression vanishes.

Let’s assume m = 3i+ 1, then the last expression becomes:

∂rij
∂x3i−1

=

0
1
0

 . (4.41)
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For this example the inner product of this vector with the normalised dis-

tance vector rij is
1
rij

(x3i−1 − x3j−1). Therefore, the last term ensures that

the mth component of the gradient vector only collects contributions from

interactions between spheres that contain the coordinate xm. If xm was a

coordinate present in sphere j the last term swaps the sign of the gradient.

This is a result of the fact, that the gradient at sphere j should be opposite of

the gradient at sphere i. The �nal gradient is given by calculating all partial

derivatives with respect to xm.

∇E(X) =


∂E(X)/∂x1

∂E(X)/∂x2
.
.
.

∂E(X)/∂x3N

 (4.42)

The separation of the vector and scalar components allows for easy exchange

of the energy functions as the calculations that take care of the direction of

the gradient can be completely separated out.

The same procedure can be applied to the second derivative to calculate

a Hessian matrix. Again, the important part is to separate the scalar energy

function from vector parts. This leads to the following equations.

∂2E(X)

∂xm∂xn
=

N∑
i

N∑
j>i

 ∂2ε(rij)
∂rij2

∂rij
∂rij

∂rij
∂xm

∂rij
∂rij

∂rij
∂xn

+
∂ε(rij)
∂rij

∂2rij
∂rij2

∂rij
∂xm

∂rij
∂xn

 (4.43)

∇2E(X) =
∂2E(X)

/
∂x1

2 ∂2E(X)
/
∂x1∂x2 . . . ∂2E(X)

/
∂x1∂x3N

∂2E(X)
/
∂x2∂x1 ∂2E(X)

/
∂x2

2 . . . ∂2E(X)
/
∂x2∂x3N

.

.

.

.

.

.

.
.
.

.

.

.

∂2E(X)
/
∂x3N∂x1 ∂2E(X)

/
∂x3N∂x2 . . . ∂2E(X)

/
∂x3N

2


(4.44)

4.5 Global Optimisation

In the most simple case, the objective function possesses only one (global)

minimum. However, in a real scenario, like in a cluster or molecule bound by

a physical interaction potential, there can be many local minima connected by

�rst order stationary points. Knowledge about the nature and location of �rst-

and higher-order stationary points is crucial for a thorough understanding of

the topology of the underlying system. The global minimum is an impor-

tant information as it represents the most likely con�guration of the system

and e�orts are usually focussed on locating this particular arrangement. As

this requires the whole con�guration space to be scanned, local minima will

also be located with global optimisation methods as a side e�ect. Such global
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optimisation problems belong to the complexity class of “NP-complete” prob-

lems, meaning no algorithm is currently known that is guaranteed to �nd a

solution within a time scaling as a power of the system size. However, a mul-

titude of heuristic global optimisation algorithms have been proposed and a

few selected ones will be discussed brie�y in the following sections.

4.5.1 Algorithms

If the potential hypersurface of a system is completely unknown, the eigen-

vector following method can be used to gain valuable insights into its nature.

It was �rst developed as a transition state location method,
[76]

but can be ap-

plied to global optimisation problems by repeating the process and following

all eigenmodes of the system. It makes use of a modi�ed Newton-Raphson

step,
b

which requires the matrix of second derivatives G to be calculated.

∆s = (λ1−G)−1 · g (4.45)

∆2 = ∆s ·∆s = g · (λ1−G)−1 · g (4.46)

Here, 1 and g are the identity matrix and the gradient vector, respectively.

The Lagrange multiplier λ was introduced to minimise the objective

function under the constraint of a medium sized step size ∆2
and needs to

be determined according to equation (4.46). After λ is calculated it can be

used to calculate the actual step ∆s via equation (4.45). This step will then

move upwards in energy instead of downwards, e�ectively moving away

from a local minimum towards a saddle point. This will make the lowest

eigenvalue of the Hessian matrix negative, and the corresponding

eigenvector represents the reaction coordinate of this deformation. Close to

the saddle point the standard Newton-Raphson step is the most e�cient

choice for convergence towards the stationary point and it can be easily

seen that this follows from equation (4.45) for λ = 0. This procedure can be

implemented to scan a hypersurface.
[77]

Starting from any distribution of

coordinates a standard geometry optimisation can be carried out to �nd a

minimum of the hypersurface. From there, the modi�ed Newton-Raphson

method can be used to �nd the closest saddle point. Calculating and

diagonalising the Hessian matrix at this point should lead to one negative

eigenvalue and the eigenvector corresponding to this eigenvalue should lead

to at least one unknown structure. From there on the procedure can start

from the beginning, moving to larger eigenvalues.

One of the �rst global optimisation algorithms was the simulated annealing

algorithm.
[78]

The name is related to the fact that the method is strongly

connected to statistical thermodynamics by introducing an e�ective

b

The normal Newton-Raphson step is shown in equation (4.11).
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temperature parameter that allows for the simulation of a slow cooling

procedure. The e�ective temperature is simply a control parameter in the

units of the objective function and should not be equated to a real

temperature. In the procedure the particles are moved by a small random

displacement and the energy of the result is calculated. Whether this step is

accepted is decided by the Metropolis criterion.
[79]

If the di�erence in the

value of the objective function ∆f of the new con�guration to the previous

one is negative, it is accepted as the next step. If the di�erence is positive it

is accepted with a probability P of

P = exp

{
−∆f

kT

}
. (4.47)

Repetition of this step is equivalent to simulating a system of particles in a

heat bath at the e�ective temperature T and leads to the system to be

represented by a Boltzmann distribution. This procedure is �rst carried out

at a high temperature, e�ectively simulating a “melted” state of the system.

Subsequently, the temperature is reduced in small steps until the system

“freezes”, meaning a steady state is reached. In comparison to a purely

iterative method, simulated annealing has the advantage of not getting

stuck in local minima as it is always possible to transition out of a local

minimum at non-zero temperature. To locate the global minimum with a

simulated annealing method the temperature needs to decrease

logarithmically with time, which makes this method computationally rather

expensive. The rate at which the temperature decreases is called an

annealing schedule and is usually chosen empirically.

Basin-hopping is a hypersurface transformation method and has been

applied successfully to global optimisation problems.
[80–82]

It was �rst used

to solve multiple-minima problems in protein folding.
[83]

The

transformation of the hypersurface upon which the particles move is carried

out by applying a geometry optimisation to some point in con�guration

space as outlined in the sections above. This e�ectively maps the chosen

point in con�guration space to a (local) minimum.

f̃ : (X) 7→ min{f : (X)} (4.48)

The result is a hypersurface that is divided into basins of attraction, while

preserving the information about the energies of the minima. An illustration

of this process is depicted in �gure 4.1. The mapping procedure is usually

combined with a Monte-Carlo-type sampling procedure.
[80]

A new sample is

created by introducing a small random displacement, analogous to the

simulated annealing approach, followed by a geometry optimisation. The

acceptance of the result is, again, determined by the Metropolis criterion.

The e�ect of the transformation is that transition states are removed from
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Figure 4.1 Hypersurface transformation in the basin-hopping method. The

original hypersurface (solid line) is mapped onto the transformed surface

(dashed line) by a geometry optimisation.

the hypersurface and dynamics are accelerated as local minima can be left

easily by �xing the acceptance ratio to the desired value via the e�ective

temperature in the Metropolis step. Contrary to the simulated annealing

method, the basin-hopping approach is capable of �nding the global

minimum even on hypersurfaces with multiple almost degenerate low-lying

minima.

In the genetic algorithm approach
[84]

the hypersurface is explored by

utilising ideas from evolution theory, in particular natural selection. A

“gene” is represented by the coordinates of the particles, forming a

“chromosome”. The “�tness” of a structure is determined by the potential

energy with respect to the objective function. The structural information is

often encoded in a binary bit string, but it is also possible to just use

coordinates directly. In the �rst step of the algorithm an initial population is

generated randomly and their �tness is calculated. A pair of “parents” is

chosen, one of which is picked randomly while the other is selected based

on its �tness. The structures of the parents are combined to create two

“children” with a �xed probability of a single bit to cross-over. Additionally,

a low probability for random mutations is incorporated into the algorithm

as well. After the next generation is created the parent generation is

discarded to leave the population size constant. The algorithm is inherently
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parallel as multiple pairs of parents can be treated simultaneously. In its �rst

application to clusters it was shown that a genetic algorithm can lead to

convergence towards the global minimum in far fewer steps than for

example the simulated annealing method.
[85]

The algorithms mentioned in this section represent only a subset of all

available global optimisation methods for the search of stationary points on

a potential energy surface (PES). Other algorithms that can be used to solve

the problem at hand are, for example, the particle swarm algorithm or the ant

colony optimisation method.
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Systems of large numbers of atoms or complete scans of potential hypersur-

faces are usually not treatable by accurate quantum chemical methods as in-

troduced in chapter 3. In those cases more simple interaction potentials have

to be employed, without loosing crucial information about the system. In the

following sections two potentials used in this thesis will be introduced. If not

noted otherwise the following sections are based on a book by Hirschfelder

et al.
[86]

5.1 Thermodynamic Considerations

The need to �nd intermolecular interaction potentials arose from the desire to

have a good description for the equation of state of a gas. A purely empirical

relation was �rst found by Kamerlingh Onnes.
[87]

pv = A′ +
B′

v
+
C ′

v2
+
D′

v4
+
E′

v6
+
F ′

v8
(5.1)

Here, p represents the pressure of the gas, v the molar volume of the container

and the parametersA′ to F ′ are the virial coe�cients. The latter are functions

of temperature T and can be adjusted to �t the polynomial to experimental

data obtained from various gases. It is often su�cient to focus on the �rst

three virial coe�cients to obtain a useful equation of state.

This formulation can be generalised in terms of Taylor expansion

pv

RT
= 1 +

B

v
+
C

v2
+
D

v3
+ . . . , (5.2)

which allows the virial coe�cients
a

to be expressed as functions of inter-

molecular potentials. If all virial coe�cients are 0, equation (5.2) is equal to

the ideal gas equation, which means that the virial coe�cients are connected

to the interactions between gas molecules not included in the ideal gas law.

Analytic expressions for the virial coe�cients can be derived as explained in

the following section. It is clear that this expansion converges if the virial

coe�cients are small compared to the volume v.

a

Note that the prime notation was dropped to emphasise that the virial coe�cients in this

equation are di�erent to the ones originally proposed in equation (5.1).

51
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5.1.1 Equation of State from the Partition Function

The partition function ZN can be used to derive various thermodynamic

quantities, for instance the pressure p.

p = kT

(
∂ lnZN
∂V

)
T

(5.3)

In this equation, k is the Boltzmann constant, T the temperature and V the

volume of the vessel. Using the expression for the classical partition func-

tion of a system of N identical particles
b

the partition function can be re-

formulated in terms of Boltzmann factors WN

(
rN
)

= e−βΦ(rN)
and a con-

�gurational integral QN .

QN =
1

N !

∫
WN

(
rN
)

drN (5.4)

ZN =
QN
λ3N

withλ2 =
h2

2πmkT
(5.5)

Here, rN refers to the set of coordinates de�ned by the set ofN molecules, h is

Planck’s constant,m the particle mass and β = 1/kT . The potential function

Φ
(
rN
)

depends on all particle coordinates and is not yet de�ned explicitly.

However, expressions for the virial coe�cients can be found without de�n-

ing the interaction potential by using a method introduced by Ursell.
[88]

This

method requires the de�nition of “U-functions” Ul
(
rλ
)

that are expressed

as combinations of Boltzmann factors. The subscript l refers to how many

molecules the U-function includes and λ denotes which molecules. For ex-

ample, the �rst two U-functions are de�ned as:

U1 (ri) = W1 (ri) (5.6)

U2 (ri, rj) = W2 (ri, rj)−W1 (ri)W1 (rj) . (5.7)

The advantage of using these expression can be demonstrated by considering

the condition under which Ul
(
rλ
)

vanishes. For example, for the second U-

function to be equal to zero, both terms containing Boltzmann factors must

be equal.

W2 (ri, rj) = W1 (ri)W1 (rj) (5.8)

Φ (ri, rj) = Φ (ri) + Φ (rj) (5.9)

The latter is true if the molecules i and j are su�ciently far apart for their

interaction to be negligible. For the higher order U-functions this concept can

be extended to two or more groups of molecules being far enough apart for

b

See page 106 in reference [86].
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their interaction to become 0. By reversing the de�nition of the U-functions,

the Boltzmann factors can be expressed in terms of U-functions.

WN

(
rN
)

=
∑

∑
lml=N

∏
Ul

(
rλ
)

(5.10)

The summation has to be carried out over all divisions of N molecules into

ml groups of l molecules. With this expression equation (5.4) can now be

solved.

QN =
∑

∑
lml=N

N∏
l=1

(V bl)
ml

ml!
(5.11)

The U-functions are now included in the cluster integrals bl which are de�ned

in the following way.

bl = (V l!)−1
∫
Ul(r1, r2, . . . , rl) dr1 dr2 . . . drl (5.12)

Equation (5.5) can now be expressed in terms of the cluster integrals and the

equation of state in virial form can be derived from equation (5.3).

lnZN = −N ln zλ3 +

∞∑
l=1

V blz
l

(5.13)

pV = kTV

(
∂ lnZN
∂V

)
T

= kT
∑
l

V blz
l

(5.14)

z =
N

V
exp

(
−
∞∑
i=1

γi

(
N

V

)i)
(5.15)

Here, z has the dimension of a concentration and is called the active number

density. γi are combinations of cluster integrals and the �rst two are

γ1 = 2b2 (5.16)

γ2 = 3b3 − 6b22. (5.17)

Combining the equations above leads to an equation similar to equation (5.2).

pv

RT
= 1−

∞∑
i=1

iγi
i+ 1

(
N

V

)i
(5.18)

Comparing equations (5.2) and (5.18) it is clear that the virial coe�cients can

be expressed in terms of cluster integrals.

B(T ) = −1

2
NAγ1 (5.19)

C(T ) = −2

3
N2
Aγ2 (5.20)
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As stated before, the virial coe�cients arise from the molecular interactions

as they are functions of the cluster integrals that in turn consist of many-body

interactions. Additionally, it can be seen, that the second virial coe�cient B
depends only on two-body interactions, the third virial coe�cient C on two-

and three-body interactions and so on.

Further simpli�cation can be achieved by the assumption of additivity,

which allows the total potential energy of the system to be expressed in terms

of pairwise interactions ϕij .

Φ
(
rN
)

=
1

2

∑
i

∑
j

ϕij (5.21)

The magnitude of the error introduced by this treatment has been calculated

by Axilrod et al.
[89]

to scale with r−9
. The U-functions can now be expressed

in terms of modi�ed Boltzmann factors fij(rij), which are de�ned such that

they only di�er from zero if the interaction energy is signi�cant.

fij(rij) = e−βϕij − 1 (5.22)

For the U-functions this results in the following expressions.

U1(r1) = 1

U2(r1, r2) = f12

U3(r1, r2, r3) = f12f23f13 + f12f23 + f23f13 + f12f23

(5.23)

From these de�nitions, expressions depending on two-body interactions for

the virial coe�cients can be derived.

B(T ) = −2πN

3kT

∞∫
0

r3 dϕ

dr
e−βϕ(r) dr (5.24)

In diluted gases, where interactions of more than two particles are rare, an

equation of state only containing the second virial coe�cient describes the

system well enough.

pv

RT
= 1 +

B

v
(5.25)

5.2 Lennard-Jones Potential

One of the most widely used interaction potentials today is the Lennard-Jones

(LJ) potential. It was �rst introduced by Jones (later Lennard-Jones) on April

22, 1924,
[90]

however, the same potential was submitted for publication by
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Simon et al. only a few days later.
[91]

The potential introduced by Lennard-

Jones depending on the distance r between two objects was of the form

V LJ

m,n(r) =
λn
rn
− λm
rm

, m < n, (5.26)

with m and n not being set at that time. However, even though this general

potential form is nowadays known as the Lennard-Jones potential, there had

been other attempts at de�ning similar interaction potentials earlier. In 1920,

Kratzer
[92]

already published a less general potential of the same form with

the exponents m and n set to 1 and 2, respectively. The general idea behind

these two potential forms was already discussed earlier in the beginning of

the 20th century by Mie.
[93]

In all those potentials attractive and repulsive dis-

tance dependent terms are combined such that the resulting potential energy

function has a minimum value at some equilibrium distance. For distances

larger than the equilibrium distance the potentials approach zero asymptoti-

cally from below, while they diverge towards +∞ for distances close to zero.

Lennard-Jones used this potential form to solve the integral expression in

the second virial coe�cient B. Analytical expressions can also be found for

purely repulsive potentials and the attractive Sutherland potential. Lennard-

Jones, however, introduced the potential in equation (5.26) and solved the

equation of state analytically to derive parameters for λn and λm based on

experimental results for noble gases
[90]

and later on for the solid state.
[94]

Equation (5.26) can be rede�ned in terms of parameters for the depth of

the potential energy well ε and equilibrium distance re. Under the constraint

of Vm,n(re) = −ε and
dVm,n(re)

dr = 0 a more common notation of the LJ

potential can be derived.

V LJ

m,n(r) =
ε

n−m

[
m
(re
r

)n
− n

(re
r

)m]
(5.27)

Both parameters ε and re can be determined by the size of the interacting

atoms and the interaction strength. The evaluation of the exponents m and

n, however, is more complicated. The exponent m is mainly important for

the correct long range behaviour, while n dominates for distances smaller

than re. First attempts at deriving the correct long range behaviour have been

made by considering two hydrogen atoms.
[95]

The attractive force was shown

to scale with r−7
, which is in agreement with other investigations, showing

the potential of the attractive �eld
c

to be on the order of r−6
.
[96–99]

First at-

tempts were made to relate the long-range behaviour to the polarisability of

the atoms,
[99,100]

a correlation that is used to treat van-der-Waals interactions

parametrically, today (see section 3.4.4). Lennard-Jones calculated force con-

stants for various gases showing the same long-range behaviour from study-

ing their equation of state.
[90,101–104]

c

Note that the force is the �rst derivative of the potential.
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The repulsive part is more complicated, as it can not be derived directly

from the equation of state. Lennard-Jones used lattice parameters and heats

of sublimation from experiments to �t his potential. He found n = 12 and

m = 6 to �t the data well, giving rise to the most commonly used form of the

LJ potential: V6,12(r).
[105]

Some examples for potential curves with exponents

n = 12 and m = 6 can be found in �gure 5.1.
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Figure 5.1 Examples of Lennard-Jones potential curves for the (6,12)-LJ po-

tential with di�erent values for ε and re.

5.2.1 Extended Lennard-Jones Potential

A more sophisticated solution to describing intermolecular interactions can

be achieved with the extended Lennard-Jones (eLJ) potential. The choice of

the exponentsm andn in the LJ potential is arbitrary and lacks �exibility. Any

e�ect that scales di�erently from r−12
or r−6

can not be described accurately.

Therefore, it seems almost natural to extend the LJ potential by a sum over

di�erent r−i terms weighted by coe�cients ci.

VeLJ(r) =

nmax∑
i=nmin

cir
−i

(5.28)

The number and type of the exponents nmin to nmax needs to be determined

based on the investigated system. For example, in the original publication

only even exponents from 6 to 16 were included.
[106]

A later study investi-

gated the Xenon dimer and it was decided to include exponents up to i = 18
and also some odd numbered ones.

[107]
In both cases the coe�cients ci are

determined by a �tting procedure to very accurate dissociation curves of the
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respective dimer molecules calculated by coupled-cluster theory. For such a

potential the cohesive energy of the solid state can be expressed analytically

in terms of lattice sums.
[106]

5.2.2 Lennard-Jones Clusters

The LJ potential has been used extensively to study nucleation of clusters

and as a benchmark for global optimisation methods (section 4.5). From the

derivation of the LJ potential as an interaction potential to obtain analytical

solutions for the second virial coe�cient, it should be clear that it is a rather

crude approximation for the forces between atoms in a cluster of the size of

a few atoms. Nevertheless, the LJ potential is capable of making veri�able

predictions especially in the case of the rare gas clusters.
[12]

For example, the

most stable arrangement is often predicted to be a Mackay icosahedron in

agreement with experimental results.
[108]

The reason for this agreement lies

within the nature of the interaction between rare gas atoms due to dispersive

forces, which are approximated well by the LJ potential.

The hypersurface upon which the particles move, also called a potential

energy surface (PES) or energy landscape, has been explored extensively for

the LJ potential.
[20,109,110]

Doye et al.
[110]

employed the eigenvector following

method (section 4.5.1) to �nd an initial set of minima and transition states with

Hessian index 1.
d

From this set higher order Hessian index saddle point can

be found by randomly perturbing the found minima and transition states and

following the eigenvector to a new stationary point. Additionally, stationary

points were searched for in reverse order, meaning the search was started

from a high order index saddle point and structures with lower Hessian index

were located by perturbing the initial structure randomly.

Absolute numbers of local minima of LJ clusters can be found in the results

part (table 8.1, page 100).

5.3 Sticky-Hard-Sphere Potential

A variation of the sticky-hard-sphere (SHS) potential was originally intro-

duced by Baxter
[111]

and can be regarded as a rigid sphere interaction with

surface adhesion. In the simpler rigid sphere model the interaction potential

is 0 for distances larger than the equilibrium distance rs and goes to in�n-

ity when the particles “touch”. The rigid sphere model with surface adhesion

builds upon this by introducing a region of attraction of width R(rs − 1) in

d

The Hessian index gives the number of negative eigenvalues of the Hessian matrix.
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which the potential is de�ned to be −ε. The potential can be expressed as

V SW(r) =


∞ 0 < r < rs.

−ε rs < r < Rrs.

0 r > Rrs.

(5.29)

For this potential the second and third virial coe�cients have been evalu-

ated analytically. For clarity only the more important second virial coe�cient

B(T ) is shown.

B(T ) =
2

3
πNArs

3
[
1− (R3 − 1)

(
exp
{ ε

kT

}
− 1
)]

(5.30)

Interestingly, this potential shows a relationship to the (6,12)-LJ potential. For

values of R = 1.8 and ε = 0.56 the second virial coe�cient becomes

B(T ) =
2

3
πNArs

3
(

1− 4.832
(

exp
{ ε

kT

}
− 1
))

, (5.31)

which approximates the second virial coe�cient of the (6,12)-LJ potential

quite well.
[86]

More important for the scope of this thesis is, however, the relation to the

LJ potential for when the width of the potential well goes to 0. In this case

the potential can be written as

V SHS(r) =


∞ 0 < r < rs,

−ε r = rs,

0 r > rs,

(5.32)

which is then often called the SHS potential. If the LJ potential is expressed

in terms of equation (5.27), equation (5.32) represents the limit with respect

to the exponents (n,m) approaching in�nity.
e

lim
m,n→∞

V LJ

m,n = V SHS
(5.33)

This can easily be shown by applying l’Hôpital’s rule to equation (5.27) and

deriving the limits for the cases presented in equation (5.32).

5.3.1 Sticky Hard Sphere Clusters

Similar to the LJ clusters, the SHS clusters can be found by investigating com-

binations of spheres that minimise the potential in equation (5.32). As the SHS

potential is not a continuous function, common optimisation algorithms can

not be used to investigate the potential energy landscape. However, the na-

ture of the SHS potential results in a neat property that allows the clusters to

e

An illustration of this property is shown in �gure 8.1.
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be de�ned in terms of graph theory. Only pairs of spheres that have the right

distance of r = rs contribute to the overall energy, allowing the energy to be

expressed in terms of the contact number Nc.

E = −εNc = −ε
∑
i>j

Aij (5.34)

This allows the clusters to be represented by adjacency matrices A, where a

contact state is represented by a matrix element of Aij = 1 and every other

position byAij = 0.
[112]

The problem of minimising the energy now becomes

a problem of maximising the contact number Nc, or the number of 1 entries

in the adjacency matrix. The adjacency matrix of a cluster will be symmetric,

which means there are 2N(N−1)/2
di�erent combinations that could all poten-

tially represent a cluster structure. To �nd all possible packings, all adjacency

matrices have to be analysed with respect to their suitability for a stable clus-

ter structure, a method called exact enumeration. A large number of possible

adjacency matrices can be rejected immediately, because they represent an

already found structure with a di�erent particle labelling. This particle la-

belling degeneracy is due to the fact that the spheres are all equal and there-

fore swapping two rows or columns in the adjacency matrix will not change

the underlying cluster structure. If two adjacency matrices correspond to the

same structure they are said to be isomorphic (see chapter 2.1).

Besides the obvious rejection of adjacency matrices that are isomorphic,

other restrictions can be imposed to reduce the numbers of adjacency matri-

ces further. Most importantly, the resulting structures should be rigid, mean-

ing not continuously deformable. Thus, each sphere needs to be in contact

with at least three other spheres, which is true if each row or column of the

adjacency matrix contains at least three matrix elements of 1. Another restric-

tion that has often been imposed on the adjacency matrices is the Maxwell

criterion, which states that the contact number needs to ful�l Nc ≥ 3N − 6
for a structure to be rigid.

[113]
However, recent investigations revealed the

existence of rigid structures with Nc < 3N − 6.
[114]

Up to a size of N = 4 all

inter-particle distances are completely de�ned by the adjacency matrix. Start-

ing from N = 5 there will be at least one unknown inter-particle distance,

which needs to be determined algebraically. For this, the distance matrix D
needs to be constructed from the adjacency matrix. This can be achieved by

de�ning 3N − 6 equations (and N(N − 1)/2− (3N − 6) inequalities) from

the adjacency information.

Aij = 1→ rij = 2r (5.35)

Aij = 0→ rij > 2r (5.36)

The system has 3N variable coordinates, but by �xing one sphere at the origin

of the coordinate system and a second one along one of the coordinate axis,
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the number can be reduced to 3N − 6, and the system is completely de�ned

by the equations above. In case the structure has more contacts than 3N − 6
the system is overde�ned, but still solvable. Deriving an e�cient method for

mapping the adjacency matrix into the distance matrix is the crucial step to

examine clusters bound by the SHS potential.

A set of geometric elimination rules and distance rules have been derived

by Arkus et al.
[112]

An elimination rule sorts out unphysical adjacency ma-

trices, while a distance rule solves for the mapping Aij → Dij . These rules

can be derived from geometric considerations about the neighbourhood of

a sphere. If another sphere touches a sphere of radius r, it must lie on the

surface of a sphere with radiusR = 2r. For two spheres in contact, their sur-

rounding spheres intersect and form an intersection circle with radius

√
3

2 R.

Therefore, each matrix element Aij can be related to an intersection circle

between spheres i and j. Several rules can be derived from considering the

intersection circles of the particles, for instance, the fact that more than one

intersection circle can only intersect in 0, 1 or 2 points (and never more) im-

plies that three connected spheres can never be touched by more than two

spheres simultaneously. The article by Arkus et al. referenced above contains

many more such rules that can be used to construct SHS clusters.

Results for complete exact enumeration of up to 14 spheres
[112,114–116]

have

been published. The results by Holmes-Cerfon
[114]

also showed evidence of

so called hypostatic clusters with less than 3N−6 contacts. This is due to the

fact that in this study a modi�cation of the exact enumeration method was

used, which follows one-dimensional transition paths created from breaking

a random contact in an already found cluster. Another interesting �nd in

this publication was the existence of clusters that share the same adjacency

matrix representation. This means that the mapping from adjacency matrix

to cluster embedding is not a bijection, but only surjective. An overview of

these results can be found in table 8.1 (page 100).
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For the projects outlined in chapters 8 and 9 a program to optimise

3-dimensional coordinates of cluster structures with respect to a two-body

potential was required to be created. The optimisation routine needed to be

�exible in the way that it would be easy to implement di�erent two-body

potentials like Lennard-Jones (LJ) or extended Lennard-Jones (eLJ).

Furthermore, the program needed to be able to analyse the results regarding

structure, energy and the matrix of second derivatives. The resulting

program was written in C++ with standard library version 11 and was tested

to compile in a Linux environment with the clang++ compiler version 6.0. In

the following sections, main features are explained and more important

functionalities are outlined in more detail.

6.1 Structural Optimisation and Analysis

The main functionality of the program is implemented in three di�erent ex-

ecutables. Each carries out a di�erent task, i.e. optimising given input struc-

tures and output the results, removing duplicate structures from a set of input

structures and �nding di�erences of two sets of input structures. The pro-

grams are set up in such a way that their outputs can be used as input �les

for the other program parts. This allows the programs to be used sequen-

tially while retaining the �exibility of using each executable separately. This

chain-like execution scheme is depicted in �gure 6.1. A set of input struc-

tures (Input 1) is provided to the �rst executable program optimize, which

optimises the structures and generates Output 1, which is a list of optimised

coordinates in the same format as the input. This can be used as input for

the second executable program analyze, which uses the distance matrix to

identify duplicate structures and outputs a list of optimised structures with

no duplicates (Output 2). In combination with a secondary set of structures

(Input 2) the third executable program match can be used to compare both

sets of structures and output coordinates of structures that are missing from

either set 1 or 2 (Output 3).

6.1.1 Optimisation of Input Structures

The optimisation of input structures with a chosen potential can be carried

out with the program optimize. The coordinates of the input structures have

63
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Figure 6.1 Schematic representation of the optimisation, analysis and match-

ing procedure. Red circles: program input or output, blue ellipses: program

executions.

to be provided in a single �le where each line contains three numbers rep-

resenting the position of one sphere. Multiple structures can be included by

separating the list of coordinates by single blank lines. The program auto-

matically moves the input structures to their respective centres of mass, and

rotates them onto the principal axis system. To speed up the optimisation the

environment variable OMP_NUM_THREADS can be set to a value greater than one

to enable Open Multi-Processing (OMP) parallelisation. Each optimisation is

carried out in a separate thread, while the number of simultaneously running

threads is equal to OMP_NUM_THREADS.

Various parameters of the program run can be controlled using a settings

�le in the working directory, which is parsed with help of the library libcon-

�g.
[117]

For example, the optimisation can be controlled using the opt group.

In this group, the optimisation model can be chosen with the name setting,

which currently can be set to either BFGS for the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm or CG for the conjugate gradient method. The opti-

miser uses the machine learning library dlib
[118]

as a back-end, which allows
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for the implementation of additional optimisation models with relative ease.

The energy termination criterion is de�ned using the dforce setting and the

maximum number of steps can be set with the nsteps setting. An example is

given in the box below.

settings file - opt tag
opt: {

name = "BFGS";

dforce = 1e-10;

nsteps = 100;

};

A potential model has to be chosen for the optimisation procedure. Custom

models can be added easily, which will be explained later. The current im-

plementation allows the selection of three pair potentials, LJ, eLJ and a LJ

potential with a cut-o� range. For the LJ potential four parameters have to be

given to the potential group as shown in the box below.

settings file - potential tag
potential: {

name = "LJ";

epsilon = 1.0;

rm = 1.0;

exp1 = 12.0;

exp2 = 6.0;

};

The name setting enables the LJ potential and the four parameters epsilon, rm,

exp1 and exp2 de�ne the potential. The values shown in the example are the

default values, which the program will fall back to if no values are provided

by the user. The eLJ potential can be chosen by setting the name setting to

ELJ and a range cut-o� value can be chosen with the RangeLJ potential. For

the eLJ potential the cn coe�cients have to be provided in a separate �le

located in the working directory and named ext, where each line contains

two numbers. The �rst integer represents n and the second �oating point

number de�nes the corresponding coe�cient.

After each structural optimisation the program checks if the result is a true

minimum by calculating the Hessian matrix eigenvalues. If this check fails

the eigenvectors of the Hessian matrix are calculated and the non-minimum

structure is displaced in both possible directions according to the eigenvector

belonging to the �rst negative eigenvalue in the Hessian matrix. The algo-

rithm tries to re-optimise until there are no negative eigenvalues in the Hes-

sian matrix or until a maximum number of �ve re-optimisations is reached.

The resulting structures are printed in the �le coord in the same format as

the input. To analyse the optimisation procedure the additional �les opt and
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reopt are created, which contain the intermediate coordinates of the optimi-

sation and re-optimisation procedures for each individual input structure.

6.1.2 Removing Duplicate Structures

Duplicated geometries in a set of input structures can be identi�ed using the

second program analyze. The input has to be provided in the same format

as for the optimize program. The read-in procedure is equivalent to the

optimize program. The program uses two methods to identify unique struc-

tures, one of which uses the energy of the cluster as a criterion, therefore the

potential group has to be set in the settings �le.

The �rst method uses four values to uniquely identify a structure. Those

are the values for energy and the three eigenvalues of the moment of inertia

tensor. This sorting procedure uses a map container from the C++ standard

library, which is an implementation of a binary search tree. The map stores

key-value pairs, which are guaranteed to be stored in order with respect to

the key.
[119]

In this speci�c case, the ordering is implemented as a custom

comparator function that sorts by energy �rst, then smallest moment of in-

ertia tensor eigenvalue followed by the two larger moment of inertia tensor

eigenvalues. The comparator function returns true if the �rst argument is

considered smaller than the second argument. This procedure is shown as

pseudocode in algorithm 1. The key is mapped to a value, which is simply

Algorithm 1 Comparator function for sorting by energy E and moment of

inertia eigenvalues I1 ≤ I2 ≤ I3.

1: procedure Compare(structure a, structure b)
2: if Ea < Eb then
3: return true

4: else if Ea = Eb and Ia1 < Ib1 then
5: return true

6: else if Ea = Eb and Ia1 = Ib1 and Ia2 < Ib2 then
7: return true

8: else if Ea = Eb and Ia1 = Ib1 and Ia2 = Ib2 and Ia3 < Ib3 then
9: return true

10: else
11: return false

12: end if
13: end procedure

the number of structures. The advantage of this method is its great scalabil-

ity with respect to the number of input structures as values can be retrieved

quickly based on the key.

The second method uses the Euclidean distance matrix (EDM) as the di�er-
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entiation criterion. The EDM is the matrix of all inter-particle distances dij
where each entry is de�ned as the Euclidean norm || · || between two spheres.

dij = ||xi − xj ||2 (6.1)

Each unique embedding of the cluster in space can be represented by an EDM,

however information about the absolute position, orientation and chirality

is not contained in this representation. That means rigid transformations

of clusters (translations, rotations, re�ections) don’t a�ect the EDM as they

don’t change �xed distances between points in space.
[120]

If at least one inter-

particle distance is di�erent, the structures are said to be not equal. The al-

gorithm is implemented in such a way that a structure’s distance matrix is

compared to the distance matrix of all other already sorted structures and is

added to the matching group if they are equal up to a set threshold. If not,

the structure is added to the array as a new group. If the optimisation results

in many unique structures, this method of sorting becomes slow, as each trial

structure has to be compared to all other already sorted structure groups.

6.1.3 Matching Structures

To compare the results from the optimisations procedures to previously pub-

lished sets of clusters the program match can be used. It takes two �les as

input that each contain a set of structures of equal or di�erent size and com-

pares them based on the EDM. The number of atoms in each set must be

equal, otherwise the program will be terminated. If both sets are found to be

identical no output �les are created. In case there are unmatched structures

they will be printed in xyz format in the output directory for further analysis.

6.2 Graph-Theoretical Analysis

Graph theoretical analysis of cluster structures can be done with

ico-subgraph, which is a very specialised program designed to compare

contact graphs of Gregory-Newton (GN) clusters to the icosahedral graph.

The input format for the structures remains unchanged.
a

All graph objects are handled by the Boost Graph Library
[30]

and are im-

plemented as undirected graphs as the direction of the connectivity in clus-

ters is not meaningful. The graphs are automatically generated from three-

dimensional coordinate input given by an object of type structure. Two

types of graphs can be generated from these: (1) the graph of the complete

structure and (2) the contact graph containing all spheres but the central one

(if it exists). The latter is the more important one as it was used to carry out

a

This part of the program was used in chapter 9. For a de�nition of contact graphs and GN

clusters refer to the introduction in that part of the thesis.
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the analyses in chapter 9. The decision whether two spheres are connected is

based on two parameters: the equilibrium distance re and a threshold value

ε. The default values for these are re = 1 and ε = 10−10
, respectively.

dij − re < ε (6.2)

The icosahedral graph is compared to the input structures via their graphs

and the VF2 graph matching algorithm.
[29,121]

The algorithm �nds all map-

pings of the vertices of the icosahedral graph to the graph of the input struc-

ture. As the icosahedron represents the complete planar graph for 12 vertices,

every graph that is a subgraph of the icosahedral graph can be represented by

the number and type of edges removed from the icosahedral graph. For this

application the mapping was chosen based on the root mean square (RMS)

value of the distances between the spheres corresponding to removed edges.

From all the possible mappings of the investigated graphs to the icosahedral

graph the one with the lowest RMS value was chosen.

The graphs of the input structures are analysed with respect to their

vertex and face degrees. Vertex degrees are calculated directly by the library

and can be accessed with the degree function. For face degrees the

planar_face_traversal function has to be invoked. This algorithm iterates

over all faces in the planar embedding counting the number of vertices

constructing each face. The graphs of the input structures are then sorted

based on the calculated degree values, starting with the vertex degree in

descending order and followed by the face degree in ascending order. If two

or more graphs have the same amount of face and vertex degrees they are

grouped together. The sorted graphs are printed to the standard output in

the same form as table A.2 (page 144). Additionally, the investigated graphs

are printed in terms of removed edges from the icosahedral graph as shown

in table A.1 (page 129).

6.3 Additional Functionalities

Besides the main parts of the program, which have been described on the

previous pages, a few script-like executable programs are provided. These

were used to calculate various di�erent properties of the investigated clusters.

Analyse Bond Lengths The bond variance in optimised structures can be

calculated with app-bondvariance. The bond variance is simply de�ned as

the di�erence between the shortest and longest bond of a cluster structure. In

clusters optimised by soft potentials a bond is not as well de�ned as for sticky-

hard-sphere (SHS) clusters. Therefore, it has to be determined with respect

to a threshold value and the variance of the bond lengths can not be larger
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than this threshold. This application has been used in chapter 8.4 to calculate

the bond variance of the optimised (6, 12)-LJ structures. A more specialised

version called app-shortestbond is also provided that can be used to �nd the

cluster with the shortest bond distance.

Sort Structures by Nc Analysing the total contact numbers Nc or speci�c

kissing numbers can be done with the programs app-Nc and app-GN. The latter

looks for clusters with a central atom that has exactly 12 spheres arranged

around it, so called Gregory-Newton clusters.

6.4 Implementations in Detail

In the following sections the basic implementation of cluster structures and

two-body potentials will be explained in more detail.

6.4.1 Treating Cluster Structures

The main purpose of program Spheres was to optimise an input set of struc-

tures with given Cartesian coordinates and analyse the results of the optimi-

sation based on properties of the resulting structures. The handling of those

structures and respective properties was therefore crucial to the functioning

of the program.

The Cartesian coordinates are read from a �le with blank lines separating

di�erent starting geometries. For each of these individual sets of coordinates

a structure object is created. The structure class, however, has much more

functionality than storing 3D coordinates. In fact, it serves as a complex data

type storing properties besides coordinates as well as member functions to

calculate those properties. They are stored in data members de�ned in private

�elds, such that they can only be manipulated by functions owned by the

structure class. The structure class is designed to store values for:

• Cartesian coordinates

• energy (depending on the chosen potential),

• an integer number for labelling,

• moment of inertia,

• the EDM and adjacency matrix representations and

• an undirectedGraph that contains the connectivity information.

The Cartesian coordinates of each individual sphere are stored in an object

of type coord3d, which is a modi�ed version of the coord3d implementation

used in program Fullerene.
[122]
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The moment of inertia tensor determines the torque needed to accelerate

a rigid body to spin around a rotational axis through the origin of the coordi-

nate system. It is therefore analogous to mass in case of linear, translational

acceleration. For cluster structures the tensor is equal to the sum over the

moments of inertia of all constituent particles. As the clusters investigated in

this thesis are only made up of one type of particle the mass term was set to

unity. The inertia tensor I can then be calculated via the equations below.

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz


Ixx =

∑
i

(y2
i + z2

i ) Iyy =
∑
i

(x2
i + z2

i ) Ixx =
∑
i

(y2
i + x2

i )

Ixy = Iyx = −
∑
i

xiyi Ixz = Izx = −
∑
i

xizi Iyz = Izy = −
∑
i

yizi

(6.3)

Here, xi, yi and zi denote the respective coordinate of sphere i. Diagonalising

the inertia tensor yields a set of eigenvalues and eigenvectors, with the latter

representing the principal axis system. Upon creation of a structure object

the coordinates are transformed, such that the coordinate origin lies at the

centre of mass and the structures principal axis are aligned with the basis

vectors of the Cartesian coordinate system.

The class is designed to ensure that when any of the particle coordinates

change, all properties are recalculated such that there is never a mismatch

between the properties and the coordinates they refer to.

6.4.2 Treating Two-Body Potentials

For the geometry optimisation of the cluster structures, methods to calculate

the energy and gradient need to be provided to the optimisation library. As

shown in section 4.4 the gradient can be expressed as in equation (6.4).

∂E(X)

∂xm
=

N∑
j>i

∂ε(rij)

∂rij

∂rij
∂rij

∂rij
∂xm

(6.4)

The last two terms of the sum will be the same independent of the choice for

the potential function ε(rij). The implementation therefore focused on reduc-

ing redundancies by making use of class inheritance features. As explained

in the following paragraphs, this makes exchanging the type of two-body po-

tential trivial.

For this, a base class called pairPotential was de�ned. It is an abstract

class and therefore cannot be instantiated. Its private �elds hold declarations

of virtual methods for calculating energy E(r), �rst derivative dE/dr and
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second derivative d2E
/

dr2
based on particle distance r. They are declared

virtual, because they will be overwritten with the respective functions in the

derived classes of the actual potentials. In the bare pairPotential class those

functions are only declared but never de�ned and cannot be used for calcu-

lations. The public members of the class are the constructor and the user-

accessible functions for calculating energy, gradient vector and Hessian ma-

trix as well as the optimiser.

As an example, the C++ implementation for the member function that cal-

culates the energy of the system is shown in listing 6.1. The method takes a

Listing 6.1 Implementation of the redundant part of the energy calculation.

double pairPotential::calcEnergy (structure &S) {

double f(0);

for (int i = 0; i < S.nAtoms(); i++) {

for (int j = i + 1; j < S.nAtoms(); j++) {

f += this->E (coord3d::dist (S[i],S[j]));

}

}

return f;

}

structure object as input and uses the virtual energy function to calculate

the energy contributions of all unique pairs of spheres. The method nAtoms()

returns the number of spheres in the structure and dist calculates the Eu-

clidean distance between two spheres i and j.

Listing 6.2 Implementation of the distance dependant energy for the

Lennard-Jones potential.

class LJ : public pairPotential {

private:

double E (double distance) {

return (_epsilon / (_exp1/_exp2 - 1))

* ( (pow (_rm / distance, _exp1)) - (_exp1/_exp2)

* (pow (_rm / distance, _exp2)) );

}

//methods for first and second derivatives go here

};

To de�ne a potential, a derived class that overwrites the virtual function

declarations is required. The virtual member functions of the base class are

overwritten in the private �eld of the derived class by providing properly de-
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�ned methods. Additionally, any parameters, that the potential form depends

on, are declared in the private �elds. In the public �elds, constructors for the

respective potential as well as a function that reads the potential parameters

from a user provided �le need to be declared. The last function is important

as it also creates a pointer to the potential object on heap memory, which is

necessary, because the exact nature of the potential is not known at compile

time. For the LJ potential the energy function can be de�ned as shown in list-

ing 6.2. The variables starting with an underscore are data members de�ned

on object creation and refer to the two exponents _exp1 and _exp2 the equi-

librium distance _rm and the depth of the potential energy well _epsilon. A

di�erent potential can be implemented in the same way. A new derived class

has to be de�ned, containing the methods to calculate energy, �rst and sec-

ond derivative. Additionally, a function that reads parameters that de�ne the

respective potential form has to be provided. By design, the function needs

to return a pointer to an instance of the class on heap memory. In case of the

LJ potential this can be achieved as shown in listing 6.3. Because memory on

Listing 6.3 Minimal example for the method readPotential().

LJ *LJ::readPotential () {

//instructions to read parameters from file go here

LJ *potential = new LJ(epsilon, rm, exp1, exp2);

return potential;

}

heap has to be managed by the user, the pointer should be used in conjunction

with unique_ptr to ensure destruction of the object upon exiting the scope.

An example for this is given below.

//read potentialName from settings file

std::unique_ptr< pairPotential > potential;

if (potentialName = "LJ") {

potential.reset( LJ::readPotential() );

}
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7 Golden Dual Fullerenes
a

7.1 Introduction

With the discovery of the catalytic activity of gold nano-clusters,
[124–127]

re-

search interest in this �eld has resurged over the recent years.
[128–134]

Gold

compounds can show rather interesting topologies, like barrel shaped struc-

tures
[135]

and planar sheets,
[136–138]

mainly because of strong relativistic ef-

fects compared to its lighter congeners copper and silver.
[139–145]

These e�ects

are also responsible for an unusually high electronegativity, allowing gold

to act as an electron acceptor in mixed-metal complexes.
[140]

This property

could be used for electronic �ne-tuning of physical and chemical properties

in gold containing nano-materials of a certain size.
[128]

The growth behaviour

of such clusters is, however, still debated heavily
[146–148]

and even the exact

nature of the transition from planar structures to three-dimensional compact

geometries in small gold clusters is not entirely resolved.
[149–156]

In 2004 the �rst hollow gold cluster Au
32

was proposed by Johansson et

al.
[157]

adopting an Ih symmetric structure that can be created via a dual trans-

formation of Ih-C
60

, e�ectively replacing every face in the carbon fullerene

with a gold atom, resulting in a triangulated surface. Karttunen et al.
[158]

have predicted another cage-like gold cluster I-Au
72

, which they expect to

be spherically aromatic. For clusters of copper or silver such hollow struc-

tures are not very stable.
[157,159]

The discovery of these types of structures has

sparked interest in this �eld and many more hollow cages
[148,150,158,160–167]

and

clusters enclosing a central metal atom
[168–176]

have been found. Most impor-

tantly, Ih-Au
–

32
, Td-Au

–

16
, C2v-Au

–

17
and C2v-Au

–

18
were found to su�-

ciently explain gas phase photoelectron spectra of small gold clusters.
[177,178]

On the following pages the relationship between carbon and gold fullerene

cages in terms of their topology is investigated. The similarities arise from

the fact, that topological features known for carbon fullerenes,
[179–181]

like the

Goldberg-Coxeter transformation,
[182,183]

can also be applied to golden dual

fullerenes to construct larger structures. A new class of gold clusters emerges

naturally from a one-to-one mapping of the isomer space of fullerenes to hol-

low gold clusters. In the following sections, the stability of such clusters as

a

This chapter is composed of sections previously published in the article “Hollow Gold Cages

and Their Topological Relationship to Dual Fullerenes”
[123]

and is reprinted by permission

from the publisher ©2016 John Wiley and Sons. Some sections have been modi�ed to �t

the style of this thesis.
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well as their photoelectron spectra are investigated.

7.2 Topological Aspects

The construction of carbon fullerenes can be explained by starting from a

graphene sheet and wrapping it around a sphere
b
, which requires 12 of the

hexagonal faces to be replaced by pentagons. This is a requirement imposed

by Euler’s polyhedral formula.

|N | − |E|+ |F | = χ (7.1)

Here, |N | is the number of vertices (or atoms), |E| the number of edges (or

bonds), |F | the number of faces and χ = 2 − 2g the Euler characteristic,

which is 2 for genus g = 0 surfaces as in convex polyhedra. As shown in sec-

tion 2.2 the number of faces and vertices can be exchanged without changing

the result of Euler’s formula. This is also called a dual transformation, and

in the case of the graphene sheet this transformation results in a (111) face-

centered cubic (fcc) sheet of, for example, gold bulk. Because the symmetry

is preserved by this transformation both objects belong to the hexagonal 2D

lattice group p3m1. To distinguish the two sheets, the graphene sheet will be

denoted p3m1-G and the gold sheet p3m1-T (�gure 7.1).

(a) (b)

Figure 7.1 (a) p3m1-G graphene and (b) its dual sheet p3m1-T adopted in the

(111) surface of fcc gold.

Small cut-outs of the p3m1-T sheet can be found as global minima for

smaller gold clusters, indicating that this represents a very stable structural

motif for gold compounds.
[151]

This concept can be extended to non-spherical structures like carbon nano-

tubes to construct gold nanowires, and there has been experimental evidence

b

Or any surface with genus 0.
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supporting the existence of such structures.
[184]

Because they are the duals

of the carbon nano-tubes they can be constructed in the same way.
[185]

Two

examples of cylindrically shaped carbon and gold structures are shown in

�gure 7.2.

(a)

(b)

Figure 7.2 (a) D6d−C144 zig-zag fullerene nanotube and (b) its dual

D6d−Au74.

As fullerenes need to have exactly 12 pentagons, a dual fullerene will have

12 vertices of degree �ve instead. All other vertices will have degree six and

there are exactly as many as there are hexagons in the corresponding carbon

fullerene. The smallest carbon fullerene C
20

has |Fh| = 0 hexagons, and

all larger ones at least |Fh| > 1. The fullerene C
22

, which would contain

exactly one hexagon, is non-existent,
[186]

thus, the hypothetical golden dual

fullerene (GDF) Au
13

c
also cannot exist. Fullerenes often have much more

than one stable isomer (non-isomorphic graphs)
[181]

and because of the dual

relationship there should be as many isomers for the GDFs. Additionally, the

growth of this isomer space for fullerenes should scale the same with respect

to the number of vertices, which was found to be O
(
|N |9

)
.
[187]

Both C
60

and its dual Au
32

, as well as their graph representations are de-

picted in �gure 7.3. This relationship was �rst noticed in conjunction with the

prediction of Au
32

,
[157]

and it allows the usage of the same algorithms used

to construct fullerenes to create GDFs. For example, using the generalised

face-spiral algorithm
[122,180,181,188]

followed up by an embedding of the graph

on a genus 0 surface and a dual transformation.

A recent investigation of photoelectron spectra of gold clusters considered

the existence of a Td-Au
–

16
cluster to explain the experimental �ndings.

[178]

c

The relation between the number of vertices in a fullerene |Nf | and the number of vertices

in the corresponding dual fullerene |Nd| is |Nd| = |Ff | = |Nf |/2 + 2.
[180]
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(a) (b) (c)

Figure 7.3 (a) Schlegel diagram of C60 (red vertices) and its dual (blue vertices

and dashed edges), (b) the C60 structure, and (c) its dual Au32 structure.

This cluster would be dual to C
28

and has exactly two isomers: Td-Au
16

and

D2-Au
16

. In the above study, the D2-symmetric isomer has not been con-

sidered to explain the observed spectra, which naturally raises the question

whether this isomer’s photoelectron spectra is similar or even capable of ex-

plaining the observations better.

The question of which structure is dominating the experimental spectrum

is closely related to the question of which structure is thermodynamically

more stable. For regular carbon fullerenes there exists an “isolated pentagon

rule”, that states that a carbon fullerene is more stable when none of the pen-

tagons are in direct contact with each other.
[189]

It is hitherto unknown if

there is an equivalent “isolated vertex of degree �ve rule” for dual fullerene

structures.

As mentioned before, methods like the Goldberg-Coxeter transformation

can be used to construct larger dual fullerenes from smaller ones.
[182,183,190]

The original Goldberg-Coxeter transformation was carried out on the

dodecahedron (C
20

fullerene),
[182,183]

but it can be shown that it can be

applied to any fullerene graph.
[180]

The transformation GCk,l can be

controlled by two integer parameters k, l describing the scaling and rotation

of the mesh on which the transformation is carried out. The symmetry of

the original fullerene is preserved if k = l (leapfrog transformation) or l = 0
(halma transformation). Some important transformations are for example

GC1,1[Ih−C20]=Ih−C60
[181]

and GC2,0[Ih−C20]=Ih−C80, both preserving

the initial point group symmetry. In case of the gold clusters the same

transformations results in the respective dual representations, i.e.

GC1,1[Ih−Au12]=Ih−Au32 and GC2,0[Ih−Au12]= Ih−Au42. Both of these

structures have been proposed previously to be stable hollow cages.
[157]

The

new vertex count of GCk,l[Au|Nd|] is

|N ′
d
| = (k2 + kl + l2)(|Nd| − 2) + 2. (7.2)

An often encountered structural motif in gold clusters is the Mackay icosa-

hedron.
[153,191]

Although this is not a hollow structure, it is related to dual
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fullerenes as it is made up of multiple icosahedral shells. Each individual

shell m consists of

|Nshell| = 10m2 + 2 (7.3)

atoms, resulting, when summing up, in the magical cluster numbers 13, 55,

147, 309, and so on.
[192,193]

Figure 7.4 shows one such icosahedral structure

withm = 7 shells and 1415 atoms. The number of shells can be deduced from

Figure 7.4 Mackay icosahedron with 7 shells and 1415 atoms. The outer

icosahedral shell is the dual of the halma transformGC7,0[Ih−C20]=Ih−C980.

the number of spheres on one edge of the icosahedron, including the spheres

marked in red. There is exactly one sphere more on the edges than there are

shells, thus m = |Nedge| − 1. The halma pattern of a GCk,0 transformation is

clearly visible on the faces of the icosahedron, and it turns out the icosahedral

shells are in fact related to the smallest fullerene C
20

by such a transformation

and a subsequent dualisation. For this process equation (7.2) becomes

|N ′
d
| = k2(|Nd| − 2) + 2, (7.4)

and with |Nd| = 12 (as Au
12

is the dual of C
20

) this is equal to equation (7.3).

The parameter k of the transformation GCk,0[C20] therefore de�nes which

shell of the icosahedron is created by the Goldberg-Coxeter transformation

with subsequent dualisation.

The relationship between carbon fullerenes and hollow gold clusters can be

used to name the latter in the same way as the carbon fullerenes. For example,

this can be achieved by using the canonical face spiral pentagon indices (FSPI)

in combination with the numbering scheme introduced by Manolopoulos.
[181]

A complete and unique method for naming polyhedra extending the original

algorithm by Manolopoulos has been developed recently.
[194]

In the following

sections the golden dual fullerenes from Au
12

to Au
20

(excluding Au
13

) will

be investigated by means of density functional theory (DFT) calculations.
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7.3 Computational Details

Program Fullerene
[122]

has been used to construct initial structures of all

isomers of the golden dual fullerenes from Au12 to Au20 using a recently

developed force-�eld for fullerenes
[195]

(excluding the non-existing golden

dual fullerene Au13). The following isomers need to be considered according

to the isomer list for the fullerenes (number in parenthesis gives the number

of di�erent isomers of same symmetry):
[122,196] Ih−Au12, D6d−Au14,

D3h−Au15, D2−Au16, Td−Au16, D5h−Au17, C2v−Au17(2), D3h−Au18,

D3d−Au18, D3−Au18, D2−Au18, C3−Au18(2), C3v−Au19, C2−Au19(3),

Cs−Au19(2), D6h−Au20, D3h−Au20, D2d−Au20(2), C2v−Au20,

D2−Au20(2), C2−Au20(3), C2−Au20(2), C1−Au20(2) and Ih−Au32. The

initial force-�eld optimised structures scaled to an approximate internuclear

distance were then re�ned by using the Predew-Burke-Ernzerhof

generalised gradient approximation (GGA) functional
[47,48]

corrected for

dispersion interactions using Grimme’s method (PBE-D3)
[49,50]

together

with a Los-Alamos scalar relativistic e�ective core potential for gold and the

accompanying double-zeta basis sets.
[197]

Note that the PBE functional was

recently considered to perform well for gold clusters.
[198]

For several

selected clusters the geometries obtained were checked for accuracy by

carrying out calculations using a small core scalar relativistic Stuttgart

pseudopotential
[51]

together with an augmented valence double-zeta basis

set by Peterson and Puzzarini.
[199]

For comparison, the compact global

minimum cluster structures recently published for the neutral

compounds
[151]

and for the negatively charged species
[200,201]

were

calculated.

The simulation of the photoelectron spectra has been carried out by arti�-

cial broadening the spectrum of orbital energies with Gaussian functions. The

standard deviation σ for these functions was chosen to be 0.035 eV in qual-

itative agreement with the experimental spectra. The orbital energies were

calculated using the PBE density functional with the def2-SVP
[202]

double-

zeta basis implemented in Turbomole 7.0.
[203]

The core region was described

using an e�ective core potential including scalar relativistic e�ects. The cal-

culated electron a�nities were used as the onset value for simulating the pho-

toelectron spectra.

For the calculation of the (111) fcc sheet and the fcc bulk structure of gold

the program package VASP5
[204]

was used, utilizing a plane-wave basis set

(cut-o� energy Ec = 350 eV) and the standard projector-augmented

wave (PAW) datasets for the elements to model the electron-ion

interaction.
[52,205]

The electron-electron interaction was modelled within the

GGA to the exchange-correlation energy functional as described above and

dispersive e�ects were taken into account by employing Grimme’s D3

dispersion correction with Becke-Johnson damping.
[49,50]

Brillouin zone
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integrations were carried out on Γ-centred Monkhorst-Pack grids of

k-points with a distance of 0.2 Å
−1

. The cohesive energy is de�ned as the

atomisation energy per atom keeping in mind that one gold atom is

negatively charged for the anionic clusters.

In order to discuss how much the gold cages deviate from sphericity com-

pared to the dual fullerene structure, the previously introduced de�nition of

a minimum distance sphere (MDS) was used,
[122]

min
cMDS∈CH(S)

1

N

∑
i

|RMDS − ‖pi − cMDS‖| (7.5)

with the MDS radius de�ned as

RMDS =
1

N

∑
i

‖pi − cMDS‖. (7.6)

Here S is the set of n points pi (i = 1, . . . , n) in 3-dimensional space, CH(S)
its convex hull, ‖ · ‖ the Euclidean norm, and cMDS is the barycentre of the

MDS with radiusRMDS. In other words, the procedure tries to locate a sphere

that approximates the position of the vertices well. A measure for distortion

from spherical symmetry through the MDS is de�ned as
[122]

DMDS =
100

NRmin

N∑
i=1

|RMDS − ‖pi − cMDS‖| , (7.7)

where Rmin is the smallest bond distance found in the cluster. The pentagon

index Np is de�ned as

Np =
1

2

5∑
k=1

kpk with

5∑
k=0

pk = 12 (7.8)

where the pentagon indices (pi|i = 0, . . . , 5) de�ne the number of pentagons

attached to another pentagon.
[181]

7.4 Structure and Stability

The results for the neutral and negatively charged gold clusters are collected

in tables 7.1 and 7.2 respectively. The dual fullerene structures are compared

to the known global minimum structures in these tables, and the di�erent

isomers are numbered according to their canonical degree 5 vertex spiral,

identical to the canonical face spiral pentagon indices for fullerenes.
[181]

Cal-

culations for the most stable neutral and anionic compact Aun clusters for

comparison are also included and are listed in table 7.3. The investigated

structures for the negatively charged gold clusters are depicted in �gures 7.5
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(a) 12:1 (b) 14:1 (c) 15:1 (d) 16:1

(e) 16:2 (f) 17:1 (g) 17:2 (h) 17:3

(i) 18:1 (j) 18:2 (k) 18:3 (l) 18:4

(m) 18:5 (n) 18:6 (o) 19:1 (p) 19:2

(q) 19:3 (r) 19:4 (s) 19:5 (t) 19:6

Figure 7.5 Structures of anionic gold clusters (Au
−
12 to Au

−
19).
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(a) 20:1 (b) 20:2 (c) 20:3 (d) 20:4

(e) 20:5 (f) 20:6 (g) 20:7 (h) 20:8

(i) 20:9 (j) 20:10 (k) 20:11 (l) 20:12

(m) 20:13 (n) 20:14 (o) 20:15

Figure 7.6 Structures of anionic gold clusters (Au
−
20).
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and 7.6, and the energy di�erences compared to the global minimum struc-

tures are shown in �gure 7.8.

The optimised gold clusters can be sorted according to whether they can

be derived from a dual fullerene structure, or more generally from a cubic

polyhedral graph, or not. In this case Euler’s polyhedral formula can be sim-

pli�ed, which upon dualisation gives a triangulation of a sphere obeying the

formula

Γ =
∑
n=3

(6− n)|Nn| = 12, (7.9)

where |Nn| denotes the number of n-valent vertices. Any deviation from

Γ = 12 implies that the polyhedron is not a triangulation of a sphere. As

mentioned before, for dual fullerenes only values of N5 = 12 and N6 =
{0, 2, 3, 4, 5, . . . } are allowed. Hence, a true dual fullerene structure is ob-

tained in case of a complete triangulation and 12 vertices of degree �ve.

Tables 7.1 and 7.2 show vertex counts as well as results from equation (7.9)

for the neutral and anionic clusters, respectively. Considering only the topo-

logical parameter Γ it is clear that most of the optimised structures can be de-

rived from a dual planar cubic graph and therefore only consist of triangles.

The few notable exceptions are the isomers 12:1 and 20:12 for both the an-

ionic and neutral structure. The ideal icosahedral structure for the Au12 clus-

ter is not stable under the present level of theory, and the optimised structure

does not correspond to a triangulation of a sphere. However, it has already

been shown that this cage can be stabilised by inserting a transition metal

(e.g. tungsten) atom into the central position of the icosahedron such that the

18 valence electron rule is ful�lled.
[168,206]

Additional stabilisation of such an

endohedral gold cluster can be achieved by attaching ligands to the surface

of the cluster.
[207]

Structure 20:12 converges towards a more compact cluster

with an 8-fold coordinated gold atom in the centre for both the anionic and

the neutral cluster.

Figure 7.7 gives an overview over all optimised structures. A green �eld

marks a dual fullerene structure with exactly 12 vertices of degree �ve and

the remaining vertices being of degree six. These are also the structures used

in �gure 7.9b and they are more abundant for clusters of size 14 to 19 atoms.

Structures with an orange mark do not ful�l the requirement of being a dual

fullerene as they contain vertices of degree 4. However, they are still hol-

low gold cages and, as mentioned before, show a value of Γ = 12. These

structures can be rather similar to the initial dual fullerene structures ob-

tained from a force-�eld optimization of the corresponding carbon cage, and

are usually a result of a �attening towards a more oblate geometry. Most of

the clusters shown here preserve their hollow cage structure with only few

clusters optimising into more stable compact structures. These are marked as

red in �gure 7.7.

As illustrated by the distortion parameterD(F) in tables 7.1 and 7.2, carbon
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Table 7.1 Topological parameters for the neutral gold clusters. Number of

gold atoms and isomer numbers of the corresponding fullerene in canonical

order of the pentagon spiral indices,
[181]

ideal and actual point group sym-

metry, energy di�erences ∆Eg to the most stable neutral cluster of same size

and binding energy per atom ∆En = [E(Aun) − nE(Au)]/n (in eV), short-

est and largest bond distance (in Å), pentagon index (PI) Np, and distortion

parameter D (in %) for the initial force-�eld optimised fullerene structure (F)

and the GDF.

symmetry stability vertices bondlengths PI D
isomer ideal actual ∆En ∆Eg |N4| |N5| |N6| |N7| Γ shortest largest Np F GDF

12:1 Ih D4h −2.058 0.485 8 0 4 0 16 2.798 2.895 30 0 21.1

14:1 D6d D2d −2.134 1.173 0 12 2 0 12 2.739 3.048 24 6.1 23.4

15:1 D3h C2v −2.192 −0.083 0 12 3 0 12 2.786 2.901 21 5.1 29.2

16:1 D2 D2 −2.247 0.223 0 12 4 0 12 2.770 2.917 20 7.9 24.3

16:2 Td D2d −2.233 0.440 0 12 4 0 12 2.716 2.996 18 1.3 28.5

17:1 D5h Cs −2.259 0.177 2 8 3 3 12 2.747 3.026 20 11.5 17.3

17:2 C2v C2v −2.272 −0.038 0 12 5 0 12 2.769 2.931 18 7.6 19.1

17:3 C2v C2v −2.277 −0.128 0 12 5 0 12 2.762 3.139 17 5.5 20.8

18:1 C2 C2 −2.307 0.321 0 12 6 0 12 2.736 2.934 17 9.2 16.9

18:2 D2 D2 −2.290 0.627 0 12 6 0 12 2.733 2.935 18 11.6 17.2

18:3 D3d D3d −2.275 0.896 0 12 6 0 12 2.714 2.894 18 12.1 18.2

18:4 C2 C2 −2.321 0.073 0 12 6 0 12 2.749 2.931 16 7.2 18.7

18:5 D3h D3h −2.303 0.386 0 12 6 0 12 2.763 3.159 8 15.1 27.3

18:6 D3 D3 −2.310 0.270 0 12 6 0 12 2.742 2.945 15 5.8 15.2

19:1 C2 C2 −2.298 1.196 0 12 7 0 12 2.745 3.006 17 14.9 26.0

19:2 Cs Cs −2.307 1.014 0 12 7 0 12 2.747 2.972 15 7.5 20.0

19:3 Cs Cs −2.304 1.077 0 12 7 0 12 2.737 2.957 15 11.9 28.3

19:4 C2 C2 −2.311 0.935 0 12 7 0 12 2.745 2.905 15 7.0 17.7

19:5 C2 C2 −2.313 0.911 0 12 7 0 12 2.734 2.947 14 6.6 18.7

19:6 C3v C3v −2.316 0.854 0 12 7 0 12 2.765 2.890 15 12.7 30.6

20:1 C2 C1 −2.324 1.684 2 8 10 0 12 2.711 2.984 16 15.3 36.7

20:2 D2 D2 −2.295 2.271 0 12 8 0 12 2.699 3.023 18 20.4 22.0

20:3 C1 C1 −2.339 1.395 2 8 10 0 12 2.724 2.954 15 13.1 129.1

20:4 Cs Cs −2.324 1.695 0 12 8 0 12 2.709 3.023 16 13.7 25.5

20:5 D2 D2 −2.332 1.541 0 12 8 0 12 2.749 3.080 16 18.5 17.3

20:6 D2d C2v −2.337 1.440 2 8 10 0 12 2.752 2.977 14 9.8 26.6

20:7 C1 C1 −2.325 1.663 2 9 8 1 12 2.712 3.019 14 10.9 25.8

20:8 Cs Cs −2.346 1.256 2 8 10 0 12 2.748 3.057 14 8.4 40.7

20:9 C2v D6h −2.362 0.938 6 0 14 0 12 2.744 2.971 13 3.8 23.2

20:10 C2 C2 −2.344 1.299 2 8 10 0 12 2.726 3.004 14 12.6 23.9

20:11 C2 Cs −2.346 1.256 2 8 10 0 12 2.747 3.056 13 8.1 35.8

20:12 C2 C1 −2.366 0.861 3 5 4 7 4 2.719 3.048 13 5.4 21.1

20:13 D3h D6h −2.362 0.938 6 0 14 0 12 2.744 2.970 15 6.5 27.9

20:14 D2d D2d −2.311 1.948 0 12 8 0 12 2.779 2.929 12 3.7 22.0

20:15 D6h D6h −2.362 0.936 6 0 14 0 12 2.744 2.972 12 4.5 25.6

32:1082 Ih Ih −2.494 1.537 0 12 20 0 12 2.793 2.835 0 0 7.5

(111) 2D sheet −2.994 − 0 0 ∞ 0 − 2.722 2.722 0 0 0

fcc 3D bulk −3.677 − − − − − − 2.897 2.897 − − −
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Table 7.2 Topological parameters for the anionic gold clusters. Number of

gold atoms and isomer numbers of the fullerene in canonical order of the

pentagon spiral indices,
[181]

ideal and actual point group symmetry, energy

di�erences ∆Eg to the most stable anionic cluster of same size and binding

energy per atom ∆En = [E(Aun) − (n − 1)E(Au) − E(Au
−)]/n (in eV),

shortest and largest bond distance (in Å), and distortion parameter D (in %)

for the GDF.

symmetry stability vertices bondlengths D
isomer ideal actual ∆En ∆Eg |N4| |N5| |N6| |N7| Γ shortest largest GDF

12:1 Ih D2d −2.137 0.665 8 0 4 0 16 2.780 2.869 23.0

14:1 D6d D2d −2.242 −0.089 0 12 2 0 12 2.758 2.989 20.3

15:1 D3h C2v −2.281 0.473 0 12 3 0 12 2.741 3.029 21.2

16:1 D2 D2 −2.328 0.020 0 12 4 0 12 2.764 2.905 17.7

16:2 Td D2d −2.330 0.000 0 12 4 0 12 2.738 2.907 16.2

17:1 D5h D5h −2.353 0.469 0 12 5 0 12 2.757 3.017 13.2

17:2 C2v C2v −2.368 0.215 0 12 5 0 12 2.742 2.994 14.4

17:3 C2v C2v −2.376 0.087 0 12 5 0 12 2.731 3.019 14.2

18:1 C2 C2 −2.360 0.589 0 12 6 0 12 2.734 2.968 16.8

18:2 D2 C2 −2.346 0.848 0 12 6 0 12 2.733 3.059 16.8

18:3 D3d C2 −2.348 0.817 4 4 10 0 12 2.701 3.038 24.3

18:4 C2 C1 −2.364 0.529 0 12 6 0 12 2.740 3.048 19.0

18:5 D3h D3h −2.364 0.516 0 12 6 0 12 2.710 3.023 27.5

18:6 D3 D3 −2.357 0.642 0 12 6 0 12 2.734 2.912 14.7

19:1 C2 C2 −2.384 0.967 4 4 11 0 12 2.732 2.985 28.5

19:2 Cs Cs −2.368 1.268 2 9 7 1 12 2.727 2.989 16.9

19:3 Cs C3v −2.381 1.022 0 12 7 0 12 2.755 3.046 32.6

19:4 C2 C2 −2.390 0.853 2 8 9 0 12 2.744 3.003 22.1

19:5 C2 C2 −2.398 0.698 2 8 9 0 12 2.743 2.963 31.3

19:6 C3v C3v −2.381 1.023 0 12 7 0 12 2.756 3.044 32.4

20:1 C2 C1 −2.386 0.927 2 8 10 0 12 2.748 3.032 25.0

20:2 D2 D2 −2.365 1.348 0 12 8 0 12 2.731 2.971 43.8

20:3 C1 C1 −2.396 0.716 2 8 10 0 12 2.745 2.926 23.4

20:4 Cs Cs −2.385 0.950 0 12 8 0 12 2.740 2.939 24.4

20:5 D2 D2 −2.390 0.850 0 12 8 0 12 2.775 2.907 37.4

20:6 D2d Cs −2.382 1.001 2 8 10 0 12 2.770 2.948 20.5

20:7 C1 C1 −2.384 0.974 0 12 8 0 12 2.739 3.079 25.3

20:8 Cs Cs −2.388 0.888 2 8 10 0 12 2.761 2.977 22.0

20:9 C2v D6h −2.402 0.610 6 0 14 0 12 2.731 2.971 27.1

20:10 C2 C2 −2.404 0.568 2 8 10 0 12 2.743 2.984 37.1

20:11 C2 C1 −2.378 1.093 3 8 7 2 12 2.732 3.018 26.5

20:12 C2 Cs −2.412 0.407 2 8 3 6 6 1.755 2.996 192.0

20:13 D3h D6h −2.402 0.610 6 0 14 0 12 2.731 2.972 27.0

20:14 D2d C1 −2.405 0.544 2 8 1 8 12 2.710 3.010 199.2

20:15 D6h D6h −2.361 1.430 0 12 8 0 12 2.792 2.933 15.2

32:1082 Ih D2h −2.524 2.201 0 12 20 0 12 2.766 3.004 10.4
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isomer neutral anion
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Figure 7.7 Overview of PBE-D3 optimisation results for the dual fullerene

structures. Green: dual fullerene structure, orange: hollow structure, red:

non-hollow structure.
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fullerenes try to adopt “spherical” shapes if permitted by the distribution of

pentagons. This is especially the case for Ih-C20 and Ih-C60 with a distor-

tion parameter of exactly zero (i.e. all atoms lie on a sphere). In contrast,

the golden dual fullerene structures have much larger distortion parameters

D(GDF) than their carbon equivalent and are therefore less spheroidal. The

golden dual fullerenes usually distort into less symmetric structures, for ex-

ample into oblate structures as mentioned above.

Figure 7.8 shows the relative energies ∆Eg per atom compared to the most

stable compact arrangement for all optimised hollow gold clusters. It is imme-
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Figure 7.8 Relative energies for the investigated dual fullerene clusters. En-

ergy di�erences compared to the most stable compact cluster (per atom) are

given in eV.

diately apparent, that the most stable dual fullerene structures can be found

in the region of 14 to 18 atoms. Some clusters in this region even exceed the

stability of formerly proposed global minimum structures. For example, for

Au
–

16
the global minimum has been proposed previously to be the tetrahe-

dral hollow cluster,
[200,201]

which is the dual of the tetrahedral C28 isomer as

observed experimentally in photoelectron spectra.
[178]

It should be noted, that

Chen et al. have found the tetrahedral structure to lie 0.22 eV above a sheet-

like structure.
[164]

However, our results contradict these �ndings as the planar

structure is predicted to be 0.939 eV higher in energy. Another interesting re-

sult from the investigation of the cohesive energies is that the D2 symmetric

isomer 16:1 lies only 0.02 eV above the tetrahedral structure. Therefore, it

should also be possible to observe this isomer by experimental methods.

Possible Au32 structures have been investigated intensively by Jalbout et

al.
[208]

Table 7.3 shows their results in comparison with results from this work.
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For both neutral and anionic clusters, isomer 10 in their work turns out to

Table 7.3 Binding energy per atom (in eV) for investigated neutral and an-

ionic compact cluster compounds. For the de�nition of the binding energy

see tables 7.1 and 7.2, and for the de�nition of the isomers 1 and 10 for Au32

see Jalbout et al.
[208]

N sym. ∆En(neutral) N sym. ∆En(neutral) N sym. ∆En(anion)

2 D∞h −1.105 13 C2v −2.087 12 D3h −2.192
3 C2v −1.152 14 C2v −2.218 14 D2h −2.236
4 D2h −1.486 15 Cs −2.186 15 C1 −2.313
5 C2v −1.631 16 Cs −2.261 16 D2d −2.330
6 D3h −1.875 17 Cs −2.270 17 C2v −2.381
7 Cs −1.833 18 Cs −2.325 18 C2v −2.393
8 D4h −1.959 19 C3v −2.361 19 C3v −2.435
9 C2v −1.944 20 Td −2.409 20 Td −2.432
10 D2h −2.028 32 C3v −2.491 32 C3v −2.548
11 D3h −2.063 32 Isomer 1 −2.536 32 Isomer 1 −2.590
12 D3h −2.098 32 Isomer 10 −2.542 32 Isomer 10 −2.593

be the most stable compact geometry and the icosahedral hollow structure

32:1082 is less stable in both the neutral and the anionic cases. The C3v-

symmetric compact structure not investigated before is also included in ta-

ble 7.3. It is derived from the ideal Au35 tetrahedron by removing three of

the corner atoms of the tetrahedron and can be viewed as a cut-out of the fcc

bulk structure. This cluster is also very stable compared to the other struc-

tures proposed by Jalbout et al. As re�ected by the distortion parameter D
of the Au

32
hollow cage (D(Au32) = 10.4) it deviates slightly from an ideal

icosahedral symmetry and can be seen as pseudo-spherical.

7.5 Convergence Towards the Infinite Structure

The neutral gold clusters and their property convergence towards the bulk

has already been discussed in previous papers.
[151]

Increasing the size of non-

hollow compact clusters lowers the cohesive energy until the clusters are

large enough to be a valid representation of the bulk gold structure. This

can be seen in �gure 7.9a, where a clear linear correlation between N−1/3

and the cohesive energy is depicted. Hollow gold clusters can be created by

wrapping a cut-out from a (111) gold 2D sheet around a sphere while introduc-

ing 12 vertices of degree 5 to satisfy Euler’s theorem. Therefore, an in�nitely

large 2D gold sheet represents a golden dual fullerene cage with an in�nite

sphere radius. As the cohesive energy of the compact structures converges

towards the bulk cohesive energy, the cohesive energy of the 2D triangulated

gold sheet should represent the in�nite limit for the dual golden fullerene

structures. This is indeed the case and is depicted in �gure 7.9b using a N−1
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Figure 7.9 Cohesive energies for (a) the compact gold clusters with cluster

size N and convergence toward the bulk fcc structure and (b) for the hollow

gold clusters with cluster sizeN and convergence toward the (111) gold sheet.

scaling law analogous to the one used for fullerenes.
[195]

An interesting result was the di�erence between the cohesive energy of the

bulk fcc structure compared to the (111) 2D sheet. Creating the bulk structure

from stacking (111) sheets only accounts for ∼0.68 eV of the total cohesive

energy of the bulk which is 3.81 eV.
[209]

This implies that most of the cohe-

sive energy of bulk gold originates from the (111) sheet, which is therefore

exceptionally stable and can be seen as a reason for the preferred planar ar-

rangement of many small gold clusters. As pointed out by Takeuchi et al,

relativistic e�ects increase the cohesive energy of bulk gold by 1.5 eV.
[209]

A

similar large relativistic e�ect is expected for the (111) sheet of gold.

7.6 Simulation of Photoelectron Spectra

Photoelectron spectra of several GDFs have been determined experimentally

and simulated with theoretical methods by Bulusu et al.
[178]

Before the dis-

cussion of results produced in this work can commence, the spin-orbit e�ects

from substantial 5d-mixing into the 6s orbitals in gold need to be consid-

ered. Figure 7.10 shows a comparison of simulated photoelectron spectra of

the three golden dual fullerene isomers of Au
–

17
. The results clearly indicate

that spin-orbit e�ects can be safely neglected in this energy range.

Bulusu et al. considered only the Td-Au
16

structure. From the simulations

carried out in this section there is reason to believe that the other possible

isomer 16:1 is also present in the measured spectrum. Figure 7.11a shows

these simulation results for the isomers 16:1 and 16:2 and a simulation for a

mixture of both compounds with a ratio of 1:1 as the energy of both isomers

is comparable. Looking at the experimental data, a shoulder can be identi�ed

in the �rst peak. This feature can be reproduced by shifting the spectra for
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Figure 7.10 Comparison of simulated photoelectron spectra of the three dual

fullerene isomers of Au
–

17
with (2c) and without spin-orbit coupling.

16:1 and 16:2 according to the corresponding vertical ionisation potential, su-

perimposing both spectra and shifting the result by 0.18 eV to better �t the

experimental data as pictured in �gure 7.11a. This indicates that the second

hollow cage isomer has also been produced. Further evidence for this could

be the experimental peak at 5.51 eV. The simulated spectrum for the tetra-

hedral cluster shows a dip at this energy, while the D2 structure has a clear

intensity maximum.

Figure 7.11b shows the simulated spectra for the three possible dual

fullerene isomers for Au
–

17
. The spectra have been shifted according to the

vertical ionisation potential of the negatively charged clusters. The most

stable structures are 17:2 (red) and 17:3 (green) of which 17:2 �ts reasonably

well for the �rst 4 peaks. The peak at 4.73 eV could be accounted to the 17:3

isomer identical to Bulusu et al.’s C2v symmetric structure.

From the relative energies in �gure 7.8 it is clear that anionic dual fullerene

structures start to become rather unstable for N = 18. Therefore, compact

clusters might dominate the experimental spectrum. Figure 7.11c shows our

calculated spectra in comparison with the experimental data. The calculated

spectra have been shifted to the corresponding vertical ionisation potential
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Figure 7.11 Simulated photoelectron spectra for the negatively charged hol-

low gold clusters (shifted to the experimental threshold energy). (a) The two

possible dual fullerene isomers of Au
–

16
. The green curve shows a combi-

nation of the D2 and Td spectra with a ratio of 1:1.; (b) The three possible

dual fullerene isomers of Au
–

17
; (c) The six possible dual fullerene isomers of

Au
–

18
(shifted to the experimental threshold energy).

�rst and subsequently shifted by 0.25 eV to better �t the experimental data.

The most stable dual fullerene clusters are 18:1, 18:4 and 18:5. 18:1 and 18:5

could be responsible for the second peak in the experimental data at 3.63 eV,

while 18:4 agrees with the �rst peak. The signal at 3.97 eV could be an indi-

cation that isomer 18:3 was produced as it is the only structure that shows a

peak in that area, however, it is the least stable of the hollow structures.

Finally, for future experiments a simulated photoelectron spectrum for

Au
−
32 is shown in �gure 7.12.

7.7 Conclusion

An interesting topological relationship between fullerenes and the cage-like

gold clusters resulting in a triangulation of a sphere with vertices of degrees
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Figure 7.12 Simulated photoelectron spectra for isomer 32:1812 of Au
−
32.

5 and 6 ful�lling Euler’s polyhedral formula was found. Because of this iso-

morphism between the two types of structures by dualisation, there are as

many golden fullerene isomers as there are fullerene isomers. Gold nano-

tubes and carbon nano-tubes and halma transforms of C20 to the shells of

a Mackay icosahedron are related in the same way. The stability of these

golden fullerenes was investigated. While they perhaps may not compete in

energy with the more compact gold clusters at larger cluster size, the smaller

cage structures are stable as observed by photoelectron spectroscopy. The

simulated photoelectron spectra suggest that more than one golden fullerene

isomer was observed.

A natural step in the next direction would be to stabilise such hollow gold

clusters by either endohedral enclosure of gold or other metal atoms, by at-

taching appropriate ligands to the outside of the cage, or both. Results have

already shown that enclosing a transition metal with the right amount of

valence electrons can stabilise otherwise instable hollow structures, like the

icosahedral Au
12

, drastically.
[206]





8 From Sticky-Hard-Sphere to

Lennard-Jones-Type clusters
a

8.1 Introduction

Nucleation is a phenomenon that is a part of many natural processes and is

present in many everyday phenomena. Naturally, there is a large research

interest in this �eld, especially with respect to the nucleation of atoms and

molecules to clusters, eventually leading to the solid state.
[21,211–217]

In an

early Faraday Discussion taking place in Bristol in 1949 Rowland concluded

the meeting with the assessment “that the gap between the theoretical and

experimental approaches has been too wide”.
[218]

Here, he was referring to

the subject of nucleation. In a Faraday discussion about half a century later

Vlieg et al. stated that “the gap between the quite detailed experimental infor-

mation [...] and theoretical models, though getting smaller, is still large”.
[213]

One reason for this slow progress in the theoretical description of nucle-

ation processes is that it is related to global optimisation problems. Exploring

the multi-dimensional potential energy surface belongs to the computational

complexity class “NP-complete”, as already mentioned in chapter 4.5. The

number of local minima is expected to grow exponentially,
[18,21,219–223]

which

is problematic, because interesting phase transitions usually occur for larger

cluster sizesN that can not be treated by accurate quantum mechanical meth-

ods as introduced in chapter 3. One such phase transition is the transforma-

tion of argon clusters from icosahedral clusters into anti-Mackay clusters for

sizes of N > 2000 and �nally into face-centered cubic (fcc) or hexagonal-

closed packed (hcp) solid state structures forN > 105
.
[224]

Similar results are

predicted by the Lennard-Jones (LJ) potential.
[106,211,225]

Because of the exponentially growing potential energy landscapes and the

large cluster sizes required to model phase transitions, investigations of this

type often have to rely on approximate interaction potentials. In this part of

the thesis two interaction potentials introduced in chapter 5 are used. The

�rst and maybe simpler one is the sticky-hard-sphere (SHS) potential VSHS,

a

This chapter is composed of sections previously published in the article “From Sticky-Hard-

Sphere to Lennard-Jones-Type Clusters”
[210]

and is reprinted with permission from the pub-

lisher ©2018 American Physical Society. Some sections have been modi�ed to �t the style

of this thesis.

95
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originally introduced by Baxter.
[111]

VSHS(r) =


∞, r < rs

−ε, r = rs

0, r > rs

(8.1)

ε and the equilibrium distance rs can be set to unity without changing the

qualitative information contained in the potential energy surface (PES).

One of the de�ning properties for clusters bound by the SHS potential is

the contact number Nc, which is directly related to the energy of the cluster

E = −Ncε. How the number of contact points a cluster possesses grows

with its size N is still researched actively. From the Gregory-Newton argu-

ment,
b

which was proven in 1953, it follows that each sphere can not be sur-

rounded by more than 12 other spheres of the same size. For small clusters,

the maximum number is governed by the total number of (unique) entries in

the adjacency matrix, i.e. max ≤ N(N − 1)/2. Combining these two facts

leads to a loose upper bound

Nmax
c (N) ≤ min{N(N − 1)/2, f(N)}. (8.2)

Using the Gregory-Newton argument results in f(N) = 6N , however, a

tighter upper bound has been published more recently by Bezdek et al.
[226]

f(N) = 6N − 3(18)1/3π−2/3N2/3. (8.3)

Theoretical investigations of the cluster landscape by means of the exact

enumeration method revealed that the contact numbers for clusters of size

4 ≤ N ≤ 19 are
[114,116]

Nmax
c (N) = {6, 9, 12, 15, 18, 21, 25, 29, 33, 36, 40, 44, 48, 52, 56, 60}. (8.4)

The exact solution for Nmax
c (N) for arbitrary N is called the Erdős unit dis-

tance problem, which remains unsolved.
[227]

The number of non-isomorphic cluster structures |M(N)|c is expected to

grow exponentially.
[22,219,228]

The exact numbers for |M(N)| have been de-

termined via exact enumeration studies for clusters of size N ≤ 14.
[114,116]

Studies of this type are di�cult to carry out, because they are computation-

ally expensive.
[229]

Another interaction potential often used in cluster science is the Lennard-

Jones (LJ) potential, as introduced in section 5.2. It is most commonly used in

b

For a more thorough discussion of this argument please refer to chapter 9.

cM(N) refers to the set of all non-isomorphic cluster structures, while the size of the set is

denoted |M(N)|.



8.1 Introduction 97

the (6, 12) form, but in this section it will be employed with arbitrary integer

exponents (m,n).

V LJ
m,n(r) =

ε

n−m

[
m
(re
r

)n
− n

(re
r

)m]
(with n > m) (8.5)

The two parameters ε and re are the depth of the potential energy well and the

equilibrium distance, respectively. The values for ε and re will be set to unity

in the following for the same reasons as for the SHS potential. As already

mentioned in chapter 5, the SHS potential emerges from the LJ potential as

the limit for large exponents (m,n) (�gure 8.1).
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Figure 8.1 Lennard-Jones potentials for di�erent exponents (m,n) with �xed

n = 2m. As the exponents grow larger, the well of attraction becomes nar-

rower and its shape approaches the SHS potential. The dashed line shows the

extended Lennard-Jones potential for the xenon dimer.
[107]

At �rst, it seems surprising that the absolute number of structures for a

certain size N di�ers substantially between the two potentials. For N = 13
there are |MSHS| = 97, 221 non-isomorphic SHS clusters,

[114,116]
but only

|MLJ| = 1, 510 (6, 12)-LJ clusters.
[230]

However, this is a known behaviour

of energy landscapes of long-range (LJ) and short-range (SHS) potentials, with

the latter generally supporting many more local minima compared to the for-

mer.
[231,232]

Decreasing the exponents (m,n) increases the range of the po-

tential, which leads to increased second-nearest-neighbour interactions. Fur-

thermore, fold catastrophes
[12,232]

lead to the collapse of several stable SHS

structure into a single LJ minimum, leading to a decrease in the overall size

of |M(N)|.
In the following sections, the evolution of LJ clusters towards SHS clusters

by gradually decreasing the range of the LJ potential is explored. Additionally,
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the results from optimising with a LJ potential starting from the SHS cluster

is compared to the traditional approach of global optimisation.

8.2 Computational Details

The pele program
[233]

was used to generate putatively complete sets of lo-

cal minima for (m,n)-Lennard-Jones potentials V LJ
mn(r) as de�ned in equa-

tion (8.5). This program applies a basin-hopping algorithm that divides the

potential energy surface into basins of attraction, e�ectively mapping each

point in con�guration space to a local minimum structure.
[80,83,234]

The re-

sults con�rmed the number of local minima reported in previous work.
[110]

Finite computer time limited the search to clusters of size N ≤ 13.

Starting from the sticky hard sphere packings up to N = 14, with

Cartesian coordinates given by the exact enumeration algorithm
[115]

including rigid hypostatic clusters (Nc < 3N − 6),
[114]

geometry

optimisations with (m,n)-Lennard-Jones potentials using the

multidimensional function minimiser from the C++ library dlib
[118]

were carried out with the previously described program package

Spheres (Chapter 6). The optimisation scheme was either the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) or the conjugate gradient

algorithm. The optimisations were terminated when the change in energy

(in reduced units) over the course of one optimisation cycle was smaller

than 10−15
.

Subsequently, the eigenvalues of the Hessian were checked for all

stationary points. If negative eigenvalues were found, the a�ected structures

were re-optimised following displacements in both directions along the

corresponding eigenvectors to locate true local minima. This procedure

assures that the �oppy SHS packings are successfully mapped into LJ

minima.

As the optimisations often result in many duplicates, especially for small

values of n and m where |M(m,n)−LJ| � |MSHS|, the �nal structures were

further analysed and sorted. Non-isomorphic SHS clusters can be distin-

guished (apart from permutation of the particles) by their di�erent adjacency

matrices for N ≤ 13.
[114]

This is not the case for soft potentials like the LJ

potential since drawing edges (bonds) between the vertices (atoms) becomes

a matter of de�ning the distance cut-o� criterion for a bond to be drawn.

Therefore, the clusters were compared based on the Euclidean distance ma-

trix (EDM) (the matrix of inter-particle distances {rij}) as described previ-

ously: two clusters are isomorphic (structurally identical) if they have the

same ordered set of inter-particle distances {rij}. While enantiomers can-

not be separated using this methodology, permutation-inversion isomers are

usually lumped together, since the number of distinct minima is analytically

related to the order of the corresponding point group.
[12]

To verify the number
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of distinct structures a second ordering scheme using the energy and moment

of inertia tensor eigenvalues was introduced.

Two sets of structures are obtained from the optimisation procedure: the

�rst set contains all possible LJ minimaMLJ from the basin-hopping algo-

rithm, while the second setMSHS→LJ contains the LJ minima obtained using

only theMSHS sticky-hard-sphere cluster structures as starting points for the

geometry optimisation. To compare and identify corresponding structures

between the two sets, the N(N − 1)/2 inter-particle distances {rij} were

again used as an identifying �ngerprint.

Two-body extended Lennard-Jones (eLJ) potentials that accurately model

two-body interactions in rare-gas clusters can be written as expansions of

inverse-power-law terms:
[106]

VELJ(r) =
∑
n

cnr
−n, (8.6)

where in reduced units the condition

∑
n cn = −1 holds. For comparison to

the simple (6,12)-LJ potential, the eLJ potential derived from relativistic

coupled-cluster theory applied to the xenon dimer was used with the

following coe�cients (in reduced units): c6 = −1.0760222355;

c8 = −1.4078314494; c9 = −185.6149933139; c10 = +1951.8264493941;

c11 = −8734.2286559729; c12 = +22273.3203327203;

c13 = −35826.8689874832; c14 = +37676.9744744424;

c15 = −25859.2842295062; c16 = +11157.4331408911;

c17 = −2745.9740079192; c18 = +293.9003309498.
[107]

The eLJ potential

for xenon is shown in �gure 8.1 (dashed line).

8.3 Exploring the Limits of Lennard-Jones

To study the convergence behaviour of the number of distinct

(non-isomorphic) LJ minima in the SHS limit, geometry optimisations were

carried out, starting from all non-isomorphic SHS structures. It will be

shown later that the number of unique minima obtained in this procedure

|MSHS→LJ| only misses out on a small portion of minima obtained from the

more exhaustive basin-hopping approach, i.e. |MSHS→LJ| ≈ |MLJ|. The

results for a constant chosen ratio of LJ exponents n/m = 2 are shown

in �gure 8.2 (top). |MSHS→LJ| smoothly converges towards

the SHS limit (dashed line, values in table 8.1) from below, thus

demonstrating that for LJ systems the number of distinct minima does

not grow faster than exponentially. The (48,96)-LJ potential has

∆M ≡ |MLJ| − |MSHS→LJ| = {1, 1, 7, 91, 1019, 14890, 209938} fewer

stable minima than the SHS potential. The fractions of missing minima

∆M/|MSHS| for this potential grow with increasing N and are,

respectively, {7.69, 1.92, 2.67, 5.46, 8.62, 15.32, 23.44}%. Note that for
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Table 8.1 Number of distinct local minima |MSHS| for cluster size N (from

references [114–116]) and contact number Nc from the exact enumeration,

compared to the number of di�erent structures obtained from a geometry op-

timisation starting from the set MSHS(N,Nc) for a (6,12)-LJ potential. The

overall number of unique minima |MSHS→LJ| =
∑

Nc
|MSHS→LJ(Nc)| −

(# of duplicate structures) is shown in the following column. This result can

be compared to the number of unique minima found using the basin-hopping

method (|MLJ|). The di�erence ∆M = |MLJ| − |MSHS→LJ| is also listed.

N Nc |MSHS(Nc)| |MSHS→LJ(Nc)| |MSHS→LJ| |MLJ| ∆M

8 18 13 8 8 8 0

9 21 52 20 20 21 1

10 23 1 1

24 259 60 62 64 2

25 3 3

11 25 2 2

165 170 5

26 18 6

27 1620
a

158

28 20 12

29 1 1

12 28 11 6

504 515 11

29 148 24

30 11638 483

31 174 69

32 8 6

33 1 1

13 31 87 23

1476 1510 34

32 1221 100

33 95810
a

1418

34 1318
a

293

35 96 49

36 8 6

14 33 1 1

4093 (4187)
b

(94)
b

34 707 101

35 10537 410

36 872992 3939

37 10280 1002

38 878 237

39 79 42

40 4 3

a

Largest value for |MSHS| taken from references [114–116].
b

Estimated.
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Figure 8.2 Convergence of the number of distinct LJ local minima

|MSHS→LJ| obtained through geometry optimisations starting from the non-

isomorphic SHS structures with increasing LJ exponent n. Permutation-

inversion isomers and enantiomers are not distinguished. The dashed line

gives the exact SHS limit |MSHS|. Top panel: m = n/2. Bottom panel: �xed

m = 6.
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N ≥ 10 most of these missing minima correspond to high energy

(Nc < Nmax
c ) structures.

If the exponent n for the repulsive part of the LJ potential is increased with

m kept constant, the LJ potential becomes equivalent to the SHS potential

in the repulsive range but remains attractive at long range. This limit is also

called the Sutherland potential. Figure 8.2 (bottom) shows the convergence of

the number of unique structures with respect to n at set m = 6 towards the

SHS limit. Here, the number of distinct minima converges towards a number

that is much smaller than the total number of SHS packings demonstrating

that (as expected) the attractive part of the potential contributes signi�cantly

to the decrease of the number of local minima compared to the rigid SHS

model.

To see if the asymptotic increase in the number of distinct minima

|M(N)| ∼ eαN is indeed exponential, an expression for the asymptotic

exponential rise rate parameter developed by Stillinger was used:
[22]

α = lim
N→∞

(
N−1ln|M(N)|

)
. (8.7)

Figure 8.3 shows the number of distinct minima for SHS clusters obtained

from the data shown in table 8.1. The N ≥ 12 SHS data gives αSHS ≈

 0

 2

 4

 6

 8

 10

 12

 14

 2  4  6  8  10  12  14

αSHS ≈ 2.2

α(6,12)-LJ ≈ 1.1

ln
|M

|

N

SHS
(6,12) LJ

Figure 8.3 Growth behaviour of |M(N)| of SHS and (6,12)-LJ clusters and

corresponding asymptotic exponential rise rate parameter α for N ≥ 12 as

de�ned in equation (8.7). The intercepts ln |M(N = 0)| are −17.19 and

−6.94 for the SHS and (6,12)-LJ cases, respectively.

2.21. Figure 8.3 also shows the (6,12)-LJ results obtained using basin-hopping;

these yield αLJ ≈ 1.10, which is close to the α = 0.8 value estimated

by Wallace
[235]

or to the recently given value of α = 1.04 by Forman and
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Cameron.
[228]

Note that the rapid increase of |MSHS|/|MLJ| with N is ex-

plained by the much larger values ofα for the SHS compared to the LJ clusters.

Using the results forN ≥ 13 depicted in �gure 8.2, the dependence of α on

the LJ range parameter n can be calculated. As shown in �gure 8.4, a general

function of the form

α(n) = αmax +
a

(n− n0)p
(8.8)

�ts the results nicely, allowing the prediction of growth behaviour for di�er-

ent LJ potentials. For |M(n/2,n)−LJ
|, αmax is equivalent to αSHS = 2.207. The

 0.6
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Figure 8.4 Convergence behaviour of the asymptotic exponential rise

rate parameter α (equation (8.7)) towards the SHS limit with respect to

the LJ exponent n. The inlet shows the ratio of the two quantities

α(|M
SHS→(n/2,n)−LJ

(N)|)/α(|M
SHS→(6,n)−LJ

(N)|).

other adjusted parameters are a = −66.588, n0 = −3.386 and p = 1.473 (�g-

ure 8.4). We also show the ratio α(|M
SHS→(n/2,n)−LJ

|)/α(|M
SHS→(6,n)−LJ

|)
between the two di�erent LJ asymptotic exponential rise rate parameters,

which shows that larger cluster sizes need to be studied to correctly describe

the asymptotic limit.

The distribution of minima as a function of (free) energy was suggested to

be Gaussian.
[236]

Figure 8.5 shows the energy distribution of minima for dif-

ferent (n/2, n)-LJ potentials derived from SHS initial structures. A Gaussian

type distribution was not observed; this result does not change if the free

energy at �nite temperatures is used instead. The results indicate a “phase

transition” in the potential energy landscape away from low energy to high

energy minima as n increases. The transition occurs at fairly small n. Re-

sults for the (9, 18)-LJ potential indicate two SHS-like maxima that are not
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Figure 8.5 Histogram of the energies (bin size ∆E = 0.1) of minima

M
SHS→(n/2,n)−LJ

(N) for N = 13 and di�erent exponents n up to the SHS

limit. For better visibility, the height of the bars are set to ∆|M|/|M| in the

interval ∆(E/ε). The inlet shows the same data in logarithmic scale.

present for the (6, 12)-LJ potential; these are associated with the Nc = 34
and Nc = 35 SHS clusters, respectively. It is also clear that (as expected) the

distributions narrow with increasing n.

It is well known that the global minimum for rare gas clusters with 13 atoms

is the ideal Mackay icosahedron.
[237–239]

Simple geometric considerations im-

ply that such a symmetric cluster is not possible for sticky hard spheres; all

vertices of a regular icosahedron with unit edge length lie on a circumscrib-

ing sphere with radius rc ≈ 0.951, making it impossible to insert a sphere of

the same radius into the centre of the polyhedron. Therefore, there must be

well-de�ned LJ exponents (m,n) at which the icosahedral N = 13 LJ cluster

breaks symmetry to form a rigid cluster. For the n = 2m case considered

above, this symmetry-breaking occurs at m ' 15.

We also explored a more realistic eLJ potential (equation (8.6); �gure 8.1)

for one of the rare gas dimers (xenon) in comparison with other LJ poten-

tials. It can be seen that the repulsive part agrees nicely with the conven-

tional (6,12)-LJ potential, while for r > 1 the extended LJ potential is slightly

less attractive. This change should lead to an increase in the number of lo-

cal minima compared to the conventional (6,12)-LJ potential. This prediction

could be con�rmed, i.e. |MSHS→ELJ| = {8, 21, 74, 205, 685, 2179, 6863} for

N = {8, 9, 10, 11, 12, 13, 14}. For N = 13 the number of distinct minima is

44% larger than for the simple (6,12)-LJ potential, which shows that |M(N)|
is rather sensitive to the potential chosen. Hence, to correctly describe the
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topology of real systems, one has to take care of the correct form of the 2-

body contribution (as well as higher n-body contributions).
[240]

8.4 (6,12)-Lennard-Jones Clusters from

Basin-Hopping

Table 8.1 shows the number of distinct minima found by the cluster geome-

try optimisation procedure employed in this work using the (6,12)-LJ poten-

tial compared to results from exact enumeration for SHSs and from basin-

hopping for the (6,12)-LJ potential. As the SHS clusters for a speci�c N
value can be grouped by their contact numberNc, the geometry optimisations

were carried out separately for each group ofMSHS(Nc). Hoy et al.
[115,116]

and Holmes-Cerfon
[114]

reported slightly di�erent results for N = 11 and

N = 13; however, upon geometry optimisation, their datasets yield the same

�nal clusters |MSHS→LJ(Nc)|. As identical LJ clusters appear in multiple

groups with di�erent contact numbers, the duplicates were removed to cre-

ate the setMSHS→LJ of distinct minima, which can be directly compared to

the set of LJ minimaMLJ obtained from the basin-hopping method. It should

be noted that including the hypostatic clusters and the di�erent |MSHS| for

N = 11 andN = 13 from Holmes-Cerfon
[114]

did not change our results, im-

plying that hypostatic clusters are not an important feature for the LJ energy

landscape.

Interestingly, the gradient-based minimisation procedure employed here

does not in general lead to a complete set of LJ minima; the mapping from

SHS minima to LJ minima is non-injective and non-surjective. Clearly, some

structural motifs found in LJ clusters are not found in SHS clusters and vice

versa, and the topology of the hypersurface changes in a non-trivial fashion

from SHS to LJ. However, it is surprising that the fraction of structures that

are missed by this optimisation procedure is so small (see table 8.2). To gain

further insights, the energetics and structures of the unmatched clusters were

investigated in more detail.

Figure 8.6 shows an analysis of the di�erence between the longest to the

shortest bond lengths d∆ = dmax − dmin obtained for the largest clusters in

MLJ with N = {11, 12, 13}.d The histograms show that the clusters most

commonly have a d∆ of about 0.03. In contrast, as shown by the orange bars,

the unmatched structures have signi�cantly larger d∆ values of at least 0.05,

with most of them having d∆ ' 0.06. This is a �rst indication of why these

structures are not found by starting from SHS packings. The latter only form

bonds of length one, and a large variation in bond length could imply that a

SHS packing similar to the LJ structure does not exist as the SHS boundary

conditions are not satis�ed. The data in table 8.3 shows that the unmatched

d

We de�ne spheres that have a equilibrium distance between 0.9− 1.1 to be bound.
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Table 8.2 Number of missing structures after optimisation be-

longing to the same "seed" (�gure 8.7). N = 8 is excluded because

all LJ minima were found starting from the SHS model.

seed N = 9 N = 10 N = 11 N = 12 N = 13

a 1 1 - 3 8

b - 1 3 4 12
a

c - - 1 1
a

-

d - - 1 1 5

e - - - 1 6

f - - - 1 1

remaining - - - - 2

total 1 2 5 11 34

% 4.76 3.13 2.94 2.14 2.25

a

Some structures do not resemble a perfect capped cluster, but undergo a

slight rearrangement. Speci�cally, two structures belonging to seed (b) and

one structure belonging to seed (c) were found to deviate slightly from the

perfect arrangement, but minor rearrangements of these structures lead to

the desired geometry and they can be reasonably associated with these seeds.

(UM) structures for a speci�c N value have much higher energies compared

to the one of the global minimum (which is set to zero, i.e. E0 = 0). They

are always positioned in the upper half of the energy spectrum, making them

energetically unfavourable. However, no correlation between d∆ and the en-

ergetic position of the LJ clusters was found.

Table 8.3 Range [E0 = 0, Emax] of the energy spectrum of all LJ minima,

position of the second lowest minimum structure E1 and position of the �rst

unmatched (UM) structureEUM

0 relative to the respective global minimum (in

reduced units).

N Emax E1 EUM

0

8 1.04 0.06 -

9 2.08 0.84 1.19

10 3.13 0.87 2.22

11 4.22 0.85 2.27

12 6.16 1.62 3.38

13 9.26 2.85 6.14

Last, the geometries of the missing structures were investigated in more

detail. As it turns out, almost all of the missing stable LJ clusters can be created

from a smaller set of missing clusters by capping some of their triangular
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Figure 8.6 Histograms of the di�erence between the longest and shortest

bond distances d∆ = dmax − dmin for the complete set of distinct LJ minima

MLJ(N) forN = {11, 12, 13}. Orange bars give the number of distinct struc-

tures not contained inMLJ as obtained from the basin-hopping algorithm.

faces. Therefore, these groups of clusters can be referred to as “seeds”.
[112]

The

corresponding starting structures of each seed are shown in �gure 8.7. None

of these structures are stable SHS packings. For example, structure (d) can be

described as three octahedra connected via triangular faces sharing one edge.

Geometric considerations
[112,115]

immediately show that this structure cannot

be a stable SHS packing; the dihedral angle in an octahedron is approximately

109.5◦, which means three octahedra only �ll 328.5◦ of a full circle, leaving

a gap between two faces.

Table 8.2 shows the number of missing minima belonging to each seed.

Over 60 % of the unmatched structures belong to seeds (a) and (b). From a

graph theoretical point of view,
[19,112]

grouping structures into seeds means

that all structures belonging to the same seed contain the graph of the start-

ing structures as a sub-graph in their respective connectivity matrix. This

approach simpli�es the analysis to a great extent, as the feature that prevents

the structures from being found by geometry optimisation is the same for

each of the structures arising from a speci�c seed. The smallest unmatched
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(a) (b) (c)

(d) (e) (f)

Figure 8.7 Graphical representations of the structures that are starting new

seeds, but are not contained in MSHS→LJ. See table 8.2 and text for more

details.

structures that cannot be associated with any of seeds (a)–(f) have N = 13;

these could be the starting structures for two new seeds.

Finally, it should be noted that the starting SHS minima in the optimisation

procedure are not stationary points on the LJ hypersurface, and the optimi-

sations therefore lead to most but not all local and available LJ minima. This

observation explains why some high-energy structures were not found by the

optimisation procedure. For a smooth change in the topology of the potential

energy surface from SHS to LJ type clusters one has to continuously vary the

exponents (m,n) in real space, which is computationally too demanding.

8.5 Conclusion

The sets of (m,n)-LJ-potential minima obtained using complete sets of non-

isomorphic SHS packings with 8 ≤ N ≤ 14[19,112,114–116]
as initial states for

energy minimisation have been characterised. The number of distinct minima

(i.e. excluding permutation-inversion isomers) is far smaller than the number

of SHS packings for the standard Lennard-Jones exponents (m,n) = (6, 12),

but approaches the SHS limit from below as (m,n) increase. How the num-

ber of distinct minimaM(N) increases with cluster size N has been inves-

tigated by determining Stillinger’s rise rate parameter α (equation (8.7)).
[22]

The increase of α from ≈ 1.1 for (6,12)-LJ clusters to ≈ 2.2 for SHS clus-

ters is described by a simple functional form (equation (8.8)). All these results
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can be understood in terms of a smooth progression of the (m,n)-LJ energy

landscape towards the SHS energy landscape as (m,n) increase.

Using a more realistic eLJ potential obtained from coupled cluster calcula-

tions for the xenon dimer
[106,107]

leads toM values close to those obtained for

the (6,12)-LJ potential, but the results indicate that the topology of the energy

hypersurface is very sensitive to the model potential applied.

Finally, the optimisation results have been compared to the previously

published results for the (6,12)-LJ potential. The mapping from MSHS to

MSHS→LJ is non-injective and non-surjective, however, the number of

structures missed by the optimisation procedure is relatively small. The

unmatched structures belong to the high energy region of the potential

energy hypersurface and possess rather large variations in their bond

lengths. An analysis of their geometries revealed that most of the larger

structures can be constructed from a smaller cluster by capping some of the

triangular faces. This procedure e�ectively sorts almost all unmatched

structures into six seeds for clusters up to N = 13.

Further investigations should focus on comparing the presented results

with other commonly used interaction potentials like the Morse potential. It

would also be interesting to see how three-body interactions would a�ect the

results. However, that would require a considerable amount of programming

as the current program was developed with only two-body forces in mind.





9 The Gregory-Newton Clusters
a

9.1 Introduction

In 1930, Tammes studied the distribution of pores on pollen grains, which

required him to �nd a solution to the problem of packing a number of circles

(or spheres) on the surface of a unit sphere, maximising their distance.
[242]

In

graph theoretical terms, in which the centers of all the circles correspond to

the vertices of a convex polyhedron, one tries to �nd the graph representing

the polyhedron that maximises the shortest edge lengths, while keeping the

distance to the center of the polyhedron �xed. Exact solutions to this problem

are available for cluster sizes of 3 ≤ N ≤ 14 and N = 24.
[243,244]

A related problem that goes back to an argument between Newton and

Gregory, one of his apprentices, is about the maximum kissing number or

Newton number Nk(d) of three-dimensional unit spheres (d = 3) that can

simultaneously touch a central sphere of the same size.
[245]

While Newton

believed Nk(3) = 12, Gregory thought a 13th sphere could be brought into

contact with the central sphere. It turns out that Newton was right, which

was �rst proven in 1953 by Schütte et al.
[23]

In the following a cluster with

N ≥ 13 and at least 12 spheres in contact with a central sphere will be referred

to as a Gregory-Newton cluster (GNC). Figure 9.1 shows the most symmetric

icosahedral solution to the Gregory-Newton problem. The Gregory-Newton

problem has been solved for dimensions 1–9 and 24 in lattice packings and

1–4, 8 and 25 for non-lattice packings.
[246–248]

Lower and upper bounds have

also been published.
[247,249]

However, for the problem of cluster nucleation,

the three-dimensional problem, as posed by Gregory and Newton, is more

relevant and has recently been reviewed by Kusner et al.
[250]

There are other problems similar to the Tammes problem like the Thomson

problem, that tries to �nd the optimal solution for charged particles (e.g. elec-

trons) on the surface of a sphere.
[251,252]

The solutions to this class of prob-

lems all show icosahedral symmetry for a size of 12 spheres. When think-

ing of these problems in terms of nucleation phenomena there is usually not

a repulsive force between the surrounding spheres, but an attractive one.

For example, such a system could be modelled in a gravitational potential

a

This chapter is composed of sections previously published in the articles “From Sticky-Hard-

Sphere to Lennard-Jones-Type Clusters”
[210]

and “Gregory-Newton Problem for Kissing

Sticky Spheres”
[241]

and is reprinted with permission from the publisher ©2018 American

Physical Society. Some sections have been modi�ed to �t the style of this thesis.
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Figure 9.1 Left: Symmetric realization of Nk(3) = 12 for unit hard spheres

(icosahedral symmetry, Ih). The minimum distance between the outer

spheres is r = sin−1
(

2π
5

)
= 1.05146222 . . . , hence they do not touch. Right:

The corresponding icosahedral graph. Numbering refers to the respective

node index.

VG = Gmimjr
−2
ij , where G is the gravitational constant, mi the mass of

sphere i and rij the distance between spheres i and j. For spheres i and j
with radii Ri and Rj a geometry optimisation can be carried out under the

constraint rij ≥ (Ri +Rj), which will remove the gaps between the spheres

in the icosahedral arrangement. Such problems are often studied for crystalli-

sation and sedimentation phenomena.
[253,254]

Two other potentials that enforce theses types of rigidity constraints on the

system are the Lennard-Jones (LJ) and sticky-hard-sphere (SHS) potentials

already introduced in chapters 5 and 8. Unlike in chapter 8 the exponents

(a, b) are now any real positive number instead of integers.

V LJ
a,b (r) =

ar−b − br−a

b− a
(with r, a, b ∈ R+ and b > a). (9.1)

The SHS potential is employed unchanged.

lim
a,b→∞

V LJ
a,b (r)→ VSHS(r) =


∞ r < 1

−1 for r = 1

0 r > 1

(9.2)

Note that for both potentials both the depth of the energy well and the equi-

librium distance have been arbitrarily set to 1.

In the following sections these two potentials will be used to investigate

the GNCs. Again, the investigation starts from the SHS clusters derived from

the exact enumeration method.
[114,116,217]

This set of structures is searched for

clusters ful�lling the requirements to be GNCs. LJ clusters of this size have

an icosahedral global minimum, however, this structure is impossible to re-

alise in the SHS potential. This is due to the fact that in a perfect icosahedron
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the distance between the vertices is always larger than the distance of all the

vertices to the centre of mass of the cluster. Therefore, as increasing LJ expo-

nents make the potential more SHS-like, there must be a point of symmetry

breaking at which the icosahedral structure cannot be supported any more

by the LJ potential energy surface.

9.2 Computational Details

Coordinates for GNC structures have been obtained by searching for adja-

cency matrices of the results for N = 13 from Holmes-Cerfon
[114]

with one

row or column containing twelve “1” entries. Sub-graph isomorphism was

veri�ed using the VF2 algorithm
[121]

as implemented in the boost graph li-

brary
[30]

using the program package Spheres. Structural optimisations with

LJ potentials have been carried out using the multidimensional function min-

imiser from the C++ library dlib
[118]

and an energy convergence criterion of

10−15
. Results from the optimisation procedure were analysed based on the

Euclidean distance matrix (EDM), which is unique for non-isomorphic struc-

tures apart from permutation, translation, rotation and inversion. For this the

distances were sorted lexicographically.

9.3 The Gregory-Newton Problem for So�

Potentials

The question of the Newton number in three dimensions has been resolved

almost 70 years ago.
[23]

The proof is valid for hard-sphere short-range po-

tentials, but little is known about the behaviour of such clusters under long-

range potentials such as the Kratzer potential.
[92]

For unequally sized spheres,

some simple results are known; for example, 13 hard spheres of radius rs can

touch a central sphere of unit radius only if rs ≤ 0.9165.
[255]

For clusters

bound by the aforementioned long-range potentials the situation is far more

complicated as it requires to minimise energy rather than distances between

neighbouring particles. Nonetheless, it is important to expand our knowl-

edge on these kind of systems as they are crucial to understand real systems

such as coordination compounds, which have recently been shown to possess

coordination numbers as high as 17
[256]

or even 20.
[257]

The optimisation procedures explained in chapter 6 were used to min-

imise the energy of a starting structure consisting of 13 spheres surround-

ing a center sphere with a �xed distance of one. Generating such a starting

structure where all surrounding spheres are evenly spaced is impossible since

there exists no triangulation of a sphere with 13 vertices, where every vertex

has degree �ve or six.
[180]

To generate an approximate distribution the Fi-

bonacci sphere algorithm
[258,259]

was used and the generated structure of size
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N = 14 was the starting point for optimisations with LJ potentials with small

exponents. The di�erence between the largest and smallest center-to-outer

sphere (COS) distance was used as a measure for whether the 13th sphere

enters the �rst coordination shell. A value of zero would be expected for this

to be true.

The results for all positive integer combinations of m ≤ 11 and n ≤ 12
with m < n are depicted in �gure 9.2. Even for the combination of smallest

1 2 3 4 5 6 7 8 9 10 11
2
3
4
5
6
7
8
9

10
11
12
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n
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0.2
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0.4
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0.6

Figure 9.2 Relation of LJ exponents m and n to the di�erence of largest and

smallest COS distances. A value of zero would imply that all surrounding

spheres are touching the center sphere.

exponents (1,2) it is clear that the COS distances vary from sphere to sphere.

For this potential the largest COS distance is rmax = 0.882, while the short-

est one is rmin = 0.804. While the longest distance only shows up once, the

shortest distance appears twice. All other ten distances fall in the range be-

tween r = 0.845 and r = 0.861. The rmax/rmin ratio is 1.097 and much

shorter compared to rmax/rmin =
√

2 for the closed packed lattice, or the

shortest distance possible for the SHS system which is rGN

14 = 1.347 (see sec-

tion 9.6). Hence, the 13th sphere almost touches the center sphere.

Note that all COS distances for theN = 14 (1,2)-LJ cluster are signi�cantly

shorter than r = 1, due to the N(N − 1)/2 attractive two-body interactions

and the softness of the potential. For in�nite (e.g. body-centred cubic or close-

packed) lattices of particles interacting via V LJ
mn(r) with n > m > 3, one can
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prove
[106]

that the nearest neighbour distance is

rNN(m,n) =
(
LnL

−1
m

) 1
n−m . (9.3)

Here Ln is the Lennard-Jones-Ingham lattice coe�cient for a speci�c lattice

determined from 3D lattice sums. Since Ln < Lm for n > m, we see that

rNN < 1, and lim
m,n→∞

rNN(m,n) = 1. The shortest distances found in

(6,12)-LJ clusters rmin(N) are: rmin(8) = 0.986767, rmin(9) = 0.964404,

rmin(10) = 0.964382, rmin(11) = 0.956345, rmin(12) = 0.947842, and

rmin(13) = 0.952179. Surprisingly, rmin(12) is smaller than rNN(6, 12) for

typical crystalline lattices; rNN(6, 12) values are 0.95066, 0.95186 and

0.97123 for simple cubic, body-centred cubic and close-packed lattices,

respectively. This result shows that stable clusters do not necessarily have

longer bonds compared to the solid state.

9.4 Rigid Gregory-Newton Clusters and

Corresponding Graphs

The recent results by Holmes-Cerfon contain a putatively complete set of

rigid SHS clusters of sizeN = 13 andN = 14.
[114]

The rigid GNCs can easily

be identi�ed as a subset of the set of all non-isomorphic rigid SHS clusters, i.e.

{SGN} ⊂ {SSHS}; these have adjacency matricesAwith exactly one column

and row containing twelve "1" entries due to 12 spheres kissing the central

sphere. A surprisingly large number of 737 non-isomorphic N = 13 GNCs

out of 98,540 rigid SHS clusters can be found.
[210]

There are four di�erent

possible contact numbers Nc with {724, 10, 1, 2} rigid GNC corresponding

to Nc = {33, 34, 35, 36};[243]
therefore, none of those clusters are hypostatic.

For further analysis and without loss of generality the central sphere was

removed and the remaining non-isomorphic shell of spheres
b

was analysed,

also called a contact graph according to Schütte et al.
[260]

This has the advan-

tage that these shells are related to planar connected graphs. In the following

the corresponding connected planar graph of such a shell of spheres with

the central sphere missing will be referred to as a GN graph. The question

arises if all 737 non-isomorphic GN graphs are sub-graphs of the icosahedral

graph, as shown in �gure 9.1. This would make sense as it is impossible to

increase the degree of any vertex beyond �ve in the Gregory-Newton (GN)

graph. Note that the icosahedral cluster is completely unjammed and its space

of (in�nitesimal) deformations has dimension 24.
[250]

Employing the VF2 algorithm
[121]

as implemented in the boost graph li-

brary
[30]

all 737 non-isomorphic GN graphsGGN(N,E′) (vertex count |N | =
12, edge count |E′| < 30) are found to be (edge-induced) sub-graphs of the

b

Note that rigidity requires the presence of the central sphere.
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icosahedral graph Gico(N,E) (|N | = 12, |E| = 30), which implies that their

vertices can all be mapped to vertices of the icosahedral graph with certain

edges deleted such that the sub-graph remains connected (NGN = Nico and

EGN ⊂ Eico). An extensive list of all sub-graphs is included in the appendix

(Tables A.1 and A.2). Note, not all GN graphs are 3-connected and therefore

are not strictly polyhedral according to Steinitz’s theorem.
[261]

These are the

graphs which have vertices of degree 2, i.e. |N2| > 0, and there are 304 of

them, table A.2. As the many non-isomorphic graphs listed in the appendix

are obtained from a certain combination of edge deletions under the con-

straint of maintaining rigidity, it is not surprising at all that the number of

non-isomorphic GN graphs is so large.

(a) hcp, |E| = 24, ω = 1.

(b) fcc, |E| = 24, ω = 2.

Figure 9.3GN hcp (triangular orthobicupola) and fcc (cuboctahedron) graphs

(central sphere removed) as sub-graphs of the icosahedral graph and corre-

sponding rigid GNCs. Red lines indicate the edges that were removed to cre-

ate the GN graph. The ordinal numbers ω refer to Table A.1 in the appendix.

The results show, that at least six and up to a maximum of nine edges have

to be removed from the icosahedral graph to create a GN graph. Removing

six edges from the icosahedral graph results in 24 edges, or Nc = 36 if the

central sphere is included. For N = 13 this is exactly equal to 3N − 3 which

is the maximum contact number observed for this cluster size.
[114,116]

Conse-

quently, removing nine edges gives Nc = 33 = 3N − 6, meaning that rigid
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GNCs cannot be hypostatic (i.e. Nc < 3N − 6). Interestingly, there are only

two graphs with maximum edge count of |E| = 24, which are exactly the

fragments of the face-centered cubic (fcc) and hexagonal-closed packed (hcp)

bulk structures, respectively. These are the result from removing 6 edges in

such a way, that exactly one edge is removed from every vertex in the icosa-

hedral graph (thus the degree of every vertex is 4), see �gure 9.3. Removing

edges in this way implies that the resulting two graphs consist of triangles

and rectangles only. The di�erence between the fcc and hcp clusters is in the

way their square faces are connected; in the fcc case the square faces only

connect via vertices (cuboctahedron), while in the hcp case the square faces

come in pairs sharing one edge (triangular orthobicupola or Johnson solid

J27).
[250]

The construction of hcp and fcc structures by a continuous deformation

of an icosahedron has been described in detail by Kusner et al.
[250]

and goes

back to Conway and Sloane in 1988.
[247]

hcp and fcc can both be obtained

from a rearrangement of the spheres in an icosahedron by forming a (zig-

zag) cycle (closed path) through six vertices, and arranging those spheres on

the path such that they are in-plane with the central sphere, which becomes

part of the hexagonal plane as in the bulk fcc and hcp packing (�gure 9.4).

Additionally, the plane has to be rotated byπ/6 to create the fcc structure. The

Figure 9.4 Illustration of one zig-zag path (light blue spheres) that needs to

be deformed such that it aligns with the triangular plane (shown in grey) of

the fcc crystal.

hcp structure can be constructed by also rotating either the top or the bottom

plane by the same amount in either direction parallel to the hexagonal plane.

Kusner noted that a smooth deformation from the icosahedral con�guration

to hcp requires 9 moving spheres.
[250]

This interesting transition path may be

the key for the icosahedral to closed-packed rearrangements in larger clusters,

which has previously been described in terms of catastrophe theory as a cusp

catastrophe.
[232]

Even though the rearrangement from the icosahedral to either the fcc or
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hcp cluster structure can easily be realised for the GNC, there should be clus-

ters where the icosahedral motif is still clearly visible, i.e. only small rear-

rangements of the spheres are necessary to break icosahedral symmetry and

form a rigid cluster. These are, for example, the ones with maximum count of

triangles, i.e. according to table A.2 the GN graphs with |F3| = 10 with edge

counts of |E| = 22 or 21. Two of these are shown with their corresponding

graphs in �gure 9.5.

(a) icosahedral motif, |E| = 22, ω = 4.

(b) icosahedral motif, |E| = 22, ω = 7.

Figure 9.5 Representative GN graphs (central sphere removed) with |F3| =
10 as sub-graphs of the icosahedral graph and corresponding rigid GNCs. The

icosahedral motif in the 3D embedding is clearly visible. Red lines indicate

the edges that were removed to create the GN graph. The ordinal numbers ω
refer to Table A.1 in the appendix.

Figure 9.6 shows the graph with the next highest edge count after the fcc

and hcp packings. The motif of a distorted elongated pentagonal bipyramid

(Johnson solid J16) is clearly visible. Note that the Johnson solid can be ob-

tained by deleting �ve edges and rotating the two opposite pentagonal pyra-

mids by 2π/5. One of the resulting square faces has to be stretched to obey

the SHS conditions, which is achieved by removing two additional edges. In

the graph this implies that a hexagonal face is formed. Note that this GNC is
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(a) Distorted elongated pentagonal bipyramid (Johnson solid J16), |E| =
23, ω = 3.

Figure 9.6 GN graph (central sphere removed) as sub-graphs of the icosahe-

dral graph and corresponding GN Johnson-like solid (with edges removed).

Red lines indicate the edges that were removed from the icosahedral graph

to create the GN graph. The ordinal number ω refers to Table A.1 in the ap-

pendix.

also the cluster with the largest distance rRE
max = 1.47823719 that corresponds

to a removed edge (RE) in the GN graph. Capping this cluster with one more

sphere over the distorted square face with rRE
max leads to the structure with

the shortest distance a sphere in the second coordination shell can have to

the central sphere (rCOS = 1.347150628)
c

out of all 895,478 GN clusters with

N = 14.
[210]

If more edges are removed from the icosahedral graph larger n-gonal faces

appear, with the largest face being a 12-gon.

9.5 Symmetry-Broken Lennard-Jones

Gregory-Newton Clusters

All 737 non-isomorphic rigid GNCs optimise to the ideal icosahedral sym-

metry if a (6,12)-LJ potential is applied
[210]

(however, for larger sized icosa-

hedral structures many more minima appear).
[81,262–264]

As mentioned in the

introduction, for equally sized hard spheres a cluster with icosahedral sym-

metry leaves gaps between the spheres of the outer shell, i.e. they do not

touch, and it is therefore not considered rigid under SHS conditions. Hence,

at certain (a, b) combinations a phase transition must occur in the (a, b)-LJ

energy landscape where non-icosahedral local minima appear. In order to de-

termine those (a, b) combinations, all 3D cluster geometries were optimised

with varying exponents (6 ≤ a ≤ 34 and 7 ≤ b ≤ 35) with (b > a) and

c

This will be investigated in detail in section 9.6.
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the number of resulting minimum structures was analysed. The results are

shown schematically in �gure 9.7.

b

10

15

20

25

30

35

 

a
10 15 20 25 30

 

1.0
3.0
5.0

10.0

20.0

30.0

40.0

50.0

60.0

Figure 9.7 Number of unique structures resulting from an optimisation with

a (a, b)-LJ potential. The lowest contour line shows the point where more

than one structure results from the optimisation and the distance between

contour lines is 1.

Another interesting limiting case of the LJ potential with exponents a→ 0
and b → ∞, resembling a constant attractive potential with an in�nite wall,

should be mentioned. In such a potential the kissing spheres can move freely

in the available space without change of energy. Indeed, in the region of low

a and high b values and increasing number of unique structures is found. For

example, values of a = 0.6 and b = 120.0 result in two distinct structures

that are both derived from the icosahedral motif.

Figure 9.8 contains additional information showing three major phase tran-

sitions in the topology of the energy landscape going from low to high (a, b)
exponents. In the blue shaded area (1), the Mackay icosahedron is the sole

minimum in the potential energy landscape. The �rst transition occurs when

this symmetry can be broken, and other local minima are supported by the

(a, b)-LJ potential besides the icosahedron. This is indicated in �gure 9.8 by

the smallest, orange region (2), which still contains the perfect icosahedron as

the global minimum. At slightly higher exponents, other structures become

energetically more favourable and replace the icosahedron as the global min-

imum, region (3). However, the icosahedron remains as a local minimum in

the potential energy surface. The last transition occurs when the LJ potential

becomes SHS-like, and the icosahedral cluster completely disappears from the

potential energy surface, region (4). The three transition lines are generally

smooth.
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Figure 9.8 Di�erent types of energy landscapes arising from combinations of

the (a, b)-LJ exponents. (1) One single (icosahedral) minimum, (2) more than

one minimum with the icosahedron as the global minimum, (3) more than one

minimum with the icosahedron becoming a local (and not global) minimum,

(4) the icosahedral motif disappears completely. The unshaded small area

in the bottom right corner corresponds to a > b, which is excluded. The

resolution for a is 1.0 and for b 0.25.

Figure 9.9 shows representative LJ potentials for combinations of the (a, b)
exponents (with low and high a values) on the phase transition lines drawn

in �gure 9.8. At these phase transition lines, the corresponding LJ potentials

show narrow and steep repulsive potentials compared to the (6, 12)-LJ po-

tential, which all look very similar in the short range (r < 1). However, they

di�er substantially in the long range (r > 1).

The (a, b) parameters can be related to the so-called LJ hard-sphere radius

σ (given by the intersection with the abscissa) through equation (8.5),

σ =

(
b

a

) 1
a−b

. (9.4)

and only the (a, σ) combinations shown in �gure 9.10 along the phase tran-

sition lines have to be considered.

The variation of σ along the phase transitions lines for (2)→(3) and (3)→(4)

are rather small. However, all three transitions clearly show di�erent ranges

for σ and thus can be characterized by the LJ hard-sphere radius. These are

also much larger compared to the (6,12)-LJ hard-sphere radius of σ = 0.891,

and close to the ideal hard sphere radius of 1 in the SHS model. This demon-

strates that the shape of the LJ potential in the repulsive region has a signif-
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Figure 9.9 Comparison of di�erent shapes of LJ potentials at the phase tran-

sition lines shown in �gure 9.8 with the traditional (6,12)-LJ potential (black

solid line). Dashed lines refer to potentials with low a values (left side of �g-

ure 9.8), while solid lines refer to potentials with high a values (right side of

�gure 9.8).

icant in�uence on the position of the transition lines, and therefore on the

topology of the energy landscape. In contrast, these transitions seem to be

far less a�ected by the shape of the potential in the attractive region. Only

for the transition (1)→(2) a larger variation in σ is observed.

Finally, the results show that long-range interactions stabilise the icosahe-

dral cluster. Therefore, the assumption that second-nearest-neighbour inter-

actions may be important seems to come naturally. However, �rst-nearest

neighbour interactions are su�cient for stabilising this structure, i.e. if the

GN clusters are optimised with a truncated (6,12)-LJ potential that ignores

second-nearest-neighbour interactions by setting the range of interactions to

distances below 1.5, it is observed, that the icosahedron is recovered.

9.6 Adding a 14th Sphere

Finally, the set of SHS clusters with N = 14 from exact enumeration re-

sults
[114]

has been investigated with respect to the existence of GNCs. The

extra sphere in these clusters is required to enter the second coordination

shell because of the Newton number. In this case, an even larger number of

clusters exists (14, 529), which is≈ 0.016|MSHS(14)|. All of these structures

optimise to just one of two possible (6,12)-LJ minima of GN type. The �rst

is the Mackay icosahedron capped at one of its triangular faces, and the sec-

ond is an elongated pentagonal bipyramid (belonging to the class of Johnson
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Figure 9.10 Hard-sphere radii σ in reduced units for the (a, b)-LJ potentials

on the transition lines shown in �gure 9.8.

solids) with the 14th sphere capping a square face.

Most of these N = 14 clusters are minimally rigid (Nc = 3N − 6 = 36),

while only a few are hyperstatic (Nc > 3N − 6) and none are hypostatic

(Nc < 3N − 6). There are {14369, 144, 8, 6, 2} such clusters with Nc =
{36, 37, 38, 39, 40} and N = 14. The clusters with Nc = 40 are hcp and

fcc core-shell structures capped at a square face; these arrangements max-

imise Nc. Most of the clusters with Nc = {38, 39} are deformed versions of

the elongated pentagonal bipyramid mentioned above, indicating that this ar-

rangement is a favoured route to these intermediate-energy structures. How-

ever,Nc = 39 also contains hcp and fcc structures capped at a triangular face.

The �rst example of a cluster derived from a perfect icosahedral symmetry

shows up at lower value Nc = 37. Representative examples for clusters with

high contact numbers are depicted in �gure 9.11.

Surprisingly, the N = 14 cluster with the closest COS distance rCOS

min
was

not known. Here, this gap is closed by determining the COS distance for all

SHS Gregory-Newton type clusters with N = 14. One single cluster with

rCOS

min
= 1.3471506281091 is found. Its structure (�gure 9.11a) is similar to

the elongated pentagonal bipyramid with one of the square faces stretched

to form a regular rectangle. The 14th sphere caps this deformed face, becom-

ing the vertex of a deformed octahedron and allowing the outer sphere to get

closer to the central sphere. The next-smallest-rCOS
cluster (rCOS = 1.37515)

is shown in �gure 9.11b. It does not belong to the category of the clusters de-

rived from the elongated pentagonal bipyramid, but instead can be described

as being icosahedral-like. The short distance is achieved by attaching the 14th
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(a) rGN

14 = 1.34715, Nc = 39 (b) rGN

14 = 1.37515, Nc = 36

(c) rGN

14 =
√

2, Nc = 40 (d) rGN

14 =
√

8
3

, Nc = 39

Figure 9.11 Graphical representations of SHS packings with N = 14, where

a center sphere is maximally contacting. The orange sphere in each clus-

ter is the 14th outer sphere, not able to touch the center sphere (in black).

(a) distorted elongated pentagonal bipyramid (Johnson solid); (b) distorted

icosahedron; (c) hcp capped on a square; (d) hcp capped on a triangle.
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Figure 9.12 Frequency of distances from the cluster center to the most distant

sphere for all Gregory-Newton-like clusters with N = 14 contained in the

structures from Holmes-Cerfon.
[114]

The width of the bars is 0.01 re.

sphere to 3 spheres that do not form a face of the cluster (because they are

separated by a distance larger than 1.)

The distribution of rCOS
values for the full set of N = 14 GN clusters is

shown in �gure 9.12. Motifs with larger rCOS
are far more prevalent. For ex-

ample, the peak at rCOS = 1.41 corresponds to structures where the 14th

sphere is touching 4 other spheres that are part of a tetragonal pyramid,

therefore forming a regular octahedron with a tip-to-tip distance of

√
2 (�g-

ure 9.11c). The maximum rCOS
value (1.63) corresponds to capping triangular

faces, so that the most distant sphere is part of a regular trigonal bipyramid

with a height of

√
8/3 (�gure 9.11d). The structures corresponding to the

bars at 1.60, 1.58 and 1.55 are derived from the regular trigonal bipyramid

and result from breaking its axial bonds. In these structures, the more bonds

are broken, or the further the axial spheres are separated, the shorter the COS

distance becomes.

9.7 Conclusion

Rigid GNCs have been analysed by graph theoretical means. All 737 non-

isomorphic GN graphs are sub-graphs of the icosahedral graph obtained by

deleting a minimum of 6 and a maximum of 9 edges. There are only two struc-

tures with maximum edge count of 24 corresponding to the sphere packings

of the fcc and hcp structures, which can be obtained from the icosahedral

structure by a smooth rearrangement moving the six spheres along a closed
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zig-zag path into the (hexagonal) plane. The common (6,12)-LJ potential has

only one minimum structure corresponding to the ideal icosahedron where

the 12 outer spheres do not touch each other. Symmetry breaking requires a

very repulsive short-range LJ potential. The (a, b)-line in the (a, b)-LJ poten-

tial where the icosahedron completely disappears has also been determined.

While the results shown here depend on the functional form chosen (the

Lennard-Jones potential), similar results are expected for other well known

potentials such as the Morse potential.

It was also shown that for softer potentials, it is still unfavourable for a 13th

outer sphere to touch the center sphere. The Gregory-Newton argument still

holds true for even the softest (1,2)-LJ potential.

The sphere kissing problem in higher dimensions is a well known prob-

lem
[247]

(in two dimensions there is only 1 non-isomorphic GNC). How many

non-isomorphic rigid GNCs there are in greater than three dimensions is cur-

rently unknown. Moreover, the rigid kissing sphere problem can be extended

to other (convex or not) topologies instead of a central sphere, e.g. kissing

spheres on an ellipsoid. Those would all be very interesting questions to in-

vestigate.



Part IV

Appendix





A List of Gregory-Newton Contact

Graphs

Table A.1 List of all GN polyhedral graphs. The ordinal numbers ω in the

�rst column can be used to identify the individual polyhedral graphs. |E| is
the number of edges, and the pairs of numbers refer to edges deleted inci-

dent vertices (k, l) as de�ned in the icosahedral graph as shown in �gure 9.1

(page 112). Note that |E|+ |{(k, l)}| = 30.

ω |E| deleted edges (k, l)

1 24 (0,8) (1,4) (2,10) (3,7) (5,9) (6,11)

2 24 (0,10) (1,6) (2,5) (3,9) (4,8) (7,11)

3 23 (1,6) (2,7) (2,10) (4,9) (5,7) (5,8) (10,11)

4 22 (0,2) (0,6) (0,10) (1,11) (2,8) (3,5) (6,10) (6,11)

5 22 (0,4) (0,6) (0,10) (3,11) (4,8) (5,9) (6,10) (8,9)

6 22 (0,2) (0,6) (0,10) (1,3) (2,8) (2,10) (4,6) (5,7)

7 22 (0,2) (0,8) (1,3) (3,9) (4,8) (5,9) (8,9) (10,11)

8 22 (0,4) (0,6) (0,8) (1,9) (2,10) (3,7) (4,6) (4,8)

9 22 (0,4) (0,6) (0,8) (3,7) (4,6) (4,8) (5,9) (10,11)

10 22 (0,2) (0,8) (0,10) (1,9) (2,10) (3,7) (4,6) (4,8)

11 22 (0,4) (0,6) (0,10) (1,3) (2,5) (2,8) (4,6) (5,7)

12 22 (0,6) (0,8) (0,10) (1,3) (2,8) (2,10) (4,9) (7,11)

13 22 (0,4) (0,6) (1,11) (2,8) (3,5) (3,9) (5,7) (6,10)

14 21 (0,6) (0,10) (1,4) (1,6) (1,9) (2,10) (3,9) (4,6) (4,9)

15 21 (0,2) (0,10) (2,8) (2,10) (4,9) (5,8) (5,9) (7,10) (8,9)

16 21 (0,6) (0,10) (2,5) (2,7) (2,10) (3,5) (5,7) (6,10) (6,11)

17 21 (0,2) (0,8) (1,3) (1,4) (1,9) (3,11) (4,8) (4,9) (8,9)

18 21 (0,6) (0,10) (1,4) (1,9) (2,10) (3,9) (4,6) (4,9) (6,10)

19 21 (0,4) (0,8) (2,5) (2,7) (2,8) (3,5) (3,7) (3,9) (5,7)

20 21 (0,6) (0,10) (2,5) (2,7) (2,10) (3,5) (3,11) (5,7) (7,10)

21 21 (0,6) (0,10) (2,5) (2,7) (2,10) (3,5) (5,7) (6,11) (7,10)

22 21 (0,6) (0,8) (1,3) (1,4) (1,9) (3,5) (3,9) (4,8) (4,9)

23 21 (0,6) (0,8) (1,4) (1,6) (1,9) (2,5) (4,8) (4,9) (8,9)

24 21 (0,8) (0,10) (2,5) (2,7) (2,10) (3,5) (3,11) (5,7) (7,10)

25 21 (0,2) (0,4) (1,3) (2,5) (4,8) (4,9) (5,8) (5,9) (8,9)

26 21 (1,3) (1,6) (3,7) (5,9) (6,10) (6,11) (7,10) (7,11) (10,11)

27 21 (0,6) (2,5) (2,7) (2,8) (5,7) (5,8) (6,11) (7,10) (10,11)

28 21 (0,6) (2,5) (2,7) (2,8) (5,8) (6,11) (7,10) (7,11) (10,11)

29 21 (0,10) (2,5) (2,7) (2,10) (3,7) (3,9) (5,7) (5,8) (8,9)

30 21 (0,4) (0,6) (0,10) (1,9) (2,8) (2,10) (4,8) (4,9) (6,10)

31 21 (0,2) (0,6) (0,10) (1,9) (2,8) (2,10) (4,8) (4,9) (6,10)

32 21 (0,4) (2,5) (2,7) (2,8) (3,5) (3,7) (4,9) (5,7) (8,9)

129
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Table A.1 – continued from previous page

ω |E| deleted edges (k, l)

33 21 (0,6) (1,4) (1,6) (1,9) (3,5) (3,9) (4,8) (4,9) (5,8)

34 21 (0,4) (2,7) (2,8) (3,5) (3,7) (4,9) (5,7) (5,9) (8,9)

35 21 (0,10) (1,3) (1,9) (2,5) (2,7) (2,10) (3,5) (3,9) (5,7)

36 21 (0,10) (1,3) (1,9) (2,7) (2,10) (3,5) (3,9) (5,7) (5,9)

37 21 (0,4) (2,5) (2,7) (3,5) (3,7) (4,8) (4,9) (5,7) (8,9)

38 21 (0,2) (0,8) (0,10) (2,5) (2,8) (3,5) (3,11) (7,10) (7,11)

39 21 (1,3) (1,9) (1,11) (2,5) (2,8) (3,9) (5,7) (5,8) (7,11)

40 21 (0,2) (0,8) (1,4) (1,9) (2,7) (2,10) (4,8) (4,9) (7,10)

41 21 (0,4) (0,6) (0,10) (1,6) (1,11) (4,8) (4,9) (8,9) (10,11)

42 21 (0,4) (0,6) (0,8) (1,4) (1,11) (2,8) (2,10) (6,10) (6,11)

43 21 (0,6) (0,10) (2,5) (2,7) (2,10) (4,9) (5,7) (5,8) (7,10)

44 21 (0,4) (0,10) (1,3) (1,6) (1,11) (6,10) (6,11) (8,9) (10,11)

45 21 (0,8) (0,10) (2,5) (2,7) (2,8) (3,7) (4,6) (5,7) (5,8)

46 21 (0,6) (0,10) (1,4) (1,6) (1,9) (3,11) (4,6) (4,9) (8,9)

47 21 (0,4) (0,10) (1,4) (1,6) (1,11) (3,11) (4,6) (6,11) (8,9)

48 21 (1,4) (2,7) (3,5) (3,7) (3,9) (4,6) (5,7) (5,9) (8,9)

49 21 (0,4) (0,8) (1,6) (4,6) (4,8) (6,11) (7,11) (8,9) (10,11)

50 21 (0,6) (0,10) (1,3) (1,4) (1,9) (3,9) (3,11) (4,8) (4,9)

51 21 (0,2) (1,3) (1,9) (3,7) (3,11) (6,10) (7,10) (7,11) (10,11)

52 21 (0,6) (0,10) (2,5) (2,7) (2,10) (4,6) (5,8) (5,9) (6,10)

53 21 (0,2) (0,4) (0,8) (1,3) (2,5) (4,8) (4,9) (5,7) (8,9)

54 21 (0,4) (0,6) (0,8) (1,4) (1,6) (2,7) (4,6) (7,11) (10,11)

55 21 (0,4) (0,6) (0,8) (2,8) (3,5) (3,7) (4,9) (5,8) (5,9)

56 21 (0,4) (0,6) (0,10) (1,4) (2,7) (2,10) (5,7) (6,10) (6,11)

57 21 (0,4) (0,6) (0,8) (1,6) (1,11) (2,5) (4,8) (4,9) (8,9)

58 21 (0,4) (0,8) (1,4) (1,6) (1,11) (3,9) (6,10) (6,11) (10,11)

59 21 (0,4) (0,6) (0,8) (1,6) (2,5) (4,8) (4,9) (5,7) (8,9)

60 21 (0,4) (0,10) (1,4) (1,6) (1,9) (2,10) (4,6) (6,11) (8,9)

61 21 (0,4) (0,6) (0,10) (1,4) (1,9) (2,10) (6,10) (6,11) (8,9)

62 21 (0,4) (0,6) (0,8) (2,5) (4,6) (4,8) (5,7) (7,10) (8,9)

63 21 (0,4) (0,6) (0,8) (1,4) (1,6) (2,5) (4,6) (5,7) (8,9)

64 21 (0,4) (0,6) (0,8) (1,6) (1,9) (2,5) (3,9) (4,8) (4,9)

65 21 (0,2) (0,8) (0,10) (2,8) (3,5) (4,9) (5,8) (5,9) (7,10)

66 21 (0,4) (0,6) (0,8) (1,6) (1,9) (2,8) (3,5) (4,8) (4,9)

67 21 (0,4) (0,6) (0,8) (1,6) (1,9) (2,8) (3,5) (4,6) (5,8)

68 21 (0,2) (0,6) (0,10) (1,4) (1,11) (3,9) (3,11) (6,10) (6,11)

69 21 (0,4) (0,6) (0,8) (1,6) (2,8) (3,5) (4,9) (5,8) (5,9)

70 21 (0,4) (0,6) (0,8) (1,3) (2,5) (4,6) (4,8) (5,9) (8,9)

71 21 (0,4) (0,6) (0,8) (1,3) (1,4) (1,9) (2,10) (4,6) (8,9)

72 21 (0,4) (0,6) (0,8) (1,3) (1,4) (1,9) (2,5) (4,6) (8,9)

73 21 (0,4) (0,6) (0,8) (2,5) (4,6) (4,8) (5,9) (7,10) (8,9)

74 21 (0,4) (0,6) (0,8) (2,5) (3,7) (4,6) (4,8) (5,9) (8,9)

75 21 (0,4) (0,6) (0,10) (1,4) (1,11) (2,10) (6,10) (6,11) (8,9)

76 21 (0,4) (0,6) (0,8) (1,3) (1,9) (2,8) (3,5) (4,8) (4,9)

77 21 (0,4) (0,6) (0,8) (1,3) (1,4) (1,9) (2,8) (3,5) (4,6)

78 21 (0,4) (0,6) (0,10) (1,6) (1,11) (3,5) (3,7) (3,11) (4,6)

79 21 (0,4) (0,6) (1,4) (2,8) (4,6) (6,10) (7,10) (7,11) (10,11)

80 21 (0,2) (0,6) (0,10) (1,4) (1,6) (1,11) (3,9) (3,11) (4,6)

81 21 (0,4) (0,6) (0,10) (1,4) (1,9) (2,10) (4,6) (7,10) (8,9)

82 21 (0,4) (0,6) (0,8) (1,3) (1,4) (1,9) (2,5) (3,9) (4,6)
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83 21 (0,4) (0,6) (0,8) (1,6) (2,8) (3,5) (3,9) (5,8) (5,9)

84 21 (0,4) (0,6) (0,10) (1,3) (1,6) (1,11) (2,8) (3,11) (4,6)

85 21 (0,2) (0,4) (0,8) (2,8) (2,10) (4,6) (5,8) (5,9) (7,10)

86 21 (0,4) (0,6) (0,8) (1,3) (2,5) (3,9) (4,8) (5,9) (8,9)

87 21 (0,4) (0,6) (0,10) (1,3) (1,9) (1,11) (3,5) (3,9) (4,6)

88 21 (0,4) (0,6) (0,10) (1,3) (1,11) (3,9) (3,11) (6,10) (7,11)

89 21 (0,4) (0,6) (0,10) (1,3) (1,6) (1,11) (2,7) (2,10) (4,6)

90 21 (1,4) (1,9) (2,5) (3,5) (3,7) (3,11) (4,6) (5,7) (7,11)

91 21 (0,4) (0,6) (0,8) (1,6) (1,11) (2,8) (3,11) (4,8) (4,9)

92 21 (0,4) (0,6) (0,8) (2,5) (3,7) (4,6) (4,8) (5,7) (8,9)

93 21 (0,4) (0,6) (0,10) (1,4) (1,11) (2,10) (3,9) (6,10) (6,11)

94 21 (0,4) (0,6) (0,10) (1,6) (1,9) (2,8) (4,6) (4,8) (10,11)

95 21 (0,4) (0,6) (0,10) (1,3) (1,11) (2,10) (3,9) (6,10) (6,11)

96 21 (0,4) (0,6) (0,10) (1,3) (1,11) (2,7) (2,10) (6,10) (6,11)

97 21 (0,4) (0,6) (0,8) (1,4) (1,6) (2,8) (3,5) (4,6) (5,9)

98 21 (0,2) (0,8) (0,10) (2,7) (2,10) (3,11) (4,8) (6,10) (7,11)

99 21 (0,4) (0,6) (0,10) (1,4) (1,6) (2,10) (4,6) (5,9) (8,9)

100 21 (0,4) (0,6) (0,8) (2,5) (3,9) (4,8) (5,9) (6,10) (8,9)

101 21 (0,4) (0,6) (0,8) (1,6) (1,11) (3,5) (3,7) (3,11) (4,6)

102 21 (1,4) (1,6) (2,5) (2,7) (2,10) (4,9) (5,8) (5,9) (8,9)

103 21 (0,4) (0,6) (0,10) (1,3) (1,11) (3,5) (3,9) (4,6) (6,10)

104 21 (0,2) (0,8) (0,10) (2,7) (2,10) (3,7) (3,11) (4,8) (5,7)

105 21 (0,2) (0,8) (1,3) (1,11) (2,7) (2,10) (3,7) (3,11) (5,7)

106 21 (0,4) (0,6) (0,10) (1,3) (1,9) (4,6) (4,8) (8,9) (10,11)

107 21 (0,4) (0,6) (0,10) (1,4) (1,11) (3,5) (3,9) (6,10) (6,11)

108 21 (0,2) (0,6) (0,10) (2,8) (2,10) (3,7) (3,9) (5,7) (5,8)

109 21 (0,4) (0,6) (0,8) (1,9) (2,8) (2,10) (4,9) (5,8) (6,10)

110 21 (0,2) (0,8) (0,10) (1,6) (2,7) (2,10) (4,6) (5,7) (5,8)

111 21 (0,4) (0,6) (0,10) (2,10) (4,8) (6,11) (7,10) (7,11) (8,9)

112 21 (0,2) (0,4) (0,8) (1,4) (1,6) (2,5) (4,6) (5,7) (8,9)

113 21 (0,4) (0,6) (0,10) (1,3) (1,6) (2,10) (3,7) (4,6) (7,11)

114 21 (0,2) (0,6) (0,10) (1,3) (1,6) (2,10) (3,7) (4,6) (7,11)

115 21 (0,2) (0,8) (0,10) (2,8) (3,5) (4,9) (5,7) (5,9) (7,10)

116 21 (0,2) (0,8) (0,10) (1,4) (1,6) (1,11) (2,7) (4,6) (10,11)

117 21 (0,4) (0,6) (0,8) (2,5) (3,7) (3,9) (4,8) (5,7) (8,9)

118 21 (0,4) (0,6) (0,10) (1,3) (1,11) (2,10) (3,7) (6,11) (7,10)

119 21 (0,4) (0,6) (0,10) (1,4) (2,10) (3,7) (3,11) (6,10) (7,11)

120 21 (0,4) (0,6) (0,10) (1,3) (1,11) (2,7) (3,11) (4,6) (6,10)

121 21 (0,4) (0,6) (0,10) (1,3) (1,11) (2,8) (3,11) (4,6) (6,10)

122 21 (0,4) (0,6) (0,10) (1,3) (1,9) (2,10) (3,9) (4,6) (4,8)

123 21 (0,4) (0,6) (0,8) (1,3) (1,11) (3,9) (4,6) (6,10) (10,11)

124 21 (0,4) (0,6) (0,8) (1,4) (1,9) (3,9) (6,10) (6,11) (10,11)

125 21 (0,2) (0,8) (0,10) (1,3) (2,5) (2,8) (3,11) (7,10) (7,11)

126 21 (0,4) (0,6) (0,8) (2,8) (3,5) (3,7) (4,6) (5,7) (5,9)

127 21 (0,4) (0,6) (0,8) (3,5) (3,7) (4,6) (6,10) (7,11) (10,11)

128 21 (0,4) (0,6) (0,8) (1,3) (3,7) (4,6) (6,10) (7,11) (10,11)

129 21 (0,4) (0,6) (0,8) (1,4) (3,7) (3,11) (6,10) (7,11) (10,11)

130 21 (0,4) (0,6) (0,8) (1,6) (1,11) (3,5) (3,9) (4,8) (4,9)

131 21 (0,2) (0,6) (0,10) (2,8) (2,10) (3,7) (4,6) (5,7) (5,8)

132 21 (0,4) (0,6) (0,10) (1,11) (3,11) (4,8) (4,9) (6,10) (8,9)
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133 21 (0,4) (0,6) (0,8) (1,4) (1,9) (2,8) (6,10) (6,11) (10,11)

134 21 (0,4) (0,6) (0,10) (1,3) (1,6) (2,7) (4,6) (7,11) (10,11)

135 21 (0,2) (0,8) (0,10) (2,7) (4,6) (5,7) (5,8) (6,10) (10,11)

136 21 (0,4) (0,6) (0,10) (1,4) (1,11) (2,10) (3,7) (6,11) (7,10)

137 21 (0,4) (0,6) (0,10) (1,3) (1,11) (2,7) (3,11) (6,10) (7,11)

138 21 (0,4) (0,6) (0,8) (2,8) (3,5) (3,7) (4,9) (5,7) (5,9)

139 21 (0,4) (0,6) (0,10) (1,3) (1,9) (1,11) (2,10) (3,9) (4,6)

140 21 (0,2) (0,6) (0,10) (2,8) (3,11) (5,7) (5,8) (6,10) (10,11)

141 21 (0,4) (0,6) (0,8) (1,4) (1,11) (2,10) (6,10) (6,11) (8,9)

142 21 (0,4) (0,6) (0,8) (1,6) (1,11) (3,9) (3,11) (4,8) (5,9)

143 21 (0,4) (0,6) (0,8) (1,3) (1,11) (3,11) (4,6) (5,9) (8,9)

144 21 (0,4) (0,6) (0,8) (1,11) (2,7) (2,10) (4,8) (6,11) (7,10)

145 21 (0,4) (0,6) (0,10) (1,6) (1,9) (2,8) (2,10) (4,9) (5,8)

146 21 (0,4) (0,6) (0,8) (2,7) (2,10) (3,11) (4,8) (6,10) (7,11)

147 21 (0,4) (0,6) (0,8) (1,4) (1,11) (2,7) (2,10) (6,11) (7,10)

148 21 (0,4) (0,6) (0,8) (2,10) (3,7) (3,11) (4,8) (6,10) (7,11)

149 21 (0,4) (0,6) (0,8) (1,4) (2,8) (2,10) (6,11) (7,10) (7,11)

150 21 (1,4) (1,6) (3,5) (3,9) (4,9) (5,7) (6,10) (7,11) (10,11)

151 21 (1,4) (1,9) (3,5) (3,7) (4,9) (5,7) (6,10) (6,11) (10,11)

152 21 (0,8) (1,3) (2,10) (3,7) (3,11) (5,9) (7,10) (7,11) (10,11)

153 21 (1,3) (1,4) (1,9) (3,5) (3,9) (5,8) (5,9) (6,10) (7,11)

154 21 (1,9) (2,7) (3,5) (3,7) (3,9) (4,8) (5,7) (5,9) (10,11)

155 21 (1,4) (1,6) (1,11) (2,5) (2,7) (2,8) (3,11) (7,10) (7,11)

156 21 (0,4) (0,6) (1,4) (1,6) (1,11) (2,8) (3,11) (4,6) (7,10)

157 21 (0,6) (0,8) (1,4) (3,11) (4,6) (4,9) (5,9) (6,10) (8,9)

158 21 (0,4) (0,6) (1,11) (3,9) (4,6) (4,8) (6,10) (7,10) (10,11)

159 21 (0,4) (0,10) (1,3) (1,4) (1,9) (3,5) (3,9) (4,6) (7,11)

160 21 (0,6) (0,8) (1,3) (1,11) (3,7) (3,11) (4,9) (6,10) (6,11)

161 21 (0,4) (0,6) (1,4) (1,6) (1,9) (3,9) (4,6) (5,7) (10,11)

162 21 (0,8) (0,10) (2,7) (2,10) (3,5) (4,6) (5,7) (5,9) (7,10)

163 21 (0,6) (2,5) (2,7) (2,8) (3,9) (5,7) (5,8) (7,10) (10,11)

164 21 (0,6) (0,8) (1,3) (1,9) (1,11) (2,5) (4,8) (4,9) (8,9)

165 21 (0,2) (0,6) (1,11) (2,8) (3,5) (6,10) (6,11) (7,10) (10,11)

166 21 (0,6) (0,10) (2,5) (2,8) (3,5) (3,7) (3,9) (5,7) (7,11)

167 21 (0,6) (0,10) (1,11) (2,5) (3,7) (5,8) (6,10) (6,11) (10,11)

168 21 (0,6) (0,10) (2,7) (2,8) (3,5) (3,7) (3,11) (5,7) (5,9)

169 21 (0,2) (0,10) (1,6) (2,7) (2,10) (4,8) (5,7) (6,11) (7,10)

170 21 (0,4) (0,6) (1,4) (1,6) (1,11) (3,5) (3,9) (4,6) (7,10)

171 21 (0,2) (0,10) (2,5) (2,8) (3,11) (5,7) (5,8) (6,10) (8,9)

172 21 (0,2) (0,10) (2,5) (2,8) (3,7) (5,7) (5,8) (6,11) (8,9)

173 21 (0,4) (0,8) (1,9) (3,5) (3,7) (3,9) (4,8) (4,9) (6,11)

174 21 (0,4) (0,8) (1,4) (1,6) (3,9) (4,6) (6,11) (7,11) (10,11)

175 21 (0,6) (0,10) (1,4) (1,6) (1,11) (3,5) (4,6) (4,9) (8,9)

176 21 (0,4) (0,6) (1,3) (1,11) (3,9) (3,11) (5,7) (6,10) (6,11)

177 21 (0,4) (0,10) (1,3) (1,6) (6,10) (6,11) (7,11) (8,9) (10,11)

178 21 (0,6) (0,8) (1,4) (1,6) (1,11) (3,7) (4,6) (4,9) (10,11)

179 21 (0,4) (0,6) (1,4) (1,6) (1,9) (3,11) (4,6) (5,7) (8,9)

180 21 (0,4) (0,6) (1,4) (1,6) (1,9) (3,11) (4,6) (7,10) (8,9)

181 21 (0,6) (0,10) (2,7) (2,10) (3,5) (5,8) (5,9) (6,10) (6,11)

182 21 (0,6) (0,10) (2,7) (2,10) (3,5) (4,6) (5,8) (5,9) (6,10)
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183 21 (0,4) (0,6) (1,4) (3,5) (4,6) (5,7) (5,9) (6,10) (8,9)

184 21 (0,4) (0,8) (2,5) (2,7) (4,6) (4,8) (7,10) (7,11) (8,9)

185 21 (0,4) (0,6) (1,3) (1,9) (3,9) (3,11) (4,8) (4,9) (7,10)

186 21 (0,4) (0,6) (1,6) (4,6) (4,8) (5,8) (7,11) (8,9) (10,11)

187 21 (0,4) (0,6) (1,9) (3,9) (4,6) (4,8) (6,10) (7,10) (10,11)

188 21 (0,4) (0,6) (1,9) (3,9) (4,8) (4,9) (6,10) (7,10) (10,11)

189 21 (0,2) (1,3) (1,6) (1,11) (2,5) (2,8) (3,11) (6,11) (7,10)

190 21 (0,4) (0,6) (1,4) (1,6) (1,11) (3,5) (4,6) (5,7) (8,9)

191 21 (0,4) (0,6) (0,8) (1,3) (4,6) (6,10) (7,11) (8,9) (10,11)

192 21 (0,4) (0,6) (0,10) (2,7) (2,10) (3,7) (5,7) (5,8) (6,11)

193 21 (0,10) (1,4) (1,6) (1,9) (3,7) (4,8) (4,9) (6,11) (10,11)

194 21 (0,4) (0,6) (0,10) (1,6) (2,7) (2,10) (4,8) (4,9) (5,9)

195 21 (0,4) (0,6) (0,8) (1,9) (3,7) (4,8) (6,10) (6,11) (10,11)

196 21 (0,4) (0,6) (0,10) (1,6) (2,7) (2,10) (4,8) (4,9) (7,11)

197 21 (0,4) (0,6) (0,8) (1,4) (3,9) (3,11) (6,10) (7,11) (10,11)

198 21 (0,4) (0,6) (0,8) (1,4) (3,11) (6,10) (7,11) (8,9) (10,11)

199 21 (0,4) (0,6) (0,8) (1,11) (3,7) (4,8) (4,9) (6,10) (10,11)

200 21 (0,6) (1,4) (1,9) (2,5) (2,8) (3,7) (3,9) (5,8) (5,9)

201 21 (0,2) (0,6) (0,10) (1,6) (1,11) (2,7) (3,5) (3,11) (4,6)

202 21 (0,2) (0,6) (0,10) (1,6) (1,11) (2,10) (3,9) (4,6) (4,8)

203 21 (0,4) (0,6) (0,8) (3,7) (4,8) (5,9) (6,10) (6,11) (10,11)

204 21 (0,4) (0,6) (0,10) (1,11) (2,7) (2,10) (4,6) (5,8) (7,10)

205 21 (0,4) (0,6) (0,10) (1,3) (1,6) (4,6) (7,11) (8,9) (10,11)

206 21 (0,4) (0,6) (0,8) (1,3) (1,6) (4,6) (7,11) (8,9) (10,11)

207 21 (0,2) (0,8) (0,10) (1,4) (1,11) (2,10) (4,6) (7,10) (8,9)

208 21 (0,4) (0,6) (0,10) (1,3) (1,9) (3,7) (4,6) (4,8) (10,11)

209 21 (0,4) (0,6) (0,10) (2,8) (2,10) (3,5) (3,11) (6,10) (7,11)

210 21 (0,4) (0,6) (0,8) (2,8) (2,10) (3,7) (3,9) (5,7) (5,8)

211 21 (0,4) (0,6) (0,8) (1,6) (1,11) (3,7) (4,8) (4,9) (10,11)

212 21 (0,2) (0,6) (0,10) (2,10) (3,7) (3,9) (5,8) (6,10) (7,11)

213 21 (0,4) (0,6) (0,10) (1,6) (3,9) (4,8) (4,9) (7,11) (10,11)

214 21 (0,4) (0,6) (0,8) (1,6) (2,7) (2,10) (4,8) (4,9) (5,9)

215 21 (0,2) (0,4) (1,6) (2,10) (4,8) (4,9) (5,7) (5,8) (8,9)

216 21 (0,8) (0,10) (1,4) (2,5) (2,7) (2,10) (4,6) (5,9) (7,10)

217 21 (0,4) (0,6) (0,8) (1,3) (1,6) (2,8) (4,6) (7,11) (10,11)

218 21 (0,6) (0,8) (1,3) (1,4) (2,8) (3,11) (4,8) (4,9) (5,9)

219 21 (0,4) (0,6) (0,8) (1,6) (1,11) (2,7) (4,8) (4,9) (10,11)

220 21 (0,2) (0,4) (0,8) (1,11) (3,9) (4,8) (4,9) (6,10) (10,11)

221 21 (0,4) (0,6) (0,10) (1,6) (1,11) (3,7) (4,8) (4,9) (10,11)

222 21 (0,4) (0,6) (0,10) (1,4) (1,11) (2,10) (6,11) (7,10) (8,9)

223 21 (0,2) (0,4) (0,8) (1,11) (3,9) (3,11) (4,6) (4,8) (6,10)

224 21 (0,4) (0,6) (0,8) (1,3) (1,6) (2,10) (3,7) (4,6) (7,11)

225 21 (0,4) (0,6) (0,8) (2,7) (2,10) (3,7) (5,7) (5,8) (6,11)

226 21 (0,4) (0,6) (0,8) (1,4) (1,11) (3,9) (3,11) (6,10) (7,11)

227 21 (0,2) (0,6) (0,10) (2,7) (3,9) (5,8) (5,9) (6,10) (10,11)

228 21 (0,4) (0,6) (0,8) (1,3) (1,9) (1,11) (3,7) (4,6) (10,11)

229 21 (0,2) (0,6) (1,11) (2,7) (2,10) (3,11) (4,8) (6,11) (7,10)

230 21 (0,4) (0,6) (0,8) (1,4) (1,11) (3,11) (6,10) (7,11) (8,9)

231 21 (0,4) (0,6) (0,10) (1,3) (1,9) (1,11) (2,8) (4,6) (10,11)

232 21 (0,4) (0,6) (0,10) (2,8) (3,5) (4,6) (5,7) (5,9) (7,10)
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233 21 (0,2) (0,6) (0,10) (2,8) (2,10) (3,5) (3,7) (4,9) (5,7)

234 21 (0,4) (0,6) (0,10) (1,11) (3,9) (3,11) (4,8) (6,10) (7,11)

235 21 (0,4) (0,6) (0,10) (1,3) (1,9) (1,11) (2,10) (4,6) (8,9)

236 21 (0,4) (0,6) (0,8) (1,3) (1,9) (1,11) (2,8) (2,10) (4,6)

237 21 (0,4) (0,6) (0,10) (1,3) (1,11) (2,8) (2,10) (6,11) (7,10)

238 21 (0,4) (0,6) (0,8) (2,7) (2,10) (3,5) (3,7) (5,7) (6,11)

239 21 (0,4) (0,6) (0,8) (2,7) (2,10) (3,7) (3,11) (5,7) (5,8)

240 21 (0,4) (0,6) (1,9) (3,5) (3,7) (3,11) (4,8) (5,8) (5,9)

241 21 (0,6) (1,4) (3,9) (4,8) (4,9) (6,10) (7,10) (7,11) (10,11)

242 21 (0,4) (0,6) (0,8) (1,6) (2,7) (2,10) (4,8) (4,9) (5,7)

243 21 (0,6) (0,8) (1,4) (2,5) (2,8) (4,8) (4,9) (5,9) (7,10)

244 21 (0,4) (0,6) (0,8) (1,3) (1,9) (3,7) (4,8) (4,9) (10,11)

245 21 (0,4) (0,6) (0,8) (1,6) (1,9) (3,7) (4,8) (4,9) (10,11)

246 21 (0,4) (0,6) (0,10) (2,7) (2,10) (4,9) (5,8) (6,10) (7,11)

247 21 (0,4) (0,6) (0,8) (1,6) (1,11) (2,7) (4,6) (5,8) (10,11)

248 21 (1,3) (1,11) (2,5) (3,7) (3,11) (6,10) (6,11) (7,10) (8,9)

249 21 (0,2) (0,8) (0,10) (2,7) (3,9) (5,8) (6,10) (7,11) (10,11)

250 21 (0,4) (0,6) (0,10) (1,6) (1,9) (2,7) (4,8) (4,9) (10,11)

251 21 (0,4) (0,6) (0,10) (1,3) (2,8) (2,10) (6,11) (7,10) (7,11)

252 21 (0,4) (0,6) (0,8) (1,4) (1,9) (3,7) (6,10) (6,11) (10,11)

253 21 (0,4) (0,6) (0,10) (2,7) (2,10) (3,11) (5,8) (6,10) (7,11)

254 21 (1,4) (1,6) (2,5) (3,11) (4,6) (4,9) (5,7) (6,11) (8,9)

255 21 (0,4) (1,3) (1,9) (1,11) (3,7) (5,7) (6,10) (6,11) (10,11)

256 21 (0,4) (0,6) (0,10) (1,6) (2,7) (2,10) (4,8) (4,9) (5,7)

257 21 (1,4) (3,5) (3,7) (4,9) (5,8) (5,9) (6,10) (6,11) (8,9)

258 21 (0,2) (1,3) (1,9) (1,11) (2,8) (3,11) (6,10) (6,11) (7,10)

259 21 (0,4) (0,6) (0,10) (1,9) (3,7) (3,11) (4,8) (6,10) (6,11)

260 21 (0,2) (0,8) (0,10) (1,6) (1,11) (2,5) (4,8) (4,9) (8,9)

261 21 (0,8) (1,9) (1,11) (3,5) (3,7) (3,11) (4,8) (5,9) (6,11)

262 21 (0,4) (0,6) (0,10) (1,6) (1,11) (2,10) (3,9) (4,8) (4,9)

263 21 (0,2) (1,4) (1,9) (2,7) (2,10) (3,5) (3,11) (7,10) (7,11)

264 21 (0,4) (0,6) (0,8) (1,9) (3,7) (3,11) (4,8) (6,10) (6,11)

265 21 (1,3) (1,6) (1,11) (2,5) (2,8) (3,5) (3,9) (7,10) (7,11)

266 21 (0,2) (0,6) (0,10) (1,4) (1,9) (3,7) (3,11) (6,10) (6,11)

267 21 (0,2) (0,4) (0,8) (2,5) (4,8) (5,7) (6,10) (6,11) (8,9)

268 21 (0,4) (0,6) (0,8) (1,3) (1,9) (2,7) (2,10) (4,6) (4,8)

269 21 (0,4) (0,6) (0,8) (1,4) (1,9) (2,7) (2,10) (6,10) (6,11)

270 21 (0,6) (0,10) (1,11) (2,5) (2,7) (2,10) (4,6) (5,8) (7,10)

271 21 (0,4) (0,6) (0,8) (1,9) (3,7) (4,8) (4,9) (6,10) (10,11)

272 21 (0,4) (0,6) (0,10) (2,7) (2,10) (3,7) (3,11) (5,7) (5,8)

273 21 (0,4) (0,6) (0,10) (1,3) (1,11) (3,11) (6,10) (7,11) (8,9)

274 21 (0,2) (0,4) (0,8) (2,10) (3,5) (3,7) (5,7) (6,11) (7,11)

275 21 (0,4) (0,6) (0,10) (2,8) (2,10) (3,5) (3,7) (3,9) (5,7)

276 21 (0,4) (0,6) (0,8) (2,8) (2,10) (3,5) (3,7) (3,9) (5,7)

277 21 (0,4) (0,6) (0,8) (1,3) (1,11) (3,11) (6,10) (7,11) (8,9)

278 21 (0,2) (0,8) (0,10) (2,10) (3,5) (3,7) (4,6) (5,7) (7,11)

279 21 (0,4) (0,6) (0,10) (2,8) (3,5) (3,9) (5,7) (5,9) (6,10)

280 21 (0,2) (0,6) (0,10) (2,8) (3,5) (3,9) (5,7) (6,10) (10,11)

281 21 (0,4) (0,6) (0,10) (1,11) (3,7) (3,11) (4,8) (4,9) (6,10)

282 21 (0,4) (0,8) (1,6) (2,5) (2,8) (3,5) (4,6) (5,7) (6,11)
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283 21 (0,6) (2,5) (2,7) (2,8) (4,6) (5,8) (5,9) (7,10) (10,11)

284 21 (0,4) (0,6) (0,10) (1,3) (1,9) (2,7) (2,10) (4,6) (4,8)

285 21 (0,2) (1,4) (1,6) (1,11) (2,8) (3,11) (4,6) (7,10) (7,11)

286 21 (0,4) (0,6) (0,10) (1,6) (1,11) (2,7) (2,10) (4,8) (4,9)

287 21 (0,2) (0,8) (0,10) (1,11) (3,7) (3,11) (5,8) (6,10) (6,11)

288 21 (0,4) (0,6) (0,10) (1,3) (1,11) (2,10) (3,9) (6,11) (7,10)

289 21 (0,4) (0,6) (0,10) (1,4) (3,5) (3,7) (4,6) (5,9) (8,9)

290 21 (0,6) (0,10) (1,6) (1,11) (2,5) (2,7) (2,8) (4,6) (5,8)

291 21 (0,4) (0,6) (0,10) (2,7) (2,10) (3,7) (3,11) (4,8) (5,7)

292 21 (0,4) (0,6) (0,10) (1,3) (1,9) (2,7) (2,10) (4,8) (4,9)

293 21 (0,2) (0,6) (0,10) (1,6) (1,9) (2,5) (3,9) (4,8) (5,9)

294 21 (0,4) (0,6) (0,10) (1,11) (3,11) (4,8) (6,10) (7,11) (8,9)

295 21 (0,4) (0,6) (0,8) (1,6) (2,8) (2,10) (4,9) (5,7) (5,8)

296 21 (0,4) (0,6) (0,10) (1,3) (1,9) (4,6) (7,11) (8,9) (10,11)

297 21 (0,4) (0,6) (0,8) (1,3) (1,9) (4,6) (7,11) (8,9) (10,11)

298 21 (0,10) (1,3) (1,6) (2,5) (2,10) (3,9) (3,11) (5,7) (7,11)

299 21 (0,4) (0,6) (0,10) (2,5) (2,8) (3,5) (3,11) (6,10) (7,11)

300 21 (0,4) (0,6) (0,10) (2,5) (4,8) (6,11) (7,10) (7,11) (8,9)

301 21 (0,4) (0,6) (0,8) (1,4) (1,9) (2,8) (2,10) (6,11) (7,10)

302 21 (0,10) (1,3) (1,6) (2,10) (3,7) (3,11) (4,6) (4,9) (7,11)

303 21 (0,4) (0,6) (0,8) (1,4) (1,9) (3,11) (6,10) (7,11) (8,9)

304 21 (0,2) (0,6) (0,10) (1,6) (2,8) (3,5) (4,8) (4,9) (5,9)

305 21 (0,2) (0,6) (0,10) (1,3) (1,9) (3,5) (4,6) (4,8) (8,9)

306 21 (0,4) (0,6) (0,8) (1,11) (2,10) (3,7) (4,8) (6,11) (7,10)

307 21 (0,4) (0,6) (0,8) (1,4) (2,10) (3,7) (3,11) (6,10) (7,11)

308 21 (0,8) (0,10) (1,4) (1,6) (2,5) (2,7) (2,8) (4,6) (7,11)

309 21 (0,4) (0,6) (0,8) (2,8) (2,10) (3,5) (6,11) (7,10) (7,11)

310 21 (0,4) (0,6) (0,8) (1,9) (2,7) (2,10) (4,8) (6,11) (7,10)

311 21 (1,3) (1,4) (2,5) (2,8) (3,5) (4,9) (5,7) (6,11) (8,9)

312 21 (0,4) (0,6) (0,8) (2,7) (2,10) (4,8) (5,9) (6,11) (7,10)

313 21 (0,2) (0,4) (0,8) (2,10) (3,7) (3,11) (4,8) (5,9) (7,11)

314 21 (0,2) (0,8) (1,4) (2,5) (3,7) (3,11) (4,8) (5,7) (8,9)

315 21 (0,4) (0,6) (0,10) (1,9) (3,5) (3,7) (4,6) (7,11) (10,11)

316 21 (0,4) (0,6) (1,11) (3,7) (3,11) (4,8) (4,9) (6,10) (7,10)

317 21 (0,8) (0,10) (1,4) (1,11) (2,5) (2,7) (2,8) (6,10) (6,11)

318 21 (0,4) (0,6) (0,8) (1,4) (1,9) (3,9) (3,11) (6,10) (7,11)

319 21 (0,2) (0,6) (0,10) (2,10) (3,7) (3,11) (5,8) (5,9) (7,11)

320 21 (0,4) (0,6) (0,8) (1,3) (1,11) (2,7) (2,10) (4,6) (7,10)

321 21 (0,4) (0,6) (0,8) (1,3) (2,7) (2,10) (3,11) (6,10) (7,11)

322 21 (0,4) (0,6) (0,8) (1,3) (1,11) (2,8) (2,10) (6,11) (7,10)

323 21 (0,4) (0,6) (0,10) (1,9) (1,11) (3,5) (3,7) (4,6) (10,11)

324 21 (0,4) (0,6) (0,8) (2,7) (2,10) (4,9) (5,8) (6,10) (7,11)

325 21 (0,4) (0,6) (0,10) (2,8) (2,10) (3,7) (3,9) (4,8) (5,7)

326 21 (0,4) (0,6) (0,8) (2,7) (3,11) (5,7) (5,8) (6,10) (10,11)

327 21 (0,4) (0,6) (0,10) (2,5) (4,8) (5,7) (6,11) (7,10) (8,9)

328 21 (0,10) (1,3) (1,6) (2,10) (3,9) (3,11) (5,7) (5,9) (7,11)

329 21 (0,4) (0,6) (0,8) (2,7) (4,9) (5,8) (6,10) (7,11) (10,11)

330 21 (0,4) (0,6) (0,8) (1,3) (1,9) (3,7) (4,6) (7,11) (10,11)

331 21 (0,4) (0,6) (0,8) (1,11) (2,7) (2,10) (5,8) (6,11) (7,10)

332 21 (0,4) (0,6) (0,8) (1,3) (1,11) (2,10) (3,7) (6,11) (7,10)
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333 21 (0,2) (0,8) (0,10) (1,3) (1,11) (2,7) (3,11) (5,7) (6,10)

334 21 (0,4) (0,6) (0,8) (1,4) (1,9) (2,7) (2,10) (6,11) (7,10)

335 21 (0,8) (0,10) (1,3) (2,5) (2,7) (2,10) (3,9) (4,8) (5,7)

336 21 (0,4) (0,6) (0,10) (1,9) (3,9) (3,11) (4,8) (6,10) (7,11)

337 21 (0,4) (0,6) (0,8) (1,9) (3,9) (3,11) (4,8) (6,10) (7,11)

338 21 (0,4) (0,6) (0,8) (1,4) (1,9) (2,10) (6,11) (7,10) (8,9)

339 21 (0,6) (1,4) (1,11) (3,9) (3,11) (4,8) (4,9) (6,10) (7,10)

340 21 (0,4) (0,6) (0,8) (1,4) (1,11) (2,10) (6,11) (7,10) (8,9)

341 21 (0,4) (0,6) (0,8) (1,3) (2,8) (2,10) (4,6) (7,10) (7,11)

342 21 (0,6) (1,3) (1,4) (3,9) (4,6) (5,8) (5,9) (8,9) (10,11)

343 21 (0,4) (0,6) (0,8) (1,3) (2,8) (2,10) (3,11) (6,10) (7,11)

344 21 (0,4) (0,8) (1,3) (1,9) (3,9) (3,11) (4,8) (6,10) (7,11)

345 21 (0,4) (0,6) (0,10) (1,9) (3,11) (4,8) (6,10) (7,11) (8,9)

346 21 (0,4) (0,6) (0,8) (2,7) (3,11) (4,8) (5,7) (6,10) (10,11)

347 21 (0,4) (0,6) (0,10) (2,10) (3,7) (3,9) (4,8) (5,7) (8,9)

348 21 (0,4) (0,8) (1,6) (1,9) (3,5) (3,9) (4,8) (6,10) (6,11)

349 21 (0,2) (0,6) (0,10) (3,5) (3,7) (4,6) (4,8) (5,9) (8,9)

350 21 (0,4) (0,6) (0,8) (1,4) (2,10) (6,11) (7,10) (7,11) (8,9)

351 21 (0,4) (0,6) (0,8) (3,5) (3,7) (4,9) (6,10) (7,11) (10,11)

352 21 (0,6) (1,4) (1,9) (2,10) (3,7) (3,11) (4,9) (6,11) (7,10)

353 21 (0,8) (2,5) (2,10) (3,7) (3,9) (4,8) (5,9) (7,11) (10,11)

354 21 (0,4) (0,8) (1,6) (1,11) (2,5) (3,9) (4,8) (5,9) (6,11)

355 21 (0,6) (1,4) (1,11) (2,5) (2,10) (3,7) (3,11) (4,6) (7,10)

356 21 (0,6) (1,4) (1,11) (3,5) (3,9) (4,9) (6,10) (7,10) (7,11)

357 21 (0,2) (1,6) (1,11) (2,8) (3,9) (5,8) (5,9) (6,10) (10,11)

358 21 (0,4) (3,5) (3,7) (4,6) (5,8) (6,10) (7,11) (8,9) (10,11)

359 21 (0,8) (1,3) (1,11) (2,10) (3,9) (5,8) (5,9) (6,10) (6,11)

360 21 (0,6) (1,3) (1,11) (3,9) (4,8) (5,8) (5,9) (6,10) (10,11)

361 21 (0,4) (1,6) (1,9) (3,11) (4,8) (6,10) (7,10) (7,11) (8,9)

362 21 (0,6) (1,3) (1,6) (4,8) (4,9) (7,10) (7,11) (8,9) (10,11)

363 21 (0,6) (1,4) (1,9) (3,5) (3,7) (4,6) (5,9) (7,10) (10,11)

364 21 (0,6) (0,10) (2,5) (2,7) (2,10) (3,9) (4,8) (7,10) (7,11)

365 21 (0,2) (0,8) (1,9) (2,8) (2,10) (4,6) (5,8) (7,10) (10,11)

366 21 (0,8) (0,10) (1,3) (2,5) (2,7) (2,10) (4,6) (7,10) (7,11)

367 21 (0,4) (0,6) (1,4) (1,6) (1,9) (2,8) (3,11) (4,6) (7,10)

368 21 (0,4) (0,6) (1,4) (1,6) (1,11) (3,5) (4,6) (7,10) (8,9)

369 21 (0,4) (0,6) (1,6) (2,7) (3,7) (4,6) (4,8) (5,7) (10,11)

370 21 (0,6) (1,3) (2,7) (4,6) (5,7) (5,9) (6,10) (7,10) (10,11)

371 21 (0,6) (0,10) (1,3) (1,6) (1,11) (2,5) (2,7) (2,8) (4,6)

372 21 (1,4) (1,6) (2,5) (2,7) (2,8) (3,9) (5,7) (5,8) (10,11)

373 21 (0,6) (2,5) (2,7) (2,10) (3,7) (4,8) (4,9) (5,7) (10,11)

374 21 (1,3) (1,9) (1,11) (2,5) (2,7) (4,9) (5,8) (6,10) (8,9)

375 21 (1,11) (2,5) (2,7) (3,11) (4,6) (5,7) (5,8) (7,10) (8,9)

376 21 (0,2) (0,4) (3,5) (4,8) (5,8) (5,9) (6,11) (7,10) (8,9)

377 21 (1,3) (1,6) (1,11) (2,7) (2,10) (3,7) (3,11) (4,9) (5,8)

378 21 (0,8) (1,4) (1,6) (1,11) (2,10) (3,9) (5,9) (6,10) (6,11)

379 21 (1,11) (2,5) (2,10) (3,7) (4,9) (5,8) (5,9) (6,11) (8,9)

380 21 (1,3) (1,4) (1,9) (2,8) (3,9) (5,7) (5,9) (6,11) (10,11)

381 21 (1,11) (2,5) (2,7) (3,5) (3,7) (4,9) (5,7) (6,10) (8,9)

382 21 (1,9) (1,11) (2,8) (3,5) (3,7) (3,9) (4,9) (6,11) (7,10)
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383 21 (1,9) (2,5) (2,7) (3,7) (3,9) (4,6) (5,7) (5,8) (10,11)

384 21 (1,4) (2,5) (2,7) (3,5) (3,11) (4,6) (5,7) (7,10) (8,9)

385 21 (1,6) (2,5) (3,7) (4,9) (5,8) (6,10) (6,11) (7,11) (10,11)

386 21 (1,3) (1,6) (1,11) (2,7) (2,10) (3,5) (3,9) (4,9) (5,8)

387 21 (1,4) (1,6) (2,5) (2,7) (2,8) (3,11) (5,7) (7,10) (8,9)

388 21 (1,11) (2,5) (2,7) (3,5) (4,6) (4,9) (5,7) (7,10) (8,9)

389 21 (1,3) (2,5) (3,5) (3,9) (4,6) (5,7) (7,11) (8,9) (10,11)

390 21 (1,3) (1,9) (2,7) (3,9) (3,11) (4,6) (5,8) (5,9) (10,11)

391 21 (1,3) (1,6) (1,11) (2,10) (3,5) (3,9) (4,9) (5,8) (7,11)

392 21 (1,6) (2,7) (3,5) (3,7) (3,11) (4,8) (5,8) (5,9) (10,11)

393 21 (1,6) (2,5) (2,7) (3,7) (3,9) (4,8) (5,7) (5,8) (10,11)

394 21 (1,3) (1,9) (2,7) (3,5) (3,9) (4,6) (4,9) (5,8) (10,11)

395 21 (1,6) (2,7) (2,8) (3,5) (3,7) (3,9) (4,9) (5,7) (10,11)

396 21 (1,3) (1,6) (2,7) (3,11) (4,8) (5,9) (7,10) (7,11) (10,11)

397 21 (1,3) (2,5) (2,7) (3,7) (3,11) (4,6) (5,7) (8,9) (10,11)

398 21 (1,6) (1,11) (2,7) (2,8) (3,5) (3,11) (4,9) (7,10) (7,11)

399 21 (1,4) (2,5) (2,10) (3,7) (4,9) (5,8) (5,9) (6,11) (8,9)

400 21 (1,3) (1,4) (2,5) (2,7) (3,7) (3,11) (5,7) (6,10) (8,9)

401 21 (0,2) (0,10) (1,9) (2,7) (3,11) (5,8) (6,10) (7,11) (10,11)

402 21 (1,3) (1,4) (1,9) (2,5) (2,10) (3,9) (5,7) (5,8) (6,11)

403 21 (1,4) (1,6) (1,11) (2,5) (2,10) (3,9) (5,8) (5,9) (7,11)

404 21 (1,3) (1,6) (1,11) (2,7) (3,11) (4,8) (5,7) (5,9) (7,10)

405 21 (1,9) (1,11) (2,7) (3,5) (4,6) (4,9) (5,7) (7,10) (8,9)

406 21 (1,4) (1,6) (1,11) (2,7) (2,8) (3,11) (4,9) (5,7) (7,10)

407 21 (1,6) (2,5) (2,7) (2,8) (3,7) (4,9) (5,8) (7,11) (10,11)

408 21 (1,11) (2,5) (3,7) (4,6) (5,8) (5,9) (6,11) (8,9) (10,11)

409 21 (1,4) (1,6) (2,5) (2,7) (2,10) (3,7) (3,11) (5,7) (8,9)

410 21 (1,4) (1,6) (1,11) (2,10) (3,7) (3,11) (5,8) (5,9) (7,11)

411 21 (1,4) (1,6) (1,9) (2,10) (3,9) (3,11) (5,8) (5,9) (7,11)

412 21 (1,4) (1,6) (1,9) (2,7) (2,10) (3,9) (3,11) (5,8) (5,9)

413 21 (1,4) (1,6) (2,5) (2,7) (2,8) (3,11) (7,10) (7,11) (8,9)

414 21 (1,4) (2,5) (2,7) (3,11) (4,6) (5,7) (5,8) (7,10) (8,9)

415 21 (1,4) (2,5) (2,7) (3,7) (3,11) (5,7) (5,8) (6,10) (8,9)

416 21 (1,4) (1,9) (2,5) (2,7) (3,7) (3,11) (5,7) (5,8) (6,10)

417 21 (1,4) (1,6) (1,11) (2,10) (3,9) (3,11) (5,8) (5,9) (7,11)

418 21 (1,4) (2,5) (3,5) (3,7) (4,9) (5,7) (6,10) (7,11) (8,9)

419 21 (1,4) (1,9) (2,5) (2,7) (3,11) (4,6) (5,7) (5,8) (7,10)

420 21 (1,3) (1,11) (2,5) (2,7) (3,11) (4,6) (7,10) (7,11) (8,9)

421 21 (1,11) (2,5) (2,7) (3,7) (4,9) (5,7) (5,8) (6,10) (8,9)

422 21 (1,4) (1,6) (1,9) (2,7) (2,8) (3,11) (5,7) (5,9) (7,10)

423 21 (1,4) (1,6) (1,11) (2,7) (2,10) (3,5) (3,9) (5,8) (5,9)

424 21 (1,4) (1,6) (2,8) (3,11) (4,9) (5,8) (7,11) (8,9) (10,11)

425 21 (0,6) (1,11) (2,5) (3,7) (3,9) (5,8) (5,9) (6,10) (6,11)

426 21 (1,3) (1,4) (1,9) (2,5) (2,7) (2,8) (3,11) (6,11) (7,10)

427 21 (0,4) (0,6) (0,8) (1,3) (4,6) (5,9) (7,11) (8,9) (10,11)

428 21 (0,4) (0,6) (0,10) (1,9) (2,8) (2,10) (3,7) (4,9) (5,8)

429 21 (0,4) (0,6) (0,8) (1,3) (1,9) (2,7) (2,10) (4,6) (5,8)

430 21 (0,4) (0,6) (0,8) (1,6) (3,9) (4,8) (5,9) (7,11) (10,11)

431 21 (0,2) (0,8) (0,10) (1,9) (2,5) (3,9) (4,8) (7,10) (7,11)

432 21 (0,4) (0,6) (0,8) (2,8) (3,5) (5,9) (6,11) (7,10) (7,11)
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433 21 (0,4) (0,6) (0,10) (1,4) (1,9) (2,8) (3,11) (6,10) (7,11)

434 21 (0,4) (0,6) (0,8) (1,6) (2,7) (2,10) (3,9) (4,8) (5,9)

435 21 (0,4) (0,6) (0,8) (1,3) (2,7) (2,10) (4,6) (5,8) (5,9)

436 21 (0,2) (0,8) (0,10) (1,11) (3,5) (3,9) (4,8) (4,9) (6,10)

437 21 (0,4) (0,6) (0,8) (1,3) (1,9) (2,7) (2,10) (4,6) (7,11)

438 21 (0,4) (0,6) (0,8) (1,9) (2,10) (3,7) (3,9) (4,8) (5,7)

439 21 (0,4) (0,6) (0,10) (1,3) (2,8) (2,10) (3,9) (5,7) (5,8)

440 21 (0,2) (0,6) (0,10) (1,11) (3,9) (3,11) (4,8) (5,9) (6,10)

441 21 (0,4) (0,6) (0,8) (1,11) (2,10) (3,7) (4,8) (5,7) (6,11)

442 21 (0,2) (0,6) (0,10) (1,11) (3,5) (3,9) (4,8) (4,9) (6,10)

443 21 (0,4) (1,4) (1,6) (1,9) (2,10) (3,7) (3,11) (5,7) (6,11)

444 21 (0,4) (0,6) (0,10) (1,6) (1,11) (3,7) (3,11) (4,8) (5,9)

445 21 (0,4) (0,6) (0,10) (2,5) (2,8) (3,9) (5,8) (6,10) (7,11)

446 21 (0,4) (0,6) (0,8) (1,6) (2,7) (2,10) (3,9) (4,8) (5,7)

447 21 (0,6) (0,8) (0,10) (1,4) (2,5) (2,8) (3,7) (4,6) (5,9)

448 21 (0,4) (0,6) (0,8) (1,3) (2,7) (2,10) (3,5) (4,9) (5,7)

449 21 (0,6) (0,8) (0,10) (1,3) (2,7) (2,10) (3,5) (4,9) (5,7)

450 21 (0,4) (0,6) (0,8) (1,9) (3,5) (3,9) (4,8) (6,10) (7,11)

451 21 (0,4) (0,6) (0,8) (1,6) (2,8) (2,10) (3,5) (3,9) (5,7)

452 21 (0,4) (0,6) (0,8) (1,3) (1,9) (2,10) (3,9) (4,6) (7,11)

453 21 (0,4) (0,6) (0,10) (1,6) (2,8) (2,10) (3,5) (3,9) (5,7)

454 21 (0,6) (1,4) (3,7) (5,8) (5,9) (6,10) (6,11) (8,9) (10,11)

455 21 (0,4) (0,6) (0,10) (2,7) (2,10) (3,7) (5,8) (5,9) (6,11)

456 21 (0,2) (0,8) (1,4) (2,7) (2,10) (3,11) (5,8) (5,9) (7,10)

457 21 (0,4) (0,6) (0,10) (1,6) (1,11) (2,7) (2,10) (4,9) (5,8)

458 21 (0,4) (0,6) (0,10) (1,3) (1,9) (2,10) (4,6) (7,11) (8,9)

459 21 (0,2) (0,8) (0,10) (1,6) (3,9) (4,8) (4,9) (7,11) (10,11)

460 21 (0,4) (0,6) (0,8) (1,9) (2,7) (3,11) (4,8) (6,10) (7,11)

461 21 (0,2) (1,6) (2,5) (2,8) (3,7) (3,11) (4,8) (5,7) (10,11)

462 21 (0,4) (0,6) (0,8) (1,3) (1,9) (2,8) (2,10) (4,6) (7,11)

463 21 (0,4) (0,6) (0,10) (1,3) (1,9) (2,8) (2,10) (4,6) (7,11)

464 21 (0,4) (0,6) (0,8) (2,8) (3,5) (4,9) (5,9) (6,10) (7,11)

465 21 (0,4) (0,6) (0,8) (1,11) (3,5) (3,9) (4,8) (6,10) (7,11)

466 21 (0,4) (0,6) (0,10) (1,3) (2,7) (2,10) (4,9) (5,7) (5,8)

467 21 (0,4) (0,6) (0,10) (1,3) (2,8) (2,10) (3,9) (4,8) (5,7)

468 21 (0,2) (0,6) (0,10) (1,11) (2,8) (3,5) (3,9) (6,10) (7,11)

469 21 (0,6) (0,8) (0,10) (1,3) (1,9) (2,7) (4,8) (4,9) (10,11)

470 21 (0,4) (0,6) (0,8) (1,9) (3,9) (3,11) (4,8) (5,7) (6,10)

471 21 (0,4) (0,6) (0,8) (1,11) (3,9) (3,11) (4,8) (5,7) (6,10)

472 21 (0,4) (0,6) (0,8) (1,4) (1,9) (2,7) (3,11) (6,10) (7,11)

473 21 (0,4) (0,6) (0,8) (1,3) (1,9) (2,7) (4,6) (7,11) (10,11)

474 21 (0,4) (0,6) (0,8) (2,7) (2,10) (3,7) (3,11) (5,8) (5,9)

475 21 (0,2) (0,8) (0,10) (1,4) (1,9) (2,7) (3,11) (6,10) (7,11)

476 21 (0,8) (1,4) (1,9) (3,5) (3,7) (3,11) (4,9) (6,10) (6,11)

477 21 (0,2) (0,8) (0,10) (1,4) (3,5) (4,6) (5,9) (7,10) (8,9)

478 21 (0,4) (0,6) (0,8) (2,10) (3,7) (3,9) (5,8) (5,9) (7,11)

479 21 (0,2) (0,10) (1,3) (2,10) (3,9) (3,11) (4,8) (5,7) (8,9)

480 21 (0,4) (0,6) (0,8) (1,3) (2,7) (2,10) (3,9) (5,7) (5,8)

481 21 (0,4) (0,6) (0,8) (1,3) (1,9) (2,7) (2,10) (4,9) (5,8)

482 21 (0,4) (0,6) (0,10) (1,9) (2,5) (2,8) (5,8) (6,11) (7,10)
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483 21 (0,2) (0,8) (0,10) (1,4) (1,6) (4,6) (5,7) (8,9) (10,11)

484 21 (0,4) (0,6) (0,8) (1,6) (2,7) (2,10) (3,9) (5,7) (5,8)

485 21 (0,4) (0,6) (0,8) (1,3) (2,7) (2,10) (4,9) (5,7) (5,8)

486 21 (0,4) (0,6) (0,8) (1,6) (2,7) (2,10) (4,9) (5,8) (7,11)

487 21 (0,4) (0,6) (0,10) (1,9) (2,5) (2,8) (4,8) (6,11) (7,10)

488 21 (0,4) (0,6) (0,10) (1,6) (2,8) (2,10) (3,9) (5,7) (5,8)

489 21 (0,4) (0,6) (0,10) (1,6) (1,9) (3,7) (3,11) (4,8) (5,9)

490 21 (0,8) (0,10) (1,11) (2,5) (3,5) (3,7) (3,9) (6,10) (7,11)

491 21 (0,4) (0,6) (0,8) (2,7) (2,10) (3,7) (4,8) (5,9) (6,11)

492 21 (0,2) (0,8) (0,10) (1,6) (1,9) (3,7) (4,6) (4,8) (10,11)

493 21 (0,4) (0,6) (0,10) (1,11) (2,8) (3,5) (4,9) (5,8) (6,10)

494 21 (0,4) (0,6) (0,10) (1,9) (1,11) (3,5) (3,7) (4,6) (8,9)

495 21 (0,4) (0,6) (0,8) (1,6) (2,8) (2,10) (3,5) (4,9) (5,7)

496 21 (0,4) (0,8) (1,6) (2,7) (2,10) (3,5) (4,9) (5,7) (5,8)

497 21 (0,2) (0,8) (0,10) (1,11) (2,10) (3,7) (4,6) (5,7) (5,8)

498 21 (0,4) (0,6) (0,10) (1,3) (2,8) (2,10) (3,5) (4,9) (5,7)

499 21 (0,4) (0,6) (0,10) (1,6) (2,8) (2,10) (3,5) (4,9) (5,7)

500 21 (0,4) (0,6) (0,8) (2,10) (3,7) (4,8) (5,9) (6,11) (7,11)

501 21 (0,4) (0,6) (0,8) (1,11) (2,5) (2,10) (3,7) (4,6) (5,8)

502 21 (0,6) (0,8) (0,10) (1,11) (2,5) (2,10) (3,7) (4,6) (5,8)

503 21 (0,4) (0,6) (0,10) (1,6) (2,7) (2,10) (4,9) (5,8) (7,11)

504 21 (0,4) (0,6) (0,10) (1,6) (2,8) (2,10) (3,9) (4,8) (5,7)

505 21 (0,4) (0,6) (0,10) (2,7) (2,10) (3,7) (4,8) (5,9) (6,11)

506 21 (0,4) (0,6) (0,10) (1,6) (2,7) (2,10) (3,9) (4,8) (5,7)

507 21 (0,6) (0,8) (0,10) (1,3) (1,4) (2,7) (2,10) (4,6) (5,9)

508 21 (0,4) (0,6) (0,10) (1,9) (2,7) (2,10) (3,7) (4,6) (5,8)

509 21 (0,2) (0,4) (0,10) (1,6) (2,8) (3,9) (5,8) (5,9) (10,11)

510 21 (0,4) (0,6) (0,10) (1,6) (3,7) (3,11) (4,8) (5,9) (8,9)

511 21 (0,4) (0,6) (0,10) (1,3) (1,9) (2,7) (2,10) (4,6) (5,8)

512 21 (0,4) (0,6) (0,10) (1,6) (2,7) (2,10) (3,9) (4,8) (5,9)

513 21 (0,2) (0,8) (0,10) (1,6) (1,11) (2,10) (3,7) (4,8) (4,9)

514 21 (0,2) (0,8) (0,10) (1,11) (3,5) (3,9) (4,8) (6,10) (6,11)

515 21 (0,4) (0,6) (0,10) (1,3) (2,7) (2,10) (3,9) (5,7) (5,8)

516 21 (0,4) (0,6) (0,8) (2,7) (2,10) (3,7) (5,8) (5,9) (6,11)

517 21 (0,4) (0,6) (0,8) (2,10) (3,7) (5,8) (5,9) (6,11) (7,11)

518 21 (0,2) (0,6) (0,10) (1,6) (1,11) (3,9) (4,8) (5,9) (10,11)

519 21 (0,4) (0,6) (0,8) (1,9) (2,7) (2,10) (3,7) (4,9) (5,8)

520 21 (0,4) (0,6) (0,8) (1,6) (1,11) (2,7) (2,10) (4,9) (5,8)

521 21 (0,2) (0,6) (0,10) (1,6) (1,11) (3,7) (4,8) (4,9) (10,11)

522 21 (0,6) (1,3) (1,11) (3,5) (4,9) (5,7) (6,10) (6,11) (8,9)

523 21 (0,2) (0,8) (0,10) (1,11) (2,10) (3,7) (4,8) (5,7) (6,11)

524 21 (0,4) (0,6) (0,10) (1,9) (2,5) (3,9) (4,8) (5,7) (6,10)

525 21 (0,2) (0,8) (0,10) (1,11) (2,7) (3,11) (4,8) (5,7) (6,10)

526 21 (0,4) (0,6) (0,8) (1,11) (2,8) (3,5) (3,11) (5,7) (6,10)

527 21 (0,4) (0,6) (0,10) (1,11) (3,5) (3,7) (4,6) (5,9) (8,9)

528 21 (0,4) (0,6) (0,10) (1,6) (2,7) (2,10) (3,9) (5,8) (5,9)

529 21 (0,2) (0,8) (0,10) (2,8) (3,5) (3,7) (4,6) (5,9) (7,11)

530 21 (0,6) (0,8) (0,10) (2,10) (3,5) (3,7) (4,6) (5,9) (7,11)

531 21 (0,4) (0,6) (0,8) (1,11) (2,7) (3,5) (3,11) (5,7) (6,10)

532 21 (0,4) (0,6) (0,10) (2,8) (2,10) (3,7) (3,11) (5,8) (5,9)
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533 21 (0,10) (1,9) (2,7) (3,5) (4,8) (4,9) (5,7) (6,10) (8,9)

534 21 (0,2) (1,4) (2,10) (3,9) (4,6) (5,8) (5,9) (7,10) (8,9)

535 21 (0,4) (0,6) (0,8) (1,3) (2,7) (2,10) (3,9) (5,8) (5,9)

536 21 (0,2) (0,8) (1,11) (2,7) (2,10) (3,7) (3,11) (4,8) (5,9)

537 21 (0,4) (0,8) (0,10) (1,3) (1,9) (2,8) (3,11) (6,10) (7,11)

538 21 (0,4) (0,6) (0,10) (1,3) (1,9) (2,5) (3,9) (4,8) (5,7)

539 21 (0,4) (0,6) (0,8) (1,11) (3,7) (3,11) (4,8) (5,9) (6,10)

540 21 (0,8) (1,4) (1,9) (2,5) (2,7) (2,8) (4,9) (6,11) (7,10)

541 21 (0,6) (0,10) (1,4) (1,9) (2,5) (3,5) (3,7) (3,11) (4,6)

542 21 (0,2) (0,8) (0,10) (1,6) (1,11) (3,7) (3,11) (4,8) (4,9)

543 21 (0,4) (0,6) (0,10) (1,3) (2,7) (2,10) (3,9) (4,8) (5,9)

544 21 (1,9) (2,7) (3,5) (3,7) (4,9) (5,8) (6,10) (6,11) (10,11)

545 21 (1,4) (1,6) (2,7) (3,9) (3,11) (5,8) (5,9) (6,10) (10,11)

546 21 (1,4) (1,6) (2,7) (3,11) (5,8) (5,9) (6,10) (7,10) (8,9)

547 21 (1,4) (1,6) (2,7) (3,7) (3,11) (5,8) (5,9) (6,10) (8,9)

548 21 (0,2) (0,6) (1,11) (2,10) (3,7) (3,9) (5,8) (5,9) (6,11)

549 21 (1,4) (1,9) (2,5) (3,7) (5,8) (6,10) (6,11) (7,10) (8,9)

550 21 (0,2) (0,6) (1,3) (2,7) (3,9) (5,7) (5,8) (6,10) (10,11)

551 21 (1,3) (1,4) (2,5) (3,9) (5,8) (6,10) (7,10) (7,11) (8,9)

552 21 (1,3) (1,6) (2,7) (2,10) (4,9) (5,8) (7,11) (8,9) (10,11)

553 21 (1,6) (1,11) (2,7) (3,5) (4,9) (5,8) (6,10) (8,9) (10,11)

554 21 (1,4) (1,9) (2,5) (3,7) (3,9) (5,8) (6,10) (6,11) (7,10)

555 21 (0,4) (0,8) (2,5) (3,5) (3,7) (6,10) (6,11) (7,11) (8,9)

556 21 (1,3) (1,11) (2,5) (3,5) (4,8) (4,9) (6,11) (7,10) (8,9)

557 21 (1,4) (1,6) (2,7) (3,11) (4,6) (5,8) (5,9) (7,10) (10,11)

558 21 (1,6) (1,11) (2,10) (3,5) (3,7) (4,9) (5,8) (7,11) (8,9)

559 21 (1,4) (1,6) (2,5) (3,9) (4,6) (5,8) (7,10) (7,11) (10,11)

560 21 (1,4) (1,9) (2,5) (3,7) (4,6) (5,8) (6,11) (7,10) (10,11)

561 21 (1,3) (2,5) (3,9) (4,6) (5,8) (7,10) (7,11) (8,9) (10,11)

562 21 (1,4) (1,6) (2,8) (3,5) (3,9) (5,9) (7,10) (7,11) (10,11)

563 21 (1,6) (1,11) (2,5) (3,7) (3,9) (4,8) (5,8) (6,11) (7,10)

564 21 (0,2) (0,6) (1,3) (2,8) (5,7) (5,9) (6,11) (7,10) (10,11)

565 21 (1,3) (1,4) (2,5) (3,5) (4,9) (6,10) (7,10) (7,11) (8,9)

566 21 (1,6) (2,5) (3,7) (3,9) (4,9) (5,8) (6,10) (7,11) (10,11)

567 21 (1,4) (1,6) (2,10) (3,11) (4,9) (5,7) (6,10) (7,11) (8,9)

568 21 (1,9) (2,7) (3,5) (4,6) (4,9) (5,8) (6,11) (7,10) (10,11)

569 21 (1,3) (1,11) (2,5) (2,10) (4,9) (5,8) (6,10) (7,11) (8,9)

570 21 (1,3) (1,6) (2,5) (3,9) (4,6) (5,8) (7,10) (7,11) (10,11)

571 21 (0,10) (1,6) (2,7) (2,10) (3,5) (3,11) (4,6) (5,9) (7,11)

572 21 (1,4) (1,6) (2,5) (3,5) (3,9) (6,10) (7,10) (7,11) (8,9)

573 21 (1,3) (1,6) (2,8) (3,5) (4,9) (5,7) (7,11) (8,9) (10,11)

574 21 (1,6) (1,11) (2,7) (3,5) (3,9) (4,9) (5,8) (6,10) (10,11)

575 21 (1,3) (1,4) (2,8) (3,7) (5,7) (5,9) (6,11) (8,9) (10,11)

576 21 (1,3) (1,6) (2,7) (3,9) (4,9) (5,7) (5,8) (6,10) (10,11)

577 21 (1,3) (2,7) (4,6) (5,8) (5,9) (6,11) (7,10) (8,9) (10,11)

578 21 (1,4) (2,8) (3,5) (3,7) (5,9) (6,11) (7,10) (8,9) (10,11)

579 21 (1,4) (2,7) (2,8) (3,5) (5,9) (6,11) (7,10) (8,9) (10,11)

580 21 (0,6) (1,4) (1,9) (2,5) (2,10) (3,7) (4,6) (5,7) (10,11)

581 21 (1,3) (1,9) (2,7) (4,6) (5,8) (5,9) (6,11) (7,10) (10,11)

582 21 (1,4) (1,6) (2,5) (3,9) (4,8) (5,7) (6,11) (8,9) (10,11)
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583 21 (1,4) (1,6) (2,7) (3,7) (3,11) (5,8) (5,9) (6,10) (10,11)

584 21 (1,4) (1,9) (2,5) (3,7) (3,11) (5,8) (6,10) (6,11) (7,10)

585 21 (1,6) (2,5) (3,7) (4,9) (5,8) (6,10) (7,11) (8,9) (10,11)

586 21 (0,4) (2,5) (3,7) (4,6) (5,8) (6,10) (7,11) (8,9) (10,11)

587 21 (1,4) (1,6) (2,7) (3,5) (4,8) (5,9) (6,11) (7,10) (10,11)

588 21 (1,11) (2,5) (2,7) (3,11) (4,9) (5,8) (6,10) (7,10) (8,9)

589 21 (1,3) (1,6) (2,7) (4,8) (5,8) (5,9) (6,11) (7,10) (10,11)

590 21 (1,4) (1,6) (2,8) (3,9) (5,7) (5,9) (6,11) (7,10) (10,11)

591 21 (0,2) (0,8) (0,10) (1,4) (2,10) (3,9) (5,8) (6,10) (7,11)

592 21 (0,4) (1,3) (1,6) (1,11) (2,8) (3,11) (5,9) (7,10) (7,11)

593 21 (0,4) (0,6) (0,8) (1,11) (2,10) (3,7) (4,6) (4,8) (5,9)

594 21 (0,4) (0,6) (0,8) (1,11) (2,10) (3,7) (4,8) (4,9) (5,7)

595 21 (0,4) (0,6) (0,10) (1,11) (2,10) (3,9) (4,8) (5,9) (7,10)

596 21 (0,4) (0,6) (0,8) (1,6) (2,8) (3,11) (5,8) (5,9) (7,10)

597 21 (0,2) (0,8) (0,10) (1,4) (1,9) (3,5) (3,7) (3,11) (4,6)

598 21 (0,6) (0,8) (0,10) (1,3) (2,10) (4,9) (5,8) (7,11) (8,9)

599 21 (0,4) (0,6) (0,10) (1,3) (2,8) (2,10) (3,9) (3,11) (5,7)

600 21 (0,4) (0,6) (0,10) (1,6) (1,11) (2,5) (3,9) (4,8) (5,7)

601 21 (0,2) (0,10) (1,6) (3,11) (4,8) (4,9) (5,9) (7,11) (8,9)

602 21 (0,4) (0,6) (0,10) (1,3) (2,5) (2,8) (3,11) (4,9) (5,7)

603 21 (0,2) (0,8) (0,10) (1,4) (1,9) (2,5) (3,7) (3,11) (4,6)

604 21 (0,6) (1,4) (1,11) (2,5) (3,5) (4,8) (4,9) (7,10) (8,9)

605 21 (0,4) (0,6) (0,10) (1,3) (2,8) (2,10) (4,9) (5,7) (6,11)

606 21 (0,4) (0,6) (0,10) (1,3) (2,8) (4,6) (5,7) (5,9) (10,11)

607 21 (0,2) (0,8) (0,10) (1,6) (2,10) (3,9) (4,8) (5,7) (7,11)

608 21 (0,6) (0,8) (0,10) (1,3) (2,7) (2,10) (4,6) (5,9) (7,11)

609 21 (0,6) (0,8) (0,10) (1,3) (2,7) (2,10) (4,9) (5,7) (6,11)

610 21 (0,4) (0,6) (0,10) (1,3) (2,8) (2,10) (4,6) (5,9) (7,11)

611 21 (0,2) (0,8) (0,10) (1,11) (2,5) (3,9) (4,8) (6,10) (7,11)

612 21 (0,4) (0,6) (0,8) (1,11) (2,5) (3,9) (4,8) (6,10) (7,11)

613 21 (0,4) (0,6) (0,10) (1,4) (2,8) (3,5) (5,9) (6,11) (7,10)

614 21 (0,8) (0,10) (1,3) (1,9) (1,11) (2,5) (2,7) (4,6) (10,11)

615 21 (0,2) (0,8) (0,10) (1,4) (1,9) (2,5) (3,7) (4,6) (10,11)

616 21 (0,4) (0,6) (0,10) (1,3) (2,8) (2,10) (3,9) (5,7) (6,11)

617 21 (0,4) (0,6) (0,10) (1,3) (2,5) (2,8) (4,6) (5,9) (7,11)

618 21 (0,4) (0,6) (0,8) (1,6) (2,10) (3,9) (4,8) (5,9) (7,11)

619 21 (0,4) (0,6) (0,8) (1,9) (2,10) (3,7) (4,8) (5,7) (6,11)

620 21 (0,2) (0,6) (0,10) (1,3) (1,11) (2,5) (4,6) (7,10) (8,9)

621 21 (0,4) (0,6) (0,8) (1,6) (2,7) (3,9) (4,8) (5,9) (10,11)

622 21 (0,4) (0,6) (0,8) (1,4) (2,5) (3,11) (6,10) (7,11) (8,9)

623 21 (0,4) (0,6) (0,8) (1,6) (1,11) (2,10) (3,9) (4,8) (5,7)

624 21 (0,4) (0,6) (0,8) (1,9) (2,5) (3,9) (4,8) (6,11) (7,10)

625 21 (0,2) (0,6) (0,10) (1,11) (2,5) (3,9) (4,8) (5,7) (6,10)

626 21 (0,4) (0,6) (0,10) (1,3) (2,8) (2,10) (3,11) (4,9) (5,7)

627 21 (0,10) (1,9) (2,5) (2,7) (2,10) (3,7) (3,11) (4,6) (5,8)

628 21 (0,2) (0,8) (0,10) (1,9) (1,11) (2,10) (3,5) (3,7) (4,6)

629 21 (0,2) (0,8) (0,10) (1,3) (2,10) (3,9) (4,6) (5,7) (7,11)

630 21 (0,4) (0,6) (0,10) (1,3) (1,9) (2,8) (3,5) (4,6) (7,11)

631 21 (0,4) (0,6) (0,10) (1,3) (2,8) (3,5) (4,6) (5,9) (7,11)

632 21 (0,4) (0,6) (0,10) (1,6) (2,10) (3,9) (4,8) (5,9) (7,11)
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633 21 (0,4) (0,6) (0,8) (1,11) (2,8) (3,5) (4,6) (5,9) (7,10)

634 21 (0,4) (0,6) (0,10) (1,3) (2,10) (4,6) (5,9) (7,11) (8,9)

635 21 (0,4) (0,6) (0,10) (1,11) (2,7) (3,11) (4,8) (5,9) (6,10)

636 21 (0,4) (0,6) (0,8) (1,9) (2,7) (3,11) (4,8) (5,7) (6,10)

637 21 (0,6) (0,8) (0,10) (1,3) (1,11) (2,7) (2,10) (4,6) (5,9)

638 21 (0,6) (0,8) (0,10) (1,3) (2,7) (2,10) (3,11) (4,9) (5,7)

639 21 (0,2) (1,9) (2,10) (3,9) (4,8) (5,8) (6,11) (7,10) (10,11)

640 21 (0,4) (1,3) (2,5) (4,8) (5,8) (6,10) (6,11) (7,11) (8,9)

641 21 (0,4) (0,6) (0,8) (1,11) (2,10) (3,7) (5,8) (5,9) (6,11)

642 21 (0,4) (0,6) (0,10) (1,6) (1,11) (2,8) (3,5) (4,9) (5,7)

643 21 (0,4) (0,6) (0,10) (1,9) (2,5) (3,7) (3,11) (4,8) (5,9)

644 21 (0,4) (0,6) (0,8) (1,11) (2,8) (3,5) (5,9) (6,11) (7,10)

645 21 (0,4) (0,6) (0,10) (1,3) (1,9) (2,5) (2,8) (4,6) (7,11)

646 21 (0,4) (0,6) (0,10) (1,3) (1,9) (2,8) (3,11) (4,9) (5,7)

647 21 (0,4) (0,6) (0,10) (1,3) (1,9) (2,8) (3,11) (4,6) (5,7)

648 21 (0,4) (0,6) (0,10) (1,11) (2,10) (3,7) (3,11) (4,8) (5,9)

649 21 (0,4) (1,4) (1,6) (2,7) (2,10) (3,11) (4,9) (5,7) (8,9)

650 21 (0,4) (0,6) (0,10) (1,9) (2,8) (3,5) (3,7) (4,6) (7,11)

651 21 (0,10) (1,3) (1,6) (1,11) (2,7) (2,10) (3,11) (4,9) (5,8)

652 21 (0,4) (1,6) (2,8) (3,5) (5,8) (5,9) (6,11) (7,10) (10,11)

653 21 (0,8) (1,4) (1,11) (2,7) (3,5) (3,9) (4,6) (5,9) (6,10)

654 21 (0,6) (0,10) (1,11) (2,7) (2,8) (3,5) (4,8) (4,9) (6,10)

655 21 (0,4) (0,6) (1,9) (1,11) (2,7) (3,5) (4,6) (7,10) (8,9)

656 21 (0,2) (0,8) (1,6) (2,7) (3,7) (4,6) (4,8) (5,9) (10,11)

657 21 (0,2) (1,6) (1,11) (3,7) (3,9) (4,8) (5,8) (5,9) (10,11)

658 21 (0,2) (0,10) (1,9) (3,5) (4,6) (4,8) (6,10) (7,11) (8,9)

659 21 (0,4) (0,10) (1,6) (2,7) (2,8) (3,11) (5,8) (5,9) (6,10)

660 21 (0,6) (0,10) (1,3) (1,6) (2,5) (2,8) (4,9) (5,8) (7,11)

661 21 (0,4) (0,6) (1,3) (2,8) (2,10) (3,9) (4,8) (5,7) (10,11)

662 21 (0,6) (0,10) (1,3) (2,5) (2,8) (4,6) (4,9) (5,9) (7,11)

663 21 (0,6) (0,8) (1,11) (2,5) (2,10) (3,7) (4,8) (4,9) (6,10)

664 21 (0,4) (0,8) (1,3) (2,8) (2,10) (5,7) (5,9) (6,10) (6,11)

665 21 (0,8) (0,10) (1,3) (2,7) (2,8) (3,11) (4,6) (5,9) (7,11)

666 21 (0,4) (0,10) (1,3) (1,9) (2,8) (2,10) (3,9) (5,7) (6,11)

667 21 (0,2) (0,10) (1,9) (3,5) (3,9) (4,6) (4,8) (6,11) (7,10)

668 21 (0,6) (0,8) (1,11) (2,7) (2,10) (3,5) (4,8) (4,9) (7,10)

669 21 (0,8) (0,10) (1,6) (2,7) (2,10) (3,5) (4,8) (4,9) (7,11)

670 21 (0,4) (0,8) (1,11) (2,5) (2,7) (3,9) (4,6) (5,8) (6,10)

671 21 (0,2) (0,8) (1,6) (1,11) (2,8) (3,5) (4,9) (6,11) (7,10)

672 21 (0,4) (0,8) (1,6) (2,7) (2,10) (3,11) (4,8) (5,9) (7,10)

673 21 (0,6) (0,10) (1,3) (2,5) (2,8) (4,9) (5,8) (6,10) (7,11)

674 21 (0,2) (0,10) (1,4) (1,11) (3,5) (4,9) (6,10) (7,11) (8,9)

675 21 (0,4) (0,6) (1,11) (2,5) (2,8) (3,9) (5,8) (6,10) (7,11)

676 21 (0,4) (0,8) (1,3) (1,9) (2,8) (2,10) (3,9) (5,7) (6,11)

677 21 (0,6) (0,10) (1,3) (2,5) (2,8) (4,6) (4,9) (5,7) (7,11)

678 21 (0,2) (1,4) (1,11) (3,5) (3,9) (5,7) (6,10) (6,11) (8,9)

679 21 (0,6) (0,10) (1,11) (2,7) (3,5) (3,9) (4,8) (5,9) (6,10)

680 21 (0,6) (0,10) (1,4) (2,8) (2,10) (3,7) (4,8) (5,9) (6,11)

681 21 (0,6) (0,10) (1,4) (2,7) (2,8) (3,11) (4,8) (5,9) (6,10)

682 21 (0,6) (0,10) (1,11) (2,10) (3,5) (3,7) (4,6) (4,8) (5,9)
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683 21 (0,6) (0,10) (1,3) (2,8) (2,10) (4,6) (4,9) (5,9) (7,11)

684 21 (0,6) (0,10) (1,4) (2,7) (2,10) (3,7) (4,8) (5,9) (6,11)

685 21 (0,6) (0,8) (1,4) (2,8) (2,10) (3,5) (4,9) (7,10) (7,11)

686 21 (0,4) (0,8) (1,4) (1,9) (2,5) (2,7) (3,11) (5,7) (6,10)

687 21 (0,4) (0,8) (1,3) (1,9) (2,7) (2,10) (5,8) (6,11) (7,10)

688 21 (0,4) (0,8) (1,6) (1,9) (2,10) (3,9) (4,8) (5,7) (6,11)

689 21 (0,6) (0,8) (1,4) (2,7) (2,10) (3,7) (3,11) (4,6) (5,9)

690 21 (0,6) (0,10) (1,9) (2,5) (2,7) (3,7) (3,11) (4,6) (4,8)

691 21 (0,8) (0,10) (1,3) (1,9) (2,5) (2,7) (3,11) (4,6) (4,8)

692 21 (0,6) (0,10) (1,9) (2,5) (2,8) (3,7) (4,6) (4,8) (7,11)

693 21 (0,8) (0,10) (1,3) (2,7) (2,10) (3,11) (4,6) (4,8) (5,9)

694 21 (0,2) (0,10) (1,3) (1,6) (2,10) (4,6) (5,8) (7,11) (8,9)

695 21 (0,6) (0,10) (1,6) (1,11) (2,5) (2,8) (3,7) (4,9) (5,8)

696 21 (0,4) (1,6) (2,7) (2,10) (3,5) (4,6) (5,8) (7,11) (8,9)

697 21 (0,4) (0,6) (1,11) (2,8) (2,10) (3,9) (5,8) (7,10) (7,11)

698 21 (0,4) (0,10) (1,6) (2,7) (2,10) (3,7) (5,8) (5,9) (6,11)

699 21 (0,4) (0,8) (1,3) (1,11) (2,5) (2,7) (4,6) (6,10) (8,9)

700 21 (0,8) (0,10) (1,4) (1,9) (2,5) (2,7) (3,7) (3,11) (4,6)

701 21 (0,6) (0,8) (1,3) (1,11) (2,5) (2,10) (3,9) (4,6) (5,7)

702 21 (0,4) (0,8) (1,11) (2,7) (2,8) (3,5) (4,6) (5,9) (6,10)

703 21 (0,6) (0,10) (1,4) (2,7) (2,10) (3,7) (3,11) (4,8) (5,9)

704 21 (0,8) (1,3) (1,4) (2,8) (3,9) (5,9) (6,11) (7,10) (10,11)

705 21 (0,6) (0,8) (1,4) (2,5) (2,8) (3,11) (4,9) (7,10) (7,11)

706 21 (0,6) (0,10) (1,4) (2,8) (2,10) (3,7) (3,11) (5,8) (5,9)

707 21 (0,6) (0,10) (1,3) (1,11) (2,5) (2,8) (4,9) (5,7) (6,11)

708 21 (0,4) (0,8) (1,3) (1,9) (2,7) (2,10) (3,9) (5,7) (6,11)

709 21 (0,4) (0,8) (1,11) (2,7) (2,10) (3,5) (4,6) (5,9) (7,10)

710 21 (0,6) (0,10) (1,9) (2,5) (2,7) (3,11) (4,8) (4,9) (7,10)

711 21 (0,6) (0,10) (1,6) (2,5) (2,8) (3,7) (4,8) (4,9) (7,11)

712 21 (0,6) (0,10) (1,6) (1,11) (2,5) (2,7) (3,9) (4,8) (5,9)

713 21 (0,4) (0,8) (1,3) (2,7) (2,10) (5,8) (5,9) (6,10) (6,11)

714 21 (0,6) (0,10) (1,3) (1,4) (2,5) (2,8) (3,11) (4,9) (5,7)

715 21 (0,8) (0,10) (1,9) (2,5) (2,7) (3,9) (4,8) (6,10) (6,11)

716 21 (0,2) (0,10) (1,6) (1,11) (3,5) (4,8) (4,9) (5,7) (8,9)

717 21 (0,6) (0,10) (1,4) (2,8) (2,10) (3,7) (3,11) (4,6) (5,9)

718 21 (0,6) (0,10) (1,3) (1,11) (2,7) (2,10) (4,6) (4,8) (5,9)

719 21 (0,8) (0,10) (1,3) (1,6) (2,8) (2,10) (3,5) (4,9) (7,11)

720 21 (0,6) (0,10) (1,3) (2,7) (2,8) (4,8) (4,9) (5,9) (10,11)

721 21 (0,8) (0,10) (1,3) (2,5) (2,10) (4,6) (4,9) (7,11) (8,9)

722 21 (0,4) (0,6) (1,4) (1,6) (2,8) (2,10) (3,9) (3,11) (5,7)

723 21 (0,6) (0,10) (1,3) (2,5) (2,8) (4,9) (5,9) (6,11) (7,11)

724 21 (0,6) (0,8) (1,3) (1,11) (2,5) (2,10) (3,7) (4,6) (5,9)

725 21 (0,4) (0,8) (1,6) (2,7) (2,10) (3,11) (5,8) (5,9) (6,10)

726 21 (0,6) (0,8) (1,4) (2,8) (2,10) (3,11) (4,9) (5,7) (7,10)

727 21 (0,4) (0,6) (1,3) (2,8) (2,10) (3,9) (5,7) (5,8) (10,11)

728 21 (0,4) (0,8) (1,3) (2,5) (2,10) (3,9) (5,8) (6,10) (7,11)

729 21 (0,8) (1,6) (1,11) (2,5) (2,10) (3,7) (4,9) (5,8) (7,11)

730 21 (0,6) (0,8) (1,4) (2,7) (2,10) (3,7) (3,11) (4,8) (5,9)

731 21 (0,8) (1,4) (1,6) (2,10) (3,9) (3,11) (5,7) (5,9) (7,11)

732 21 (0,6) (0,10) (1,3) (1,11) (2,5) (2,8) (3,9) (4,6) (5,7)
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ω |E| deleted edges (k, l)

733 21 (0,6) (0,10) (1,4) (1,11) (2,8) (2,10) (3,7) (4,6) (5,9)

734 21 (0,8) (1,3) (1,11) (2,5) (3,9) (4,8) (5,7) (6,10) (6,11)

735 21 (0,6) (0,10) (1,4) (1,9) (2,5) (2,8) (3,7) (3,11) (4,6)

736 21 (0,4) (0,6) (1,11) (2,8) (2,10) (3,9) (5,8) (5,9) (7,10)

737 21 (0,6) (0,10) (1,3) (1,9) (2,7) (2,10) (3,11) (4,9) (5,8)

Table A.2 GN polyhedron grouped by vertex and face degrees. |Nn| is the

number of vertices of degree n, |Fn| the number of n-gonal faces. The or-

dinal numbers ω in the last column identify the polyhedral graphs shown in

table A.1.

|E| |N5| |N4| |N3| |N2| |F3| |F4| |F5| |F6| |F7| |F8| |F9| |F10| |F11| |F12| ω

24 0 12 0 0 8 6 0 0 0 0 0 0 0 0 1–2

23 2 6 4 0 8 4 0 1 0 0 0 0 0 0 3

22 3 4 3 2 10 1 0 0 0 0 0 1 0 0 4

22 3 3 5 1 10 1 0 0 0 0 0 1 0 0 5

22 2 6 2 2 9 2 0 0 0 0 1 0 0 0 6

22 2 6 2 2 10 1 0 0 0 0 0 1 0 0 7

22 2 6 2 2 8 3 0 0 0 1 0 0 0 0 8–9

22 2 5 4 1 8 3 0 0 0 1 0 0 0 0 10

22 2 5 4 1 9 1 0 1 1 0 0 0 0 0 11

22 1 7 3 1 7 3 1 1 0 0 0 0 0 0 12

22 0 8 4 0 8 2 0 2 0 0 0 0 0 0 13

21 4 2 2 4 10 0 0 0 0 0 0 0 0 1 14–16

21 4 2 2 4 9 0 0 1 0 0 1 0 0 0 17–19

21 4 2 2 4 9 1 0 0 0 0 0 0 1 0 20–22

21 4 2 2 4 8 2 0 0 0 0 0 1 0 0 23–26

21 4 1 4 3 9 1 0 0 0 0 0 0 1 0 27–30

21 4 1 4 3 9 0 0 1 0 0 1 0 0 0 31

21 4 1 4 3 8 1 1 0 0 0 1 0 0 0 32

21 4 1 4 3 8 2 0 0 0 0 0 1 0 0 33–34

21 4 1 4 3 9 0 0 0 1 1 0 0 0 0 35

21 4 1 4 3 10 0 0 0 0 0 0 0 0 1 36

21 4 1 4 3 8 1 0 0 2 0 0 0 0 0 37

21 4 0 6 2 8 1 0 1 0 1 0 0 0 0 38

21 4 0 6 2 8 1 0 0 2 0 0 0 0 0 39

21 4 0 6 2 8 0 1 1 1 0 0 0 0 0 40

21 4 0 6 2 8 1 1 0 0 0 1 0 0 0 41

21 4 0 6 2 8 2 0 0 0 0 0 1 0 0 42

21 3 4 1 4 8 2 0 0 0 0 0 1 0 0 43–47

21 3 4 1 4 9 0 1 0 0 0 0 1 0 0 48–50

21 3 4 1 4 9 1 0 0 0 0 0 0 1 0 51

21 3 4 1 4 7 3 0 0 0 0 1 0 0 0 52

21 3 3 3 3 8 1 1 0 0 0 1 0 0 0 53–63

21 3 3 3 3 8 2 0 0 0 0 0 1 0 0 64–75

21 3 3 3 3 9 1 0 0 0 0 0 0 1 0 76–85

21 3 3 3 3 8 1 0 1 0 1 0 0 0 0 86–89
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|E| |N5| |N4| |N3| |N2| |F3| |F4| |F5| |F6| |F7| |F8| |F9| |F10| |F11| |F12| ω

21 3 3 3 3 9 0 0 1 0 0 1 0 0 0 90–92

21 3 3 3 3 7 3 0 0 0 0 1 0 0 0 93–94

21 3 3 3 3 10 0 0 0 0 0 0 0 0 1 95–96

21 3 3 3 3 9 0 1 0 0 0 0 1 0 0 97–99

21 3 3 3 3 8 1 0 0 2 0 0 0 0 0 100–101

21 3 3 3 3 9 0 0 0 1 1 0 0 0 0 102–104

21 3 3 3 3 8 0 2 0 0 1 0 0 0 0 105

21 3 2 5 2 8 1 1 0 0 0 1 0 0 0 106–114

21 3 2 5 2 7 2 0 1 1 0 0 0 0 0 115–116

21 3 2 5 2 8 1 0 1 0 1 0 0 0 0 117–121

21 3 2 5 2 9 0 0 1 0 0 1 0 0 0 122–124

21 3 2 5 2 9 0 0 0 1 1 0 0 0 0 125–126

21 3 2 5 2 8 0 1 1 1 0 0 0 0 0 127

21 3 2 5 2 9 1 0 0 0 0 0 0 1 0 128–129

21 3 2 5 2 8 0 2 0 0 1 0 0 0 0 130

21 3 2 5 2 9 0 1 0 0 0 0 1 0 0 131–133

21 3 2 5 2 7 2 1 0 0 1 0 0 0 0 134–136

21 3 2 5 2 8 1 0 0 2 0 0 0 0 0 137–139

21 3 2 5 2 8 2 0 0 0 0 0 1 0 0 140

21 3 2 5 2 7 3 0 0 0 0 1 0 0 0 141

21 3 1 7 1 8 0 1 1 1 0 0 0 0 0 142–144

21 3 1 7 1 7 1 2 0 1 0 0 0 0 0 145

21 3 1 7 1 8 0 2 0 0 1 0 0 0 0 146

21 3 1 7 1 7 1 1 2 0 0 0 0 0 0 147

21 3 1 7 1 8 1 0 1 0 1 0 0 0 0 148

21 3 1 7 1 7 2 0 1 1 0 0 0 0 0 149

21 3 0 9 0 8 0 0 3 0 0 0 0 0 0 150–151

21 2 6 0 4 8 2 0 0 0 0 0 1 0 0 152–154

21 2 6 0 4 9 0 0 0 1 1 0 0 0 0 155

21 2 5 2 3 8 2 0 0 0 0 0 1 0 0 156–164

21 2 5 2 3 8 1 1 0 0 0 1 0 0 0 165–170

21 2 5 2 3 9 1 0 0 0 0 0 0 1 0 171–176

21 2 5 2 3 7 3 0 0 0 0 1 0 0 0 177–180

21 2 5 2 3 9 0 0 1 0 0 1 0 0 0 181–182

21 2 5 2 3 9 0 0 0 1 1 0 0 0 0 183–185

21 2 5 2 3 9 0 1 0 0 0 0 1 0 0 186–187

21 2 5 2 3 8 1 0 1 0 1 0 0 0 0 188–189

21 2 5 2 3 7 2 1 0 0 1 0 0 0 0 190

21 2 4 4 2 8 2 0 0 0 0 0 1 0 0 191–204

21 2 4 4 2 7 2 1 0 0 1 0 0 0 0 205–224

21 2 4 4 2 7 2 0 1 1 0 0 0 0 0 225–232

21 2 4 4 2 8 1 0 1 0 1 0 0 0 0 233–242

21 2 4 4 2 7 3 0 0 0 0 1 0 0 0 243–251

21 2 4 4 2 8 1 1 0 0 0 1 0 0 0 252–264

21 2 4 4 2 8 0 2 0 0 1 0 0 0 0 265–269

21 2 4 4 2 9 1 0 0 0 0 0 0 1 0 270–271

21 2 4 4 2 8 1 0 0 2 0 0 0 0 0 272–279

21 2 4 4 2 9 0 0 1 0 0 1 0 0 0 280–282

21 2 4 4 2 9 0 1 0 0 0 0 1 0 0 283–286

21 2 4 4 2 9 0 0 0 1 1 0 0 0 0 287–292
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|E| |N5| |N4| |N3| |N2| |F3| |F4| |F5| |F6| |F7| |F8| |F9| |F10| |F11| |F12| ω

21 2 4 4 2 6 3 0 2 0 0 0 0 0 0 293

21 2 4 4 2 8 0 1 1 1 0 0 0 0 0 294

21 2 4 4 2 6 4 0 0 0 1 0 0 0 0 295

21 2 3 6 1 7 1 2 0 1 0 0 0 0 0 296–306

21 2 3 6 1 7 2 0 1 1 0 0 0 0 0 307–313

21 2 3 6 1 8 1 0 0 2 0 0 0 0 0 314–317

21 2 3 6 1 8 0 1 1 1 0 0 0 0 0 318–322

21 2 3 6 1 6 3 1 0 1 0 0 0 0 0 323–324

21 2 3 6 1 7 2 1 0 0 1 0 0 0 0 325–329

21 2 3 6 1 7 1 1 2 0 0 0 0 0 0 330–334

21 2 3 6 1 8 0 2 0 0 1 0 0 0 0 335–337

21 2 3 6 1 6 2 2 1 0 0 0 0 0 0 338–340

21 2 3 6 1 8 1 0 1 0 1 0 0 0 0 341–344

21 2 3 6 1 8 1 1 0 0 0 1 0 0 0 345–347

21 2 3 6 1 8 0 0 3 0 0 0 0 0 0 348

21 2 3 6 1 9 0 0 0 1 1 0 0 0 0 349

21 2 3 6 1 6 3 0 2 0 0 0 0 0 0 350

21 2 3 6 1 9 1 0 0 0 0 0 0 1 0 351

21 2 2 8 0 6 2 2 1 0 0 0 0 0 0 352–353

21 2 2 8 0 7 1 1 2 0 0 0 0 0 0 354–355

21 2 2 8 0 6 1 4 0 0 0 0 0 0 0 356

21 2 2 8 0 8 0 2 0 0 1 0 0 0 0 357–358

21 2 2 8 0 8 2 0 0 0 0 0 1 0 0 359

21 2 2 8 0 8 1 0 1 0 1 0 0 0 0 360

21 2 2 8 0 6 3 0 2 0 0 0 0 0 0 361–362

21 2 2 8 0 8 0 1 1 1 0 0 0 0 0 363

21 1 7 1 3 8 1 1 0 0 0 1 0 0 0 364–365

21 1 7 1 3 7 3 0 0 0 0 1 0 0 0 366–367

21 1 7 1 3 7 2 1 0 0 1 0 0 0 0 368

21 1 7 1 3 7 2 0 1 1 0 0 0 0 0 369

21 1 7 1 3 8 2 0 0 0 0 0 1 0 0 370

21 1 7 1 3 8 1 0 1 0 1 0 0 0 0 371

21 1 6 3 2 7 2 1 0 0 1 0 0 0 0 372–390

21 1 6 3 2 6 4 0 0 0 1 0 0 0 0 391–395

21 1 6 3 2 7 3 0 0 0 0 1 0 0 0 396–401

21 1 6 3 2 7 2 0 1 1 0 0 0 0 0 402–408

21 1 6 3 2 8 1 1 0 0 0 1 0 0 0 409–414

21 1 6 3 2 8 1 0 1 0 1 0 0 0 0 415–419

21 1 6 3 2 8 2 0 0 0 0 0 1 0 0 420–421

21 1 6 3 2 6 3 0 2 0 0 0 0 0 0 422

21 1 6 3 2 8 0 1 1 1 0 0 0 0 0 423

21 1 6 3 2 9 0 0 1 0 0 1 0 0 0 424

21 1 6 3 2 8 1 0 0 2 0 0 0 0 0 425–426

21 1 5 5 1 7 1 2 0 1 0 0 0 0 0 427–442

21 1 5 5 1 7 2 0 1 1 0 0 0 0 0 443–454

21 1 5 5 1 7 2 1 0 0 1 0 0 0 0 455–471

21 1 5 5 1 7 0 3 1 0 0 0 0 0 0 472–474

21 1 5 5 1 7 1 1 2 0 0 0 0 0 0 475–481

21 1 5 5 1 6 3 0 2 0 0 0 0 0 0 482–485

21 1 5 5 1 5 4 1 1 0 0 0 0 0 0 486
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|E| |N5| |N4| |N3| |N2| |F3| |F4| |F5| |F6| |F7| |F8| |F9| |F10| |F11| |F12| ω

21 1 5 5 1 6 3 1 0 1 0 0 0 0 0 487–502

21 1 5 5 1 6 4 0 0 0 1 0 0 0 0 503–506

21 1 5 5 1 7 3 0 0 0 0 1 0 0 0 507–509

21 1 5 5 1 8 1 1 0 0 0 1 0 0 0 510–515

21 1 5 5 1 6 2 2 1 0 0 0 0 0 0 516–521

21 1 5 5 1 8 0 2 0 0 1 0 0 0 0 522–526

21 1 5 5 1 8 1 0 0 2 0 0 0 0 0 527–530

21 1 5 5 1 8 0 1 1 1 0 0 0 0 0 531–537

21 1 5 5 1 8 0 0 3 0 0 0 0 0 0 538

21 1 5 5 1 8 1 0 1 0 1 0 0 0 0 539–541

21 1 5 5 1 9 0 0 0 1 1 0 0 0 0 542

21 1 5 5 1 9 0 0 1 0 0 1 0 0 0 543

21 1 4 7 0 6 2 2 1 0 0 0 0 0 0 544–555

21 1 4 7 0 6 3 0 2 0 0 0 0 0 0 556

21 1 4 7 0 7 1 1 2 0 0 0 0 0 0 557–562

21 1 4 7 0 5 4 1 1 0 0 0 0 0 0 563–565

21 1 4 7 0 6 3 1 0 1 0 0 0 0 0 566–569

21 1 4 7 0 7 0 3 1 0 0 0 0 0 0 570–571

21 1 4 7 0 5 3 3 0 0 0 0 0 0 0 572–576

21 1 4 7 0 7 2 0 1 1 0 0 0 0 0 577–580

21 1 4 7 0 7 1 2 0 1 0 0 0 0 0 581–582

21 1 4 7 0 6 1 4 0 0 0 0 0 0 0 583–584

21 1 4 7 0 8 1 0 0 2 0 0 0 0 0 585

21 1 4 7 0 8 0 1 1 1 0 0 0 0 0 586

21 1 4 7 0 8 1 1 0 0 0 1 0 0 0 587–588

21 1 4 7 0 7 2 1 0 0 1 0 0 0 0 589–590

21 0 8 2 2 6 3 1 0 1 0 0 0 0 0 591

21 0 8 2 2 6 4 0 0 0 1 0 0 0 0 592–593

21 0 8 2 2 7 2 1 0 0 1 0 0 0 0 594–595

21 0 8 2 2 7 3 0 0 0 0 1 0 0 0 596

21 0 8 2 2 8 0 0 3 0 0 0 0 0 0 597

21 0 8 2 2 6 3 0 2 0 0 0 0 0 0 598

21 0 8 2 2 7 2 0 1 1 0 0 0 0 0 599

21 0 7 4 1 7 1 1 2 0 0 0 0 0 0 600–603

21 0 7 4 1 5 5 0 0 1 0 0 0 0 0 604–606

21 0 7 4 1 6 4 0 0 0 1 0 0 0 0 607–612

21 0 7 4 1 5 4 1 1 0 0 0 0 0 0 613–614

21 0 7 4 1 6 3 0 2 0 0 0 0 0 0 615

21 0 7 4 1 6 3 1 0 1 0 0 0 0 0 616–631

21 0 7 4 1 7 2 1 0 0 1 0 0 0 0 632–640

21 0 7 4 1 6 2 2 1 0 0 0 0 0 0 641–643

21 0 7 4 1 7 1 2 0 1 0 0 0 0 0 644–645

21 0 7 4 1 7 2 0 1 1 0 0 0 0 0 646–651

21 0 7 4 1 8 1 0 1 0 1 0 0 0 0 652

21 0 6 6 0 5 4 1 1 0 0 0 0 0 0 653–667

21 0 6 6 0 6 3 0 2 0 0 0 0 0 0 668–679

21 0 6 6 0 4 6 0 1 0 0 0 0 0 0 680–681

21 0 6 6 0 7 2 0 1 1 0 0 0 0 0 682

21 0 6 6 0 5 5 0 0 1 0 0 0 0 0 683–684

21 0 6 6 0 6 2 2 1 0 0 0 0 0 0 685–701
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Table A.2 – continued from previous page

|E| |N5| |N4| |N3| |N2| |F3| |F4| |F5| |F6| |F7| |F8| |F9| |F10| |F11| |F12| ω

21 0 6 6 0 6 3 1 0 1 0 0 0 0 0 702–703

21 0 6 6 0 7 1 1 2 0 0 0 0 0 0 704–710

21 0 6 6 0 6 1 4 0 0 0 0 0 0 0 711–713

21 0 6 6 0 7 0 3 1 0 0 0 0 0 0 714–716

21 0 6 6 0 7 2 1 0 0 1 0 0 0 0 717–718

21 0 6 6 0 4 5 2 0 0 0 0 0 0 0 719–724

21 0 6 6 0 5 3 3 0 0 0 0 0 0 0 725–731

21 0 6 6 0 8 0 0 3 0 0 0 0 0 0 732

21 0 6 6 0 6 4 0 0 0 1 0 0 0 0 733

21 0 6 6 0 8 0 2 0 0 1 0 0 0 0 734–735

21 0 6 6 0 7 1 2 0 1 0 0 0 0 0 736

21 0 6 6 0 8 1 0 0 2 0 0 0 0 0 737
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