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Abstract 

Vascular mechanics has undergone significant growth within the last 50 years owing to the rapid 

development of nonlinear continuum mechanics occurring roughly within the same period and 

motivated primarily by rubber materials. However, one important distinction of blood vessels, in 

contrast to typical engineering materials is that, through a variety of physiological mechanisms, 

they seek to maintain constant a preferred mechanical state (mechanical homeostasis) thereby 

exhibiting a remarkable mechanical stability in response to temporal evolution and alterations in 

blood pressure, vessel tethering forces and geometry and material properties. The mechanical state 

experienced by blood vessels plays a critical role in mechanical homeostasis and mechanical 

stability, and there remains a pressing need for mechanical/mathematical analysis to i) 

understand/predict the stretch/stress states within vessels and how they evolve with increasing 

blood pressure and tethering forces, ii) understand/predict the mechanical stability of arteries in 

response to diverse stimuli such as inhomogeneities in geometry and material properties. This 

dissertation seeks to add to this vibrant field by conducting a rigorous analysis of i) the mechanics 

of the homeostatic states of uniform circumferential stress and uniform stretch in an N-layer 

cylindrical artery subject to circumferential prestress, axial tethering force and the pressure of 

blood and ii) the local mechanical stability by imperfection growth in a solid body subject to 

inhomogeneities in geometry and material properties. In order to make these results relevant to a 

blood vessel, a micromechanics based constitutive relation is proposed based on the more or less 

regular architecture of a large elastic artery composed of collagen, elastin and vascular smooth 

muscle. Although the primary focus of the work is on the healthy artery, the effect on imperfection 

growth of diseased tissue constituents is accounted for in a simple model of damaged elastin and 

collagen. 
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1. Introduction 

Cardiovascular diseases involve the heart and vascular system. Malfunctions of blood vessels, e.g., 

atheroma (plaque formation) leading to atherosclerosis and infarction in various organs, can lead 

to an insufficient supply of oxygen and nutrients to the body. Congenital heart disease caused by 

malformations of the structure of the heart present at birth and may lead to the under-development 

of limbs and muscles. Other cardiovascular diseases include heart failure, hypertensive heart 

disease, rheumatic heart disease, cardiomyopathy, valvular heart disease, carditis, aortic 

aneurysms, heart arrhythmia, peripheral artery disease, and venous thrombosis. Many of these 

diseases have been linked to mutations in connective tissue genes which also generate defects in 

the cardiovascular system. These include Williams syndrome, cutis laxa, supravalvular aortic 

stenosis, Ehlers-Danlos syndrome, Marfan syndrome which may give rise to abdominal aortic 

aneurysm (AAA). The risk factors which promote the occurrence of cardiovascular disease include 

unhealthy diet, smoking, lack of exercise and drug and alcohol abuse. Cardiovascular diseases are 

responsible for over 17.3 million deaths annually and are the leading causes of death worldwide 

[1]. Therefore, improved understanding of the underlying mechanisms of cardiovascular disease 

have the potential to contribute greatly to the welfare of all human society. The purpose of this 

dissertation is to contribute to this understanding by examining aspects of the mechanics of healthy 

and, in some cases, diseased arteries and their constituents. There are three main parts to the work. 

They are i) the development of a microstructurally based composite constitutive model for healthy, 

passive arterial tissues that is validated based on existing experimental data, ii) a detailed analysis 

of the homeostatic states of uniform stretch and uniform circumferential stress of an N-layer 

composite tube and its application to large elastic arteries, and iii) a study of mechanical stability 

of arterial tissues and arteries, in the sense of the growth of small geometrical and/or material 



 

inhomogeneities, for a variety of loadings and geometries. Modifications of the constitutive model 

to account for aspects of certain disease processes are proposed as well and their effect on 

mechanical homeostasis and mechanical stability are also analyzed. The motivation for the work 

rests on the observation that slight, random variations in geometry and material properties, which 

typically appear in healthy vascular systems, will not lead to unstable imperfection growth 

resulting from these variations. By contrast, damaged tissues may lead to mechanically unstable 

behavior ultimately contributing to arterial disease. An example of this is the abdominal aortic 

aneurysm. Because the proposed constitutive model (Chapter 3) characterizes arterial tissue 

constituents individually, analyses of homeostatic states and stability will directly relate behavior 

back to specific characteristics of those constituents. 

Chapter Two is a review of the relevant literature and is divided into several subsections. The first 

is a review of the normal physiology of the circulatory system including mechanical homeostasis 

and microstructure of healthy arterial tissues. This is followed by a brief discussion on arterial 

pathologies with an emphasis on abdominal aortic aneurysm (AAA) which is a potential outcome 

of tissue instability. The principal theory used to characterize the mechanical response of arteries 

is finite elasticity theory. Because of this, elements of the theory are reviewed in Subsection 2.2 

along with features of the theory applicable to arterial mechanics. These include results for the 

cylindrical tube and, the long wavelength approximation (LWA) which is a robust although 

approximate technique for obtaining incipient localized behavior. A somewhat selective survey of 

some of the more popular constitutive relations for the artery and its main constituents are 

described next. Although LWA, and not the finite element method, is used in all incipient growth 

calculations, the finite element method is the tool of choice for most vascular mechanics analyses. 

For this reason, in the final subsection of Chapter 2, a brief review of its use in the analysis of 



 

arteries is described and contrasted with LWA. Once the basic features of the behavior have been 

determined, full field finite element analyses would be the subject of a future study on mechanical 

homeostasis and mechanical stability. 

As stated above, the ultimate goal is to relate the pathologies of individual arterial tissue 

constituents to overall mechanical behavior (homeostatic states, stability) of the artery. An 

important first step in describing the multiaxial and nonuniform stress fields ultimately 

experienced by healthy arterial tissues in vivo is the development of robust constitutive models. 

This is presented in Chapter 3. The microstructure of large elastic arteries consists of three layers, 

i.e., intima (inner), media (middle), adventitia (outer), of which only the media and adventitia are 

mechanically significant. Because each of these two layers themselves have a somewhat regular 

microstructure (which can be appropriately scaled with respect to layer thicknesses) it is only 

natural to try and model each of the three main constituents (collagen, elastin, vascular smooth 

muscle) and then homogenize within a layer to get the composite model. This is carried out in 

Chapter 3 by using the rule of mixtures. (The use of an aggregate (phenomenological) constitutive 

relation, in which individual constituent properties are smeared out, was rejected at the outset of 

this work for the reason stated above.) Thus, distinct constitutive relations will be employed for 

elastin, collagen and vascular smooth muscle which are the primary constituents of arterial tissues 

found in large elastic (conducting) arteries. The composite model for the medial (middle) layer 

that will be presented utilizes the concept of the musculo-elastic fascicle (MEF) originally 

proposed by Clark and Glagov [9] for medial arterial tissues. This will be taken as the 

representative volume element or RVE. Adventitial arterial tissues1, which are an interwoven 

network consisting of dense and wavy collagen fibers and tangles of elastin fibers and a variety of 

                                                
1 The intimal layer and its tissue constituents are not mechanically significant and will not be modelled. 
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cells, will be modeled as an isotropic meshwork of loose elastin fibers embedded with collagen 

fibers oriented in two preferential directions [90]. This constitutive law building strategy is 

validated by examining the tensile and biaxial behavior of the proposed microstructure-based 

constitutive model for medial arterial tissues with existing experimental work taken from the 

literature. A similar approach is employed for adventitial arterial tissues with validation by 

examining the stretch-load response of a thin sheet subject to equibiaxial tension. At the end of the 

chapter, the constitutive model for medial arterial tissues is applied to the vascular problem of a 

thin-walled tube subject to internal pressure and axial loading. Because the medial layer is the most 

mechanically significant layer for healthy tissues under normal physiologic loading (the adventitial 

layer prevents arterial tissues from overstretch at elevated blood pressure) the results have meaning 

for the artery subject to the internal pressure of blood and axial tethering forces exerted by 

surrounding tissues. 

Although, the thin walled tube analysis assumes stress systems that are of membrane-type, i.e., the 

stress fields are uniform, it is now well established that when sectioned longitudinally, a cylindrical 

section of artery will spring open. This indicates the existence of a bending-type circumferential 

prestress [19]. For this reason, much of Chapter 4 (homeostatic stress/stretch statrs) and Chapter 5 

(mechanical stability) utilizes the layered composite tube with finite thickness subject to 

circumferential prestress, axial tethering force and the internal pressure of blood in their analyses.  

The finite strain solution to the 1-layer tube of finite thickness subject to circumferential prestress, 

axial force and the internal pressure is well known [89]. In Chapter 4 the problem of a 

circumferentially prestressed N-layer composite tube subject to axial tethering force and the 

internal blood pressure is considered with special attention devoted to the specialized states of 

uniform stretch and uniform circumferential stretch and the transitional states between them. The 
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motivation for the analysis is that these specific states are candidates for the homeostatic state, i.e., 

the optimal state maintained by an artery regardless of external influence. To this end Chapter 4 

provides a theoretical analysis of the equations governing the mechanical behavior of the 

circumferentially prestressed, axially loaded N-layer composite tube subject to increasing internal 

pressure. The analysis reveals that under increasing pressure a layer will experience several distinct 

stages, two of which are the uniform stretch state and the uniform circumferential stress state. For 

arbitrary strain energy density, simple analytical expressions are presented for the stress 

distributions and the internal pressures at these specialized states. These results are then specialized 

for the 2-layer composite tube which provides a model for the large elastic artery. Numerical 

results are presented for the microstructurally based constitutive models characterizing the 

mechanical behavior of medial and adventitial arterial tissues proposed in Chapter 3. It will be 

shown that the results demonstrate one of the principal findings of this work, i.e., that the uniform 

stretch state, the uniform circumferential stress state of the medial layer, and the uniform 

circumferential stress state of the adventitial layer occur at the diastolic blood pressure, the mean 

blood pressure, and the systolic blood pressure, respectively. These conclusions impact our 

understanding of mechanical homeostasis of large elastic arteries, i.e., the maintenance of arterial 

wall stresses and stretches at preferential values throughout growth, remodeling and perturbations 

in blood pressure. 

With the presentation and validation of the constitutive model (Chapter 3), and the essential 

mechanical behavior of large elastic arteries (Chapter 4), well established, a formal treatment of 

mechanical stability by imperfection growth analysis can proceed. This work is described in 

Chapter 5 in detail. First, tensile stability is treated as a problem of the growth of initial 

imperfections in geometry and material properties. Because the goal is incipient growth the long 
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wavelength approximation or LWA is employed. This allows for the use of nonlinear, uniaxial 

mechanics and provides for rapid computation of relevant quantities of interest. The next step is 

to extend the tensile stability analysis to the case of biaxial stability of a thin-walled single-layered 

tube subject to internal pressure and axial tethering force. The biaxial case considered here is more 

complicated than that of uniaxial tension owing to the high degree of anisotropy of certain tissue 

constituents. These preliminary mechanical stability analyses are established based on an ad hoc 

analysis which utilizes membrane theory. In order to incorporate finite wall thickness and 

circumferential prestress a general theory of imperfection growth is presented. This is based on the 

theory of incremental elastic deformations [56]. The long wavelength approximation is still 

utilized to characterize incipient local growth behaviors in the specific geometry of the composite 

tube. Once this theoretical foundation is in place, analyses of mechanical stability can proceed for 

a variety of material and geometrical imperfections in large elastic arteries. Although the work 

primarily concerns healthy tissues, simple models of diseased tissues will be developed and 

analyzed to determine qualitative aspects of stability. Its consequences for imperfection growth 

are discussed within the context of aneurysm growth. 

Concluding Chapter 6 summarizes the principal results of the research on uniform stretch/uniform 

stress states, mechanical homeostasis and mechanical stability of arteries and briefly describes 

future extensions of the basic subjects discussed in this dissertation. Regarding the principal results, 

these include the characterization of the stretch-load response of arterial tissues by a 

microstructure-based composite constitutive model, a complete analysis of the uniform stress and 

uniform stress states in the N-layer composite tube and its implications for mechanical homeostasis 

of arteries, and the presentation of a general theory of imperfection growth and its application to 

the analysis of the mechanical stability of healthy and diseased arteries. 
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Future extensions include i) an analysis of the sensitivity of homeostatic states of uniform stretch 

and circumferential stress to imperfections, ii) the development of more complex constitutive 

models of healthy and diseased arterial tissues for use with finite element analysis (FEA), iii) 

numerical simulation by FEA of imperfection growth behavior. 

2. Background; Literature Review  

2.1 Arterial Physiology 

2.1.1 Normal Physiology and Mechanical Homeostasis 

The circulatory system plays an important role in maintaining homeostasis, i.e. the state of relative 

constancy of the internal environment. It transports necessary proteins, oxygen, hormones and 

nutrients throughout the human body and removes metabolic wastes. There are four principal 

components comprising the circulatory system: the heart, the vasculature or blood vessels, the 

blood itself, and the lymphatic system2 (see Fig. 2-1). 

Blood is a mixture of cells, platelets, and liquid plasma. The cells are either erythrocytes (red blood 

cells) which carry oxygen, or leukocytes (white blood cells) which protect against infection. The 

function of platelets is to aid in the clotting of blood. 

The heart is longitudinally divided into two functional halves with each half having two chambers 

(i.e., the atrium and the ventricle). The cardiovascular system consists of two circuits. The 

pulmonary circulation pumps oxygen-poor blood from the right ventricle through the lungs, where 

oxygen diffuses into the blood. This oxygen-rich blood returns to the left ventricle (via the left 

atrium) where it is then pumped through the arterial system of the systemic circulation feeding all 

                                                
2 The lymphatic system will not be discussed in this overview. 
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the organs and tissues of the body except the lungs. Finally, oxygen depleted blood returns to the 

right atrium via the venous system. 

 

Figure 2-1. The human circulatory system. (www.pinterest.com) 

In both pulmonary and systemic circuits, the vessels carrying blood away from the heart are called 

arteries, and those carrying blood from body organs and tissues back toward the heart are called 

veins. In the systemic circuit, blood leaves the left ventricle through the aorta3 where it moves 

down through the vascular tree. Arteries continuously branch into smaller vessels with the smallest 

being arterioles that are as little as 10m in diameter. In turn, arterioles further branch into 

capillaries which are the smallest vessels in the vascular system having diameters of about 3-4m. 

Note that a similar hierarchy can be found for veins, i.e., those with smaller diameters are called 

venules. Furthermore, the diameters of veins are generally larger than arteries, facilitating the 

return of blood at low pressure to the heart. 

The two commonly used measures of blood pressure are the systolic pressure (the maximum blood 

pressure when the heart beats) and diastolic pressure (the blood pressure between two continuous 

                                                
3 In an adult male, the aorta is about 30 mm in outer diameter and about 4 mm in wall thickness. 
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heart beats). Normal resting systolic and diastolic blood pressures in adults are approximately 120 

mmHg and 80 mmHg, respectively. The difference between systolic pressure and diastolic pressure 

is called the pulse pressure which is 40 mmHg. Since diastole lasts about twice as long as systole, 

the mean arterial pressure is approximately equal to the diastolic pressure plus one-third of the 

pulse pressure which is 93 mmHg. The average blood pressure in veins can be as low as 7 mmHg. 

This pressure is not enough to drive blood to return to the right atrium. Veins have two mechanisms, 

absent in arteries, which can raise venous pressure and facilitate venous return. These mechanisms, 

which will not be discussed here, are the skeletal muscle pump and the respiratory pump. 

The arteries can generally be separated into two subdivisions based on their composition and 

proximity to the heart. The elastic or conducting arteries being larger and closer to the heart than 

the muscular arteries. They differ in both function and in morphology. An elastic artery 

(conducting artery) is an artery with a large number of collagen and elastin filaments and a regular 

lamellar architecture. They have large radii, low resistance and locate close to the heart. Examples 

of elastic arteries include the aorta, pulmonary trunk, and brachiocephalic trunk. When elastic 

arteries approach the periphery of the vascular tree, they transition to muscular arteries 

(distributing arteries). These include the carotid, brachial, iliac arteries, and the coronary arteries. 

Muscular arteries have a less regular architecture although their constituents (smooth muscle cells, 

elastin lamella and collagen fibers), while having different proportions, are the same as elastic 

arteries. As their names indicate, the dominant elements in their walls are smooth muscle cells so 

that muscular arteries can regulate local blood flow by vasoconstriction or vasodilatation. 
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Figure 2-2. The general shape and dimensions of the aorta. [1] 

The main artery in the human body is the aorta, originating from the left ventricle of the heart and 

extending down to the abdomen, where it splits into two smaller arteries. The general shape and 

dimensions of the aorta are shown in the Fig. 2-2. The only branches of the ascending aorta are the 

two coronary arteries which supply the heart. After leaving the heart the aorta travels superiorly 

(from the heart) and then makes a hairpin turn known as the aortic arch. The branches given off 

from the arch of the aorta are the innominate, the left common carotid, and the left subclavian. The 

aorta then travels inferiorly as the descending aorta. The descending aorta is divided into two 

portions. The first part is known as the thoracic aorta. It starts at the lower border of the fourth 

thoracic vertebra, and ends in front of the lower border of the twelfth at the aortic hiatus in the 

diaphragm. After the aorta passes through the diaphragm, it is known as the abdominal aorta. It 

begins at the aortic hiatus of the diaphragm, and ends on the body of the fourth lumber vertebra. 

The aorta ends by dividing into two major blood vessels, the common iliac arteries, which supplies 

the pelvis and lower limbs (as the femoral artery), and a smaller midline vessel, the median sacral 

artery. 
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Arterial tissues consist primarily of various types of cells, an extracellular matrix, and abundant 

water. The mechanically significant components of arterial tissues are smooth muscle cells (as 

distinct from heart and skeletal muscle), elastin, and collagen fibers. 

Smooth muscle cells. Smooth muscle cells are spindle-shaped (Fig. 2-3), with a diameter between 

2 and 10 , and a length ranging from 50 to 400 . Smooth muscle tissue is comprised of 

aggregates of muscle cells that are linked together. The contraction of smooth muscle is 

accomplished by the relative sliding between actin and myosin filaments within the cell. The actin 

filaments are anchored to two adjacent dense bodies. Unlike skeletal muscle, actin and myosin 

form repeating sections of sarcomeres, the organization of actin and myosin does not have a 

distinct structure of sarcomeres [2]. 

 

Figure 2-3. The configuration of smooth muscle cells. (a) relaxed smooth muscle cells, (b) 

contracted smooth muscle cells. (slideplayer.com) 

Elastin. Elastin is a critical extracellular matrix protein whose main biological function is to impart 

elasticity to living tissues and organs including large arteries, lung, ligament, tendon, skin, and 

elastic cartilage. Elastin is synthesized by linking many soluble tropoelastin protein molecules 

m m
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secreted from several cell types including smooth muscle cells, fibroblasts, endothelial cells, 

chondroblasts, and mesothelial cells with tissue-specific induction of elastin expression during 

development [3]. Three human disorders have been linked to mutations or deletions of the 

tropoelastin gene : cutis laxa, supravalvular aortic stenosis, and Williams syndrome [4]. 

Collagen. Collagen is a fibrous protein that makes up close to a third of all the proteins in the body. 

It is found in connective tissues like bone, cartilage, tendons, skin, blood vessels, etc. There are 

twenty eight known types of collagen that are found in human tissues. Among these twenty-eight 

types, types I, III collagen are the most abundant ones in blood vessels. Types IV, V, VI and VIII 

can be also found in smaller amounts [5]. Figure 2-4 illustrates the basic structure of collagen 

fibers. Additionally, type III collagen mutations are known to be the cause of hereditary Ehlers-

Danlos syndrome type IV, which leads to ruptures of large arteries, other blood vessels and major 

internal organs [4].  

 

Figure 2-4. Illustration of the structure of collagen fibers. (slideplayer.com) 

A thorough understanding of the complex structure of the arterial wall is fundamental for this study. 

The walls of most blood vessels are composed of three layers: tunica intima, tunica media and 

tunica adventitia (Fig. 2-5) (an exception are the capillaries which have only an intimal layer). 
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Each layer exhibits specific histological, biochemical, and functional characteristics and as such, 

each contributes in unique ways to the maintenance of vascular homeostasis and to the regulation 

of the vascular response to stress or injury. 

The intimal layer is the innermost layer of all blood vessels. It is composed of a single layer of 

endothelium, a subendothelial layer and a thin (about 80-nm thick) basal lamina which separates 

the endothelial layer from the subendothelial space [6]. The endothelium works as a selective 

barrier against plasma lipids and lipoproteins. The subendothelial layer, composed of collagenous 

bundles, elastic fibrils, smooth muscle cells, and some fibroblasts, is present only in the large 

elastic arteries such as the human aorta. It can be seen from Fig. 2-5 that the intimal layer is 

relatively thin compared with the other two layers. Therefore, its role in carrying mechanical load 

is minimal.  

 

Figure 2-5. Microstructure of the arterial wall. (Note the absence of fibrous collagen.) 

(www.Britannica.com)  

The tunica media is the middle layer of the vascular wall. The medial layer has a relatively large 

thickness compared with the other two layers, and its role under normal physiological conditions 

http://www.britannica.com/
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is to carry mechanical loads generated by blood pressure and axial tethering force [8]. The medial 

layer has a regular architecture that is made up of repeatedly sequenced units. The elastic properties 

of aortic units are similar among different species, and the load that can be carried by a single unit 

remains constant [8]. Experiments carried out by Clark and Glagov [9], on straight sections of 

arterial tissues in vivo, but away from ostia and transition regions, indicate that circumferentially 

oriented, elongated vascular smooth muscle cells appear to be packed longitudinally in layers 

containing similarly oriented elastic fiber sheet. In the transverse direction, vascular smooth 

muscle cells also appear in layers containing elastic fiber sheet but also crimped, circumferentially 

oriented collagen fibers. Based on these observations Wolinsky and Glagov [8] and Clark and 

Glagov [9] have suggested that the essential building block of medial arterial tissues is the 

musculo-elastic fascicle (MEF). The lamellar microstructure of the MEF consists of distinct layers 

of elastin, collagen fibers and smooth muscle in a regular sequence of elastin-cells-elastin-collagen 

bundles-elastin-cells-elastin-collagen bundles-elastin-cells-elastin, etc. This is shown in Fig. 2-6. 

Since Wolinsky and Glagov first identified the medial lamellar unit architecture, numerous 

subsequent studies of blood vessel microstructure have supported this model. O’Connell [10] 

performed experiments on the abdominal aorta harvested from 8 adult male Sprague Dawey rats 

and produced 3D nanostructural information at normal physiological condition without removal 

of constituents or destruction of interconnections. Three dimensional nanostructural images show 

that the characteristic MEF structure has a highly three-dimensional nature. Elastin lamellar layers 

are divided by oblique elongated smooth muscle cell nuclei and collagen fiber bundles. Between 

lamellae, interlamellar elastin fibers form a cage-like structure around smooth muscle cells, and 

radially oriented thick elastin struts branch from a primary elastic lamella and extend to an adjacent 

lamella, provided a direct radial interlamellar connection. Coiled undistended collagen fiber 
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bundles within each layer are arranged in parallel and circumferentially oriented with slight 

differences between adjacent layers, achieving a variation of orientations throughout mural 

thickness. Volume fractions of the three constituents were reported as approximately 29% elastin, 

24% smooth muscle cells, and 47% collagen and ground substance. In the 29% total elastin volume, 

lamellae comprised 71%, 27% are interlamellar elastin fibers, and the remaining 2% are radial 

elastin struts. In [10], 18 right and left carotid arteries harvested from 3 month old pigs were 

investigated and the authors reported a different set of constituent volume fractions, i.e., 

22% 4%  elastin, 72% 7%  smooth muscle cells, and 15% 4% collagen. The difference may 

be caused by the fact that O’Connell did not distinguish between collagen and ground substance. 

There is usually more elastin than collagen in the thoracic aortic segment and more collagen than 

elastin in the abdominal segment. However, the total fibrous protein concentration is nearly the 

same for both segments [8]. In this dissertation the volume fractions are taken as 0.15, 0.70, and 

0.15 [11] for elastin, smooth muscle, and collagen, respectively. 

 

Figure 2-6. Drawing of musculo-elastic fascicle (MEF) defined by Clark & Glagov [9]. (C: 

circumferential direction; L: longitudinal direction) 
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While Glagov, Clark and Wolinsky noted the circumferential orientation of collagen fibers in the 

medial layer, the precise arrangement of collagen fibers is far from settled and has been the subject 

of much recent work ([10], [12], [13], and [14]). The orientations of the constituents of arterial 

tissue is commonly characterized by the continuous von Mises probability distribution which is 

also known as the circular normal distribution. The distribution is defined on the circle and is the 

circular analogue of the normal distribution. The measure of concentration is characterized by a 

parameter . If  is zero, the distribution is uniform. If  is large, the distribution becomes highly 

concentrated about the mean angle. Holzapfel et al. [7] measured over 37000 fibre angles from 

non-atherosclerotic descending thoracic and abdominal aortas and from common iliac arteries, and 

the investigation showed that two families of fibres are almost helically arranged with respect to 

the cylinder axis and are close to the circumferential direction. Figure 2-7a. shows a schematic of 

arterial wall as modeled by Holzapfel et al [7]. The dashed lines indicate collagen fiber bundles 

incorporated at an angle of  and - with respect to the circumferential direction. Holzapfel [14] 

showed that the von Mises distribution of collagen orientations has a mean angle deviation away 

from the circumferential direction of 6.91  and, , the measure of concentration, has a value of 

4.81 which indicates a strongly anisotropic pattern. However, the conclusions made in [12] 

contradict the observations made by other researchers, and is in conflict with their own 

observations. Figure 2-7c shows the representative structure of a healthy abdominal aorta 

presented in [14]. It can be seen that the medial layer is perfectly aligned with the circumferential 

direction. Furthermore, Fig. 2-7d shows only one dark red stripe indicating only one preferential 

direction. 
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Figure 2-7. a) Schematic of arterial wall as modeled by Holzapfel and Gasser [7]. The dashed lines 

indicate collagen fiber bundles incorporated at an angle of   and −  with respect to the 

circumferential direction. b) The x-axis denotes ( )90 , 90− , the y-axis denotes the density of the 

measured angles for the descending thoracic aorta. c) Representative structure of a healthy 

abdominal aorta. d) Intensity plot shows collagen structure through the depth of the wall: dark red 

depicts preferred fiber directions, blue relates to no distinguished orientation [14].   

S. Polzer et al. [13] studied the collagen orientation distribution through the thickness of the 

procine thoracic aorta. Their results showed that the von Mises distribution of collagen orientations 

is highly anisotropic for luminal tissue layers and this changes gradually and smoothly towards an 

almost isotropic distribution in the adventitial layers. This result agrees with the observations made 

by Clark and Glagov [9], and O’Connell [10] described above. In [10], the experiment conducted 

by the authors shows that within the media smooth muscle cell nuclei, interlamellar elastin fibers, 

and collagen preferentially align in the circumferential direction. This will be assumed for the 

medial layer in all of the work in this study. 

The tunica adventitia is the outermost layer of the vascular wall. The adventitia of elastic arteries 

is relatively thin, constituting in general only 10% of the vascular wall [15]. The adventitia consists 

of an extracellular matrix (ECM) scaffold primarily consisting of fibroblasts, elastin and thick 
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bundles of interwoven collagenous fibrils forming a fibrous tissue sleeve around the media. This 

gives the vascular wall a fair amount of stability and serves to connect the blood vessel to its 

surrounding tissues. The orientation of collagen fibers in the adventitia is more evenly distributed 

than in the media. Therefore, its mechanical behavior is more isotropic than the media [16]. Chen 

[15] investigated the 3D structure of the coronary artery adventitia harvested from 14 porcine 

hearts. The images showed that under elevated pressures, both elastin and collagen fibers of the 

inner adventitia were stretched to bear the loads, although collagen bundles were still undulated in 

the outer adventitia. This suggests that the outer adventitia serves to connect the blood vessel to its 

surrounding tissues and the inner adventitia bears the majority of load at elevated pressure. The 

major cell type in the adventitia is the fibroblast. It plays a central role in the regulation of vascular 

function. Fibroblasts produce and organize elements of the extracellular matrix (ECM) and 

degrade structural elements of the ECM. Moreover, fibroblasts also communicate with neural cells, 

smooth muscle cells, endothelial cells, and epithelial cells. Most importantly, proliferation of 

fibroblasts coincides with the increased expression and activity of several matrix 

metalloproteinases (MMPs). These are responsible for the degradation of ECM components, which 

may relate to the initiation of formation of aortic aneurysm [17]. 

One of the interesting facts about arterial tissues, which was first noted by Fung [18] and 

(independently) by Vaishnav, R.N. and Vossoughi [19] several decades ago, is that arterial tissues 

are circumferentially pre-stressed. These authors showed that a straight section of artery, when 

sectioned longitudinally, will spring open into an approximately annular sector. This indicates that, 

in the intact vessel, there exists a bending type residual stress such that the inner (luminal) wall is 

in compression and the outer wall is in tension. A natural conjecture as to the reason why arterial 

tissues are circumferentially pre-stressed is that it relates to mechanical homeostasis. Blood vessels 
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exhibit a remarkable adaptive ability throughout life in order to maintain its preferred state, which 

not only depends upon genetic programming and well-orchestrated biochemical processes but also 

on their adaptive responses to the mechanical environment experienced by these vessels. 

Specifically, arteries experience their optimal stress and/or stretch states when they reside in the 

physiological condition. Any stress or stretch state that deviates from the optimal value could result 

in geometrical and/or microstructural changes in arterial tissues in order to adapt to changes in the 

mechanical environment. 

Several studies have been devoted to arterial remodeling under conditions of experimentally 

induced sustained hypertension. T. Matsumoto and K. Hayashi [20, 21], and Y. C. Fung and S. Q. 

Liu [22] found that the thickness of the aortic wall and the corresponding opening angle after the 

release of the residual stress, increases rapidly in response to hypertension. Both studies reported 

that remodeling brings the excessive mean circumferential stress due to hypertension back to 

normal levels. Fung [23] further interpreted this feature of arterial tissues as a manifestation of the 

“principle of optimal operation”, i.e., an artery, as a load-bearing thick-walled structure, prefers a 

uniform stress distribution to ensure an optimal load bearing capacity. The experiments conducted 

by Wolinsky [24] showed that the average circumferential tension in each musculo-elastic fascicle 

(MEF) unit is nearly constant at about 2N/m throughout growth. This further suggests a constancy 

of circumferential stress during development. Rodriguez et al. [25], Taber and Eggers [26], and 

Taber and Humphrey [27] developed their theoretical continuum models based on a uniform 

circumferential stress assumption to predict the remodeled blood vessel geometry and the intensity 

of the circumferential pre-stress stimulated by hypertension. Numerical results based on these 

models shows good agreement with published experimental data. There is other evidence 

indicating the existence of mechanical homeostasis, based on the idea that the principal stretches 
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are the preferential mechanical quantity (instead of the circumferential stress). Destrade [28] 

demonstrated analytically the existence of a uniform stretch state for a circumferential pre-stressed, 

1-layer vessel subject to internal pressure. The pressure for which the principal stretches are 

uniform through the wall thickness was shown numerically to be located within the physiological 

pressure range. 

There are many other mechanical factors that play regulatory roles in arterial tissues. In response 

to acute changes in blood flow rate, for example, many arteries actively contract or dilate to 

maintain a constant fluid shear stress on the endothelium [29, 30]. Due to a chronic increase in 

systolic blood pressure, arteries thicken [31, 32], presumably to restore homeostatic wall stress 

distributions. Long-term changes in arterial structure are achieved via two main processes: smooth 

muscle growth and collagen remodeling. Olivetti et al. [34] showed that hypertension induced by 

aortic coarctation causes an increase in smooth muscle cell volume. Nissen et al. [35] found that 

the half-life of collagen decreases almost four fold in response to chronic hypertension. 

Mathematical models are important tools in studies of the biomechanics of growth and remodeling. 

Several mathematical models for growth and remodeling of arteries have been published during 

the last decade. These include thick-walled models for growth [36-41] and a thin-walled model 

that includes collagen turnover but does not account for residual stress [42, 43]. 

2.1.2 Pathology  

In Sections 5.1.3, 5.2.3, 5.3.3 the mechanical stability of diseased arteries are analyzed by using a 

constitutive model capturing the microstructure of diseased arterial tissues as opposed to that of 

healthy arterial tissues. Thus, in this section, several representative diseases relating to 

malfunctions of the vascular system are briefly summarized. For more details, please see 

Encyclopedia Of Heart Diseases [44]. William’s syndrome is a neurodevelopmental disorder [45]. 
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While the most significant symptom is cognitive impairment, many patients also exhibit a 

cardiovascular defect known as supravalvular aortic stenosis. This defect is a narrowing of the 

aortic root just outside the left ventricle outflow tract. Isolated supravalvular aortic stenosis is 

caused by mutations in the elastin gene. 

Mutations in the elastin gene have also been associated with the autosomal dominant form of cutis 

laxa. Cutis laxa is a group of rare connective tissue disorders causing the skin and the 

cardiovascular system to become inelastic [46]. 

Ehlers-Danlos syndrome (EDS) is a group of six heritable disorders with variable symptoms in 

different connective tissue systems. The most common EDS symptoms are thin and loose skin, 

joint hypermobility, and fragility in blood vessels and other connective tissue. Vascular EDS is 

caused by a lack of type III collagen, reducing the burst strength of large arteries [47]. 

Marfan syndrome is an autosomal dominant disorder affecting connective tissues and causing 

abnormalities in the cardiovascular, skeletal, and ocular systems [48]. Some think President 

Abraham Lincoln may have had Marfan syndrome, since his body manifests some skeletal 

abnormalities such as disproportionately long limbs and fingers, hypermobility in joints, and a 

highly arched palate with a narrow jaw [49]. In regard to cardiovascular defects, histological 

studies reveal highly disrupted elastic lamellae in a Marfan syndrome aorta. 

The pathophysiology of AAA (Fig. 2-8) is still obscure for researchers, but general pathological 

processes involved in the formation of degenerative AAAs include smooth muscle cell apoptosis  
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Figure 2-8. Image of a fusiform abdominal aortic aneurysm (www.emedicine.medscape.com) 

[50], inflammation, and degradation of the arterial wall matrix [51]. A striking feature of 

aneurysmal tissues is a pronounced inflammatory infiltration of lymphocytes and macrophages on 

the adventitial side of the arterial wall. The initial stimulus for the inflammation that is present in 

aneurysmal tissue remains to be determined. A candidate explanation is that the movement of 

leukocytes into the aneurysmal tissue may be stimulated by secretion of specific chemokines. The 

loss of elastin fibers is thought to be the initiating event in AAA, and the loss of collagen fibers is 

thought to be responsible for the rupture of the AAA. Unregulated destruction of the extracellular 

matrix is considered to be caused by elevated concentrations of matrix metalloproteinases (MMPs). 

The MMPs are a large group of enzymes that display relative selectivity for extracellular matrix 

elements. MMP-2, MMP-9, and MMP-12 have the highest affinity for elastin as substrate. The 

medial degeneration in AAA is also accompanied by a quantitative decrease in smooth muscle cell 

density compared with normal aortic tissues. All these major events that occur in AAA will result 

http://www.emedicine.medscape.com/
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in changes in volume fractions and microstructures of the three constituents in medial arterial 

tissues. R. A. Peattie [52] investigated the AAA tissue histology and the representative images 

show that a small number of samples indicate an organized distribution of layers within the wall, 

with recognizable intima, media, and adventitia. However, the structure of most samples lacked 

the well-organized layers normally associated with healthy aorta walls. More specifically, there 

was a significant loss of parietal structural architecture and, there was disruption of smooth muscle 

as well. G. A. Holzapfel [53] investigated the mass fractions of elastin and collagen within the 

thrombus-covered intima-media composite harvested from aneurysmal tissue and reported that the 

amount of elastin significantly decreased from   to  . Collagen had a 

relatively small loss, from % decrease to . The constitutive model of AAA 

tissue presented in [54] shows a rather compliant behavior at low stretches and a rapid stiffening 

at higher stretches when compared with healthy AA wall samples.  

2.2 Modeling and Analysis 

This section reviews previous work on modeling and analysis that is relevant to the present 

research. 

2.2.1 Elements of Finite Elasticity Theory 

In this subsection basic kinematics and kinetics are summarized. The notation and approach 

employed is consistent with standard references on the subject (e.g., Gurtin [55], Ogden [56], 

Truesdell and Noll [57], Villaggio [58]). Lower case Latin and Greek letters are used for scalars 

(e.g., , , ,p a  ), lower case bold Latin letters for vectors (e.g., , ,r v a ), and upper case bold Latin 

letters for tensors (e.g., , ,T S E with the exception of X, Y, Z). The bold face letters , , , , ,x y z X Y Z  

are reserved for points. In this work components of vectors and tensors may be referred to a polar, 

11.8 4.5% 4.1 3.9%

22.4 5.1 17.6 5.3%



24 

physical basis or, to a Cartesian basis. In terms of Cartesian components the basic vector operations 

are, 
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( )

( )

1 2 3
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 (2-1) 

where the summation convention is employed and, unless otherwise noted, summation is from 1-

3 over repeated indices. A smooth one to one deformation  maps material points or particles X 

in the reference body B0 to the spatial points or places x in the deformed body B, 

 (2-2) 

In addition, write the gradient of  with respect to the material point X as , and 

require, 

detF > 0 (2-3) 

which ensures that F is invertible and that no finite positive volume can be deformed to a point. 

By the polar decomposition theorem [56], the deformation gradient F can be uniquely decomposed 

into the product of an orthogonal tensor R with positive determinant (the rotation) and symmetric 

positive-definite tensors (U, V). Thus, F =RU=VR with, 

U = (FTF)1/2 ,V = (FFT )1/2  (2-4) 
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U and V are the right and left stretch tensors, respectively. In order to avoid square roots in the 

definitions of U and V, define the right and left Cauchy-Green strain tensors,

C=U
2
=F

T
F,B = V

2
=FF

T  (2-5) 

which result in the formulae, 

.T T
V = RUR ,B = RCR  (2-6) 

For an elastic body B in a deformation , the surface force vector is s(n), (n is unit normal to 

a surface) and the body force vector is b exerted at place x. The fields s(n) and b are assumed to 

satisfy the force and moment balances, 

s(n)dS + bdV = 0
Bò¶Bò ,

r ´ s(n)dS + r ´bdV = 0
Bò¶Bò ,

 (2-7) 

where r (= x-o) is the distance between spatial point x and a referential origin o, and B  is the 

boundary of body B. A consequence of the balance of forces is Cauchy’s theorem which states 

that there exists a spatial tensor field T called the Cauchy stress, such that 

.s(n) = Tn   (2-8) 

The divergence theorem applied to the balance of force gives the differential equation of local 

equilibrium, 

divT+b = 0.  (2-9) 

while the local moment balance requires the Cauchy stress to be symmetric, so that 

T
T = T  (2-10) 
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The Cauchy stress T measures the force per unit area in the deformed configuration. The Piola-

Kirchhoff or nominal stress S acts in the referential configuration and measures the force per unit 

area in the reference configuration. Given the unit normal 0n on the boundary of reference 

configuration 0B , the Piola-Kirchhoff stress is related to the Cauchy stress by, 

0
0 0(det ) .dS dS

 
= 

-TTn F TF n
B B

 (2-11) 

This result follows from Nanson’s formula 
0 0(det )dS dS= -T

n F F n  which describes the evolution 

of area with deformation. Therefore, 

(det ) .= -T
S F TF  (2-12) 

The global balance of forces in the reference configuration is, 

0 0
0 0 0,dA dV


+ = Sn b

B B
 (2-13) 

where 0b is the body force measured in the reference configuration. Similarly, with the help of the 

divergence theorem, the reference form of local force balance is given by, 

0Div 0+ =S b  (2-14) 

where Div( ) is the divergence with respect to material point X. The work done by the stress field 

in deforming the body with deformation gradient F must be non-negative in order to satisfy the 

second law of thermodynamics [55]. A necessary and sufficient condition for this to hold is that S 

be the derivative of a scalar potential (the strain energy), 

( , ) ( , ).W


=


S F X F X
F

 (2-15) 
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Bodies that satisfy (2-15) are hyperelastic (i.e., the work done is zero is closed processes). If the 

body B is hyperelastic and isotropic, then W reduces to a function of the list of principal invariants 

of the left Cauchy-Green strain tensor B, i.e., 

( ), 1,2,3kW W I k= =  (2-16) 

2.2.2 Circumferential Pre-Stress, Inflation and Extension of a Uniform (1-Layer) Tube 

The problem of the finite strain of a circular tube subject to circumferential pre-stress, axial 

extension and internal pressure is of great importance in vascular mechanics. This is because i) 

arterial segments, in the absence of distending pressure and axial tethering, when sectioned 

longitudinally will open into an approximately annular sector [59], ii) inflation of arteries under 

the internal pressure of blood occurs at finite strain [60] and iii) axial tethering force, exerted on 

arteries from surrounding tissues, results in a significant component of the overall deformation 

[60]. Various aspects of this problem have been considered in the literature beginning with Green 

and Adkins (1960) (a modern treatment of this work can be found in Humphrey (2002)). Aspects 

of this solution will be used in future work on imperfection growth. Elements of the solution are 

summarized below. 

An incompressible annular sector, with an initial opening angle 0  is closed by moments and then 

inflated and extended by internal pressure and axial force, respectively. Therefore, there are three 

physical states: i) the stress-free reference state B0 consisting of the annular sector with opening 

angle 0 , inner radius 1R and an outer radius 2R , ii) the pre-stressed unloaded state B of a circular 

tube with inner radius 1  and outer radius 2  and, iii) the deformed state B of a circular tube 

under prestress, internal pressure and axial tethering force with inner radius r1 and outer radius r2. 

The deformation which takes →0B B  is, 
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0( ),  ( ),  ,R Z    = = − =   (2-17) 

where ( )
1

01 
−

= −  is a measure of the opening angle. The first deformation gradient is,

1 R Z
R R

  

 



=  +  + 


F e e e e e e , where ( , , )R Z  are cylindrical coordinates of a particle 

in the reference state and ( , , )   are cylindrical coordinates of place in the first deformed state 

B. The second deformation is an inflation and extension of the tube by pressure P and axial 

tethering force F, respectively. The mapping between the first deformed state B and the final 

deformed state B is given by, 

( ),  ,  .r r z   = = =  (2-18) 

The second deformation gradient is given by
2 r z

r r
   

 


=  +  + 


F e e e e e e , where ( , , )r z  

are cylindrical coordinates of place in the final, deformed state. Therefore the total deformation 

gradient (F) and the right Cauchy-Green strain tensor (C) are

1 2

2 2 2

,

( ) ( ) ( ) .
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 (2-19)
 

Let the principal stretches be denoted by  

,  ,  r z

r r

R R



   


= = = 


 (2-20) 

while the principal invariants are 
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The constitutive relation for incompressible, isotropic materials, in terms of their principal physical 

components is, 

ˆ ˆ ˆ,  ,  ,rr r zz z

r z

W W W
T T T 



     
  

  
= − + = − + = − +

  
 (2-22) 

where T is the Cauchy stress tensor, ˆ ( , , )r zW W   =  is the strain energy density function in 

terms of principal stretches, and ̂ is the Lagrange multiplier (and not the hydrostatic pressure). 

The incompressibility constraint ( det 1=F ), the local equation of equilibrium ( div( ) =T 0 ) in the 

absence of body force, the weak axial boundary condition and the strong boundary conditions 

1 2( ) ,  ( ) 0rr rrT r P T r= − =  ultimately lead to 4 equations governing the unknowns 1
ˆ , ,z r  , and 2r . 

The prescription of a strain energy density (W) then enables the determination of all elastic fields. 

A somewhat more transparent formulation of the governing equations was carried out by Ogden 

[56] who replaced the unknown radius of the deformed geometry by the circumferential stretch 

  by using (2-20). Thus, equations now govern the unknowns 1
ˆ , ,z    , and 2 , where 1  and 

2  are the circumferential stretches at the inner and outer surfaces. The result is, 
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where t is a dummy variable of integration, 1 2( / )R R =  is the ratio between the inner radius and 

the outer radius of the reference geometry, and the stress components are given in terms of the 

stretches by (2-22). 

2.2.3 Constitutive Relations for Medial Arterial Tissues  

In this section the strengths and weaknesses of some of the widely used models are described. 

Healthy arteries are highly deformable composite structures that have a nonlinear stress-strain 

response and a typical stiffening effect at higher pressures [61]. Fig. 2-9 shows typical uniaxial 

stress-strain curves obtained from dynamical experiments on circumferential arterial strips from 

passive medial arterial tissue. The plot demonstrates the pronounced viscoelastic response of 

arterial tissue. In the absence of smooth muscle tone, arteries exhibit hysteresis under cyclic 

loading. In particular, during cyclic testing it has been found that arterial walls exhibit hysteresis 

that is relatively insensitive to strain rate over several decades [23]. Arteries exhibit a nearly 

repeatable cyclic behavior once stress softening is complete, and the artery is then said to be pre-

conditioned [23]. Once the artery is pre-conditioned, it may be treated as pseudoelastic as proposed 

by Fung et al, i.e., loading and unloading are represented by separate elastic relations. In the 

absence of unloading, constitutive modelling of the artery can be simplified so that all inelastic 

phenomena are neglected and the arterial wall may be regarded as hyperelastic [23]. 
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Figure 2-9. Typical uniaxial stress-strain curves for passive circumferential arterial strips. 

(www.centralmaine.com) 

Constitutive models for the arterial wall are phenomenologically based or, microstructurally based 

taking the underlying histology into account. One of the most extensively used phenomenological 

constitutive relations for arterial tissues was proposed by Fung [18]. Based on experimental 

observation he assumed the arterial wall aggregate to be incompressible, homogeneous, 

cylindrically orthotropic, and characterized by a strain energy function of the form, 

0
2

Qc
W e =  (2-24) 

where 

2 2 2

1 2 3 4 5 62 2 2z r z z r rQ b E b E b E b E E b E E b E E  = + + + + +  (2-25) 

and W represents the strain energy per unit mass of the loading process, 0  the mass density of 

the vessel wall such that 0W is the strain energy per unit volume in the undeformed configuration. 

The constants 1 2 3 4 5 6, , , , , ,c b b b b b b  are constitutive parameters and , ,r zE E E are principal 
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components of Green’s strain tensor4 (E) in the circumferential, radial, and longitudinal directions, 

respectively. 

There are distinct strain energy potentials for each layer of the artery so that a composite 

constitutive model can incorporate some histological information of the microstructure of arterial 

walls. Many of these models assume a non-collagenous substance with embedded collagen fibers. 

The incompressible strain-energy potential is split into a part associated with isotropic 

deformations and a part associated with anisotropic deformations. In this case the strain energy 

potential has the form, 

iso anisoW W W= +  (2-26) 

Because the primary load bearing constituent is elastin, the non-collagenous substance is often 

modeled by the constitutive relation for elastin, i.e., the neo-Hookean strain energy function [63] 

given by, 

1( 3)isoW c I= −  (2-27) 

where c is a material parameter, and 1I  is the first invariant of the right Cauchy-Green strain tensor. 

The strong stiffening effect of embedded collagen fibers observed at high pressures motivates the 

use of the phenomenological exponential strain energy potential, 

21
2

4,62

{exp[ ( 1) ] 1},
2

aniso i

i

k
W k I

k =

= − −  (2-28) 

                                                
4 Defined by 2E = C-1. 
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where 1 0k  is a stress-like material parameter and 2 0k  is a dimensionless parameter [61]. The 

invariants 4I  and 6I  are the squares of the stretches in the directions of the two families of collagen 

fibers that are assumed to exist. In order to capture the typical features of the response observed in 

a rabbit carotid artery, G. A. Holzapfel [61] took the angles between the collagen fibers and the 

circumferential direction in the media and adventitia to be 29.6 and 62.0 , respectively. Other 

models, for example those presented in Wuyts et al. [62] and Holzapfel [61] reflect a similar idea 

but they use different strain energy potentials. Another model proposed by Holzapfel & Ogden 

[14] includes the effect of the dispersion of the collagen fibers. 

From the discussion in section 2.1, the elastin lamellae, smooth muscle cells, and collagen fibril 

bundles are the mechanically significant constituents of the medial layer of the arterial wall. The 

elastin sheets in the media have mechanical properties similar to rubber elasticity of polymers [63]. 

Because of this, the biaxial Neo-Hookean constitutive relation characterizing homogeneous, 

isotropic, and entropic rubber elastic media has been shown to be a reasonable model of the 

mechanical behavior of the elastin layer [63]. R. Rezakhaniha [64] proposed a combination of an 

orthotropic model, accounting for a subset of elastin fibers oriented in the circumferential direction, 

and an isotropic model, accounting for the remaining elastin matrix. The anisotropic strain energy 

function has the form, 

''

1( ) ( )iso aniso anisoW W I W I= +  (2-29) 

where 1I is the first invariant of the Cauchy-Green tensor C and 4I   is an invariant of C with 

respect to the circumferential direction e  defined as  

''

4I  = e Ce  (2-30) 
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The isotropic component is still characterized by a Neo-Hookean strain energy function. For the 

anisotropic part, it was assumed to be a one-dimensional form of an incompressible Neo-Hookean 

material undergoing a uniaxial tension in the fiber direction. The resulting form is,  

''

4
''

4

2
( 3)a

aniso elastW c I
I

= + −  (2-31) 

where 
a

elastc  is an elastic constant for elastin in the circumferential direction. The added complexity 

arising from the anisotropic nature of the elastin described in this model does not seem warranted 

at this time and an isotropic Neo-Hookean strain energy function will be used for all elastin as 

described in [63]. 

In [65], the biaxial tensile behavior of passive, vascular smooth muscle is assumed governed by 

the phenomenological Blatz 2- parameter polynomial model of Valanis-Landel type [66], i.e., 

constitutive relations with separable strain energy densitie 1 2 3(ln ) (ln ) (ln )w g g g  = + + . Blatz 

chose g , for uniaxial tension, to be of the form 1ln

1(ln ) ( 1) ( 1)ig C e C
   = − = −  based solely on 

its ability to reproduce experimental results for a range of materials including soft animal tissues. 

Murtada et al. [67] postulated a strain energy function which characterizes both passive and active 

response of smooth muscle. This model takes account of the physiological mechanisms of force 

generation. The strain energy stored in the smooth muscle tissue is comprised by two parts: i) the 

energy stored in the network of contractile units (active component) aW ; ii) the energy stored in 

the surrounding matrix (passive component) Wp Therefore, 

.a pW W W= +  (2-32) 

The energy stored in the network of contractile units is given by,  
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2( )( 1) ,
2

a
a C D f rsW n n u


= + + −  (2-33) 

where 
f  is the stretch in the preferential direction of contractile units, rsu  is the relative sliding 

displacement between myosin and actin which is normalized by the length of a contractile unit, 

Cn and Dn  the fractions of phosphorylated myosin in the repeated cycles of force generation and 

dephosphorylated myosin in the latch state, respectively. The passive component of the strain 

energy is given by neo-Hookean model. Because only the passive response of smooth muscle cells 

are considered in this work, and because the Neo-hookean model is deemed inadequate to 

characterize the anisotropic passive response of circumferentially oriented smooth muscle cells in 

medial arterial tissues, the passive component of the strain energy density function proposed by 

Murtada will not be used. Instead, the phenomenological constitutive model of Blatz [65] will be 

used. 

Garikipati [68] developed a model which accounts for straightening (bending) and extension 

behavior of crimped collagen fibers under an applied tip force. The configuration of a collagen 

fiber of half-wavelength was assumed to be a plane circular arc subject to incompressibility. The 

Cauchy stress component in the direction of the orientation of collagen fibers can be expressed as, 
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where   is the micro-stretch of collagen fiber in the direction of its orientation,  is the half-angle 

subtended by the circular arc in the current state, 0  is the half-angle subtended by the circular arc 

in the reference state, and cR  is the circular arc radius in the reference state. The parameters 

appearing in equation (2-34) are the radius of gyration of the fiber cross section (  ), the fiber 

stiffness ( CE ), and the volume concentration of fiber in layer () [69]. Thus there are three 

parameters in the model: ( / )ck R=  the slenderness ratio, *

C CE E=  the effective stiffness of the 

layer, and 0  the circular arc half-angle. Their values were obtained from experiment [70] and 

are * 3

00.029074, 4 /15, 7.0 10C Ck E E kPa  = = = =  .  

Zulliger [71] proposed an anisotropic strain energy function for collagen bundles with half the 

fibers at an angle  and the other half at −  to the circumference. The percentage of collagen 

fibers engaged in carrying load is assumed to obey the log-logistic probability distribution function. 

The strain energy function (W) is described as the product of the individual fiber strain energy 

function (
fiberW ) and the amount of engaged collagen fibers ( fiber ), 

fiber fiberW W =   (2-35) 

where fiber is the log-logistic probability distribution function, and an individual collagen fiber is 

characterized by the strain energy function  

0                             for 0
( )

( log( 1))  for  > 0
fiber

coll

W
c




  


= 

− +
 (2-36) 

where collc  is the Young’s modulus of the collagen and  is the strain in the fiber direction. 
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The advantage of microstructural based models over phenomenological models is that their load 

carrying mechanisms relate directly to the underlying histology. Therefore, their predictive 

capability exceeds that of a purely phenomenological approach. Modeling arterial tissues as a 

layered structure, as defined herein, allows a clear relation between the load carrying constituents 

of the arterial wall and their particular contributions to the free energy. A microstructural model 

facilitates our understanding of the tissue’s function and provides insight into its response to a 

given mechanical loading. Moreover, disease mechanisms that affect only a specific constituent 

can be captured in microstructural models. Because of its simplicity, and its direct link to the 

crimped fiber geometry the microstructural model of Garikipati et al [70] will be employed along 

with the neo-Hookian model for elastin and the Blatz model for smooth muscle. 

2.2.4 Constitutive Relations for Adventitial Arterial Tissues 

The mechanical response of the adventitial layer dissected from human internal carotid arteries 

subject to axial extension and internal pressure is shown in the Fig.2-10 [82]. Each curve is related 

to a specific axial extension. All investigated tissues exhibit strong nonlinear, pseudo-elastic 

mechanical behavior with small hysteresis. All curves in Fig. 2-10 are flat initially and turn sharply 

towards the vertical, which indicates that the adventitia is very compliant at low pressures, but 

stiffens greatly at high pressures. This is mainly due to the straightening of adventitial collagen 

fibers at pressures higher than that of the media-intima bundle dissected from the same sample 

[82]. Comparing the circumferential and axial response of adventitial tissues indicates a high 

degree of material anisotropy for all investigated samples. 
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Figure 2-10. Typical biaxial stress-strain responses of adventitia. Circumferential stretch-

pressure (A) and axial stretch-pressure (B). Each curve is related to a specific axial stretch. [82]   

Consistent with the material models implemented herein, the passive responses of adventitial 

arterial tissues are generally nonlinear, pseudo-elastic, incompressible, and anisotropic. Thus, 

Fung’s phenomenological constitutive model is a simple choice [83], 

( ) 2 2exp 1 , ,zz zz z zzW K Q Q c E c E c E E   = − = + +    (2-37) 

where K, c , zzc , and zc  are material parameters and , zzE E  are the principal in-plane Green 

strains; c  and zzc  specify the   and z-axis stiffnesses, and zc  the interaction among axes, while 

K is a stiffness factor. 

The fishnet-like mechanical responses of adventitial arterial tissues motivates the implementation 

of the microstructural constitutive model proposed by Gasser et al. [84]. It involves isotropic 

elastin for modeling the low-pressure tissue response, together with two families of collagen fibers, 

with large dispersions of fiber angles about the two principal directions, for modeling the stiffening 

response at high pressure, 
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( ) ( )( )( ) 2
1

1 2 1

1,2 2

3 exp 1 3 1
4

i
i i i i

i
i

k
W c I k I

k
  

=

 = − + + − −
  

  (2-38) 

where parameters c  and 
1

ik  are stress-like, 
2

ik  is dimensionless, and 1I tr= C  is the first invariant 

of the right Cauchy-Green strain tensor C, 
i i i = n Cn  is the stretch of the ith family, with i

n  

being the unit vector along the orientation of that fiber family, i  is a scalar representing the 

dispersion of each fiber family, with 1/ 3i =  denoting an isotropic distribution of fiber 

orientations. 

2.2.5 Incremental Elastic Deformations: General Theory 

The theoretical framework of imperfection growth that is developed in this research is based on 

the theory of incremental elastic deformations (Ogden [56]). In its more common form it is called 

the theory of infinitesimal strain superposed on finite strain (reference Truesdell and Noll [72], 

Green and Zerna [73], Ogden [56], Lurie [74]) and is often used in the analysis of bifurcation and 

stability problems. The idea is to develop equations governing the difference in elastic fields that 

arise from small changes in the deformation. In future, the basic formulation of Ogden [56] 

(described below) will be modified/extended to describe the evolution of initial material 

imperfections and, initial geometrical imperfections in bars and cylinders composed of arterial 

tissues deforming at finite strain. 

Consider a reference body 0B  that is subject to two different deformations, the base deformation 

( )=x X  and the perturbed deformation ( )=x X  where X is a particle in the reference body 0B . 

If the two deformations differ from each other incrementally, then the incremental deformation is, 

δx = x - x = χ(X) - χ(X) = δχ(X)  (2-39) 
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and the incremental deformation gradient is, 

= ( ) ( ) ( ) ( )  − = − = =F F F X X X X        (2-40) 

where it is noted that the operators   and   commute and (2-39), (2-40) are exact. Incremental 

strain tensors can be introduced as well based on the above definitions. The base (perturbed) 

volume stretch J, i.e., ratio of deformed volume to undeformed volume, is det F  (det F ) and its 

increment is, 

( ):J J J J o  = − = +-T
F F  (2-41) 

where ( )o   is a term which goes to zero faster than  quantities and may be neglected as a first 

order approximation. The Piola-Kirchoff or nominal stress tensor follows from the constitutive 

relation for stress which, for the base and perturbed deformations, are given by, 

( ) ( )ˆ ˆ,S = S F   S = S F  (2-42) 

Then the incremental nominal stress is, 

ˆ ˆ ˆ ˆ- - . S = S S = S(F) S(F) = S(F + F)-S(F)  (2-43) 

From (2-42), linearization of ( ) ( )ˆ ˆ S = S F = S F + F  about F yields, 

ˆ
ˆ ˆ ( ).o



  

=


+


0

S
S(F + F) = S(F) + F

F
F

 (2-44) 

Comparing eq. (2-43) with eq. (2-44) shows that, 



41 

ˆ
 .



 

=




0

S
S = F

F
F

 (2-45) 

The nominal base and perturbed stress tensors satisfy the equilibrium equations in the reference 

state 0B , 

Div ,

Div .

=

=

S 0

S 0
 (2-46) 

where the divergence operator is with respect to reference state coordinates. Subtracting (2-461) 

from eq. (2-462) leads to the equilibrium equation for the incremental nominal stress, 

( )Div .S = 0  (2-47) 

Substitute (2-45) into (2-46) to get the equation of incremental equilibrium, 

ˆ
Div  .





=

 
= 

 
 0

S
F 0

F
F

 (2-48) 

The boundary value problem in the reference configuration is then given by 

ˆ
Div ,

.





 

=

 
= 

 
 0

S
F 0

F

t(n) = Sn

F
 (2-49) 

where ( ) ( ) ( ) = −t n t n t n  is the prescribed incremental tractions in the reference state and n is unit 

normal vector to the boundary of the body. In Chapter 5 the incremental elastic deformation theory 

will be extended into a general theory to solve the growth of initial geometrical and material 
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imperfections in a composite tube subject to circumferential prestress, internal pressure and axial 

tethering force. 

2.2.6 Long-Wavelength Approximation (LWA) 

The previous section on incremental elastic deformations contained a starting point for a general 

theory of imperfection growth. This theory works by comparing the elastic fields of a single body 

subject to two different deformations. In principle it can be applied to two bodies of identical 

geometry and similar, but not identical, constitutions, i.e., the bodies have slightly different 

material properties. In order to apply this theory to a single body with a material imperfection one 

can consider two geometrically identical parts of a single body (e.g., the left and right halves of a 

cylindrical bar) and regard the parts as the two bodies in the theory just described. Obviously, 

transition regions linking the two parts would need to be neglected. This is the essence of the long-

wavelength approximation [75]. An analysis of uniaxial and biaxial stability of medial arterial 

tissues, employing this method, will be described in Chapter 5. This work is restrictive in that it 

applies to uniaxial and biaxial deformations without prestress. Therefore, the biaxial analysis is 

applicable to the membrane theory of the thin walled tube under pressure and axial tethering but 

without circumferential prestress. The theory of uniaxial (and biaxial) stability is treated as a 

problem of the growth of initial imperfections of material constitutive parameters of the tissue 

constituents but also of initial imperfections in geometry. The problems are solved utilizing the 

long wavelength approximation and is therefore limited to incipient growth. Elements of this 

theory are described below. 

The idea of the long-wavelength approximation is illustrated by an infinitely long cylindrical bar 

under uniaxial load and with geometrical imperfections of area that periodically appear along the 

axis of the bar. The cross-sectional area varies sinusoidally in the axial direction by a very small 
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amplitude. The explicit expression of the growth rate of the imperfection for an incompressible 

strain-rate dependent material was given by Hutchinson and Neal in [75]. The limiting case of this 

expression is obtained when the cross-sectional area varies with an infinite wavelength. This 

limiting result is precisely the result obtained by assuming the stress over each cross-section is 

uniaxial and uniform. The condition that guarantees that the long-wavelength approximation will 

be reasonably accurate is that the wavelength should be larger than the circumference of the 

nominal cross-section. In [75], Hutchinson and Neal used the long-wavelength approximation in 

an analysis of the influence of strain-rate sensitivity on necking under uniaxial tension. They 

concluded that in the context of uniaxial deformation, the long wavelength approximation is 

actually conservative in the sense that imperfection growth, as predicted using this approximation, 

overestimates the actual deformation state. Analyses employing the long wave length 

approximation have been carried out for strain rate dependent materials ([76]) and, for strain rate 

dependent materials with damage ([77]). In the last reference, necking of a bar composed of strain-

rate dependent material subject to material damage in the form of grain boundary cavitation and 

constant applied load was analyzed. The imperfect bar was modeled as a series of disk elements 

of varying elements and stresses and strains were assumed to be uniform throughout the 

deformation. 
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Figure 2-11. An illustration of long-wavelength approximation.  

One of the significant differences between living tissues and engineering materials is that the 

geometries and material properties of organs differ from person to person, within a single person 

at different ages, and within a single person at one age but within the same organ. For example, 

the spatial variations in aortic geometry are shown in Fig. 2-11 (for spatial regional variations in 

the aorta’s material properties, please see reference [78], [79], and [80]). With the long wavelength 

approximation, the originally continuous aorta can be treated as an aggregate of several 

independent sections with different geometrical (or material) properties as illustrated in Fig. 2-11, 

i.e., transitional sections can be neglected as a first approximation. 

2.2.7 Finite Element Method 

Identifying an appropriate method for analyzing a mechanical problem normally requires one to 

choose between an analytical method and finite element analysis (FEA). FEA has been used 

extensively by the biomechanics community in many studies involving healthy and diseased 

arterial tissues. The power of FEA enables researchers to study the mechanics of arteries by 

providing accurate stress and deformation fields in complex geometries. The ultimate goal of these 
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researches is to give the surgeon a diagnostic tool e.g., to determine rupture potential in patients 

with abdominal aortic aneurysms and to plan treatment accordingly [81]. In this dissertation, FEA 

is abandoned in favor of an approximate, local analytical method (theory of incremental elastic 

deformations; the long wavelength assumption). This is because the main interest is in i) incipient 

growth where the long wavelength approximation can be expected to apply, ii) a local analysis 

where the focus is on the mechanisms governing incipient growth, and iii) analyzing a large 

number of cases for which the long wavelength approximation delivers fast and accurate 

predictions to problems with significant anisotropy and nonlinearity. Furthermore, the simplicity 

in the geometry of the aorta makes it an ideal candidate for analysis by the long-wavelength 

approximation. A comparison of the solution by long wavelength approximation and by FEA has 

been carried out for the problem of imperfection growth of a geometrically imperfect neo-Hookian 

bar under uniaxial tension (Chapter 3). The results presented demonstrate excellent agreement 

between the two methods provided a sufficiently long imperfection wavelength is utilized. 

3. Constitutive Models for Adventitial and Medial Arterial Tissues 

This chapter presents a composite constitutive model building strategy for arterial tissues. Medial 

and adventitial layers are considered as distinct and modeled within the artery as a 2-layer 

composite tube. Within the medial or adventitial layer existing constitutive models, that 

characterize the major constituents, i.e., elastin, collagen and vascular smooth muscle, are 

homogenized based on their microstructural arrangement within the arterial tissues. The principal 

tool to do this is the rule of mixtures. This methodology yields a composite model containing 

constitutive parameters that relate directly to the microstructural properties of the constituents. 

Because medial arterial tissues exhibit a more or less regular microstructure, a composite 

constitutive model will be presented based on the concept of the musculoelastic fascicle (MEF) 
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which is the representative volume element. It is a specific arrangement of elastin, collagen, 

smooth muscle, and the essential building block of medial arterial tissues. Adventitial arterial 

tissues will be modeled as an isotropic meshwork of loose elastin fibers embedded with collagen 

fibers oriented in two preferential directions [15]. The ability of this constitutive model building 

strategy to capture the mechanical behavior of arterial tissues will be validated by comparing the 

results predicted by the model for medial and adventitial tissues to available experimental data 

obtained from the literature sections 3.4 and 3.5, respectively. Numerical solutions to the cases of 

uniaxial tension, biaxial tension and membrane theory of the artery are obtained. 

3.1 Constitutive Model for Medial Arterial Tissues 

For medial arterial tissues arising in large elastic arteries a microstructural constitutive model, 

based on the concept of the musculo-elastic fascicle or MEF [8,10], is used which captures the 

individual contributions of each constituent (elastin, collagen, smooth muscle) and homogenizes 

them according to the rule of mixtures [69]. The model for medial arterial tissues, which is 

manifested by a strain energy density function, is composed of a composite of constituents, i.e.,  

m E E M M C Cw d w d w d w= + +   (3-1) 

where  , ,E M Cd d d  are constant volume concentrations,  , ,E M Cw w w  are the strain energy 

density functions for each constituent model. Equation (3-1) can be shown to follow from an 

argument which demonstrates that, for the finitely deforming composite bar in uniaxial tension 

and the finitely deforming rectangular flat composite sheet in biaxial tension, the rule of mixtures 

(3-1) applies exactly (see Appendix I and II). For medial arterial tissues the concentrations are 

chosen to be    , , 0.15,0.7,0.15E M Cd d d = based on estimates of the geometry given in [8]. For 

the fibrous elastin layer, the constitutive relation is characterized by the neo-Hookean model [63], 



47 

( )1 3E Ew E I= −  (3-2) 

where the constant EE  is the stiffness of medial elastin which will be taken to be 163 kPa based 

on the experimental data presented in [64] and 1I  is the first principal invariant of deformation 

gradient. The mechanical behavior of passive, vascular smooth muscle is assumed to be governed 

by the phenomenological Blatz 2-parameter polynomial model [65] of Valanis-Landel type [66], 

( )1 1 1

1 2 3 3
m m m

M Mw E   − − −
= + + −  (3-3) 

where EM and m1 are material constants. For the remainder of this paper their values will be taken 

to be 91.0185 10ME kPa−=  , 1 90.455m =  based on the experimental data on ureteral segments 

[67]. For collagen, the model developed by Grikipati [68] is implemented which accounts for 

straightening (bending) and extension behavior of crimped collagen fibers under an applied tip 

force. The configuration of a collagen fiber of half-wavelength was assumed to be a plane circular 

arc subject to incompressibility. The strain energy density function for the collagen phase is of the 

form ( , ),  ( , ) 0Cw h    =  where  is the micro-stretch in a direction aligned with the orientation 

of the collagen fibers and the microstructural quantity , governed by ( , ) 0h   = , plays the role 

of internal variable. Specifically, 
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 (3-4) 

where   is taken as the circumferential stretch since the collagen fibers in the media are assumed 

to be oriented circumferentially [8, 10]. Note that in (3-4)   is the half-angle subtended by the 
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circular arc in the current state, 0  is the half-angle subtended by the circular arc in the reference 

state, and ( / )k R=  is the slenderness ratio of collagen fiber where R  is the circular arc radius 

in the reference state and   is the radius of gyration of the fiber cross section. The quantity *

CE  is 

the effective stiffness of the collagen layer which is equal to CvE , where ( )0.21v =  is the volume 

concentration of collagen fibers in each collagen layer and ( )33CE MPa= is the stiffness of a 

single medial collagen fiber. Their values are obtained from experiment [68] and are 

3

00.029074, 0.903 , 7.0 10Ck rad E kPa = = =  . 

 

Figure. 3.1 Idealized model of a single musculo-elastic fascicle (MEF). C: collagen, E: elastin, 

M: smooth muscle 

3.2 Constitutive Model for Adventitial Arterial Tissues 

In the adventitia, dense and wavy collagen fibers form an interwoven network that tangles with 

elastin fibers and a variety of cells. Furthermore, under elevated blood pressure, the adventitia 

becomes the predominant wall component due to its pronounced stiffening behavior. Here, 

adventitial tissues will be modeled as an isotropic meshwork of loose elastin fibers embedded with 

collegen fibers oriented in two preferential directions [92]. This structure permits the adventitial 

layer to prevent blood vessels from overstretch at elevated pressure. The strain energy density 

function for the isotropic matrix embedded with two families of reinforced fiber [101] is, 
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1,2

a E Ci

i

w w w
=

= +   (3-5) 

where Ew  captures the isotropic behavior of elastin matrix, characterized by the incompressible 

neo-Hookean model (3-2). The stiffness of adventitial elastin is taken as 2.45 kPa  since the 

effective stiffness of elastin in the adventitial layer is approximately 10 times less stiff than that of 

medial elastin [100]. The mechanical behavior of collagen fibers in the adventitial layer is still 

characterized by the model defined by (3-4). The micro-stretch of collagen fiber in the preferential 

orientation of the ith fiber family [101] is, 

2 2 2 2cos sin , 1,2,i i i z i    =  +  =  (3-6) 

where , 1, 2i i =  are the preferential orientations of the ith fiber family with respect to the 

circumferential direction which are approximately 35  as measured at the physiological state 

[102]. The effective stiffness and slenderness ratio of adventitial collagen fibers are taken as

31.81 10 kPa  and 0.033813, respectively, based on the following: (i) the adventitial layer consists 

of 87%  collagen type I and 13% of collagen type III, in contrast to the medial layer which is 

comprised of 69% collagen type I and 31% collagen type III [103], (ii) the total concentration 

density of collagen in the adventitial layer is 1.44 times higher than the medial layer [104], (iii) 

collagen type I is 5.64 times stiffer than collagen type III [104] and (iv) the diameter of collagen 

type I is four times larger than collagen type III [104]. Therefore, the average stiffness of collagen 

fibers in the adventitial layer is 1.2 times the stiffness of medial collagen fibers, and the effective 

stiffness and the slenderness ratio of adventitial collagen is 1.724 times stiffer and 1.176 times 

larger than medial collagen, respectively. The circular arc half-angle of adventitial collagen fiber 
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is taken as 0.968 rad due to the high waviness of adventitial collagen fibers in the reference state 

[102]. 

3.3 Uniaxial Extension of a Uniform Bar; Stretch-Load Response  

The uniaxial version of the constitutive model for medial arterial tissues given in (3-1) will be 

presented in this section. Its validity will be examined by comparing the stretch-load response of 

uniaxial extension of a uniform bar with the experimental data in the literature. Recall that the 

validity of the constitutive model for each components of arterial tissues given in (3-2), (3-3) and 

(3-4) have been demonstrated by their authors. 

Kinematics, Forces, and Stresses  

Note that quantities with(out) a subscript “0” are associated with the reference(current) state. The 

basic kinematical variables for uniaxial tension are the axial stretch 0( / )L L =  and the areal 

stretch 0( / )a A A = , where L is length and A is area. The primary stress measure is the true 

(Cauchy) stress defined in uniaxial tension to be the force P applied at the bar ends divided by the 

area in the current configuration (i.e., /P A = ). Another useful stress measure is the nominal 

(Piola-Kirchoff) stress defined in uniaxial tension to be the force P divided by the area in the 

reference configuration (i.e., 0 0/P A = ). The two stress measures are related by 

1

0 0 0 0/ ( / )( / ) ( / )aP A P A A A V V  −= = = =  where  0/V V  is the voluminal stretch. 

Throughout it is assumed that bars composed of medial arterial tissues and its constituents are 

incompressible so that 
1

0/ 1, aV V  −= =  such that, 

0 ( , )if   =  (3-7) 
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where the function ( , )if    characterizes the Cauchy elastic stress-stretch relation and is 

generally dependent on M constitutive parameters , 1,2,...,i i M = . 

Uniaxial Constitutive Models for Medial Arterial Tissues 

For the uniaxial MEF constitutive model, consider a bar composed of medial arterial tissues. Note 

that the 1x  axis lies in the axial direction in Fig. 3.1. For incompressible hyperelastic materials, the 

Cauchy stress tensor follows by combining (2-12) and (2-15) to get, 

Tw
=


Τ F
F

 (3-8) 

where w  is any arbitrary strain energy density function and T is the Cauchy stress tensor. It 

follows that the model for medial arterial tissues that is employed in this section is given by using 

(3-1) and (3-8), 

( )
0

,
( , ) ( , ) ( , ) ( , ),

m i

i E E Ei M M Mi C C Ci

w
f d f d f d f

 
           




= = = = + +


 (3-9) 

where ( ),m iw    is the strain density function for medial arterial tissues in terms of stretch in (3-

1),  , ,E M Cd d d  are constants as defined in (3-1),  , ,E M Cf f f are the uniaxial constitutive models 

for elastin, smooth muscle and collagen, respectively, and , , , 1,2,...,Ei Mi Ci i N   =  are 

constitutive parameters for each constituent model as given in the section 3.1. The uniaxial 

versions of the constitutive relations for each constituent are, 

2 1Elastin :  ( ) 2 ( );E E Ef E   −= = −  (3-10) 

/2Smooth Muscle :  ( ) ( );m m

M M Mf E   −= = −  (3-11) 
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 (3-12) 

Stretch-Load Response 

The equations governing the evolution with load of axial stretch and the areal stretch are, 

0

1

( , ),

.

i

a

f   

  −

=

=
 (3-13) 

For collagen and fascicle, one more equation ( , ) 0h   =   governing the internal variable    is 

needed. Note that in all of the figures that follow, the response plotted for each constituent is 

multiplied by its fascicle volume concentration according to (3-9). 

Figures 3.2a, b show the stretch-nominal stress, and areal stretch-nominal stress response for each 

constituent, as well as the MEF, plotted on the same set of axes. The nominal stress (   ) is 

normalized by the elastin stiffness (163 kPa) so that the domain is such that the dimensioned 

nominal stress ranges from the unstressed state to the stiffness of elastin. This maximum value was 

chosen because it gives rise to tensile stresses which, if they would occur in an arterial wall as 

membrane stresses, would be at least as large as that which would occur under the mean arterial  
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       Figure 3.2a. Stretch vs nominal stress.                 Figure 3.2b. Areal stretch vs nominal stress. 

pressure of blood (MAP). For normal resting heart rates the MAP is 93 mm Hg which is 0.57 =  

in the plots. In the case of elastin these curves were obtained from (3-10), for smooth muscle (3-

11), for collagen (3-12), and for the MEF composite (3-9), (3-10), (3-11), and (3-12). Areal stretch-

nominal stress curves for each constituent/MEF was obtained from 1 0a −− = . Parameter values 

for the respective models were estimated from data taken from the literature and are given in the 

previous section. The two figures indicate that for the range of stretches between 1 and about 1.3 

the smooth muscle phase carries virtually none of the load. For stretches between 1 and 

approximately 1.1 elastin carries the bulk of the loading but for stretches between 1.1 and 1.3 

collagen carries an ever increasing share as the crimped fibers straighten out and their primary 

deformation mechanism becomes pure tension. This picture is consistent with the currently held 

view that the role of passive muscle in supporting mechanical load in healthy large elastic arteries 

is minimal [30]; elastin carries most of the load at small values of stretch. With increasing stretch 
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the recruitment of collagen fibers results in an ever larger share of the load carried by the collagen 

phase. Although it may not be apparent from Fig. 3.2b, a  must vanish under increasing  for all 

constituents/MEF by virtue of 1 0a −− = . 

As noted above, each of the individual constituent laws were experimentally validated by their 

authors. Fig. 3.3b shows that the composite model for arterial tissue (3-9) employed in this study 

compares well with the uniaxial tension test data presented in [111]. In that work uniaxial nominal 

stress-stretch curves were obtained for strips of porcine coronary artery tissue (Fig.3.3a). While 

there is scatter in the test data the rule of mixtures model, with the data employed in this paper, 

compares well with their experimental results, especially in the low to moderate stretch regimes. 

 

Figure 3.3a). The uniaxial stress-stretch data for the porcine coronary arterial tissue and the 

regression curve fit to the average stiffness. b) Numerical solution versus experimental data. 

Initial and terminal rates of growth of stretch with nominal load for elastin and smooth muscle can 

be obtained directly from (3-131) and the constitutive relation (3-10) (elastin) and (3-11) (smooth 

muscle). For collagen, the rate is determined from (3-131), and (3-12). Note that we are using a 

measure of nominal load nondimensionalized by elastin stiffness, i.e., 0 / EE = . The results are, 
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which indicates that initial rates of growth of stretch are finite and terminal rates of growth of 

stretch are zeros except that for elastin. 

3.4 Biaxial Tension of a Rectangular Planar Sheet; Stretch-Load Response  

The biaxial version of the constitutive model for medial arterial tissues given in (3-1) will be 

presented in this section. Its validity will be examined by comparing the stretch-load response of 

biaxial tension of a rectangular planar sheet with the experimental data in the literature. 

Kinematics, Forces, and Stresses 

Consider in-plane biaxial geometry consisting of a thin flat sheet that is initially stress free (Fig. 

3.4). Let it be oriented such that the loading lies in the 1 2,x x  plane, the 3x  coordinate being in the 

thickness direction. The components of the deformation ( )=x χ X  experienced by the sheet are 

given by, 

1 1 1 2 2 2 3 3 3,   ,   ,x X x X x X  = = =  (3-15) 

where 1 2
1 2 3

01 02 0

, ,
L L H

L L H
  = = =  are the principle stretches. Thickness H is at least an order of  
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Figure 3.4. Referential geometry. a) biaxial geometry, b) cylindrical element, c) cylinder 

magnitude smaller than the other two dimensions. The deformation gradient is given as, 

1 1 01 2 2 02 3 3 03  =  +  + F e e e e e e  (3-16) 

If the kinematic constraint of incompressibility is enforced then 1 2 3det 1  = =F . Forces 1 2,F F  

are applied to the boundaries 1 010,x L=  and 2 020,x L=  respectively. The normal components of 

traction on the surfaces 2 3( , )x x  and 1 3( , )x x  are defined by 1 1 1 2 2 2/ ,  / ,F A F A = =  where 

1 2,A A  are the current areas defined by 1 2 2 1,A L H A L H= = , respectively. Similar relations can be 

given in the reference state. The nominal tractions in the reference state are defined by 

01 1 01 02 2 02/ , /F A F A = =  where the reference areas are defined by 01 02 0 02 01 0,  A L H A L H= = , The current 

and referential volumes are defined by, 

1 2 1 1 2 2 0 01 02 0 01 01 02 02 ,   V L L H A L A L V L L H A L A L= = = = = =  (3-17) 

so that the Cauchy and nominal stress measures are related by, 

1 1

1 1 01 2 2 02,  V V      − −= =  (3-18) 
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The quantity V  is the voluminal stretch defined by 0V V . If the kinematic constraint of 

incompressibility is enforced then, 1V = , 1 2 3 1   =  and, by (3-16), 1 1 01 2 2 02,      = = . 

The equations governing biaxial response can be obtained once the constitutive relations are 

prescribed. Here we will assume incompressible Cauchy elastic stress-stretch relations. Then (3-

18) becomes, 

1 1

1 1 1 1 2 2 2 2 1 2( , ),   ( , )f f       − −= =  (3-19) 

where , 1, 2  =  are nondimensionalized forces applied to the sheet and are defined by, 

1 2
1 2

02 0 0 01 0 0

,  
F F

L H E L H E
 = =  (3-20) 

The 1 2( , ), 1,2f    =  given in (3-19) are the Cauchy elastic stress-stretch relations 

nondimensionalized by 0E  which has the dimensions of stress (it will be taken to be the stiffness 

of elastin in the rest of this subsection). For prescribed 1 2,   and constitutive functions 1 2,f f , (3-

19) yields the stretches 1 2,  . The stretch 3  is determined from the incompressibility condition, 

i.e.,
1 1

3 1 2  − −= . 

Biaxial Constitutive Models for Medial Arterial Tissues 

The orientation of the MEF composite and the biaxial sheet are depicted in Figs. 3.1, 3.4a, 3.4b, 

respectively. The 1x  and 2x  directions of the MEF composite and the biaxial sheet coincide with 

each other, respectively. Accordingly, the 3x  direction is oriented perpendicular to the plane of the 

sheet. In the Appendix II it is shown that the rule of mixtures applies exactly to the lamellar 

microstructure of the MEF composite (Figs. 3.1, 3.4). In our case, (AII.6) is written as,
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 (3-21) 

where  , ,E M Cf f f  are the constitutive functions for elastin, smooth muscle and collagen, 

respectively and  , ,E M Cd d d  are the volume concentrations of elastin, smooth muscle and 

collagen, respectively, which are equal to    , , 0.15,0.70,0.15E M Cd d d = . Note that in (3-21) the 

constitutive functions are generally dependent on the stretches 1 2,   except for collagen which 

depends only on one stretch 1  but also on an internal microstructural variable  . The specific 

functional forms of the constitutive relations of the constituents appearing in (3-21) are biaxial 

analogs of those presented in the subsection on uniaxial deformation. They are, 

1 1 1 2 2 23 2 2 3

1 2 1 2

2 2
Elastin: 2   ,   2 ;E E E EE E     

   

   
= − = −   

   
 (3-22) 
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Stretch-Load Response 

Similar to what has been stated in the context of the uniaxial tension test, the efficacy of the 

composite model (3-21-3-24) for arterial tissues employed in this study rests on its ability to 

reproduce biaxial stretch test data. Before providing a thorough discussion of model behavior the 

quality of some of its predictions are examined by comparison with available experimental results 

for equibiaxial loading of planar samples of arterial tissues in Fig.3.5. Because of the difficulty of 

isolating the medial layer from the arterial tissue aggregate, mechanical testing of the former is 

rare. Although the adventitia is readily separated from the media-intima bundle, and some test data 

is available for this system, we will compare model predictions with experimental results for the 

arterial tissue aggregate. This can be justified because the primary mechanical function of the 

adventitia appears to be in protecting the artery from overstretch with minimal effect at normal 

physiological pressure. Furthermore, the mechanical role of the intima can be ignored for healthy 

arterial tissues, i.e., arterial tissue without intimal thickening. 

 

Figure 3.5. Comparison of constitutive model with experimental data (from [112]) 
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In Kamenskiy et al [112] plane biaxial experiments were carried out on samples harvested from 

several large elastic arteries collected from 11 deceased human subjects. No separation by layer of 

arterial tissues was carried out prior to testing and an effort was made by the authors to select 

samples that were free of gross pathology. The small number of subjects tested together with large 

inter-patient variability (age, gender, risk factors, cause of death, and severity of atherosclerosis) 

lead to considerable variability in the measured mechanical properties. Furthermore, no consistent 

trends are observed among different, large elastic arteries. However, general bounds can be 

gleaned from this work and the model defined by (3-19), (3-20), (3-21)-(3-24) predicts behavior 

squarely within these limits in Fig.3.5. 

3.5 Extension and Inflation of a Thin Walled Circular Tube; Stretch-Load Response 

This section first examines the stretch-load response of a circular tube extended by axial tethering 

force and inflated by internal pressure by using the biaxial version of the constitutive model for 

medial arterial tissues given in (3-21). The significance of the biaxial loading/geometry is that i) it 

is a common experimental configuration, and ii) it relates directly to the vascular problem of a 

thin-walled cylinder subject to internal and external pressure and axial loading. Thus, the results 

have meaning for the artery subject to the internal pressure of blood and axial tethering force 

exerted by surrounding tissues. Because the stress system considered is of membrane-type, the 

analysis provided in this paper does not account for bending and therefore circumferential 

prestress. At the end of this section, the stretch-load response of a thin-walled tube subject to 

internal pressure and axial tethering force will be re-examined by using the constitutive model 

given in (3-5) in order to establish the validity of the constitutive model for adventitial arterial 

tissues. 
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Kinematics, Forces, and Stresses 

The relationship between the biaxial stretch of a planar sheet and the polar element of a deformed 

thin walled cylinder (vascular problem) is shown in Figs. 3.4a, b, c. It follows that, 

1 2 2

2

  

1
  

2 2
z z

R
F HL pRL p

H

R
F HS pRS f p f

H HS

  

 
 

= =  =

= = +  = +

 (3-25) 

where , z   are Cauchy stress components in the circumferential and axial directions, 

respectively and parameter   is defined to be 1 for the closed cylinder and 0 for the open cylinder. 

In what follows however, only results for the closed vessel case, i.e., 1 = , will be presented. 

Furthermore, in (3-25) 2L  is the height of the cylindrical element, S is the arc length5, R is the 

cylinder radius, f is an axial tethering force and p is the pressure. Note that quantities 2 , ,L S R  are 

deformed state quantities. By identifying the circumferential stretch   with 1 , the axial stretch

z  with 2  , and the radial stretch r  with 3  we have, 

2
1 2 3

0 0 02 0

= ,   ,   z r

LS R H

S R L H
     = = = = = =  (3-26) 

If incompressible Cauchy elastic stress-stretch relations ( , ), ( , )z z zf f       are prescribed in the 

circumferential and axial directions then (3-25), (3-26) together with incompressibility yield, 

2

1 1
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p z z i

f z z i z z i

r z
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f f i N

  

  



     


       

  − −

− =

+ − = =

− =

   (3-27) 

                                                
5 For a small polar element arc length S is identified with L1. 
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where we note that the parameter set , 1,2,...,i i N =  has been explicitly included in the 

constitutive relations , zf f . In (3-27), ,p f   are nondimensionalized nominal pressure and axial 

tethering force, respectively, i.e, 

0

0 0 0 0 0

,  p f

R p f

H E H S E
 = =   (3-28) 

Once the constitutive functions , zf f
6  are prescribed the set (3-27) can be used to find the 

circumferential, axial and radial stretches given the pressure and axial tethering force or, they can 

be used to find the circumferential, radial stretches and axial tethering force given the pressure and 

axial stretch. 

Biaxial Constitutive Models for Medial Arterial Tissues 

The orientation of the MEF composite, an element on the cylinder surface, and the biaxial sheet, 

are depicted in Figs. 3.1, 3.4b, 3.4c, respectively. The 1x  direction of the MEF composite and the 

biaxial sheet are oriented circumferentially (transverse to the cylinder axis), while the 2x  direction 

is oriented longitudinally, in the direction of the cylinder axis (see Figs.3.1, 3.4). Accordingly, the 

3x  direction is oriented perpendicular to the plane of the sheet or equivalently, transmurally, i.e., 

in the radial direction of the cylinder. Therefore, f , zf  are equal to (3-211) and (3-212), 

respectively.  

Stretch-Load Response  

The biaxial equations (3-27), together with the constitutive relations (3-21), (3-22), (3-23) and (3-

24) developed in the previous subsections, are used to predict behavior for a number of cases. The 

                                                
6 Recall that , zf f  have been nondimensionalized by the stiffness of elastin. 
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values of material parameters in the constitutive models are taken to be same as those in the 

previous section. Figure 3.6 is a plot of the stretch-load behavior for each constituent and the MEF. 

In order to better visualize the response of the individual constituents, the curves for elastin, 

smooth muscle and collagen were obtained by computing their contribution to MEF behavior. 

Specifically, for a given nominal pressure and axially tethering ,p f   (or nominal pressure and 

axially stretch ,p z  ) the stretches , z   (or circumferential stretch and axially tethering , f  ) 

were determined from (3-271) and (3-272) using the fascicle constitutive relation (3-21). These 

values of stretch were then used to compute the contributions ,p f   of the constituents using (3-

271), (3-272) with either (3-22), (3-23) or (3-24). Figures 3.6a, b, c depict the response of fascicles 

and the contributions of its constituents for the case of zero axial tethering, i.e., 0f = . Recall 

that the nondimensionalized, nominal pressure p  defined by (3-281) is normalized by the stiffness 

of elastin which is about 163 kPa. Thus, the mean normal pressure of blood corresponds to a p  

value of about 0.57 in the plots7. Circumferentially, for small values of stretch ( 1.1  ), the 

elastin layer carries the bulk of the load (Fig. 3.6a). For increasing values of stretch the collagen 

fiber “layer” carries an increasing share of the nominal pressure load. At stretches 1.13   

collagen carries the largest amount of load among the three constituents. The load carried by 

vascular smooth muscle is minimal. 

                                                
7 The ratio 

0 0/R H  is taken to be 7.5 for the human aorta. 



64 

 

Figure 3.6. a) Circumferential stretch vs. pressure p . b) Radial stretch vs. pressure p . c) Axial 

stretch vs. pressure p . ( 0f = ) 
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The radial stretch r  measures the evolution of wall thickness and is computed directly from 

incompressibility (3-273). Figure 3.6b indicates that for the fascicle8 and all constituents the wall 

thins under increasing pressure although the particulars differ with constituent. At small values of 

pressure the fascicle has a high rate consistent with dominant elastin. This is followed by a 

transition under increasing pressures to a more moderate rate of thinning more in line with collagen. 

The step like effect of smooth muscle is negligible. 

Because the orientation of collagen fibers is assumed to be circumferential and such that it can 

carry no axial stress, we anticipate that the fascicle will be more compliant axially. Figure 3.6c 

depicts the axial stretch ( z ) versus nominal pressure ( p ). Figure 3.6c indicates that a large 

amount of the pressure load is distributed to collagen, however in the case of circumferentially 

oriented collagen, no axial load is carried and there is no axial stiffness. Thus, an axial force must 

exist in order to equilibrate the force from the pressure exerted on the end caps of the closed tube. 

This axial force, along with those exerted on the elastin and smooth muscle layers must sum to 

zero as no net (axial) force is applied to the fascicle, i.e., the axial tethering force ( f ) is taken as 

zero in the plot. Therefore, this is ultimately redistributed to elastin and smooth muscle by the axial 

force interactions between the three constituents as just noted. 

With a view toward the following section (which concerns imperfection growth rates), initial rates 

of change of stretch with respect to nominal pressure can be obtained for cylinders consisting of a 

single constituent, e.g., elastin and smooth muscle by employing (3-27) along with the appropriate 

constitutive relation ((3-22) for elastin and (3-23) for smooth muscle). For collagen, which only 

                                                
8 That is, a cylinder composed of fascicles. 
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acts circumferentially, the growth rate can be determined from equation (3-27) and (3-24). A 

simple calculation, for the case of zero axial tethering force ( 0f = ), indicates the following, 
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where the notation 
0

•  indicates that the rate is evaluated at stretches of unity. Equation (3-29) 

indicates that initial rates of growth of stretch are finite. Terminal rates of growth can be obtained 

in a similar manner however these results are not presented here. 

Figures 3.7a, b, c depict the circumferential stretch  , radial stretch r  and axial tethering load 

f  versus the normalized, nominal pressure p  for the fascicle at various values of fixed axial 

stretch 1.00,1.10,1.20,1.30z = . For fixed axial stretches 1.00z  , Fig. 3.7a indicates a reduction 

in radius (values of circumferential stretch   less than 1.0) at zero nominal pressure p  

indicating Poisson-type behavior. Under increasing nominal pressures p  the radius tends to 

increase thus, there is a competition between radius reduction due to axial load and radius increase 

due to pressure. At a critical pressure, a state is reached where the circumferential stretch   is 

1.00. At values of circumferential stretch greater than about 1.13, curves at different fixed values 

of axial stretch become similar and the radius is no longer sensitive to axial extension. This is 
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because the collagen fibers are fully straightened and the effect of inflation due to internal pressure 

dominates. Figure 3.7b is a plot of r  versus nominal pressure p  at fixed axial stretches. Radial 

stretch r   

 

Figure 3.7. Fascicle response at fixed axial stretch. a) Circumferential stretch vs. pressure p . b) 

Radial stretch vs. pressure p . c) Axial force f  vs. pressure p . 
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measures the relative thickness of the thin-walled vessel. As expected r  is negative for all fixed 

values of 1z   (indicating thinning of the wall) but the effect is more pronounced the larger the 

value. Figure 3.7c shows that for z  fixed at 1.0, f  decreases with increasing p  which is 

required by the overall axial force balance (recall the tube is closed). For values of z  greater than 

1.0 f  is initially positive but decreases with increasing p , eventually vanishing (when the 

pressure on the end caps is solely responsible for the fixed stretch z ) prior to turning negative. 

Thus, we can expect that elevated pressures result is reductions in axial tethering force provided 

the axial stretch remains more or less fixed. Note the difference in behavior for curves at fixed 

axial stretch 1.2z =  and 1.3z = , i.e., a significantly stiffer response when the artery is severely 

deformed. 

So far the validity of the proposed microstructure-based constitutive model for medial arterial 

tissues has been built by examining its uniaxial tensile stretch-load response, biaxial tensile stretch-

load response and its stretch-load response for the thin-walled artery without circumferential 

prestress. Recall that the constitutive model for adventitial arterial tissues described in the section 

3.2 consists of an isotropic elastin medium embedded with two families of collagen fibers oriented 

into two preferential directions. This constitutive model building strategy has been used widely 

and its efficacy has been discussed in several works [85]. The validity of this constitutive model 

for adventitial arterial tissues given in the Section 3.2 is examined by comparing the stretch-load 

response of a thin-walled vessel subject to internal pressure and axial tethering force with 

experimental data. 
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Consider a rectangular sheet of adventitial arterial tissue with its 1x , 2x  and 3x  directions 

coinciding with the corresponding axes of the biaxial sheet in Fig 3.4a, b, c such that the 

preferential orientations of two families of adventitial collagen fibers are oriented into 35  with 

respect to the 1x  direction. Similar to (3-21), the biaxial constitutive relation for adventitial arterial 

tissues is given by, 
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 (3-30) 

where  ,E Cf f  are the constitutive functions for adventitial elastin and adventitial collagen, 

respectively. Adventitial elastin is also characterized by the biaxial Neo-hookean model, i.e., 

1 1 1 2 2 23 2 2 3
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 (3-31) 

where EE  is the stiffness of adventitial elastin which is taken as 2.45 kPa  in the following work. 

The contributions of adventitial collagen fibers in the 1x  and 2x  directions are given by,  
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where the parameter   specifies the preferential orientation of adventitial collagen fiber. 

Fig. 3.8 was obtained by solving (3-27) for the constitutive relation , zf f  described in (3-30). 

Figures 3.8a, b depict the circumferential and axial stretches of adventitial arterial tissues versus 

the nondimensionalized, nominal pressure p  defined by (3-281) for the case of zero axial 

tethering, i.e., 0f = ,. These curves are accompanied by two sets of experimental data for the 

tunica adventitia harvested from rabbit carotid arteries in [82]. Fig.3.8 shows that the mechanical 

response in the circumferential and axial directions are more or less isotropic due to the equally 

distributed collagen fibers in two preferential orientations. This is in contrast to medial arterial 

tissues in which all the collagen fibers are oriented into the circumferential direction and the 

response is highly anisotropic. The proposed constitutive model for adventitial arterial tissues is 

able to reflect the characteristics of the mechanical behavior of the adventitia and the numerical 

results predicted by it are within a reasonable range. We have therefore established the validity of 

the constitutive relation for medial and adventitial arterial tissues by i) showing that their 

mechanical response are consistent with experimental observations ([112], [82]), ii) modeling the 

actual lamellar microstructures of the tunica media and the tunica adventitia of an artery, and iii) 

employing well known constitutive models and parameters taken from independent experiments. 
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Figure 3.8. a) Circumferential stretch vs. pressure p . b) Axial stretch vs. pressure p . 0f =   

4. Uniform Stress/Uniform Stretch States of Arteries; Mechanical 
Homeostasis  

The work presented in this chapter relaxes the membrane theory assumption by incorporating i) a 

finite wall thickness and ii) a circumferential prestress in the analysis. Section 4.1 examines the 

mechanics of the circumferentially prestressed N-layer artery, subject to axial tethering force and 

the internal pressure of blood. Section 4.2 provides an exact analysis of the mechanics of the 

uniform stretch state, the uniform circumferential stress states and the transitional states between 

them for an N-layer tube composed of an arbitrary hyperelastic material. The work extends that of 

Destrade et al [89], who considered the uniform stretch state in a single layer tube, by analyzing i) 

the N-layer composite tube and ii) uniform circumferential stress states in addition to states of 

uniform stretch. In the section that follows, the results are applied to the large elastic artery which 

is modelled as a 2-layer (bi-annular) composite tube consisting of the (load bearing) medial and 

adventitial layers. A final concluding section summarizes the results obtained and provides some 

comments on mechanical homeostasis of arteries.  
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4.1 N-layer Composite Tube Subject to Circumferential Pre-stress, Axial Extension and Internal 

Pressure 

Consider the reference configuration 0B  of an N-layer annular sector (Fig. 4-1a) with opening 

angle 0  and initial length 0L  which are assumed to be the same for all N layers (equations for 

the 2-layer composite tube under a more general deformation can be found in [56]). Cylindrical 

coordinates ( ), ,R Z  locate a particle in the reference configuration 0B . The ith layer has initial 

inner radius 1iR − , and outer radius iR  (note that 1iR −  is the radial coordinate of the interface 

separating the (i-1)th layer and the ith layer, and iR  is the radial coordinate of the interface 

separating the ith layer and the (i+1)th layer). The inner and the outer surfaces of the N-layer annular 

sector are defined by 0R  and NR . First, the N-layer annular sector 0B  is closed into a composite 

cylindrical tube B  with inner radius 0 , outer radius N , and length L (Fig. 4-1b). 

 

Figure 4-1. Geometry and loading for the N-layer composite tube. a) the stress free reference 

state; b) the circumferentially pre-stressed unloaded state; c) the deformed state. 

A place in B  (the unloaded configuration Fig.4-1b) is located by cylindrical coordinates 

( ), ,   . The deformation which takes 0B B→  is, 
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( ) ( )0,  ,  ,R Z    = = − =   (4-1) 

where  is constant and ( )0/  = −  is prescribed with ( )1,   . The deformation gradient 

for this deformation is, 

1 R Z
R R

  

 



=  +  + 
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The tube is then inflated by internal pressure P  and extended by axial tethering force F  (Fig. 4-

1c). A place in B , located by ( ), ,   , is mapped to a place in B  (the deformed configuration) 

located by cylindrical coordinates ( ), ,r z , where 0r  is the inner radius, Nr  the outer radius, and 

l  the length. The deformation which takes B B →  is given by, 
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where   is constant. The second deformation gradient for this deformation is given by,
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Therefore, the total deformation gradient (F) and the right Cauchy-Green strain tensor (C) are, 
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Let the principal stretches be denoted by, 
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while the principal invariants are  
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 (4-7) 

The incompressibility constraint is det 1=F  which leads to, 

z

r R

R r 


=


. (4-8) 

This condition holds for each of the N layers. Integrating (4-8) with appropriate limits yields the 

following, 

( ) ( )2 2 2 2

1 1 1

1
,  , ,  1, 2,...,i i i i

z

r r R R R R R i N


− − −− = −  =  (4-9) 

The constitutive relation for the ith layer, in terms of principal physical components is, 

0 0 0,  ,  ,  1, 2,...,i i i i i ii i i
rr r zz z

r z

w w w
T T T i N 



     
  

  
= − + = − + = − + =

  
 (4-10) 

where i
T  is the Cauchy stress tensor for the ith layer, ( ), ,i r zw     is the strain energy density 

function for the ith layer in terms of principal stretches, and 
0

i  are the Lagrange multipliers. 

There is one nontrivial local equation of equilibrium ( )div =T 0  which can be written in the form, 

0.rrrr
T TT

r r

−
+ =


 (4-11) 
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Integrating (4-11) from the inner radius of the ith layer 1ir−  to an arbitrary position within this layer 

( )1,i ir r r− , together with the continuity condition ( ) ( )1

1 1

i i

rr i rr iT r T r−

− −= , gives the following 

expression for 
0

i , 

( ) ( )
1

1

0 1 ,   1, 2,...,
i

r
i i i ii

rr i r rr
r

r

w dt
T r T T i N

t
 

 −

−

−


= − + − − =

  , (4-12) 

where t is a dummy variable of integration. Additionally, integrating (4-11) from 0r  to Nr  with the 

continuity conditions and the boundary conditions ( ) 0N

rr NT r =  and ( )0

0rrT r P= −  yields, 

( )
11

0
i

i

N r
i i

rr
r

i

dt
P T T

t


−=

− + − = . (4-13) 

The weak boundary condition in the axial direction, assuming a closed vessel, is, 

1

2

0

1

2 0
i

i

N r
i

zz
r

i

r P F T tdt 
−=

− − + =  ,  (4-14) 

where F is the axial tethering force. In order to obtain a form explicitly independent of 
0

i  use 

relations of the form ( )
1 1

2 , 1,2,...,
ii

i i

rr
i i i

rr rrr r
t T T T tdt i N 

− −

= + = which can be obtained by 

multiplying both sides of (4-11) by 2r  and integrating from 1ir−  to ir . This result, together with (4-

14) becomes, 

( )
11

2 0
i

i

N r
i i i

zz rr
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F T T T tdt
−=

− + − − =  .  (4-15) 
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Equations (4-92), (4-12), (4-13), and (4-15) are equations governing the 2N+2 unkowns 

0 , 1,2,...,i i N = , , 0,1,2,...,ir i N= , and z , given a prescribed internal pressure (P), axial force (F) 

and suitable strain energy functions. 

Following Odgen [56], the radius of the deformed geometry can be replaced by the circumferential 

stretch   as the variable of integration by using (4-62). The governing equations can then be 

written in terms of axial stretch z  and , 0,1,2,...,i i N =  which are the circumferential stretches 

at the surfaces defined by , 0,1,2,...,ir i N= . The result is,  
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 (4-16) 

where t is a dummy variable of integration, ( )1 /i i iR R −=  is the prescribed ratio between inner 

and outer radii of the ith layer in the reference state, and ( )
( )1

1

1 2 /

j

j

j jN
i rr

rr i

j i z z

T T
T dt

t t
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−

−

=

−
=

−
  . 

4.2 Vascular Stretch-Load Response; Uniform Stretch/Uniform Stress States 

In this section, the vascular stretch-load response of the N-layered composite tube will be analyzed 

based on (4-9), (4-12), (4-13), (4-15) or equivalently (4-16). In the following section the results 

obtained will be used to get the response of the bi-annular composite tube which models the load 

bearing medial and adventitial tubular layers of a large elastic artery. 
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4.2.1 Uniform Stretch State of the ith Layer 

The existence of a uniform stretch state throughout the N-layered composite wall is demonstrated 

below. Furthermore, analytical expressions for the pressure and stress field at which this occurs is 

obtained. The incompressibility condition for the ith layer (4-161) indicates the existence of the 

following relationships between the circumferential stretches at the inner and outer surfaces of the 

ith layer, i.e., 1,i i − , 

2 2 2

1 1

2 2 2

1 1

2 2 2

1 1

  

  

  

i i i

z z

i i i

z z

i i i

z z

when

when

when

 
  

 

 
  

 

 
  

 

− −

− −

− −

  

= = =

  

 (4-17) 

Now (4-62) and (4-91) imply that, 

2 2

2 2 1 1
1 1 ,  1, 2,...,i i

i

z

R R
i N

R R



 


− −

−

    
− = − =    

     

  (4-18) 

Therefore, (4-18) states that when 2

1 /i z  − = , then 2 / z  =  which indicates that satisfaction 

at one position along the thickness of the ith layer, indicates satisfaction at all other radial positions 

in the layers (note that the singularity condition 2 / z  =  arises from the transformation of the 

independent variables in (4-16)). 

The uniformity of the circumferential stretch, together with a constant axial stretch (z), implies 

(by incompressibility) that the radial stretch (r) is uniform as well (recall that the opening angles 

of the layers are assumed to be the same). Thus, the principal stretches are uniform along the entire 

wall thickness, i.e., the uniform stretch state. 
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Since the principal stretches are independent of radial coordinate at the uniform stretch state, and 

the Lagrange multipliers 
0

i  depend on r, it follows that the integrands ,2i i i i i

rr zz rrT T T T T − − −  in 

the integrals appearing in (4-162), (4-163) and (4-164) are constants so that the integrands can be 

taken outside the integrals. Therefore, (4-16) can be reduced to the following form by using the 

fact that 2 / z  =  at the uniform stretch state, 
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 (4-19) 

Equation (4-193) provides an expression for the pressure P  at which the uniform stretch state 

occurs (it can be shown (Appendix III) that this pressure is well-defined at 2 / z  = ). The set 

(4-19) can be used to solve for the N+3 unknowns 
0 , , ,i

z P     at the uniform stretch state, given 

an axial tethering force F, initial radius ratios i , arbitrary strain energy density functions iw , and 

opening angle parameter  . The principal components of Cauchy stress for the ith layer can be 

obtained from (4-192) and (4-10). For this particular state, 
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 (4-20) 

Note that the stress components in (4-20) are not uniform at the uniform stretch state, which 

indicates that an inflated, axially extended and circumferentially pre-stressed, N-layer composite 

tube has a uniform stretch state, in which the principal stretches are uniform transmurally, but the 

corresponding Cauchy stress distributions are nonuniform in all N layers. 

In Appendix III it is demonstrated that the circumferential stretch at the inner surface (0) of the 

multi-layered tube increases monotonically with internal pressure P. This fact, together with the 

continuity of the strain energy density functions, implies that when the pressure P is smaller than 

the pressure associated with the uniform stretch state, i.e., P P , the circumferential stretch at 

the inner surface of the ith layer is always less than, i.e., 2

1 /i z  −  . By contrast, when the pressure 

P is greater than P , the relation of 2

1 /i z  −   is always true. This result, together with (4-17) 

yields, 
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 (4-21) 

which is true for all 1,2,...,i N= . 
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4.2.2 Uniform Circumferential Stress State of the ith Layer 

The fact that the stress components are nonuniform at the uniform stretch state raises the question 

of whether or not there exists a state in which one or more of the stress components are uniform in 

the ith layer, i.e., whether or not there exists a uniform stress state. Taking the derivative of (4-102) 

with respect to r yields,  

( ) ( )
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2

ˆ
ˆ ˆ

/

i i
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z z

wT T
w w

r r r

   
  

 

  
  

    

    
 =  =  + −  

    − 
, (4-22) 

where use has been made of (4-102), (4-162), (AIII.2) and the definition

( ) ( )( )1
ˆ , , ,i z i z zw w       

−
= . The transmural uniformity of the circumferential stress 

distribution in the ith layer requires the right hand side of (4-22) to be zero. The derivative rd dr  

vanishes only at the uniform stretch state and is not equal to zero anywhere else. Thus, if a uniform 

circumferential stress state is to exist, 
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Integrating (4-23) from 1i −  to i  yields, 
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This, together with (4-163), gives, 
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where 
iP  is the pressure associated with the uniform circumferential stress state of the ith layer. 

The unknowns ,i z  and 
iP  at the uniform circumferential stress state can be obtained from (4-25) 

coupled with (4-161) and (4-164). By using (4-24) and (4-162), the expression for the Lagrangian 

multiplier of the ith layer is, 
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0 1 .
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i i i i i
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T





 

    
  

−

−

−

   
= − + + − 

   
 (4-26) 

The axial Cauchy stress i

zzT  can be obtained by substituting (4-26) into (4-103). Expressions for 

iT  and i

rrT  follow from the nontrivial equilibrium equation (4-11), the continuity conditions 

( ) ( ) ( ) ( )1 1

1 1,i i i i

rr i rr i rr i rr iT r T r T r T r+ −

− −= =  and, by using the fact that / 0iT r  =  at the uniform stress 

state. These quantities are given by, 
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 (4-27) 

The above analysis suggests that the vascular stretch-load response of the ith layer, in a 

circumferentially pre-stressed N-layer composite tube subject to axial tethering force and 

increasing internal pressure, is separated into five distinct stages. For the ith layer, the first stage is 

characterized by 0 P P  , where P  is the pressure at the uniform stretch state. In this stage 

bending from circumferential prestress dominates and the circumferential stretch and 

circumferential stress are greater at the outer surface than at the inner surface. Under increasing 
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pressure, a 2nd stage is reached ( )P P=  where the principal stretches are uniform along the entire 

wall thickness (this is uniform stretch state). At this state the circumferential stretch is given by 

/ z  = , but the stress components are non-uniform. Stage 3 occurs at a pressure greater than 

that required for the uniform stretch state, i.e., P P . Here, an elevated circumferential tension 

arising from the internal pressure dominates the compression at the inner surface. The 

circumferential stretch is greater at the inner surface than at the outer surface, the circumferential 

stress is less at the inner surface than at the outer surface, but the difference between the 

circumferential stresses at the outer and inner surfaces decreases due to the larger increasing rate 

of circumferential stretch at the inner surface. At the 4th stage the circumferential stress is uniform 

(the uniform circumferential stress state) and occurs at a pressure 
iP . It will be shown in the 

following section that the order of occurrence of 
iP  in an N-layered tube depends on the proximity 

of the ith layer to the inner surface. The continuity of the strain energy density functions combined 

with an increasing circumfrential stress rate at the inner surface gives a 5th stage in which the 

circumferential stress at the inner surface is greater than that at the outer surface. The five stages 

of the stretch-load response of the ith layer of the N-layer composite tube are summarized by, 
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 (4-28) 
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where use has been made of (4-17). 

There are other physical states with distinct features which have not been described above. For 

example, when the circumferential pre-stress dominates in the first stage, the inner and the outer 
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surfaces of the N-layer composite tube are in compression and in tension, respectively. The 

pressure associated with the state at which the entire wall is in tension can be obtained by coupling 

( )1

0 0T  =  with (4-16), i.e., let the neutral surface (the surface separating the regions where the 

material is under either compression or tension) coincide with the inner surface of the composite 

tube. Note that the neutral surface does not necessarily coincide with the circumferentially 

undeformed surface, i.e., the surface with 1 = . This can be illustrated by substituting 0 1 =  into 

(4-162) and (4-102) with i=1 resulting in a nonzero compressive circumferential stress at the inner 

surface generally. Furthermore, the pressure corresponding to the state with 1   within the 

entire wall can be obtained from (4-16) with 0 1 = . 

4.2.3 The Vascular Stretch-Load Response of the N-Layer Composite Tube 

Because the initial opening angles of all the layers are taken to be identical, i.e., ( )0( )  = −  

is the same for all layers, and the axial stretch z  is assumed to be constant, (4-191) and (4-193) 

indicate that the uniform stretch states of all the N layers occur at the same pressure, i.e., there 

exists a pressure P
 at which a uniform stretch state occurs throughout the wall of the N-layer 

composite tube. By contrast, a uniform circumferential stress state can only occur in one layer at 

a time since different layers are assumed to be characterized by different constitutive relations. It 

can be seen from (4-25) that there are N distinct pressures corresponding to uniform 

circumferential stress states in each of the N layers in the composite tube. 

At the unloaded prestressed state, those layers located below the neutral surface are in compression 

while those layers located above the neutral surface are in tension. As the internal pressure 

increases, however, the compressive stress in those layers closest to the inner surface of the 

composite tube is reduced. This is followed by tension which increases at a rate faster than that of 
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the outer surface. Ultimately, a uniform stretch state is attained in which all the N layers are at the 

same uniform stretch at the same presure P
. This is illustrated by the relationships between the 

rates 2 /i P   and 2

0 / P  , i.e., 

2 2
2 20

2
1 1

1 , 1,2,..., ,
i i

i z
j j

j jz

i N
P P P

  
 

= =

   
= − − = 

   
   (4-29) 

Equation (4-29) indicates that 2

0 / P   is the maximum of 2 /i P   since the second term on the 

right hand side of (4-29) is always positive, where 2

0 / P   is the expansion rate of the square of 

the circumferential stretch at the inner surface of the composite tube with respect to the internal 

pressure P (given as the reciprocal of (AIII.6)). Equation (4-29) is obtained by taking the derivative 

of the recurrence relation between 2

i  and 2

1i −
 in (4-161) with respect to P. 

Additionally, the circumferential stress at the inner surface of the 1st layer ( )1

0T r
 catches up with 

that at the outer surface of the 1st layer ( )1

1T r
 due to the larger expansion rate at the inner surface 

of the composite tube. Thus, the inner most layer reaches its uniform circumferential stress state 

at 
1P , while other layers are still in Stage 3. After 

1P , the ith layer of the composite tube reaches its 

uniform circumferential stress state at 
iP , while the (i-1)th layer is in Stage 5 and the (i+1)th layer 

is in Stage 3, respectively. Therefore, all the uniform circumferential stress states will occur within 

the interval of ( )1, NP P , and the length of the interval depends on the variations in constitutive 

models between the adjacent layers, i.e., larger variation in constitutive model leads to a longer 

interval. 
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Note that for the single or 1-layer circumferentially pre-stressed artery subject to internal pressure 

the existence of a uniform stretch state was found by Destrade et al [89]. This is a special case of 

the theory developed above and can be obtained by simply substituting N=1 into (4-19) and (4-20), 

i.e., 
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 (4-30) 

where 1

1 1 0 0,  ,  w w    = = = . Note that the prescription of 0 1,  , , ,z w R R   (and therefore ) 

determines all quantities on the left hand side of (4-30). The internal pressure P
, which yields 

the uniform stretch state, and the corresponding radial and circumferential stresses, are identical 

with those reported in [89] (the expression for the axial stress was not included in [89]). Results 

for the uniform circumferential stress state can be obtained by substituting N=1 into (4-25), (4-26) 

and (4-27), i.e., 
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 (4-31) 

where we note that 1 1

0 1 1( ) ,  ( ) 0rr rrT r P T r= − = . 

4.2.4 The 2-Layer Composite Tube; Application to Large Elastic Arteries 

As stated in the Introduction, the arterial wall is a three-layered composite structure which is 

composed of the tunica intima, the tunica media, and the tunica adventitia. For healthy arteries 

without intimal thickening, the tunica intima is not considered to be mechanically significant 

because it is relatively thin and, it is made up of only one layer of endothelial cells supported by 

an internal elastic lamina [10]. The remaining two layers carry the load arising from the 

circumferential prestress, axial tethering force and internal pressure of blood although not 

necessarily in equal proportions, this being generally dependent on the pressure. Therefore, a 

reasonable model of an artery is a 2-layer circular composite tube subject to circumferential pre-

stress, axial tethering and internal pressure. Equations governing the vascular stretch-load response 

are obtained by substituting N=2 into (4-16). The result is, 
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where ( )1 0 1/R R =  and ( )1 1 2/R R =  are the prescribed radius ratios of the first and second 

layers in the reference state, respectively. The quantities 0 1 2, ,    are the circumferential stretches 

at the inner surface, the interface between the first and second layers, and the outer surface, 

respectively. 

Equations governing the uniform stretch state of a circumferentially pre-stressed bi-annular or 2-

layer composite tube follow from (4-19) with N=2, 
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For this particular state, the principal components of Cauchy stress for both layers are given by (4-

20) with N=2, 
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The pressures associated with the uniform circumferential stress states for both layers are, 



90 

( )

( )

1

2

1

0

2

1

0

1

2 2

1 1
1 2

1 1

2 2
2 2

0,
/

0,
/

rr
r

r z z

rr
r

z rz

T Tw w
P dt

t t

T T w w
P dt

t t









 









 


 

    


 

   

  − 
+ − + = 

  − 

 −  
+ + − = 

 −  





 (4-35) 

where use has been made of (4-25) and 
1 2P P . Expressions for the Lagrangian multiplier and 

Cauchy stress components for the uniform circumferential stress state of the first layer are given 

by, 
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The expressions for Lagrangian multiplier and Cauchy stress components for the second layer are, 

( )

( ) ( )

( )

1

2 1 2 2 2
0 1

1 1

1 1 1 1 22

2 1 2 1

1

1 12

2 1

2 2 2
0

,

1
,

,

.

rr r r

r r

rr rr

rr

rr

zz z

z

w w w
T

T r r T r r r
T

r r r r r

T r r
T

r r

w
T





 



    
  

 


   
= − + + − 

   

 
= − 

− −


=

−


= − +



 (4-37) 



91 

4.3 Results for the Vascular Stretch-Load Response of the 2-Layer Composite Tube 

In order to produce specific results for the artery two constitutive models are employed, one for 

the media and the other for the adventitia as described in the section 3.1 and 3.2, respectively. The 

reference geometry of the 2-layer composite tube is defined by the geometrical parameters for a 

large elastic artery 1 2 37.5 , 8.17 , 8.5i m oR R mm R R mm R R mm= = = = = =  and 0 1.24rads =

[105]. The inner layer and the outer layers are characterized by the constitutive models for media 

and adventitia in (3-1) and (3-5), respectively. The vascular stretch-load response of this 

circumferential pre-stressed 2-layer composite tube, subjected to zero axial tethering force (F=0) 

and blood pressures ranging from zero to 22kPa (which is twice as large as the mean blood pressure 

12.4kPa) was obtained numerically from (4-32). Fig. 4-2 depicts the circumferential stretches at 

the inner surface (i), the outer surface (o) and the interface between the two layers (m) versus 

the normalized pressure 
p , i.e., /p i EPR E H =  where / 7.5iR H = , H is the initial wall 

thickness and 163EE kPa=  (the stiffness of medial elastin). Note that the physiological range of 

normalized blood pressure corresponds to 
p  values between 0.46 to 0.74 in the plot. The curve 

for / z  versus the normalized pressure 
p  is also plotted in Fig. 4-2 as an indicator of the 

five sequenced stages in (4-28). The uniform stretch state is indicated by the intersection of three 

curves for , ,i m o    with the curve for / z   at 0.515p =  and 1.165 =  obtained from (4-

33). This pressure is very close to the mean blood pressure. It also can be seen from Fig. 4-2 and 

(4-21) that the relationships between circumferential stretches, i.e., , ,i m o    and / z   are 

valid before and after the uniform stretch state, respectively. Additionally, the surface with 1 =  

coincides with the inner surface of the composite tube at 0.037p = . The circumferential stresses 

at the inner and outer surfaces of the medial layer, and the circumferential stresses at the inner and 
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outer surfaces of adventitial layer are plotted versus normalized pressure 
p  in Fig. 4-3. The 

stresses depicted in Fig. 4-3 are normalized by the stiffness of medial elastin (163kPa). For the 

medial layer, the circumferential stress is compressive at the inner surface and tensile at its outer 

surface at the unloaded state due to circumferential pre-stress. The entire wall is in tension when 

0.041p  . The two curves for the circumferential stresses at the inner and outer surfaces of the 

medial layer intersect at 0.65p = , which is the pressure at which the normalized circumferential 

stress is uniform in the medial layer with a value of 0.75. Beyond the uniform circumferential 

stress state 

 

Figure 4-2. Circumferential stretches vs. p  for 2-layer composite tube. 
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Figure 4-3. Circumferential stress vs. p  for 2-layer composite tube. 

of the medial layer, there occurs a monotonically increasing circumferential stress at the inner 

surface (stage 5). A comparison of the circumferential stress in the medial layer with that in the 

adventitial layer shows that the medial layer carries most of the load caused by the blood pressure 

due to its relatively large thickness. Furthermore, the small circular arc half-angle of medial 

collagen fibers leads to the straightening of medial collagen fibers at relatively small pressures 

[68]. By contrast, the adventitial layer bears relatively small stress at low pressure range. As the 

internal pressure increases, however, the adventitial layer acts like a stiff thin membrane due to the 

gradual recruitments of crimped collagen fibers. The circumferential stress in the adventitial layer 

is uniform at a value of pressure 0.72p =  which is close to the systolic blood pressure 0.74p = . 

4.5 Summary  

The purpose of this chapter is twofold, to analyze the specialized stress and stretch states of an N-

layer circumferentially prestressed composite tube under internal pressure and axial tethering force, 

and to apply those results to the prestressed artery. Numerical results presented above is consistent 

with the theoretical analysis in that it shows that the uniform stretch state, the uniform 
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circumferential stress state of medial layer, and the uniform circumferential stress state of the 

adventitial layer occur at values near the diastolic pressure, the mean blood pressure, and the 

systolic blood pressure, respectively. A possible explanation for these results is that the uniform 

circumferential stress state optimizes the mechanical performance of the medial layer at the mean 

blood pressure since its role under normal physiological blood pressure is to carry mechanical 

loads generated by blood pressure and axial tethering force. Analagously, a uniform 

circumferential stress state in the adventitial layer optimizes its mechanical behavior in order to 

bear the elevated loads that occur during systole. The pressure associated with the uniform stretch 

state may mark the lower bound of the physiological blood pressure range. At present, there 

appears to be no experimental work that can be used to support this explanation since the 

measurements of stress and stretch in the arterial wall in the physiological state are mostly given 

in an average sense, i.e., as an average through the entire arterial wall without specific data for the 

intima, media, and adventitia. Note however, that Rodriguez et al. [106], Taber and Eggers [107], 

and Taber and Humphrey [108] assumed, based on their 1-layer models, that arterial tissues reside 

in a uniform stress environment at the physiological state and their results showed good agreement 

with published experiemental data. By contrast, Takamizawa and Hayashi [109] believed that the 

circumferential pre-stess exists to homogenize the circumferential stretch along the arterial wall to 

maintain the homeostasis of embedded cells. 

The significance of circumferential pre-stress on the vascular stretch-load response can also be 

illustrated by considering a uniform tube without circumferential pre-stress. The pressure for the 

uniform stretch state of a uniform tube without circumferential pre-stress can be found by setting 

the opening angle to be zero, i.e., 1 = , in (4-301), which yields, 
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1/2

z −=  (4-44) 

The incompressibility condition 1r z   =  then implies that 

1/2

r z  −==  (4-45) 

Substituting (4-45) into (4-303) shows that the pressure at which the uniform stretch state occurs 

is equal to zero, which means that the principal stretches are uniform only at the reference state. It 

can be further shown that P=0 in (4-305,6,7) implies that the principal stresses are also uniform at 

the uniform stretch state, i.e., 
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 (4-46) 

which is the solution to the problem of the uniaxial tension of an annular tube. This suggests that 

for an annular tube without circumferential pre-stress subject to internal pressure and axial 

tethering force, the uniform stretch state, the uniform circumferential stress state, and the reference 

state coincide. Therefore, as an increasing pressure is applied on the inner surface of the tube, the 

vascular stretch-load response will start directly from Stage 5 of (4-28) which is characterized by 

a monotonically increasing circumferential stress on the inner surface. The above analysis provides 

support for the hypothesis proposed by Chuong and Fung [18], i.e., that the existence of 

circumferential pre-stress tends to reduce the radial gradient of circumferential stress at 

physiological blood pressure and, an artery tends to distribute the principal stresses due to blood 

pressure and axial tethering force uniformly along the wall thickness to ensure its optimal 

preformance as a load carrier. 
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In this chapter a circumferentially pre-stressed N-layer artery, subject to axial tethering force and 

internal pressure, was analyzed with the view of identifying/characterizing certain specialized 

stretch and stress states along with the transitions between them. In particular, a uniform stretch 

state and a uniform circumferential stress state were found for the ith layer of the N-layer composite 

tube, which enabled the entire vascular stretch-load response of the ith layer to be characterized by 

five sequenced stages as defined in (4-28). The relationships between the responses of the different 

layers of the composite tube at a specific pressure was also considered. The N-layer composite 

tube analysis was applied to a 2-layer model of the load bearing medial and adventitial layers of a 

large elastic artery. Numerical solutions employing microstructural based constitutive relations for 

the layers indicates that the blood pressures corresponding to the uniform stretch state, the uniform 

circumferential stress state of medial layer, and the uniform circumferential stress state of the 

adventitial layer are well within the physiological blood pressure range. 

The equations derived above allow for the determination of the mechanical environment (uniform 

stretch/or uniform circumferential stress state) of each layer of arterial tissues individually. As first 

noted in [89], equations of this type can also be used to validate new constitutive models for arterial 

tissue constituents, i.e., the pressure for the uniform stretch state and the uniform circumferential 

stress states calculated using the proposed constitutive relations should occur at the correct 

pressure range for a given reference configuration. Additionally, as noted in [89], analytical 

solutions for the uniform stretch state can be used inversely to determine the geometry of the stress 

free reference state of an artery without carrying out destructive experiments, i.e., if arterial tissues 

reside in the uniform stretch state, one can prescribe P
, z  and , 1,2,...,i i N =  in (4-19) to solve 

for 
0, , , , 1,2,...,iF i N   =  (note that 1 / , 1,2,...,i i ir r i N −= =  at the uniform stretch state). The 

same idea would apply to uniform circumferential stress states. Thus, if the ith layer resides in the 
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uniform circumferential stress state at the physiological blood pressure, then a knowledge of the 

optimal value for the circumferential stress would mean the prescription of ,  ,  i

i zP T  in (4-161), 

(4-162), (4-164), (4-24), and (4-262) would generate 
0, , , 0,1,..., ,  and ,  1,2,...,i

iF i N i N  = = . 

Also, , 1,2,...,i i N =  can be found from 
1

1

, 1, 2,...,i i
i

i i

r
i N

r





−

−

=  = . 

5. Mechanical Stability of Arteries 

5.1 Tensile Stability of Medial Arterial Tissues   

5.1.1 Theoretical Analysis of Imperfection Growth 

In this section the long wavelength approximation is employed to study incipient growth of 

imperfections in a tensile bar composed of medial arterial tissues. (Note that the notation employed 

is that of Section 3.3.) Specifically, growth of initial geometrical and/or material imperfections 

under load is calculated by comparing quantities associated with the bulk section 0 0( , , , , )A L L   , 

with quantities associated with the nominal (imperfect) section 0 0( , , , , )A L L   . Initial geometrical 

imperfections are characterized by a measure of the initial area difference between bulk 0( )A  and 

nominal cross sections 0( )A  while initial material imperfections are characterized by the 

difference between bulk ( )i  and nominal cross section ( )i  material properties. Define the 

following imperfection growth quantities, 

0 0 0

0 0 0 0 0 0

,   ,   =a a a

L L A A P P

L L A A A A
         = − = −  = − = −  − = −

%%
% % %

% %%
, (5-1) 
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using the notation [ ] [ ] [ ]• = • + •  where a tilde indicates the bulk section quantity,    is evaluated 

at the nominal section, and  is the difference between nominal and bulk section quantities. 

Constitutive relations of the form 0 ( , )if   = . The equations governing the stretch ( ) and 

imperfection growth (  ) are, 

( )

0 0

0
0 0

( , , ) ( , ) 0,

( , , ) ( , ) 0
1

i i

i i i i

F f

F f
a

      


           

= − =

+ + + = + − + + =
+

 (5-2) 

where we have used the fact that 0  can be written as 0 0 0 0 0/ / ( ) / (1 )P A P A A a = = + = +  

and 0 0/a A A =   is the relative initial geometrical imperfection. Equations analogous to the 

stretch imperfection growth equations (5-2), are obtained for areal imperfection growth ( a ), 

( )

1

11

( , ) 0,

( , ) 0.

a a

a a a

G

G

   

       

−

−−

= − =

+  +  =  + − +  =
 (5-3) 

The trajectory represents the stretch imperfection growth   (or, the areal imperfection growth 

a ) as a function of stretch only. The equations governing the trajectory can be obtained by 

eliminating 0  from (5-22) using (5-21). Thus, 

( ) ( )
1

( , ) 1 1 ( , ) ( , ) 0i i iF a f f         
−

 = + + − +  + =  (5-4) 

which can be coupled to (5-32) to yield equations for the imperfection growth variables , a   . 

Equilibrium solutions to (5-2) or (5-4) can be obtained once the constitutive function f , and the 

relative initial area imperfection a  (and possibly initial material imperfections , 1,2,...,i i N = ) 

have been prescribed. It is interesting to note that the effect of initial material imperfections (as 
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measured by i ) are generally different than that of initial geometrical imperfections (as 

measured by a ). The exception is the case of stiffness parameters   which appears in stress-

stretch relations of the form 0
ˆ( , ) ( )if f     = = . In this case the effects of initial material 

imperfections and initial geometrical imperfections are identical provided we use the relative 

initial material imperfection measure /b   =  . 

For the perfect bar, 0a = , 0, 1,2,...,i i N = = , and the trivial solution ( 0a  =  = ) to (5-

32) and (5-4) always exists. A necessary condition for the existence of nontrivial (necked) 

solutions9 , a   , for the perfect bar under load P (or 0 ), can be obtained by requiring the  -

derivative of F to vanish, i.e., ( , ) / 0dF d    =  . This leads to the bifurcation condition, 

( , ) ( , ) 0i if D f    − =   (5-5) 

where  D  indicates derivative with respect to . Discontinuous solutions of this type analogous 

to buckling indicate the abrupt formation of a neck. Note that for the constitutive relations 

governing elastin, and smooth muscle, no critical values of (1, )   exist which satisfy (5-5) so 

that the formation of a neck will not occur. By contrast recall the Ludwik-Hollomon power law 

( )ln
nnC C  = = , governing large strain deformation plasticity [42,43]. For this material 

equation (5-5) leads to the well know result that necking begins when the logarithmic strain attains 

the value of the strain hardening exponent n, i.e., cr n = . Analyses similar to the above can be 

carried out for constitutive relations of the form ( , , ),  0 ( , , )i if h      = =  (that govern 

collagen) and 0 ( , ) ( , ) ( , ),E E Ei M M Mi C C Cid f d f d f        = = + +  0 ( , , )Cih   =  (that govern 

                                                
9 Other solutions that bifurcate from the perfect bar equations that are distinct from imperfection growth solutions. 
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the MEF). There are no nontrivial bifurcated solutions to the governing equations for the MEF or, 

any of its constituents.  

Comparison of Theoretical Results with FEA 

In order to provide some additional confidence in the quality of the long wavelength approximation, 

its predictions were compared with a full finite element analysis of the problem of a geometrically 

non-uniform neo-Hookean circular bar subject to a tensile load. The geometrical non-uniformity 

in radius as characterized in Fig.5-1 was taken in the form ( ) ( )0 1 0.005sin 2 /R Z R Z = −   . The 

radius of the bulk section 0R  is set to unity so that the wavelength is taken as its lower limit such 

that 2 = . The theoretical imperfection growth results were solved from (3-13) and (5-2) with 

0.01a = − . The long wavelength approximation shows a reasonable accuracy as indicated by 

Fig.5-2. The length/diameter ratio of the descending aorta is around 25.5 which is smaller than the 

minimal wavelength/diameter ratio required by the long wavelength approximation, i.e.,  . 

Therefore, the long wavelength approximation is applicable provided our analysis is limited to 

incipient growth of small imperfections. 

 

Figure 5-1. An illustration of FEA verification configuration. 
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Figure 5-2. Comparison long wavelength approximation results with FEA results  

( ) ( )0 1 0.005sin 2 /R Z R Z = −   , 0 02 , 1R R = =  

5.1.2 Results 

The growth of initial geometrical and/or material imperfections in bars of elastin or smooth muscle 

can be obtained, as a function of applied nominal stress 0 , from (5-2) provided the appropriate 

constitutive law ((3-2) or (3-3)) is employed and initial geometrical and material imperfections are 

prescribed. Trajectories of behavior (functions ˆ :F  →  ) can be obtained directly from (5-5) 

for these materials. For the case of collagen and the composite MEF, which are governed by 

constitutive laws with different functional forms, the growth under load can be solved from (5-2) 

and (3-4) for collagen and (5-2) and (3-1), (3-2), (3-3) and (3-4) for the MEF composite. In all 

cases the areal stretch imperfection is governed by (5-3). 

Geometrical Imperfection Growth. The growth of the relative initial geometrical imperfection, i.e., 

.01, 0Ei Mi Cia    = −  =  =  =  , under normalized nominal load 0( / )EE =   is depicted in 

Figs.5-3a, b for the MEF and its individual constituents. The figures indicate vastly different 

growth behaviors. For example, elastin has an imperfection growth    which increases 
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monotonically with load parameter  . Its rate, i.e., rate of change of imperfection   with respect 

to  , appears on first inspection (Fig. 5-3a) to be constant (it is not, and actually fluctuates slightly). 

In fact, the rate is equal to 1(1/ 6) (1 )a a −−  +  initially (at 0 = ) and 1(1/ 2) (1 )a a −−  +  finally 

(at     ). By way of contrast, smooth muscle has a rate which is initially very large10 , i.e., 

1(2 / 3 ) (1 )E ME mE a a −−  +  , and finally, vanishes asymptotically under increasing   . These 

results follow from the fact that, for constitutive relations of the form (3-2, 3-3), the following 

relations exist between the rate of growth of the stretch imperfection and the rate of growth of the 

stretch, i.e., 

1 1

  ,   
1 1

d a d d a d

d a d d a d
   

   

   
= =  

   
= − = −

+ +
 (5-6) 

Collagen has a more complicated imperfection growth behavior and, because its constitutive 

relation is micro structurally based, certain features of the micro deformation can be related to 

aggregate response. Recall that at the stretch 0 0/ sinheel  =   the deformation mechanism of 

crimped collagen transitions from bending to extension and marks the end of the heel region. With 

this in mind an examination of Figs. 3-2a and 5-3a indicates that this point is at the local minimum 

(Fig. 5-3a) identified by 0.107 = . The local maximum in Fig. 5-3a, at load 0.012 = , marks 

the end of the toe region and the beginning of the heel transition region. The initial rate of growth 

of   with   is given by 
( )2 2 2

0 0 0 0

2 *

0 0

1 sin(2 ) 1 1 4 cos ( )1

1 sin( )C E

ka

a k E E

   

 

 − − − +−  

+ 
 . It is 

important to note that at higher values of load  the increasing slope vanishes asymptotically under 

increasing    albeit slowly. These results follow from (5-5) which also hold for constitutive 

                                                
10 Note that m~100 and EE/EM~1011. 
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relations of the form (3-4). 

 

Figure 5-3a. Stretch imperfection vs nominal stress.  Figure 5-3b. Areal stretch imperfection vs 

Initial geometrical imperfection. nominal stress. 

As has been stated above (and is seen in (5-2)), the effect of relative initial material imperfections 

(as measured by /j j jb   =   ) is generally different than that of relative initial geometrical 

imperfections (as measured by 0 0/a A A =   ). However, for the special case of imperfections in 

stiffness parameters   , which enter into the constitutive relation as 0
ˆ( , ) ( )if f     = =  , the 

response to both kinds of relative initial imperfections are identical. Thus, when considering the 

constitutive relations for collagen, elastin and smooth muscle there is no need to analyze 

imperfections in CE   (for collagen), EE (for elastin) or EM (for smooth muscle). We need only 

examine imperfections in 0  and k for collagen and, m for smooth muscle. Figures (5-4a) and (5-

4b) are plots of imperfection growth    and a   for i) smooth muscle with imperfection 
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/mb m m =  , ii) collagen fibers with a circular arc geometry imperfection 
0 0/b   =  11, and 

iii) collagen fibers with a slenderness ratio imperfection /kb k k =   . Also plotted are   and 

a   for the MEF for respective relative parameter imperfections ( ), ,m kb b b    . In all 

calculations these values are chosen to be ( ) ( ), , .01,.01, .01m kb b b   = − − . For smooth muscle 

(with relative imperfection mb ) the growth response is step-like while for collagen, with a relative 

imperfection b , the response, while similar, increases more gradually. Collagen response to the 

relative imperfection kb  differs significantly in that the resulting maximum value of the growth 

response is much smaller and, it gradually disappears. Initial and terminal rates can be obtained 

for material imperfections from relations analogous to (5-6), i.e., relations between imperfection 

growth rate and stretch growth rate. These relations, which are valid for constitutive equations of 

the form (3-3) or (3-4) (e.g. smooth muscle and collagen), assume the form, 

 
1 1, 1, , ,

  ,   
d d d d d d

d d d d d d
          

     

     
= = = +   +

 
= − + = − +  (5-7) 

For the case of smooth muscle with relative imperfection mb  the initial imperfection growth rate 

is 1(2 / 3 ) (1 )E M m mE mE b b −−  + while its terminal rate vanishes. For collagen, with slenderness 

ratio imperfection kb  , the initial rate is 

( )

( )

( )2 2

0 0 0 0

2 2 *

0 0

1 sin(2 ) 1 cos ( )2 1

sin( )1 1

k k

C Ek k

b b

k E Eb b

   

 

 − + + −+   

+ +
 while the terminal rate vanishes. 

The initial imperfection growth rate arising from collagen imperfection b   is a complicated 

                                                

11 0  is the half-angle subtended by the circular arc in the reference state. 
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function of  0 , , / ,C Ek E E b   and will not be given here as it provides no insight into the behavior. 

Its terminal rate however vanishes. These results follow from (5-7). Note that for the MEF, Figs. 

(5-4a) and (5-4b) indicate that a collagen imperfection kb  and smooth muscle imperfection mb  

only minimally impact the imperfection growth response while the collagen imperfection b  

gives rise to behavior more similar to that of smooth muscle (with imperfection mb ) or collagen 

(with imperfection b ). Terminal rates of growth are of limited value owing to the approximation 

inherent in the long wavelength assumption. 

 

Figure 5-4a. Stretch imperfection vs nominal stress.  Figure 5-4b. Areal stretch imperfection vs 

Initial material imperfection. nominal stress. 

5.1.3 The Effect on Imperfection Growth of Localized Elastin Deterioration 

Taken together Figs. 5-3 and 5-4 indicate the stable character of the tensile deformation of healthy 

medial arterial tissues and their constituents. This fact is underscored by an examination of the 

geometrical imperfection growth rate for the musculo-elastic fascicle and its three constituents, 

elastin, collagen and smooth muscle (Fig. 5-3). Note that the rates for collagen, smooth muscle 
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and the fascicle vanish while that of elastin is bounded and increases only slightly under increasing 

nominal load (i.e., from an initial value of 1(1/ 6) (1 )a a −−  +   to a terminal value of 

1(1/ 2) (1 )a a −−  + ). Material imperfection growth rates12 for a smooth muscle imperfection in 

exponent m, and collagen imperfections in k and , all vanish with increasing load parameter  . 

Collectively, this behavior is to be expected as geometrical and material imperfections should not 

grow in an unbounded manner in healthy tissue constituents or their aggregate. 

By way of contrast, consider a simple modification of the constitutive relation for elastin 

constructed so that the stiffness EE degrades with stretch. Assume 0: ( )EE E  → , E0 constant 

and   a decaying power law of the form ( ) m   −=  where 1m  . It is not hard to show that the 

growth rate for a geometrical imperfection becomes unbounded at a finite value of nominal load 

parameter cr 13 , i.e., ( ) ( 1)/3 ( 2)/32 1 ( ) ( )m m

cr a m m  − + − + = +  −    where ( ) ( 2) / ( 1)m m m = + −  . 

The imperfection growth rate for this constitutive relation is plotted in Fig. 5-5. Note that the 

unbounded rate (for the geometrical imperfection) occurs at a value 0.9355 =   (for 2m =   and 

.01a = − ). By examining key features of the response of this simple constitutive law, insight can 

be gleaned about the character of the constitutive relations of diseased tissue constituents that 

would precipitate unbounded imperfection growth rates coinciding with bifurcation of the uniform 

bar configuration. Such behavior, when generalized to more complex stress states correlate with 

the development of aneurysm. Obviously the constitutive relation characterizing the 

damaged/damaging elastin must be based on the pathophysiology of a particular disease process. 

An example of this is Marfan’s syndrome which is a genetic disease of connective tissue that 

                                                
12  Recall that elastin is characterized by only a stiffness parameter, and therefore only a stiffness parameter 

imperfection, so that imperfection growth response is equivalent to that arising from the geometrical imperfection. 
13 For the material imperfection the growth rate also becomes unbounded at a finite value

cr . 
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manifests itself in the malformation of elastin. 

 

Figure 5-5. Geometrical imperfection growth rate vs nominal stress for arterial tissue and 

constituents and, elastin with a decaying power law stiffness. 

5.2 Biaxial Stability of Medial Arterial Tissues 

This section examines the biaxial stability of healthy medial arterial tissues and extends the 

previous sections work on the stability of these tissues in uniaxial tension. The significance of the 

biaxial loading/geometry is that i) it is a common experimental configuration, and ii) it relates 

directly to the vascular problem of a thin-walled cylinder subject to internal and external pressure 

and axial loading. Thus, the results have meaning for the artery subject to the internal pressure of 

blood and axial tethering force exerted by surrounding tissues. Because the stress system 

considered is of membrane-type, the analysis provided in this section does not account for bending 

and therefore circumferential prestress. The biaxial case considered here is considerably more 

complicated than uniaxial tension owing to the high degree of anisotropy of certain tissue 

constituents. As in the previous section on uniaxial stability, the general theory of biaxial stability 
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is treated as a problem of the growth of initial imperfections of geometry and, initial imperfections 

of material constitutive parameters of the tissue constituents. Nonlinear equations governing the 

evolution of these defects with combinations of internal pressure and axial tethering are presented 

and solved based on an extension of the long wavelength approximation to biaxial geometry. 

5.2.1 Theoretical Analysis of Imperfection Growth 

In this section the focus is on an element of biaxial sheet taken from a thin walled cylinder subject 

to loading which arises from the axial tethering force f (nondimensionalized 
f ) and the internal 

pressure of blood p (nondimensionalized 
p ). In order to examine the incipient growth of initial 

geometrical and/or material imperfections in this system we employ the long wavelength 

approximation. That is, we compare quantities associated with the bulk section 

( )2 0 20 0, , , , , , ,p f R L H R L H   with quantities associated with the nominal or imperfect section 

( )2 0 20 0, , , , , , ,p f R L H R L H   under the same axial tethering force 
f  and the same pressure of 

blood 
p . Initial geometrical imperfections are characterized by measures of the initial 

perturbation in radius 0R  and thickness 0H , respectively. Initial material imperfections are 

characterized by the difference between bulk i  and nominal cross section i  material properties. 

As in the previous section the following notation is used. [ ] [ ] [ ]• = • + •  where a tilde indicates the 

bulk section quantity,    is evaluated at the nominal section, and  is the difference between 

nominal and bulk section quantities. Define the following imperfection growth quantities, 

2 2

0 0 20 20 0 0

,   ,   z r

L LR R H H

R R L L H H
   = −  = −  = −  (5-8) 

Perturbations in non-dimensional nominal loads (3-28) are given by, 
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−
 = − = − =

+

+ +
 = − = − = −
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 (5-9) 

where ,H Ra a   are respectively, the prescribed initial relative imperfections in thickness and radius 

defined by, 

0 0

0 0

,  H R

H R
a a

H R

 
= =   (5-10) 

Furthermore, material imperfections are defined by , 1, 2,...,i i N =  and their relative values are 

characterized by /i i ib  =  . 

Now the equilibrium equations (3-27) apply to the bulk section. Nominal section equations can be 

written as, 

( ) ( )

( )

2

1 1 1 1

1
( , , , ) 0,                                      

1

1
( , , , ) ( , , , ) 0

(1 )(1 ) 2

( ) ( ) 0

R
p z z z z i i

H

f z z z z i i z z z i i

H R

z r z z

a
f b

a

f b f b
a a

    

    

  

         


            

      − − − −

+
+  + − +  + =

+

+  + +  + − +  + =
+ +

+  − +  + =

 (5-11) 

where use has been made of (5-9). Thus, for given loading ,p f  , initial relative geometrical 

imperfections ,H Ra a , relative material imperfections ib  and constitutive relations , zf f , (3-27) 

and (5-11) represent six equations for the six unknown quantities , , , , ,z z r r         . 

Alternatively fix the total deformed length 
2 2L L+  and use (5-8) to show that, 

zT z z   = +    (5-12) 
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where zT  is the prescribed total stretch (i.e., ratio of total deformed length 
2 2L L+  to undeformed 

length 
20 20L L+ ) and  is the prescribed fraction of undeformed nominal section length to 

undeformed total length 
20 20 20/L L L+ . In this case the non-dimensional axial tethering load f  is 

the additional unknown and there are seven equations (3-27), (5-11) and (5-12) for seven 

unknowns , , , , ,z z r r         . 

Bifurcation of Equilibrium States. 

For elastin and smooth muscle (whose constitutive relations are of the form ) 

trajectories of imperfection growth quantities are obtained by writing , ,z r      as functions 

of the stretches , z  . Equations governing them can be obtained by employing (3-27) to eliminate 

the nominal loads, ,p f   and the stretch r  in (5-11), 

2 2

1 1 1

1
( ) ( ) ( , , ) ( , , , ) 0

1

( )
( , , ) ( , , ) ( , , , )

(1 )(1 ) 2 2

( , , , ) 0

( )

R
z z z i z z z i i

H

z z
z z i z i z z z i i

R H

z z z z i i

z r

a
f f b

a

f f f b
a a

f b

       

     

 

  

             

   
           

     

    − − −

+
+  +  − +  +  =

+

+   
− + +  +  + +  

− +  +  =

+  − +  1( ) 0z z  −+  =

 (5-13) 

The trivial solution ( 0z r   =  =  = ) for the above equations always exists provided the 

initial imperfections , , , 1,2,...,R H ia a b i N=  vanish. A necessary condition for the existence of 

non-trivial solutions can be obtained by setting the determinant of the Jacobian of the (5-13), 

evaluated at 0H R i z ra a b   = = =  =  =  = , to be zero. This leads to the following, 

1 2( , ),  1,2af    =
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1 1 12 0
2 2 2z z zz z z z zf D f f f D f D f f D f D f D f

               

  
  − − −    

   − − + − − − − =      
    

 (5-14) 

where  D

• and  

z
D •  indicate derivatives with respect to , z  , respectively and the 

arguments of , zf f  have been suppressed. For a given constitutive relation ((3-22) for elastin, (3-

23) for smooth muscle) (5-14) and (3-27) can be used to solve for the critical values of stretch 

( , , )z r    and the load f  at bifurcation. As expected elastin, governed by the neo-Hookian law, 

exhibits bifurcation (see [63]) whereas smooth muscle does not. 

Furthermore, as noted above the constitutive relations for collagen (and therefore the MEF) are 

functionally different from that of elastin and smooth muscle. Equations analogous to (5-14) and 

(5-14) are readily derived and it can be demonstrated numerically that there exists no bifurcation 

points of the system. 

5.2.2 Results 

Geometrical Imperfections 

For elastin and smooth muscle, imperfection growth quantities under prescribed loading ,p f   can 

be obtained by solving (3-27) and (5-11) given the specific constitutive relations (3-22) (for elastin) 

and (3-23) (for smooth muscle). For collagen and the fascicle, the equations are somewhat more 

complicated owing to the internal variable used to characterize the microstructure of collagen. 

Behavior for these quantities require that (3-24) (for collagen) or (3-21) (for the fascicle) 

supplement the governing equations (3-27) and (5-11). 

In this subsection geometrical imperfections only are considered so that relative material 

imperfections , 1,2,...,ib i N=  are assumed to vanish (material imperfections will be considered 

subsequently). An examination of (5-11) indicates that relative imperfections in radius 
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( 0 0Ra R R=  ) and thickness ( 0 0Ha H H=  ) generally result in different behaviors. The 

exception, is when the axial tethering force 
f  is zero. When this is the case Ra  and Ha−  have 

the same effect (provided these quantities are small). 

Figure 5-6 is a plot of circumferential  , radial r  and axial z imperfection growth 

quantities versus pressure 
p  for vanishing axial tethering load, i.e., 0f = . Based on the previous 

argument we need only consider the relative imperfections ( ) ( ), .01,0R Ha a = . The figure indicates 

vastly different growth behaviors among the constituents. For example, elastin has an imperfection 

growth   which increases monotonically with load parameter 
p  (Fig. 5-6a). Its rate, i.e., the 

rate of change of imperfection   with respect to
p , appears to be nearly constant but it actually 

fluctuates slightly. By way of contrast, smooth muscle has near step-like behavior in that its rate, 

which is initially very large14, is followed by a short transition region leading to a near zero rate 

which vanishes asymptotically under increasing 
p . Because the deformation mode of crimped 

collagen shifts from bending to circumferential tension, it has more complicated imperfection 

growth behavior. Furthermore, because its constitutive relation is micro structurally based, certain 

features of the micro deformation can be related to aggregate response. Thus, an examination of 

the collagen curves from Figs. 3-5a and 5-6a, indicate that the toe region where bending dominates 

(Fig. 3-5a) is associated with the (large) positive rate of growth of   in Fig. 5-6a. The end of 

the heel region, where tension becomes the principal deformation mechanism, is associated with 

the beginning of the near constant (smaller) positive rate of growth. During the transition,   

                                                
14 Note that m~100 and EE/EM~1011. 
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decreases under increasing pressure 
p . Note that the behavior of the fascicle initially follows that 

of elastin at small stretches and then transitions to collagen-type response. 

 

 

Figure 5-6 a) Circumferential imperfection growth vs. pressure 
p . b) Radial imperfection 

growth vs. pressure 
p c) Axial imperfection growth vs. pressure 

p . ( 0f = ) 

When the cylinder has a relative imperfection in radius which is positive ( 0.01Ra = ), the nominal 

section wall thickness is always less than that of the bulk section, i.e., 0r  , for the fascicle and 
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all its constituents (Fig. 5-6b). For collagen however, the rate of change or r  with pressure 
p  

is initially sharply negative followed by a large positive rate before ending with a small negative 

rate. This behavior is difficult to relate to microstructural changes in collagen (such as transition 

from fiber bending to fiber extension) but probably arises from the interaction of anisotropy of the 

wall (collagen preferentially acts in the circumferential direction) with incompressibility, which 

must take account of axial imperfection growth behavior (Fig. 5-6c). 

Initial rates of imperfection growth with respect to nominal pressure 
p  for tubes consisting of a 

single constituent can be obtained along the lines of (3-29). A simple calculation, for the case of 

zero axial tethering force ( 0f = ), indicates that initial rates of imperfection growth and initial 

rates of change of stretch (given by (3-29)) are related by, 

0 0 0 00 0

 ,   = ,   =
1 1 1

R H r R H r z R H z

p H p p H p p H p

d da a d a a d d a a d

d a d d a d d a d

      

     

 −  −  −
=

+ + +
 (5-15) 

Thus, imperfection growth rates are equal to the product of stretch growth rates and a multiplicative 

factor 
1

R H

H

a a

a

−

+
 containing the initial relative imperfections ,R Ha a . For small values of ,R Ha a  this 

factor will necessarily be small indicating that initial imperfection growth rates can be order(s) of 

magnitude smaller than initial stretch growth rates. Note that (5-15) clearly indicates that for small 

values of ,R Ha a  radial ( Ra ) and thickness ( Ha− ) initial relative imperfections have the same 

effect. Terminal rates of growth can be obtained relatively easily as well however these results are 

not presented because they are of limited value owing to the approximation inherent in the long 

wavelength assumption. While (5-15) applies for cylinders composed of a single constituent, the 

fascicle and its constituent contributions will have similar behavior, i.e., from Figs. 3-5 and 5-6 
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initial imperfection growth rates can be order(s) of magnitude smaller than initial stretch growth 

rates. 

The related problem of imperfection growth under nominal pressure load 
p  at fixed total axial 

stretch can be addressed by solving (3-27), (5-11) and (5-12) together with the constitutive relation 

for the fascicle. A plot of the response is contained in Figs. 5-7a, b, c for the parameter values 

0.01,  0.1Ra = = . In order to describe the response, we recall that the fascicle becomes very stiff 

when it is severely deformed and, the axial force which is needed to sustain a total stretch 1.3z =

is about 30 times that of 1.2z =  (see Fig. 3.6c). Imperfection growth behavior drastically changes 

for a total axial stretch in the interval 1.2 1.3T  . When 0p = , stretching the closed vessel 

axially causes a positive circumferential imperfection growth, a positive radial imperfection 

growth and a negative axial imperfection growth, which means that the nominal section contracts 

less radially, undergoes less wall thinning, and axially extends less than the bulk section. Initially, 

larger axial stretching can intensify this phenomenon however, when the fascicle starts stiffening, 

imperfection growth tends to zero (Figs. 5-7a, b, c). As the nominal internal pressure 
p  increases 

the circumferential imperfection growth remains positive however the signs of radial and axial 

imperfection growth switch. What is interesting here is that, because the total axial stretch is fixed, 

a positive axial imperfection growth indicates a redistribution of extension contributions between 

the bulk section and the nominal section. At a value of 
p  of about 0.13 the circumferential 

imperfection growth   attains a local maximum while the radial imperfection growth r  

reaches its local minimum. Beyond 0.13p = , the absolute values of circumferential and radial 

imperfection growth decrease, since the fascicle starts to stiffen. At 0.3p =  the axial 

imperfection and circumferential imperfection growth begin to increase monotonically albeit with 
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a relatively small growth rate while the radial imperfection growth decreases. It also can be seen 

from these results that this modest, monotonic growth rate is generally smaller for larger axially 

stretches. This is because larger axial stretching causes the fascicle to stiffen sooner. 

 

 

Figure 5-7 a) Circumferential imperfection growth vs. pressure 
p  at fixed axial stretch. b) 

Radial imperfection growth vs. pressure 
p at fixed axial stretch. c) axial imperfection growth 

vs. pressure 
p at fixed axial stretch 
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Material Imperfections 

As noted above, initial material imperfections for the fascicle and its constituents can be described 

by the relative quantities i i ib  =   where i  are the differences between the ith material 

parameter of the nominal section and that of the bulk section. The constitutive relation for elastin 

(3-22) has only one material parameter, the stiffness EE . The constitutive relation for smooth 

muscle (3-23) has two material parameters ME and 1m . Collagen has three constitutive parameters 

CE , 0 and k (from (3-24)). It is interesting to note that, in the context of uniaxial tension it has 

been shown that although the effect of geometrical15 and material imperfections are generally 

different, imperfections in stiffness give rise to behavior that is identical to that of geometrical 

imperfections, provided we are assuming that the bar is composed of a single constituent. This fact 

holds for the thin walled tube problem considered here as well. To see this write 

0 0,  z zE f E f  = =  where 0E  is the stiffness of a single constituent. Then (3-27) and (3-28) 

indicate that the effect of a stiffness imperfection is identical to that of a thickness imperfection. 

For the fascicle (or the constituent contribution to fascicle behavior) this will not be true and initial 

imperfections in collagen stiffness, elastin stiffness and smooth muscle stiffness will need to be 

considered as well as the other constitutive parameters. Thus, for smooth muscle we consider the 

relative initial imperfections mb  (in the exponent 1m ) and EMb  (in smooth muscle stiffness ME ) 

while for elastin, which consists of only a single constitutive parameter we consider initial relative 

imperfection EEb  (in elastin stiffness EE ). For collagen, in addition to the initial relative stiffness 

imperfection ECb  (in collagen stiffness CE ), there are two relative imperfections ( ,kb b ), i.e., 

relative imperfection in slenderness ratio (k) and initial half angle ( 0 ), respectively. 

                                                
15 That is imperfections in area cross section. 
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In the following two figures we will consider fascicle response to initial imperfections in 

constituent stiffness’s (Fig. 5-8), and to other constitutive parameter imperfections (Fig. 5-9). Thus, 

assume relative stiffness imperfection values given by ( , , ) ( 0.01, 0.01, 0.01)EE EM ECb b b = − − − . The 

circumferential, radial and axial imperfection growth quantities under these initial imperfections 

are depicted in Figs. 5-8a, b, and c respectively. Figure 5-8a indicates that circumferential 

imperfection growth response (  ) to an elastin stiffness imperfection rapidly increases to a 

maximum value before rapidly falling off. This behavior coincides within the region of elastin 

domination of stretch-load response (Fig. 3-5a) and is significantly larger than that of the other 

stiffness defects. Note that   response to stiffness imperfections in collagen is smaller in 

magnitude and change sign. The first pressure load point (
p ) of transition from negative to 

positive slope, i.e., 0.12p  , roughly coincides with the end of the toe region in the stretch-load 

curve (Fig. 3-5a) and the beginning of the transition from bending to tension of the crimped 

collagen fibers. Imperfection growth response to initial imperfections in smooth muscle stiffness 

is negligible. Figures 5-8b, c depict imperfection growth response r  and z  to stiffness 

imperfections. Defects in elastin stiffness imperfections dominate here as well consistent with the 

constraint of incompressibility. 
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Figure 5-8 a) Circumferential imperfection growth vs. pressure 
p . b) Radial imperfection 

growth vs. pressure 
p  c) Axial imperfection growth vs. pressure 

p . ( 0f = ) 

Circumferential, radial and axial imperfection growth quantities for the fascicle, with initial 

material imperfections given by ( , , ) ( 0.01,001, 0.01)m kb b b = − −  are depicted in Figs. 5-9a, b, and 

c respectively. The plots indicate that a defect b  in collagen, in the form of a material 

imperfection in the initial half-angle subtended by the circular arc ( 0 ) of the crimped collagen 

fibers, is the most significant in affecting circumferential and radial imperfection growth quantities. 



120 

A defect b  in parameter 0  will affect the transition phase from bending to circumferential 

tension for the crimped collagen fibers. By contrast, a defect kb  in collagen, in the form of a 

material imperfection in the slenderness ratio k of the crimped collagen fibers, results in 

imperfection growth which is relatively small and ultimately vanishes. Finally, a defect mb  in 

smooth muscle, in the form of a material imperfection in the constitutive exponent 1m  results in 

imperfection growth  which also is relatively small. However imperfection growth quantities 

( ,r z   ) attain a comparatively large magnitude after an initial region of virtually no growth. 

This is because the collagen layer cannot sustain stress in the axial direction and as a result the 

response of axial imperfection growth for the fascicle with collagen defect b  is overshadowed by 

the response of axial imperfection growth for the fascicle with smooth muscle defect mb . The six 

kinds of initial material imperfections ( , , , , , )EE EM EC m kb b b b b b  cause various irregular and 

complex imperfection growth behaviors in the fascicle. In healthy arterial tissue initial material 

imperfections, like initial geometrical imperfections, do not lead to an unbounded imperfection 

growth. 
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Figure 5-9 a) Circumferential imperfection growth vs. pressure 
p . b) Radial imperfection 

growth vs. pressure 
p  c) Axial imperfection growth vs. pressure 

p . ( 0f = ) 

Initial imperfection growth rates with respect to nominal pressure 
p  for cylinders consisting of a 

single constituent can be obtained for initial material imperfections. A simple calculation indicates 

that for all constituents initial rates of circumferential imperfection growth and initial rates of 

change of circumferential stretch (given by (3-29)) are related by, 
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where we have taken the axial tethering force 
f  to be zero. For the case of smooth muscle 

characterized by constitutive relations , zf f  given in (3-23) we have the additional rate relations, 
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More specifically, (3-29) and (5-16) and (5-17) indicate that initial rates of imperfection growth 

are given by, 
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For collagen, which can sustain no axial stress, the constitutive functions are , 0zf f = . For this 

case the additional rates are given by, 

1 1 1
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= = = = = =

 
= = −  (5-19) 

Explicit forms of these rates (analogous to (5-19)) will not be presented here as they are 

complicated functions of the constitutive parameters needed to define the mechanical response of 
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collagen (see (3-24)). It can be shown however that (5-16) and (5-17), or (5-16) and (5-19), yield 

imperfection growth rates proportional to the stretch growth rate and the relative imperfection. 

Thus, small initial material imperfections precipitate imperfection growth rates that are orders of 

magnitude smaller than stretch growth rates. While the above rates apply for cylinders composed 

of a single constituent, the fascicle and its constituent contributions will have similar behavior due 

to the rule of mixtures, i.e., from Figs. 3-5, 5-8 and 5-9 initial imperfection growth rates can be 

order(s) of magnitude smaller than initial stretch growth rates. 

5.2.3 The Effect on Imperfection Growth of Localized Elastin and Collagen Damage 

The purpose of this section has been to investigate the biaxial mechanical stability of healthy 

arterial tissues. Much of the section is concerned with the specific problem of geometrical and 

material imperfection growth in arteries subject to loading consisting of the internal pressure of 

blood together with an axial tethering force. The focus throughout is on the medial arterial layer 

which has been characterized by a simple microstructural model that captures the distinct 

contributions of each of its constituents, i.e., elastin, collagen and vascular smooth muscle. 

Because the concern is with incipient growth we were able to make use of the long wavelength 

approximation which greatly simplifies the calculations. The broad conclusions of the section are 

the anticipated result that geometrical/material imperfections do not grow in an unbounded or even 

elevated manner, i.e., the mechanical response of the medial layer composed of healthy 

constituents is stable. 

The issue of geometrical and material imperfection growth in diseased arterial tissues is most 

interesting because it relates to the emergence of aneurysm. In order to see how a simple 

deterioration mechanism may drastically alter the growth of imperfections assume that the 
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diseased tissue loses a portion of its elastin and collagen content. This will alter the volume 

concentration factors for each constituent in the following way, 
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where { , , }E M Cd d d  are the volume concentrations of elastin, smooth muscle and collagen, 

respectively, in the diseased MEF. The “c” factors are the relative concentrations of damaged 

constituent, i.e., 0 0 0 0,  C C C E E Ec V V c V V=  =  , 0 0c V V=   (total), such that 1E M Cd d d+ + = . 

The idea is to examine the growth of an initial geometrical imperfection where the nominal section 

is now assumed to be composed of diseased tissues characterized by volume concentration factors 

{ , , }E M Cd d d  while the bulk section remains composed of healthy tissue characterized by 

{ , , }E M Cd d d . Consider the case of an artery with a small radial imperfection at fixed overall 

stretch T  subject to the internal pressure of blood. Assume the parameter values 

0.667,  0.2,  0.01,  0.1,  1.1C E R Tc c c a  = = = = = =  which amounts to a loss of about 2/3 of the 

collagen and elastin content. For the volume concentrations of healthy tissue constituents used in 

this work, i.e., { , , } {0.15,0.70,0.15}E M Cd d d = , the diseased values are 

{ , , } {0.0625,0.875,0.0625}E M Cd d d = .  

In Figs. 5-10a, b, c plots of circumferential, radial and axial imperfection growth quantities versus 

pressure are shown for the diseased and healthy MEF. It can be seen that the diseased tissue has a 

significantly larger imperfection growth response. This simple model indicates how arterial 
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instability might initiate. A more realistic model of arterial tissue, accounting for intimal and 

adventitial layers and circumferential prestress, along with pathologies such as intimal thickening, 

thrombus, connective tissue degeneration etc, would provide for a more detailed picture of 

aneurysm initiation. 

 

 

Figure 5-10 a) Circumferential imperfection growth vs. pressure 
p . b) radial imperfection 

growth vs. pressure 
p . c) axial imperfection growth vs. pressure 

p  at fixed stretch 1.1T = . 
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5.3 Mechanical Stability of Arteries 

The mechanical stability results that have already been obtained, and that have been described in 

the sections 5.1 and 5.2, are based on the following assumptions: i) the tunica media is the only 

mechanically significant layer in arterial tissues, ii) for the tube, the stress system is of membrane 

type (and therefore incapable of carrying circumferential prestress), iii) the tissues considered are 

passive and mostly healthy. While the first assumption may be approximately true for healthy 

arterial tissues [61] it is certainly not generally true, e.g., adventitial tissues carry increasing loads 

at distending pressures [90]. The mechanical behavior of the adventitial layer will therefore need 

to be accounted for in a more complete general theory. Because the second assumption is now 

known to be largely inaccurate [61] the membrane assumption will therefore need to be dropped 

in favor of a more general theory accounting for finite thickness and circumferential pre-stress. 

This is the subject of this section. Finally, the effect of pathological processes on the stability of 

arterial tissues is analyzed by using the same model described in the above section which accounts 

for the degradation of elastin and collagen in medial arterial tissues. 

5.3.1 Theoretical Stability of Imperfection Growth 

The previous two sections contained a one-dimensional analysis of imperfection growth in a tensile 

bar (Section 5.1) and a two dimensional, biaxial analysis of imperfection growth in thin sheet 

(Section 5.2). The results of the biaxial case are directly applicable to the circular cylindrical tube 

of medial arterial tissue subject to i) a combined axial (tethering) force and internal (blood) 

pressure and ii) an internal pressure at fixed axial extension. Both of these problems are similar in 

that the stress fields are uniform throughout. In this section the membrane stress assumption is 

discarded for the following reasons. First, the average radius and wall thickness of an adult human 

aorta measured from 21 patients in vivo are 1.14 cm and 0.17 cm, respectively [79]. The radius to 

thickness ratio is about 6.7 so that the membrane assumption for these vessels is inaccurate. Second, 
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the stress fields across the arterial wall are inherently nonuniform due to the fact that arterial tissue 

is prestressed due to growth and remodeling. Finally, circumferential pre-stress might also 

contribute to the stability of the arterial wall. For these reasons inhomogeneous deformations 

which arise when the arteries have finite wall thickness will be incorporated into the stability 

analysis provided in this section. This entails a more general and more rigorous treatment of 

geometrical and material imperfection growth in solids deforming at finite strain. The basis for 

this work is the theory of incremental elastic deformations described in the section 2.2.5. 

The theory of incremental elastic deformations compares the elastic fields of two bodies (the 

reference body, the perturbed body) that differ from each other by small perturbations in 

deformation (e.g., that may arise from slightly different material properties). In order to relate this 

theory to the growth of imperfections in a single body, the long wavelength approximation is 

applied. Fig. 5-11 is a simple illustration of the implementation of the long wavelength 

approximation in a long and slender object. If the variations in geometry/or material properties of 

a body satisfy the constraint imposed by the long wavelength approximation (Section 2.2.6), the 

body can be treated as an aggregate of discrete sections. The geometry/or material properties of 

each section differ by a small amount from adjacent sections, and the transitions in between can 

be ignored such that each section is independent from its neighbors. Therefore, the imperfection 

quantities between two adjacent sections can be solved by the theory of incremental elastic 

deformations. 
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Figure 5-11. The long wavelength approximation in a long and slender bar. 

General Theory of Geometrical and Material Imperfection Growth 

Instead of employing the theory of incremental elastic deformations to solve for the difference 

between two deformations resulting from two incrementally different loadings applied to the same 

reference body (section 2.2.5), we need to reformulate the theory so that it can be used to determine 

the incremental deformation due to initial imperfections in the reference geometry and material 

properties of the imperfect body. This is addressed in the rest of this section. Consider a perfect 

body B0 and an imperfect body 0B  obtained from B0 by a slight alteration of its geometry and/or 

material properties (Fig. 5-12). Note that a difference in a material property is represented by a 

change in color from the perfect body in Fig. 5-12. 
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Figure 5-12. An illustration of the general theory of imperfection growth. 

Following the notation used in the section 2.2.5, let X be a particle in B0, which can be mapped to 

a corresponding particle X  in 0B  by an imperfection function, 

( )
X X=   (5-21) 

Note that this is not a deformation in the sense that there is no stress associated with it but, it is a 

prescribed measure of the geometrical imperfection. The gradient of the imperfection function 

with respect to the material particle X is defined as, 

( )*
F X=  , (5-22) 

where   denotes the gradient with respect to X . The (initial) geometrical imperfection is 

characterized by,  

( ) − −X X X X X= =   (5-23) 

If , 1,2,...,i i N =  are the constitutive parameters of B0 and , 1,2,...,i i N =  are the constitutive 

parameters of 0B , then the (initial) material imperfections are, 
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, 1,2,...,i i i i N  = − = .  (5-24) 

Furthermore, the relative material imperfections are given by, 

/ , 1,2,...,i i ib i N =  = .  (5-25) 

Now, suppose that the reference configurations B0 and 0B  are deformed into configurations B and 

B  by nominal tractions ( )0t n  and ( )0t n , respectively, 

( )

( )

0 0 0

0 0 0

        ,

      ,

on

on



= 

t n Sn

t n Sn

= B

B
  (5-26) 

where 0n and 0n are the unit normal vectors of surface 0B  on the perfect body B0  and surface

0B on the imperfect body 0B , respectively, and S  and S  are the Piola-Kirchoff or nominal stress 

tensors due to the deformations of perfect and imperfect bodies, respectively. It can be seen from 

(5-26) that the theory of incremental elastic deformations cannot be implemented directly to 

describe the differences in the elastic fields between the two bodies because there is an ambiguity 

in the nominal loading ( )0t n  that should be applied to the imperfect body for the given loading 

( )0t n  on the perfect body. To resolve this issue relate the nominal traction ( )0 0=t n Sn  on the 

imperfect body to the corresponding traction applied to the perfect body ( )0 0=t n Sn  in the 

following way, 

0 0

0 0

B B

da da
 

= Sn Sn  (5-27) 
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Equation (5-27) is the requirement that the resultant of the nominal traction on the surface 
0B  

of the perfect body 0B  be equal to the resultant of the nominal traction on the corresponding 

surface 0B of imperfect body 0B . By the transformation law of surface integrals (i.e., Nanson’s 

formula [55]) the tractions on the corresponding surfaces, i.e., 0Sn  on 
0B  and 0Sn  on 0B are 

related by, 

det .T −=S F SF   (5-28) 

and the surface normals are related by *

0 0

T−=n F n . Thus, the weak boundary conditions prescribed 

on the imperfect body can be determined from the condition given in (5-27), while the strong 

boundary conditions prescribed on the imperfect body can be deduced from the condition of (5-

28). It is worth noting that generally, the traction on the surface of the imperfect body depends 

strongly on 
F , the gradient of imperfection function used to map line segments in the perfect 

body to corresponding line segments in the imperfect body. This implies that even though the same 

imperfect body can be attained by prescribing different imperfection functions, the tractions in 

strong form (pointwise prescribed) corresponding to the same tractions prescribed on perfect body 

can be very different so that the deformed configurations resulting from different tractions are also 

different. By contrast, loads prescribed in weak form (resultant prescribed) are independent of 

imperfection function by (5-27). An interesting observation is that there are infinitely many 

imperfection functions that give rise to the same, resultant prescribed weak loading. If the loading 

is assumed to be prescribed on the perfect body in strong form, then there is an additional burden 

of finding imperfection functions that are meaningful. In this work nominal loadings are not 

prescribed pointwise and this issue does not arise. 
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Given a prescribed nominal traction on the perfect body, (5-27) and (5-28) will yield the equivalent 

nominal traction on the imperfect body. Because pressure loads are prescribed as Cauchy tractions 

in the current state, i.e., ( ) P= = −s n Tn n , these loads must be handled differently. To see this first 

note that, 

( )da P da P div dv
 

= − = − =  Tn 1n 1 0
B B B

, (5-29) 

where use has been made of the divergence theorem. Using the definition of nominal stress, 

det  T−=S F TF it is not hard to show that 

0 0

0 0da da
 

= = Sn Sn 0
B B

 which means that prescribing 

any arbitrary pressure on the imperfect body satisfies (5-27). An additional assumption must 

therefore be made regarding the pressure that needs to be prescribed on the imperfect body given 

a pressure that acts on the perfect body. The simplest assumption consistent with physical 

experience (e.g., an elongated balloon with two different diameters in equilibrium under the same 

pressure) is that the pressures on the perfect and imperfect bodies are the same. Note that for the 

material imperfection growth problem, i.e., no geometrical imperfections, substitute 
 =F 1  and 

det 1 =F  into (5-28), so the nominal tractions on the corresponding surfaces are identical. For 

geometrical imperfection growth problems, (5-28) guarantees the traction on the imperfect body 

given in (5-26) is well-defined. 

The general formulation of the boundary value problem of incremental elastic deformations 

proceeds as follows. The deformations of perfect and imperfect bodies due to the loadings ( )0t n  

and ( )0t n  are denoted as   and  , respectively. Then the incremental deformation  x  is given 

by (2-39), i.e., 
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( )( ) ( ) ( ) = − = − =x x x X X X   ,  (5-30) 

and the incremental deformation gradient, defined by (2-40) is, 

( ) ( ) ( ) ( ) ( ), , , , ,i k i
i j

k j j

x X x

X X X


   
= − =  −  = −     

*
F F X x F X e e F X x F X X F X xx . (5-31) 

The nominal stress tensor follows from the constitutive relation for stress which, for bodies 0B , 

0B , are given by,  

( ) ( )ˆ ˆ, ,    ,i i = =S S F S S F   (5-32) 

If S  is linearized by a Taylor series expansion in F  and i , which corresponds to (2-44), then, 

( ) ( ) ( )
0 0

0 0

ˆ ˆ
ˆ ˆ, ,i i i i

i

o
 
 

      
= =

= =

 
+ + = + + +

 

S S
S F F S F F

F F F

 (5-33) 

and the incremental nominal stress as defined by (2-43) with (5-33) is given by, 

0 0
0 0

ˆ ˆ

i

i 
 

  
= =

= =

 
+

 

S S
S F

F F F

=  (5-34) 

Therefore, the boundary value problem in the reference configuration is, 

( )

( )0 0

,

,

Div 

 

=

=

S 0

t n Sn
  (5-35)  

where ( ) ( ) ( )0 0 0 = −t n t n t n  is the incremental tractions in the reference state. The general 

theory outlined above will be used in the analysis of the mechanical stability of an artery of finite 
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thickness subject to axial tethering, blood pressure and circumferential prestress. Before doing this 

however, we will use it to confirm the equations developed in the Section 5.1 for the problem of 

the uniaxial tension of a circular cylindrical bar with an axial geometrical imperfection in cross-

sectional area and, the equations developed in the Section 5.2 for the biaxial loading of planar 

sheet. 

Uniaxial tension. Assume the bulk section of the bar has a referential cross-sectional area 0A  

corresponding to a referential radius 0R  and is subject to a force F in the axial direction so that 

nominal traction 0  is equal to 0/F A  or 2

0/F R . Let the radius and the cross-sectional area of 

the nominal section in the reference state be 
0R  and 0A , respectively. As discussed above, because 

the axial force F  is weakly prescribed, the corresponding axial force F  that should be prescribed 

on the nominal section is equal to F  (5-27). Therefore, the nominal traction 0  prescribed on the 

nominal section which corresponds to the nominal traction 0  can be found from (5-28), 

( )
0

0

00
1 1

F F

a A aA


 = = =

+ +
 (5-38) 

where 0 0/a A A=   is the relative initial geometrical imperfection in (5-2). Substituting (5-38) into 

(3-13) results in the equations governing imperfection growth under axial load (5-2). 

Thin-walled Tube. For a geometrically non-uniform cylindrical tube subject to internal pressure 

and axial tethering force, the geometry of bulk section in the refernece state is characterized by 

their radius 0R  and thickness 0H , while the referential geometry of nominal section is represented 

by 
0R  and 

0H . The discussion above requires that the same internal pressure p  be prescribed on 
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the inner surface of the nominal section as well as the bulk section. The nondimensionalized 

nominal pressure for the nominal section 
p  has the following relation, 

0 0

0 0 0 0

1 1

1 1

R R
p p

H H

R Ra ap p

H E a H E a
 

+ +
= =  =

+ +
,  (5-39) 

where ,H Ra a  are defined in (5-10). Both sections are subject to the same axial tethering force f  

in the 2x  direction due to the condition for weakly applied loads (5-27). Thus, the 

nondimensionalized axial tethering force for the nominal section 
f  is given by,  

( )( ) ( )( )0 02 1 1 2 1 1

f

f

R H H R

f f

RHE a a RHE a a




 
= = =

+ + + +
.  (5-40) 

Equations (5-39) and (5-40) are consistent with those obtained previously, i.e., (5-9). The 

equilibrium equations for nominal section given in (5-11) can be obtained by replacing 
p  and 

f  with (5-39) and (5-40) in the equilibrium equations for bulk section (3-27).  

Imperfection Growth of a 2-Layer Composite Circular Tube Subject to Circumferential Pre-stress, 

Axial Tethering Force and Internal Pressure 

In this subsection the general theory of imperfection growth is employed to analyze imperfection 

growth in an imperfect 2-layer composite circular tube subject to circumferential pre-stress, axial 

tethering force and internal pressure. In the reference state, the geometrical and constitutive 

parameters of the bulk (perfect) section are denoted by ( )0 1 2 0, , , , , iR R R L   while the geometrical 

and constitutive parameters of the nominal (imperfect) section are ( )0 1 2 0, , , , , iR R R L  . Initial 

geometrical imperfections in the reference state are taken to be perturbations in radii and opening 

angle of the reference configuration, respectively, 



136 

0 0 0, 0,1,2,   i i iR R R i = − =  = − , (5-41) 

 

Figure 5-13. Reference geometries of bulk and nominal sections. 

A) bulk section. B) nominal section. 

Throughout this section we will follow the notation introduced in the Sections 5.1 and 5.2, i.e., 

[ ] [ ] [ ]• = • + •  where a tilde indicates that the bulk section quantity [ ]•  is evaluated at the nominal 

section and a “ ” is the difference between nominal and bulk section quantities. The prescribed 

initial relative imperfections in radii and opening angle defined by, 

0 01 2
0 1 2

0 1 2 0

, , , .
R R R

a a a a
R R R 



  
= = = =

−
 (5-42) 

(Note that the initial relative imperfection in opening angle a , defined in (5-42), is the difference 

between the arc lengths of the nominal and bulk sections normalized by the arc length of the bulk 

section, i.e., ( )0 0/R R  − ). Initial and relative material imperfections are given by (5-24) 

and (5-25), respectively. The governing equations of the bulk section with prescribed radius ratios 

of the first and second layers in the reference state ( )1 0 1/R R = and ( )1 1 2/R R =  subject to 

internal pressure P, axial force F, and circumferential pre-stress parameter  , in terms of the 

principal stretches ( )0 1 2, , , z    and Lagrangian multipliers ( )1 2

0 0,  , have already been given by 
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(4-32) in Chapter 4. Because the bulk section is subject to internal pressure P  and axial tethering 

force F , the nominal section is subject to the same internal pressure P  and the same axial 

tethering force F  as discussed above. The equations governing the deformed state of the nominal 

section subject to circumferential pre-stress  , internal pressure P  and axial force F  are given 

by,  

( )

( )
( )

( )
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 (5-43) 

where the nondimensionalized geometrical parameters for nominal section 1 2, ,    have the 

following relationship with the corresponding parameters for bulk section 1 2, ,   ,  

( )

0 0 0
1 1

1 1 1

1 1 1
2 2

2 2 2

0 0

1
,

1

1
,

1

,
1

R R a

R R a

R R a

R R a

a

 

 

 


 

+  +
= =

+  +

+  +
= =

+  +

= =
−  +  −

 (5-44) 
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where use has been made of (5-42). Thus, for given loadings ,  P F , initial relative geometrical 

imperfections 0 1 2, , ,a a a a , relative material imperfections ib  and strain energy density functions 

,m aw w , equations (5-44) represents six equations for the six unknown quantities for the nominal 

section 
1 2

0 0 0 1 2, , , , , z      . Note that circumferential stretches 0 1 2, ,    measure the extension of 

a semicircle of length r  on the inner surface, intersurface and the outer surface of the deformed 

configuration of nominal section relative to its length of ( )0 R −  in the referential configuration 

of nominal section. And z  measures the relative extension of an axially oriented line segment on 

nominal section. These quantities, together with their analogues for the bulk section, can be used 

to obtain the growth of initial imperfections with respect to the referential configuration of bulk 

section defined in (5-31), 

( )( )

( )( )

( )( )

0 0 0 0 0
0 0 0 0

0 0 0 0 0

1 1 1 1 1
1 1 1 1

1 1 1 1 1

2 2 2 2 2
2 2 2 2

2 2 2 2 2

1 1 ,

1 1 ,

1 1 ,

,z z z

r r R r r
a a

R R R R R

r r R r r
a a

R R R R R

r r R r r
a a

R R R R R

l l

L L

   
  



   
  



   
  



  







= − =   − = − + −

= − =   − = − + −

= − =   − = − + −

= − = −

 (5-45) 

where the use of (5-42) has been used and 0 1 2, ,    measure the difference between the 

semicircle of length r  in the deformed configuration of nominal section and the corresponding 

semicircle of length r in the defomed configuration of bulk section relative to the arc of length 

( )0 R −  in reference configuration of bulk section. Note that here, imperfection growth is 

measured by different quantities from Sections 5.1 and 5.2. Imperfection quantities with the 



139 

operator    measure the absolute difference between the deformed geometries of nominal and 

bulk sections normalized by the referential geometrical parameters of bulk section, while the 

imperfection quantites with the operator    measure the relative difference between the 

deformations of both section relative to their own referential geometries. In order to establish the 

consistency of the general and membrane theories of imperfection growth, the problem of a thin 

wall, single layered tube subject to internal pressure is solved using the general theory of 

imperfection growth and the numerical solution obtained is compared with the membrane theory 

result in the Section 5.2. The equations governing the deformation of a single layered tube subject 

to internal pressure can be obtained by substituting 1i = , 1 = (no circumferential prestress) and 

0F =  (zero axial tethering force) into (4-16). The reference state configuration of the bulk section 

has a radius ratio of 1 0 1/ 7.5 / 8.5R R = =  which is consistent with the radius to thickness ratio of 

the thin-walled tube in Section 5.2. Let the nominal section have an initial imperfection of inner 

radius 0 0.01a =  while keeping the thickness of nominal section the same as the bulk section. Then 

the radius ratio of nominal section is equal to ( ) ( )1 0 1/ 7.5 1.01 / 7.5 1.01 1 0.88R R = =   + = . The 

growth of the relative initial geometrical imperfection at the inner radius, i.e., 0 0.01a = , under 

nondimensionalized pressure 
p  is depicted in Fig.5-14a for medial arterial tissues. The curve for 

the imperfection growth of fascicle in Fig. 5-6a is replotted in Fig. 5-14a using the same 

imperfection growth measurement as the general theory, i.e., 1.01    = − . Fig. 5-14b 

includes two curves for the numerical results of axial imperfection growth predicted by using the 

general theory of imperfection growth and the membrane theory, respectively. Fig.5-14 shows that 

the numerical results for circumferential and axial imperfection growth using the general theory 

of imperfection growth and the membrane theory are consistent. 
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We have therefore established the consistency of the general theory of imperfection growth by 

showing that i) the governing equations for imperfection growth derived from the general theory 

are consistent with the ad hac theory employed in tensile stability and biaxial stability of medial 

arterial tissues and ii) the numerical solutions obtained from both theories have the same 

imperfection growth response. 

 

Figure 5-14. Comparison between general theory and membrane theory 

5.3.2 Results 

In the remainder of this section, the quantities associated with the inner surface, the interface 

between the inner and outer layers, and outer surface      
0 1 2
, ,    of the tube are denoted as 

     , ,
i m o
    in order to be consistent with the definitions used in the Section 4.3. 

Results for Geometrical Imperfection Growth 

In this section we will consider geometrical imperfections only so that relative material 

imperfections , 1,2,...,ib i N=  are taken to be zero (material imperfections will be considered 

subsequently). The solution of (5-54) is determined once the three nondimensionalized 
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geometrical parameters for the nominal section defined in (5-55) have been prescribed. An 

examination of (5-55) indicates that relative imperfections at three different radii and opening 

angle generally result in different behaviors. An exception is prescribing a small value to ma  which 

has the same effect as prescribing equal and opposite values to ia  and oa  simultaneously, i.e., 

( ) ( )/ 1 1i i m i ia a  = + = + , ( ) ( )1 / 1o o m o oa a  = + = − . Thus we will examine the effects of 

relative initial imperfections at the inner radius ia , the outer radius oa , and the opening angle a , 

separately. 

The numerical results for the quantities 
1 2

0 0, , , , ,i m o z       are obtained from (5-43). The 

circumferential imperfection growth at three different radii, i.e., , ,i m o    can be obtained from 

, ,i m o   by (5-45). For nominal section with smaller opening angle than bulk section, i.e., 

0.01, 0i m oa a a a = − = = =  they are, 

1.01 ,

1.01 ,

1.01 ,

i i i

m m m

o o o

z z z

  

  

  

  

= −

= −

= −

= −

 (5-46) 

and are plotted in Fig.5-15. Equation (5-46) implies that imperfection growth quantities have initial 

values .01i m o  = = =  and 0z =  at the reference state, which characterizes the initial 

geometrical imperfections. Recall that there are two deformed states in the problem of a 2-layer 

tube subject to circumferential prestress, internal pressure and axial tethering force, i.e., the 2-layer 

annular sector is closed into a 2-layer cylindrical tube first, and then it is inflated and extended by 

the internal pressure and axial tethering force. Thus, the imperfection growth due to the closure of 
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the 2-layer annular sector corresponds to 0p =  in Fig.5-15. It can be seen that when 
p  is equal 

to zero, the circumferential imperfection growth at the inner surface i  has a value of 0.0105 

which is larger than the value at the reference state. However, the circumferential imperfection 

growth at the interface and the outer surface ,m o   are about 0.096 and 0.093, respectively. This 

indicates that nominal section has a larger radius at the inner surface, the interface, and the outer 

surface than bulk section. And the difference between the lengths of the circumferentially oriented 

line segments on the inner surface of nominal section and bulk section grows larger at the unloaded 

state than at the reference state. However, the differences between the circumferentially oriented 

line segments on the interface and the outer surface of nominal section and bulk section grow 

smaller at the unloaded state. This is because the nominal section configuration in the reference 

state has a smaller opening angle, i.e., 0a  , such that compression at the inner wall and tension 

at the outer wall resulting from circumferential prestress in the nominal section are less than that 

in bulk section, i.e., 1i i   , 1 m m    and 1 o o   . As the nondimensionalized pressure 

p  increases from zero to 0.17, the values of circumferential imperfection quantities , ,i m o    

monotonically increase since the mechanical behavior of elastin in the medial layer dominates 

within the low blood pressure range. After reaching the local maximum at 0.17p = , there is a 

transition region with a negative growth rate at increasing 
p . After about 0.4p = , the 

circumferential imperfection quantities monotonically increase with small positive rates due to the 

domination of the imperfection growth pattern by collagen at large pressures as previously stated 

in Sections 5.1 and 5.2. 
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Figure 5-15. Circumferential imperfections , ,i m o    vs. nondimensionalized pressure 
p  

for 0.01, 0i m oa a a a = − = = = . 

When the nominal section has a positive initial relative imperfection at its inner radius 0.01ia = , 

i.e., the inner radius of nominal section is greater than that of bulk section. The circumferential 

imperfection quantities have values of 0.01, 0i m o  = = =  at the reference state. Figure 5-16 

shows that the closure of the 2-layer annular sector into an intact cylindrical tube at the unloaded 

state 0p = , has a positive circumferential imperfection value at the inner surface i  of 0.013 

and negative circumferential imperfection values at the interface and outer surface ,m o   of 

about 0.003. This is because the bending-typed stress in the unloaded state in nominal section is 

less intensive than that of the bulk section. A reverse effect can be seen in Fig. 5-17 for a nominal 

section with a positive relative imperfection prescribed in the outer radius 0.01oa = . Here, the 

circumferential imperfection at the outer surface o  is positive and circumferential imperfections 

at the interface and inner surface ,m i   are negative. As the nondimensionalized pressure 
p  
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increases, the growth rates of circumferential imperfection quantities , ,i m o      in Fig. 5-16 

follow the same trend as depicted in Fig. 5-15. This is because the constitutive models used here 

reflect the contributions of each constituent to the mechanical behavior of the composite artery. 

By contrast, prescribing a positive relative imperfection at the outer radius 0.01oa =  results in 

circumferential imperfection growth rates (Fig. 5-17) that are reverse to the corresponding curves 

in Figs. 5-15 and 5-16. 

 

Figure 5-16. Circumferential imperfections , ,i m o    vs. nondimensionalized pressure 
p  

for 0.01, 0m i oa a a a= = = = . 
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Figure 5-17. Circumferential imperfections , ,i m o    vs. nondimensionalized pressure 
p  

for 0.01, 0o i ma a a a= = = = . 

Results for Material Imperfection Growth 

As noted above, initial material imperfections in the constituents of medial and adventitial arterial 

tissues can be described by the relative quantities /i i ib  =   where i  are the differences 

between the ith material parameter of the nominal section and that of the bulk section. The model 

for medial arterial tissues employed in this work has three main constituents, elastin, smooth 

muscle and collagen. The strain energy density function for medial elastin (3-2) has only one 

material parameter, the stiffness m

EE . The strain energy density function for smooth muscle (3-3) 

has two material parameters m

ME  and 1m . Medial collagen has three constitutive parameters m

CE , 

0

m  and mk (from (3-4)). The adventitial layer has only two constituents, i.e., elastin and two 

families of collagen fibers. The constitutive models for these are taken to be the same as that used 

in medial elastin and medial collagen although the material parameters are assumed to be different 



146 

in (3-1) and (3-5). Thus, there are five more parameters that need to be considered, i.e., a

EE , a

CE , 

0

a , ak  and  , which are the stiffness of adventitial elastin, the stiffness of adventitial collagen, 

circular arc half-angle of the adventitial collagen fibers, slenderness ratio of adventitial collagen, 

and the preferential orientation of adventitial collagen fibers, respectively. The initial 

imperfections in the volume concentration factors of the constitutive models are neglected here 

since they have the same effects as the initial imperfections in the corresponding stiffness 

parameters as discussed in the Section 5.2. 

In the following, the response of arterial tissues to initial material imperfections in medial elastin 

stiffness MEEb , smooth muscle stiffness MMEb , medial collagen stiffness MCEb , adventitial elastin 

stiffness AEEb  and adventitial collagen stiffness ACEb , respectively are discussed. Thus, it is 

assumed that these relative stiffness imperfection values are given by 

( ) ( ), , , , 0.01, 0.01, 0.01, 0.01, 0.01MEE MME MCE AEE ACEb b b b b = − − − − − . (These values are choosen in 

order to be consistent with the values used to analyze material imperfection growth based on the 

membrane theory described in the Ssection 5.2). The circumferential imperfection growth 

quantities at the inner surface, interface between medial and adventitial layers, and the outer 

surface, and the axial imperfection growth due to each individual constituent stiffness defect are 

depicted in Figs. 5-18a, b, c, and d, respectively. The corresponding imperfection growth behavior 

due to defects in the stiffness paramters of medial arterial tissue constituents solved from the thin-

walled tube model can be found in Fig. 5-8. Figure 5-18a, b, and c indicate that similar to 

geometrical imperfection growth problems, the initial imperfections in constitutive parameters 

cause an instantaneous growth at the unloaded state 0p = , and the imperfection growth rates 

share characteristics similar to that predicted by using the thin-walled tube geometry depicted in 
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Fig. 5-8. For example, circumferential imperfection growth response , ,i m o    at the three 

different radial positions for a medial elastin stiffness imperfection rapidly increases to a maximum 

value before rapidly falling off. This is because the stretch-load response of medial elastin 

dominates at the low blood pressure region. The circumferential imperfection growth due to a 

medial elastin stiffness defect is significantly larger than that of the other stiffness defects. Another 

significant feature of circumferential imperfection growth that can be observed from Fig 5-18a, b, 

and c is due to the defect in the stiffness of medial collagen which is represented by the dash lines 

in the figues. The beginning of the transition of the primary deformation machnism of medial 

collagen fibers from bending to tension results in a change in the sign of slope from positive to 

negative at 0.12p  , and the slope change from negative to positive again at the end of the 

transition. Imperfection growth response to initial imperfections in smooth muscle stiffness (dash 

dot lines) is negligible. Additionally, Fig. 5-18a, b, c, and d also depicts imperfection growth 

response to defects in the stiffness parameters of adventitial elastin and adventitial collagen. 

However, their magitudes are much smaller compared with the imperfection growth response due 

to defects in medial arterial tissues constituents. Fig. 5-18d depicts imperfection growth response 

z  arising from stiffness imperfections. Imperfection growth resulting from defects in medial 

elastin stiffness dominate here as well consistent with the constraint of incompressibility. 
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Figure 5-18a circumferential imperfection 
i

  vs. nondimensionalized pressure 
p

  for 

( ) ( ), , , , .01, .01, .01, .01, .01MEE MME MCE AEE ACEb b b b b = − − − − −  

 

Figure 5-18b circumferential imperfection 
m

  vs. nondimensionalized pressure 
p

  for 

( ) ( ), , , , .01, .01, .01, .01, .01MEE MME MCE AEE ACEb b b b b = − − − − −    
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Figure 5-18c Circumferential imperfection 
o

  vs. nondimensionalized pressure 
p

  for 

( ) ( ), , , , .01, .01, .01, .01, .01MEE MME MCE AEE ACEb b b b b = − − − − −  

 

Figure 5-18d circumferential imperfection 
z

  vs. nondimensionalized pressure 
p

  for 

( ) ( ), , , , .01, .01, .01, .01, .01MEE MME MCE AEE ACEb b b b b = − − − − −    
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Fig. 5-19a, b, c, and d show the imperfection growth response of arterial tissues arising from mb , 

MCb 
, MCkb , 

ACb 
, ACkb  and 

ACb 
, respectively, which are the initial imperfections in medial 

smooth muscle constitutive parameter 1m , the circular arc half-angles 0  of medial collagen, the 

slenderness ratio k  of medial collagen, the circular arc half-angles 0  of adventitial collagen, the 

slenderness ratio k of adventitial collagen and the preferential orientation of two families of 

adventitial collagen fibers  . Thus, assume relative imperfection values given by 

( ) ( ), , , , , 0.01,0.01,0.01,0.01,0.01,0.01m MC MCk AC ACk ACb b b b b b   = . The responses of arterial tissues 

to each kind of material imperfections are examined individually in the following. (The 

corresponding imperfection growth response due to defects in smooth muscle constitutive 

parameter 1m , the circular arc half-angles and slenderness ratio of medial collagen predicted by 

using the thin-walled tube geometry can be found in Fig. 5-9.) The plots indicate that a defect 

MCb   in medial collagen, in the form of a material imperfection in the initial half-angle subtended 

by the circular arc (circular arc half angles) of the crimped medial collagen fibers, is the most 

significant in affecting circumferential imperfection growth. By contrast, a defect 
ACb   in the 

circular arc half angle of the crimped adventitial collagen fibers results in an imperfection growth 

response which is negligible at low blood pressure region 0.4p  and has a significantly large 

imperfection growth in the larger blood pressure region. This is because the role of adventitial 

collagen fibers is to carry mechanical loads at elevated blood pressure in order to prevent arterial 

tissues from being overstretched. Defects in MCkb  and ACkb  in medial and adventitial collagen, in 

the form of material imperfections in the slenderness ratio k of the crimped collagen fibers, results 

in imperfection growth behavior which is relatively small and ultimately vanishes. In addition, a 
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defect 
ACb 

, in the form of material imperfections in the preferential orientation of two families 

of adventitial collagen fibers, causes a small positive growth at the unloaded state 0p = . This is 

because a positive defect 
ACb   implies that the preferential orientation of adventitial collagen 

fibers is closer to the axial direction of the blood vessel such that it decreases the load carrying 

capacity of blood vessel in the circumferential directions. This behavior also causes a negative 

growth once the loading is applied. Finally, a defect mb  in smooth muscle, in the form of a material 

imperfection in the constitutive exponent 1m , results in imperfection growth   which is also 

relatively small. However, axial imperfection growth attains a comparatively large magnitude after 

an initial region of virtually no growth. The eleven kinds of initial material imperfections discussed 

above cause various irregular and complex imperfection growth behaviors in arterial tissues. 

Arterial tissues have the strongest response to the small defect in the circular arc half-angle of 

medial collagen fibers, which is consistent with the results predicted by using the membrane theory 

in Section 5.2. In healthy arterial tissues initial material imperfections, like initial geometrical 

imperfections, do not lead to unbounded imperfection growth. 
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Figure 5-19a Circumferential imperfection 
i

  vs. nondimensionalized pressure 
p

  for 

( ) ( ), , , , , .01,.01,.01,.01,.01,.01m MC MCk AC ACk ACb b b b b b   =    

 
Figure 5-19b Circumferential imperfection 

m
  vs. nondimensionalized pressure 

p
  for 

( ) ( ), , , , , .01,.01,.01,.01,.01,.01m MC MCk AC ACk ACb b b b b b   =    
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Figure 5-19c Circumferential imperfection 

o
  vs. nondimensionalized pressure 

p
  for 

( ) ( ), , , , , .01,.01,.01,.01,.01,.01m MC MCk AC ACk ACb b b b b b   =    

 
Figure 5-19d Circumferential imperfection 

z
  vs. nondimensionalized pressure 

p
  for 

( ) ( ), , , , , .01,.01,.01,.01,.01,.01m MC MCk AC ACk ACb b b b b b   =    
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5.3.3 The Effect on Imperfection Growth of Localized Elastin and Collagen Damage 

In this section a general theory of imperfection growth extending the ad hoc theory proposed in 

the Section 5.2 has been presented to predict the growth of geometrical and/or material 

imperfections of a solid body. The general theory of imperfection growth has been shown to be 

consistent with the ad hoc theory in that i) both theories generate the same imperfection growth 

equations and ii) both theories give similar numerical solutions for the problem of a single-layer 

tube subject to internal pressure and axial tethering force (Section 5.2). The remainder of this 

section is concerned with implementing the general theory of imperfection growth in an analysis 

of the mechanical stability of large elastic arteries treated as a problem of imperfection growth of 

a geometrically and/or materially nonuniform 2-layer composite tube subject to circumferential 

prestress, blood pressure and axial tethering force. The constitutive models for healthy medial and 

adventitial arterial tissues proposed in Chapter 3 are applied to the inner and outer layers of the 

composite tube, respectively, so that the results have meaning for the large elastic artery in vivo 

(recall that the intima is neglected here as mechanically insignificant). The small finite growth of 

initial geometrical and material imperfections characterizes the stable character of healthy arterial 

tissues. 

The final objective of this work is to provide preliminary insight into the formation of aneurysm 

by analyzing mechanical stability by imperfection growth in diseased arterial tissues. Thus, the 

imperfection growth of a 2-layer composite tube subject to circumferential prestress, blood 

pressure and axial tethering force with an initial geometrical imperfection at the inner radius is 

reexamined by using the general theory with a simple modification of the volume concentration 

factors of medial elastin and medial collagen given in (5-20). Note that this is done locally, i.e., 

only in the nominal section, and characterizes diseased arterial tissues by assuming a depletion of 
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medial elastin and medial collagen. The corresponding numerical results are given in Fig. 5-20. It 

can be seen that the degeneration of medial elastin is sufficient to trigger the large incipient growth 

at small blood pressure, and the depletion of medial collagen fails to suppress the growth of 

imperfections at both physiological blood pressure and elevated blood pressures. 

 

Figure 5-20. Circumferential imperfections , ,i m o    vs. nondimensionalized pressure 
p  for 

diseased arterial tissues comparing with healthy arterial tissues 
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6. Conclusions and Future Directions 

This research has aimed to provide a detailed analysis of mechanical stability of large elastic 

arteries subject to circumferential prestress, axial tethering force and the pressure of blood. In this 

work the term mechanical stability is used in the following two ways: i) the tendency to maintain 

a stable, relatively constant mechanical state (homeostatic stress/stretch states) in response to 

stimuli from the external environment, e.g., blood pressure; ii) the ability to resist unbounded 

growth that might be precipitated by small geometrical and/or material variations that naturally 

occur in arteries. Concerning the latter, the analysis is local in the sense that growth is obtained by 

comparing perfect and imperfect sections of artery. The principal, novel results obtained in this 

dissertation are summarized in the following. 

1. Large elastic arteries were modeled as a two-layered structure consisting of the tunica 

media and the tunica adventitia. The passive mechanical response of the three main 

constituents of arterial tissues, i.e., elastin, vascular smooth muscle and collagen, were 

characterized by the neo-Hookean model (3-2), the Blatz [65] 2-parameter polynomial 

model of Valanis-Landel type [66] (3-3), and the Garikipati et al [68] model (3-4), 

respectively. The constitutive model for medial arterial tissues given in (3-1) was obtained 

by homogenizing the primary constituents over the representative volume element based 

on the concept of the musculo-elastic fascicle (MEF) originally proposed by Clark and 

Glagov [8]. Its validity was established by examining the mechanical response of the model 

in three different cases: uniaxial tension of a circular bar, equibiaxial tension of rectangular 

flat sheet and a thin-walled tube subject to internal pressure and axial tethering force and 

comparing numerical results with the experimental data from the literature. Adventitial 

arterial tissues were modeled as an isotropic medium of loose elastin fibers embedded with 
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collagen fibers oriented in two preferential directions (3-5). Its numerical solutions for the 

thin-walled pressure vessel problem were compared with experimental data for the tunica 

adventitia taken from the existing literature. 

2. A generalized theoretical analysis on the mechanical response of the N-layer composite 

tube subject to internal pressure, circumferential prestress and axial tethering force was 

carried out in the Section 4.1 with the express goal of characterizing the special 

stress/stretch states that have physiological meaning to large elastic arteries, i.e., they are 

candidates for homeostatic mechanical states. More specifically, the mechanical response 

of the ith layer was shown to be characterized by five distinct stages (described in (4-28)). 

One of these five stages is the uniform (throughout the thickness of the ith layer) principal 

stretch state and another is the uniform circumferential stress state. The uniform stretch 

states for all N layers occur at the same pressure assuming that the opening angle is identical 

among all N layers and the axial stretch is a constant. However, the uniform circumferential 

stress states of N layers occur at different pressures while employing distinct constitutive 

models for each layer. 

3. Expressions for the internal pressure at the uniform stretch state (4-193) and the uniform 

circumferential stress state (4-25) of the ith layer were obtained. The corresponding 

formulae for the stress field of the uniform stretch state (4-20) and the uniform 

circumferential stress state (4-27) were obtained as well. Note that these equations are 

universal in the sense that they are independent of hyperelastic constitutive model. These 

formulae, and the specialized states to which they apply, are important to the understanding 

of how mechanical factors play a regulatory role in the homeostasis of arterial tissues. They 

are important tools in studies of growth and remodeling of arterial tissues, i.e., predicting 
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wall thickening and opening angle of arteries due to a chronic increase in systolic blood 

pressure, presumably to restore the homeostatic wall stress/or stretch distribution. By way 

of illustration, assume the elastic artery resides in its homeostatic elastic state under the 

physiological blood pressure 0P  as shown in Fig. 6-1. Let the blood pressure rise from 0P  

to P  due to experimentally induced sustained hypertension. By assuming that the artery 

tends to restore the circumferential stress to the normal level, the new referential geometry 

of the artery represented by parameters  and 1  after remodeling, and other unknowns 

1

0 1 0, , , z    , can be obtained from (6-1) for the prescribed values for 1

0 1, , , ,P F T r r
 , 

without conducting destructive experiments. 
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Note that 0r  and 1r  can be directly measured and equations (6-1) come from the equations 

governing the uniform circumferential stress state of a 1-layer composite tube subject to 

circumferential prestress, internal pressure and axial tethering force. 
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Figure 6-1. An illustration of using the formulas associated with the uniform circumferential 

stress state of a single layer tube to predict the remodeling geometry of artery due to 

hypertension. 

4. Conclusions 2 and 3 were then specialized to the 2-layer composite tube which models the 

loading bearing components of a large elastic artery (Section 4.2.4). A uniform stretch state 

exists throughout the entire arterial wall so that the equations governing this state (4-33) 

and its corresponding stress fields (4-34) apply equally to both medial and adventitial layers. 

A uniform circumferential stress state does not exist throughout the entire wall but such a 

state does exist within each layer at different pressures. At these states formulae for the 

pressure (4-35) and the corresponding Cauchy stresses for the inner layer (4-36) and outer 

layer (4-37) were given, one for the medial layer and one for the adventitial layer. 

5. An important result of this research concerns the numerical analysis of the 2-layer 

composite tube modelled by the constitutive relations for medial and adventitial arterial 

tissues proposed in Chapter 3 and subject to circumferential prestress, internal pressure and 

axial tethering force. The solution indicates the important result that the uniform stretch 

state, the uniform circumferential stress state of the medial layer, and the uniform 

circumferential stress state of the adventitial layer “appear” to occur at the diastolic blood 

pressure, the mean blood pressure, and the systolic blood pressure, respectively. 

6. The mechanical stability of arteries was analyzed in Chapter 5 by considering the growth 

of small imperfections in geometry and material properties. First, problems were 
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considered in which the stress system was assumed to be uniform (uniaxial tension, biaxial 

tension, thin-walled tube). A local analysis, employing the long wavelength approximation, 

was carried out in which growth was determined by assessing the evolution of the 

difference between the perfect section and the imperfect section. In this way, incipient 

growth of initial geometrical and material imperfections can be obtained efficiently without 

recourse to full FEM calculations. Predictions of the analysis indicate that initial 

geometrical and material imperfections in healthy arterial tissues grow at a rate one order 

of magnitude smaller than that of the initial imperfection. This indicates the stable character 

of healthy tissues. By contrast, a simple model of damaging elastin indicates a substantial 

increase in growth rate indicating the inherent mechanical instability of diseased arterial 

tissues. 

7. In order to incorporate the nonuniform stress field due to circumferential prestress, and the 

thick wall geometry typical of large elastic arteries, a general theory of imperfection growth 

was presented. This theory is a modification/extension of the theory of incremental elastic 

deformations of finite elasticity [56]. In its original inception the theory compares two 

identical bodies whose deformations differ by a small amount. In this work, the theory was 

expanded in two ways. The first was to consider perturbations in constitutive parameters 

and parameters characterizing the geometry, and the second, to the case of a single body 

composed of a perfect and an imperfect part. This theory was then used to obtain the 

incipient growth of geometrical and material imperfections of a 2-layer artery utilizing 

constitutive relations for healthy arterial tissues. The results are consistent with those of 

point 6 in that they illustrate the stable character of healthy arteries. By contrast, the 
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significant growth of initial defects for a simple model accounting for the degradation of 

elastin and collagen demonstrates the unstable behavior of diseased arteries. 

The following comments concern the utility of these results to clinicians and medical researchers. 

A common practice of vascular surgeons who treat a variety of cardiovascular diseases is to replace 

a portion of a diseased artery with a vascular implant (graft and stent) which acts as an artificial 

conduit or substitute for the diseased artery. However, the ability to match properties of a vascular 

substitute to those of the native artery still remains a challenge for biomedical device engineers. 

Pourdeyhimi and Wagner [113,114] presented an extensive review focusing on structures of the 

synthetic grafts to explain the reported clinical observations of these grafts. Singh et al. in [115] 

reviewed the design aspect of textile vascular implants and compared them to the structure of a 

natural artery as a basis for assessing the level of success as an implant. Parlak et al. [116] and 

Boodagh et al. [117] discussed several advanced designs for improved long lasting vascular 

implants. The microstructural based constitutive model for medial arterial tissues proposed based 

on the concept of MEF unit, and the constitutive model for adventitial arterial tissues which was 

characterized as a composite material embedded with two families of collagen fibers, could 

provide some insight into future design strategies for developing vascular implants. In addition, 

the analytical solutions for the pressure associated with the uniform stretch state or the uniform 

circumferential stress state and the corresponding stress fields can be used to evaluate the 

mismatch between the homeostatic behaviors of the implant and the host artery in the physiological 

pressure range (80-120 mmHg). 

The identification of specific defects in the microstructure of arterial tissues often result in 

cardiovascular disease. The general theory of imperfection growth developed here, combined with 

the microstructure-based constitutive models for medial and adventitial arterial tissues, provides a 
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framework for analyzing the effects of certain defects on the mechanical stability of large elastic 

arteries. For example, the morphology and strength of collagen fibers affected by Ehlers-Danlos 

syndrome is compromised due to a large dispersion of the orientations of collagen fibers and 

abnormal intermolecular cross-linking [118]. Their effects on the arterial stability can be evaluated 

by imperfection growth resulting from initial material defects in the orientation and effective 

stiffness of collagen fibers. 

There are several problems arising from the research described in this dissertation that would be 

interesting and of value to pursue. These are outlined below in bulleted format. 

1. The constitutive models for medial arterial tissues proposed in Chapter 3 focused on 

modeling the passive mechanical response arising from the anisotropic and nonlinear 

hyperelastic properties of elastin, smooth muscle and collagen. However, the active 

contractile behavior of smooth muscle cells was neglected in the current work. Thus, we 

need to employ in our stability analyses a constitutive model that accounts for the active 

response of smooth muscle cells to mechanical and pharmacological stimuli, such as the 

constitutive model proposed by Murtada et al. [67] which includes the effects of smooth 

muscle contraction through generation of an active stress. Such a constitutive model would 

be useful in identifying the actual mechanical state experienced by an artery, since the 

active response of arterial tissues is significant when the cardiovascular system becomes 

more active in order to rebuild homeostasis in the presence of perturbations in blood 

pressure. 

2. It was demonstrated (Sections 5.1.3, 5.2.3 and 5.3.3) that simple models of diseased arterial 

tissues can drastically alter the imperfection growth response. These results were obtained 

by using a simple constitutive model which characterizes depletions in medial collagen and 
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medial elastin (Sections 5.2.3 and 5.3.3) or, the degradation of elastin with stretch (Section 

5.1.3). However, these overly simplified constitutive models are not adequate to capture 

the significant morphological changes within for example aneurysmal arterial tissues. 

Thus, there is a need for the development of constitutive model for diseased arterial tissues 

to quantify the impact of morphological changes on imperfection growth. 

3. It is common practice in the biomechanics community to utilize the numerical finite 

element method to study mechanics problems relating to the cardiovascular system. There 

are several reasons for this including three dimensional geometry and complex loading, 

nonlinearities arising from complex constitutive models and large deformations. The 

theoretical analyses of i) the homeostatic states of large elastic arteries and, ii) the incipient, 

local growth of initial geometrical and material defects obtained in this dissertation have 

provided a baseline for a more detailed numerical finite element analysis of the mechanical 

response and mechanical stability of large elastic arteries. 
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Appendix I 

The rule of mixtures applies exactly for the finitely deforming composite musculoelastic fascicle 

(MEF) in uniaxial tension. To see this write the total axial load (P) applied to the bar ends as, 

3 2 3 1 3

1

(2 ), number of MEF's
N

i i i

i

P P P P N− −

=

= + + =  and recall that the layer sequence per MEF is C-

E-M-E-C, where C is collagen, E is elastin and M is smooth muscle (see Fig. 3.1). Then in each 

of the MEF’s 2P3i-2, i=1 .. N are the loads carried by the elastin (there are two elastin layers per 

MEF composite), P3i-1, i=1 .. N are the loads carried by the muscle, and P3i, i=1 .. N are the loads 

carried by the collagen (although there are 2 collagen layers each is shared with a neighboring 

MEF composite). Further assume that all layers of like constituents are identical so that, 

3

1

/i i

i

N A A 
=

=   where   is the uniform true (Cauchy) stress, A is the bar area in the current 

configuration, , 1, 2,3i i =  is the stress in constituent layers and , 1,2,3iNA i =  are areas of 

constituents in the bar in the current configuration (in the case of elastin it is twice the area of 

single elastin layer since there are two layers per MEF composite). Incompressibility of each layer, 

as well as the entire bar, implies that 
1

0 0 0i iA A A A L L −= = =  so that 1 1 2 2 3 3d d d   = + +  

is recovered provided 0 0/ , 1,2,3i id NA A i= =  are the volume concentrations of constituents in the 

bar. 

Appendix II 

Recall that the musculoelastic (MEF) is oriented circumferentially so that the circumferential, or 

1x  direction of the MEF composite is oriented transverse (to the cylinder axis), the longitudinal or 

2x  direction coincides with the cylinder axis and the 3x  direction is oriented transmurally 
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(radially). The constituents are in the repeating sequence: collagen-elastin-smooth muscle-elastin-

collagen or CEMEC (see Fig. 3.1). Note that two adjacent MEF units share one collagen layer. In 

the axial direction, however, only elastin and smooth muscle can effectively carry the mechanical 

load. This is because an axial applied force is transverse to the direction of collagen fibers so as a 

result, we will assume the axial component of the Cauchy stress in collagen is negligible. Further, 

assume that all layers of like constituents are the same and that each of the N MEF’s are identical. 

Within a single MEF let ( ) , 1,2; 1,2,3jF i j = =  be the force carried by jth constituent in the th  

direction so that, 

3
(j)

1

,  1,2
j

F N F  
=

= =                                                                                                           (AII.1) 

We will assume that (1)F
 is the total force carried by elastin in a single MEF (there are two elastin 

layers per MEF composite), (2)F  is the force carried by the smooth muscle, and (3)F   is the force 

carried by the collagen (although there are 2 collagen layers each is shared with a neighboring 

MEF composite so there is effectively one layer per MEF). Also, note that (3)

2 0F =  because 

collagen cannot carry any load in the 2x   direction. In terms of the mean stress components, 

( )3
( )

1

 ,   1, 2
j

j

j

F A
N

A A

 
 

 

  
=

= = =                                                                                           (AII.2) 

where ( )j

 are the stresses in each of the constituent layers 1,2,3j =  and, in each coordinate 

direction 1,2 =  . In (AII.2), A  is the total cross-sectional area (of the medial arterial layer) with 

unit normal e  and ( )jA  is the cross-section area occupied by each of the 1,2,3j =  constituent 

layers. The quantity ( ) /jA A   is a current area ratio and evolves with deformation. And the 

requirement that each layer be incompressible, there is, 

1 2 1 1 2 2 01 02 0 01 01 02 02

( ) ( ) ( ) ( ) ( ) ( )

1 2 1 1 2 2 01 02 0 01 01 02 02

 = ,

 =i i i i i i

L L H A L A L L L H A L A L

L L H A L A L L L H A L A L

= = = =

= = = =
                                                             (AII.3) 
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Thus,  

( ) ( )

0

0

j jA A

A A

 

 

=                                                                                                                              (AII.4) 

and the current area ratio can we expressed as the constant, referential area ratio. Note further that, 

( ) ( )( ) ( )

01 021 2

1 01 2 02

j jj jA AA A

A A A A
= = =                                                                                                        (AII.5) 

independent of  . Thus, if we define 
( )

( ) 0

0

j
j A

d N
A





=  as the volume concentration of constituents, 

then, 

3
( ) ( )

1

 ,   1,2j j

j

d   
=

= =                                                                                                      (AII.6) 

which is the rule of mixtures. For hyperelastic materials, the relation between the nominal stress 

or the first Piola-Kirchhoff stress with strain energy density function is given by,  

ij

ij

w

F



=


,  (AII.7) 

where w  is the strain energy density function in terms of the principal invariants. By applying 

(AII.7), equation (AII.6) becomes,  

( ) ( )
3

1

j j

j

w
d w

F F  =

  
=  

   
  , (AII.8) 

which gives the strain energy density function of the MEF units in terms of the strain energy 

density functions 
( )j

w  and volume concentration factors 
( )j

d  of their components,  
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( ) ( )
3

1

.
j j

j

w d w
=

=   (AII.9) 

Appendix III 

As in [89] the strain energy density function for the ith layer ( ), ,i r zw     can be rewritten in 

terms of only two independent variables , z   using the incompressibility condition 1r z   =  

so that, 

( ) ( )( )1
ˆ , , , ,i z i z zw w       

−
=  (AIII.1) 

It follows that the relations between the derivatives of the strain energy density functions 

( )ˆ ,i zw    and ( ), ,i r zw     are, 

ˆ
.i i i

r

r

w w w
 

 

  
  

  
= −

  
 (AIII.2) 

With the aid of (5-10) and (AIII.2), the expression for the pressure in (163) becomes, 

( )

1

2
1

ˆ

( / )

i

i

N
i

i z z

w t
P dt

t







  
−

=


= −

−
   (AIII.3) 

where 2ˆ ( )iw   are the partial derivatives of the strain energy density functions ( )ˆ
iw   with 

respect to   and the functional dependence on the constant axial stretch z  has been suppressed. 

Equation (AIII.3) can be further simplified by letting ˆ
iw  be a function of the independent variable 

2

 , 

( )

( )

2

2
11

ˆ

/

i

i

N
i

i z z

w t
P dt

t







  −=


= −

−
   (AIII.4) 
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where 2ˆ ( )iw   are the partial derivatives of the strain energy density functions 2ˆ ( )iw   with 

respect to 2

 , respectively. From (AIII.4) and Leibniz’s Rule, 

( ) ( )2 22 2
11

2 2 2 2 2
10 0 0 1

ˆ ˆ

/ /

N
i i i ii i

i z i z i z

w wP   

         

−−

= −

   
 = −  −

  −  −  
  (AIII.5) 

where 0  is the circumferential stretch at the inner surface of the N-layer composite tube. 

Substituting (5-171) along with into (AIII.5) yields, 

( ) ( )
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2 2

1

2 2
10 0

ˆ ˆ
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i i i i

i z z
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−
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 −
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  (AIII.6) 

Recall (5-171), 

2 2 2
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 (AIII.7) 

If the strain energy densities are strictly convex functions of their argument, i.e., ( )2ˆ 0iw   , then,  

( ) ( )

( ) ( )

2 2 2 2

1 1

2 2 2 2

1 1

ˆ ˆ ,   ;

ˆ ˆ ,   ,

i i i i i i

z

i i i i i i
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w w for


   




   



− −

− −

   

   

  (AIII.8) 

and the right hand side of (AIII.6) shows that 2

0 0P    . The case of 2 2

1i i z   − = =  

corresponds to a singularity in (AIII.6) arising from the transformation of independent variables 

from 1,i ir r−  in (5-16) to 1,i i −  in (5-17). By L’Hopital’s rule 2

0 0P     at 2 2

1i i z   − = =  can 

be evaluated yielding, 
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( )
1

2 2

2
1 10

ˆ1
iN

j i i

i jz z

P
w

 
 

  

−

= =

    
=   −    

     
   (AIII.9) 

The convexity of the strain energy density functions therefore guarantees that the right hand side 

of (AIII.9) is positive. The above analysis suggests that the pressure prescribed on the inner surface 

of the N-layered composite tube monotonically increases with 2

0 . 
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