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Abstract

Homogalacturonans (HGs) are polysaccharide co-polymers of galacturonic acid and

its methylesterified counterpart, that play a crucial role in the mechanobiology of the

cell walls of all land plants. When extracted, in solution, at pH values above the

pKa, the carboxyl groups carried by the unmethylesterified residues endow the poly-

mer chains with charge, making these systems interesting polyelectrolytes. The inter-

and intra-molecular distributions of the non-charged methylesterifed residues and their

charged unmethylesterifed counterparts are vital behaviour-determining characteristics

of a sample’s structure. Previous work has led to the development of techniques for the

control of the amount and distribution of charges, and with these tools and samples

available in different degrees of polymerisation, including small oligomers, the system

offers a flexible test-bed for studying the behaviour of biological polyelectrolytes.

This thesis is rooted in exploring the use of computational approaches, in particular

molecular dynamics, to calculate the conformation of such polyelectrolytes in solution

and to describe their transport properties in electric fields. The results of simulations

are, in all cases, compared with the results of experimental work in order to ground

the simulations.

First, in chapter 2, these simulations are applied to calculate the free solution elec-

trophoretic mobilities of galacturonides, charged oligosaccharides derived from digests

of partially methylesterified HGs. The simulations are compared with experiment

and were found to correctly predict the loss of resolution of electrophoretic mobili-

ties for fully-charged species above a critical degree of polymerisation (DP), and the

ionic strength dependence of the electrophoretic mobilities of different partially charged

oligosaccharides.

Next, in chapter 3, molecular dynamics (MD) simulations are used to calculate the elec-

trophoretic mobilities of HGs that have different amounts and distributions of charges

placed along the backbone. The simulations are shown to capture experimental results

xiii



well even for samples that possess high charge densities. In addition they illuminate

the role that local counterion condensation can play in the determination of the elec-

trophoretic mobility of heterogeneous blocky polyelectrolytes that cannot be adequately

described by a single chain-averaged charge spacing.

Finally, in chapter 4, the last part of the research focusses on the configurations of

these polyelelectrolyes in dilute solution, and on how the interactions between several

chains can lead to the spatially heterogenous nature of polyelectrolyte solutions. Such

questions are of long standing interesting in the polyelectrolyte field and the results are

compared with results from Small Angle X-Ray Scattering(SAXS).

Overall the work demonstrates how state of the art MD approaches can provide in-

sights into experimental results obtained from fundamentally interesting and biologi-

cally relevent polyelectrolytes.
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