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Abstract 

Antimicrobial resistance, especially in Gram-negative bacterial pathogens, is one of the 

most serious threats with which humans have been confronted. Coordinated efforts from 

industrial, academic and government sectors have been called and executed to introduce 

novel antibiotics into the market to meet clinical demand. Despite that, the rate of 

successful antibiotic development appears to be lagging behind the emergence of 

antibiotic resistant pathogens in the arms race between humans and super-bugs. In this 

dire context, alternative approaches are required to tackle Gram-negative bacterial 

infections. 

This thesis reports synergistic interaction between a secondary bile salt, sodium 

deoxycholate (DOC), and 5-nitrofuran pro-drugs, an old class of synthetic antibiotics, in 

inhibiting/killing Gram-negative enterobacteria, such as Escherichia coli, Salmonella 

enterica and Citrobacter gillenii. Using a genetic approach, the underlying mechanism 

of the synergy between the two drugs was found to involve 5-nitrofuran-mediated 

inhibition of TolC-associated efflux pumps that otherwise exclude DOC from bacterial 

cells. This synergistic combination provides a promising tool to combat infections 

caused by enterobacterial pathogens. 

The mechanism of action of individual drugs, DOC and 5-nitrofurans, was also 

investigated using whole-genome sequence analyses of selected resistant mutants, 

followed by genetic and biochemical studies. A novel nitrofuran-activating enzyme, 

AhpF, was identified in E. coli that reduces 5-nitrofuran prodrugs in a manner different 

from that of an established 5-nitrofuran activation enzyme NfsB. This discovery opens 

new avenues to counteract nitrofuran-resistant clinical isolates by screening for 
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molecules that upregulate AhpF expression or catalytic activity, or designing nitrofuran 

analogues activated at high efficiency by the AhpF enzyme. 

Also, this thesis identified mutations that cause a low-level resistance to DOC in efflux-

pump-deficient genetic background. These all resulted in growth-slowing phenotype, 

the majority of which were involved in cAMP signaling. Singe mutations conferring 

high-level DOC-resistance were not identified in the mutant screen, supporting the use 

of DOC/nitrofuran combinations. 
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Antimicrobial resistance in Gram-negative pathogens 

Antimicrobial resistance (AMR) is one of the most serious threats with which humans 

have been confronted. A UK-Prime-Minister-commissioned report in 2014 estimated 

that AMR, without appropriate interventions, would globally cause 10 million deaths 

per annum with a cumulative loss of US $100 trillion by 2050 (1). A follow-up report, 

published one year later, proposed that fifteen novel antibiotics must be introduced for 

every decade to meet the medical need for treating bacterial infections (2). Taking into 

consideration the current number of antibiotic candidates in preclinical stages (152 

compounds, compiled in the AntibioticDB database) and the attrition rate in antibiotic 

development, it can be inferred that only three drugs may be approved for clinical uses 

by 2025, leading to a 12-novel-antibiotic gap during the 10-year period 2015-2025 (3). 

Gram-negative bacterial pathogens are more formidable foes than their Gram-positive 

counterparts, due to three major features in the cell envelope (Fig. 1). First, the outer 

membrane of Gram-negative bacteria is an asymmetric bilayer, composed of a 

conventional phospholipid inner leaflet and an outer leaflet made of lipopolysaccharides 

(LPS), which acts as a barrier to the influx of antimicrobial agents, regardless of the 

hydrophilic or hydrophobic nature of the drug (4). The second feature is the size/charge 

selectivity of porins, water-filled β-barrel protein channels, embedded onto the outer 

membrane (e.g. OmpF and OmpC in E. coli), through which antibiotics may internalize 

into the periplasm. Porins strictly limit the size and charge of the permeating antibiotics 

due to a small pore size and the charged residues in the pore lining (5). Additionally, 

sophisticated regulation of porin expression further slows down the influx of the 

antimicrobial agents upon stress exposure (4). Third, Gram-negative pathogens also 

possess a wide range of active multidrug efflux pumps, which expel xenobiotics 

https://www.antibioticdb.com/
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including antimicrobials out of the cell, preventing access of the drug to intracellular 

targets (5-7).  

Another difficulty in developing antibacterials against Gram-negative pathogens is 

caused by the differences in the chemical nature of small molecules that can cross the 

outer membrane vs. inner membrane. While antimicrobials that are able to penetrate the 

outer membrane via porins are hydrophilic charged compounds, the cytoplasmic inner 

membrane favors neutral lipophilic compounds; therefore, an antimicrobial agent that 

has the necessary properties to traverse the outer membrane may not be capable of 

penetrating the cytoplasmic membrane to reach a target in the cytoplasm (8). With all 

the antimicrobial resistance-conferring features of the envelope structure of Gram-

negative pathogens described above, it is broadly accepted that successful development 

of a novel antibiotics for these bacteria is tremendously difficult. It is therefore a 

monumental task to keep pace with the clinical demand in the face of constant 

emergence and global spread of novel antibiotic resistant Gram-negative pathogens. 

In 2017, the World Health Organization (WHO) issued a list of bacteria for which 

development of novel antibacterials is urgently needed. Not surprisingly, antibiotic 

resistant Gram-negative bacteria (carbapenem-resistant and third-generation 

cephalosporin-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter 

baumannii and carbapenem-resistant Pseudomonas aeruginosa), were ranked at the top 

of the list, and characterized as a “critical” group of organisms for which the research 

and development of new antibiotics should be prioritized (9). However, despite this 

priority classification, there is a bias in antibiotic development against these Gram-

negative pathogens due to their properties described above. Data updated until March 

2019 from the Pew Charitable Trusts showed that only 16 out of 42 candidate 

antibiotics in different development phases target the WHO critical priority pathogens. 
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Only one of these 16 antibiotics, murepavadin, belongs to a novel class that can be used 

to treat P. aeruginosa infections. The rest of the antibacterials under development are 

improvements to currently existing classes of antibiotics (10). It is not overstated to say 

that the pace of antibiotic development, in terms of quantity and quality, does and will 

not match the demand to counteract AMR, especially in Gram-negative pathogens. In 

this dire context, alternative strategies are warranted to supplement conventional 

antibiotic research and development, such as antimicrobial combinations, revival of old 

drugs, capitalization on host innate defense and so on. 

 

Figure 1: Gram-negative envelope structure and antibiotic resistance. The cell envelope is composed of 

an outer membrane, a thin peptidoglycan cell wall and an inner membrane. The outer leaflet of the outer 

membrane made of lipopolysaccharide, making an impermeable barrier to both hydrophilic and 

hydrophobic compounds. Small hydrophilic compounds penetrate the outer membrane through porins 

(e.g. OmpF and OmpC in E.  coli) which restrict the size and charge of the transporting compounds. 

Multiple-component and single component efflux pumps (e.g. AcrAB-TolC and MdtM, respectively) 

concertedly expel the antibiotic drug out of the cell. LPS, lipopolysaccharide. Adapted from (7) with 

permission. 
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Antimicrobial combinations to counteract AMR 

Antimicrobial interactions: synergy and antagonism 

When two antimicrobial agents are combined, there are interactions between them, 

leading to an antimicrobial effect exerted by the drug combination that is either stronger 

or weaker than the expected additive effect of constituent agents. In the former case, the 

interaction is termed synergy and the latter antagonism. There are two commonly used 

approaches to define the additivity between two antimicrobial agents, the Bliss 

independence (11) and Loewe additivity models (12). 

The principle of the Bliss independence model is that two additive drugs would act 

independently in bacterial systems such that the outcome is a probabilistic process (13). 

For example, when drug A at a particular concentration causes 40 % (or 0.4) growth 

inhibition and drug B at another particular concentration causes 50 % (or 0.5) growth 

inhibition, the expected additive effect caused by a combination of drugs A and B at 

these concentrations would be 0.4 + 0.5  0.4×0.5 = 0.7 or 70 % growth inhibition (Fig. 

2A). From this, a drug interaction is synergistic if the combined effect is higher than 70 

% and antagonistic if the combined effect is lower than 70 %. While this approach is 

convenient and rapid for high-throughput characterization of antimicrobial interactions, 

only a single dose of each drug is used and therefore, an interaction defined by the Bliss 

independence model does not reflect the interaction across a range of antimicrobial 

concentrations. 

The Loewe additivity model is a dose-effect-based approach, relying on an intuitive 

principle that a drug does not interact with itself (14). Simply put, combining a 

concentration of a × MIC of drug A, given 0  a  1, with a concentration of (1  a) × 

MIC of drug A is expected to cause an effect equivalent to drug A at its MIC (i.e. 
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complete growth inhibition). Thus, if drugs A and B do not interact with each other, a 

combination of a × MIC of drug A and (1  a) × MIC of drug B would cause a growth 

inhibition effect equivalent to the drug A or B individually at its MIC. If lower 

concentrations of the two drugs A and B are required to elicit the same effect, the drug 

interaction is considered as synergy; otherwise, it is considered as antagonism. 

Capitalizing on the Loewe additivity model, checkerboard assays are commonly 

employed to characterize the interaction between antimicrobial agents. In this assay, 

bacterial cultures at a defined inoculum are exposed to serial dilutions of two 

antimicrobial agents, either alone or in combination, and minimum concentrations that 

cause bacterial growth inhibition are determined. Drug interaction is categorized using 

the Fractional Inhibitory Concentration Index (FICI) calculated as follows: 

 

 

 

 

 

 

 

 

The two drugs are additive if the FICI = 1, synergistic if the FICI < 1 and antagonistic if 

the FICI > 1. However, it is a common practice in antimicrobial interaction studies to 

use a conservative interpretation in which the drug interaction is synergistic if FICI  

0.5, antagonistic if FICI  4, and there is no drug interaction if FICI > 0.5 and  4 (15). 

FICI = FICA + FICB, 

in which 

FICA = MICA(B)/MICA 

FICB = MICB(A)/MICB 

FICA & FICB: Fractional inhibitory concentration of drug A and B, respectively 

MICA(B) & MICB(A):  Minimum inhibitory concentration of drug A and B, 

respectively, when used in combination 

MICA & MICB: Minimum inhibitory concentration of drug A and B, respectively, 

when used alone 
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The data obtained from checkerboard assays can also be illustrated using an 

isobologram in which each data point along the line (also known as isobole) represents 

minimum inhibitory concentrations of the drugs either alone or in combination (Fig. 

2B). Intuitively, a synergistic interaction shows a concave isobole whereas an 

antagonistic interaction shows a convex isobole. Also using the Loewe additivity model 

is the Etest in which two strips impregnated with continuous concentration gradients of 

the two antibiotics are placed on solid agar in a perpendicular direction and bacterial 

growth inhibition is examined (16). Like the checkerboard assay, FICIs are used to 

identify drug interactions in the Etest. 

Another drug interaction model is the highest single agent approach, also referred to as 

the Gaddum’s non-interaction or cooperative effect (13, 17), in which the resulting 

effect of the drug combination is compared with the effect of the most active individual 

agent (Fig. 2C). Although this model is not as commonly applied as the Bliss 

independence or Loewe additivity, one variant of it, namely the time-kill assay, is 

widely used in antimicrobial combination studies. In the time-kill assay, bacterial cells 

are exposed to individual drugs at a desired concentration or the drug combination at 

those concentrations; the viable cells are enumerated at different time points over 24 h 

of incubation for fast growing bacteria or 7-10 days for slow-growing bacteria (18). At a 

defined time point, if the drug combination causes a decrease in the viable cell count by 

more than 2 log10 CFU/mL in comparison to the single drug agent with higher potency, 

the drug interaction is defined as synergy (19). Besides providing evidence to classify 

drug interactions, this assay also determines the rate and phase of bacterial killing, 

which may be useful in predicting antibacterial efficacy in patients and development of 

treatment of infections using synergistic drug combinations  (18, 19). 
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Figure 2: Schematic illustration of pairwise drug interactions using Bliss independence (A), Loewe 

additivity (B) and highest single agent approaches (C). Drug interactions are classified as synergy or 

antagonism when the effect exerted by the combination of drugs A and B is greater or lower than the 

expected additive effect between the two drugs, respectively. (A) In the Bliss independence model, the 

additive effect is calculated as EA + EB  EA × EB, where EA and EB represent the growth inhibition effect 

caused by drugs A and B at a particular dose. (B) In the Loewe additivity model, an isobologram is used 

to describe the drug interaction. Each data point along the line (termed as isobole) represents the 

minimum concentration of the drug, alone or in combination, that causes a defined cut-off effect (e.g. 90 

% or 50 % growth inhibition). (C) In the highest single agent, the effect caused by the drug combination 

is compared with the effect caused by the most active agent. Each approach has its own method to 

calculate the cut-off deviation value from the additive effect to which combined effects are compared to 

categorize the type of drug interaction. 

Antimicrobial combinations: advantages and challenges 

A major focus of antimicrobial interaction studies is on discovery and development of 

drug synergistic pairs which provide potential clinical applications, especially against 
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the multi-drug resistant Gram-negative pathogens. Such combinatorial therapies are 

expected to possess enhanced antimicrobial efficacy, deceleration of the resistance 

development rate and alleviation of side effects by lowering the doses of each drug (20, 

21). Based on synergistic interactions, a drug that is ineffective due to acquired or 

inherent resistance mechanisms can be employed to fight these pathogens when 

combined with another active antimicrobial agent. 

From the view of the pharmaceutical industry, drug combinations expand the space of 

possible anti-infective treatments for drug development. The advent of any novel 

antimicrobial agent brings about numerous possible double combinations with existing 

antibiotics to be evaluated, let alone higher-order combinations. Also, a drug 

combination showing improved antimicrobial efficacy is patentable, even when the 

combination constituents are not de novo-developed compounds, such as off-patent 

drugs or drugs repurposed from other clinical uses. Such a protection of intellectual 

properties may attract interest from established pharmaceutical companies and/or create 

opportunities for start-ups to advance the combination therapy further along clinical 

development stages. This feature of drug combinations is crucially important because 

without engagement of dedicated pharmaceutical companies (big or start-up), a huge 

cost of clinical trials from phase I to III (~ 132.7 million US dollars) (2) and access to 

multidisciplinary drug development expertise are almost prohibitive to scientists from 

academic institutions, who rely majorly on public funding and are often specialized in 

antimicrobial research rather than development. 

Besides facing intrinsic challenges associated with development of conventional single 

antibiotic molecules, a tremendously difficult task in evaluating antimicrobial 

combinations is translation of in vitro synergy into in vivo models, given differential 

pharmacokinetics of the drug partners, which prevents them from reaching the site of 
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infection at desirable doses. Either one of the drug pair might not reach the target site or 

the two drugs might reach the target site at different times (18). Apart from the folate 

pathway inhibitors, trimethoprim-sulfamethoxazole duo, that was introduced in 1968, 

successful development of antimicrobial combinatorial therapies appears to be limited 

to β-lactam-β-lactamase inhibitor combinations, despite a plethora of reports describing 

in vitro synergism of drug pairs (22, 23). 

Synthetic 5-nitrofuran antimicrobials 

Clinical applications 

Synthetic 5-nitrofurans are an old antimicrobial class, characterized by a nitro group 

attached in the C-5 of the aromatic furan ring with varying side chain attached in the C-

2 of the ring. Commercially available examples of this group include furazolidone, 

nitrofurantoin and nitrofurazone (Chapter 2, Fig. 1). Furazolidone (FZ) is currently used 

as a component in several combinatorial therapies for Helicobacter pylori infections, 

especially in China and Iran (24-27), and is used on its own to treat giardiasis (28), 

Trichomonas vaginalis infections (29) and paediatric diarrhoea in some Latin American 

countries (cited in 30, 31). In veterinary therapeutics, a recent trial showed that FZ was 

efficient in treatment of canine cutaneous leishmaniasis when used in combination with 

domperidone (32). 

Nitrofurantoin (NIT) is currently recommended as a first-line antibiotic therapy for 

uncomplicated urinary tract infections (UTIs) by the European Association of Urology 

and the Infectious Diseases Society of America, due to the increasing prevalence of 

resistance to third-generation cephalosporins and carbapenems amongst uropathogenic 

isolates (33). These recommendations are further supported by high efficiency in 

clinical and microbiological outcomes reported in a recent review and meta-analysis of 

controlled trials of the NIT use in UTI therapy (34) and a clinical trial for a 5-day NIT 
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regime in treating uncomplicated lower UTIs in women (35). Additionally, prophylactic 

uses of NIT against UTIs have been systematically reviewed and meta-analyzed by two 

independent groups (36, 37). They both came to a similar conclusion, that NIT has an 

efficacy equivalent to other antibiotics such as norfloxacin, trimethoprim, 

sulfamethoxazole/trimethoprim and cefaclor; however, there was a higher risk of 

adverse effects, majorly gastrointestinal symptoms, associated with long-term use of 

NIT, than that of other antibiotics. NIT for UTIs are therefore of limited use in 

prophylaxis.  

Nitrofurazone (or nitrofural, NFZ) is used for wound and burn treatments (38-40) and 

preparation of nasal solution/spay (41). While the current state of NFZ topical 

applications is not known, recent reports explore novel approaches to enhance NFZ 

topical drug delivery including microencapsulation (42), hydrogel (43) and nanogel (44, 

45), which warrant improved antimicrobial efficacy in next-generation NFZ topical 

products in years to come. In addition, this drug is employed to produce NFZ-coated 

urinary catheters aiming to prevent catheter-associated urinary tract infections 

(CAUTIs). Though the NFZ-coated catheters performed efficiently to eradicate 

uropathogens in in vitro assays (46-50), their clinical efficacy in decreasing CAUTIs 

was challenged in two clinical trials that reported no beneficial effects and a higher 

discomfort rate of the NFZ-impregnated urinary catheters as compared to the standard 

ones (51, 52).  

Mechanism of action 

The three nitrofuran drugs (NFZ, NIT and FZ) were clinically introduced in 1944, 1953 

and 1954, respectively (38), during the golden era of antibiotic discovery when most of 

the currently existing antibiotic scaffolds were reported. Whereas antimicrobial 

resistance has become increasingly widespread, threatening the effectiveness of 
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antibiotics of all classes, recent epidemiological data illustrated a very low prevalence 

of resistance to 5-nitrofurans amongst Escherichia coli clinical isolates around the 

world, including Peru (30, 53), Mexico (54) , the United Kingdom (55), Denmark (56), 

Germany (57), France (58), Iran (59) and China (60) to name a few, signifying the 

increasing importance of 5-nitrofurans to combat antibiotic resistant enterobacteria in 

the future.  

Though the 5-nitrofuran agents have had a long history of clinical use, the knowledge 

about their mode of action is far from complete. Taking E. coli as a model organism, 

they are prodrugs that require reductive activation mediated by two type I oxygen-

insensitive nitroreductases, NfsA and NfsB in a redundant manner, to exert their 

antibacterial effects (31, 61-63). Type I (oxygen-insensitive) nitroreductase enzymes 

catalyze the stepwise 2-electron reduction of nitroaromatic compounds (of which 5-

nitrofurans are a subfamily) into nitroso and hydroxylamino-derivatives and a final 

amino product (Fig. 3) (64-67). It has also been reported that type I trypanosomal 

nitroreductase metabolizes nifurtimox (an anti-trypanosomal 5-nitrofuran) to an 

unsaturated open-chain nitrile that was found to be responsible for the toxicity toward 

trypanosomal cells (68). While diverse antibacterial effects of 5-nitrofurans have been 

described, including triggering DNA lesions, inducing oxidative stress and inhibiting 

RNA and protein biosynthesis (69-73), it is still uncertain what the reactive 

intermediates of 5-nitrofuran activation by NfsA/NfsB are responsible for antibacterial 

effects and what their cellular targets are. 

Oxygen-sensitive nitroreductase activity (or type II) were also detected in E. coli 

extracts using biochemical assays in 1979 (74). This activity involves the one-electron 

reduction of the 5-nitrofuran drug intro a nitro anion free radical, which is oxidized back 

into the initial prodrug by oxygen, with the resulting generation of superoxide (Fig. 3). 
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However, the gene(s) responsible for this activity and the extent of the contribution by 

this pathway to 5-nitrofuran activation have not been identified. 

 

Figure 3: Proposed mechanism of 5-nitrofuran reduction by type I and type II nitroreductase 

enzymes. NTR, nitroreductase. Adapted from (75) with permission. 

 

Sodium deoxycholate 

Bile salts are natural products of the mammalian digestive system, that are synthesized 

in the liver, stored in the gall bladder and secreted into the intestine following meals, to 

facilitate fat solubilization and absorption (Fig. 4 and Chapter 4, Figure S1). They are 

composed of primary and secondary bile salts. In addition, they are present as 

unconjugated or glycine- or taurine-conjugated form. Primary bile salts (glyco-/tauro- 

cholate or chenodeoxycholate) are synthesized from cholesterol in the liver (76). The 
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newly synthesized conjugated bile salts plus the reabsorbed ones are then transported to 

and stored in the gallbladder. Once secreted into the intestine, they are modified by 

bacterial enzymes. The conjugated bile salts are deconjugated by the bile salt hydrolases 

of various intestinal bacterial genera such as Clostridium, Bacteroides, Lactobacillus, 

Bifidobacterium, Enterococcus, and even a pathogenic species Listeria monocytogenes 

(76). The unconjugated primary bile salts, cholate and chenodeoxycholate, are further 

metabolized by 7α-dehydroxylation to secondary bile salts, deoxycholate (DOC) and 

lithocholate, respectively. This chemical transformation can be performed by bacteria 

belonging to the genera Clostridium (clusters XIVa and XI) and Eubacterium (76, 77). 

Another secondary bile salt in humans, called ursodeoxycholate, is synthesized from 

chenodeoxycholate by 7α/β-hydroxysteroid dehydrogenase of Clostridium absonum 

(78). While metabolized by intestinal bacterial microflora, the majority of the bile salts 

(~95 %) are reabsorbed along the intestinal tract and recirculated via the portal 

bloodstream to the liver where they are re-conjugated, completing a process called an 

enterohepatic circulation (77). 
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Figure 4: Schematic diagram for biosynthesis in the liver and intestinal microbial metabolism of 

bile salts. Primary bile salts: cholate, chenodeoxycholate; secondary bile salts: deoxycholate, lithocholate 

and ursodeoxycholate. 

Apart from the supportive role for fat digestion, DOC plays a complex role in the 

interaction between the host and microbes and amongst microbes in the intestinal 

ecosystem. On the one hand, DOC participates in the maintenance of the gut 

microbiome balance, based on its antimicrobial activity, and therefore, contributes to a 

healthy state of the animal gut, by preventing growth of bacteria such as Clostridium 

difficile (79, 80). On the other hand, multiple bacterial pathogens capitalize on DOC as 

a signaling molecule to adapt their physiology to the site of infection, for example, 
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virulence expression, switch on genes involved in degradation pathways for nutrient 

availability (e.g. ethanolamine) and biofilm formation (81-85). 

Gram-negative enteric bacterial pathogens, such as E. coli, Salmonella enterica, Vibrio 

cholerae and Campylobacter jejuni, are highly resistant to DOC, primarily as the result 

of the multiple active efflux pumps that restrict intracellular DOC accumulation (81, 86-

89). Additional resistance mechanisms have been described, such as DOC-uptake by the 

MqsR/MqsA toxin-antitoxin system, DNA repair systems, mutations in genes related to 

the cell envelope and cell division factors, decreased expression of outer membrane 

porins, cell wall remodeling and the participation of various stress responses  (81, 90-

96). 

The antimicrobial mechanism of DOC action, though limited in enterobacteria, appears 

to be promiscuous with multiple targets involved. It was proposed that DOC causes 

oxidative DNA damage, triggers protein aggregation and compromises cellular 

membrane integrity (91, 97, 98). Recent studies in other pathogens provide further clues 

about DOC’s action. Sannasiddappa et al. (99) reported that DOC lowers the  

intracellular pH, dissipates the proton motive force and increases membrane 

permeability even at sub-inhibitory concentrations and kills Staphylococcus aureus 

through membrane disruption, resulting in the leakage of cellular contents. In C. jejuni, 

DOC was found to induce generation of reactive oxygen species (ROS) and DNA 

damage including 8-oxo-dG lesions and double-strand breaks (100). Overall, it appears 

that cytoplasmic membrane, DNA and proteins are damaged upon DOC exposure. 

However, it remains unknown whether these effects are due to direct interactions of 

these molecules with DOC or consequences of DOC attack on unknown cognate 

target(s). The involvement of ROS has been reported in causing DNA and protein 

damage (98, 100), supporting the secondary consequence of DOC action. Exploration of 
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the DOC targets is important to better understand the mechanism of action and 

resistance, that may allow a prudent consideration of DOC in antimicrobial therapies. 

Thesis aims 

The overall aims of the research described in this thesis were to in vitro characterize 

interactions between DOC and 5-nitrofuran drugs in inhibiting/killing enterobacteria 

from which a therapeutic potential can be evaluated. The mechanisms of action of each 

of constituent drugs were also separately investigated, by selection of drug-resistant 

mutants and using next-generation whole genome sequencing to analyze the mutants, 

followed by genetic and biochemical approaches. The findings from each drug were 

expected to provide a better understanding of the underlying mechanisms of DOC-5-

nitrofurans interactions. 

The structure of the thesis 

Chapter 1 summarizes the current state of antimicrobial resistance in Gram-negative 

bacteria, describes the methodology used to classify drug interactions and discusses the 

pros and cons of antimicrobial combinations. A literature review on DOC and 5-

nitrofurans was also included in this chapter. 

Chapter 2 reports a synergistic interaction between DOC and 5-nitrofurans in inhibiting 

the growth of and/or killing enterobacteria, such as E. coli, S. enterica and Citrobacter 

gillenii. The result shows that the synergy is caused by nitrofuran-mediated inhibition of 

TolC-dependent efflux pumps that otherwise prevent intracellular DOC accumulation. 

Chapter 3 describes the discovery of a novel nitrofuran-activating enzyme, AhpF. This 

finding paves the way to counteract nitrofuran-resistant isolates by screening for 

molecules to enhance ahpF expression/activity or designing nitrofuran analogues with 

higher affinity for the AhpF enzyme. 
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Chapter 4 illustrates novel mutations that cause a low-level DOC resistance in E. coli 

strains deficient in TolC-associated efflux pumps. This chapter also describes the 

important findings that single-step high-level DOC causing mutations were not 

identified in the absence of efflux pumps. 

Chapter 5 provides a general discussion to correlate the findings in previous chapters 

and suggests future work that advances the development of the DOC/nitrofuran 

combination for therapeutic uses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

 

Chapter II: 

In vitro synergy between sodium deoxycholate and furazolidone against 

enterobacteria 

Vuong Van Hung Lea, Catrina Oliveraa, Julian Spagnuoloa1, Ieuan Daviesb and Jasna 

Rakonjaca* 

aSchool of Fundamental Sciences, Massey University, Palmerston North, New Zealand 

bNew Zealand Pharmaceuticals Ltd., Palmerston North, New Zealand 

 

1Present address: Department of Biomedicine, University Hospital Basel, 4031 Basel, 

Switzerland 

 

Email address: 

Vuong Van Hung Le: v.le@massey.ac.nz 

Catrina Olivera: c.olivera@massey.ac.nz 

Julian Spagnuolo: julianspagnuolo@gmail.com 

Ieuan Davies: ieuan.davies@nzp.co.nz 

*Corresponding author: Jasna Rakonjac: j.rakonjac@massey.ac.nz 

 

 

mailto:v.le@massey.ac.nz
mailto:c.olivera@massey.ac.nz
mailto:julianspagnuolo@gmail.com
mailto:ieuan.davies@nzp.co.nz
mailto:j.rakonjac@massey.ac.nz


20 
 

Abstract 

Background 

Antimicrobial combinations have been proven as a promising approach in the 

confrontation with multi-drug resistant bacterial pathogens. In the present study, we 

identify and characterize a synergistic interaction of broad-spectrum nitroreductase-

activated prodrugs 5-nitrofurans, with a secondary bile salt, sodium deoxycholate 

(DOC) in growth inhibition and killing of enterobacteria. 

Results 

Using checkerboard assay, we show that the combination of nitrofuran furazolidone 

(FZ) and DOC has a profound synergistic effect on growth inhibition of several 

enterobacterial species including Escherichia coli, Salmonella enterica, Citrobacter 

gillenii and Klebsiella pneumoniae. The Fractional Inhibitory Concentration Index 

(FICI) for DOC-FZ synergy ranges from 0.125 to 0.35 and remains unchanged in an 

ampicillin-resistant E. coli strain containing a β-lactamase-producing plasmid. Findings 

from the time-kill assay further highlight the synergy between these two compounds 

with respect to bacterial killing in E. coli and Salmonella. 

We further characterize the mechanism of synergy in E. coli K12, showing that 

disruption of the tolC or acrA genes that encode components of multidrug efflux pumps 

causes a complete or partial loss, respectively, of the DOC-FZ synergy. This finding 

indicates the key role of TolC-associated efflux pumps in the DOC-FZ synergy. 

Overexpression of the nitric oxide-detoxifying enzyme Hmp results in a three-fold 

increase in FICI for the DOC-FZ interaction, suggesting a role for nitric oxide in the 

synergy. We further demonstrate that DOC-FZ synergy is largely independent of NfsA 

and NfsB, the two major activation enzymes of the nitrofuran prodrugs. 



21 
 

Conclusions 

This study is to our knowledge the first report of nitrofuran-deoxycholate synergy 

against Gram-negative bacteria, offering potential applications in antimicrobial 

therapeutics. The mechanism of DOC-FZ synergy involves FZ-mediated inhibition of 

TolC-associated efflux pumps that normally remove DOC from bacterial cells. One 

possible contribution to this effect is via FZ-mediated nitric oxide production. 

Keywords 

Furazolidone; Nitrofurans; Sodium Deoxycholate; Antimicrobial combination; Synergy; 

Enterobacteria 
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Background 

Antimicrobial resistance (AMR) is one of the most serious threats with which humans 

have been confronted. A UK-Prime-Minister-commissioned report in 2014 estimated 

that AMR, without appropriate interventions, will cause 10 million deaths per annum 

globally with a cumulative loss of US $100 trillion by 2050 (1). In this dire context, 

alternative approaches are urgently needed besides the discovery of novel antibiotics. 

Antimicrobial combinations have proven to be a promising approach with some widely 

accepted advantages, including enhancement of antimicrobial efficacy, deceleration of 

the rate of resistance development and the alleviation of side effects by lowering the 

doses of two drugs (20, 21). Moreover, this approach could amplify the significance of 

ongoing antimicrobial discovery programs; particularly the advent of any novel 

antimicrobial compound could bring about a large number of possible double 

combinations with existing antimicrobial agents to be evaluated, let alone triple and 

quadruple combinations. 

Sodium deoxycholate (DOC) (Additional file 1, Figure S1E) is a facial amphipathic 

compound in bile, which is secreted into the duodenum to aid lipid digestion and confer 

some antimicrobial protection (76).  Although extensive research has been conducted to 

elucidate the interaction between DOC, either alone or in the bile mixture, and enteric 

bacteria, the mode of its antimicrobial action remains elusive. It was suggested that 

DOC could attack multiple cellular targets, including disturbance of cell membranes, 

causing DNA damage, triggering oxidative stress and/or inducing protein misfolding 

(76, 97, 98). Nonetheless, Gram-negative bacteria such as Escherichia coli and 

Salmonella are highly resistant to DOC through many mechanisms such as the 

employment of diverse active efflux pumps, the down-regulation of outer membrane 

porins and the activation of various stress responses (81, 86, 87, 97). 
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The 5-nitrofurans are an old class of synthetic antimicrobials, clinically introduced in 

the 1940s and 1950s (38); several are commercially available, including furazolidone 

(FZ), nitrofurantoin (NIT) and nitrofurazone (NFZ) (Additional file 1, Figure S1). FZ is 

used to treat bacterial diarrhea, giardiasis and as a component in combinatorial therapy 

for Helicobacter pylori infections; NIT and NFZ are used to treat urinary tract 

infections and in topical applications, respectively (40). They are prodrugs which 

require reductive activation mediated largely by two type-I oxygen-insensitive 

nitroreductases, NfsA and NfsB. These two enzymes perform stepwise 2-electron 

reduction of the nitro moiety of the compound into two redox-reactive nitroso and 

hydroxylamino intermediates and an amino-substituted product (62, 63). A detailed 

mechanism of how bacterial cells are killed by the reactive intermediate(s) has yet to be 

clarified. Nevertheless, it has been proposed that the hydroxylamino derivatives could 

cause DNA lesions, disrupt protein structure and arrest RNA and protein biosynthesis 

(69-72). Some reports also suggested that nitric oxide could be generated during the 

activation process, inhibiting the electron transport chain of bacterial cells although 

clear evidence for this is not so far available (101, 102). It is worth mentioning that 

nitroreductase-encoding genes are not only commonly present in enterobacteria but also 

found in other bacterial species such as Staphylococcus aureus, Bacillus subtilis, Vibrio 

fischeri and parasites (e.g. Trypanosoma brucei, Leishmania major) (67, 68, 103). The 

enzymes they encode play different physiological roles in different species; in E. coli 

multiple functions have been proposed for NfsA and NfsB, including dihydropteridine 

reductase, chromate reductase, quinone-dependent azo reductase, and part of the 

oxidative stress response (67). 
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In this study, we have characterized the interaction of DOC with FZ and other three 

related nitrofurans against a range of enterobacteria. We identified the underlying 

mechanism of DOC-FZ synergy using E. coli K12 as a model organism. 

Results 

The synergy between DOC and 5-nitrofurans against enterobacteria 

To evaluate the synergy between DOC and FZ, the checkerboard growth inhibition 

assays were performed for a range of enterobacteria, including Salmonella enterica 

serovar Typhimurium LT2, Citrobacter gillenii, Klebsiella pneumoniae and two E. coli 

antibiotic-resistant laboratory strains (streptomycin-resistant and 

streptomycin/ampicillin-resistant). DOC and FZ act synergistically in inhibiting growth 

of the microorganisms listed (Fig. 1), with FICI ranging from 0.125 for a streptomycin-

resistant E. coli strain (Fig. 1A) to 0.35 for K. pneumoniae (Fig. 1E). DOC-FZ synergy 

was also observed against two E. coli pathogenic strains (E. coli strain O157 and 

urinary tract infection strain P50; Additional file 1, Figure S2). It is worth noting that, 

when used alone, very high DOC concentrations were required to exert an equivalent 

effect on inhibiting the growth of these Gram-negative enterobacteria, whereas the 

concentration in combination with FZ at the lowest FICI was within the range of the 

bile salt concentration in the human intestine (2.5 mg/mL or 6 mM) (104). 
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Figure 1: FZ interaction with DOC in growth inhibition of streptomycin- resistant E. coli K12 (A), 

ampicillin- and streptomycin-resistant E. coli K12 (B), Salmonella enterica serovar Typhimurium 

LT2 (C), Citrobacter gillenii (D) and Klebsiella pneumoniae (E). Graphs (isobolograms) were obtained 

using a checkerboard analysis at multiple concentrations of each molecule. Each data point represents the 

minimum molecule concentrations alone or in combination causing 90 % inhibition of bacterial growth 

relative to an unchallenged control culture. 
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We also examined the interaction between DOC and other nitrofuran compounds, 

including NIT, NFZ and CM4 (a 5-nitrofuran compound we discovered during an 

antimicrobial screening campaign against E. coli, Additional file 1, Figure S1D) for all 

bacterial species mentioned above. We found that NIT, NFZ and CM4 were synergistic 

with DOC against an E. coli laboratory strain (Fig. 3), Citrobacter gillenii (Additional 

file 1, Figure S3) and Salmonella Typhimurium LT2 (Additional file 1, Figure S4). By 

contrast, the interaction between NIT or NFZ and DOC was indifferent for a K. 

pneumoniae isolate (Additional file 1, Figure S5). CM4 did not inhibit growth of this 

Klebsiella strain in the range of concentrations used in the experiment (up to 256 µg/ml) 

so the interaction could not be defined. 

To investigate the interaction between DOC and FZ in terms of bactericidal effects, the 

time-kill assay was employed. Streptomycin-resistant E. coli K12 laboratory strain 

K1508 and S. enterica serovar Typhimurium strain LT2 were exposed to sub-inhibitory 

concentrations of DOC (2500 µg/mL) alone, or FZ (0.5 × MIC) alone, or combination 

of the two drugs at such sub-inhibitory concentrations, over a 24 h period. The sample 

was taken at different time points and the surviving bacteria were titrated onto 

antimicrobial-free plates. Centrifugation and resuspension were applied to each sample 

before plating to eliminate an antimicrobial carryover. After 24 h, the total cell count in 

the sample treated with the DOC-FZ combination was about five to six orders of 

magnitude lower than that in the sample treated with either DOC or FZ alone for both E. 

coli and Salmonella (Fig. 2), demonstrating the synergy in bacterial killing between 

DOC and FZ. 
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Figure 2: Time-kill analysis of the DOC and FZ combination in killing E. coli strain K1508 (A) and 

Salmonella enterica serovar Typhimurium LT2 (B). The data is presented as the mean ± standard error 

of the mean (SEM) of three independent measurements. The count of the live cells was determined at 

indicated time points by titration of colony-forming units on agar plates. The lower limit of detection was 

60 CFU/mL. 
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The role of AcrAB-TolC efflux pump in synergistic interaction between DOC and 

nitrofurans 

One commonly accepted principle is that the synergy between two drugs is a 

consequence of one drug suppressing bacterial physiological pathways that mediate 

resistance to the other one. It has been reported that DOC can be expelled out of the cell 

via a wide range of efflux pumps, in which the tripartite efflux system AcrAB-TolC 

plays the major role (86, 87) . This led to the hypothesis that FZ inhibits the activity of 

efflux pumps, thus allowing intracellular accumulation of DOC to exert its lethal effect. 

If this scenario were true, disruption of the function of efflux pumps by mutation should 

make this activity of FZ redundant, thus increasing the interaction index (FICI) in the 

mutant strains. 

To validate this model in E. coli, checkerboard assays were performed on strains 

containing deletions of the individual genes encoding the AcrAB-TolC efflux pump 

system, tolC and acrA. Deletion of tolC caused a shift from the synergistic 

interaction between DOC and FZ in the wild type (FICI = 0.125) to indifferent 

interaction (FICI = 0.75; Fig. 3A). The acrA mutant exhibited a 3-fold increase in the 

FICI relative to the isogenic wild type strain. Such changes were also observed for the 

interaction between DOC and other nitrofurans, NIT, NFZ or CM4 (Fig. 3B, C and D). 
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Figure 3: Effect of the tolC and acrA mutations on DOC synergy with FZ, NIT, NFZ and CM4 in 

E. coli. Isobolograms characterizing interactions of DOC with FZ (A), NIT (B), NFZ (C) and CM4 (D) in 

growth inhibition assays of the E. coli K12 strain K1508 (WT or wild-type and two isogenic deletion 

mutants, acrA and  tolC). Each data point corresponds to the FIC (ratios of the 90% growth inhibition 

concentrations in combination vs. alone) for one of the four nitrofurans (y axis) and DOC (x axis). The 

tolC strain (K2403) had the MICs for FZ, NIT, NFZ, CM4 at 1.25, 4, 8 and 4 µg/mL, respectively. The 

acrA strain (K2424) had the MICs for FZ, NIT, NFZ, CM4 at 2.5, 8, 8 and 8 µg/mL, respectively.  The 

WT strain K1508 had the MICs for FZ, NIT, NFZ, CM4 at 2.5, 32, 16 and 32 µg/mL, respectively. 

To confirm that these observations were conferred by direct effect of the tolC and acrA 

deletion, rather than indirect effects of other genes or proteins, complementation of the 

corresponding deletion mutations by plasmid-encoded tolC and acrA was performed. To 

compensate for the multiple copies of plasmid-containing genes, complementation was 

carried out at a low level of expression, nevertheless it completely restored the strong 
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synergy between DOC and FZ in these complemented strains (Fig. 4). These findings 

collectively support the model that the efflux pumps act as the interacting point for the 

synergy between DOC and FZ. 

 

Figure 4: Recovery of FZ-DOC synergy in complemented ΔtolC and ΔacrA mutants. Isobolograms 

of FZ-DOC interactions in growth inhibition of: A. ΔtolC mutant (ΔtolC) and a derived strain containing 

a plasmid expressing tolC gene (ΔtolC + tolC); B. ΔacrA mutant (ΔacrA) and a derived strain containing 

a plasmid expressing acrA gene and (ΔacrA + acrA). Each data point corresponds to the FIC (ratios of the 

90% growth inhibition concentrations in combination vs. alone) for FZ (y axis) and DOC (x axis).  

An intriguing question to be unraveled is how FZ could negatively influence the action 

of efflux pumps. We hypothesized that FZ could lower the energy supply to efflux 

pumps by mediating an increase in concentration of nitric oxide (NO). To verify the 

proposed model, the interaction between DOC and FZ in an E. coli strain with increased 

expression of the protein Hmp (the E. coli nitric oxide dioxygenase) was investigated. 

The rationale for this is that overexpression of the Hmp protein would result in 

increased conversion of NO into benign NO3¯ ions, thus relieving the effect exerted by 

NO (105). If NO was involved in the mechanism of the interaction between the two 

drugs, the synergy degree between them was expected to decrease with an increased 

abundance of Hmp proteins. In agreement with this hypothesis, overexpression of hmp 
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was found to suppress the synergy between DOC and FZ by a factor of 3 (Fig. 5). This 

finding supports the model that NO generated during FZ metabolism participates in the 

inhibition of electron transport chain (106), with the secondary effect of inhibiting the 

function of efflux pumps which are dependent on the electron transport chain for their 

activity. 

 

Figure 5: Effect of the hmp gene overexpression on FZ-DOC synergy. The isobologram of DOC and 

FZ interaction in E. coli having differential expression of NO-detoxifying protein Hmp. WT, E. coli 

laboratory strain K1508; WT + hmp, K1508 containing a plasmid expressing Hmp under the control of a 

T5-lac hybrid promoter. Expression of hmp gene was induced by IPTG (1 mM). Each data point 

corresponds to the FIC (ratios of the 90% growth inhibition concentrations in combination vs. alone) for 

FZ (y axis) and DOC (x axis). 

 

DOC-FZ synergy is largely independent of NfsA/NfsB-mediated FZ activation 

It has long been known that nitrofuran drugs need to be activated by nitroreductases 

NfsA and NfsB to exert its antibacterial activity (62, 63). As a result, the DOC-FZ 

synergy is expected to be dependent on the activity of NfsA and NfsB enzymes. To 

justify that inference, we examined the interaction between DOC and FZ in the nfsA 
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nfsB E. coli strain lacking both of these enzymes. In agreement with the FZ activation 

role of NfsA/NfsB, disruption of these two genes led to an increase in the MIC causing 

50% growth inhibition by a factor of 8 (Fig. 6A). Nonetheless, the synergy between 

DOC and FZ still remained significant in the nfsA nfsB genetic background, with the 

FICI at 50 % growth inhibition as low as 0.3125 (Fig. 6B); this FICI value is only 

slightly higher than that of the wild type strain (0.25). In other words, the contribution 

of NfsA/NfsB-mediated activation of FZ in the DOC-FZ synergy is very minimal, 

indicating the presence of an unexplored, but important, mechanism of FZ action or 

activation. 

 

 

Figure 6: Effect of nfsA/nfsB deletion on FZ-DOC synergy. Isobologram of FZ-DOC interactions in 

growth inhibition of wild type strain (K1508) and nfsA nfsB mutant. A) Each data point represents the 

minimum molecule concentrations alone or in combination causing 50 % inhibition of bacterial growth 

relative to an unchallenged control culture. B) Each data point corresponds to the FIC (ratios of the 50 % 

growth inhibition concentrations in combination vs. alone) for FZ (y axis) and DOC (x axis). 
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Discussion 

Capitalization on existing drugs by combining them with other drugs is one of the 

promising approaches to design novel therapies that will allow the use of antimicrobials 

which have heretofore been ineffective against Gram-negative bacteria at concentrations 

that are acceptable for medical treatment. The synergistic interaction between DOC and 

FZ or other nitrofurans against a range of enterobacteria is of this kind. Decrease in the 

effective inhibitory concentrations of nitrofurans, when combined with DOC, 

demonstrated here, is advantageous because of the potential for lowering or removing 

the reported nitrofuran mutagenic and carcinogenic side-effects (69-72). Gram-negative 

bacteria, such as E. coli and Salmonella have evolved high resistance to DOC and other 

bile salts using various mechanisms, such as multi-drug efflux pumps, a highly 

impermeable outer membrane, DNA damage repair machines, the MqsR/MqsA toxin-

antitoxin system and employment of multiple stress responses (81, 89-91, 107). 

Inclusion of an active agent, such as FZ or other 5-nitrofurans, could reintroduce the use 

of DOC in the battle against such formidable pathogens. These findings suggest two 

potential applications. 

Firstly, DOC-nitrofuran combinations could be developed for topical applications, such 

as wound and burn dressings. In 2015, ATX-101, in which deoxycholic acid is the 

active ingredient, was approved by the Food and Drug Administrations for reduction of 

submental fat at a subcutaneous injection dose as high as 10 mg/mL and a volume of up 

to 10 mL (108). This concentration is much higher than that of DOC (2.5 mg/mL) 

required for observing the synergy with nitrofurans, indicating that DOC concentrations 

less than 10 mg/mL could be used in the combination without concern for toxicity. In 

addition to its antibacterial properties, the hydrogel-forming capability of DOC for 

transdermal drug delivery in DOC-nitrofuran combination could be exploited. Such uses 
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of DOC have been described in a rat model (109, 110); no irritant effects on rat skins 

upon DOC-hydrogel application were observed in histology studies (110). 

Secondly, DOC and other bile salts are inherently present in the 2-10 mM concentration 

range along the gastrointestinal tract, depending on nutritional state and microbiome 

composition (80, 104). The efficacy of any drug dedicated to treat intestinal infections 

will depend on the physicochemical properties of the local environment in which an 

interaction with bile salts is an important factor. For instance, it has been reported that 

rifaximin, an RNA synthesis inhibitor, worked more efficiently in treating diarrhea-

producing E. coli in the intestine than in the colon due to the difference in the bile salt 

concentrations (111). We now provide evidence that FZ, an antibiotic prescribed for 

bacterial diarrhea (31, 40), acts synergistically with DOC in inhibiting the growth of 

enterobacteria, reducing the MIC of DOC from > 48 mM to 6 mM, which is within the 

range of bile salt concentrations in the intestine. It is possible that such synergy in situ 

may contribute to the treatment. Co-administration of FZ and DOC provides a 

promising tool to treat bacterial diarrhea, especially for patients with conditions such as 

malnourishment or disorders in enterohepatic circulation and intestinal absorption, all of 

which may result in low levels of intestinal bile salts (76). It should be noted that DOC 

alone does not represent the intestinal bile salt mixture and therefore application of 

DOC together with FZ may be necessary to enhance the synergy. LaRusso et al. (112) 

demonstrated that oral administration of DOC at 750 mg/day in healthy men did not 

result in any significant side effects even after 2 weeks of application, highlighting the 

possibility for oral uptake of DOC-FZ combination for bacterial diarrhea. 

We have provided insights into the underlying mechanism of the synergy between DOC 

and FZ in their antibacterial action against E. coli as a model Gram-negative bacterium. 

We showed that disruption of tolC or acrA gene caused a considerable decrease in the 
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synergy between DOC and FZ in the corresponding mutants. The TolC protein, whose 

removal disrupts the synergy more strikingly, appears to be the key determinant of 

synergy. 

The observed difference in the susceptibility to DOC/FZ combination between tolC 

and acrA mutants is in agreement with the fact that the TolC protein is shared by at 

least seven multidrug efflux pumps, while AcrA protein acts as the periplasmic 

connecting bridge for only two (113). Thus, deletion of tolC gene is expected to give 

rise to a more pronounced effect on the loss of efflux activities than deletion of acrA 

gene. 

Of great interest is how FZ could influence the activity of efflux pumps. The findings of 

this work indicate that more than two efflux pumps (AcrAB-TolC and AcrAD-TolC 

systems) were affected by FZ. This observation is reminiscent of a common mechanism 

which could affect a wide range of efflux pumps simultaneously, namely proton motive 

force. It has been suggested that nitrofuran compounds during reductive activation 

might generate NO which subsequently inhibits the electron transport chain (ETC), 

diminishing the proton motive force across the cytoplasmic membrane (101, 102, 106). 

As a result, many efflux pumps would be de-energized, and become less efficient in 

extruding toxic compounds. However, NO generation from nitrofurans in bacterial cells 

remains to be speculative since the trace of NO has yet to be detected using either 

biochemical or NO-sensing fluorescence methods, possibly due to the detection limit of 

the used methods or rapid conversion of NO into other compounds (101, 102). In the 

present work, we provide evidence for the contribution of NO in the interaction between 

DOC and FZ via the observation that overexpression of NO-detoxifying enzyme Hmp 

decreased the synergistic interaction between the two agents. Since some DOC-FZ 

synergy was still retained after NO-detoxification, other mechanisms, including direct 
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inhibition of the ETC by activated FZ, might be involved in the efflux pump inhibition. 

Further experiments are warranted to examine the effect of FZ on the electron transport 

chain by monitoring changes in the two components of the proton motive force using 

various probes (e.g. tetramethyl rhodamine methyl ester for membrane electric potential 

and pHluorin for pH) or by monitoring cellular O2 consumption (114). 

Notably, we showed that the DOC-FZ synergy does not depend on the presence of two 

E. coli nitroreductases NfsA and NfsB. This finding raises interesting questions about 

activation and action of nitrofurans. The retention of synergy in the absence of NfsA 

and NfsB implies that the inhibitory effect on the TolC-AcrAB efflux pump via NO is 

retained and, therefore, FZ probably undergoes reductive activation by alternative 

enzymes. The more plausible explanation of retained synergy and increased MIC is a 

less effective activation rather than the low activity of an unreduced form of FZ. To 

unearth alternative mechanisms of FZ that are independent of NfsA and NfsB, one 

possible strategy is to select for FZ-resistant mutants from the nfsA nfsB strain and 

employ a whole-genome analysis to identify responsible mutations that may point to 

alternative activation enzymes.  

Conclusion 

The current study reports the synergy between FZ and DOC in inhibiting and/or killing 

several enterobacterial species at concentrations that are demonstrated to be non-toxic in 

animal and human trials and within the range of intestinal bile salts concentrations. We 

provide genetic evidence that the efflux pumps play a major role in the FZ-DOC 

synergy, suggesting that the mechanism of synergy may be a 5-nitrofuran-mediated 

increase in accumulation of DOC inside the cell. In support of this model, we show that 
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the key enzyme which detoxifies NO, an FZ-activation product that inhibits ETC, also 

impairs the FZ-DOC synergy. 

Methods 

Bacterial strains, growth conditions and antibiotics 

All bacterial strains and plasmids used in this study are described in Tables 1 and 2. The 

introduction of the kanR gene deletion mutations into the wild type strain K1508 from 

the corresponding Keio collection E. coli K12 knock-out strains (115) was done using 

phage P1 transduction, using the standard procedures (116). To eliminate potential polar 

effects on downstream genes in the operon, the FRT-flanked kanR cassette was then 

removed using FLP-mediated recombination as previously described (117). Plasmids 

derived from the pCA24N bearing the gene of interest were purified from E. coli strains 

of the ASKA collection containing ORF expression constructs derived from this 

organism (118) using the ChargeSwitch-Pro Plasmid Miniprep Kit (Thermo Fisher 

Scientific). The plasmid DNA was then chemically transformed into specific E. coli 

strains for further work (119). Expression from the pCA24N vector is driven from a T5-

lac chimeric promoter. In the case of membrane protein expression (TolC and AcrA), 

the basal expression from an uninduced promoter was used in complementation 

experiments to avoid toxicity of membrane protein overexpression due to Sec system 

saturation. In contrast, expression of Hmp (a cytosolic NO-detoxifying protein) was 

induced by 1 mM IPTG. 

 

 

 

 



38 
 

Table 1: Bacterial strains used in this study 

Name Genotype or description Source 

Escherichia 

coli O157 

isolate 

ERL034336 

Human isolate Dr. Ann Midwinter, 

School of Veterinary 

Sciences, Massey 

University, Palmerston 

North 

Escherichia 

coli UPEC P50 

isolate 

Isolate from a canine urinary tract infection (120) 

Salmonella 

enterica LT2 

Type strain, S. enterica subsp. enterica, 

serovar Typhimurium 

ATCC® 43971™ 

Citrobacter 

gillenii 

PMR001 

Isolate from a municipal sewage processing 

(water purification) plant, Palmerston North, 

New Zealand (classified by complete 16S 

rRNA sequencing, 99% identity over 1405 nt 

to the 16S rRNA sequence of Citrobacter 

gillenii ATCC 51117). 

Rakonjac laboratory, 

Massey University, 

unpublished. 

Klebsiella 

pneumoniae 

PMR001 

Isolate from a municipal sewage processing 

(water purification) plant, Palmerston North, 

New Zealand (classified by complete 16S 

rRNA sequencing; 99% identity over 1404 nt 

to the 16S rRNA sequence of Klebsiella 

pneumoniae strain ATCC 13883). 

Rakonjac laboratory, 

Massey University, 

unpublished 

 Escherichia coli K12 laboratory strains  

K1508 MC4100 [F araD lac U169 relA thiA rpsL 

(StrR)] lamB106 

(121) 
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K2403 K1508 tolC This study 

K2424 K1508 acrA This study 

K2425 K1508 acrA pCA24N::acrA gfp This study 

K2426 K1508 tolC pCA24N::tolC gfp This study 

K2483 K1508 nfsA nfsB This study 

K2524 K1508 pUC118 (AmpR) This study 

 

Table 2: List of plasmids used in this study 

Name Genotype or description Source 

pCP20 AmpR, CmR, FLP+,  cI857+,  pR Repts 

For removal of an frt-flanked kan marker from E. coli K12 

strains by FLP-mediated site-specific recombination 

(122) 

pUC118 AmpR, f1 ori, PlacUV5, lacZ Creative Biogene, 

Shirley, NY, 

USA 

pCA24N

-tolC 

CmR; lacIq, pCA24N PT5-lac::tolC gfp (118) 

pCA24N

-acrA 

CmR; lacIq, pCA24N PT5-lac::acrA gfp (118) 

pCA24N

-hmp 

CmR; lacIq, pCA24N PT5-lac::hmp gfp (118) 

 

Bacterial cultures were grown in 2xYT medium (BD Difco) at 37 °C with shaking at 

200 rpm. For preparation of exponential phase cells, fresh overnight culture was diluted 

100-fold and incubated to reach an OD600nm of about 0.1-0.3. This cell suspension was 

then diluted to the desirable concentration depending on the specific purpose of the 
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experiment. Sodium deoxycholate was a kind gift from New Zealand Pharmaceuticals 

Ltd. Antibiotics used in this study were purchased from GoldBio. CM4 was purchased 

from Enamine (catalog number Z49681516).  

Checkerboard assay 

The checkerboard assay for DOC and FZ was carried out in Corning 384-well microtiter 

plates with a DOC concentration ranging from 0 to 20000 µg/mL and a FZ 

concentration ranging from 0 to 10 µg/mL, prepared by 2-fold serial dilution. The 

concentrations were adjusted depending on the sensitivity of different bacterial strains 

and the types of nitrofurans to cover at least 2 × MIC to 0.06 × MIC for each drug. Each 

well contained the starting inoculum of approximately 106 CFU/mL, 2 % DMSO and a 

predefined concentration of each drug in the total volume of 50 µL. The wells 

containing no drugs and 10 µg/mL tetracycline were used as negative and positive 

controls, respectively. After dispensing the reagents, the plate was pulse centrifuged at 

1000 × g to eliminate any bubbles before being incubated at 30 °C and the OD600nm of 

the sample was monitored hourly for 24 h using a MultiskanTM GO Microplate 

Spectrophotometer (Thermo Scientific). Each combination was performed in triplicate. 

The mean growth inhibition of the triplicate experiments with the cut-off value of 90 % 

at the time point 24 h was used to define the MIC of the drug used either alone or in 

combination (123). The fractional inhibitory concentration index (FICI) for the two 

drugs was calculated as follows:  

FICI =
MICDOCcom

MICDOCalone
+

MICFZcom

MICFZalone
         

MICDOCcom and MICFZcom ∶MIC of DOC and FZ when tested in combination 

MICDOCalone and MICFZalone: MIC of DOC and FZ when tested individually 
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The interaction between two drugs was interpreted as synergistic if FICI was ≤ 0.5, 

indifferent if it was > 0.5 and ≤ 4, and antagonistic if it was > 4 (15). The 50 % growth 

inhibition was used as the cut-off value to calculate FICI in some cases when stated. 

Time-kill assay 

Exponential phase bacterial culture at about 106 CFU/mL was prepared in the final 

volume of 10 mL containing 2 % DMSO plus DOC at 2500 µg/mL alone or FZ at 0.5 × 

MIC µg/mL alone or both drugs. The treatments containing no drug were used as 

negative controls. The samples were incubated at 30°C with shaking at 200 rpm. At the 

time points of 0 h, 2 h, 4 h, 6 h, 8 h and 24 h, 500 µL were taken from each treatment 

and centrifuged at 10000 × g for 15 min before being re-suspended in 100 µL maximum 

recovery diluent (0.1 % peptone, 0.85 % NaCl). 10 µL of 10-fold serial dilutions was 

plated on 2xYT agar followed by overnight incubation at 37 °C to determine the cell 

count. Each treatment was performed in triplicate. The antimicrobial interaction was 

interpreted as synergistic if the combinatorial treatment caused a killing efficiency ≥2 

log higher than the most active agent (19). 
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Supplemental data: Additional file 1 

 

 

Figure S1: Structural formulae of nitrofurans and sodium deoxycholate (E). A) Furazolidone (FZ); 

B) Nitrofurantoin (NIT); C) Nitrofurazone (NFZ). D) CM4, Pubchem ID AC1LGLMG (no CAS 

number). Chemical name: N'-[(5-nitrofuran-2-yl)methylidene]furan-2-carbohydrazide or N-[(5-

nitrofuran-2-yl)methylideneamino]furan-2-carboxamide. 
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Figure S2: FZ interaction with DOC in growth inhibition of E. coli strain O157 (A) and canine 

uropathogenic E. coli P50 (B). Graphs (isobolograms) were obtained using a checkerboard analysis at 

multiple concentration of molecules. Each data point represents the minimum molecule concentrations 

alone or in combination causing 90 % inhibition of bacterial growth relative to an unchallenged control 

culture. 
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Figure S3: Interactions of three nitrofurans (NIT, NFZ and CM4) with DOC in growth inhibition 

of Citrobacter gillenii PMR001. Graphs (isobolograms) were obtained using a checkerboard analysis at 

multiple concentration of molecules. Each data point represents the minimum molecule concentrations 

alone or in combination causing 90 % inhibition of bacterial growth relative to an unchallenged control 

culture. 
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Figure S4:  Interactions of three nitrofurans (NIT, NFZ and CM4) with DOC in growth inhibition 

of Salmonella enterica sv. Typhimurium LT2. Graphs (isobolograms) were obtained using a 

checkerboard analysis at multiple concentration of molecules. Each data point represents the minimum 

molecule concentrations alone or in combination causing 90 % inhibition of bacterial growth relative to 

an unchallenged control culture. 
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Figure S5:  Interactions of two nitrofurans (NIT and NFZ) with DOC in growth inhibition of 

Klebsiella pneumoniae PMR001. Graphs (isobolograms) were obtained using a checkerboard analysis at 

multiple concentration of molecules. Each data point represents the minimum molecule concentrations 

alone or in combination causing 90 % inhibition of bacterial growth relative to an unchallenged control 

culture. 
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Abstract 

The global spread of multidrug resistant enterobacteria warrants new strategies to 

combat these pathogens. One possible approach is reconsideration of “old” 

antimicrobials which remain effective after decades of use. Synthetic 5-nitrofurans such 

as furazolidone, nitrofurantoin and nitrofurazone, are such a class of antimicrobial 

drugs. Recent epidemiological data reported a very low prevalence of resistance to this 

antimicrobial class amongst clinical Escherichia coli isolates in various parts of the 

world, forecasting the increasing importance of its uses to battle antibiotic resistant 

enterobacteria. However, although they have had a long history of clinical use, a 

detailed understanding of the 5-nitrofurans’ mechanisms of action remains limited. 

Nitrofurans are known as prodrugs that are activated in E. coli by reduction catalyzed 

by two redundant nitroreductases, NfsA and NfsB. Furazolidone, nevertheless, retains 

relatively significant antibacterial activity in the nitroreductase-deficient nfsA nfsB E. 

coli strain, indicating the presence of additional activating enzymes and/or the 

antibacterial activity of the unreduced form. Using genome sequencing, genetic, 

biochemical and bioinformatic approaches, we discovered a novel 5-nitrofuran-

activating enzyme, AhpF, in E. coli. Discovery of a new nitrofuran-reducing enzyme 

opens new avenues for overcoming 5-nitrofuran resistance, such as designing nitrofuran 

analogues with higher affinity for AhpF or screening for adjuvants that enhance AhpF 

expression. 
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Introduction 

Widespread global emergence of multidrug resistant enterobacteria warrants novel 

strategies to combat these pathogens (124, 125). One of promising approaches is 

reconsideration of “old” antimicrobials which remain effective after decades of use. 

Synthetic 5-nitrofurans are such a class of antimicrobial drugs (Fig. 1). Typical 

examples of this group are furazolidone (FZ) used for treating bacterial diarrhea, 

giardiasis (40) and as a component in combinatorial therapy for Helicobacter pylori 

infections (26), nitrofurantoin (NIT) for urinary tract infections and nitrofurazone (NFZ) 

for skin infections (40). Recent epidemiological data illustrated that the prevalence of 

resistance to 5-nitrofurans amongst clinical Escherichia coli isolates is maintained at 

very low levels in various parts of the world, including Peru (30, 53), Mexico (54) , the 

United Kingdom (55), Denmark (56), Germany (57), France (58), Iran (59) and China 

(60) to name a few, heralding the increasing importance of 5-nitrofurans to combat 

antibiotic resistant enterobacteria. 

 

 

Figure 1: Molecular structure of the 5-nitrofuran antimicrobial agents. 
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Though the 5-nitrofuran agents have had a long history of clinical use since their 

introduction in the 1940s and 1950s (38), knowledge about their mode of action is far 

from complete. Taking E. coli as a model organism, 5-nitrofurans are prodrugs that 

require reductive activation mediated by two type I oxygen-insensitive nitroreductases, 

NfsA and NfsB, in a redundant manner to exert their antibacterial effects (31, 61-63). 

The minor nitroreductase NfsB is a 24 kDa flavoprotein which catalyzes reduction of 5-

nitrofuran pro-drugs into nitroso and hydroxylamino-substituted products using both 

NADH and NADPH as reducing equivalents (64, 66). The transfer of electrons from 

NAD(P)H to 5-nitrofuran catalyzed by NfsB occurs via a ping-pong bi-bi mechanism, 

where the electron donor (NADPH or NADH) reduces the FMN cofactor of the NfsB 

enzyme (ping) which in turn reduces the 5-nitrofuran substrate (pong). Overall, two 

reactants, NAD(P)H and 5-nitrofuran, give rise to two products, NAD(P)+ and the 

nitroso derivative (two-two or bi-bi). The flavoprotein NfsA (27 kDa) is NADPH-

dependent and has a dominant role in activating 5-nitrofuran drugs in E. coli, sharing 

the same ping-pong bi-bi mechanism of reduction as NfsB (65). The final product of 

NfsA-catalyzed reduction, however, remains uncharacterized. It is still uncertain what 

reactive intermediates of 5-nitrofuran activation by NfsA or NfsB are responsible for the 

antibacterial effects observed and what their cellular targets are. Diverse effects have 

been reported, that include triggering DNA lesions, inducing oxidative stress and 

inhibiting the biosynthesis of RNAs and proteins (69-73). However, it is unknown 

whether these macromolecules (DNA, RNA and proteins) are directly modified by the 

reactive intermediates derived from 5-nitrofurans, or whether the cellular machinery 

that carries out replication, transcription and translation are the primary targets. 

Oxygen-sensitive nitroreductase activity (or type II) was also detected in E. coli extracts 

using biochemical assays in 1979 (74). This latter activity involves the one-electron 
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reduction of the 5-nitrofuran drug intro a nitro anion free radical, which is oxidized back 

into the initial prodrug by oxygen, with the concomitant generation of superoxide. 

However, the gene(s) responsible for this activity and the extent of the contribution by 

this pathway to 5-nitrofuran activation has not been identified. 

FZ retains a relatively significant antibacterial activity in the nitroreductase-deficient 

nfsA nfsB E. coli strain, indicating the presence of additional activating enzymes 

and/or antibacterial activity of the unreduced FZ. Using genome sequencing, genetic, 

biochemical and bioinformatic approaches, we identified a new enzyme in E. coli, 

AhpF, that plays a role in activating FZ and two closely related drugs, NIT and NFZ. 

Results 

Mutations in ahpF associated with enhanced FZ resistance 

Guided by the observation that FZ retained relatively significant antibacterial activity in 

the nfsA nfsB nitroreductase-deficient E. coli K-12 strain, we hypothesized that there 

are alternative activation enzyme(s) present in E. coli and/or that the unreduced form of 

FZ has E. coli-inhibitory properties. To examine these hypotheses, fifteen independent 

E. coli spontaneous mutants were selected from the nfsA nfsB nitroreductase-

deficient strain at the FZ concentration (40 µg/mL) that kills the parental strain. It is 

worth noting that amongst the three FZ concentrations we used for selecting resistant 

mutants (40, 48 and 56 µg/mL), no colonies were observed on the plates containing 48 

or 56 µg/mL even after 48 h of incubation. The mutation rate in the nfsA nfsB 

cultures to form colonies on FZ-selective agar plates (40 µg/mL) was calculated to be 

8.93 × 109 per cell per generation (95 % confidence interval: 6.51 × 109 – 1.17 × 

108). 
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All the E. coli mutants had the same MICFZ of 20 µg/mL, which was higher than that of 

the parental strain (16 µg/mL) in an agar dilution assay. Genomic DNA of the FZ-

resistant mutants was extracted and sequenced using the Illumina MiSeq platform as 

described in the experimental procedures. Comparative genome sequence analyses 

identified changes in a single gene ahpF in all the mutants. The changes in ahpF 

included 13 different mutations (Table 1, Fig. 2). The ahpF mutations in these FZR 

mutants were further confirmed by analyzing the size and sequence of ahpF-specific 

PCR products (Fig. S1). 

 

 

Figure 2: Mutations in the AhpF protein in FZ-resistant mutants. The AhpF protein consists of four 

regions: The N-terminal domain (1-196), a linker (197-209), the FAD binding domain (210-327 and 450-

521) and the NADH binding domain (328-449). The types of mutations are described by colors: red, 

missense mutation; blue, nonsense mutation; green, IS1 insertion; aqua, frameshift; purple, in-frame 

deletion of six codons. The frequency of mutations is described by the size of the annotations: small, 1; 

large, 2. 
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Table 1: List of ahpF variants found in the E. coli mutants having increased FZ 

resistance 

Mutants Location of the mutation Predicted mutational change 

FZ08a 1426_1432delTGCGAAA Frameshift downstream of Cys476 

FZ10a C1180T Stop gained Gln394  stop codon 

FZ11a IS1 insertion after the 1029th nucleotide Loss-of-function 

FZ12a C680A Missense Ala227Glu 

FZ13a 1430_1447delAAACCAACGTGAAAG

GCG 

In-frame deletion Glu477_Gly482del 

FZ14a 451delC Frameshift downstream of His151 

FZ15a 766delG Frameshift downstream of Glu256 

FZ16a G661T Missense Gly221Cys 

FZ17a T838G Missense Tyr280Asp 

FZ18a C1428A Stop gained Cys476  stop codon 

FZ19b IS1 insertion after the 380th nucleotide Loss-of-function 

FZ20b C220T Stop gained Gln74  stop codon 

FZ21b C677T Missense Ala226Val 

FZ22b C1180T Stop gained Gln394  stop codon 

FZ23b G661T Missense Gly221Cys 

a) Mutations were determined using the whole genome sequencing and ahpF-specific Sanger sequencing. 

b) Mutations were determined using Sanger sequencing of ahpF gene only. 
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Given that all the mutants had the same MICFZ and some carried major interruptions to 

the coding sequence (an IS1 insertion in mutants FZ11 and FZ19, nonsense mutation in 

FZ10 and FZ22, and frameshift mutations in FZ14 and FZ15), all the ahpF mutations 

reported in this study were expected to result in a dysfunctional AhpF protein. This 

inference is also supported by the fact that the mutated residues (Gly221, Ala226, 

Ala227, Tyr280) are highly conserved among the AhpF homologues according to 

analyses of evolutionary conservation using two software packages, Consurf (126) and 

SIFT (127) (Fig. S2). Notably, the SIFT software takes into consideration the physical 

properties of amino acid residues in homologous sequence analyses, to predict the 

impact of an amino acid substitution on the protein function, either tolerated or 

deleterious (128). In this case, all the four mutations (Gly221Cys, Ala226Val, 

Ala227Glu and Tyr280Asp) were predicted by SIFT to be deleterious to the AhpF 

function with high confidence. 

To confirm that a loss of AhpF function was the cause of increased resistance to FZ, a 

ahpF mutation was introduced into the parental nfsA nfsB strain by P1 transduction 

(116), using the Keio strain JW0599 as a donor, followed by removal of the Km cassette 

as described in the experimental procedures, to obtain a triple nfsA nfsB ahpF 

mutant. The FZ sensitivity was examined using the broth microdilution and agar 

dilution assays. In agreement with the findings from the genomic analyses of the 

spontaneous FZ-resistant mutants, deletion of ahpF in the nfsA nfsB background led 

to an increase in the FZ MICs in both assays from 16 µg/mL for the parental strain to 28 

µg/mL for the nfsA nfsB ahpF strain in the agar plate assay, and from 32 µg/mL to 

48 µg/mL in the liquid assay (Fig. 3). Complementation of the ahpF mutation by 

expression of ahpF from a high-copy-number plasmid pCA24N::ahpF induced by IPTG 
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in the nfsA nfsB ahpF strain not only restored FZ sensitivity, but also increased it 

dramatically beyond the level of the nfsA nfsB strain and close to the level of the FZ 

sensitive wild-type strain (nfsA+ nfsB+) (Fig. 3). Taken together, these findings show 

that AhpF plays a role in FZ activation in which FZ sensitivity is positively correlated 

with the amount of ahpF in the cell. 

 

Figure 3: Confirmation of the AhpF role in FZ activation using knock-out mutants and 

complementation. The FZ susceptibility of ΔahpF mutant in the nfsAB null background and AhpF-

overexpressing strain using agar dilution assay (A) and broth microdilution assay (B). The E. coli K-12 

strain BW25113 was used as the wild-type strain. Expression of the ahpF gene was induced from a 

chimeric T5-lac promoter of a high-copy-number plasmid pCA24N::ahpF by 0.1 mM or 1mM IPTG. 

MIC was defined as the minimal FZ concentration that inhibited the visible colony formation in an agar 

dilution assay (A), or that caused 90 % growth inhibition in a broth microdilution assay (B). The MIC 

values and error bars represent the mean and range of at least three independent experiments. 
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Effect of ahpF on susceptibility of E. coli to NIT and NFZ 

To examine the cross-resistance of ahpF deletion in the nitroreductase-deficient strain 

(nfsA nfsB) to NIT and NFZ, a broth microdilution assay was performed for these 

two 5-nitrofuran antibacterials. It is interesting to note that deletion of ahpF conferred a 

modest increase in sensitivity to NIT and NFZ (Fig. 4). That effect was reverted when 

the AhpF deficiency in the nfsA nfsB ahpF triple mutant was complemented by a 

low level of AhpF expression from the pCA24N::ahpF plasmid (in the absence of 

IPTG). Nonetheless, AhpF overexpression upon IPTG induction (0.1 mM or 1 mM) in 

the nfsA nfsB ahpF triple mutant lowered the MICNIT and MICNFZ of the 

complemented strain to the level of the wild-type (nfsA+ nfsB+ ahpF+) strain where all 

nitrofuran-activating nitroreductases are present (Fig. 4). Taken together, all these 

observations strongly suggest that AhpF catalyzes activation of not only FZ, but also 

NIT and NFZ. 
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Figure 4: Confirmation of the AhpF role in nitrofurantoin and nitrofurazone activation using 

knock-out mutants and complementation. Susceptibility to nitrofurantoin (A) and nitrofurazone (B) of 

ΔahpF mutant in the nfsAB null background and AhpF-overexpressing strain using a broth microdilution 

assay. Expression of the ahpF gene was induced from a chimeric T5-lac promoter of a high-copy-number 

plasmid pCA24N::ahpF by 0.1 mM or 1mM IPTG. The E. coli K-12 strain BW25113 was used as the 

wild-type strain. MIC was defined as the minimal drug concentration that caused 90 % growth inhibition. 

The MIC values and error bars represent the mean and range of at least three independent experiments. 

We also determined the MICs for the ahpF deletion and complemented strains under 

anaerobic conditions and found a similar pattern in MIC changes for all three 5-

nitrofuran drugs (Fig. 5) as under the aerobic conditions. The only exception was NFZ, 

for which the nfsA nfsB ahpF triple mutant had a mildly increased MICNFZ in 
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Figure 5: Susceptibility to 5-

nitrofurans using a broth 

microdilution assay under 

anaerobic conditions. (A) 

Furazolidone, (B) Nitrofurantoin and 

(C) Nitrofurazone. Expression of the 

ahpF gene was induced from a 

chimeric T5-lac promoter of a high-

copy-number plasmid pCA24N::ahpF 

by 0.1 mM or 1mM IPTG. The E. coli 

K-12 strain BW25113 was used as the 

wild-type strain. MIC was defined as 

the minimal drug concentration that 

caused 90 % growth inhibition. The 

MIC values and error bars represent 

the mean and range of at least three 

independent experiments. 

comparison to the nfsA nfsB double mutant parent, opposite to the observation under 

aerobic conditions (Fig. 5C vs. 4B). 

 

 

In vitro activity of AhpF  

To verify the ability of AhpF protein to catalyze the reduction of 5-nitrofurans (FZ, NIT 

and NFZ), His-tagged AhpF protein was produced, purified and assayed in a reaction 

using 5-nitrofuran and NADH as reactants. The protein was expressed in the ahpC E. 
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coli strain from a high-copy number ASKA plasmid, pCA24N::ahpF (118). The 

rationale for ahpC deletion in the expression host was to prevent the co-purification of 

AhpC along with AhpF since these two proteins have been shown to form the 

multimeric complex AhpC10AhpF2 (129). The presence of AhpC in the protein extract 

might titer out the AhpF protein, precluding its hypothesized nitrofuran reductase 

activity. 

The nitroreductase assay (Fig. 6) was performed in the presence of 5 µg/mL of Ni-NTA 

affinity-purified AhpF protein, NADH and one of the three 5-nitrofurans (FZ, NIT, 

NFZ) at an equal amount (0.1 mM). The absorbance at 400 nm was used to solely 

monitor the decrease in the concentration of 5-nitrofurans, whereas the absorbance at 

340 nm (maximum for NADH) was used to monitor the decrease in the concentration of 

NADH and 5-nitrofurans simultaneously, given that these two substrates have an 

overlapping absorbance at this wavelength, and there was no suitable wavelength where 

NADH could be exclusively detected.  It should be noted that oxidation of NADH in the 

reactions without any 5-nitrofuran drugs was used as a reference to indicate electron 

transfer from NADH to the three redox centers of AhpF (the FAD cofactor and two 

disulfide bridge active centers) (130) and ultimately oxygen, due to the oxidase activity 

of this enzyme (131). In the presence of FZ, NIT or NFZ, the initial reaction velocity 

monitored via the decrease in the absorbance at 340 nm (0.01533, 0.01314, 0.01526 

A.U./min, respectively) was significantly higher than that in the sample without 5-

nitrofurans (0.00422 A.U./min; p < 0.001; Fig. 6A). Continuous monitoring of the 

reaction over 12 hours showed that the absorbance at 340 nm (measure of NADH 

oxidation) in nitrofuran-containing samples stopped decreasing after 1.5 hours, whereas 

the absorbance in nitrofuran-free samples continued to decrease throughout the time 

period of the assay (Fig. 6A). Spectral analysis at the end-point of the experiment (12 h) 
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showed that the residual absorbance at 340 nm in all samples was coming exclusively 

from the 5-nitrofurans (Fig S3A, C, E). This indicates that NADH was used up more 

rapidly in the presence of 5-nitrofurans. By subtracting contribution of 5-nitrofurans 

from the absorbance at 340 nm, we calculated that the initial rate of NADH oxidation 

was 3.64, 2.74 and 2.43 µM/min for the reactions containing FZ, NIT and NFZ 

respectively, as compared with that of the no-drug reference control that was 1.08 

µM/min.  
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Figure 6: In vitro AhpF vs NfsB nitroreductase assay under aerobic conditions. Purified His-tagged 

AhpF 5 µg/mL (A & B) or NfsB 1 µg/mL (C & D) was combined with furazolidone (FZ), nitrofurantoin 

(NIT) or nitrofurazone (NFZ) in the presence of NADH as the reducing cofactor. A reaction without 5-

nitrofurans was included as a reference (denoted as a no-drug control) to monitor change of the 

absorbance at 340 nm due to oxidation of the cofactor NADH by the oxidase activity of AhpF. Each data 

point represents the mean value of the triplicate measurements. 

Notably, the absorbance at 400 nm (monitoring 5-nitrofurans) appeared to be unchanged 

for FZ and decreased modestly for NIT and NFZ (~16 % and 15 %, respectively) even 

after 12 h (Fig 6B and Figure S3A, C, E). This is in contrast with the 5-nitrofuran 

reduction reaction catalyzed by the well-established nitroreductase NfsB in which, 
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under the same conditions and substrate stoichiometry (1:1), more than half of the initial 

5-nitrofuran had been reduced (Fig 6D and Figure S3B, D, F).  

To eliminate the oxygen that seems to serve as an electron sink in the AhpF-catalyzed 

reaction, we repeated the nitroreductase assay under strict anaerobic conditions. The 

absorbance spectrum from 300 to 600 nm of the reaction mixtures and controls was 

examined at the end of the assay, after 21 h of incubation at 25 °C. Under these 

conditions, the absorbance between control reactions that contained NADH/AhpF and 

NADH (in the absence of 5-nitrofurans) over the analyzed spectrum range was 

identical, showing that no NADH had been oxidized by the AhpF enzyme in the 

absence of oxygen (Fig. 7) and thus validating the anaerobic condition of the assay. 

There was an overall decrease in the intensity of the absorbance from 300 to 600 nm 

between the no-enzyme control (nitrofuran + NADH) to the reaction sample (nitrofuran 

+ NADH + AhpF) for all three drugs, (Fig. 7, red arrows). Given that no molecular 

oxygen was involved, this difference in the absorbance spectrum can be completely 

attributed to the reaction between the 5-nitrofuran drug and NADH. In conclusion, this 

analysis shows that the AhpF indeed catalyzes the reduction of 5-nitrofurans. 
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Figure 7: AhpF nitroreductase assay under oxygen-free conditions. The reaction mixture contained 

purified His-tagged AhpF 5 µg/mL, 5-nitrofuran 0.1 mM (furazolidone (FZ), nitrofurantoin (NIT) or 

nitrofurazone (NFZ)) and NADH 0.1 mM. The absorbance spectrum was measured after 21 h incubation 

at 25 °C. Each data point represents the mean value of the triplicate measurements. The red arrows 

indicate the change in the absorbance caused by AhpF-catalyzed reaction between 5-nitrofuran drugs and 

NADH. 

In silico docking of FZ onto the active site of AhpF protein 

To gain a better understanding of the nitrofuran-AhpF interaction, we performed in 

silico docking between FZ and the AhpF enzyme using two different tools, SwissDock 

(132) and AutoDock Vina (133). According to the SwissDock modelling, the most 

favorable binding pose of the drug was in a cleft between the FAD and NADH domains, 

which had the lowest fullfitness (2728.95 kcal/mol) and binding energy (G = 7.13 

kcal/mol; Fig. 8A). Modelling with the AutoDock Vina tool predicted the same binding 
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site with the free energy as low as 6.9 kcal/mol. The orientations of FZ relative to the 

protein, however, differed in the predictions by the two modelling approaches (Fig. 8B 

& C).  

Further calculating the inter-atomic interactions between FZ and the AhpF residues 

using the Arpeggio server (134) predicted that FZ interacts with protein residues more 

strongly in the AutoDock Vina model than in the SwissDock model (Fig. 8B & C). In 

the AutoDock Vina model, the furan ring of FZ was predicted to interact with the indole 

group of Trp326 via a π-π interaction and with the amide group of Gln448 via an amide-

π interaction. The binding was further stabilized by three hydrogen bonds between FZ 

and three protein residues Ile449, Gly450 and Lys495 (Fig. 8C). In the SwissDock 

model, the indole ring of Trp326 was also predicted to play an important role in the 

interaction with the furan ring of FZ (Fig. 8B). Of note is the polar interaction between 

the oxygen of the nitro group of the drug and the thiol group of Cys345. In the AhpF 

protein, the Cys345XXCys348 motif establishes the redox active center, participating in 

the transfer of electrons from the cofactor FAD to the redox center in the N-terminal 

domain (135). Such an interaction predicted in the SwissDock model allows us to 

propose a molecular basis for the reaction: NADH donates electrons to FAD which then 

reduces the disulfide bridge of Cys345 and Cys348; after that, the thiol group of Cys345 

contacts the nitro moiety of FZ in a manner that permits the transfer of electron(s). We 

speculate that the FZ binding predicted by AutoDock Vina represents a stable binding 

mode, while that predicted by SwissDock represents a reactive binding mode once the 

thiol group of Cys345 is available in its reduced state. 
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Figure 8: Docking simulation for AhpF and FZ. (A) The cartoon 3-D structure of AhpF protein with 3 

domains (N-terminal domain, FAD domain, and NADH domain) and the simulated FZ binding site. The 

surface of FZ in the binding site predicted by SwissDock and AutoDock Vina was highlighted. (B & C) 

Interaction between FZ and AhpF residues in the binding site. Interactions were calculated and annotated 

using the Arpeggio server. (B) The binding pose predicted by SwissDock; (C) the binding pose predicted 

by AutoDock Vina. The interatomic interactions were presented by dashed lines; yellow, hydrogen 

bonding; red, polar contact; green, π-π interaction; purple, amide-π interaction. 

Discussion 

Characterization of antibiotic-resistant isolates is an important tool to identify the 

targets and mechanisms of resistance. All mutants with increased MICs for nitrofurans 

published prior to our work were isolated from wild-type laboratory K-12 or clinical E. 

coli strains, and most frequently reported to possess mutations in genes encoding the 

prodrug-activating enzymes NfsA and NfsB (31, 62, 63). Recently, Vervoort and co-
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workers (136) incorporated whole genome sequencing to analyze nitrofurantoin-

resistant E. coli mutants isolated from the wild-type parent, identifying, in addition to 

nfsA and nfsB mutations, a 12-nucleotide deletion in the ribE gene, encoding lumazine 

synthase. This is an essential enzyme in the biosynthesis of flavin mononucleotide, 

which in turn is the cofactor for NfsA and NfsB. Long-term laboratory evolution 

experiments of E. coli laboratory K12 strains under the selective pressure of 

nitrofurantoin also reported various mutations in nfsA and/or nfsB in all nitrofurantoin-

selected evolved cultures (137, 138). Notably, in these experiments, other mutations 

have also been detected, such as those in genes mprA, ahpF and porin-encoding or -

expression-regulatory genes (ompC, ompR, and envZ), although underlying mechanisms 

and the degree these mutations individually contribute to nitrofurantoin resistance have 

not been studied further. Overwhelmingly most frequently isolated 5-nitrofuran 

resistance-causing mutations in the E. coli wild-type strains have therefore been those 

that disrupt the NfsA and NfsB activity. To eliminate these from our genetic screen, we 

started from the nfsA nfsB E. coli parental strain and selected 15 independent mutants 

of increased MICFZ. We further employed whole-genome sequencing to pinpoint the 

mutations. Using this strategy, we discovered the involvement of a novel enzyme, 

AhpF, in activation of FZ. Overexpression of this enzyme decreased MIC for all three 

tested nitrofurans under aerobic and anaerobic conditions (Fig. 3, 4 & 5). Similar MICs 

were obtained under both conditions, suggesting that inside the E. coli cell 5-nitrofuran 

activation by AhpF is not affected by general aerobic conditions, possibly due to 

depletion of oxygen during culture growth. In contrast, in an in vitro enzymatic assay 

combining only the substrates and AhpF, reduction of 5-nitrofurans was oxygen-

sensitive, resulting in 5-nitrofuran reduction only in the absence of oxygen (Fig. 6, S3 & 

7). 
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AhpF is a peroxiredoxin reductase, which, together with the peroxiredoxin AhpC, forms 

the bacterial antioxidant alkyl hydroperoxide reductase AhpCF. The molecular structure 

of this system and its catalytic mechanism have been solved recently. Briefly, AhpF 

transfers electrons from the electron donor NADH via the redox-active sites of its C-

terminal domain and then via the disulfide redox-active center within the N-terminal 

domain to the oxidized AhpC, which subsequently reduces hydrogen peroxide, organic 

hydroperoxide and peroxynitrite (135, 139, 140). Given its dedicated antioxidant 

function, it is expected that disruption of ahpF would cause an increase in antibiotic 

susceptibility and its overexpression would confer enhanced antibiotic resistance in 

general by ameliorating oxidative stress that is generally associated with effect of a 

number of antibiotics. For example, it has been shown that ahpF overexpression 

protects E. coli from aminoglycoside-mediated protein aggregation (141) or from killing 

by bactericidal antibiotics such as ampicillin, gentamicin, and norfloxacin (142). In 

contrast to these antibiotics, deletion of ahpF gene protects E. coli from FZ, while AhpF 

overexpression majorly increases susceptibility to all three tested 5-nitrofurans, in 

agreement with a dominant 5-nitrofuran activation role over its protective role under 

oxidative stress.  

Notably, all FZ-resistant mutants isolated from an nfsA nfsB E. coli strain had an 

MIC of 20 µg/mL, while complete deletion of ahpF in an nfsA nfsB background 

resulted in an MIC as high as 28 µg/mL in an agar dilution assay (Fig. 3A). The 

difference between disruption/point mutants and complete deletion of ahpF could be 

rationalized based on the published findings that ahpC mRNA is stabilized by an RNase 

III-mediated cleavage in the intergenic region of the bi-cistronic ahpC-ahpF mRNA 

(143). Deletion of the ahpF ORF sequence is expected to change the RNAse III target 

and interfere with the processing, resulting in a decrease in the stability of the ahpC 
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transcript and thus in its abundance. Given the antioxidant role of AhpC, lowering its 

amount in the cell upon the complete deletion of the ahpF sequence may confer 

increased resistance to FZ in addition to the level caused by absence of the 

nitroreductase AhpF. 

Deletion of ahpF in the nfsA nfsB background caused decreased resistance to NFZ 

and NIT under aerobic conditions (Fig. 4). This phenomenon can be rationalized as 

follows: AhpF has opposing dual functions, acting alone to activate nitrofurans, and 

acting in complex with AhpC to counteract the oxidative stress imposed by 5-

nitrofurans (73, 135). Integration of these two roles dictates the net effect of ahpF 

deletion on nitrofuran susceptibility. Depending on the degree of oxidative stress 

induced by 5-nitrofurans, the rate of AhpF-mediated 5-nitrofuran reduction and the 

toxicity triggered by the reduction product, different effects on resistance to the three 

drugs (FZ, NIT and NFZ) were observed upon ahpF deletion. 

The in vitro nitroreductase assay of purified AhpF provided a hint of the mechanism of 

5-nitrofuran reduction by this enzyme. Monitoring two substrates, 5-nitrofuran and 

NADH, showed that NADH became oxidized, while the 5-nitrofuran concentration 

stayed largely unchanged during the time course of the enzymatic experiment when the 

reaction is carried out under aerobic conditions, i.e. in the presence of oxygen (Fig. 6 

and S3). This is a characteristic of the futile reduction cycle catalyzed by the type II 

oxygen-sensitive nitroreductases as reported by Peterson et al. (74). These type II 

oxygen-sensitive nitroreductases catalyze the one-electron reduction of the 

nitroaromatic prodrugs to result in a nitro anion free radical which in the presence of 

oxygen is subsequently oxidized back to the nitro group, while reducing oxygen to 

generate superoxide. Our AhpF enzymatic assays under aerobic conditions showed that 

NADH oxidation occurred in the absence of 5-nitrofurans, due to direct reduction of 
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oxygen, but its rate increased in the presence of 5-nitrofurans. The concentration of 5-

nitrofurans, on the other hand, did not change, in agreement with the futile redox cycle 

of 5-nitrofurans. In contrast, in our oxygen-free assays NADH was oxidized only in the 

presence of 5-nitrofurans, which in turn remained reduced in the absence of oxygen. 

This again is in agreement with the observed properties of the type II oxygen-sensitive 

nitroreductases. Detailed kinetic studies of the AhpF enzyme and determination of the 

reduced product under aerobic and anaerobic conditions are warranted to shed more 

light on AhpF-catalyzed 5-nitrofuran reduction mechanism.  

In addition to the enzymatic assay, we described in silico simulation of FZ-AhpF 

interaction, using two software packages, AutoDock Vina and SwissDock. Both of 

these predicted binding of FZ in the cleft near the C-terminal disulfide bridge center 

between the FAD and NADH binding sites (Fig. 8). However, the predicted FZ 

orientation within the binding site differs substantially between the two models obtained 

using these algorithms. Further experimental approaches, such as solving the co-crystal 

structure of the AhpF enzyme with the drug and/or enzyme structure-function analysis 

of engineered mutant enzymes are required to improve the interaction model. This is 

important, since a reliable enzyme/drug interaction model may facilitate the rational 

design of 5-nitrofuran analogues that are activated by AhpF with a greater efficiency in 

comparison to the existing commercial 5-nitrofurans. These analogues could potentially 

be employed effectively against 5-nitrofuran-resistant pathogenic E. coli clinical isolates 

that all have been identified to date to be nfsA and/or nfsB loss-of-function mutants.  

The selection of mutants with increased FZ resistance in the absence of NfsA and NfsB 

did not result in any mutations of putative 5-nitrofuran targets, reflecting the high 

probability that once activated, the reactive intermediate(s) of 5-nitrofurans attack 

multiple cellular components promiscuously rather than having specific targets. 
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Alternatively, the drug targets are essential in a manner that no resistance-causing 

mutations are allowed. It is also noteworthy that 5-nitrofurans still have some 

antibacterial effect in the nfsA nfsB ahpF E. coli triple mutant. It is therefore 

conceivable that E. coli possesses other activation enzymes and/or that the non-reduced 

forms of 5-nitrofurans have antibacterial properties. 

Our discovery of a new 5-nitrofuran-activating enzyme in E. coli, AhpF, provides 

opportunities for development of novel strategies for 5-nitrofuran based antibacterial 

therapies. Screening for small molecules to upregulate the expression/availability of 

AhpF and designing 5-nitrofuran analogues with high affinity for AhpF are promising 

approaches to discover novel antibacterial candidates to counteract pathogenic E. coli 

isolates that are resistant to current commercial 5-nitrofurans (FZ, NIT and NFZ) due to 

the nfsA and nfsB mutation. 

Materials and methods 

E. coli strains, growth condition and antibiotics 

All E. coli strains and plasmids used in this study are listed in Table 2. Mutations of the 

Keio single-gene deletion E. coli collection containing the FRT-flanked kanR marker 

(115) were introduced into E. coli recipient strains by P1 transduction according to the 

standard procedure (116). The FRT-flanked kanR cassette was then removed using the 

FLP-mediated recombination as previously described (117). The plasmid 

pCA24N::ahpF was purified from the E. coli strain JW0599 of the ASKA collection 

(118) using the ChargeSwitch-Pro Plasmid Miniprep Kit (ThermoFisher Scientific) and 

then chemically transformed (119) into the nfsA nfsB ahpF strain for the 

complementation assay or ahpC strain for AhpF production. 
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 E. coli was grown in 2xYT medium (BD Difco) at 37 °C with shaking at 200 rpm. For 

preparation of exponentially-growing cells, overnight cultures were diluted by 100-fold 

and incubated until they reached the OD600nm of about 0.1-0.4. This cell suspension was 

then diluted to a desirable density depending on the specific purpose. Antibacterials 

used in this study were purchased from Goldbio, apart from nitrofurazone which was 

purchased from Sigma. 

Table 2: E. coli strains and plasmids used in this study 

Strain Genotype Source 

BW25113 rrnB3 ΔlacZ4787 hsdR514 Δ(araBAD)567 

Δ(rhaBAD)568 rph-1 

(115) 

K2479 BW25113 nfsA nfsB This study 

K2506 BW25113 nfsA nfsB ahpF This study 

K2511 BW25113 nfsA nfsB ahpF pCA24N::ahpF This study 

K2526 BL21 pCA24N::nfsB This study 

K2528 BW25113 ahpC pCA24N::ahpF This study 

Plasmid Notes  

pCP20 AmpR, CmR, FLP+,   cI857+,   pR Repts 

For removal of kan markers by FLP-mediated site-

specific recombination 

(122) 

pCA24N::ahpF CmR; lacIq, pCA24N PT5-lac::ahpF (118) 

pCA24N::nfsB CmR; lacIq, pCA24N PT5-lac::nfsB (118) 

 

Isolating FZ resistant mutants 

FZ-resistant mutants were isolated from spontaneous mutations in E. coli overnight 

populations. The nfsA nfsB strain (K2479) was used as the parental strain for 
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selection. Twenty independent overnight cultures were prepared. Each cell culture (100 

µL) was mixed with 2.5 mL of molten soft agar (2xYT 0.5 % agarose) and then poured 

onto 2xYT plates containing 40 µg/mL, 48 µg/mL or 56 µg/mL of FZ. The agar was 

allowed to solidify. The plates were examined after 24 h and 48 h incubation at 37 °C. 

Colonies formed on these plates were sub-cultured onto 2xYT agar and incubated 

overnight at 37 °C. Only one colony was collected from each culture to minimize the 

chance of repeatedly isolating the same mutation. Putative resistant mutants were 

clonally purified and examined for increased MICFZ by the agar dilution assay, giving 

rise to 15 true FZ resistant mutants. 

Fluctuation assay 

Twenty seven parallel cultures, each 100 µL, were prepared in a 96 well plate 

(Polystyrene, Jet Biofil) at the starting inoculum of 105 CFU/mL. The cultures were 

incubated at 37 °C for 24 h with vigorous shaking. Three cultures were used to 

determine the bacterial concentration (and thus the number of plated cells per culture) 

by plating 10-fold serial dilutions on non-selective agar plates. Each of the remaining 24 

cultures (100 µL) was mixed with 2.5 ml of molten soft agar (2xYT, 0.5 % agarose) and 

poured onto selective agar plates containing FZ (40 µg/mL). After 48 h of incubation at 

37 °C, the colonies formed on the selective agar were counted. The most probable 

number of mutations per culture (m) and its 95 % confidence interval were calculated 

using the newton.LD() and confint.LD() functions, respectively, of the rSalvador 

package v1.7 (144) in the R environment (v.3.4.4) (145). The mutation rate (µ) was 

estimated as m/Nt, in which Nt is the number of plated cells per culture (4.93 × 108). 

Genomic comparative analysis 

The genomic DNA of FZ-resistant mutants and the parental strain (nfsA nfsB E. coli 

strain) was purified using the UltraClean Microbial DNA Isolation Kit according to the 
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manufacturer’s instructions (Qiagen). The DNA samples were then submitted to the 

Massey Genome Service (New Zealand Genomics Limited, Massey University, 

Palmerston North, New Zealand) for whole genome sequencing using Illumina TruSeq 

Nano DNA library preparation and 2 x 250 base paired-end v2 sequencing chemistry on 

the Illumina MiSeqTM sequencing platform. The raw reads were trimmed to a quality 

cut-off value of Q30 (equivalent to error probability p = 0.001) and any short-length 

reads (< 25 base by default) were removed using SolexaQA++ v3.1.7.1 (146). The DNA 

sequence data generated resulted in a theoretical genome coverage that was at least 40 × 

based on the E. coli strain BW25113 genome size. The trimmed reads were aligned with 

the reference E. coli strain BW25113 genome (ASM75055v1 from Ensembl (147)) 

using Bowtie2 v2.3.2 using the --very-sensitive mode (148). The resulting .sam files 

were then converted to .bam files using samtools v1.5 (149) and variant calling was 

carried out using freebayes v1.0.2 (150) using the default parameters, except ploidy was 

set to 1 (-p 1). The variants were functionally annotated using SnpEff v4.3p (151). The 

ahpF mutations were mapped to the corresponding protein domains using the 

visualization software DOG v2.0.1 (152). 

To identify structural variations in the genomes of FZ-resistant mutants, the unmapped 

reads were extracted using samtools v1.5 (149) and then assembled to generate contigs 

using SPAdes v3.9.0 with the --careful option (153). The resulting contigs were 

compared with the E. coli reference genome BW25113 (Accession No. CP009273.1) 

(154) using the website platform NCBI Nucleotide BLAST 2.7.0+ (155), to determine 

the boundaries where the structure variations have occurred. 

ahpF sequence analysis 

Genomic DNA of FZ-resistant isolates was extracted using water boiling as previously 

described (156). The PCR reactions were performed in 50 µL mixtures containing 10 

http://bacteria.ensembl.org/Escherichia_coli_bw25113/Info/Index
https://www.ncbi.nlm.nih.gov/nuccore/CP009273
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µL of 5 × Takara PrimeSTAR PCR buffer, 0.2 mM of each dNTP, 0.2 µM of ahpF 

forward primer (5’- AGGTGAAGCAACTCTGGCTC - 3’) and 0.2 µM of ahpF reverse 

primer (5’-GCAACCCATCGATTTCGACC - 3’), 0.5 µL of PrimeSTARTM HS DNA 

Polymerase (Takara Bio USA) and 5 µL of the DNA extract. The PCR conditions 

included an initial denaturation at 94 °C for 30 sec, followed by 30 cycles of 

denaturation at 98 °C for 10 sec, annealing at 55 °C for 5 sec, and extension at 72 °C for 

2 min. The PCR products were analyzed using agarose gel electrophoresis as previously 

described (157). 

The ahpF amplicons were cleaned up using ChargeSwitch™-Pro PCR Clean-Up Kit 

(Invitrogen) according to the manufacturer’s instructions and submitted to the Massey 

Genome Service (Massey University, Palmerston North, New Zealand) for DNA Sanger 

sequencing using Big Dye Terminator v3.1. The primers used for sequencing included 

ahpF forward primer, ahpF reverse primer and ahpF internal forward primer (5’- 

GTTCACCTCGCTGGTACTGG - 3’). The low-quality bases of raw sequences were 

trimmed until the average quality of 20 bases over 30 using Chromas v2.6.4 

(Technelysium Pty Ltd). The trimmed sequence of ahpF amplicon was then aligned 

with the E. coli reference genome BW25113 (Accession No. CP009273.1) using the 

website platform NCBI Nucleotide BLAST 2.7.0+ (155) to determine the mutations in 

the gene ahpF. 

In silico analysis of missense mutations in ahpF 

The effect of missense mutations in the gene ahpF in FZ-resistant E. coli mutants was 

predicted using the SIFT web server (127) with UniRef 90 database with default 

parameters and the ConSurf web server with default parameters (126). 

 

https://www.ncbi.nlm.nih.gov/nuccore/CP009273
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Antimicrobial susceptibility assays 

The antimicrobial susceptibility of E. coli K-12 strains to 5-nitrofurans was examined 

using the agar dilution and broth microdilution assays as previously described (123, 

158). The range of drug concentrations tested included 32, 28, 24, 20, 16, 12, 8, 4, 2, 1, 

0.5, 0.25, 0.125 and 0 µg/mL in the agar dilution assay and 80, 64, 48, 32, 16, 8, 4, 2, 1, 

0.5 and 0.25 µg/mL in the broth microdilution assay. In ahpF complemented strains, 

expression of ahpF was under the control of a chimeric PT5-lac promoter of a high-copy-

number plasmid pCA24N::ahpF and induced by 0.1 mM or 1 mM IPTG. For the broth 

microdilution assay under anaerobic conditions, the plates were incubated in a BBL 

GasPakTM 150 anaerobic jar (Becton Dickinson) containing three EZ GasPak sachets 

with an oxygen indicator. 

Production and purification of His-tagged AhpF and NfsB proteins 

The His-tagged AhpF and NfsB proteins were expressed from a high copy-number 

plasmid pCA24N::ahpF and pCA24N::nfsB (118), in the E. coli strain K2528 and 

K2526, respectively. The E. coli culture was grown to reach the OD600 nm of about 0.6 

and then induced with 1 mM IPTG at 37 °C for 4 h. The cells were harvested by 

centrifugation at 4000 × g for 15 min at 4 °C and the pellet was stored at -20 °C until 

being used for cell lysis and protein purification. 

The affinity purification of His-tagged AhpF from cell lysate was carried out using a 

Ni-NTA Spin Kit according to the manufacturer’s instructions, with some modifications 

(Qiagen). Firstly, the cell pellet harvested from 50 mL of the cell culture was suspended 

in 3 mL NPI20 lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 

8.0) containing 1 mg/mL lysozyme (Boehringer Mannheim) and frozen at -80 °C. The 

suspension was then thawed at room temperature, followed by addition of 2 µL of 

benzonase endonuclease at 10 units/µL (Sigma) and incubated at 4 °C on a tube roller 
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for 30 min. The lysis mixture was sonicated two times, each session lasted for 2 min 

including alternate 1 s on/off pulse at the power 2 using the microtip of a Virsonic 600 

Ultrasonic cell disruptor. The cell lysate was then centrifuged at 12000 × g for 30 min at 

4 °C. 

The Ni-NTA spin column was equilibrated with 600 µL NPI20 buffer and centrifuged at 

890 × g for 2 min. Next, 600 µL of cell lysate was loaded into the Ni-NTA spin column 

and centrifuged at 270 × g for 5 min. Following that, the Ni-NTA spin column was 

washed four times with 600 µL of NPI50 (50 mM NaH2PO4, 300 mM NaCl, 50 mM 

imidazole, pH 8.0) and centrifuged at 890 × g for 2 min. A His-tagged protein (AhpF or 

NfsB) was eluted by loading 200 µL of the NPI500 buffer into the Ni-NTA spin column 

(50 mM NaH2PO4, 300 mM NaCl, 500 mM imidazole, pH 8.0) and centrifuging at 890 

× g for 2 min. The elution step was performed four times and the eluates were pooled. 

The exchange to Tris buffer (pH 7,4, 50 mM) and further removal of small unwanted 

proteins were performed using a Vivaspin ultrafiltration device 2 (GE Healthcare) with 

the cut-off size of 100 kDa for AhpF eluates and 10 kDa for NfsB eluates, according to 

the manufacturer’s instructions. Purity of the  protein extract was analyzed using SDS-

PAGE, followed by Coomassie blue staining (159, 160) and densitometric analyses 

using the ImageJ software v1.51k (161) (Fig. S4). 

Protein quantification assay 

The quantity of the protein was determined using the Coomassie (Bradford) Protein 

Assay Kit according to the manufacturer’s instructions (Thermo Scientific). 

Nitrofuran reductase assay 

The enzymatic assay for His-tagged AhpF or NfsB protein extract was performed on 

96-well plate (Polystyrene, Jet Biofil) with the total volume of 200 µL containing 0.1 

mM 5-nitrofuran (FZ, NIT or NFZ) and 0.1 mM NADH in 50 mM Tris-HCl buffer (pH 
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7.4). The activity was determined in the presence of 5 µg/mL of the AhpF enzyme or 1 

µg/mL of the NfsB enzyme. The wells without 5-nitrofurans were used as references to 

monitor oxidation of NADH by the oxidase activity of AhpF. The wells containing no 

protein extract were used as negative controls. Each reaction was performed in 

triplicate. The reaction was initiated by adding the enzyme. The progress of the reaction 

was monitored at the absorbance at 340 nm and 400 nm for every 1 min for 12 h at 25 

°C using a MultiskanTM GO microplate spectrophotometer (Thermo Scientific). The 

absorbance spectrum from 300 to 600 nm was recorded at the end of the experiment.  

For the nitroreductase assay under anaerobic conditions, the same protocol was applied 

with some changes. The Tris buffer (7.4) and water was gassed with oxygen-free carbon 

dioxide and placed in an anaerobic chamber (Coy Laboratory) overnight before the 

experiment to remove dissolved oxygen (O2). All the pipetting steps were performed in 

an anaerobic chamber. The assay plate was then placed in an anaerobic jar and 

incubated at 25 °C for 21 h. The absorbance spectrum from 300 to 600 nm was recorded 

at the end of the experiment. 

Linear regression and comparison of the initial reaction rate was performed using the 

emmeans package v.1.3.3 (162) in the R statistical environment (v.3.5.3) (145). 

In silico docking of furazolidone to the AhpF protein 

For the SwissDock server (132, 163), a blind docking simulation was implemented 

using ready-to-dock FZ ligand data file from ZINC database (accession number 

ZINC113418) (164) and the AhpF structural data file from Protein Data Bank (PDB ID 

4O5Q) (135). The process was performed using the ACCURATE mode with the 

flexibility set to 3 Å. The generated docking poses between AhpF and FZ were 

visualized using UCSF Chimera v1.13 (165). Briefly, the binding poses which had 

steric clash between FZ and the cofactor FAD were purged. The hydrogen bonds were 

http://zinc.docking.org/substance/113418
https://www.rcsb.org/structure/4o5q
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then annotated between the ligand and the protein residues; the binding poses with 

fewer than 1 hydrogen bond were removed. The remaining binding poses were then 

ranked according to the fullfitness score and the number of hydrogens between FZ and 

AhpF residues. 

For the AutoDock Vina, the PDBQT files for AhpF (from .pdb file 4O5Q) and FZ (from 

.mol2 file ZINC113418) were generated using AutoDock Tools (ADT) as previously 

described (166). First, a blind docking protocol was performed for AhpF and FZ using 

QuickVina-W (167) with the exhaustiveness of 24 and the number of modes of 50 

(spacing 1 Å, x = 68, y = 66, z = 124, grid box center -38.786, -27.238, 28.694). This 

step was performed three times. The resulting poses were used to determine the most 

likely binding region of the AhpF protein. After that, the docking of FZ into AhpF was 

executed in a smaller grid box (spacing 1 Å, x = 40, y = 40, z = 40, grid box center -

36.936, -33.981, 49.29) with the exhaustiveness of 24 and the number of modes of 50 

using AutoDock Vina (133). This local docking was performed 10 times until the most 

favorable binding pose converged.  

The most favorable binding poses obtained from the SwissDock and AutoDock Vina 

simulation were analyzed using the Arpeggio web server which calculates and 

visualizes the interaction between the ligand and protein residues (134). The interactions 

were visualized using PYMOL v1.8.4.0 (168). 
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Supplemental data 

 

 

Figure S1: The PCR products of the ahpF gene derived from FZ-resistant mutants. Lanes M, 1 kb 

plus ladder; 1, FZ08; 2, FZ10; 3, FZ11; 4, FZ12; 5, FZ13; 6, FZ14; 7, FZ15; 8, FZ16; 9, FZ17; 10, FZ18; 

11, FZ19; 12, FZ20; 13, FZ21; 14, FZ22; 15, FZ23; 16, parental strain  K2479; 17, non-template control. 

The size of ahpF amplicon in two mutants FZ11 and FZ19 was larger than that of the parental strain by 

800 bp, indicating an 800-nucleotide insertion within the ahpF gene in these two FZ-resistant mutants. 
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Figure S2: Evolutionary conservation analysis of AhpF (PDB ID 4O5Q). The evolutionary 

conservation of the AhpF amino acid sequence was analyzed using the Consurf web server and the effect 

of single amino acid substitutions on protein function (damaging or non-damaging) was predicted using 

the SIFT web server. The table on the right shows the normalized conservation score of protein residues 

which were mutated in FZ-resistant mutants.  The 3D backbone of AhpF was colored according to the 

color-scaled conservation score of its residues calculated by the Consurf web server. The residues 

Gly221, Ala226, Ala227 and Tyr280 had negative normalized conservation scores, indicating that these 

residues are highly conserved during the course of evolution. Mutations in these residues are highly likely 

to cause a loss of protein structure and function. Similarly, all the four missense mutations, including 

Gly221Cys, Ala226Val, Ala227Glu and Tyr280Asp were predicted by SIFT to cause the damaging effect 

to the AhpF protein with high confidence.  
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Figure S3: In vitro 5-nitrofuran reduction by AhpF and NfsB under aerobic conditions.  The 

absorbance spectrum (300 - 600 nm) of each reaction was measured at the end of the assay (12 h). 

Purified AhpF 5 µg/mL (A, C, E) or NfsB 1 µg/mL (B, D, F) was mixed with furazolidone (FZ; A, B), 

nitrofurantoin (NIT; C, D) or nitrofurazone (NFZ; E, F) and NADH at the ratio of 0.1 mM : 0.1 mM. 

Each data point represents the mean of three replicates. No-enzyme control and the substrates alone were 

included to allow comparison of the absorbance spectra before and after the reaction. Red arrows indicate 

the difference in the absorbance due to the nitrofuran reduction. 
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Figure S4: Purification of AhpF and NfsB. SDS-PAGE analysis of the His-tagged AhpF and and the 

His-tagged NfsB purifcations. Lanes: M, Novex sharp pre-stained protein standard (Invitrogen
TM

); 1, 

AhpF purified sample; 2, NfsB purified sample. Ni-NTA affinity purification of AhpF (57 kDa) resulted 

in about 90.3 % purity with one contaminant protein band accounting for the remaining 9.7 %. No non-

specific bands were observed in the purified NfsB sample. 
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Abstract 

Bile salts are secreted into the intestine to aid fat digestion and confer antimicrobial 

protection. Sodium deoxycholate (DOC) is the most potent antimicrobial agent among 

them. However, Gram-negative pathogens, such as Escherichia coli, are highly resistant 

to DOC, using multiple mechanisms of which the multidrug efflux pump AcrAB-TolC 

is the dominant one.  In this study, we sought to identify targets of DOC by identifying 

genes involved in DOC sensitivity in the absence of functional efflux pumps (in ∆tolC 

background), using a mutant screen that selected twenty independent spontaneous 

mutants that had a higher MICDOC than the E. coli parental strain. Whole genome 

sequencing of these DOC-resistant mutants followed by analysis of knock-out strains 

showed that proteins encoded by the ptsI, cyaA, crp, ndh and tktA genes mediate 

sensitivity of the ∆tolC E. coli strain to DOC.  In addition, a large deletion of about 15.5 

kb, spanning 24 genes and an inversion of almost half of the E. coli chromosome via an 

insH1-mediated homologous recombination event were selected based on their 

increased DOC resistance. Lack of single mutations resulting in high-level DOC 

resistance points to essential proteins as targets, and/or a broad effect on membranes or 

DNA. Overall, we show that mutations leading to decreased metabolic rates lead to 

small increases in DOC resistance, while no high-resistance evolution in the absence of 

the TolC-dependent multi-drug efflux pumps was identified. 

 

Importance 

Sodium deoxycholate (DOC) is a secondary bile salt, naturally present in the gut and 

involved in the host antimicrobial defence. In this study, we showed possible pathways 

to gain DOC resistance in an E. coli strain which is deficient in TolC-associated efflux 
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pumps. Disruptive mutations in the genes cyaA, crp, ptsI, tktA, ndh, a 15.5 kb DNA 

deletion or a genome inversion conferred low-level DOC resistance. The absence of 

single-step high-level-DOC-resistance mutants in our mutant screen implies that the 

emergence of DOC resistance is prevented in the absence of active efflux pumps. This 

also suggests that this molecule attacks multiple bacterial targets simultaneously and/or 

that its cognate targets are essential proteins whose mutations are lethal. 

Keywords 

Sodium Deoxycholate, Bile salts, Adenylate cyclase, PTS system, Efflux pumps, 

Escherichia coli, Antimicrobial resistance, DNA inversion. 
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Introduction 

Bile salts are an important component of bile which is secreted into the intestine to 

support fat digestion, regulate glucose homeostasis, modulate inflammatory processes 

and confer antibacterial protection (169), and are sometimes used as signaling 

molecules for virulence expression of multiple bacterial pathogens (81-83, 170). In 

humans, these are made up of the primary bile salts, including cholate and 

chenodeoxycholate and the secondary bile salts, including deoxycholate, lithocholate, 

and ursodeoxycholate, which are formed from primary bile salts by the 7α/7β-

dehydroxylation enzymatic activity of gut commensal bacteria (169, 171). Primary and 

secondary bile salts, when first secreted into the duodenum, exist in glycine- or taurine-

conjugated forms that are then hydrolyzed to unconjugated forms because of the bile 

salt hydrolase of microbes residing along the intestine (Fig. S1) (171) . 

Bile salts have been shown to have varying degrees of inhibitory effects on Gram-

positive bacterial pathogens, such as Staphylococcus aureus and Clostridium difficile 

(79, 99). Of note is that sodium deoxycholate (DOC) kills S. aureus with the highest 

efficacy among bile salts, followed by cholate and conjugated cholate, by causing 

membrane disruption and cellular content leakage (99). Regarding C. difficile, 

chenodeoxycholate was found to inhibit spore germination while secondary bile salts, 

including ursodeoxycholate, lithocholate and DOC inhibited the growth of this pathogen 

(79). 

In contrast to Gram-positive pathogens, Gram-negative counterparts are more resistant 

to DOC, with enterobacteria being highly resistant. The dominant DOC resistance 

mechanism in the model enterobacterium Escherichia coli is the restriction of 

intracellular accumulation by employment of diverse active efflux pumps (86, 87). The 

primary machinery involved is a tripartite multidrug efflux system, called AcrAB-TolC, 
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whose disruption has been shown to cause a remarkable decrease in the minimum 

inhibitory concentration (MIC) for DOC (86, 87). This effect upon deletion of the major 

efflux pump is not only observed in E. coli, but also in other gut pathogens such as 

Salmonella, Vibrio cholerae and Campylobacter jejuni (81, 88). 

The antimicrobial mode of action and molecular targets of DOC in E. coli are not well 

understood. It was proposed that DOC could trigger the DNA-damage SOS response, 

cause protein aggregation via induction of oxidative stress and compromise the cellular 

membrane integrity (97, 98). It is unclear, however, whether these consequences result 

from direct attack towards DOC targets (i.e. cytoplasmic membrane, DNA, proteins) or 

are downstream effects upon the interaction of DOC with its unknown cognate target(s).  

In this study, we carried out a mutant screen and employed whole genome sequencing 

to characterize twenty spontaneous DOC-resistant E. coli mutants independently 

isolated from an efflux-pump-deficient tolC parental strain. This approach provided 

insights into the mechanism of DOC action/resistance in E. coli cells other than 

overexpression of efflux pumps. 

Results 

Isolating DOC resistant mutants 

In order to discover DOC resistance mechanisms outside of efflux pumps, we selected 

for spontaneous DOC-resistant E. coli mutants in a ∆tolC genetic background. The 

selection was performed at three DOC concentrations (100, 125 and 150 µg/mL) that 

are all inhibitory to the growth of the parental strain. Twenty-six independent overnight 

cultures were prepared for selection on agar plates. No colonies were observed after 24 

h of incubation at any of the three DOC concentrations used and the absence of bacterial 

growth remained after 48 h of incubation on agar plates containing 125 µg/mL and 150 



90 
 

µg/mL of DOC. Colony formation was observed on plates containing 100 µg/mL of 

DOC after 48 h of incubation. From these plates, twenty independent E. coli mutants 

showing increased DOC resistance in the tolC genetic background were isolated. All 

mutants had the same MICDOC of 125 µg/mL, higher than that of the parental strain (100 

µg/mL). 

Genome sequence analysis 

Genomic DNA was extracted from overnight cultures of 20 clonally purified DOC-

resistant mutants and the parental strain, and sequenced using the paired-end Illumina 

Miseq platform. We trimmed low-quality bases from the raw reads and mapped the 

trimmed reads onto the E. coli BW25113 reference genome as described in the method 

section. For all the DNA samples, the total base number of the resulting trimmed reads 

was at least 46× the reference genome size, allowing us to confidently identify genetic 

variants in the DOC-resistant mutants in comparison to the parental strain. Overall, 16 

resistant mutants had a mutation in the ptsI or cyaA gene (Table 1), one had mutations 

in two genes, ndh and ybhQ, one had a mutation in tktA and one contained a 15.5-kb 

DNA deletion (Table 2). The size and sequence of the mutated loci were further 

confirmed by gene-specific high-fidelity PCR and Sanger sequencing, providing 

evidence in line with the mutations discovered through whole genome sequence 

analyses (Figs. S2 and S3). One DOC-resistant mutant was found to contain a large 

DNA inversion that we pinpointed by employing additional genome sequencing and 

PCR reactions. The details about the mutations involved in DOC resistance are as 

follows. 

Mutations in cyaA and ptsI 

Amongst the twenty DOCR mutants, eight had a mutation in the cyaA gene, whilst eight 

others contained a mutation in the ptsI gene (Table 1). Most mutations occurred at 
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unique sites within these two genes except for two pairs of mutants, DOC04/12 and 

DOC01/11, which had identical mutations in the cyaA and ptsI genes, respectively. 

In E. coli, the cyaA gene encodes a class I adenylate cyclase enzyme which converts 

ATP into cyclic AMP (cAMP) and inorganic pyrophosphate. The second messenger 

molecule cAMP interacts with the cAMP receptor protein Crp (Catabolite Repression 

Protein) to form an active transcriptional regulator cAMP-Crp which regulates the 

expression of at least 378 promoters that are involved in central metabolism such as 

transport of carbon sources, carbon metabolism, aerobic respiration, switch control 

between glycolysis and gluconeogenesis and a number of transcriptional regulators 

(172). The CyaA protein is composed of a catalytic domain at the N-terminal region and 

a regulatory domain at the C-terminal region, which inhibits the activity of the catalytic 

domain (173). The five missense mutations in cyaA occurred exclusively within the 

catalytic domain (Fig. 1). The gene ptsI encodes enzyme I (EI or PtsI) of the 

phosphoenolpyruvate-sugar phosphotransferase (PTS) system which is responsible for 

importing sugar molecules. This enzyme comprises an Hpr (histidine protein)-binding 

domain, a His domain and a PEP (phosphoenolpyruvate)-binding domain (174). The 

mutations in ptsI were distributed over all three major functional domains. 
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Table 1: List of mutations in the cyaA and ptsI genes found in the mutants having 

increased DOC resistance (MIC= 125 µg/mL) relative to the parental strain (100 

µg/mL) 

Locus Isolate Location of mutation Predicted mutational 

change 

cyaA 

Adenylate cyclase 

 

 

DOC02 IS1 insertion at -1 

position with 9-

nucleotide duplication 

Disruption in expression of 

the ORF 

DOC04 T900A Asp300Glu 

DOC05 G563A Arg188His 

DOC12 T900A Asp300Glu 

DOC19 T803G Leu268Arg 

DOC20 A-5C 5’ UT sequence; 

interference with translation 

DOC21 G185T Cys62Phe 

DOC22 C530A Thr177Asn 

ptsI 

phosphoenolpyruvate-

sugar 

phosphotransferase 

enzyme I 

DOC01 G41A Gly14Asp 

DOC03 G1550A Gly517Glu 

DOC06 G877A Gly293Ser 

DOC09 G1067A Gly356Asp 

DOC11 G41A Gly14Asp 

DOC15 1332A duplication  Frameshift from Glu445 

DOC16 C103T Gln35 > stop 

DOC18 G115A Glu39Lys 

 



93 
 

 

 

Figure 1: Mutations in the proteins CyaA (A) and PtsI (B) in DOC resistant isolates. A) The CyaA 

protein consists of two regions, including the adenylate cyclase catalytic domain (residues 1-535) and the 

regulatory domain (residues 541-848). A single nucleotide substitution and one IS1 insertion in the 5’-

unstranslated regions of cyaA mRNA are not shown in this figure. B) The PtsI protein consists of three 

regions, including the His domain (residues 1-20 and 149-230), the Hpr binding domain (residues 31-143) 

and the PEP-binding domain (residues 261-573). The types of mutations are illustrated by the color of 

annotations: blue, missense mutation; cyan, frame-shift mutation; red, nonsense mutation. The frequency 

of mutations is described by the size of the annotations: small, 1; large, 2. 

Effects of cyaA or ptsI knock-out mutations on DOC resistance 

Based on the observations of frequent involvement of different mutations in cyaA or 

ptsI in rendering enhanced DOC resistance, we hypothesized that the mutations in these 

genes (Table 1) are likely to lead to a loss of function. To test this hypothesis, we 

generated knock-out mutations in cyaA or ptsI in the tolC genetic background and 

examined the DOC resistance of the corresponding strains using an agar dilution assay. 

The double knock-out mutants had an increased DOC resistance relative to that of the 

parental strain (125 µg/mL; Fig. 2) and equivalent to that caused by spontaneous 

mutations in cyaA or ptsI listed in Table 1. The identical phenotype of knock-out and 

spontaneous mutants confirms that the mutations identified in our screen are indeed 
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loss-of-function mutations in either cyaA or ptsI, irrespective of the widely different 

changes they caused in the protein, from a premature translation stop to missense 

mutations. 

To confirm that the increased DOC resistance was solely due to the deficiency of the 

mutated gene, complementation assays were performed with plasmid-expressed CyaA 

or PtsI. Basal expression of cyaA from the chimeric PT5-lac promoter of a high-copy 

number plasmid pCA24N::cyaA was found to render the complemented strain more 

sensitive to DOC in comparison to the same strain bearing an empty plasmid or the 

parental strain (Fig. 2). The cyaA overexpression by promoter induction at 0.1 mM or 1 

mM IPTG was found to be lethal. In the ptsI complementation assay, expression upon 

induction by 0.1 mM IPTG conferred a major decrease in the MICDOC as compared to 

that of the parent or knock-out containing the empty vector (Fig. 2); the plasmid-

selective antibiotic, chloramphenicol, was not included in the DOC-containing agar 

plates, since we noted that a high ptsI expression was completely inhibitory to the 

growth of the ptsI complemented strain in the presence of chloramphenicol. 

Given a close functional relationship between CyaA, which catalyzes conversion of 

ATP to cAMP and Crp, the transcription factor that is active only when complexed with 

cAMP, we introduced a crp knock-out mutation into the parental tolC strain and 

examined the effects of the gene knock-out and complementation on DOC 

susceptibility. The crp knock-out in the tolC strain caused the same increase in 

MICDOC as the cyaA mutant (125 µg/mL). Complementation with Crp expressed at a 

basal level from the multi-copy plasmid pCA24N::crp lowered the MICDOC to the level 

of the parental strain (Fig. 2). 
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Figure 2: DOC susceptibility in cyaA, ptsI or crp disrupted mutants and corresponding 

complemented strains. The MICs for DOC were determined using agar dilution assays. Each treatment 

was performed in triplicate, giving the same MIC. Complementation of cyaA and crp was conducted at a 

basal expression level from the chimeric PT5-lac promoter in the high-copy number plasmid pCA24N. 

Complementation of ptsI expression was performed at 0.1 mM IPTG. Parental strain, BW25113 tolC; 

Knock-out, the gene knock-out strain; Knock-out + vector, the gene knock-out strain transformed with the 

empty plasmid control pCA24N; Knock-out + complemented, the gene knock-out strain transformed with 

the plasmid pCA24N carrying the gene to be complemented. 

Mutations in other loci conferring increased DOC resistance 

Apart from the sixteen DOCR mutants found to possess ptsI or cyaA mutations as 

described above, one mutant, DOC07, was identified to contain mutations in two genes, 

ybhQ (a missense mutation) and a deletion including the ndh coding sequence (CDS) 

and upstream regulatory sequence (a 405-nucleotide deletion; Table 2 and Fig. S3). The 

ybhQ gene encodes a putative inner membrane protein with unknown function, while 

the gene ndh encodes a type II NADH dehydrogenase (also known as NADH:quinone 

oxidoreductase II) which is part of the bacterial electron transport chain. This enzyme 

transfers electrons from NADH to quinones and regenerates NAD+ without generating 

an electrochemical gradient across the cytoplasmic membrane; thus, its role is thought 
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to maintain the [NADH]/[NAD+] ratio (175). The deletion in the ndh gene identified in 

this mutant spans from nucleotide -285 upstream of the CDS to nucleotide 121 of the 

coding sequence and is predicted to completely disrupt ndh expression and function, 

thus conferring a loss of type II NADH dehydrogenase activity in the DOC07 mutant. 

Introduction of the precise ndh mutation into the tolC strain caused an increase in the 

MICDOC to 125 µg/mL, the same as that of the isolate DOC07 (Fig. 3), showing that the 

405-nucleotide deletion including portion of the ndh CDS in this mutant was 

responsible for the increased DOC resistance rather than the point mutation in ybhQ. 

This was further reinforced by a complementation assay in which basal ndh expression 

from the pCA24N::ndh plasmid lowered the MICDOC in the complemented strain back to 

the level of the tolC parental strain (Fig. 3). 

Table 2: Mutations found in other loci conferring enhanced DOC resistance 

Isolate Locus Location of 

mutation 

Predicted 

mutational 

change 

Cellular function 

affected 

DOC07 ybhQ C254T Ala85Val putative inner membrane 

protein 

ndh 405-nucleotide 

deletion from -285 

to +120 positions 

Loss of 

function 

NADH:quinone 

oxidoreductase II 

DOC13 Part of CP4-

6 prophage 

15490-nucleotide 

deletion from 

254176 to 269665 

Loss of 

function of 

multiple genes 

Unknown 

DOC17 tktA 621T Frameshift 

from Tyr208 

Transketolase 1 

 

Another DOC resistant mutant (DOC17) contained a single nucleotide deletion in the 

tktA gene at the position 621 that causes a frameshift from the residue Tyr208, leading 

to disruption of the C-terminal two thirds of the protein (Table 2). The tktA gene 
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encodes transketolase 1 whose major role is to catalyze the reversible transfer of a ketol 

group between different substrates, thus connecting the glycolysis and pentose-

phosphate pathway (176). That the TktA loss of function was responsible for the DOC 

resistance phenotype in DOC17 was confirmed by measuring the MICDOC in the tktA-

ORF-deleted strain, which had the same level of DOC resistance as the DOC17 mutant. 

Complementation showed that overexpression of tktA upon 0.1 mM IPTG induction not 

only compensated for the tktA deletion but also further lowered the MICDOC to 50 

µg/mL, below the level of the parental ∆tolC strain (Fig. 3). 

 

Figure 3: DOC susceptibility in ndh or tktA disrupted mutants and corresponding complemented 

strains. The MICs for DOC were determined using agar dilution assays. Each treatment was performed in 

triplicate, giving the same MIC. Complementation of ndh was conducted at a basal expression level from 

the chimeric PT5-lac promoter in the high-copy number plasmid pCA24N. Complementation of tktA 

expression was carried out at 0.1 mM IPTG. Parental strain, BW25113 tolC; Knock-out, the gene 

knock-out strain; Knock-out + vector, the gene knock-out strain transformed with the empty plasmid 

control pCA24N; Knock-out + complemented, the gene knock-out strain transformed with the plasmid 

pCA24N carrying the gene to be complemented. 

The DOC13 mutant was found to have gained enhanced DOC resistance through a 15.5 

kb deletion, from the frsA gene to the IS5A element within the CP4-6 prophage, that 
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removed 23 genes and 85 nucleotides from the 3’-end of the frsA gene (Fig. 4). We 

confirmed this mutation using primers designed to amplify the sequence flanking the 

deletion (Fig. S3, lane 7, ~1100 bp). These primers were too far apart to obtain a PCR 

product in the parental strain (16585 bp). 

 

 

Figure 4: A large deletion in the genome of the DOC13 mutant. The arrows indicate the boundary 

sites of the deletion (co-ordinates: 254,176-269,665). This affects 24 genes, from frsA to ykfC, and covers 

the first 10 kb of the CP4-6 prophage (co-ordinates: 258,669-292,976). 

 

A large genome inversion in the DOC14 mutant 

Surprisingly, there were no DNA mutations detected in DOC14, using the whole 

genome sequence analysis of the DNA extracted from the overnight cultures as 

described above. A likely explanation for this is that the genome of the DOC14 mutant 

possessed an inversion, relative to that of the parental strain, due to homologous 

recombination events mediated by two inverted repeats that are longer than the average 

length of DNA fragments (~ 550 bp) in the libraries prepared for the Illumina genome 

sequencing. If this was occurring in DOC14 then it would be very difficult to identify 

this even using standard Illumina sequencing in combination with reference based short 

read mapping. 
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To test the possibility that DOC14 contained an inversion that was responsible for its 

DOC resistance phenotype, we used a strategy based on the replication-associated gene 

dosage effect in exponentially growing cultures where the cell cycle is shorter than the 

chromosome replication. Under these conditions, DNA copy number is greater in the 

region near the origin of chromosome replication (oriC) than in the region closer to the 

termination region, resulting in genome coverage distribution corresponding to an 

inverted-V shape, with the origin of replication as the central peak (177). If any 

inversion occurs in the mutant, this distribution will be skewed in the inverted portion of 

the genome. We extracted and sequenced the genomic DNA from the exponentially 

growing cultures of the DOC14 mutant and parental strain. Surprisingly, the genome 

coverage of both the parental strain and the DOC14 mutant appeared to have irregular 

peaks throughout the genome (Fig. 5A). Nonetheless, a comparison of both genomes 

showed that in the DOC14 mutant, a region spanning the coordinates between 1.4-1.6 

Mb had higher coverage than expected and a region spanning the coordinates between 

1.9-2.4 Mb had lower coverage than expected. This evidence supports the conclusion 

that there is an inversion spanning the coordinates between 1.4-1.6 Mb and 1.9-2.4 Mb 

in DOC14. 

Using the software for detection of repetitive sequences (repseek) (178), we predicted 

87 possible homologous recombination events mediated by two inverted repeats with a 

size larger than 500 bp, according to the reference genome sequence BW25113 (Table 

S1). After considering the range estimated from the genome coverage analysis, the 

number of candidate recombination endpoints was narrowed down to eight insH1 sites 

(P1 to P8). The recombination endpoints were identified using diagnostic PCR reactions 

flanking these eight insH1 sites (Table 6). Our rationale is that if an insH1 site 

participates in the inversion, the forward and reverse primers of that site will be 
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separated and no PCR product will be observed. This approach resulted in identification 

of two sites, insH1 P2 and P7, that were involved in the inversion in the DOC14 mutant 

(Fig. 5B). It is noteworthy that a low-intensity band corresponding to the wild-type was 

present in the DOC14 lanes for the insH1 P2 and P7 sites (~3000 bp and 2000 bp, 

respectively) in the PCR gel rather than complete absence (Fig. 5B); this could be either 

the result of the artefact of the PCR, due to overlap extension of products that have 

hybridized to each other over the identical insH1 sequences, or due to spontaneous 

recombination between P2 and P7 that results in reversion (179). 
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Figure 5: A large inversion in the genome of the DOC14 mutant. A) Structural map of the reference 

genome BW25113. The features were represented in circular plots counted from the outside to center as 

follows: the outermost ring 1, coordinates of the reference genome; 2, plus-strand CDS (cyan); 3, minus 

strand CDS (magenta); 4, genome coverage of the parental strain; 5, genome coverage of the DOC14 

mutant, yellow (above average) and purple (below average); 6, insH1 sites tested for hypothetical 

inverted-repeated mediated homologous recombination, on plus strand (cyan), on minus strand (magenta). 
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The red arrow indicates the inversion present in the DOC14 mutant. B) Amplification of the eight insH1 

sites hypothesized to be involved in homologous recombination in the DOC14 mutant. Each set of three 

lanes includes the parental strain, the DOC14 mutant and a non-template control. M, 1 kb plus DNA 

ladder (Thermo Scientific). 

The primers flanking the insH1 sites P2 and P7 are expected to give products if the 

inversion has brought them to proximity. If so, the P2 forward primer and P7 forward 

primer are relocated to amplify a 2000 bp product, the P2 reverse primer and P7 reverse 

primer can amplify a 3000 bp product (Fig. 6A). To positively identify this 

rearrangement, we performed two sets of PCR assays that contained three primers, of 

which two would enable positive amplification of either the parent or the predicted 

recombinant, each giving a product of a specific predicted size, as illustrated in Fig. 6A. 

In the PCR reaction containing the P2 primer pair and P7 forward primer, the parental 

strain showed a major product at 3000 bp, corresponding to the distance between the P2 

forward and reverse primers in the wild-type configuration, whilst the DOC14 mutant 

showed a 2000 bp band, as expected for the distance between the P2 forward and P7 

forward primer after recombination between these two insH1 sites (Fig. 6B). The 

product lengths expected from the wild-type and invertant were also obtained in the 

PCR reaction probing flanking sequences around the P7 insH1 site (containing the P7 

forward and reverse primer pair and P2 reverse primer; Fig. 6B). Taken together, our 

data supports the conclusion that the genome of the DOC14 mutant possesses a DNA 

inversion, relative to the parental genome, that arose through a recombination event 

between the insH P2 and insH P7 loci. As no other difference was identified between 

DOC14 and the parent, it appears that the inversion event is responsible for the 

increased DOC resistance in this mutant.  
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Figure 6: Three-primer PCR to confirm the genome inversion in the DOC14 mutant. A) Schematic 

illustration of the relative positions of PCR primers on the genomes of the parental strain and the DOC14 

mutant. The expected size of PCR amplicons was labelled inside the genome when three primers are 

combined in the PCR reactions. Genome color: red, the left arm of the chromosome; blue, the right arm of 

the chromosome. P2F, insH1 P2 forward primer; P2R, insH1 P2 reverse primer; P7F, insH1 P7 forward 

primer, P7R, insH1 P7 reverse primer. Red arrows, P2 primers; blue arrows, P7 primers. B) Agarose gel 

analysis of PCR products amplified by three-primer combinations. Each set of three lanes includes the 

DOC14 mutant, the parental strain (BW25113 tolC), and a non-template control. M, 1kb plus DNA 

ladder (Thermo Fisher Scientific). 

Fitness cost of DOC-resistance-causing mutations 

We examined the effect of deletion mutants of genes analyzed in this work, ptsI, cyaA, 

crp, ndh and tktA, as well as the spontaneous multi-gene deletion mutant DOC13 
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(containing a deletion around the CP4-6 prophage) on the cell fitness by monitoring 

their growth continuously over 24 h (Fig. 7A). We found that disruption of ptsI, crp or 

ndh, or the large deletion around the CP4-6 prophage in the DOC13 mutant caused a 

slight increase (by 1 or 2 min) in the doubling time of the corresponding strain in 

comparison to that of the parental strain (doubling time = 23.6 min) (Fig. 7B). In 

contrast, a profound burden on the bacterial growth was observed in the tktA strain 

whose doubling time was increased by as much as 10 minutes relative to the parental 

strain. Changes in the growth fitness upon mutations were also reflected through the 

optical density at stationary phase cultures. After 24 h of incubation, the optical density 

at 600 nm of the cyaA or crp strains was significantly lower than that of the parental 

strain (Fig. 7A and C). 



105 
 

 

Figure 7: Fitness cost of DOC resistance causing mutations. A) The bacterial growth curve over 24 h 

of incubation at 37°C. The OD600 was measured every 20 minutes. B) Doubling time at the exponentially 

growing phase of bacterial cultures. C) Absorbance at 600 nm of bacterial cultures after 24 h of 

incubation at 37 °C. The error bar represents mean ± standard deviation of at least six replicates. Parental 

strain, BW25113 tolC. Statistical significance was determined using Student’s t-test (* p  0.05, ** p  

0.01).  

Discussion 

In this study, we have isolated and characterized DOC-resistant mutants from an E. coli 

K-12 strain in which seven efflux pumps, AcrAB-TolC, AcrAD-TolC, AcrEF-TolC, 
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MdtABC-TolC, MdtEF-TolC, EmrAB-TolC and MacAB-TolC were inactivated by 

deletion of the gene encoding the common outer membrane component, TolC (113). 

The deletion of efflux pumps eliminated the chance of isolating resistance mutations 

associated with overexpression of efflux pumps whose correlation with DOC resistance 

has been well characterized. Also, this allowed simulation of DOC resistance/action in 

E. coli when DOC is co-administered with a TolC-efflux-pump inhibitor. 

Whole genome sequence analyses of twenty independent E. coli mutants selected for 

their enhanced DOC resistance showed frequent mutations in the cyaA and ptsI genes 

(Table 1). The former encodes adenylate cyclase and the latter gene encodes Enzyme I 

(EI) of the PTS system. Proteins encoded by both of these genes are involved in 

adjustment of the intracellular cAMP level, a universal cell-signaling second messenger. 

In E. coli, adenylate cyclase (CyaA) catalyzes the formation of cAMP from ATP; thus, 

it is apparent that disruption of the CyaA-encoding gene leads to a drop in the cAMP 

level. The situation for PtsI is more complex. This enzyme transfers a phosphate group 

from phosphoenolpyruvate (PEP) to the Hpr protein which then phosphorylates a sugar-

specific component of PTS system, including the glucose-specific protein IIAGlc, an 

adenylate cyclase-activating enzyme when phosphorylated (180). Therefore, we 

hypothesized that the ptsI loss-of-function mutations result in a drop in the amount of 

phosphorylated IIAGlc, which in turn causes a low adenylate cyclase activity and thus a 

decline in cAMP levels. This argument is in agreement with the reported considerable 

drop in cAMP level in an E. coli mutant with a defective PTS system (181). 

Additionally, we showed that the knock-out mutation of the crp gene encoding the 

cAMP-dependent transcription factor caused the same effect as cyaA or ptsI mutations, 

further emphasizing the role of cAMP in enhanced DOC resistance. An intriguing 

question is that of the potential role of the Crp-cAMP level in mediating resistance to 
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DOC. The Crp-cAMP regulatory complex controls the expression of a large number of 

genes, covering a wide range of cellular functions, such as sugar transport and 

metabolism, aerobic respiration and expression of a number of transcriptional regulators 

which, in turn, control expression of other genes (172). It is highly likely that the 

enhanced DOC resistance results from the integration of multiple pathways regulated by 

Crp-cAMP, some of which might have opposing or compensatory effects, that 

collectively allow resistance-causing mutations to occur with a minimal fitness cost. 

Analyses of the downstream effect(s) cascaded from the Crp-cAMP regulator might 

reveal some pathways/proteins that are targets of DOC action or mediate resistance to 

this antibacterial molecule. 

It is also worth mentioning that the majority of cyaA and ptsI mutations found in the 

DOCR mutants were missense mutations that all caused a loss-of-function phenotype of 

the corresponding protein. This provides a useful source of information about the 

important residues for the study of the structure and function of CyaA and PtsI, 

especially for the former protein, a class I adenylate cyclase, whose structure has not yet 

been solved. 

An increased DOC resistance was also caused by a knock-out mutation of ndh or tktA. 

Tran et al. (182) found that a loss of the ndh gene led to a 4.5-fold reduction in the 

electron transport from NADH to oxygen. Provided that the electron transport chain is a 

source of reactive oxygen species (ROS) which play important roles in bacterial death 

caused by bactericidal antibiotics (183, 184), a decrease in the electron transport rate 

would lower the burden of the oxidative stress imposed by DOC exposure (98, 185). A 

similar explanation can be applied to the tktA mutation. Null mutations in tktA led to a 

lower growth rate (Fig. 7) from two possible causes: intracellular accumulation of the 

toxic metabolite methylglyoxal (186) and a shortage of glycerol-3-phosphate, an 
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essential precursor for phospholipid biosynthesis (176). The slowed growth may 

mitigate the activity of DOC by alleviating generation of ROS from the bacterial 

electron transport chain.  

In the DOC13 mutant, a large deletion was identified that affected the 24 genes from 

frsA to ykfC (Fig. 4); Many of the missing genes encode products with poorly 

understood functions. The gene whose loss was responsible for selective advantage 

upon DOC exposure remains to be identified. 

We described the asymmetrical chromosome inversion in the DOC14 mutant that 

occurred by homologous recombination between identical and oppositely orientated 

insertion sequences insH1 (Fig. 5). This inversion was mapped by combination of 

sequence analyses of the chromosomal DNA extracted from exponentially growing 

cultures and a series of diagnostic PCR assays (Figs. 5 and 6). Theoretically, an 

asymmetric genome inversion would move some genes closer to the origin of 

replication oriC (the genes downstream of the insH1 P7 gene) and thus increase their 

copy number and expression during the exponential phase due to a replication-

associated gene dosage effect. By contrast, the genes upstream of the insH1 P2 site were 

moved away from oriC by inversion and therefore have a decreased copy number and 

expression level during the exponential phase. However, such a simple scheme cannot 

be applied to the genome inversion in the DOC14 mutant. The gene dosage profile in 

the DOC14 mutant and the parental strain has more than one peak, and none of them 

was found to be located at the oriC site (Fig. 5A). This phenomenon complicates the 

prediction of which metabolic changes in the DOC14 mutant lead to DOC enhanced 

resistance. Also, such a gene dosage pattern is reminiscent of oriC-independent 

chromosome replication initiations. Irregular replication initiations have been reported 

in E. coli mutants deficient in rnhA-encoded RNase HI or recG-encoded DNA 
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translocase in which DNA replication initiations were shown to take place from R-loops 

in the former mutant or replication fork fusion in the latter (187, 188). Nonetheless, the 

gene dosage profile (or replication profile) upon the tolC deletion was significantly 

different from those seen in the rnhA or recG deletions, which had a prominent 

replication initiation at the termination region and a functional oriC. By contrast, we 

found that the tolC mutant appeared to have an inactive oriC, rather initiating DNA 

replication at the chromosome coordinates of approximately 0.3, 0.5 3.2, 3.7, 4.3 and 

4.5 Mb that are in the 2/3 of the chromosome around oriC (Fig. 5A). Perhaps, the tolC 

deletion interferes with the  regulation of DNA replication, including oriC-firing-related 

functions and prevention of uncanonical DNA replication initiations. This surprising 

observation expands the functions of the TolC-associated efflux pumps. Inactivation of 

tolC not only affects the efflux pump activity directly, but also causes a global effect by 

changing the gene dosage profile in the exponential phase. Further studies are warranted 

to provide a better insight into the involvement of tolC in DNA replication. 

Returning to the DOC-resistance selection, it is worth noting that we attempted but 

failed to identify any single gene responsible for significant DOC resistance in the 

tolC strain. This implies that the emergence of DOC resistance is prevented in the 

absence of efflux pumps. Possible reasons for the lack of specific mutations responsible 

for significant resistance could be that DOC affects multiple cellular targets 

simultaneously, including DNA, cellular membrane and protein structures (97, 98) or 

that its cognate targets are essential proteins and the mutations in them are lethal. 

Notably, mutations that resulted in low-level DOC resistance were associated with a 

decreased growth rate or a lowered stationary phase cell density (Fig. 7). Taken 

together, these data support the development of slower metabolic rate as a mechanism 

for increased resistance to DOC in the absence of efflux pumps. A practical outcome of 
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our work is the finding that there was no evolution of DOC resistance in the absence of 

TolC-associated efflux pumps, suggesting that combinations of DOC and an efflux 

pump inhibitor acting through TolC to combat enteric Gram-negative pathogens will be 

immune from developing resistance outside of the potential the efflux pump target 

mutations and acquisition of horizontally transferred DNA. 

Materials and methods 

Bacterial strains, growth conditions and antibiotics 

All E. coli strains and plasmids used in this study are listed in Table 3 and 4. 

Introduction of the complete CDS-kanR replacement alleles from the corresponding 

Keio collection E. coli K12 knock-out strains into the strain JW5503 (BW25113 tolC) 

(115) was performed using the P1 phage transduction, according to the standard 

procedures (116). To eliminate potential polar effects on downstream genes in the 

operon, the FRT-flanked kanR cassette was then removed using FLP-mediated 

recombination as previously described (117). Plasmids derived from pCA24N bearing 

the gene to be tested were purified from E. coli strains of the ASKA collection 

containing ORF expression constructs derived from this organism (118) using the 

ChargeSwitch-Pro Plasmid Miniprep Kit (Thermo Fisher Scientific). The plasmid DNA 

was then chemically transformed into specific E. coli strains for further work (119). In 

the case of P1 phage-mediated transduction of the crp::kan mutation from Keio strain 

JW5702 to the tolC strain, the position of crp (3479479-3480111) is close to tolC 

(3171474-3172955), permitting an undesirable reintroduction of the intact tolC allele 

along with crp::kan into the tolC strain in some transductants. Replica plating of 

putative transductants on Kan- and DOC-selective agar (50 µg/mL and 1 mg/mL, 

respectively) was used to screen for the tolC crp::kan recombinants which grew on 

Kan-selective agar but did not grow on DOC-selective plates. 
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E. coli cultures were grown in 2xYT medium (BD Difco) at 37°C with shaking at 200 

rpm. To prepare exponential phase cultures, fresh overnight cultures were diluted 100-

fold and incubated at 37°C to reach the OD600nm of about 0.1-0.4. This cell suspension 

was then diluted to the desirable concentration, depending on specific purposes. 

Antibiotics used in this study were purchased from GoldBio and sodium deoxycholate 

was provided by New Zealand Pharmaceuticals Ltd. 

Table 3: List of E. coli strains used in this study 

Strain Genotype Source 

BW25113 rrnB3 ΔlacZ4787 hsdR514 Δ(araBAD)567 

Δ(rhaBAD)568 rph-1 

(115) 

JW5503 BW25113 tolC (115) 

K2535 BW25113 tolC cyaA This study 

K2536 BW25113 tolC ptsI This study 

K2537 BW25113 tolC tktA This study 

K2538 BW25113 tolC ndh This study 

K2545 BW25113 tolC cyaA pCA24N::cyaA This study 

K2546 BW25113 tolC cyaA pCA24N This study 

K2540 BW25113 tolC ptsI pCA24N::ptsI This study 

K2541 BW25113 tolC ptsI pCA24N This study 

K2542 BW25113 tolC tktA pCA24N::tktA This study 

K2543 BW25113 tolC tktA pCA24N This study 

K2544 BW25113 tolC ndh pCA24N::ndh This study 

K2547 BW25113 tolC ndh pCA24N This study 

K2548 BW25113 tolC crp::kan This study 
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K2554 BW25113 tolC crp::kan pCA24N::crp This study 

K2555 BW25113 tolC crp::kan pCA24N This study 

 

Table 4: List of plasmids used in this study 

Plasmid Genotype or description Source 

pCP20 AmpR, CmR, FLP+,   cI857+,  pR Repts         

For removal of an frt-flanked kan marker from E. coli K-

12 strains by FLP-mediated site-specific recombination. 

(122) 

pCA24N Vector control for ASKA collection plasmids (118) 

pCA24N-cyaA CmR; lacIq, pCA24N PT5-lac::cyaA gfp (118) 

pCA24N-ptsI CmR; lacIq, pCA24N PT5-lac::ptsI gfp (118) 

pCA24N-tktA CmR; lacIq, pCA24N PT5-lac::tktA gfp (118) 

pCA24N-ndh CmR; lacIq, pCA24N PT5-lac::ndh gfp (118) 

pCA24N-crp CmR; lacIq, pCA24N PT5-lac::crp gfp (118) 

 

Selection for DOC resistant mutants 

E. coli mutants with enhanced DOC resistance were selected from the E. coli overnight 

cultures of the parental strain JW5503 (BW25113tolC). Briefly, independently set cell 

cultures (from separate single colonies) were spread each onto three selective 2xYT 

plates containing 100 µg/mL, 125 µg/mL and 150 µg/mL of DOC (100 µL per plate). 

The plates were incubated at 37°C and growth was examined after 24 h and 48 h of 

incubation. Colonies formed on these plates were sub-cultured onto 2xYT agar and 

incubated overnight at 37°C. Only one colony was collected from each original culture 

to minimize the chance of identifying the same mutation. The putative resistant mutants 
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were examined for increased MICDOC using an antimicrobial agar dilution assay before 

further analysis. 

Antimicrobial susceptibility assay 

DOC susceptibility of the E. coli K-12 parental strains and selected progeny DOCR 

mutants were examined using agar dilution assays as previously described (158). 

Briefly, 10 µL of exponential phase cultures at 106 CFU/mL was pipetted onto agar 

plates containing 150, 125, 100, 75, 50 and 25 µg/mL of DOC. Lower DOC 

concentrations were included in some assays when particular strains did not grow on the 

lowest DOC concentrations (25 µg/mL). The agar plates without DOC were used as 

negative controls. Each treatment was performed in triplicate. The plates were incubated 

at 37°C for 16-20 h before assessing bacterial growth. The MIC was defined as the 

lowest DOC concentration which completely inhibits bacterial growth. 

For complementation assays, the expression of a gene to be tested (cyaA, ptsI, tktA, ndh 

and crp) was driven from a T5-lac chimeric promoter of the high-copy-number 

pCA24N expression vector (118). Chloramphenicol at 25 µg/mL was included in the 

medium to maintain the pCA24N plasmid and its derivatives. For the genes cyaA, ndh 

and crp, basal expression from the uninduced promoter was used since their higher 

expression was found to be toxic to the growth of the corresponding complemented 

strain. Expression of tktA was induced by 0.1 mM IPTG. For the ptsI complementation 

assay, chloramphenicol was not included in the antimicrobial agar (see explanation in 

the results) and expression of ptsI was induced by 0.1 mM IPTG.  

Comparative genome analysis 

The genomic DNA of DOC resistant mutants and the parental strain (tolC E. coli 

strain) was extracted from their overnight cultures using the UltraClean Microbial DNA 

Isolation Kit according to the manufacturer’s instructions (Qiagen). Purified 
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chromosomal DNA samples were then submitted to the Massey Genome Service 

(Massey University, Palmerston North, New Zealand) for whole genome sequencing 

using an Illumina TruSeq Nano DNA library preparation and 2 x 300 base paired-end 

v3 sequencing on the Illumina MiSeq™ platform. The raw reads were trimmed to a 

quality cut-off value of Q30 (equivalent to error probability p = 0.001) and the short-

length reads (< 25 bases by default) were removed using SolexaQA++ v3.1.7.1 (146). 

The remaining reads resulted in a theoretical genome coverage that was at least 46 × 

based on the E. coli strain BW25113 genome size. The trimmed reads were aligned with 

the E. coli BW25113 reference genome (ASM75055v1 from the Ensembl genome 

database) using Bowtie2 v2.3.2 in the --very-sensitive mode (148). The resulting 

alignment .sam files were then converted to .bam files using samtools  v1.5 (149) and 

variant calling was performed with FreeBayes v1.0.2 using the default parameters, 

except ploidy was set to 1 (-p 1) (150). Subsequently, the variants were annotated using 

SnpEff v4.3p (151) and examined manually using the Integrative Genomics Viewer 

v2.5.0 (189). The cyaA and ptsI mutations were labeled on the corresponding protein 

domains using the visualization software DOG v2.0.1  (152, 174, 190). 

To determine any structural variants in the genome of DOC-resistant mutants, the 

unmapped reads were extracted using samtools v1.5 (149) and then assembled to 

generate contigs using the genome assembler software SPAdes v3.9.0 in the --careful 

mode (153). The resulting contigs was compared with the E. coli reference genome 

BW25113 (Accession No. CP009273.1) using the website platform NCBI Nucleotide 

BLAST 2.7.0+ (155) to determine the boundaries where the structure variants have 

occurred. 

In another experiment, the genomic DNA of the DOC14 mutant and the parental strain 

was extracted from exponentially growing cultures using the UltraClean Microbial 

http://bacteria.ensembl.org/Escherichia_coli_bw25113/Info/Index
https://www.ncbi.nlm.nih.gov/nuccore/CP009273
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DNA Isolation Kit (Qiagen). The exponential-phase cultures were obtained by diluting 

an overnight culture 100-fold with fresh 2xYT medium and incubating the diluted 

cultures with shaking for 1.5 hours at 37 °C. The genomic DNA was also sequenced, 

quality-trimmed and aligned with the reference genome BW25113 as described above. 

The genome coverage information at individual coordinates was extracted from the 

.bam alignment file using bedtools v2.28.0 (genomecov -d) (191). The genome 

coverage data of the DOC14 mutant and parental strain was plotted in circular maps 

using the visualization tool DNAPlotter v18.0.2 (192). Hypothetical homologous 

recombination events mediated by inverted repeats longer than 500 bp were predicted 

using the software Repseek v6.6 (-l 500 -c -i) with the BW25113 reference genome 

sequence (178). 

Gene-specific PCR and sequence analysis 

Genomic DNA extraction from bacterial colonies for analysis by PCR was carried out 

using the rapid boiling method as previously described (156). For the genes involved in 

DOC resistance, the PCR reactions were performed using the PrimeSTARTM DNA 

Polymerase (Takara Bio USA), based on the melting temperatures of the primers as 

directed by the manufacturers; DNA was included at 1/10 reaction volume (5 µL in 50 

µL). For the insH1 loci in the DOC14 mutant and the parental strain, the PCR assays 

were performed with the DreamTaq™ Hot Start DNA Polymerase (Thermo Fisher 

Scientific) according to the manufacturer’s instructions. The primers used for PCR and 

Sanger sequencing are listed in Table 5  and 6, and were designed using Primer-Blast 

(193). 

The PCR amplicons were purified using the ChargeSwitch™-Pro PCR Clean-Up Kit 

(Invitrogen) according to the manufacturer’s instructions and analyzed by Sanger 

sequencing using the Big Dye Terminator v3.1 chemistry at the Massey University 
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Genome Service (Palmerston North, New Zealand). Low-quality bases of raw 

sequences were trimmed using Chromas v2.6.4 (Technelysium Pty Ltd.) until the 

average quality of 20 consecutive bases was over 30. The trimmed sequences were then 

aligned with the E. coli reference genome BW25113 (Accession No. CP009273.1) 

using the website platform NCBI Nucleotide BLAST 2.7.0+ (155) to determine the 

presence of mutations in the genes under examination. 

Table 5: List of primers used in PCR and Sanger sequencing 

Primer name Sequence (5’ to 3’) Expected size of 

amplicons (bp) 

cyaA forward TAC GGT CAA TCA GCA AGG TGT 

1305 

cyaA reverse TTA GCG CGG TTA TCG AGC AT 

ptsI forward GAA GGC GAA GAC GAG CAG AA 

1781 

ptsI reverse CGT TGT CGG TTG AGC AAG AG 

tktA forward AAC CAT CAC CTG ACG CTG TT 

1258 

tktA reverse CCT GTG GCG TGA TTT CCT GA 

ndh forward GTA CCT GAT GCG CTC CGA AT 

1691 

ndh reverse CCG CCA GTG TAC GTC GAT TA 

CP4-6 forward CAA CAA AAA GCC TGT GCG GA 

16585 

CP4-6 reverse GCC AGA TAC AAG GGG TTG CT 

ybhQ forward GTT CCG GCA AAA TGA AGC GT 

909 

ybhQ reverse TGG TGG GAT TCG GTC TGT TG 

 

 

 

https://www.ncbi.nlm.nih.gov/nuccore/CP009273
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Table 6: insH1 primers to examine the DNA inversion in the DOC14 mutant 

Primer sequence (5’ to 3’) Genome coordinates 
Expected 

size 

F: AGG ATT TGC GAG GTA GCG AT 
insH1 P1: 2059139-2061195 2057 

R: CCG GGG CTG CAT TTT CTA TTC 

F: AGG GTG GTG TGT CAA AAC CTT 
insH1 P2: 3123100- 3126146 3047 

R: TTA TGA TGG ACC GGG GAT TGG 

F: TAC GCC GAT CTG TTG CTT GG 
insH1 P3: 2094726- 2096854 2129 

R: TCG TTT CCC ACG GAC ATG AA 

F: AAT AGC ACC GCC TGC TTT CT 
insH1 P4: 2281942- 2283946 2005 

R: TGT TTG AGC GTA GCG TTG GT 

F: TTC GTG CTA TGC GGA GTG AG 
insH1 P5: 1421471- 1423431 1961 

R: ATT TTC TGA GGC CAG CGT GT 

F: GGA TCA GTG ACG CAC GTT TC 
insH1 P6: 269114- 271170 2057 

R: CGC TCC AGT GGT GGA AAT GA 

F: TGT CAC TGG CAG GTA AGC AT 
insH1 P7: 569656- 571670 2015 

R: AGG ATT CGG TAT CGG TGC AA 

F: TCG AAA GTG CCG TTT TGC AG 
insH1 P8: 682881- 684859 1979 

R: GCT GAC GGC ATT GTT TGG TT 

F: Forward; R, Reverse 

Bacterial growth analysis 

Bacterial growth measurements were performed in 384-well microtiter plates without 

shaking. Each 50 µL exponential-phase culture (106 CFU/mL) was incubated at 37 °C 

and the OD600 nm was monitored every 20 min for 24 h. Six replicates were included for 

each DOC-resistant mutant and twelve replicates for the parental strain. The doubling 

time estimation was implemented using the GrowthRates v3.0 software (194). The 
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differences in the doubling time and stationary phase cell density between the DOCR 

mutants and the parental strain were assessed using Student’s t-test and visualized using 

the R package ggplot2 v3.1.0 in the R statistical environment v3.5.3 (145, 195). 
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Supplemental data 

 

Figure S1: Molecular structure of unconjugated bile salts (top), glycine conjugated bile salt (middle) and 

taurine conjugated bile salt (bottom). 
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Figure S2: The PCR products of the cyaA gene (A) and ptsI (B) derived from the E. coli mutants with 

enhanced DOC resistance. Amplicons were analyzed using agarose gel electrophoresis. Gel (A); lanes M, 

1 kb plus DNA ladder (Thermo Scientific); 1, DOC02; 2, DOC04; 3, DOC05; 4, DOC12; 5, DOC19; 6, 

DOC20; 7, DOC21; 8, DOC22; 9, parental strain; 10, non-template negative control. Gel (B); lanes M, 1 

kb plus DNA ladder (Thermo Scientific); 1, DOC01; 2, DOC03; 3, DOC06; 4, DOC09; 5, DOC11; 6, 

DOC15; 7, DOC16; 8, DOC18; 9, parental strain; 10, non-template negative control. 

Almost all cyaA and ptsI amplicons of the E. coli DOC
R
 mutants have similar size to that of the parental 

strain, with about 1300 bp for cyaA and 1700 bp for ptsI, in agreement with point mutations found in 

these mutants. The mutant DOC02 was an exception in which its cyaA amplicon was ~2100 bp in length, 

indicating the presence of an 800-nucleotide insertion in the cyaA gene. This fragment was identified to 

be an IS1 sequence inserted at one nucleotide upstream of the cyaA open reading frame. 
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Figure S3: The PCR products of the genes ndh, ybhQ, CP4-6 fragment, and the gene tktA derived from 

the E. coli mutants with enhanced DOC resistance. Amplicons are analyzed using agarose gel 

electrophoresis. Lanes M, 1 kb plus DNA ladder (Thermo Scientific); 1, DOC07; 4, DOC07; 7, DOC13; 

10, DOC17; lanes 2, 5, 8 and 11, parental strain BW25113 tolC; lanes 3, 6, 9 and 12, non-template 

negative control. 

The mutant DOC07 had a ndh amplicon at about 1300 bp that is smaller than that of the parental strain by 

about 400 bp. This is in agreement with 405-nucleotide deletion in the ndh gene found in the mutant 

DOC07. For the mutant DOC13, a pair of primers were designed to amplify the sequence flanking the 

deletion around the CP4-6 prophage (lane 7, ~1100 bp), whereas they were too far apart for the PCR 

reaction to occur in the parental strain (16585 bp).  
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Table S1: Hypothetical inverted-repeat-mediated inversion events predicted by Repseek 

v6.6 (repseek -l 500 -c -i). Yellow-highlighted events were tested by PCR amplification 

of eight insH1 sites (P1 to P8). The homologous recombination event in the DOC14 

mutant was colored blue. 

No. 
Position of 

the first copy 

Position of 

the second 

copy 

Length of 

the first 

copy 

Length of 

the second 

copy 

Spacers 

of the 

repeat 

% identity 

between the two 

copies 

1 19780 1045234 784 784 1024670 98.087 

2 19788 3576787 777 777 1073693 99.485 

3 19790 4508283 780 780 142196 89.872 

4 206166 4346348 2087 2087 489200 68.597 

5 219928 2722896 1950 1956 2126545 94.442 

6 219954 3417017 5419 5408 1428998 98.708 

7 222124 2719418 3249 3239 2130936 99.015 

8 259070 2769008 2114 2115 2119416 80.405 

9 261267 2763789 1246 1249 2127698 83.2 

10 262486 2760967 2288 2288 2130700 85.066 

11 266232 4497260 1257 1257 399184 98.886 

12 269661 1390301 1200 1200 1119440 99.917 

13 269662 3123505 1199 1199 1776427 99.917 

14 274873 1045234 769 769 769592 99.48 

15 274873 3576788 769 769 1328785 98.83 

16 274873 4508285 773 773 397284 90.168 

17 278007 4511973 2838 2846 394657 64.556 

18 286345 1045225 776 777 758104 99.099 

19 286345 3576788 768 768 1340258 98.828 

20 286345 4508284 773 773 408757 90.168 

21 310940 387165 1255 1255 74970 100 

22 310940 1089698 1258 1258 777500 99.921 

23 365991 4497255 1244 1244 498961 99.116 
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24 376714 2062422 1333 1333 1684375 100 

25 376716 1462167 1331 1331 1084120 100 

26 376716 2989711 1340 1340 2017134 99.776 

27 387157 2163650 1268 1268 1775225 99.842 

28 387159 562227 1270 1270 173798 99.921 

29 476745 3652643 4268 4240 1451331 66.199 

30 476760 3408389 3103 3100 1696740 72.353 

31 476762 2580954 3098 3089 2101094 67.514 

32 562232 1089700 1260 1260 526208 100 

33 570039 3123497 1211 1211 2076800 99.752 

34 570043 1390293 1207 1207 819043 99.834 

35 575739 1630096 1080 1080 1053277 97.13 

36 625393 4579903 1145 1145 675814 72.251 

37 683302 1390289 1212 1212 705775 99.752 

38 683303 3123494 1210 1210 2190068 99.669 

39 1041336 4226989 2639 2642 1443174 62.74 

40 1089701 2163651 1259 1259 1072691 100 

41 1273461 1536949 1330 1327 262158 70.902 

42 1275307 1531596 5268 5265 251021 75.654 

43 1390293 3645390 1209 1209 2253888 99.752 

44 1390297 2059637 1202 1202 668138 99.501 

45 1390297 3358906 1208 1208 1967401 99.834 

46 1390298 2095218 1210 1210 703710 99.669 

47 1390298 2282395 1201 1201 890896 99.833 

48 1390301 1421854 1197 1198 30356 91.5 

49 1421854 3123505 1198 1197 1700453 91.5 

50 1426465 1626783 2563 2563 197755 98.869 

51 1462166 3179454 1333 1333 1715955 100 

52 1462167 1645100 706 706 182227 100 

53 1462167 4487996 1333 1333 1604307 99.925 
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54 1463529 4497274 1247 1247 1596477 99.198 

55 1541641 4074593 4588 4607 2093910 72.382 

56 1645100 2062422 706 706 416616 100 

57 1645100 2989720 706 706 1343914 100 

58 1891190 3251637 1371 1371 1359076 69.6 

59 2059637 3123502 1201 1201 1062664 99.5 

60 2062397 4487998 1356 1353 2204515 99.336 

61 2062421 3179443 1344 1344 1115678 99.554 

62 2095226 3123500 1204 1204 1027070 99.917 

63 2282392 3123501 1205 1205 839904 99.751 

64 2572998 3073006 1983 1983 498025 71.314 

65 2601884 2838671 1128 1131 235659 72.591 

66 2719385 4199702 3419 3430 1476898 98.542 

67 2719390 4030757 3267 3279 1308100 98.537 

68 2719411 4156204 5488 5498 1431305 98.636 

69 2719418 3936795 3386 3395 1213991 98.527 

70 2722906 4028524 1977 1977 1303641 97.674 

71 2722908 3934794 1982 1983 1209904 97.781 

72 2722908 4197746 1945 1938 1472893 95.536 

73 2765362 3642573 1175 1176 876036 77.381 

74 2922934 3251654 1356 1356 327364 70.066 

75 2989708 3179454 1344 1346 188402 99.629 

76 2989720 4487996 1333 1333 1496943 99.925 

77 3123499 3358907 1209 1209 234199 99.752 

78 3123502 3645390 1204 1204 520684 100 

79 3128227 3630917 1589 1589 501101 75.377 

80 3416979 4028581 5446 5458 606156 97.732 

81 3417017 3936942 3239 3248 516686 99.169 

82 3417021 4199849 3235 3245 779593 99.199 

83 3417022 4158447 3234 3243 738191 99.291 
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84 3420512 4156277 1913 1921 733852 95.634 

85 3420514 3934858 1911 1919 512433 95.994 

86 3420514 4197773 1911 1911 775348 97.701 

87 3463502 4165873 1186 1186 701185 98.988 
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Chapter V 
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General discussion 

Increasing resistance prevalence to existing antibiotics has urged a coordinated action 

from industrial, academic and legislative sectors in an attempt to introduce novel 

antimicrobial therapies against infections (196). Unfortunately, conventional research 

and development of naturally occurring or semi-synthetic antibiotics that had once 

brought about the majority of scaffolds of currently used antibiotics during the golden 

age, no longer meets clinical demand due to the rapid emergence and global spread of 

antibiotic-resistant pathogens (3, 197). In such a dire context, alternative strategies are 

being explored to provide more therapeutic options for clinicians, including drug 

repurposing (198), antimicrobial combinations (22), revival of old antibiotics (199), 

bacteriophage and bacteriophage lysin therapies (200), antimicrobial peptides, 

antibodies, probiotics and fecal transplant (201).  

In this thesis, I have investigated various combinations of DOC and 5-nitrofurans that 

synergistically act to inhibit the growth of or kill the enterobacterial species E. coli, S. 

enterica subsp. enterica serovar Typhimurium LT2 and C. gillennii. The findings are 

surprising and unpredictable for two reasons. Firstly, enterobacteria are inherently 

resistant to DOC, primarily through the activity of the multidrug efflux pump AcrAB-

TolC combined with highly impermeable LPS outer membrane (81, 107). DOC 

antimicrobial activity against enterobacteria is therefore very minimal, as reflected by 

the high MICDOC (≥ 40 mg/mL, Chapter 2, Fig. 1). Secondly, it has been reported that 

exposure of these enterobacterial cells to DOC or bile salt mixtures results in the 

increased expression of multidrug efflux pumps, down-regulation of outer membrane 

porins (OmpC, OmpF) and induction of diverse stress responses that render them 

resistant to DOC itself and antibiotics of different classes (e.g. polymyxin, 

ciprofloxacin, meropenem, tigecycline, chloramphenicol) (89, 92, 202-205). Based on 
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these DOC- or bile-induced effects, one may expect that combinations of an antibiotic 

with DOC would tend to be antagonistic rather than synergistic in inhibiting/killing 

enterobacteria. 

In Chapter 2, we proposed that DOC and FZ, as a model molecule of 5-nitrofurans, act 

synergistically to inhibit the growth of E. coli via FZ-mediated inhibition of TolC-

associated efflux pumps. Part of this inhibition activity was attributed to FZ-induced 

nitric oxide generation that subsequently inhibits the electron transport chain, disrupting 

the energy supply necessary for the operation of these efflux pumps. The evidence 

supporting these propositions was obtained from a genetic study. Further investigation 

into the effect of FZ on the efflux pump activity and the electron transport chain are 

required to validate the role of FZ as an efflux pump inhibitor (EPI) and clarify its 

mechanism.  

One important mechanism of multidrug resistance in clinical bacterial isolates is 

expulsion of xenobiotics from the cells by efflux pumps with broad specificity (e.g. 

AcrAB-TolC) and mutations leading to increased expression of those efflux pumps 

(206, 207). There is no doubt that the development of an EPI could sensitize resistant 

clinical isolates to a wide range of antibiotics, making untreatable infections treatable. 

However, while an impressive number of EPI candidates have been reported in vitro, 

not a single one has entered clinical trials for various reasons such as low stability, 

narrow spectrum, high cytotoxicity and potentially undesirable pharmacokinetics (23, 

208). The discovery of 5-nitrofurans as an EPI is very tempting since they are already 

approved drugs and thereby can be readily used as an EPI in at least three sites of 

infection: FZ in the intestine, NIT in the urinary tract and NFZ on the skin. 

Nevertheless, it is important to inspect, in advance, the pairwise interaction between 5-
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nitrofuran drugs and other antibiotics that are substrates of the AcrAB-TolC efflux 

pump. 

Another interesting finding is that simultaneous deletion of nfsA and nfsB, despite 

increasing the MIC for FZ, did not remove the synergy between DOC and FZ (Chapter 

2, Fig. 6). This suggests a novel mechanism of FZ action that is independent of the two 

nitroreductases NfsA and NfsB and is responsible for the FZ-induced efflux pump 

inhibition. To discover the additional mechanism of FZ, we selected for FZ-resistant 

mutants arising from the nfsA nfsB strain and employed whole genome sequence 

analyses to identify mutations in these resistant mutants (Chapter 4). Interestingly, all 

detected mutations were located in the ahpF gene. Using 5-nitrofuran susceptibility 

assay for the ahpF deletion and overexpression strains and nitroreductase enzymatic 

assays with purified AhpF protein, we reported a novel activity of the AhpF enzyme to 

activate nitrofurans in a manner different from that of the established nitroreductase 

enzyme NfsB. An intriguing question is whether this enzyme is involved in the 

DOC/FZ synergy. Growth inhibition checkerboard assays for the ahpF and nfsA 

nfsB ahpF triple mutants created from the E. coli wildtype strain K1508 showed that 

deletion of the ahpF gene, regardless of the wildtype or nfsA nfsB null background, did 

not interfere with the DOC/FZ synergy (Chapter 5, Fig. 1). These results suggested that 

the mechanism of DOC/FZ synergy or, more specifically, the FZ-mediated efflux pump 

inhibition is also independent of the newly discovered nitroreductase AhpF. The 

original question remains to be answered in future studies: there are other unknown 

nitroreductase(s) in E. coli and/or antibacterial activity associated with the unreduced 5-

nitrofuran “pro-drugs”. Stepwise selection for FZ resistance-conferring mutations from 

the nfsA nfsB ahpF triple mutant followed by examination of the DOC/FZ synergy 



130 
 

in the resistant strains may cast more light on the mechanism of DOC/FZ interaction as 

well as 5-nitrofurans. 

 

Figure 1: Effect of ahpF deletion on FZ-DOC synergy. Isobologram of FZ-DOC interactions in growth 

inhibition of the ahpF mutant (K2504) and the nfsA nfsB ahpF mutant (K2505). The knock-out 

mutants were created from the wildtype strain K1508. Each data point corresponds to the FIC (ratios of 

the 50 % growth inhibition concentrations in combination vs. alone) for FZ (y axis) and DOC (x axis). 

A tolC knock-out was shown to cause a complete loss of DOC/5-nitrofuran synergy 

(Chapter 2, Fig. 3). However, this deletion also decreased the MIC for DOC by 256-fold 

(from 40000 µg/mL to 156.25 µg/mL). Therefore, removal of the DOC/5-nitrofuran 

synergy due to deletion of tolC would not influence the antibacterial efficacy of the 

combinatorial therapy. What is concerning is whether potential mutations would arise to 

restore DOC resistance once the TolC-associated pumps were inactivated. To answer 

that question, we selected mutants resistant to DOC from a tolC strain, as described in 

Chapter 5. Mutants with low-level increased DOC resistance in comparison with the 

parental strain carried mutations in the cyaA, ptsI, tktA, or ndh genes. High-level DOC 
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resistance causing mutations were not identified. This observation supports the use of 

DOC/5-nitrofuran combinations given that it is rare, if any, to gain a high-level 

resistance to such combinations. 

Overall, this thesis provided proof-of-concept evidence for the synergy between DOC 

and 5-nitrofurans in inhibiting/killing enterobacteria. Future work is warranted to 

expand the checkerboard assay towards a broader set of clinically relevant 

enterobacterial isolates, that is important to evaluate the coverage of the DOC/5-

nitrofuran synergy and thereby, the clinical utility of the combination. Also, in vitro 

toxicology profiling and examination of the drug combination safety and efficacy in 

animal models are prerequisites to advance the combination along the development 

pathway. 

Conclusion 

This thesis has presented in vitro evidence of the synergy between DOC and 5-

nitrofurans in eliminating enterobacterial species and proposed an underlying 

mechanism for that interaction. Combinations of DOC and 5-nitrofurans are promising 

additions to the therapeutic antimicrobial pipeline, although additional data, including in 

vitro toxicology and safety and efficacy in animal models are required before advancing 

to clinical trials. 

A novel 5-nitrofuran activation enzyme, AhpF, was reported and its overexpression was 

capable of increasing nitrofuran sensitivity of the nfsA nfsB ahpF strain to the same 

level as the wildtype strain. This discovery opens new avenues to counteract nitrofuran-

resistant clinical isolates that, in most cases, have mutations in nfsA and nfsB, by 

screening for molecules that upregulate AhpF expression or catalytic activity, or 

designing nitrofuran analogues with high efficacy when activated by the AhpF enzyme. 
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This thesis also describes possible mutations that cause low-level DOC resistance in the 

E. coli strain deficient in TolC-dependent efflux pumps. These mutations are associated 

with decreased growth rate and fitness. Singe-step high-level DOC-resistance conferring 

mutations were not identified in the mutant screen, which supports investigating the use 

of DOC/nitrofuran combinations in clinical trials because of the scarcity of DOC 

resistance emergence when efflux pumps are inactivated by 5-nitrofurans. 
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