Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Melt generation, storage and ascent below Tongariro Volcanic Complex, Southern Taupo Volcanic Zone

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Earth Science

at Massey University, Manawatu, New Zealand

> Maria Carmencita B. Arpa 2018

<u>Abstract</u>

The study of Tongariro Volcanic Complex in New Zealand gives an opportunity to view arc magmatism from a setting where the classic arc structure is overprinted by the regional tectonic setting. Instead of viewing the volcano (and associated magmatic processes) as a component of a volcanic arc to determine the origin of andesitic magmas, focus was given on magmatic processes within the volcanic complex. Processes within the plumbing system of the volcanic complex and their implications on andesitic magmatism and volcanic hazards were determined by tracking magma, of selected eruptive products, from their reservoirs to the surface. By focusing on processes that may determine the petrological characteristics of specific deposits (from known eruptions), the influence of local structures associated with eruptive centres within the complex and the diversity of resultant eruption styles may be interpreted as magmatic processes are evaluated.

The deposits for this study are from the last 16 ka history of Tongariro, majority are from the last 10 ka. These are from known eruptions and the deposits were mapped, dated and studied by previous researchers. Lava flow eruptions are from Te Maari and Red Crater, and Plinian to vulcanian eruptions are represented by the Mangamate Tephra and Ngauruhoe deposits. For each eruptive deposit, whole rock major, trace and isotope compositions were determined. Groundmass and mineral components were analysed for major elements. Major element and volatile (H₂O, CO₂, S, Cl) compositions of melt inclusions in component olivine and pyroxene crystals were also determined.

The deposits from the recent history of Tongariro Volcano can be related to a common source. The basalts can differentiate to more evolved andesitic to dacitic compositions by crystallization and/or melting. Magmatic differentiation takes place in different reservoirs, at different depths, within the complex. Differences were observed in the volatile contents of the magmas and these may be related to magma storage and ascent processes. Magmatic processes for the deposits in this study, interpreted from compositions, considered and are consistent with eruption styles.

Acknowledgements

Whether there are regrets on my acceptance to the PhD program, I'm grateful for the opportunity to come to New Zealand and study a very interesting volcano. It is a good place to recover and heal. I'm thankful to my supervisors, Georg Zellmer, Bruce Christenson, Gert Lube and Shane Cronin, for providing support and advice for the completion of this project. Project funds from GNS Science covered analytical costs and enabled acquisition of crucial data. It was also very kind of Bruce Christenson to host me at NIC and I'm thankful for a mentor's guidance. I enjoyed the lab work at NIC and had help from many who I bothered from their everyday work. Thanks to all the VRS group at Massey, especially to Kate Arentsen, Karoly Nemeth and Jon Procter. In the labs at Massey, I learned from Bob Stewart, Clel Wallace, Anja Moebis, Paul Barrett, Ian Furkert and Glenys Wallace. For those who considered my experience in volcanology and had confidence in my work, I appreciate the kind regard.

The samples for this project were sent to different laboratories in New Zealand and all over the world. These are the big names who kindly accepted my samples for analysis: Gregory Shellnutt (National Taiwan Normal University), Ian Schipper (Victoria University), Maya Kamenetsky and Vadim Kamenetsky (University of Tasmania), Chris Harris (University of Cape Town), Julia Bryce and Flor Fahnestock (University of New Hampshire) and Samuel Mukasa (University of Minnesota). I'm grateful for the collaboration.

A challenging part of the project is the living aspect. Thanks to all the house owners who provided a room for me. Wonderful people from Ngaio flat and friends from Massey allowed for good times away from study.

Finally, good friends and family helped me continue through discouragements and enabled me to finish this work.

Tongariro Alpine Crossing trail from Ketetahi, a view of North Crater and Ketetahi fumaroles

MELT GENERATION, STORAGE AND ASCENT BELOW TONGARIRO VOLCANIC COMPLEX, SOUTHERN TAUPO VOLCANIC ZONE I		
ABSTR	RACT	III
ACKNO	OWLEDGEMENTS	V
1 IN	TRODUCTION	1
1.1 9	Statement of hypothesis	1
1.2 I	Importance of the project	2
1.3 (Objectives	3
1.4 I	Background: review of arc magmatism	4
1.4.1	Contributions from the subducting slab	4
1.4.2	Contributions from the mantle	6
1.4.3	Contributions from the overriding crust	7
1.5 I	Background: magmatic degassing	8
1.6 0	General geologic setting: Taupo Volcanic Zone	9
1.6.1	Tectonic setting for the Taupo Volcanic Zone	9
1.6.2	Review of petrology of the Southern Taupo Volcanic Zone	
1.7 I	Field area and samples: Tongariro Volcanic Complex	15
1.7.1	Volcanic centres for this study	
1.7	1.1.1 Te Maari Craters: Lower Te Maari	17
1.7	1.1.2 Te Maari Craters: Upper Te Maari	18
1.7	7.1.3 North Crater	19
1.7	7.1.4 Red Crater	20
1.7. 1.7.2	7.1.5 Ngauruhoe Deposits for this study	21
2 MI	ETHODS	25
2.1 9	Sample selection, collection and preparation	25
2.1.1	Sample preparation: rock	
2.1.2	Petrography	
2.2	Analytical methods and data presentation	30
2.2.1	Whole rock major and trace element chemistry	
2.2.2	Whole rock FeO and Fe_2O_3 determination	
2.2.3	Whole rock isotope chemistry	
2.2.4	Mineral and groundmass chemistry	
2.2.5	Melt inclusion chemistry from microprobe and FTIR	
2.2.6	Melt inclusion data errors and proxy compositions	

2.3	Data modelling	44
2.3.1	Equilibrium determination	44
2.3.2	2 Mineral thermobarometry	45
2.3.3	MELTS modelling	49
2.3.4	DCompress modelling	49
2.3.5	Polytopic Vector Analysis (PVA)	50
RESU	LTS AND DISCUSSIONS	51
3 V	ARIABLE MAGMA RESERVOIR DEPTHS FOR TONGARIRO VOLCANIC	
COMF	PLEX ERUPTIVE DEPOSITS FROM 10,000 YEARS TO PRESENT	53
3.1	Abstract	53
3.2	Introduction	54
3.3	Methods	59
3.3.1	Analytical methods	
3.3.2	2 Thermobarometers	60
3.4	Results	62
3.4.1	Mineralogy and textures	62
3.4.2	2 Bulk rock, mineral and groundmass compositions	65
3.4.3	Pressure and temperature of crystallization	69
3.	4.3.1 Equilibrium conditions and xenocrysts	69
3.	4.3.2 Depths and temperatures	73
3.5	Discussion	77
3.5.1	Magma reservoirs	77
3.5.2	Mingling and vesiculation at different depths for the Mangamate samples	79
3.5.3	Thermobarometry results and MELTS model test for the Wharepu samples	82
3.6	Conclusions	85
4 M	IELT INCLUSION VOLATILE CONTENTS FROM TONGARIRO DEPOSITS:	
INSIG	HTS ON CRYSTALLIZATION AND MAGMATIC PROCESSES	87
4.1	Abstract	87
4.2	Introduction	87
4.3	Methods	89
4.4	Kesuits	
4.4.1	EVALUATION OF melt inclusion and host crystal equilibrium	
4.4.2	H ₂ U, CU ₂ , S, CI melt inclusion compositions and effect of homogenization	107
4.5	Discussion	111
4.5.1	Crystallization environments	111

	4.5.1.1 Te Maari	113
	4.5.1.2 Ngauruhoe 1975	116
	4.5.1.3 Wharepu lapilli	118
4.5	5.2 Water speciation in the samples	120
4.5	5.3 Modelled volatile compositions in melt and gas phases	
4.5	5.4 Eruption style and volatile content	
4.6	Conclusions	130
5	MODELS OF STORAGE AND DIFFERENTIATION FOR TONGARIRO VO	OLCANO
MAG	GMAS AND ITS RELATION TO THE SOUTHERN TAUPO VOLCANIC ZO	NE 131
5.1	Abstract	131
5.2	Introduction	131
5.3	Methods	134
5.4	Whole rock major and trace element compositions	135
5.5	Radiogenic isotope compositions	139
5.6	Crystallization models	143
5.7	Differentiation and shallow degassing	150
5.8	Shallow reservoir magmas and evaluation of crustal assimilation	153
5.9	Differentiation model and regional relevance	156
5.9	9.1 Comparison with Ruapehu	
5.9	9.2 Differentiation model	158
5.10	Conclusions	162
6	CONCLUSIONS. RECOMMENDATIONS AND VOLCANIC HAZARDS IMP	LICATIONS
•	163	
	100	
6.1	Conclusions and summary	163
6.2	Volcanic complex, rifted continental arc and volatiles	168
6.3	Relative ascent rates and hazard implications	171
APP	PENDICES	
REF	ERENCES	241

LIST OF FIGURES

Figure 1-1. Abstract representation of magma storage and processes below Tongariro
Volcano
Figure 1-2. Regional tectonic setting for North Island, New Zealand11
Figure 1-3. Two models for arc magmatism within the Central Volcanic Region, NZ based on
geophysical data
Figure 1-4. SPOT satellite imagery of Tongariro Volcanic Complex. The different eruptive
centres are labelled16
Figure 1-5. The field area, view looking southeast17
Figure 1-6. Sites of major fumarolic activity. Photos were taken last April 21-23, 201518
Figure 1-7. General stratigraphy of sampled units from Tongariro Volcanic Complex22
Figure 1-8. Location of rock samples (circles) and fumaroles (balloons). Waypoints from
Table 1-2 are shown
Figure 2-1. Photo documentation of some samples for this study27
Figure 2-2. Composite log of Mangamate Tephra Formation outcrops along Desert Road
(WP1 in Table 1-2)
Figure 2-3. Photos of selected clasts before sample preparation (cutting and cleaning)
Figure 2-4. Stratigraphic log for samples from the Rotoaira Lapilli Formation outcrop along
Rotoaira Road (WP14 in Table 1-2)
Figure 2-5. Agreement between Ti values determined by XRF and ICPMS
Figure 2-6. Results of whole rock FeO and Fe ₂ O ₃ determination presented as redox buffer
relative to NNO
Figure 2-7. Sample spectra for a measurement of melt inclusion by FTIR
Figure 2-8. Absorbance and reflectance spectra for a very thin wafer where the reflectance
signal affects the absorbance signal

Figure 2-9. Extinction coefficients (ϵ) used for the samples based on the trend established by
standards (Dixon et al., 1995)
Figure 2-10. Sample 150320-01E-m-mi-ol1-1 (melt inclusion). Photos below are the same
melt inclusion in a thinner wafer
Figure 2-11. Absorbance versus thickness for the melt inclusion in 150320-01E-m-mi-ol1 and
melt inclusions in olivine grouped for sample 150320-01E42
Figure 2-12. Example of MI proxy compositions and actual melt inclusion compositions used
to compute the proxies43
Figure 3-1. Location map for samples in this study. Some of the named eruptive centers are
labelled (TL: Tama Lakes, Ng: Ngauruhoe, RC: Red Crater, NC: North Crater, TM: Te Maari
Craters). Inset map shows the volcanoes of North Island, New Zealand and the Hikurangi
Trench. Stratigraphic positions for the samples are also shown
Figure 3-2. Photos showing the two members of the Mangamate formation sampled along the
Desert Road outcrop
Figure 3-3. Backscattered electron images of samples63
Figure 3-4. Olivine, orthopyroxene and clinopyroxene compositions in terms of molar Mg#
for the samples in this study72
Figure 3-5. All the mafic minerals (olivine, orthopyroxene, clinopyroxene) and groundmass
compositions from the Ngauruhoe 1975 samples72
Figure 3-6. Plagioclase compositions in terms of % An for the samples in this study73
Figure 3-7. Temperatures determined from mineral thermometers using models from Putirka
(2008)
Figure 3-8. Pressures determined from mineral barometers using models from Putirka (2008).

Figure 3-9. Pressures of crystallization for the pyroclast samples showing mean values (large
open circle). Pressure values from the lava flow (Red Crater) are not averaged. Probable error
is shown for each value for samples with more than 3 points76
Figure 3-10. Modeled crystallization pressures and equivalent depths with respect to the
general location of eruptive vents78
Figure 3-11. Bivariate plots of groundmass compositions for Te Rato and Wharepu, the
shaded symbols represent lense groundmass80
Figure 3-12. Rhyolite-MELTS model for Wharepu compositions
Figure 3-13. Comparison of olivine composition (Mg#) and crystallization temperature from
the MELTS model at 0.5 to 1 kbar pressure and the results of liquid (saturated with olivine)
thermometer (Equation 15, Putirka (2008)) (a)
Figure 4-1. Extinction coefficients ϵ (1630 cm -1) variation with cation sum Si ⁴⁺ + Al ³⁺
established by standards (Dixon et al., 1995)90
Figure 4-2. Compositional variation in terms of Mg# and SiO ₂ for melt inclusions from all the
deposits in this study93
Figure 4-3. Te Maari lava olivine xenocrysts (white circles) plot with Red Crater lava
olivines (green diamonds)94
Figure 4-4. Melt inclusion composition for the different samples plotted in Rhodes diagram,
symbols and colour scheme as for Figure 4-2
Figure 4-5. Olivine hosted and pyroxene hosted melt inclusions from Wharepu
Figure 4-6. Melt inclusion compositions calculated to equilibrium and plotted with bulk,
groundmass and measured melt inclusions (heated and unheated)
Figure 4-7. Comparison of several compositions representing melt (measured and modelled)
from Wharepu105

Figure 4-8. Olivine analysis from polished slides and thin wafers. Modelled olivine
compositions from R-MELTS (models discussed in Section 4.5.1) are also shown106
Figure 4-9. Variation in total H ₂ O for the different deposits108
Figure 4-10. Melt inclusions from Te Maari 1500 A.D. lava flow (A) showing crystallite
formation along the border. Homogenized melt inclusions are also shown, labelled H. The
fractured state of H-Ol2-1 is due to polishing of thin wafers. Naguruhoe 1975 (B) and
Wharepu (C) unheated melt inclusions, the glass is free of crystallites
Figure 4-11. Evaluation of OH-H ₂ Omolec equilibrium in silicate, after Stolper (1982) and
Zhang et al. (1995)111
Figure 4-12. Rhyolite MELTS model (fractional crystallization at 1 kbar) results for Te Maari
1500AD lava flow. Model input is listed in Appendix Table 11114
Figure 4-13. Differences in major element compositions between olivine-hosted and
pyroxene-hosted melt inclusions116
Figure 4-14. Rhyolite MELTS model results (equilibrium melting and crystallization at
4kbar) for Ngauruhoe 1975 pyroclasts. Model input is listed in Appendix Table 11118
Figure 4-15. Rhyolite MELTS model (equilibrium crystallization at 5 kbar) results for
Wharepu tephra. Model input is listed in Appendix Table 11119
Figure 4-16. VolatileCalc (Newman and Lowenstern, 2002) models of equilibrium
concentrations between OH and H ₂ O molecular (lines) for Te Maari (A) and Wharepu and
Ngauruhoe 1975 (B) for the indicated pressure and temperature121
Figure 4-17. DCompress model results for Te Maari (Basalt 1 in Appendix Table 11) and
Wharepu (Basalt 3 in Appendix Table 11) CO ₂ and H ₂ O compositions. Measured values and
VolatileCalc results are shown

Figure 4-18. Models for open system degassing of basalt using Dcompress (Burgisser et al.,
2015), showing the variation of S and H_2O dissolved in the melt as the magma is
decompressed starting from 3000 to 10 bar
Figure 4-19. Models using Dcompress (Burgisser et al., 2015) for open system degassing of
basalt (m10 in Figure 4-13) and rhyolite as magma is decompressed from 3000 to 10 bar. 125
Figure 4-20. H ₂ O-S-Cl system
Figure 5-1. Regional tectonic setting for Tongariro Volcano showing the Central Volcanic
Region (solid line) and the Havre Trough Back-Arc Basin (bounded by dashed hachured
lines) (left). Tongariro Volcanic Complex, named eruptive vents are labelled (right) and
sample sites are shown (red circles)
Figure 5-2. Total alkalis versus silica classification for igneous rocks after Le Bas et al.,
1986
Figure 5-3. Trace element variations relative to standard average compositions. Symbols are
as for Figure 5-2
Figure 5-4. Off trend, significantly higher Ni values for Te Maari whole rock compositions.
Figure 5-5. Two end-member mixing models showing the proportion (5.94-6.12%) of olivine
(green circles) added to Te Maari 1500AD lava flow samples (clustered blue circles)138
Figure 5-6. A narrow range in Pb isotopes support a common source141
Figure 5-7. Mixing line between MORB (EPR) (Ito et al., 1987) and Kermadec bulk
sediments, gray diamond, (Plank and Langmuir, 1998) and between MORB (EPR) and a
Ngauruhoe crustal xenolith (Price et al., 2010) to approximate subducted sediments closer to
the study area

Figure 5-8. Sample isotopic composition relative to established mantle sources: Depleted
MORB Mantle (DMM), Enriched Mantle I (EMI), Enriched Mantle II (EMII), Hi-µ mantle
(HIMU)
Figure 5-9. A distinct magmatic source for the samples in this study constrained by trace
element ratios144
Figure 5-10. Track of liquid for different Rhyolite MELTS model results147
Figure 5-11. Crystallization models describing trace element partitioning in the liquid as
composition 01D-C (normative composition: 5% olivine, 7% clinopyroxene, 8% spinel, 17%
orthopyroxene, 63% plagioclase) and 318-03 (normative composition: 5% olivine, 25%
clinopyroxene, 1% spinel, 20% orthopyroxene, 49% plagioclase) are crystallized
Figure 5-12. Cl-S-K ₂ O system showing degassing of S then Cl, and differentiation – low to
high K ₂ O. Melt inclusion compositions are plotted. Groundmass (outlined in red) have
evolved and degassed compositions
Figure 5-13. δ^{18} O versus MgO for AFC model at 10 and 1 kbar, MgO approximating percent
crystalized, labelled in the liquid track
Figure 5-14. Major and trace element differences between Tongariro and Ruapehu (Hackett,
1985; Gamble et al., 1999; Conway, 2016) for deposits from ~16 ka to present. Crustal
xenolith compositions are from this study157
Figure 5-15. Possible mixing end-members to describe compositions of Tongariro and
Ruapehu (Hackett, 1985; Gamble et al., 1999; Conway, 2016) based on 10 major element
concentrations. Crustal xenolith compositions are from this study and Price et al., 2010,
basement compositions are from Graham (1985)158
Figure 5-16. Possible effects of rifting, decompression and ascent rates on magmatic
processes
Figure 5-17. A conceptual model for magma storage regions below Tongariro

LIST OF TABLES

Table 1-1. Mangamate Tephra Members dated 9,780 to 9,700 years BP or ~11,000 cal. years
BP (Topping, 1974)
Table 1-2. Description and location of rock samples. The complete list is in Appendix Table
1
Table 2-1. Results for one melt inclusion (150320-01E-m-mi-ol1-1) at different thickness and
R beam size (A). Results for melt inclusions grouped based on correlation with the trend
established by MI: 150320-01E-m-mi-ol1-1 (B)41
Table 2-2. Total number of melt inclusion analysis for the different deposits. 44
Fable 3-1. Samples used for this study. 58

Table 3-2. Groundmass characteristics, textures and silica composition ranges. Bulk rock
silica is shown for comparison
Table 3-3. Bulk rock major element compositions for all the samples in this study. Refer to
Table 1-2 for age. 65
Table 3-4. Representative mineral and groundmass compositions for all the samples. Molar
$Mg\# = 100*[Mg/(Mg+Fe^{2+}]; molar \% An = 100*[Ca/(Ca+Na+K)]67$
Table 3-5. Single microprobe analysis run for Wharepu samples. 68
Table 3-6. Summary of thermobarometry results using different models. 69
Table 4-1. Selected melt inclusion and mineral host compositions
Table 4-2. Different melt compositions (bulk, groundmass, melt inclusion, modelled) for
Wharepu samples and a calculated composition (MI (calc)) after adding an olivine
composition104
Table 4-3. Summary of thermobarometry results. 112
Table 5-1. Samples for this study. The samples are listed from youngest (top) to oldest134
Table 5-2. Sr, Nd and Pb isotope compositions for selected samples. 140
Table 5-3. Mineral phases for the different crystallization models. 146
Table 5-4. Whole rock δD and $\delta^{18}O$ of selected samples from Tongariro

APPENDIX

Appendix Table 1. Complete list of samples	.175
Appendix Table 2. Complete list of whole rock major element analysis.	.182
Appendix Table 3. Complete list of whole rock trace element analysis	.185
Appendix Table 4. Whole rock FeO and Fe ₂ O ₃ determination results	.192
Appendix Table 5. Whole rock δD and $\delta^{18}O$ analysis laboratory report	.193

Appendix Table 6. Whole rock ⁸⁷ Sr/ ⁸⁶ Sr, ¹⁴³ Nd/ ¹⁴⁴ Nd, ²⁰⁶ Pb/ ²⁰⁴ Pb, ²⁰⁷ Pb/ ²⁰⁴ Pb, ²⁰⁸ Pb/ ²⁰⁴ Pb
values
Appendix Table 7. Microprobe analysis for mineral, groundmass and melt inclusions for
selected deposits
Appendix Table 8. Statistics for all standards analysed as unknown, and comparison to
reference values
Appendix Table 9. Microprobe analytical conditions
Appendix Table 10. List of FTIR measurements, sample spectra measurements and
corresponding concentrations
Appendix Table 11. Rhyolite MELTS and DCompress input parameters
Appendix Table 12. Olivine and orthopyroxene hosted melt inclusion compositions
calculated to equilibrium
Appendix Table 13. List of copyright permissions