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ABSTRACT

We explore the detection and astrophysical modeling of gravitational waves de-

tected by the Advanced Laser Interferometer Gravitational wave Observatory (LIGO)

and Virgo. We discuss the techniques used in the PyCBC search pipeline to discover

the first gravitational wave detection GW150914, and estimate the statistical signifi-

cance of GW150914, and the marginal trigger LVT151012. During Advanced LIGO’s

first observing run there were no detections of mergers from binary neutron star and

neutron star-black hole binaries. We use Bayesian inference to place upper limits on

the rate of coalescence of these binaries. We use developments made in the PyCBC

search pipeline during Advanced LIGO and Virgo’s second observing run to re-analyze

Advanced LIGO’s first observing run and re-estimate the statistical significance of

LVT151012. We present sufficient evidence to claim LVT151012 as a gravitational

wave event. In Advanced LIGO and Virgo’s 2nd observing run a gravitational wave

due to the merger of two binary neutron stars, known as GW170817, was discov-

ered. We develop tools for Bayesian hypothesis testing so that we can investigate

the interior dynamics of neutron stars using the GW170817 signal. Finally, we use

Bayesian parameter estimation from PyCBC with tools of Bayesian hypothesis testing

to investigate the presence of nonlinear tidal dynamics from a pressure – gravity mode

instability in GW170817. We find that significant waveform degeneracies allow the

effect of nonlinear tides to be compatible with the data at the level of nonsignificance

(Bayes factor of unity). We also investigate further constraints on these nonlinear

tides.
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Chapter 1

The Beginning of Gravitational

Wave Astronomy

On September 14, 2015 at 09:50:45 UTC the Advanced Laser Interferometer Gravita-

tional wave Observatory (LIGO) detected a signal from the binary black hole merger

GW150914 [21]. The initial detection of the event was made by low-latency searches

for generic gravitational-wave transients [22]. LIGO reported the results of a matched-

filter search using relativistic models of compact binary coalescence waveforms that

recovered GW150914 with a false alarm rate less than 5×10−6 yr−1, establishing it as

the first direct detection of gravitational waves from the merging of two black holes.

In LIGO’s second observing run, the Livingston, LA and Hanford, WA observa-

tories were joined by a third gravitational wave detector, Virgo. This gravitational

wave network detected the gravitational wave signal from two merging binary neu-

tron stars, GW170817 [23]. The signal, GW170817, was detected with a combined

signal-to-noise ratio of 32.4 with a false alarm rate less than 106 years. The total

mass of the binary system was estimated as ∼ 2.7 M� and at a luminosity distance

of ∼ 40 Mpc. The association with the gamma-ray burst GRB 170817A, detected

by Fermi-GBM 1.7 seconds after the coalescence, confirms that GW170817 involved

the merging of a binary neutron star and provides the first direct evidence of a link

between these mergers with a neutron star and short, hard gamma-ray bursts [24].

Additional identifications of electromagnetic transient counterparts in the same loca-

tion further supports the interpretation of this event as a neutron star merger [25].

This unprecedented joint gravitational and electromagnetic observation has provided
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incredible opportunities and insight into astrophysics, dense matter, gravitation, and

cosmology.

In chapter 2, we introduce the PyCBC offline search analysis that was instrumental

in the discoveries of GW150914 and GW170817. We describe the analysis at the time

of LIGO’s first observing run. The PyCBC search is a compact binary coalescence

search [26, 27, 28, 29, 30, 31, 32, 33] that targets gravitational waves from binary

neutron stars, binary black holes, and neutron star–black hole binaries, using matched

filtering [34] with waveforms predicted by general relativity [35, 36, 37, 38, 39, 40, 41,

42, 43]. The PyCBC analysis correlates the detector data with template waveforms that

model the expected signal. The analysis identifies candidate events that are detected

at both observatories consistent with the 10 ms inter-site propagation time. Events are

assigned a detection-statistic value that ranks their likelihood of being a gravitational-

wave signal. This detection statistic is compared to the estimated detector noise

background to determine the probability that a candidate event is due to detector

noise. The probability that a gravitational wave candidates is due to detector noise

is evaluated for the candidate event with the largest detection statistic. In the case

that this probability is lower than ∼ 10−7, we remove the candidate event from the

background analysis and recalculate the probability that the other gravitational wave

candidates are due to detector noise. In LIGO’s first observing run two gravitational

waves from binary black hole mergers were discovered, GW150914 and GW151226.

During the first observing run there were no discoveries of gravitational waves from

compact binaries that contained a neutron star [44]. Conditional on the non-detection

of these signals, the LIGO and Virgo collaboration searches established upper limits

on the rate of mergers of these signals. The non-detection of mergers from binary

neutron stars and neutron star-black hole binaries during LIGO’s first observing run

had important implications on plausible astrophysical formation channels for these

binaries, and on whether mergers of binaries containing neutron stars could still be

considered plausible mechanisms for unexplained astrophysical phenomenon such as

short, hard gamma-ray bursts. We describe the analysis techniques used to set the

estimated upper limit merger rates for binary systems that contain a neutron star.

We also presented estimates for future rate estimations for the subsequent second and

third observing runs.

Since the publication of the results from LIGO’s first observing run there was
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considerable development of gravitational wave astrophysical analysis techniques that

permitted increased sensitivity in the PyCBC search analysis [45, 46, 47]. LIGO’s

second observing run which ran between November 30, 2016 and ended on August

25, 2017 and also involved the Advanced Virgo (Virgo) from August 1, 2017, onward,

presented a useful testbed for these techniques. At the same time, LIGO made the

gravitational wave strain data needed for analysis publicly available for the entire

first-observing run the GW Open Science Center [48]. In Chapter 4, we present the

results of a re-analysis of the publicly available data using the PyCBC search and

we publish a full catalog of candidate gravitational wave events. We call this open

catalog 1-OGC. The search was successful in re-estimating the statistical significance

of LVT151012, which went from a marginal event to having a 97.6% probability of

being of astrophysical origin. Thus we designate LVT151012 as GW151012.

In Chapter 5 of this dissertation we introduce advanced methods and tools for

conducting Bayesian statistical analyses on gravitational wave data. In particular,

we focus on Bayesian hypothesis testing and the advancements in many Markov-Chain

Monte Carlo techniques for conducting Bayesian hypothesis testing. We introduce

three distinct approaches for hypothesis testing, two based on a parallel tempering

technique [49, 50, 51], and one based on testing nested models [52, 53]. We discuss

how these techniques apply to gravitational wave astronomy.

In Chapter 6 we apply these Bayesian hypothesis testing tools to explore astro-

seismology using the binary neutron star merger GW170817. Recent studies have

estimated the star’s tidal deformability and placed constraints on the equation of

state of the neutron stars [54, 55, 56, 57, 19, 58, 59, 60, 61, 62]. We explore a sugges-

tion of [63] that the star’s tidal deformation can induce nonresonant and nonlinear

daughter wave excitations in p- and g-modes of the neutron stars via a quasi-static

instability. This instability would remove energy from a binary system and possibly

affect the phase evolution of the gravitational waves radiated during the inspiral. Ref.

[64] claimed that the instability can rapidly drive modes to significant energies before

the merger of the binary. The details of the instability saturation are unknown and

so the size of the effect of the p-g mode coupling on the gravitational-waveform is

not known [64]. We conduct parameter estimation on the GW170817 signal using

parameters modeling the p-g mode instability. We report a Bayes factor of unity

indicating a nonsignificant result. We find that modeling GW170817 with nonlinear
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tidal parameters create degeneracies in the other intrinsic parameters of the binary.



5

Chapter 2

GW150914 and the PyCBC Offline

Search Analysis

2.1 Introduction

We report the results of a matched-filter search using relativistic models of compact

binary coalescence waveforms that recovered GW150914 as the most significant event

during the coincident observations between the two LIGO detectors from September

12 to October 20, 2015. This is a subset of the data from Advanced LIGO’s first

observational period that ended on January 12, 2016.

The binary coalescence search targets gravitational-wave emission from compact-

object binaries with individual masses from 1 M� to 99 M�, total mass less than

100 M� and dimensionless spins up to 0.99. The search was performed using two

independently implemented analyses, referred to as PyCBC [65, 66, 67] and GstLAL [68,

69, 70]. These analyses use a common set of template waveforms [71, 72, 73], but

differ in their implementations of matched filtering [74, 75], their use of detector data-

quality information [76], the techniques used to mitigate the effect of non-Gaussian

noise transients in the detector [77, 68], and the methods for estimating the noise

background of the search [66, 78]. In this dissertation we will focus on the analysis

done by PyCBC.

GW150914 was observed in both LIGO detectors [79] within the 10 ms inter-

site propagation time, with a combined matched-filter signal to noise ratio (SNR)

of 24. The search reported a false alarm rate estimated to be less than 1 event per
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203 000 years, equivalent to a statistical significance greater than 5.1σ. The basic

features of the GW150914 signal point to it being produced by the coalescence of

two black holes [21]. The best-fit template parameters from the search are consistent

with detailed parameter estimation that identifies GW150914 as a near-equal mass

black hole binary system with source-frame masses 36+5
−4 M� and 29+4

−4 M� at the 90%

credible level [2].

The second most significant candidate event in the observation period (referred to

as LVT151012) was reported on October 12, 2015 at 09:54:43 UTC with a combined

matched-filter SNR of 9.6. The search reported a false alarm rate of 1 per 2.3 years

and a corresponding p-value of 0.02 for this candidate event. Detector characterization

studies have not identified an instrumental or environmental artifact as causing this

candidate event [76]. However, its p-value is not sufficiently low to confidently claim

this candidate event as a signal. Detailed waveform analysis of this candidate event

indicates that it is also a binary black hole merger with source frame masses 23+18
−5 M�

and 13+4
−5 M�, if it is of astrophysical origin.

This chapter is organized as follows: Sec. 2.2 gives an overview of the compact

binary coalescence search and the methods used. Sec. 2.3 describes the construction

and configuration of the analysis used in the search. Sec. 2.4 presents the results of

the search, and follow-up of the two most significant candidate events, GW150914

and LVT151012.

2.2 Search Description

The binary coalescence search [26, 27, 28, 29, 30, 31, 32, 33] reported here targets

gravitational waves from compact binary coalescences using matched filtering [34]

with waveforms predicted by general relativity. These binary systems include bi-

nary neutron stars, binary black holes, and neutron star–black hole binaries The

PyCBC analysis correlates the detector data with template waveforms that model the

expected signal. The analysis identifies candidate events that are detected at both ob-

servatories consistent with the 10 ms inter-site propagation time. Events are assigned

a detection statistic value that ranks their likelihood of being a gravitational-wave

signal. This detection statistic is compared to the estimated detector noise back-

ground to determine the probability that detector noise could generate a candidate
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event with the same, or greater detection statistic.

We report on a search using coincident observations between the two Advanced

LIGO detectors [80] in Hanford, Washington (H1) and in Livingston, Louisiana (L1)

from September 12 to October 20, 2015. During these 38.6 days, the detectors were

in coincident operation for a total of 18.4 days. Unstable instrumental operation and

hardware failures affected 20.7 hours of these coincident observations. These data

are discarded and the remaining 17.5 days are used as input to the analyses [76].

The PyCBC analysis reduces this time further by imposing a minimum length over

which the detectors must be operating stably. The approach of the PyCBC pipeline is

described in Sec. 2.3. After applying this cut, the PyCBC analysis searched 16 days of

coincident data. To prevent bias in the results, the configuration and tuning of the

analyses were determined using data taken prior to September 12, 2015.

The gravitational waveform h(t) depends on the chirp mass of the binary, M =

(m1m2)3/5/(m1 + m2)1/5 [81, 82], the symmetric mass ratio η = (m1m2)/(m1 +

m2)2 [83], and the angular momentum of the compact objects χ1,2 = c~S1,2/Gm
2
1,2 [84,

85] (the compact object’s dimensionless spin), where ~S1,2 is the angular momentum

of the compact objects. The effect of spin on the waveform depends also on the

ratio between the component objects’ masses. Parameters which affect the overall

amplitude and phase of the signal as observed in the detector are maximized over

in the matched-filter search, but can be recovered through full parameter estimation

analysis [2]. The search parameter space is therefore defined by the limits placed

on the compact objects’ masses and spins. The minimum component masses of the

search are determined by the lowest expected neutron star mass, which we assume to

be 1 M� [86]. There is no known maximum black hole mass [87], however we limit

this search to binaries with a total mass less than M = m1 + m2 ≤ 100 M�. The

LIGO detectors are sensitive to higher mass binaries, however we do not report on

these searches in this chapter.

For binary component objects with masses less than 2 M�, we limit the magni-

tude of the component object’s spin to 0.05, the spin of the fastest known pulsar in

a double neutron star system [88]. At current detector sensitivity, this is sufficient to

detect gravitational-wave signals from mergers of binaries with neutron star compo-

nents having spins up to 0.4, the spin of the fastest-spinning millisecond pulsar [89].

Observations of X-ray binaries indicate that astrophysical black holes may have near
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extremal spins [90]. For binary components with masses larger than 2M�, we limit

the spin magnitude to less than 0.9895. This is set by our ability to generate valid

template waveforms at higher spins [71]. Figure 1 shows the boundaries of the search

parameter space in the component-mass plane. We will investigate binary systems

with neutron stars in Chapters 3 and 6.

Since the parameters of signals are not known in advance, each detector’s output

is filtered against a discrete bank of templates that span the search target space [27,

91, 92, 93, 94]. The placement of templates depends on the shape of the power

spectrum of the detector noise. Both analyses use a low-frequency cutoff of 30 Hz

for the search. The average noise power spectral density of the LIGO detectors was

measured over the period September 12 to September 26, 2015. The harmonic mean

of these noise spectra from the two detectors was used to place a single template bank

that was used for the duration of the search [95, 66]. The templates are placed using

a combination of geometric and stochastic methods [96, 97, 69, 73] such that the loss

in matched-filter SNR caused by its discrete nature is . 3%. Approximately 250,000

template waveforms are used to cover this parameter space, as shown in Fig. 1.

The performance of the template bank is tested numerically by simulating binary

black hole waveforms and determining the fraction of the total possible matched-

filter SNR recovered for each simulated signal (the fitting factor) [98]. Figure 2 shows

the resulting distribution of fitting factors obtained over the observation period. The

loss in matched-filter SNR is less than 3% for more than 99% of the 105 simulated

signals.

In addition to possible gravitational-wave signals, the detector strain contains

a stationary noise background that primarily arises from photon shot noise at high

frequencies and seismic noise at low frequencies. In the mid-frequency range, detector

commissioning has not yet reached the point where test mass thermal noise dominates,

and the noise at mid frequencies is poorly understood [79, 76, 99]. The detector strain

data also exhibits non-stationarity and non-Gaussian noise transients that arise from

a variety of instrumental or environmental mechanisms. The measured strain s(t) is

the sum of possible gravitational-wave signals h(t) and the different types of detector

noise n(t).

To monitor environmental disturbances and their influence on the detectors, each
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observatory site is equipped with an array of sensors [100]. Auxiliary instrumen-

tal channels also record the interferometer’s operating point and the state of the

detector’s control systems. Many noise transients have distinct signatures, visible in

environmental or auxiliary data channels that are not sensitive to gravitational waves.

When a noise source with known physical coupling between these channels and the

detector strain data is active, a data-quality veto is created that is used to exclude

these data from the search [76]. In the PyCBC analysis, these data quality vetoes

are applied after filtering. A total of 2 hours is removed from the analysis by data

quality vetoes. Despite these detector characterization investigations, the data still

contains non-stationary and non-Gaussian noise which can affect the astrophysical

sensitivity of the search. The PyCBC analysis implements methods to identify loud,

short-duration noise transients and remove them from the strain data before filtering.

The PyCBC analysis calculates the matched-filter SNR for each template and each

detector’s data [74, 101]. In the PyCBC analysis, sources with total mass less than

4 M� are modeled by computing the inspiral waveform accurate to 3.5 post-Newtonian

order [83, 102, 103]. To model systems with total mass larger than 4 M�, we use

templates based on the effective-one-body (EOB) formalism [38], which combines

results from the Post-Newtonian approach [83, 103] with results from black hole

perturbation theory and numerical relativity [71, 104] to model the complete inspiral,

merger and ringdown waveform. The waveform models used assume that the spins

of the merging objects are aligned with the orbital angular momentum. The analysis

then identifies maxima of the matched-filter SNR (triggers) over the signal time of

arrival.

To suppress large SNR values caused by non-Gaussian detector noise, the PyCBC

analysis calculates additional signal consistency tests to quantify the agreement be-

tween the data and the template. The PyCBC analysis calculates a chi-squared statistic

to test whether the data in different frequency bands are consistent with the match-

ing template [77]. The value of the chi-squared statistic is used to compute a new

detection statistic for each maxima. This detection statistic is called the re-weighted

SNR or newSNR.

The PyCBC analysis enforces coincidence between detectors by selecting trigger

pairs that occur within a 15 ms window and come from the same template. The

15 ms window is determined by the 10 ms inter-site propagation time plus 5 ms for
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uncertainty in arrival time of weak signals. The PyCBC analyses discards any triggers

that occur during the time of data-quality vetoes prior to computing coincidence.

The remaining coincident events are ranked based on the quadrature sum of the

re-weighted SNR from both detectors [66].

The statistical significance of a candidate event is determined by the search back-

ground. This is the rate at which detector noise produces events with a detection

statistic value equal to or higher than the candidate event (the false alarm rate). Es-

timating this background is challenging because the detector noise is non-stationary

and non-Gaussian, so its properties must be empirically determined. The background

estimation is also difficult because it is not possible to shield the detector from grav-

itational waves to directly measure a signal-free background.

To measure the statistical significance of candidate events, the PyCBC analysis

artificially shifts the timestamps of one detector’s triggers by an offset that is large

compared to the inter-site propagation time, and a new set of coincident events is pro-

duced based on this time-shifted data set. For instrumental noise that is uncorrelated

between detectors this is an effective way to estimate the background. To account

for the search background noise varying across the target signal space, candidate and

background events are divided into three search classes based on template length. To

account for having searched multiple classes, the measured statistical significance is

decreased by a trials factor equal to the number of classes [105]. This is is considered

a conservative correction factor for Frequentist p-values.

The p-value of a candidate event evaluates the probability that detector noise could

generate a detection statistic at the same level or greater than the candidate event’s

detection statistic. If this p-value falls below a certain pre-determined threshold the

candidate is considered a potential gravitational wave signal.

2.3 PyCBC Detection Statistic and Statistical Significance Eval-

uation

The PyCBC analysis [65, 66, 67] uses fundamentally the same methods [106, 74, 77,

107, 108, 109, 110, 111, 112, 113] as those used to search for gravitational waves from

compact binaries in the initial LIGO and Virgo detector era [114, 115, 116, 117, 118,

119, 120, 121, 122, 123, 124, 125], with the improvements described in Refs. [65, 66].
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In this Section, we describe the configuration of the PyCBC analysis used in this search.

To prevent bias in the search result, the configuration of the analysis was determined

using data taken prior to the observation period searched. When GW150914 was

discovered by the low-latency transient searches [21], all tuning of the PyCBC analysis

was frozen to ensure that the reported p-values are unbiased. No information from

the low-latency transient search is used in this analysis.

Of the 17.5 days of data that are used as input to the analysis, the PyCBC analysis

discards times for which either of the LIGO detectors is in their observation state for

less than 2064 s; shorter intervals are considered to be unstable detector operation by

the PyCBC analysis and are removed from the observation time. After discarding time

removed by data-quality vetoes and periods when detector operation is considered

unstable the observation time remaining is 16 days.

For each template h(t) and for the strain data from a single detector s(t), the

analysis calculates the square of the matched-filter SNR defined by [74]

ρ2(t) ≡ 1

〈h|h〉 |〈s|h〉(t)|
2 , (2.1)

where the correlation is defined by

〈s|h〉(t) = 4

∫ ∞
0

s̃(f)h̃∗(f)

Sn(f)
e2πift df , (2.2)

where s̃(f) is the Fourier transform of the time domain quantity s(t) given by

s̃(f) =

∫ ∞
−∞

s(t)e−2πift dt. (2.3)

The quantity Sn(|f |) is the one-sided average power spectral density of the detector

noise, which is re-calculated every 2048 s (in contrast to the fixed spectrum used in

template bank construction). Calculation of the matched-filter SNR in the frequency

domain allows the use of the computationally efficient Fast Fourier Transform [126,

127]. The square of the matched-filter SNR in Eq. (2.1) is normalized by

〈h|h〉 = 4

∫ ∞
0

h̃(f)h̃∗(f)

Sn(f)
df , (2.4)

so that its mean value is 2, if s(t) contains only stationary noise [128].

Non-Gaussian noise transients in the detector can produce extended periods of

elevated matched-filter SNR that increase the search background [66]. To mitigate
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this, a time-frequency excess power (burst) search [129] is used to identify high-

amplitude, short-duration transients that are not flagged by data-quality vetoes. If

the burst search generates a trigger with a burst SNR exceeding 300, the PyCBC

analysis vetoes these data by zeroing out 0.5s of s(t) centered on the time of the

trigger. The data is smoothly rolled off using a Tukey window during the 0.25 s before

and after the vetoed data. The threshold of 300 is chosen to be significantly higher

than the burst SNR obtained from plausible binary signals. For comparison, the burst

SNR of GW150914 in the excess power search is ∼ 10. A total of 450 burst-transient

vetoes are produced in the two detectors, resulting in 225 s of data removed from the

search. A time-frequency spectrogram of the data at the time of each burst-transient

veto was inspected to ensure that none of these windows contained the signature of

an extremely loud binary coalescence.

The analysis places a threshold of 5.5 on the single-detector matched-filter SNR

and identifies maxima of ρ(t) with respect to the time of arrival of the signal. For

each maximum we calculate a chi-squared statistic to determine whether the data

in several different frequency bands are consistent with the matching template [77].

Given a specific number of frequency bands k, the value of the reduced χ2, denoted

as χ2
r, is given by

χ2
r =

k

2k − 2

1

〈h|h〉
k∑
i=1

∣∣∣∣〈s|hi〉 − 〈s|h〉k
∣∣∣∣2 , (2.5)

where hi is the sub-template corresponding to the i-th frequency band. A reduced

chi-squared statistic is defined as the chi-squared statistic divided by the number of

degrees of freedom. Values of χ2
r near unity indicate that the signal is consistent with

a coalescence. To suppress triggers from noise transients with large matched-filter

SNR, ρ(t) is re-weighted by [123, 108]

ρ̂ =

 ρ
/

[(1 + (χ2
r)

3)/2]
1
6 , if χ2

r > 1,

ρ, if χ2
r ≤ 1.

(2.6)

Triggers that have a re-weighted SNR ρ̂ < 5 or that occur during times subject to

data-quality vetoes are discarded.

The template waveforms span a wide region of time-frequency parameter space and

the susceptibility of the analysis to a particular type of noise transient can vary across

the search space. This is demonstrated in Fig. 3 which shows the cumulative number
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of noise triggers as a function of re-weighted SNR for Advanced LIGO engineering

run data taken between September 2nd and September 9th, 2015. The response of

the template bank to noise transients is well characterized by the gravitational-wave

frequency at the template’s peak amplitude, fpeak. Waveforms with a lower peak

frequency have fewer cycles in the detector’s most sensitive frequency band from 30–

2000 Hz [79, 99], and so are less easily distinguished from noise transients by the

re-weighted SNR.

The number of bins in the χ2 test is a tunable parameter in the analysis [66].

Previous searches used a fixed number of bins [130] with the most recent Initial LIGO

and Virgo searches using p = 16 bins for all templates [123, 124]. Investigations on

data from LIGO’s sixth science run [131, 124] showed that better noise rejection is

achieved with a template-dependent number of bins. The left two panels of Fig. 3

show the cumulative number of noise triggers with k = 16 bins used in the χ2 test.

Empirically, we find that choosing the number of bins according to

k = b0.4(fpeak/Hz)2/3c (2.7)

gives better suppression of noise transients in Advanced LIGO data, as shown in the

right panels of Fig. 3. Here we use the notation b. . .c to denote the floor function.

The PyCBC analysis enforces signal coincidence between detectors by selecting trig-

ger pairs that occur within a 15 ms window and come from the same template. We

rank coincident events based on the quadrature sum ρ̂c of the ρ̂ from both detec-

tors [66]. The final step of the analysis is to cluster the coincident events, by selecting

those with the largest value of ρ̂c in each time window of 10 s. Any other events in

the same time window are discarded. This ensures that a loud signal or transient

noise artifact gives rise to at most one candidate event [66].

The statistical significance of a candidate event is determined by the rate at which

detector noise produces events with a detection statistic value equal to or higher than

that of the candidate event. To measure this, the analysis creates a “background

data set” by artificially shifting the timestamps of one detector’s triggers by many

multiples of 0.1 s and computing a new set of coincident events. Since the time offset

used is always larger than the time-coincidence window, coincident signals do not

contribute to this background. Under the assumption that noise is not correlated

between the detectors [76], this method provides an unbiased estimate of the noise
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background of the analysis.

To account for the noise background varying across the target signal space, candi-

date and background events are divided into different search classes based on template

length. Based on empirical tuning using Advanced LIGO engineering run data taken

between September 2nd and September 9th, 2015, we divide the template space into

three classes according to: (i) M < 1.74 M�; (ii) M ≥ 1.74 M� and fpeak ≥ 220 Hz;

(iii)M≥ 1.74 M� and fpeak < 220 Hz. The statistical significance of candidate events

is measured against the background from the same class. For each candidate event, we

compute the p. This is the probability of finding one or more noise background events

in the observation time with a detection statistic value above that of the candidate

event, given by [66, 73]

p(ρ̂c) ≡ Pr(≥ 1 noise event above ρ̂c |T, Tb) = 1− exp

[
−T 1 + nb(ρ̂c)

Tb

]
, (2.8)

where T is the observation time of the search, Tb is the background time, and nb(ρ̂c)

is the number of noise background triggers above the candidate event’s re-weighted

SNR ρ̂c.

Eq. (2.8) is derived assuming Poisson statistics for the counts of time-shifted back-

ground events, and for the count of coincident noise events in the search [66, 73]. This

assumption requires that different time-shifted analyses (i.e. with different relative

shifts between detectors) give independent realizations of a counting experiment for

noise background events. We expect different time shifts to yield independent event

counts since the 0.1 s offset time is greater than the 10 ms gravitational-wave travel

time between the sites plus the ∼ 1 ms autocorrelation length of the templates.

If a candidate event’s detection statistic value is larger than that of any noise

background event, as is the case for GW150914, then the PyCBC analysis places an

upper bound on the candidate’s p-value. After discarding time removed by data-

quality vetoes and periods when the detector is in stable operation for less than

2064 seconds, the total observation time remaining is T = 16 days. Repeating the

time-shift procedure ∼ 107 times on these data produces a noise background analysis

time equivalent to Tb = 608 000 years. Thus, the smallest p-value that can be esti-

mated in this analysis is approximately 7×10−8. Since we treat the search parameter

space as 3 independent classes, each of which may generate a false positive result,

this value should be multiplied by a trials factor or look-elsewhere effect [105] of 3,
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resulting in a minimum measurable p = 2 × 10−7. The results of the PyCBC analysis

are described in Sec. 2.4.

2.4 Search Results

GW150914 was observed on September 14, 2015 at 09:50:45 UTC as the most sig-

nificant event by both analyses. The individual detector triggers from GW150914

occurred within the 10 ms inter-site propagation time with a combined matched-

filter SNR of 24. The PyCBC analysis finds a matched-filter SNR for the individ-

ual detector triggers in the Hanford detector (ρH1 = 20) and the Livingston de-

tector (ρL1 = 13). GW150914 was found with a template with component masses

47.9 M� and 36.6 M�. The effective spin of the best-matching template is χeff =

(c/G)(S1/m1 + S2/m2) · (L̂/M) = 0.2, where S1,2 are the spins of the compact ob-

jects and L̂ is the direction of the binary’s orbital angular momentum. Due to the

discrete nature of the template bank, follow-up parameter estimation is required to

accurately determine the best fit masses and spins of the binary’s components [1, 2].

The frequency at peak amplitude of the best-matching template is fpeak = 144 Hz,

placing it in noise-background class (iii) of the PyCBC analysis. Figure 4 shows the

result of the PyCBC analysis for this search class. In the time-shift analysis used to cre-

ate the noise background estimate, a signal may contribute events to the background

through random coincidences of the signal in one detector with noise in the other

detector [73]. This can be seen in the background histogram shown by the black line.

The tail is due to coincidence between the single-detector triggers from GW150914

and noise in the other detector. If a loud signal is in fact present, these random

time-shifted coincidences contribute to an overestimate of the noise background and

a more conservative assessment of the significance of an event. Figure 4 shows that

GW150914 has a re-weighted SNR ρ̂c = 23.6, greater than all background events in

its class. This value is also greater than all background in the other two classes. As

a result, we can only place an upper bound on the false alarm rate, as described in

Sec. 2.3. This bound is equal to the number of classes divided by the background time

Tb. With 3 classes and Tb = 608 000 years, we find the false alarm rate of GW150914

to be less than 5 × 10−6 yr−1. With an observing time of 384 hr, the p < 2 × 10−7.
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We can convert this p-value to single-sided zero-mean, unit-variance Gaussian stan-

dard deviations using z = −
√

2 erf−1 [1− 2(1− p)], where erf−1 is the inverse error

function. Here z denotes the z-score or standard score for the single-sided Gaussian

standard deviation. The PyCBC analysis measures the significance of GW150914 as

greater than 5.1σ.

The difference in time of arrival between the Livingston and Hanford detectors

from the individual triggers in the PyCBC analysis is 7.1 ms, consistent with the time

delay of 6.9+0.5
−0.4 ms recovered by parameter estimation [2]. Figure 5 shows the matched-

filter SNR ρ, the χ2-statistic, and the re-weighted SNR ρ̂ for the best-matching tem-

plate over a period of ±5 ms around the time of GW150914 (we take the PyCBC trigger

time in L1 as a reference). The matched-filter SNR peaks in both detectors at the

time of the event and the value of the reduced chi-squared statistic is χ2
H1 = 1 in the

Hanford analysis and χ2
L1 = 0.7 in the Livingston analysis at the time of the event.

This indicates a high match between the template and the data in both detectors.

The re-weighted SNR of the individual detector triggers of ρ̂H1 = 19.5 and ρ̂L1 = 13.3

are larger than that of any other single-detector triggers in the analysis; therefore

the significance measurement of 5.1σ set using the 0.1 s time shifts is a conservative

bound on the p-value of GW150914.

The PyCBC analysis has shown that the probability of measuring a detection statis-

tic as great or greater than GW150914’s detection statistic due to a random coinci-

dence of detector noise is extremely small. We therefore conclude that GW150914

is a gravitational-wave signal. To measure the signal parameters, we use parameter

estimation methods that assume the presence of a coherent coalescing binary signal in

the data from both detectors [1, 2]. Two waveform models were used which included

inspiral, merger and ring-down portions of the signal: one which includes spin compo-

nents aligned with orbital angular momentum [132, 104] and one which includes the

dominant modulation of the signal due to orbital precession caused by mis-aligned

spins [133, 134]. The parameter estimates are described by a continuous probability

density function over the source parameters. We conclude that GW150914 is a nearly

equal mass black-hole binary system of source-frame masses 36+5
−4 M� and 29+4

−4 M�

(median and 90% credible range). The spin magnitude of the primary black hole is

constrained to be less than 0.7 with 90% probability. The most stringent constraint

on the spins of the two black holes is on the effective spin parameter χeff = −0.06+0.17
−0.18.
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The parameters of the best-fit template are consistent with these values, given the

discrete nature of the template bank. We estimate GW150914 to be at a luminosity

distance of 410+160
−180 Mpc, which corresponds to a redshift 0.09+0.03

−0.04. Full details of the

source parameters for GW150914 are given in Ref. [2] and summarized in Table 1.

When an event is confidently identified as a real gravitational wave signal, as for

GW150914, the background used to determine the significance of other events is re-

estimated without the contribution of this event. This is the background distribution

shown as purple lines in Fig. 4. Both analyses reported a candidate event on October

12, 2015 at 09:54:43 UTC as the second-loudest event in the observation period,

which we refer to as LVT151012. This candidate event has a combined matched-filter

SNR of 9.6. The PyCBC analysis reported a false alarm rate of 1 per 2.3 years and a

corresponding p-value of 0.02 for this event. Detector characterization studies have

not identified an instrumental or environmental artifact as causing this candidate

event [76], however its p-value is not sufficiently low to confidently claim the event

as a signal. It is significant enough to warrant follow-up, however. The results

of signal parameter estimation, shown in Table 1, indicate that if LVT151012 is of

astrophysical origin, then the source would be a stellar-mass binary black hole system

with source-frame component masses 23+18
−5 M� and 13+4

−5 M�. The effective spin would

be χeff = 0.0+0.3
−0.2 and the distance 1100+500

−500 Mpc.
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Figure 1: The four-dimensional search parameter space covered by the template bank

shown projected into the component-mass plane, using the convention m1 > m2.

The lines bound mass regions with different limits on the dimensionless aligned-spin

parameters χ1 and χ2. Each point indicates the position of a template in the bank.

The circle highlights the template that best matches GW150914. This does not

coincide with the best-fit parameters due to the discrete nature of the template bank.
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Figure 2: Cumulative distribution of fitting factors obtained with the template bank

for a population of simulated aligned-spin binary black hole signals. The horizontal

red line denotes that less than 1% of simulated signals have a matched-filter SNR loss

greater than 3%. This demonstrates that the template bank has good coverage of the

target search space.
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Figure 3: Distributions of noise triggers over re-weighted SNR ρ̂, for Advanced LIGO

engineering run data taken between September 2nd and September 9th, 2015. Each

line shows triggers from templates within a given range of gravitational-wave fre-

quency at maximum strain amplitude, fpeak. Left: Triggers obtained from H1, L1

data respectively, using a fixed number of p = 16 frequency bands for the χ2 test.

Right: Triggers obtained with the number of frequency bands determined by the func-

tion p = b0.4(fpeak/Hz)2/3c. Note that while noise distributions are suppressed over

the whole template bank with the optimized choice of p, the suppression is strongest

for templates with lower fpeak values. Templates that have a fpeak < 220 Hz produce

a large tail of noise triggers with high re-weighted SNR even with the improved χ2-

squared test tuning, thus we separate these templates from the rest of the bank when

calculating the noise background.
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Figure 4: The classification scale for estimating the statististical significance of grav-

itational wave candidate events from the PyCBC analysis. The histogram shows the

number of candidate events (orange) found in the analysis. The number of back-

ground events due to noise in the search class where GW150914 was found (black)

as a function of the search detection statistic and with a bin width of ∆ρ̂c = 0.2.

The statistical significance of GW150914 is greater than 5.1 σ. The scales immedi-

ately above the histogram give the statistical significance of an event measured at a

particular detection statistic against the noise backgrounds in units of Gaussian stan-

dard deviations. The black background histogram shows the result of the time-shift

method to estimate the noise background in the observation period. The tail in the

black-line background of the binary coalescence search is due to random coincidences

of GW150914 in one detector with noise in the other detector. The statistical signifi-

cance of GW150914 is measured against the upper gray scale. The purple background

histogram is the background excluding coincidences involving GW150914 and it is the

background to be used to assess the statistical significance of the second loudest event,

LVT151012. The statistical significance of LVT151012 is measured against the upper

purple scale.
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Figure 5: PyCBC matched-filter SNR (blue), re-weighted SNR (purple) and χ2 (green)

versus time of the best-matching template at the time of GW150914. The top plot

shows the Hanford detector; bottom, Livingston. The SNR peaks at the event time

of GW150914. The χ2 consistency statistic tends towards unity at the event time

for signals that match the expected signal morphology of a gravitational wave. The

re-weighted SNR is peaks at the event time of of GW150914.
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Chapter 3

Upper Limits on the Estimated

Rate of Mergers of Binary Systems

with a Neutron Star

3.1 Introduction

As described in Chapter 2, during Advanced LIGO’s first observing run (O1), two

high-mass binary black hole (BBH) events were identified with high confidence (>

5σ): GW150914 [135] and GW151226 [136]. In both cases the component masses

are confidently constrained to be above the 3.2M� upper mass limit of NS set by

theoretical considerations [137, 138]. The details of these observations, investigations

about the properties of the observed BBH mergers, and the astrophysical implications

are explored in [138, 139, 140, 141, 17? ].

The search methods that successfully observed these BBH mergers also target

other types of compact binary coalescences, specifically the inspiral and merger of bi-

nary neutron stars (BNS) systems and neutron star-black hole (NSBH) systems. Such

systems were considered among the most promising candidates for an observation in

O1. For example, a simple calculation prior to the start of O1 predicted 0.0005 - 4

detections of BNS signals during O1 [16].

In this chapter we report on the search for BNS and NSBH mergers in O1. We

have searched for BNS systems with component masses ∈ [1, 3]M�, component di-

mensionless spins < 0.05 and spin orientations aligned or anti-aligned with the orbital



25

angular momentum. We have searched for NSBH systems with neutron star mass

∈ [1, 3]M�, BH mass ∈ [2, 99]M� neutron star dimensionless spin magnitude < 0.05,

BH dimensionless spin magnitude < 0.99 and both spins aligned or anti-aligned with

the orbital angular momentum. No observation of either BNS or NSBH mergers was

made in O1. We explore the astrophysical implications of this result, placing upper

limits on the rates of such merger events in the local Universe that are roughly an

order of magnitude smaller than those obtained with data from Initial LIGO and

Initial Virgo [142, 143, 123]. We compare these updated rate limits to current pre-

dictions of BNS and NSBH merger rates and explore how the non-detection of BNS

and NSBH systems in O1 can be used to explore possible constraints of the opening

angle of the radiation cone of short gamma-ray bursts(GRB), assuming that short

GRB progenitors are BNS or NSBH mergers.

The layout of this chapter is as follows. In Section 3.2 we describe the motivation

for our search parameter space. In Section 3.3 we briefly describe the search method-

ology, then describe the results of the search in Section 3.4. We then discuss the

constraints that can be placed on the rates of BNS and NSBH mergers in Section 3.5

and the astrophysical implications of the rates in Section 3.6.

3.2 Source considerations

There are currently thousands of known NSs, most detected as pulsars [144, 145]. Of

these, ∼ 70 are found in binary systems and allow estimates of the NS mass [146,

147, 148]. Published mass estimates range from 1.0±0.17M� [149] to 2.74±0.21M�

[150] although there is some uncertainty in some of these measurements. Considering

only precise mass measurements from these observations one can set a lower bound

on the maximum possible neutron star mass of 2.01 ± 0.04M� [151] and theoretical

considerations set an upper bound on the maximum possible neutron star mass of

2.9–3.2M� [137, 152]. The standard formation scenario of core-collapse supernovae

restricts the birth masses of neutron stars to be above 1.1–1.6M� [153, 147, 154].

Eight candidate BNS systems allow mass measurements for individual compo-

nents, giving a much narrower mass distribution [89]. Masses are reported between

1.0M� and 1.49M� [146, 148], and are consistent with an underlying mass distribu-

tion of (1.35± 0.13)M� [155]. These observational measurements assume masses are
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greater than 0.9M�.

The fastest spinning pulsar observed so far rotates with a frequency of 716 Hz [156].

This corresponds to a dimensionless spin χ = c|~S|/Gm2 of roughly 0.4, where m is

the object’s mass and ~S is the angular momentum.1 Such rapid rotation rates likely

require the NS to have been spun up through mass-transfer from its companion. The

fastest spinning pulsar in a confirmed BNS system has a spin frequency of 44 Hz [157],

implying that dimensionless spins for NS in BNS systems are ≤ 0.04 [97]. However,

recycled NS can have larger spins, and the potential BNS pulsar J1807-2500B [158]

has a period of 4.19 ms, giving a dimensionless spin of up to ∼ 0.2.2

Given these considerations, we search for BNS systems with both masses ∈ [1, 3]M�

and component dimensionless spins < 0.05. We have found that BNS systems with

spins < 0.4 are generally still recovered well even though they are not explicitly cov-

ered by our search space. Increasing the search space to include BNS systems with

spins < 0.4 was found to not improve overall search sensitivity [159].

NSBH systems are thought to be efficiently formed in one of two ways: either

through the stellar evolution of field binaries or through dynamical capture of a NS

by a BH [160, 161, 162, 163]. Though no NSBH systems are known to exist, one likely

progenitor has been observed, Cyg X-3 [164].

Measurements of galactic stellar mass BH in X-ray binaries yield BH masses

5 ≤ MBH/M� ≤ 24 [165, 166, 167, 168]. Extragalactic high-mass X-ray binaries,

such as IC10 X-1 and NGC300 X-1 suggest BH masses of 20 − 30M�. Advanced

LIGO has observed two definitive BBH systems and constrained the masses of the

4 component BH to 36+5
−4, 29+4

−4, 14+8
−4 and 7.5+2.3

−2.3M�, respectively, and the masses of

the two resulting BH to 62+4
−4 and 21+6

−2M�. In addition if one assumes that the

candidate BBH merger LVT151012 was of astrophysical origin than its component

BH had masses constrained to 23+16
−6 and 13+4

−5 with a resulting BH mass of 35+14
−4 .

There is an apparent gap of BH in the mass range 3–5M�, which has been ascribed

to the supernova explosion mechanism [169, 170]. However, BH formed from stellar

evolution may exist with masses down to 2M�, especially if they are formed from

matter accreted onto neutron stars [171]. Population synthesis models typically allow

1Assuming a mass of 1.4M� and a moment of inertia = J/Ω of 1.5×1045 g cm2; the exact moment

of inertia is dependent on the unknown NS equation-of-state [147].
2Calculated with a pulsar mass of 1.37M� and a high moment of inertia, 2× 1045 g cm2.
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for stellar-mass BH up to ∼ 80–100M� [170, 172, 173]; stellar BH with mass above

100M� are also conceivable however [87, 14].

X-ray observations of accreting BH indicate a broad distribution of BH spin [174,

175, 176, 177, 178, 179, 180, 86]. Some BH observed in X-ray binaries have very

large dimensionless spins (e.g Cygnus X-1 at > 0.95 [181, 182]), while others could

have much lower spins (∼ 0.1) [183]. Measured BH spins in high-mass X-ray binary

systems tend to have large values (> 0.85), and these systems are more likely to

be progenitors of NSBH binaries [90]. Isolated BH spins are only constrained by

the relativistic Kerr bound χ ≤ 1 [184]. LIGO’s observations of merging binary BH

systems yield weak constraints on component spins [138, 136, 17]. The microquasar

XTE J1550-564 [185] and population synthesis models [186] indicate small spin-orbit

misalignment in field binaries. Dynamically formed NSBH systems, in contrast, are

expected to have no correlation between the spins and the orbit.

We search for NSBH systems with NS mass ∈ [1, 3]M�, NS dimensionless spins

< 0.05, BH mass ∈ [2, 99]M� and BH spin magnitude < 0.99. Current search tech-

niques are restricted to waveform models where the spins are (anti-)aligned with

the orbit [187, 66], although methods to extend this to generic spins are being ex-

plored [188]. Nevertheless, aligned-spin searches have been shown to have good sensi-

tivity to systems with generic spin orientations in O1 [189, 188]. An additional search

for BBH systems with total mass greater than 100 M� is also being performed, the

results of which will be reported in a future publication.

3.3 Search Description

To observe compact binary coalescences in data taken from Advanced LIGO we use

matched-filtering against models of compact binary merger GW signals [190]. As the

emitted GW signal varies significantly over the range of masses and spins in the BNS

and NSBH parameter space, the matched-filtering process must be repeated over a

large set of filter waveforms, or “template bank” [92]. The ranges of masses considered

in the searches are shown in Figure 6. Statistical significance of potential events are

produced by the PyCBC search pipeline as outlined in chapter 2.

BNS and NSBH mergers are prime candidates not only for observation with GW

facilities, but also for coincident observation with EM observatories [191, 192, 193, 194,



28

195, 196, 197, 198, 199, 8]. We have a long history of working with the Fermi, Swift and

IPN GRB teams to perform sub-threshold searches of GW data in a narrow window

around the time of observed GRB [200, 201, 202, 203]. Such a search is currently

being performed on O1 data and will be reported in a forthcoming publication. In

O1 we also aimed to rapidly alert EM partners if a GW observation was made [204].

Therefore it was critical for us to run “online” searches to identify potential BNS

or NSBH mergers within a timescale of minutes after the data is taken, to give EM

partners the best chance to perform a coincident observation.

Nevertheless, analyses running with minute latency do not have access to full

data-characterization studies, which can take weeks to perform, or to data with the

most complete knowledge about calibration and associated uncertainties. Addition-

ally, in rare instances, online analyses may fail to analyse stretches of data due to

computational failure. Therefore it is also important to have an “offline” search,

which performs the most sensitive search possible for BNS and NSBH sources. We

give here a brief description of both the offline and online searches, referring to other

works to give more details when relevant.

3.3.1 PyCBC Offline Search

The offline CBC search of the O1 data set consists of two independently-implemented

matched-filter analyses: GstLAL [187] and PyCBC [66]. Full details of the PyCBC offline

search pipeline are described in chapter 2.

In contrast to the online search, the offline search uses data produced with smaller

calibration errors [205], uses complete information about the instrumental data qual-

ity [206] and ensures that all available data is analysed. The offline search in O1 forms

a single search targeting BNS, NSBH, and BBH systems. The waveform filters cover

systems with individual component masses ranging from 1 to 99 M�, total mass con-

strained to less than 100 M� (see Figure 6), and component dimensionless spins up

to ± 0.05 for components with mass less than 2 M� and ± 0.99 otherwise [17, 207].

Waveform filters with total mass less than 4 M� (chirp mass less than 1.73M�3)

for PyCBC (GstLAL) are modeled with the inspiral-only, post-Newtonian, frequency-

domain approximant “TaylorF2” [208, 209, 210, 211, 212]. At larger masses it becomes

3The “chirp mass” is the combination of the two component masses that LIGO is most sensitive

to, given by M = (m1m2)3/5(m1 +m2)−1/5, where mi denotes the two component masses
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important to also include the merger and ringdown components of the waveform.

There a reduced-order model of the effective-one-body waveform calibrated against

numerical relativity is used [71, 72].

3.3.2 Dataset

Advanced LIGO’s first observing run occurred between September 12, 2015 and Jan-

uary 12, 2016 and consists of data from the two LIGO observatories in Hanford,

WA and Livingston, LA. The LIGO detectors were running stably with roughly 40%

coincident operation, and had been commissioned to roughly a third of the design

sensitivity by the time of the start of O1 [213]. During this observing run the final

offline dataset consisted of 76.7 days of analyzable data from the Hanford observatory,

and 65.8 days of data from the Livingston observatory. We analyze only times during

which both observatories took analyzable data, which is 49.0 days. Characterization

studies of the analysable data found 0.5 days of coincident data during which time

there was some identified instrumental problem—known to introduce excess noise—in

at least one of the interferometers [206]. These times are removed before assessing

the significance of events in the remaining analysis time. Some additional time is not

analysed because of restrictions on the minimal length of data segments and because

of data lost at the start and end of those segments [214, 17]. These requirements are

slightly different between the two offline analyses, PyCBC and GstLAL . The PyCBC

pipeline analysed 46.1 days of data.

3.4 Search Results

The offline search, targeting BBH as well as BNS and NSBH mergers, identified two

signals with > 5σ confidence in the O1 dataset [135, 136]. A third signal was also

identified with 1.7σ confidence [17, 214]. Subsequent parameter inference on all three

of these events has determined that, to very high confidence, they were not produced

by a BNS or NSBH merger [138, 17]. No other events are significant with respect to

the noise background in the offline search [17], and we therefore state that no BNS

or NSBH mergers were observed.
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3.5 Rates

3.5.1 Calculating upper limits

Given no evidence for BNS or NSBH coalescences during O1, we seek to place an

upper limit on the astrophysical rate of such events. The expected number of observed

events Λ in a given analysis can be related to the astrophysical rate of coalescences

for a given source R by

Λ = R〈V T 〉. (3.1)

Here, 〈V T 〉 is the space-time volume that the detectors are sensitive to—averaged

over space, observation time, and the parameters of the source population of interest.

The likelihood for finding zero observations in the data s follows the Poisson distri-

bution for zero events p(s |Λ) = e−Λ. We use the notation of L(s |Λ) for likelihoods.

Bayes’ theorem then gives the posterior for Λ

p(Λ | s) ∝ π(Λ)e−Λ, (3.2)

where p(Λ) is the prior on Λ, which we will denote as π(Λ). We also switch notation

for posteriors to P(Λ | s).

Searches of Initial LIGO and Initial Virgo data used a uniform prior on Λ [123] but

included prior information from previous searches. For the O1 BBH search, however,

a Jeffreys prior of π(Λ) ∝ 1/
√

Λ for the Poisson likelihood was used [215, 139, 17].

A Jeffreys prior has the convenient property that the resulting posterior is invariant

under a change in parametrization. However, for consistency with past BNS and

NSBH results we will primarily use a uniform prior, and note that a Jeffreys prior

generally predicts a rate upper limit that is ∼ 40% smaller. We do not include

additional prior information because the sensitive 〈V T 〉 from all previous runs is an

order of magnitude smaller than that of O1. We estimate 〈V T 〉 by adding a large

number of simulated waveforms sampled from an astrophysical population into the

data. These simulated signals are recovered with an estimate of the FAR using the

offline analyses. Monte-Carlo integration methods are then utilized to estimate the

sensitive volume to which the detectors can recover gravitational-wave signals below

a chosen FAR threshold, which in this paper we will choose to be 0.01yr−1. This

threshold is low enough that only signals that are likely to be true events are counted
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as found, and we note that varying this threshold in the range 0.0001–1 yr−1 only

changes the calculated 〈V T 〉 by about ±20%.

Calibration uncertainties lead to a difference between the amplitude of simulated

waveforms and the amplitude of real waveforms with the same luminosity distance

dL. During O1, the 1σ uncertainty in the strain amplitude was 6%, resulting in an

18% uncertainty in the measured 〈V T 〉. Results presented here also assume that

injected waveforms are accurate representations of astrophysical sources. We use a

time-domain, aligned-spin, post-Newtonian point-particle approximant to model BNS

injections [216], and a time-domain, effective-one-body waveform calibrated against

numerical relativity to model NSBH injections [217, 71]. Waveform differences be-

tween these models and the offline search templates are therefore included in the

calculated 〈V T 〉. The injected NSBH waveform model is not calibrated at high mass

ratios (m1/m2 > 8), so there is some additional modeling uncertainty for large-mass

NSBH systems. The true sensitive volume 〈V T 〉 will also be smaller if the effect of

tides in BNS or NSBH mergers is extreme. However, for most scenarios the effects

of waveform modeling will be smaller than the effects of calibration errors and the

choice of prior discussed above.

The posterior on Λ (Eq. 3.2) can be reexpressed as a joint posterior on the astro-

physical rate R and the sensitive volume 〈V T 〉

P(R, 〈V T 〉 | s) ∝ π(R, 〈V T 〉) e−R〈V T 〉. (3.3)

The new prior can be expanded as π(R, 〈V T 〉) = π(R | 〈V T 〉)π(〈V T 〉). For π(R | 〈V T 〉),
we will either use a uniform prior on R or a prior proportional to the Jeffreys prior

1/
√
R〈V T 〉. As with [139? , 17], we use a log-normal prior on 〈V T 〉

π(〈V T 〉) = lnN (µ, σ2), (3.4)

where µ is the calculated value of ln〈V T 〉 and σ represents the fractional uncertainty

in 〈V T 〉. Below, we will use an uncertainty of σ = 18% due mainly to calibration

errors.

Finally, a posterior for the rate is obtained by marginalizing over 〈V T 〉

P(R | s) =

∫
d〈V T 〉 P(R, 〈V T 〉 | s). (3.5)
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The upper limit Rc on the rate with confidence c is then given by the solution to∫ Rc

0

dRP(R | s) = c. (3.6)

For reference, we note that in the limit of zero uncertainty in 〈V T 〉, the uniform

prior for π(R|〈V T 〉) gives a rate upper limit of

Rc =
− ln(1− c)
〈V T 〉 , (3.7)

corresponding to R90% = 2.303/〈V T 〉 for a 90% confidence upper limit [218]. For a

Jeffreys prior on π(R|〈V T 〉), this upper limit is

Rc =
[erf−1(c)]2

〈V T 〉 , (3.8)

corresponding to R90% = 1.353/〈V T 〉 for a 90% confidence upper limit.

3.5.2 BNS rate limits

Motivated by considerations in Section 3.2, we begin by considering a population of

BNS sources with a narrow range of component masses sampled from the normal dis-

tribution N (1.35M�, (0.13M�)2) and truncated to remove samples outside the range

[1, 3]M�. We consider both a “low spin” BNS population, where spins are distributed

with uniform dimensionless spin magnitude ∈ [0, 0.05] and isotropic direction, and a

“high spin” BNS population with a uniform dimensionless spin magnitude ∈ [0, 0.4]

and isotropic direction. Our population uses an isotropic distribution of sky loca-

tion and source orientation and chooses distances assuming a uniform distribution

in volume. These simulations are modeled using a post-Newtonian waveform model,

expanded using the “TaylorT4” formalism [216]. From this population we compute

the space-time volume that Advanced LIGO was sensitive to during the O1 observing

run. Results are shown for the measured 〈V T 〉 in Table 2 using a detection threshold

of FAR = 0.01 yr−1. Because the template bank for the searches use only aligned-

spin BNS templates with component spins up to 0.05, the PyCBC pipeline is 4% more

sensitive to the low-spin population than to the high-spin population. The difference

in 〈V T 〉 between the two analyses is no larger than 5%, which is consistent with the

difference in time analyzed in the two analyses. In addition, the calculated 〈V T 〉 has
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a Monte Carlo integration uncertainty of ∼ 1.5% due to the finite number of injection

samples.

Using the measured 〈V T 〉, the rate posterior and upper limit can be calculated

from Eqs. 3.5 and 3.6 respectively. The posterior and upper limits are shown in

Figure 7 and depend sensitively on the choice of uniform versus Jeffreys prior for

Λ = R〈V T 〉. However, they depend only weakly on the spin distribution of the BNS

population and on the width σ of the uncertainty in 〈V T 〉. For the conservative uni-

form prior on Λ and an uncertainty in 〈V T 〉 due to calibration errors of 18%, we find

the 90% confidence upper limit on the rate of BNS mergers to be 12,100 Gpc−3 yr−1

for low spin and 12,600 Gpc−3 yr−1 for high spin using the values of 〈V T 〉 calculated

with PyCBC. These numbers can be compared to the upper limit computed from anal-

ysis of Initial LIGO and Initial Virgo data [123]. There, the upper limit for 1.35 –

1.35M� non-spinning BNS mergers is given as 130,000 Gpc−3 yr−1. The O1 upper

limit is more than an order of magnitude lower than this previous upper limit.

To allow for uncertainties in the mass distribution of BNS systems we also derive

90% confidence upper limits as a function of the NS component masses. To do this

we construct a population of software injections with component masses sampled

uniformly in the range [1, 3]M�, and an isotropic distribution of component spins

with magnitudes uniformly distributed in [0, 0.05]. We then bin the BNS injections

by mass, and calculate 〈V T 〉 and the associated 90% confidence rate upper limit

for each bin. The 90% rate upper limit for the conservative uniform prior on Λ as a

function of component masses is shown in Figure 8 for PyCBC. The fractional difference

between the PyCBC and GstLAL results range from 1% to 16%.

3.5.3 NSBH rate limits

Given the absence of known NSBH systems and uncertainty in the BH mass, we

evaluate the rate upper limit for a range of BH masses. We use three masses that span

the likely range of BH masses: 5M�, 10M�, and 30M�. For the NS mass, we use the

canonical value of 1.4M�. We assume a distribution of BH spin magnitudes uniform

in [0, 1] and NS spin magnitudes uniform in [0, 0.04]. For these three mass pairs, we

compute upper limits for an isotropic spin distribution on both bodies, and for a case

where both spins are aligned or anti-aligned with the orbital angular momentum (with

equal probability of aligned vs anti-aligned). Our NSBH population uses an isotropic
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distribution of sky location and source orientation and chooses distances assuming a

uniform distribution in volume. Waveforms are modeled using the spin-precessing,

effective-one-body model calibrated against numerical relativity waveforms described

in [71, 219].

The measured 〈V T 〉 for a FAR threshold of 0.01yr−1 is given in Table 3 for

PyCBCṪhe uncertainty in the Monte Carlo integration of 〈V T 〉 is 1.5%–2%. The

corresponding 90% confidence upper limits are also given using the conservative uni-

form prior on Λ and an 18% uncertainty in 〈V T 〉. Analysis-specific differences in the

limits range from 1% to 20%, comparable or less than other uncertainties such as cali-

bration. These results can be compared to the upper limits found for initial LIGO and

Virgo for a population of 1.35M�–5M� NSBH binaries with isotropic spin of 36,000

Gpc−3 yr−1at 90% confidence [123]. As with the BNS case, this is an improvement

in the upper limit of over an order of magnitude.

We also plot the 50% and 90% confidence upper limits from PyCBC and GstLAL

as a function of mass in Figure 9 for the uniform prior. The search is less sensitive

to isotropic spins than to (anti-)aligned spins due to two factors. First, the volume-

averaged signal power is larger for a population of (anti-)aligned spin systems than

for isotropic-spin systems. Second, the search uses a template bank of (anti-)aligned

spin systems, and thus loses sensitivity when searching for systems with significantly

misaligned spins. As a result, the rate upper limits are less constraining for the

isotropic spin distribution than for the (anti-)aligned spin case.

3.6 Astrophysical Interpretation

We can compare our upper limits with rate predictions for compact object mergers

involving NS, shown for BNS in Figure 10 and for NSBH in Figure 11. A wide range

of predictions derived from population synthesis and from binary pulsar observations

were reviewed in 2010 to produce rate estimates for canonical 1.4M� NS and 10M�

BH [6]. We additionally include some more recent estimates from population synthesis

for both NSBH and BNS [15, 220, 14] and binary pulsar observations for BNS [7].

We also compare our upper limits for NSBH and BNS systems to beaming-

corrected estimates of short GRB rates in the local universe. Short GRB are consid-

ered likely to be produced by the merger of compact binaries that include NS, i.e.
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BNS or NSBH systems [198]. The rate of short GRB can predict the rate of progen-

itor mergers [10, 11, 9, 8]. For NSBH, systems with small BH masses are considered

more likely to be able to produce short GRB (e.g. [221, 222, 223]), so we compare

to our 5M�–1.4M� NSBH rate constraint. The observation of a kilonova is also con-

sidered to be an indicator of a binary merger [196], and an estimated kilonova rate

gives an additional lower bound on compact binary mergers [12]. The discovery of a

BNS merger in O2 [54] in association with a gamma-ray burst GRB 170817A [224]

and a kilonova (AT 2017gfo) [25, 225] have provided additional information regard-

ing the jet profile and beaming angle [224, 226]. This joint detection has improved

constraints on beaming angles [226], and when additional BNS and NSBH are dis-

covered, constraints on this beaming angle and the rate of mergers of these binaries

will improve [227].

Finally, some recent work has used the idea that mergers involving NS are the

primary astrophysical source of r-process elements [228, 229] to constrain the rate

of such mergers from nucleosynthesis [230, 13], and we include rates from [13] for

comparison. With the discovery of GW170817 and GRB 170817A the inferred merger

rate of BNS and GRB together with inferred ejected mass strongly suggest that BNS

mergers are the prime sites of heavy r-process nucleosynthesis [231, 232].

The limits from O1 are not in tension with current astrophysical models. Scaling

the O1 results to current expectations for advanced LIGO’s next two observing runs,

O2 and O3 [16], suggests that significant constraints or observations of BNS or NSBH

mergers are possible during these observing runs. The observation of GW170817 and

GRB 170817A in O2 further improve upon these constraints [226]. Below we follow a

simple beaming angle constraint possible using the limits on BNS and NSBH merger

rates from O1. This approach is agnostic of the joint discovery of GW170817, GRB

170817A, and AT 2017gfo.

Assuming that short GRB are produced by BNS or NSBH, but without using

beaming angle estimates, we can constrain the beaming angle of the jet of gamma

rays emitted from these GRB by comparing the rates of BNS/NSBH mergers and

the rates of short GRB [233]. For simplicity, we assume here that all short GRB are

associated with BNS or NSBH mergers; the true fraction will depend on the emission

mechanism and jet profile. The short GRB rate RGRB, the merger rate Rmerger, and
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the beaming angle θj are then related by

cos θj = 1− RGRB

Rmerger

(3.9)

We take RGRB = 10+20
−7 Gpc−3 yr−1 [10, 234]. Figure 12 shows the resulting

GRB beaming lower limits for the 90% BNS and NSBH rate upper limits. With

our assumption that all short GRBs are produced by a single progenitor class, the

constraint is tighter for NSBH with larger BH mass. Observed GRB beaming an-

gles are in the range of 3 − 25◦ [235, 8, 236, 237, 238, 239, 240]. Compared to

the lower limit derived from our non-detection, these GRB beaming observations

start to confine the fraction of GRBs that can be produced by higher-mass NSBH

as progenitor systems. The work of [226] improves upon this given the joint ob-

servation of GW170817 and GRB 170817A, finding that the beaming angle can

be constrained between θj ∈ (2◦.88, 14◦.15). Future constraints could also come

from additional GRB and BNS or NSBH joint detections during O2, O3, and be-

yond [241, 242, 243, 226, 244, 245].
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Figure 6: The range of template mass parameters considered for the three different

template banks used in the search. The offline analyses, PyCBC and GstLAL used the

largest bank up to total masses of 100M�. The online GstLAL analysis used the larger

bank after December 23, 2015. The online mbta bank covered primary masses below

12M� and chirp masses3 below 5M�. The early online GstLAL bank up to December

23, 2015, covered primary masses up to 16M� and secondary masses up to 2.8M�.

The spin ranges are not shown here but are discussed in the text.
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Figure 7: Posterior density on the rate of BNS mergers calculated using the PyCBC

analysis. Blue curves represent a uniform prior on the Poisson parameter Λ = R〈V T 〉,
while green curves represent a Jeffreys prior on Λ. The solid (low spin population)

and dotted (high spin population) posteriors almost overlap. The vertical dashed and

solid lines represent the 50% and 90% confidence upper limits respectively for each

choice of prior on Λ. For each pair of vertical lines, the left line is the upper limit

for the low spin population and the right line is the upper limit for the high spin

population. Also shown are the realistic Rre and high end Rhigh of the expected BNS

merger rates identified in [6].
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Figure 8: 90% confidence upper limit on the BNS merger rate as a function of the

two component masses using the PyCBC analysis. Here the upper limit for each bin

is obtained assuming a BNS population with masses distributed uniformly within

the limits of each bin, considering isotropic spin direction and dimensionless spin

magnitudes uniformly distributed in [0, 0.05].
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Figure 9: 50% and 90% upper limits on the NSBH merger rate as a function of the

BH mass using the more conservative uniform prior for the counts Λ. Blue curves

represent the PyCBC analysis and red curves represent the GstLAL analysis. The NS

mass is assumed to be 1.4M�. The spin magnitudes were sampled uniformly in the

range [0, 0.04] for NS and [0, 1] for BH. For the aligned spin injection set, the spins of

both the NS and BH are aligned (or anti-aligned) with the orbital angular momentum.

For the isotropic spin injection set, the orientation for the spins of both the NS and

BH are sampled isotropically. The isotropic spin distribution results in a larger upper

limit. Also shown are the realistic Rre and high end Rhigh of the expected NSBH

merger rates identified in [6].
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Figure 10: A comparison of the O1 90% upper limit on the BNS merger rate to other

rates discussed in the text [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The region excluded by

the low-spin BNS rate limit is shaded in blue. Continued non-detection in O2 (slash)

and O3 (dot) with higher sensitivities and longer operation time would imply stronger

upper limits. The O2 and O3 BNS ranges are assumed to be 1-1.9 and 1.9-2.7 times

larger than O1. The operation times are assumed to be 6 and 9 months [16] with a

duty cycle equal to that of O1 (∼ 40%).
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Figure 11: A comparison of the O1 90% upper limit on the NSBH merger rate

to other rates discussed in the text [6, 8, 10, 11, 12, 13, 14, 15]. The dark blue

region assumes a NSBH population with masses 5–1.4 M� and the light blue region

assumes a NSBH population with masses 10–1.4 M�. Both assume an isotropic

spin distribution. Continued non-detection in O2 (slash) and O3 (dot) with higher

sensitivities and longer operation time would imply stronger upper limits (shown for

10–1.4 M� NSBH systems). The O2 and O3 ranges are assumed to be 1-1.9 and 1.9-

2.7 times larger than O1. The operation times are assumed to be 6 and 9 months [16]

with a duty cycle equal to that of O1 (∼ 40%).
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Figure 12: Lower limit on the beaming angle of short GRB, as a function of the mass

of the primary BH or NS, m1. We take the appropriate 90% rate upper limit from this

paper, assume all short GRB are produced by each case in turn, and assume all have

the same beaming angle θj. The limit is calculated using an observed short GRB rate

of 10+20
−7 Gpc−3 yr−1 and the ranges shown on the plot reflect the uncertainty in this

observed rate. For BNS, m2 comes from a Gaussian distribution centered on 1.35M�,

and for NSBH it is fixed to 1.4M�.
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Chapter 4

First Open Gravitational wave

Catalog : 1-OGC

4.1 Introduction

Since the publication of the results by [17, 246], improvements to the data-analysis

methods used by [214] have been implemented [45, 46, 47]. Using these improve-

ments, we re-analyze the O1 data and provide a full catalog of candidate events from

a matched filter search for compact binary coalescences using the O1 data. We call

this full, open catalog 1-OGC. This catalog provides estimates of the statistical sig-

nificance of previously known events and a ranked list of sub-threshold candidates.

Although not statistically significant by themselves, these sub-threshold candidates

can be correlated with archival data or transient events found by other astronomi-

cal observatories to provide constraints on the population of compact-object mergers

[247, 248].

Our catalog is based entirely on public, open data and software. We use the LIGO

data available from the Gravitational Wave Open Science Center [48], and analyze

the data using the open source PyCBC toolkit [66, 65, 67]. This toolkit was also used

by one of the two analyses described in [214] and in chapter 2 of this dissertation.

The lowest mass sources targeted in our search are neutron star binaries with total

mass m1 + m2 = 2M�. The search space extends to binary black hole systems that

produce gravitational waveforms longer than 0.15 s from 20 Hz. This corresponds

to a total mass up to 500M� for sources with high mass ratios and spins where the
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component aligned with the orbital angular momentum is positive and large. For

binaries with negligible spin, this corresponds to total mass . 200M�. The search

space also includes neutron star–black hole binaries. After applying cuts for data

quality [206, 249], a total of 48.1 days of coincident data are searched for signals.

The three most significant signals in the catalog correspond to GW150914 [135],

LVT151012 [135, 17], and GW151226 [136]. No other statistically significant signals

are observed. In the analysis of [17], LVT151012 was the third-most statistically sig-

nificant event, but it was not detected with a statistical significance to be labeled

as an unambiguous detection. With the improved methods employed here, the false

alarm rate of this candidate improves by an order of magnitude and it should be

considered a true astrophysical event. The analyses of [17, 246] restricted the astro-

physical search space to binaries with a total mass less than 100M�. Our analysis

extends this target space to higher mass signals. No additional signals are detected

with statistical significance in this region of parameter space, consistent with the

results of [250].

A second observing run (O2) of the Advanced LIGO detectors took place from

November 30, 2016 to August 25, 2017 [16]. The Virgo gravitational wave detec-

tor also collected data for part of this period, starting from August 1, 2017. The

detections reported in this second observing run thus far include nary black hole coa-

lescence even three additional binary black hole coalescence events [251, 252, 253], and

a binary neutron star merger [54]. The publication of this catalog precedes the pub-

lication of the full O2 data set and therefore the catalog presented here is restricted

to the first observing run, O1.

This chapter is organized as follows: In Sec. 4.2 and Sec. 4.3, we summarize

our analysis methods, including the parameter space searched, the detection statistic

used for ranking candidate events, and our method for calculating the statistical

significance of events. The search results are summarized in Sec. 6.5. Our full catalog

is available online (www.github.com/gwastro/1-ogc). In this chapter, we focus on

the detection of compact binary coalescences. Since no new astrophysical events have

been observed, we do not consider measurement of the signals’ parameters and refer to

[17, 254] for discussion of the detected events’ source-frame properties. Consequently,

we quote binary mass parameters in the detector frame in this work.

www.github.com/gwastro/1-ogc


48

4.2 Search Methodology

To search for gravitational waves from compact-object mergers, we use matched fil-

tering [74] implemented in the open-source PyCBC library [66, 65, 67]. Our methods

improve on the analyses of [17, 246, 214] by imposing a phase, amplitude and time

delay consistency on candidate signals, an improved background model, and a larger

search parameter space [45, 46, 47].

4.2.1 Target Search Space

A discrete bank of gravitational-wave template waveforms [91, 92, 97] is used to

target binary neutron star, neutron star–black hole, and binary black hole mergers

with total mass from 2 − 500M� [47]. The templates are parameterized by their

component masses m1,2 and their dimensionless spins ~χ1,2 = c~S1,2/Gm
2
1,2, where ~S1,2

are the spin vectors of each compact object. For compact objects with component

masses greater than 2M�, the template bank covers a wide range of spins, with

χ(1,2)z ∈ [±0.998], where χ(1,2)z are the components aligned with the orbital angular

momentum. For compact objects with masses less than 2M�, the spin is restricted

to χ(1,2)z ∈ [±0.05] [97]. Templates that correspond to sources with a signal du-

ration less than 0.15 s (starting from 20 Hz) are excluded due to the difficulty in

separating candidates arising from these templates from populations of instrumental

glitches [47]. Consequently, the total mass boundary of the search depends strongly

on the “effective spin” [255, 42],

χeff =
χ1zm1 + χ2zm2

m1 +m2

. (4.1)

This dependence is visible in the distribution of the approximately 400, 000 templates

required to cover the space shown in Fig. 13. A dotted line in Fig. 13 denotes the

upper boundary of the O1 analysis performed in [17]. For binaries with total mass

greater than 4M�, we use the spinning effective-one-body model (SEOBNRv4) [256,

257] as template gravitational waveforms. For sources with total masses less than

4M� we use TaylorF2 post-Newtonian waveforms with phasing accurate to 3.5 post-

Newtonian order and the dominant amplitude evolution [27, 102, 258, 259]. Our

choice of template bank discretization causes less than a 10% loss in detection rate

for any source within the boundaries of the template bank. Our search assumes
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that the source can be adequately described by only the dominant gravitational-wave

mode, two component masses, non-precessing spins, and negligible eccentricity.

4.2.2 Creation and Ranking of Candidate Events

For each template and each detector, we calculate the matched filter signal-to-noise

ratio (SNR) as a function of time ρ(t) [74]. The template bank is divided into 15

equal sized sub-banks based on the chirp massM = (m1m2)3/5/(m1 +m2)1/5 of each

template. A single-detector “trigger” is a peak in the SNR time series that is greater

than 4 and larger than any other peaks within 1s. See Fig. 5 in Chapter 2 of this

dissertation for an example of this single-detector trigger with GW150914. For each

sub-bank, the loudest 100 triggers (by ρ) are recorded in ∼ 1 s fixed time windows.

This method has been shown to improve search sensitivity, while making the rate of

single-detector triggers manageable [260]. We have found this choice of sub-banks to

be an effective method to ensure the analysis can concurrently record triggers from

separate regions of parameter space that respond differently to instrumental noise.

Other choices are also possible.

We use the data-quality segments provided by the Gravitational-Wave Open Sci-

ence Center to exclude triggers that occur in times when there are problems with

the detectors’ data quality [206, 249]. In addition, very loud transient glitches, corre-

sponding to > 100σ deviations from Gaussian noise, are excised from the strain data

according to the procedure of [66] before calculation of the SNR time series. However,

there remain many types of transient non-Gaussian noise in the LIGO data which

produce triggers with large values of SNR [261, 206, 249].

For every trigger with ρ > 5.5 we calculate the signal consistency test, χ2
r (see

Eq. 2.5 in Chapter 2 of this dissertation), introduced in [77]. The statistic χ2
r divides

the matched filter into frequency bands and checks that the contribution from each

band is consistent with the expected signal. The statistic takes values close to unity

when the data contains either Gaussian noise or the expected signal and larger values

for many types of transient glitches. See Fig. 5 in Chapter 2 of this dissertation for an

example with GW150914. We impose the SNR limit as the χ2
r test is generally non-

informative when ρ < 5.5. The χ2
r value is used to re-weight the SNR ρ as [123, 108].
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We reproduce Eq. 2.6 from Chapter 2 of this dissertation for ease of access

ρ̃ =

ρ for χ2
r ≤ 1

ρ
[

1
2

(
1 + (χ2

r)
3
)]−1/6

, for χ2
r > 1.

(4.2)

For single-detector triggers from templates with total mass greater than 40M�

we apply an additional test, χ2
r, sg, that determines if the detector output contains

power at higher frequencies than the maximum expected frequency content of the

gravitational-wave signal [46]. This test is only applied for higher mass systems,

since these templates are shorter in duration and more difficult to separate from

instrumental noise. For other systems, we set χ2
r,sg = 1. Using this statistic, we apply

a further re-weighting as

ρ̂ =

ρ̃ for χ2
r,sg ≤ 4

ρ̃(χ2
r,sg/4)−1/2, for χ2

r,sg > 4.
(4.3)

Candidate events are generated when single-detector triggers occur in both the

LIGO Hanford and Livingston data within 12 ms (the light-travel time between the

observatories extended by 2 ms for signal time-measurement error) and if the triggers

are recorded in the same template in each detector [66]. Following the procedure

of [45], we model the distribution of single detector triggers from each template as

an exponentially decaying function, λ(ρ̂, θN), where θN allows the parameters of the

exponential to vary as a function of total mass, symmetric mass ratio η = m1m2/M
2,

and χeff . This fitted model allows us to rescale ρ̂ to better equalize the rate of triggers

from each template. We produce a λ for each detector as λH and λL.

We improve upon the ranking of candidates in [246, 17] by also taking into ac-

count pS(θS), which is the expected distribution of SNR ρH and ρL, phase difference

φc,H − φc,L, and arrival time delay tc,H − tc,L between the two LIGO instruments for

an astrophysical population [45]. No assumption is made about the distribution of

intrinsic source parameters in this term. The primary benefit arises from assuming

that a population of sources is isotropically distributed in orientation and sky loca-

tion. We combine the ranking statistic pS(θS) with that of λ(ρ̂, θN)H and λ(ρ̂, θN)L

to get the final ranking statistic ρ̃c as

ρ̃c ∝
[
log pS(θS)− log

(
λH(ρ̂H, θ

N)λL(ρ̂L, θ
N)
)]

+ const. (4.4)
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This expression is normalized so that ρ̃c approximates the standard network SNR

ρc = (ρ2
L+ρ2

H)1/2 for candidates from regions of parameter space that are not affected

by elevated rates of instrumental noise. Candidates from regions affected by elevated

rates of noise triggers are down-weighted and assigned a smaller statistic value by

this method. As multiple candidates, which arise from different template waveforms,

may occur in response to the same signal, we select only the highest ranked candi-

date within ten seconds. This is selection of the highest ranked candidate in a 10 s

window is similar to the clustering of coincident triggers presented in Chapter 2 of

this dissertation and the PyCBC analysis in the first observing run. A simpler version

of this statistic where the single-detector exponential noise model is only a function

of the template duration has also been employed in the analysis of data from LIGO’s

second observing run [262, 263, 252].

4.2.3 Statistical Significance

The statistical significance of candidate events is estimated by measuring empirically

the rate of false alarms (FAR). To measure the noise background rate, we generate

additional analyses by shifting the time-stamps of data from one instrument with

respect to the other by multiples of 0.1s. Since this time shift is greater than the

astrophysical time of flight between observatories, any candidates produced in these

analyses are false alarms. This time shift is much greater than the auto-correlation

length of our template waveforms of O(1ms). The time-slid analyses are produced

following the same procedure as the search; this is a key requirement for our analysis

to produce valid statistical results [214]. The equivalent of more than 50,000 years of

observing time can be generated from 5 days of data.

To provide an unbiased measure of the rate of false alarms at least as statistically

significant as a potential candidate, the single-detector triggers that compose the

candidate event should be included in the background estimation [264]. However,

when a real signal with a large ρ̃c is present in the data, the rate of false alarms

for candidate events with smaller ρ̃c tends to be overestimated. This is due to the

fact that the loud single-detector triggers from the real event in one detector form

coincidences with noise fluctuations in the other detector, producing loud coincident

background events. As in [17], an unbiased rate of false alarms can be achieved

by a hierarchical procedure whereby a candidate with large ρ̃c is removed from the
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estimation of background for candidates with smaller ρ̃c; we use this procedure here.

4.3 Evaluating Candidates based on the Astrophysical Pop-

ulation

We find two candidate events with FAR < 1 per 50 000 years, corresponding to

GW150914 and GW151226. Although FAR does not give the probability that an

event is an astrophysical signal, we can be confident that these events were not caused

by chance coincidence between the detectors. It is possible that these events were

caused by a correlated source between the detectors. However, detailed followup

studies of GW150914 and GW151226 found no correlated noise sources between the

detectors that could be mistaken for a gravitational wave [206, 136].

We conclude that GW150914 and GW151226 are astrophysical in origin and use

them to constrain the rate of real signals. A “true discovery rate” (TDR) can be

constructed for less significant events. The TDR is defined as:

TDR(ρ̃c) =
T (ρ̃c)

T (ρ̃c) + F(ρ̃c)
, (4.5)

where T (ρ̃c) is the rate that signals of astrophysical origin are observed with a ranking

statistic ≥ ρ̃c (the “true alarm rate”) and F(ρ̃c) is the false alarm rate.

The true discovery rate is the complement of the false discovery rate [265], and

can be used to estimate the fraction of real signals in a population. For example,

if TDR(ρ̃c) = 0.9, it means that 90% of events with a ranking statistic ≥ ρ̃c are

expected to be real signals. The TDR is also independent of the observation time.

Note that TDR is not the probability that a particular event is a signal of astro-

physical origin Pastro. For that, one needs to model the distribution of signals and

noise at a given ρ̃c. In this work, we use a simple model of these distributions as

functions of the ranking statistic ρ̃c. Models incorporating additional parameters are

also possible, but we do not consider them here. As a function of ρ̃c, Pastro can be

computed as

Pastro(ρ̃c) =
ΛSPS(ρ̃c)

ΛSPS(ρ̃c) + ΛNPN(ρ̃c)
, (4.6)

where PS(ρ̃c) and PN(ρ̃c) are the probabilities of an event having ranking statistic ρ̃c

given the signal and noise hypotheses respectively [266, 267, 139]. ΛS and ΛN are the

rates of signal and noise events.
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Since no binary neutron star or neutron star–black hole candidates are obtained

from a search of the O1 data, here we restrict the calculation of both the TDR

and Pastro to binary black hole (BBH) observations. We include signals with total

mass M ≥ 10 M�, mass ratio m1/m2 < 5 (where m1 ≥ m2), and dimensionless

spins |χ(1,2)z| < 0.5. These choices are based on a combination of what has been

observed [17, 262, 263, 252] and what is expected from models of isolated binary-star

evolution (“field” binaries). The mass distribution of field binaries is dependent on

a number of unknown parameters, such as the metallicity of the environment [87].

Generally, it is expected that most binaries are close to equal mass, as typically less

than 1 in O(103) simulated binaries have mass ratio > 5 in models of field-binary

evolution [15]. The majority of observations of nearby X-ray binaries have yielded

black holes with masses greater than 5 M�, which has led to speculation of a “mass

gap” between 3–5 M� [166, 165, 268]. The signals detected so far by LIGO and Virgo

are consistent with this: the smaller component mass in the lowest-mass system

known to date, GW170608, has an estimated mass of 7+2
−2 M� [252].

The spin distribution of black holes is not well constrained [269]. The component

spins of the most significant binary black holes detected by LIGO and Virgo are only

weakly constrained [17]. The best measured quantity related to spin is χeff . All of

the BBH gravitational-wave signals detected so far have |χeff | . 0.2. A binary with

low χeff may still have component masses with large spin magnitudes, if the spins

are anti-parallel or are purely in the plane of the binary. However, it seems unlikely

that this would be the case for all of the detections made so far. Hence we include

signals that have component spins with |χ(1,2)z| < 0.5. This is consistent with recent

population synthesis models, which indicate that black holes must have low natal spin

in order to obtain a distribution of χeff that satisfies gravitational-wave observations

[270, 271].

To estimate the rate and distribution of false alarms that arise only from the

region consistent with this selected population of binary black hole mergers, we must

determine which templates are sensitive to these sources. It is necessary to analyze

a simulated set of signals since the template associated with a particular event is

not guaranteed to share the true source parameters. We find that the region of the

template bank defined by M > 8.5 M�, m1,2 > 2.7 M�, and χeff < 0.9 is effective at

recovering this population of sources. This region is shown in Fig. 13 in red.
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To estimate the true rate T , we use the two significant events observed during

O1, GW150914 and GW151226. We do not use any of the O2 events because at the

time of this catalog the full data is not yet available for analysis, making it difficult

to obtain a consistent rate estimate. The total analysis time in O1 was ∼ 48 days,

giving T ≈ 15yr−1. Given the uncertainty in this estimate based on only two events,

we take the rate of observations as a Poisson process, and choose the lower 95% bound

on T . This yields a T ≈ 2.7yr−1. For the calculation of the TDR we use this value for

all events, independent of their ranking statistic. This means we likely underestimate

the TDR for events with detection statistic lower than GW151226 and GW150914,

but this is a conservative bias.

To estimate the probability that a given event is astrophysical in origin Pastro,

we model the distribution of signals and noise as a function of ρ̃c. It is reasonable

to approximate the signal probability distribution PS(ρ̃c) as ∝ ρ̃−4
c [272, 273]. We

normalize the signal number density ΛSPS(ρ̃c) so that the number of signals with ρ̃c

greater than or equal to some threshold ρ̃†c is ≈ 2.7yr−1. We make the conservative

choice to place ρ̃†c at the value of the next largest ρ̃c value after GW150914 and

GW151226.

To approximate the noise number density ΛNPN(ρ̃c), we make a histogram of the

ρ̃c values of false alarms arising from our selected BBH region. We use only the false

alarms which are uncorrelated with possible candidate events to ensure an unbiased

estimate of the mean false alarm rate [264]. We fit an exponential decay to this

histogram from 8 < ρ̃c < 9.2. For ρ̃c much less than 8, ΛNPN is not well modeled by

an exponential due to the effects of applying a threshold to single-detector triggers.

We note, however, there is only a 50% chance that an event is astrophysical at ρ̃c

∼ 8.6, and this chance quickly becomes negligible with decreasing ρ̃c. The result of

this procedure is shown in Fig. 14. We caution that Pastro for candidates with ρ̃c

> 9.2 will be sensitive to the form of the model chosen since it is not constrained by

empirically measured false alarms.

While we do not assess the astrophysical probabilities of sources outside our se-

lected BBH region, we are not precluding that such sources exist. Our Pastro is

compatible with any model of the true BBH source distribution that allows for a

signal rate to be at least as high as our estimate within the chosen region. This holds

irrespective of whatever other kinds of sources may also be permitted.
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4.4 Results and Binary Black Hole Candidates

The results presented here are generated using the data from the first observing run of

Advanced LIGO which ran from September 12, 2015 to January 19, 2016. We divide

the 16 kHz LIGO open data into 9 consecutive periods of time and search each time

period independently so that each analysis contains roughly five days of observing

time. This time interval is set by the disk and memory requirements of the search

pipeline, but it is sufficient to estimate the FAR of candidate events to better than 1

in 50,000 years. It is possible to combine these time intervals during the analysis to

improve this limit, but we have not done so here. Our analysis is restricted to times

marked as observable by the metadata provided by the Gravitational-Wave Open

Science Center. After accounting for times which are marked as not analyzable, there

remain ∼ 48.1 days of data when both the Hanford and Livingston LIGO instruments

were operating.

The top candidate events by FAR from the full search are given in Table 4. There

are three candidates which are statistically significant. These are the binary black

hole mergers GW150914, LVT151012, and GW151226, which were previously re-

ported in [17, 135, 136]. The false alarm rates for GW150914 and GW151226 of 1 per

66,000 and 1 per 59,000 years, respectively, are limits based on the amount of back-

ground time available in their respective analysis. These limits are less stringent than

those reported in [17] as we have created less background time. There are no other

individually convincing candidates. Fig. 15 shows candidate events with ρ̃c > 7.5.

The three binary black hole mergers stand out from the other candidate events and

are clustered in a portion of the parameter space that is analyzed with relatively few

template waveforms.

Given that there are two binary black hole mergers (GW150914 and GW151226)

that are well established from their statistical significance, we can estimate the rate

of detecting binary black hole mergers by this analysis. Candidate events that are

consistent with our selected binary black hole population are listed in Table 5. We

estimate the false alarm rate of events for just this region of the analysis, and using

our estimate of the true rate of detections, calculate the true discovery rate as a

function of ranking statistic. The TDR at the ranking statistic of the fourth most

significant candidate is 0.52. This means that only 52% of candidates with ρ̃c at least
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as large are expected to be of astrophysical origin. For each candidate we estimate

its individual probability of being astrophysical in origin, Pastro. The fourth event has

only a 6% chance of being astrophysical. We do not report Pastro and TDR values for

the top two events since these events are assumed to be signals in the construction of

these statistics.

4.5 Revisiting LVT151012

LVT151012 was first announced in [214], with a FAR of 1 per 2.3 years. Our improved

methods yield a false alarm rate for LVT151012 of 1 per 24 years. Restricting attention

to our selected BBH region, which is consistent with the other observed binary black

hole mergers, gives a FAR for LVT151012 in this region alone of 1 per 446 years.

We combine this FAR with our conservative estimate of the rate of detections to

estimate that 99.92% of binary black hole merger candidates at least as significant

as LVT151012 are astrophysical in origin. We also estimate the probability that

specifically LVT151012 is astrophysical in origin to be 97.59%.

These measures both depend on our selected region of binary black hole sources

and our estimate of the rate of true detections, but we believe our choices for both of

these to be conservative. The FAR of 1 per 446 years is not a statistical statement

about the search as a whole and is used only in comparison against the rate of real

signals within this same region. Selecting different boundaries for this region would

yield a different FAR. However, assuming that the false alarm rate and true alarm

rate are both approximately uniform in this region, then Pastro and TDR will not

change.

As data from future observing runs becomes available, it will be possible to more

precisely estimate this rate in a consistent way, and improve our estimate of this

event’s significance. We have modeled our signal distribution and population of false

alarms as being characterized by the ranking statistic ρ̃c alone. An improved model

could take into account the variation over the parameter space and in time. Fig. 14

shows the probability distribution of our noise and signal models for the analysis

which contains LVT151012. Compared to the Pastro reported in [17] of 87%, our

analysis has improved the ranking of candidate events, the boundaries of our selected

BBH distribution differ from what was used there, and we use a more conservative
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estimate of the signal rate. Given a Pastro value of 97.6% we conclude that LVT151012

is astrophysical in origin. For comparison, if we had chosen the rate of observed

mergers to be ≈ 15yr−1, which is the linear extrapolation of two detections in 48

days, we would find that LVT151012 had a 99.6% probability of astrophysical origin.
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Figure 13: The component masses and spins of the templates used to search for

compact binary mergers. Due to the exclusion of short duration templates, there is a

dependency on the total mass searched and its effective spin. For binary black holes

with negligible spin, this implies that this study only probes sources with total mass

less than 200 M�. Visible artifacts due to the procedure for constructing the template

bank do not impact performance. Templates which we conservatively consider to

produce binary black hole (BBH) candidates consistent with known observations are

shown in red as discussed in Sec. 4.3. The upper mass boundary of the analysis

performed by the LVC in [17] is shown as a black dotted line.
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Figure 14: The scaled probability distributions of assumed signals and noise as a

function of the ranking statistic ρ̃c for the analysis containing LVT151012. Blue

shows the normalized histogram of empirically measured false alarms that are within

our selected BBH region of the template bank, PN . Red is the exponential decay

model that has been fitted to this set of false alarms, PSΛS/ΛN , normalized so that

the counts can be directly compared to the noise distribution. Orange shows the signal

model based on our conservative rate of detections. The value of ρ̃c for LVT151012

is shown as a dotted green vertical line. The ratio of signal to noise at this value of

ρ̃c strongly favors the signal model.
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Figure 15: Candidate events with a ranking statistic ρ̃c > 7.5 from the full search

for compact binary mergers in O1 data. The colorbar is capped at 9. The three

BBH mergers are clearly visible in the plots, while the remaining events are largely

distributed according to the density of the template bank.
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Chapter 5

Bayesian Hypothesis Testing

5.1 Probability

Here we consider a few rules of probability theory before we begin discussing Bayesian

inference and hypothesis testing. We follow the guide of [274] for the rules of prob-

ability. Firstly, for a given set of N possible outcomes where each outcome has a

probability pi of occurring then the sum of all possible outcomes must be unity. This

can be expressed as
N∑
i=1

pi = 1. (5.1)

This is also true for probability distribution functions p(x) described by a continuous

parameter x. We express this rule of probability as∫
p(x) dx = 1. (5.2)

Next, we consider the probability of independent events occurring and the concept

of conditional probability. Two events A and B are said to be independent of one

another if the probability of A is unaffected by what we may know about B. This

can be stated as:

p(A andB) ≡ p(A, B) = p(A) p(B). (5.3)

In cases that independence does not hold we can consider the conditional probability

of A given the information that we know of B. This conditional probability is stated

as

p(A |B) =
p(A, B)

p(B)
. (5.4)
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Here p(A |B) is the probability of A given that B has occurred. If A and B are

independent events this reduces back to Eq. (5.3). If there are many possibilities for

event B, which we label as Bi, then we can also attain the probability of A through

the following summation

p(A) =
∑
i

p(A |Bi) p(Bi). (5.5)

This is called marginalization and pertains to summing out nuisance parameters. This

technique of marginalization also generalizes to continuous probability distributions

and can be expressed as

p(A) =

∫
p(A |B) p(B) dB. (5.6)

In order to conduct Bayesian inference and hypothesis testing we will make extensive

use of conditional probabilities and probability marginalization.

5.2 Bayesian Inference

In Bayesian statistical inference we are interested in using our data to update our

beliefs regarding hypotheses and the parameters that come with these hypotheses.

We can make use of Bayes’ theorem to take prior beliefs about hypotheses, take

observations of the data, and use these observations to construct posterior beliefs

about hypotheses. We begin this approach by introducing Bayes’ theorem

p(H) p(d |H) = p(H |d) p(d). (5.7)

Here we have p(H) which represents our prior belief about the hypothesis H. The like-

lihood p(d |H) represents the probability of observing our data under the assumptions

implicity stated in our hypothesis H. We use these to update our inference on the

probability of hypothesis H as expressed in the posterior probability p(H |d). Finally,

we have p(d), the probability of obtaining this, data set. For the moment we will

consider this as a normalization factor. For ease of reading we will change notation

so that the prior p(H) is π(H), the likelihood p(d |H) is L(d |H), the posterior dis-

tribution p(H |d) is P(H |d), and the normalization factor p(d) is Z(d) following the

notation of [275].
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Within the context of parameter estimation we often use a hypothesis H that

is composed from prior distributions on parameter values ~θ that fully describe the

hypothesis. In this context it is more helpful to rewrite Eq. (5.7) as

P(~θ |d,H) =
π(~θ |H)L(d |~θ)
Z(d |H)

. (5.8)

In Eq. (5.8) the normalization constant Z is often called the marginal likelihood since

it marginalizes all parameters of the model H out of the likelihood [275]:

Z(d |H) =

∫
π(~θ |H)L(d | ~θ)d~θ. (5.9)

This marginal likelihood is often called the evidence since it summarizes the likelihood

of obtaining the data given the hypothesis over the entire prior distribution. That

is, we have marginalized the likelihood across the entire prior distribution. We can

compare the evidences between different hypotheses as a way to see which hypothesis

better predicts the data. The larger the evidence, the better the hypothesis predicts

the data. In most practical cases this integral is analytically intractable due to the

dimensionality of the prior distribution. We could consider estimation of this evidence

via Monte Carlo sampling techniques. To clarify, we can consider Eq. (5.9) as the

prior-weighted average likelihood. We can consider a Monte Carlo simulation where

we draw random samples from the prior distribution, measure the likelihood, and then

take the arithmetic mean of this likelihood. This arithmetic mean will approximate

the marginal likelihood up to some Monte Carlo uncertainty. In practice, this is

impractical in realistic astrophysical applications [274]. We will consider methods

that are more effective for estimating the Bayesian evidence in Sections 5.4 and 5.5.

We can compare two competing hypotheses by calculating the likelihood ratio of

the marginal likelihoods for each hypothesis. If the likelihood ratio is greater than

unity, then the hypothesis in the numerator predicts the data with higher likelihood

than the hypothesis in the denominator. If this likelihood ratio is smaller than unity,

then the hypothesis in the numerator predicts the data with lower likelihood than

the hypothesis in the denominator. This likelihood ratio test is known as the Bayes

factor. For two hypotheses, HA, and HB, with marginal likelihoods Z(d |HA) and

Z(d |HB), respectively, the Bayes factor is defined as

BHA
HB
≡ Z(d |HA)

Z(d |HB)
. (5.10)
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Therefore if the Bayes factor is unity for these two hypotheses, then each hypothesis

is equally likely to have predicted the data. We can convert a Bayes factor into a

posterior odds ratio to give the odds of one hypothesis over another via:

OHA
HB

= BHA
HB
× π(HA)

π(HB)
. (5.11)

Here OHA
HB

represents the odds that hypothesis HA is preferred over hypothesis HB

after the observation of the data. This is called the posterior odds ratio. The ratio

π(HA)/π(HB) represents our prior odds ratio, that is, how much more did we believe

that hypothesis HA was preferred over hypothesis HB before observing the data. The

prior odds ratio gives us a statement of what level of Bayes factor we would require

before we begin to change our minds about the odds of hypothesis HB being better

supported in the data than hypothesis HA. It is considered good practice to state

prior probabilities and prior odds at the outset of an experiment [275]. Choice of prior

probabilities on hypotheses are subjective but should not be considered arbitrary

since they represent explicit decisions in experimental design which requires scientific

expertise. An uninformative prior on each hypothesis, indicating no prior preference

for either hypothesis, would set the prior odds ratio to unity.

If there are only two hypotheses being considered then an odds ratio can be

converted into a probability of one hypothesis over another hypothesis through the

following expression [276]:

P (HA |d) =
OHA

HB

1 +OHA
HB

. (5.12)

Here the probability of hypothesis HA after observation of the data is given as

P(HA |d). This is the posterior probability of the hypothesis HA. Since there are only

two possible hypotheses the posterior probability of HB is P(HB)) ≡ 1−P(HA)). In

Fig. 16 we compare the logarithm of the odds ratio with the posterior probability for

a hypothesis. When the log odds ratio is 0 the probability of one hypothesis relative

to the other hypothesis is 0.5. Furthermore, we can also make a mapping of this

probability to a single-tailed z-score of a Gaussian distribution. This is the familiar

test statistic σ used in physics (see Chapter 2 for an example of its use for the esti-

mation of the statistical significance of GW150914). Specifically, the conversion from

probability to this statistic is given by z-score = −
√

2erfc−1(2p), where erfc−1 is the
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inverse complementary error function and p is the probability value1. A z-score of 0

(0σ) indicates a 50% probability, while a z-score of 5 (5σ) is ∼ 10−5% probability.

The relationship between this z-score and the log odds ratio is shown in Fig 17.

In cases where there are more than two hypotheses available, we set one model as

the fiducial model such that all Bayes factors are calculated relative to this fiducial

hypothesis (Hfiducial) [276]. Then posterior probabilities for individual hypotheses can

be calculated as

P (Hi |d) =
OHi

Hfiducial∑N
j=1O

Hj
Hfiducial

. (5.13)

Here the summation is over all N available hypotheses. This posterior probability for

an individual hypotheses is often useful to calculate to compare how informative any

individual hypothesis is relative to all available models. In practice can be computa-

tionally difficult to test a large set of hypotheses, but [277] is an example of testing a

large set of hypotheses in the field of gravitational wave astronomy.

As [276] notes we are often not just concerned with the Bayes factors and pos-

terior probabilities on hypotheses but we also want to learn from the inference on

parameters conditional on each of our tested hypotheses. We can inspect each of

these posterior probabilities on parameters for each hypotheses in isolation or we

can take a Bayesian model averaging approach of [278]. Bayesian model averaging

involves coherently combining the parameter inference for common parameters from

many different hypotheses. To do so we calculate the posterior probability for each

hypothesis based on the posterior odds ratio (or Bayes factor if the prior odds ratios

for hypotheses are unity) as in Eq. (5.13). Next, we reweight the marginal posterior

probabilities for common parameters for each hypothesis by the posterior probabil-

ity of the hypothesis. Finally, we sum these reweighted posterior probabilities on

common parameters to create a multi-model parameter inference on these common

parameters. This technique is often used in Bayesian cosmological modeling [275].

The mathematical expression for Bayesian model averaging for parameter inference

on a parameter ∆ can be stated as

P (∆ |d) =
N∑
i=1

P (Hi |d) P (∆ |d,Hi) . (5.14)

1In Chapter 2 we converted p-values to single-sided Gaussian standard deviation scores via the

inverse error function. The formulation used here is equivalent.
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Here the summation is over all N available hypotheses. The term P (∆ |d,Hi) rep-

resents the parameter inference on ∆ conditional on hypothesis Hi. If we have a

continuous “hyper-parameter” α that connects all the hypotheses we are testing then

the summation in Eq. (5.14) becomes an integration over α.

In addition to testing hypotheses on one particular observation d it is possible to

combine the inference from multiple observations, {d1,d2, . . . ,dN}. If we are testing

the same prior distribution and each observation is statistically independent, then the

Bayes factor for multiple observations can be combined through multiplication [276,

279]. We temporarily suppress notation on hypotheses, and adopt the notation of [280]

for Bayes factors from multiple observations to give the combined Bayes factor as

B(d1,d2, . . . ,dN) = B(d1)× B(d2)× . . .× B(dN). (5.15)

Here B(d1,d2, . . . ,dN) represents the Bayes factor after many observations. Even

if the Bayes factor for a particular hypothesis is not statistically significant for any

individual observation di, we can accumulate evidence over many observations to

reach a clearer conclusion about how well supported a hypothesis is by the many

observations.

We can also update our posterior distributions on parameters over many observa-

tions. Here we follow [281] and consider the updated marginal posterior probability

P (∆ |H,d1, . . . ,dN , ) on a parameter ∆ after N observations

P (∆ |H,d1, . . . ,dN , ) =
π(∆ |H)

c
L(d1, . . . ,dN |∆,H). (5.16)

Here we have a prior π(∆ |H) representing our belief on the parameter ∆ over the

entire collection of our observations. Our likelihood function L is separable if all

events are statistically independent. In this case we can then write

P (∆ |H,d1, . . . ,dN , ) =
π(∆ |H)

c
L(d1 |∆,H)× L(d2 |∆,H)× . . .L(dN |∆,H).

(5.17)

Here we can substitute the likelihood L(di |∆,H), where i marks the ith observation

in the list of observations from 1 to N , using Bayes’ theorem. The likelihood can

be substituted with the expression P ′(∆ |di,H) / π′(∆ |H). We use a prime notation

here on the marginal posterior distribution and marginal prior distribution on the

parameter ∆ to denote the distributions from observation of di. Marginal posterior
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distributions on parameters can be approximated from a Monte Carlo simulation or a

Markov-chain Monte Carlo simulation. This procedure is generic and we can combine

this result with the multi-model inference of Eq. (5.14) so that our parameter inference

after N observations is not completely dependent on any one particular parameter

hypothesis.

We have so far treated the Bayesian evidence and Bayes factor as exact quantities

that can be estimated exactly. We now consider error propagation and uncertainty

estimation for Bayesian evidences and Bayes factors.

5.3 Bayes Factor Uncertainty Estimation

When comparing hypotheses practically we must confront the fact that it is often too

difficult to calculate the evidence analytically and so we often turn to Markov Chain

Monte Carlo (MCMC) techniques to approximate the evidence [278, 276, 275, 274].

Since these methods are approximate it is useful to have some sense of the statistical or

systematic uncertainties that arise from these MCMC methods[275]. In our treatment

we consider model the logarithm of the evidence as a Gaussian distribution in units

of log likelihood. This distribution has mean µl̂nZ representing a point estimate

from the MCMC method, and standard deviation σl̂nZ representing systematic or

statistical uncertainties from the MCMC method. The logarithm of the evidence can

be represented as

p(l̂nZ) =

(
1√

2πσl̂nZ

)
exp

{
−
(
lnZ − µl̂nZ

)2

2σl̂nZ

}
. (5.18)

The Bayes factor is the ratio of two evidences and hence the logarithm of the

Bayes factor is the difference of the logarithms of two evidences. Here we suppress

notation on hypothesis HA and hypothesis HB, instead calling them A and B, such

that the logarithm of the Bayes factor can be expressed as

lnBAB = lnZA − lnZB. (5.19)

However, since we treat lnZA as a random variable we must deal with the uncertainty

in l̂nZA. The logarithm of the Bayes factor then becomes the difference between two

probability distribution functions. This can be solved via convolution and has been
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solved for the Gaussian case [282]. From [282], we can express l̂nBAB as a Gaus-

sian distribution function with mean µ
l̂nBAB

= µ
l̂nZA − µl̂nZB and standard deviation

σ
l̂nBAB

=
√
σ2

l̂nZA
+ σ2

l̂nZB
. This gives us the following expression for the distribution

function on the logarithm of the Bayes factor:

p(l̂nBAB) =

 1√
2πσ

l̂nBAB

 exp

−
(

l̂nBAB − µl̂nBAB)

)2

2σ2

l̂nBAB

 . (5.20)

The expression in Eq. (5.20) is a Gaussian distribution function in l̂nBAB, but

we often prefer to know the estimate on BAB and so we must use a transformation

of coordinates. Rather than do this explictly we could recognize that Eq. (5.20)

describes a log-normal distribution, which can be expressed as

p(B̂AB) =
1

B̂AB σl̂nBAB

1

2π
exp

−
(

ln B̂AB − µl̂nBAB)

)2

2σ2

l̂nBAB

 . (5.21)

It is worth noting that for a sufficiently small standard deviation on the logarithm of

the Bayes factor, the probability distribution function of the Bayes factor will look

approximately Gaussian in shape. This log-normal Bayes factor distribution has a me-

dian value that is identical to the point-estimate Bayes factor, BAB = exp [lnZA − lnZB].

The expectation value (mean) of this log-normal distribution is always right of the

median, while the mode of the distribution is always left of the median. Large stan-

dard deviations on the logarithm of the evidence will create very long tails for the

distribution of the Bayes factor, which makes decision-making based on Bayes factors

more risky. Studies that use this estimation of the Bayes factor should consider trying

to limit the error on the logarithm of the evidence.

In Sec. 5.2 we gave an equation Eq. (5.15) for combining the Bayes factors from a

series of observations. If we consider the logarithm of the Bayes factor from Eq. (5.15)

then combining the combined logarithm of the Bayes factor is the sum of the loga-

rithm of the Bayes factor from each observation. In this section we have modeled

the logarithm of the Bayes factor as a Gaussian distribution, and so the combined

logarithm of the Bayes factor across observations is the sum of a series of Gaussian

distributions, which itself is a Gaussian distribution [282]. The combined logarithm
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of the Bayes factor across many observations is the Gaussian distribution described

by

p(l̂nBAB) (d1,d2, . . . ,dN) = N

µ =
N∑
i=1

µi, σ =

√√√√ N∑
i=1

σ2
i

 . (5.22)

Here p(l̂nBAB) (d1,d2, . . . ,dN) is the combined logarithm of the Bayes factor of hy-

pothesis A vs hypothesis B. Here µi is the point-estimate log-Bayes factor from

observation di, and σi is the standard deviation of the log-Bayes factor from obser-

vation di. If the µi and σi are all comparable across observations, then we note that

the mean value of the combined logarithm of the Bayes factor estimate tends to grow

linearly for N observations, while the standard deviation of the combined logarithm

of the Bayes factor grows as ∼
√
N . And so, even if we cannot reduce σi very well for

individual observations di, in the long-run of observations we may expect the com-

bined logarithmic Bayes factor to tend in a direction of statistical significance where

a decision on the hypothesis can be confidently made. If the combined logarithm of

the Bayes factor constantly oscillates around 0 over many observations then the error

term σ will overcome the mean-value µ and the log Bayes factor will have no utility

in decision making.

To illustrate this growth in Bayes factor uncertainty we consider a toy-model

where three estimators of the logarithm of the Bayes factor for hypothesis HA and

hypothesis HB. We denote these three log Bayes factor estimators as E1, E2, and E3.

We consider 400 observations, where the true value of the log Bayes factor is 0.05

for every observation. This is weak or anecdotal evidence for hypothesis HA for each

observation, but the evidence accumulates over several observations. After 400 obser-

vations the combined log Bayes factor is 400× 0.05 = 20, which is a combined Bayes

factor of 4.8 × 108. This would provide very large evidential support for hypothesis

HA (see Table 6 for rule-of-thumb statistical significance interpretation). The first

Bayes factor estimator E1 measures an unbiased estimate the log Bayes factor for

each observation such that µi = 0.05 and σi = 0.05. The second Bayes factor estima-

tor E2 also has an unbiased estimate the log Bayes factor for all observations such

that µi = 0.05, but has trouble getting a good error estimate, measuring with uncer-

tainty σi = 0.3 in the log Bayes factor for each observation. Finally, the third Bayes

factor estimator E3 uses a method of Bayes factor estimation that is unintentionally
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biased such that they measure µi = 0 for all estimates, but their estimator gives

a statistical uncertainty of σi = 0.05. Figure 18 shows the behavior of these three

Bayes factor estimators and their uncertainty at the 90% confidence interval. After

200 observations, the true combined log Bayes factor is 10, and so E1 has estimated

a combined log Bayes factor of (8.8, 10, 11.2), while E2 has estimated a combined log

Bayes factor of (3, 10, 17), and finally E3 has estimated a combined log Bayes factor

of (−7, 0, 7 ) at the (5th, 50th, 95th) percentiles respectively. Here, E1 is the best

estimator of the log Bayes factor, however E2 also correctly follows positive support

for hypothesis HA. We see that after 200 observations E3 has an unresolved Bayes

factor with no evidential support for either hypothesis. The uncertainty confidence

intervals for E2 and E3 still overlap however. After 400 observations we find E1 has

measured (18.3, 20, 21.6), E2 has measured (29.9, 20, 10), and E3 has measured

(−9.9, 0, 9.9). After 400 observations, the 90% confidence intervals of E2 and E3 no

longer overlap. We also find that E1 and E2 have decisive levels of statistical signif-

icance to give support to hypothesis A. Meanwhile, E3 has accumulated no relative

evidence between hypotheses and the uncertainty in the logarithm of the Bayes factor

has become extremely large.

If we want to use Bayes factors to make decisions on the credibility of hypotheses in

gravitational wave astronomy we should use the most accurate and unbiased methods

for their estimation. Reducing the bias and variance of our Bayes factor estimators

will play an important role in our ability to discriminate theories in physics that

are supported by the data from those that are not. We now move on to practical

methods for estimating the Bayesian evidence, Bayes factors, and their uncertainties

via Markov-Chain Monte Carlo methods.

5.4 The Thermodynamic Integration Method for Estimating

the Bayesian Evidence

The first Markov-Chain Monte Carlo (MCMC) method that we consider for Bayesian

hypothesis testing is the thermodynamic integration method. Many MCMC samplers

use a chain of multiple temperatures to simulate annealing as a means for gradually

guiding the MCMC sampler from the prior distribution to the posterior distribu-

tion [283, 284, 285, 286]. These multiple temperatures are helpful for finding the
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global maxima and modes of the posterior distribution. In addition to finding the

modes of the posterior distribution, this method is also useful for estimating the loga-

rithm of the evidence. We focus on the importance of thermodynamic integration for

the estimation of the logarithm of the evidence. In particular we follow the of [49, 50]

which is called the method of power-posteriors. In this method, each temperature

describes a tempered posterior distribution. These tempered posterior distributions

are called power-posterior because they can be expressed as

P
(
~θ|d, H

)
β
∝ π

(
~θ|H

)
L
(
d|~θ,H

)β
. (5.23)

Here P
(
~θ|d, H

)
β

is the power-posterior. The likelihood is raised to the power of

the inverse-temperature β. The prior distribution is left identical to the standard,

untempered prior distribution used in hypothesis testing and parameter inference.

For a value of β = 0 the power-posterior is equivalent to the prior distribution, while

for a value of β = 1 the power-posterior is equivalent to the posterior distribution.

The normalization constant for the power-posterior in Eq. (6.4) is the normalizing

constant for that power-posterior, given as Z(d | , H)β ≡
∫
π
(
~θ |H

)
L
(
d|~θ,H

)β
d~θ.

From these power-posterior distributions we can use a thermodynamic integration

method [49, 50] to estimate the logarithm of the evidence. For the derivation of this

thermodynamic integration method we follow [287]. We begin by considering the

following expression implied by the 2nd Fundamental theorem of Calculus:

lnZβ=1 (d)− lnZβ=0 (d) =

∫ 1

0

(
d (lnZβ (d))

dβ

)
dβ =

∫ 1

0

1

Zβ (d)

dZβ (d)

dβ
dβ. (5.24)

For a properly normalized prior, π(~θ, lnZβ=0 (d) = 0. This leaves the marginal

likelihood at β = 1 that we are interested in which is the untempered lnZ (d). Now

we can expand Eq. (5.24) as:

lnZ (d) =

∫ 1

0

∫
d
dβ

[
π
(
~θ
)
L
(
d|~θ
)β]

d~θ∫
π
(
~θ
)
L
(
d|~θ
)β

d~θ
dβ. (5.25)

Suppressing notation on θ and d, for clarity, we find the derivative in the numerator

of Eq. (5.4) as:

lnZ =

∫ 1

0

∫
π (lnL) Lβdθ∫

πLβdθ dβ. (5.26)
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Using Bayes’ theorem we can replace the numerator and denominator with Pβ =

πLβ /Zβ to get:

lnZ =

∫ 1

0

∫
Pβ (lnL) dθ∫
Pβdθ

dβ. (5.27)

This simplifies to:

lnZ =

∫ 1

0

〈lnL〉Pβ dβ. (5.28)

Therefore, the logarithm of the evidence is given by the one dimensional integral

in Eq. (5.4). Here 〈lnL〉Pβ represents the average untempered log-likelihood under

the measure described by the power-posterior distribution at β. This is the average

untempered log likelihood when drawing random samples from the power-posterior

distribution at β. We suppress this notation to write 〈lnL〉Pβ ≡ 〈lnL〉β. With the

thermodynamic integration method we have reduced a potentially large N dimen-

sional integral into a one dimensional integral. This method is an unbiased estimator

of the logarithm of the evidence provided that samples of 〈lnL〉β can be drawn in an

unbiased manner from power-posteriors [288].

It is also convenient to describe additional derivatives of the thermodynamic in-

tegrand. In general, nth derivatives of the form lnZ can be solved by referring to

Eq. 0.435 of [289]2:

dn

dβn
(lnZ) =

n∑
k=1

(−1)(k+1)
(
n
k

)
kZk

dn

dβn
(
Zk
)
. (5.29)

The first derivative, n = 1, we have already solved as 〈lnL〉β. The next derivative,

n = 2, was found in [290] as Var(lnL)β = 〈(lnL)2〉β − 〈lnL〉2β. This is the variance

of the untempered log likelihood samples when drawn from the power-posterior at β.

We solve the next derivative, n = 3, as:

d3

dβ3
(lnZ) = 〈(lnL)3〉β + 2〈lnL〉3β − 3〈(lnL)2〉β〈lnL〉β. (5.30)

In practice, we have found this third derivative in Eq. (5.30) is not computationally

stable in our applications in gravitational wave astronomy where the log likelihood

can be ∼ O(10−7). However, we observe that the pattern of the nth derivative of

lnZ with respect to β follows the pattern of the nth cumulant [4] of the power-

posterior distribution at β [288]. See Table 7 for examples up to the 4th derivative.

2Note that the solution in [289] has a minor typo, which we correct here.
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In fact, Z is analagous to a partition function in Bayesian statistical inference [288,

291]. This cumulant property is helpful because it can make computation of values

of higher order derivatives more numerically stable since cumulants of order ≥ 2

are shift-invariant [4]. We can make the transformation of variables, l̃nL ≡ lnL −
lnLmax for every power-posterior before computing the numerical value of higher order

derivatives of lnZ. We have tested this transformation rule on higher order derivatives

and found it to be both accurate and numerically stable, confirming the cumulant

properties of the derivatives. However, we have also found that the samples drawn

from power-posterior simulation using the parallel-tempered emcee sampler [283, 284]

may not be accurate enough to permit accurate calculation of derivatives higher than

order 3 in all cases.

In Fig. 19 we show the thermodynamic integrand and the next two derivatives for

a gravitational wave analysis that uses 51 temperatures. We also show the thermo-

dynamic integrand and the next two derivatives on a logarithmic scale in β in Fig. 20

so that the curvature of the thermodynamic integrand is easier to see. In practice,

plots like Figs. 19, 20 are helpful to inspect for places where the integrand may not be

well sampled in β and hence require additional inverse-temperatures [292, 293, 294]

for an accurate estimate of the logarithm of the evidence. Of particular note is the

instability in the middle (bottom) subplot of Fig. 20 where the second (third) deriva-

tive is not perfectly smooth in β. We expect the thermodynamic integrand to be

smooth and monotonically increasing as β goes from 0 to 1 [287]. In Fig. 19 there is

some numerical instability at β ∼ 10−9. The other derivatives of the thermodynamic

integrand should also be smooth. This instability implies the need for a better tem-

pering sampler or bias-corrective terms in the sampling such as those found in the

multi-tempering samplers of [295, 296]. The instability in Figs. 19, 20 is very slight

however and we would not expect an effect like this to significantly impact the Bayes

factor estimation.

After inspection that the MCMC sampler has produced a smooth and well-behaved

thermodynamic integrand we can use numerical quadrature routines to integrate the

thermodynamic integrand with respect to β. In Section 5.4.1 we describe different

polynomial-based quadrature integration techniques for computing the thermody-

namic integral from a finite set of inverse-temperatures β.
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5.4.1 Numerical Quadrature

The thermodynamic integral in Eq. (5.4) can be estimated through numerical quadra-

ture rules such as the trapezoidal rule or Simpson’s rule. Since optimal placements of

inverse-temperatures β are not typically uniformly distributed between 0 and 1 [287],

it is helpful to consider integration rules that do not depend on equally spaced abscissa

(β in the context of thermodynamic integration). A polynomial interpolant that does

not make of equally spaced abscissa is the Newton’s divided difference polynomial,

see [297, 298, 5] for how to construct these polynomials. We can then integrate these

interpolants to create numerical quadrature rules.

First we consider the trapezoidal rule which in the context of thermodynamic

integration is

l̂nZTrapz =

Nβ−1∑
i=0

1

2
(βi+1 − βi)

(
〈lnL〉βi+1

+ 〈lnL〉βi
)

(5.31)

Here Nβ represents the number of β being summed over in the integration estimation.

The error correction term to the trapezoidal rule can be found by integrating the next-

to-leading order Taylor polynomial [5], yielding:

l̂nZTrapz + ≈ l̂nZTrapz +

Nβ−1∑
i=0

− 1

12
(βi+1 − βi)2 [f ′(βi+1)− f ′(βi)] . (5.32)

Here f ′(βi) represents the second derivative of lnZ with respect to β. It was found

in [290] that this corresponds to the variance of the untempered log likelihood as

drawn from the power-posterior at βi.

Simpson’s rule for unequally spaced abscissa under Newton’s divided difference

interpolation [299] is:

l̂nZSimps =

Nβ−2∑
i is even, i=0

hi + hi+1

6

[
A 〈lnL〉βi +B 〈lnL〉βi+1

+ C 〈lnL〉βi+2

]
, (5.33)

for the expressions:

A = [(2hi − hi+1)] / hi,

B = [(hi + hi+1)2] / [hihi+1] ,

C = [(2hi+1 − hi)] / hi+1.

(5.34)
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Here hi ≡ βi+1 − βi, and hi+1 ≡ βi+2 − βi+1. The error corrective term for Simpson’s

rule can thus be solved in the same manner as for the trapezoidal rule and we find:

l̂nZSimps + ≈ l̂nZSimps +

Nβ−2∑
i is even, i=0

1

72
(βi+2 − βi)2 (βi−2βi+1 +βi+2)

f ′′(βi+2)− f ′′(βi)
βi+2 − βi

.

(5.35)

Here f ′′(βi) represents the third derivative of lnZ with respect to β, which is in

Eq. (5.30).

The cubic integration rule for unequally spaced abscissa under Newton’s divided

difference interpolation can be found in [297, 298, 300] or can be derived through the

tools in [5]. We present the form given in [300]:

l̂nZcubic =

Nβ−3∑
i is a multiple of 3, i=0

hi + hi+1 + hi+2

12

[
A 〈lnL〉βi +B 〈lnL〉βi+1

+ C 〈lnL〉βi+2
+D 〈lnL〉βi+3

]
,

(5.36)

for expressions:

A =
[
3h2

i − h2
i+1 + h2

i+2 + 2hihi+1 − 2hihi+2

]
/ [hi(hi + hi+1)] ,

B = [(hi + hi+1 + hi+2)2(hi + hi+1 − hi+2)] / [hihi+1(hi+1hi+2)] ,

C = [(hi + hi+1 + hi+2)2(hi+1 + hi+2 − hi)] / [hi+1hi+2(hi + hi+1)] ,

D =
[
h2
i − h2

i+1 + 3h2
i+2 − 2hihi+2 + 2hi+1hi+2

]
/ [hi+2(hi+1 + hi+2)] .

(5.37)

Here we have defined hi ≡ βi+1 − βi, hi+1 ≡ βi+2 − βi+1, and hi+2 ≡ βi+3 − βi+2.

We recommend caution in using the thermodynamic integral through a higher

order polynomial quadrature rule as the integrand may not be well interpolated by

higher order polynomials. Additionally, higher order cumulants are difficult to es-

timate from sampled data [4]. Thus there may be very little incentive for going to

higher order polynomial rules as improved accuracy is not always guaranteed by going

to higher order polynomial integration rules [301]. Since the true value of the loga-

rithm of the evidence is not usually known we recommend comparing the estimates

from all available quadrature rules to ensure consistency.
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Future studies may make use of quadrature rules from Taylor series polynomial

interpolants for unequally spaced abscissa, from ratios of Taylor series polynomials

through the Padé approximant [302], or other interpolant functions. Improvement in

numerical integration for thermodynamic integration may also be improved by focus-

ing on increasing the number of inverse-temperatures β and by improved placement

of β.

5.4.2 Monte Carlo Error Estimation

Here we follow the discussion from [287] for estimating the Monte Carlo error in the

thermodynamic integral under a generic quadrature rule. The Monte Carlo error for

thermodynamic integration is the uncertainty in the estimate of the integral due to

only having a finite set of samples from a Markov-Chain Monte Carlo simulation.

This uncertainty enters into the integration as an uncertainty in the 〈lnL〉. The

variance of the thermodynamic integral estimator, l̂nZ, from Monte Carlo error can

be found in two steps. First, calculate the thermodynamic integral for each sample

of untempered log likelihoods drawn from the power-posterior at β. For N samples

drawn from each power-posterior this generates N thermodynamic integral values.

The quadrature rule for the integration is generic; we can use the trapezoidal rule,

Simpson’s rule, etc. From these N integral values we take the sample variance and

then divide by the number of samples N to generate an estimate of the population

variance of the thermodynamic integration. This population variance of the logarithm

of the evidence represents a long-run estimate of the variance of the estimator. This

variance can be represented as:

σ2
MC =

1

N
σ2

sample. (5.38)

Here, σ2
MC represents the Monte-Carlo variance for the thermodynamic integration es-

timator while σ2
sample is the sample variance and N represents the number of available

samples. This σ2
MC can be seen as the standard error of the mean value of the loga-

rithm of the evidence due to Monte Carlo uncertainty. See Fig. 21 for a visualization

of this procedure.

Repeated runs where the random seed for the MCMC analysis was changed has

shown that the variance estimate from presented in [287] is a plausible confidence

interval estimate for Monte Carlo error.
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5.4.3 Convergence Error Estimation

The procedure for estimating the marginal likelihood from power-posterior simulation

requires that the power-posteriors all converge to a final stationary distribution [49].

To do this we inspect the stability of the thermodynamic integral and integrand over

the course of the MCMC analysis. To investigate the convergence of the evidence

over the course of the MCMC analysis we must draw independent and identically

distributed samples of the chains of the MCMC analysis at different intervals [287].

Gathering independent and identically distributed samples from a power-posterior

can be done in PyCBC Inference by calculating the autocorrelation length of the MCMC

chains of that power-posterior. In practice, PyCBC Inference calculates the autocorre-

lation length of all of the temperature chains and uses the largest posisble autocorre-

lation length as the autocorrelation length for all temperatures [303]. This is a safe

and conservative practice for ensuring that samples drawn from the Markov Chain

Monte Carlo simulation are not correlated. Thus, to track the thermodynamic inte-

grand at various iterations in the MCMC simulation we divide the MCMC analysis

into 12 equally spaced segments. In practice any number of segments will do, but it is

computationally intensive to sample more segments. The segments do not need to be

equally spaced in MCMC iterations but we find equally spaced segments to be useful

for inspecting the progression of the thermodynamic integrand. Using this number

of segments, each segment is partitioned in half, where the first half is discarded as

burn-in samples, and the autocorrelation length is calculated from the remaining half

of the samples. Independent samples are drawn from this half of the segment by

drawing a sample for every autocorrelation length. This is the generic procedure of

the nacl algorithm implemented in PyCBC Inference for drawing independent samples

from the Markov chains [303]. The segmenting and partitioning procedure is shown

in Fig. 22.

Having drawn independent samples from 12 segments of the MCMC analysis we

can visually inspect the stability of the thermodynamic integrand at 12 iterations

in the MCMC analysis. We can also inspect the convergence of the thermodynamic

integral. When the logarithm of the evidence has converged to O(10−2 accuracy,

we usually consider the power-posteriors to have converged to their final stationary
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distribution. Figure 23 shows the progression of the convergence of the thermody-

namic integrand as a function of the MCMC iteration. The MCMC iteration denotes

how far along the MCMC has progressed, where the final iteration value indicates

where the MCMC analysis was terminated. Figure 24 shows the convergence rate

of the thermodynamic integral as a function of the MCMC iteration for a variety of

integration techniques.

Finally, the absolute value of the difference between the last two thermodynamic

integration estimates from this segmenting procedure are then used for for the stan-

dard deviation of the error for the log evidence due to convergence error, σconvergence:

σconvergence ∼ | lnZpartitionN − lnZpartitionN−1 | (5.39)

This provides a rough estimate for estimating the consequences of potentially termi-

nating the MCMC analysis too early.

During the development of this technique a similar technique based on a moving-

block bootstrap method was developed in [304] within the context of gravitational

wave analysis for error estimation of the logarithm of the evidence from the ther-

modynamic integration method. We have not investigated this technique thoroughly

enough to compare its performance with our own method.

5.4.4 Temperature Placement Bias

The placement of inverse-temperatures β also affects the results of the numerical inte-

gration for the evidence [49, 51]. Research into the proper placement of β is ongoing

in the field of Statistics [305, 287]. The studies of [50, 51, 304] have used geometric

placements of β or drawn β from a power-law distribution as default temperature

placement estimates. This is often a good place to start when choosing tempera-

tures before conducting a multi-tempered MCMC analysis. The suggestion presented

in [292, 294, 287] is to conduct a pilot MCMC analysis where inverse temperatures are

placed according to one of these default temperature placement rules. Then a followup

re-analysis can be conducted where additional inverse-temperatures are placed where

the thermodynamic integrand changes rapidly or the behavior of the first derivative of

the thermodynamic integrand is not smooth or well-behaved. Additional re-analyses

can be conducted if the evidence integration method does not seem stable or is not

measured at a precision adequate for the analysis. It is recommended in [287] that
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more than 40 temperatures be used, and we have used > 50 inverse-temperatures

within the context of gravitational wave data analysis. In our studies we have relied

primarily on visual inspection and the suggestions in this paragraph for temperature

placement.

A potential improvement for temperature placement that improves upon visual

inspection of the thermodynamic integrand is presented in [290]. The method of

[290] calculates the intersection of the linear slopes taken from the derivatives of

the thermodynamic integrand from two adjacent β. We defer to [290] for additional

details on stopping rules for β placement. Finally, an additional possible improvement

is to consider the placement of β from as a Bayesian inference problem. This Bayesian

inference approach to numerical integration is known as Bayesian quadrature [306],

and it has been specifically applied to the problem of thermodynamic integration

in [307].

5.5 The Steppingstone Method for Estimating the Bayesian

Evidence

We can also use another Bayesian evidence estimation technique that makes use of

multi-tempered MCMC analyses. The steppingstone method is very similar to ther-

modynamic integration in that it requires multiple inverse-temperatures between 0

and 1 in the evidence calculation. The steppingstone method uses importance sam-

pling between adjacent temperatures to estimate the contribution to the marginal

likelihood Z at each interval βi−1-βi. Before we present the derivation of the step-

pingstone method we provide a brief, but useful derivation of another identity, called

the harmonic mean estimator for the evidence [308]. For the following section we

suppress use of ~θ and d in our notation for probability functions. We also choose to

use dθ in place of d~θ.

For the derivation of the harmonic mean estimator we follow a simplified version

of the derivation presented in [308]. We can re-express the definition of the evidence

as
1

Z =
1∫

πL dθ . (5.40)
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Here we can substitute the numerator with
∫
πdθ = 1, which gives:

1

Z =

∫
π dθ∫
πL dθ . (5.41)

Now we multiply both the numerator and denominator by P/P to get:

1

Z =

[∫
π

PP dθ
]/[∫

πL
P P dθ

]
. (5.42)

Which we simplify using Bayes’ theorem to substitute out for 1/P to give:

1

Z =

[∫
πZ
πLP dθ

]/[∫
πLZ
πL P dθ

]
. (5.43)

Cancelling out terms of π and moving terms of Z out of the integral to cancel, this

gives:
1

Z =

[∫
1

LP dθ
]/[∫

P dθ
]

=

∫
1

LP dθ. (5.44)

Therefore we can express the inverse of the evidence as:

1

Z = 〈L−1〉P . (5.45)

In Eq. (5.45) we have the inverse of the evidence is equal to the average value of the

inverse of the likelihood when sampled from the posterior distribution. The harmonic

mean estimator of the evidence is typically poorly behaved in the context of MCMC

analysis but it is a useful identity [51].

We follow [287] in the derivation of the steppingstone estimator. Recall from

Eq. (5.4) that the marginal likelihood can be expressed as:

lnZ = lnZβ=1 − lnZβ=0, (5.46)

which is equivalent to:

Z =
Zβ=1

Zβ=0

. (5.47)

Without loss of generality we can consider a set of 100 inverse-temperatures β uni-

formly distributed between 0 and 1 such that Eq. (5.47) can be expressed as

Z =
Zβ=0.01

Zβ=0

× Zβ=0.02

Zβ=0.01

× . . .× Zβ=0.99

Zβ=0.98

× Zβ=1

Zβ=0.99

. (5.48)
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This generalizes to

Z =

Nβ∏
i=1

Zβi
Zβi−1

. (5.49)

Here we use the ordering on β, as β0 = 0 < β1 < ... < βNβ−1 < βNβ = 1. Finally,

then, consider the evidence for the power-posterior at inverse-temperature βi given

as:

Zβi =

∫
πLβi dθ. (5.50)

We now divide by 1 using
∫
π dθ and multiply by 1 using Pβi−1

/Pβi−1
in the numerator

and denominator to get:

Zβi =

(∫
πLβi
Pβi−1

Pβi−1
dθ

)/(∫
π

Pβi−1

Pβi−1
dθ

)
. (5.51)

Using Bayes’ theorem we substitute Pβi−1
= (1/Zβi−1

) πLβi−1 to get:

Zβi =

(∫
πLβiZβi−1

πLβi−1
Pβi−1

dθ

)/(∫
πZβi−1

πLβi−1
Pβi−1

dθ

)
. (5.52)

Terms of Zβi−1
are independent of θ and so can be moved out of the integral where

they cancel. We can also cancel terms of π to get

Zβi =

(∫ Lβi
Lβi−1

Pβi−1
dθ

)/(∫
1

Lβi−1
Pβi−1

dθ

)
. (5.53)

Finally we recognize that in the denominator we have Eq. (5.45) for the inverse of

the evidence at the inverse-temperature βi−1. With some additional simplifications

in the numerator we have

Zβi = Zβi−1

∫
Lβi−βi−1Pβi−1

dθ. (5.54)

Thus we arrive at the key ingredient for the steppingstone estimator:

Zβi
Zβi−1

=

∫
Lβi−βi−1Pβi−1

dθ = 〈Lβi−βi−1〉Pβi−1
. (5.55)

We suppress some of the notation in Eq. (5.55) such that 〈Lβi−βi−1〉Pβi−1
≡ 〈Lβi−βi−1〉βi−1

and combine Eq. (5.55) into Eq. (5.49) to give the steppingstone estimator for the

evidence:

Z =

Nβ∏
i=1

〈Lβi−βi−1〉βi−1
. (5.56)
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Some care needs to be taken in the implementation of Eq. (5.56) as the form presented

is not numerically stable and we often must use the log likelihood and log evidence in

place of the likelihood and the evidence. A numerically stable form of the logarithm of

Eq. (5.56) is presented in [51]. It is noted by [51] that the logarithm of the evidence

in the steppingstone estimator exhibits some level of bias as an estimator of the

marginal likelihood. This bias is small when many inverse-temperatures are used, and

it was shown in [51] that the steppingstone estimator in many cases outperforms the

trapezoidal rule for thermodynamic integration with the same inverse-temperatures.

5.5.1 Monte Carlo Error

In [51] there is also an expression for the estimated variance of the logarithmic step-

pingstone estimator using an approximation method called the δ method [309]. The

δ method makes use of the asymptotic normal behavior of an estimator due to the

central limit theorem to approximate the variance of the estimator. The expression

in [51] for the variance of the logarithm of the evidence is however not presented

in a form that makes use of the log likelihood and thus can suffer from numerical

instability. We use a numerically stabilized version of the variance estimator in our

gravitational wave analysis as implemented in PyCBC Inference. We have found the

variance estimate from the δ method is typically comparable to the Monte Carlo error

estimate in the thermodynamic integration method. Repeated runs where the random

seed for the MCMC analysis was changed has indicated that the variance estimate

from presented in [51] is a plausible confidence interval estimate for the Monte Carlo

error.

5.5.2 Convergence Error

The method for calculating the error on the steppingstone estimator due to con-

vergence error is algorithmically identical to the thermodynamic integration method

presented in Section 5.4.3. The convergence of the evidence estimation for the step-

pingstone estimator for a gravitational wave analysis can be seen in Fig. 24. We rely

on the stability of the thermodynamic integrand in addition to inspecting the conver-

gence of the steppingstone log evidence estimate to decide if the method has converged

to a stationary estimate of the log evidence. This convergence can be influenced by
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number of inverse-temperatures used and the placement of those temperatures.

5.5.3 Temperature Placement Bias

The problem of optimal placement of inverse-temperatures β remains an active area

of research [51, 287]. For a large number of inverse-temperatures β the study of [51]

showed that the steppingstone estimator converges to the correct evidence estimate

faster than the thermodynamic integration method and [304] showed that this is also

true in applications to gravitational wave astronomy. Both [51] and [304] indicate

that the evidence estimation of the steppingstone estimator may be less sensitive

to temperature placement than the thermodynamic integration method implemented

via the trapezoidal rule. We therefore do not inspect temperature placement for

the steppingstone estimator but instead rely on inspection of the thermodynamic

integrand for insight on where to place β.

5.6 The Savage-Dickey Density Ratio Method for Estimating

Bayes Factors

We also consider another MCMC method for estimating Bayes factors to verify the

results of the multi-tempered methods. The Savage-Dickey density ratio method

requires two models, wherein one hypothesis is nested in the parameter space of the

other hypothesis. This requirement that the two models be nested is very restrictive

on the types of hypotheses that can be tested, but it has been used considerably in the

field of Cosmology [275]. We derive the method following [310]. We can consider two

hypotheses, Hsimple and Hcomplex. The hypothesis Hsimple is nested within Hcomplex via

a parameter A. When A in Hcomplex tends towards a critical value, Hcomplex becomes

identical to Hsimple. In our use of the Savage-Dickey density ratio this critical value is

A = 0. We can formalize this by stating the prior distributions from these hypotheses

in the following way:

π(~θsimple |Hsimple) ≡ π (α, β, γ, . . .} |Hsimple) (5.57)

π(~θcomplex |Hcomplex) ≡ π (α, β, γ, . . . , A} |Hcomplex) . (5.58)

Here π(~θsimple |Hsimple) represents the prior distribtuion on parameters in the simple

hypothesis, while π(~θcomplex |Hcomplex) represents the prior distribution on parameters
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in the complex hypothesis. The parameters α, β, γ are nuisance parameters in the

context of this Savage-Dickey density ratio method, and are shared parameters be-

tween the simple and complex hypotheses. We abbreviate the notation by writing the

prior under the simple hypothesis as πcomplex (ψ) and the prior under the more com-

plex hypothesis as πcomplex (ψ,A). Here the dependence on hypotheses is denoted by

the subscript simple or complex, and ψ denotes all parameters that are not A. In or-

der for the Savage-Dickey Density Ratio method to hold true the following expression

must be satisfied:

lim
A→0

πcomplex (ψ|A) = πsimple (ψ) . (5.59)

This states that in the limit that A tends to 0, the prior parameter space in the

complex hypothesis becomes identical to the prior parameter space in the simple

hypothesis. Under these conditions we then consider the definition of the Bayes

factor:

Bcomplex
simple ≡

Zcomplex(d)

Zsimple(d)
. (5.60)

The denominator can be expressed as

Zsimple(d) =

∫
πsimple (ψ) Lsimple (d |ψ) dψ. (5.61)

Since the models are nested, the prior and the likelihood under the complex hypothesis

at A = 0 is equivalent to the prior and likelihood under the simple hypothesis. This

gives

πcomplex (ψ,A = 0) = πsimple (ψ) (5.62)

and

Lcomplex (d |ψ,A = 0) = Lsimple (d |ψ) . (5.63)

If we substitute Eqss. (5.62) and (5.63) into Eq. (5.61) we get:

Zsimple(d) =

∫
πcomplex (ψ,A = 0) Lcomplex (d |ψ,A = 0) dψ. (5.64)

Integrating this over all ψ, leaves the A = 0 unintegrated over leaving us with Zsimple =

Lcomplex (d |A = 0). Using Bayes theorem, we can rewrite Lcomplex (d |A = 0) = [Pcomplex(A =

0 |d)Zcomplex(d)] / πcomplex(A = 0). This leaves us with:

Zsimple (d) =
Pcomplex (A = 0 |d)Zcomplex (d)

πcomplex (A = 0)
. (5.65)
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Finally, then we arrive at the Savage Dickey density ratio Bayes factor

Bcomplex
simple =

πcomplex (A = 0)

Pcomplex (A = 0 |d)
. (5.66)

Here the Bayes factor for the complex hypothesis relative to the simple hypothesis

is the ratio of the prior density at the critical value A=0 to the posterior density at

the critical value A=0 when sampling from the complex hypothesis’ parameter space.

This all assumes that the simple hypothesis is nested within the complex hypothesis.

A more rigorous derivation that avoids potential division by 0 is presented in [311]

where an additional term is multiplied to Eq. (6.31). For our purposes we will not

need to use this correction term.

The Savage-Dickey density ratio method requires the estimation of probability

densities at a point in the marginal prior and posterior distributions for the nesting

parameter A. We explore four methods for accurate probability density estimation.

The first two methods are simple histogram approaches, the third estimate is a Gaus-

sian kernel density estimator, and the last method is a cubic spline density estimator.

5.6.1 Histogram Methods

A simple method for estimating the probability density function is to histogram the

samples by counts and then normalize the histogram to integrate to unity. Under

this methodology the only relevant parameter to fitting the histogram to the data is

in the choice of bin-width, sometimes called bandwidth.

We use two bin-width algorithms to fit a histogram to the data. The first method

is Scott’s rule [312] . Scott’s rule is optimal if the underlying density of the function

is normally distributed. The bin-width h for this rule is defined as:

h =
3.5σ

N1/3
. (5.67)

Here σ represents the sample standard deviation of the data, and N represents the

number of samples in the data.

The second binning method is the Freedman-Diaconis binning method [313]. The

binning method makes use of the interquartile range (IQR) of the data rather than

the standard deviation σ. The IQR is defined as the difference between the 75th and

25th percentiles of the data. The bin-width h in the Freedman-Diaconis is

h =
2 IQR

N1/3.
(5.68)
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Where N represents the number of samples in the data.

There are other bin-width algorithms available but we have found that these two

methods are very robust towards estimating the density functions of some common

and expected probability distribution functions.

5.6.2 A Gaussian Kernel Density Estimator

We also use a Gaussian kernel density estimator available in the Python package

GetDist [20] for probability density estimation. GetDist is intended to accurately es-

timate one-dimensional and two-dimensional posterior probability distribution func-

tions from sample data produced from Bayesian MCMC analyses. A Gaussian kernel

density estimator uses small truncated-Gaussian distributions centered at the samples

of the data rather than individual bin-counts such as in a histogram. The Gaussian

kernel density estimator then combines the sum of the these truncated Gaussian dis-

tributions to create a smooth probability distribution function.

The advantage that GetDist offers over other Gaussian kernel density estimators is

that it comes with a robust linear-boundary bias correction to the standard Gaussian

kernel density estimator. Sharp boundaries on the distribution function can cause

bias to the probability distribution function estimation for Gaussian kernel density

estimators [20]. The Savage-Dickey density ratio method often requires us to estimate

the density of the posterior distribution at the boundary of the distribution and so an

estimator that can give an unbiased estimate of this density is highly desirable. There

are additional features and bandwidth optimization algorithms present in GetDist for

accurate density estimation but we defer to [20] for the full details.

5.6.3 The Logspline Estimator

The logspline estimator of [314] is written as a software package in R. The logspline

estimator estimates the probability density function of a set of data through a uni-

variate cubic spline fit to the logarithm of the probability density. The package places

knots of a cubic spline along the axis of the data through a likelihood function evalu-

ated through a data censoring procedure. The package uses Bayesian model-selection

based on the Akaike Information Criterion (AIC) [315] and the Bayesian Information

Criterion (BIC) [316] to ensure goodness of fit and to avoid overfitting to the data.
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The AIC is a model selection routine founded in information theory, while the BIC

is based on an approximation of the Bayes factor. The full details of the logspline

density estimator are beyond the scope of this dissertation. We utilize the maximum

likelihood (best) fit to the probability distribution function from the packages’ model

selection routine. The logspline density estimator of [314] is considered one of the

most accurate one-dimensional probability distribution function estimators in the R

language [317] and the logspline package comes specifically recommended in [310] for

the Savage-Dickey density ratio test.

5.6.4 Error Analysis for the Savage-Dickey Density Ratio

There are many different approaches to estimate the uncertainty in the Savage-Dickey

density ratio method. The most straightforward method is to conduct multiple

MCMC analyses using the same prior distribution to get multiple statistically in-

dependent estimates of the posterior distribution. The histogram methods using

Scott’s binning rule, the Freedman-Diaconis binning rule, the GetDist Gaussian ker-

nel density estimator, and the logspline density estimator can then be checked for the

posterior distribution for each MCMC analysis. A distribution of the Savage-Dickey

density ratio estimates can then be constructed and a 90% confidence interval can

be esitmated. Bayesian MCMC analyses, especially in the context of gravitational

wave data analysis, can be computationally expensive and so we consider a different

approach.

A simple method for a constructing a confidence interval on a test statistic is

through a resampling technique known as the bootstrap method [318]. The bootstrap

method resamples the data N times with replacement providing a set of N datasets to

estimate a test statistic on. In our case the test statistic is the Savage-Dickey density

ratio from our four density estimators. A confidence interval can be estimated for

these point-estimates of the Savage-Dickey density ratio by resampling the marginal

posterior distribution with replacement and calculating the Savage-Dickey density ra-

tio. The bootstrap method is resampling technique known as cross-validation. There

are many different kinds of cross-validation techniques available with potential to

improve our confidence interval estimation [319, 320], but we do not explore them

here.

Now that we have established all of the tools that we need for Bayesian hypothesis
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testing we discuss their application in gravitational wave analysis.

5.7 Prior Distributions for Gravitational Wave Analysis

Choosing a set of prior distributions for our Bayesian inference requires us to make

choices on acceptable distributions of plausible values for parameters. Choice of these

parameters and the probability distributions we want to ascribe to them describe the

physics of the gravitational waves that we wish to model. Here we briefly describe

some considerations when choosing prior distributions for Bayesian parameter esti-

mation for gravitational waves from compact binary coalescences. The choices of

parameters that describe gravitational waves have been described in Chapters 2, 3,

and 4, although not within the context of Bayesian parameter estimation. In this

section we follow the discussion of the choice of prior distributions for Bayesian pa-

rameter estimation from [303].

There are a number of parameters that describe the gravitational waves radiated

from a compact binary coalescence. These parameters include, the component masses

m1,2 of the binary as well as the three-dimensional spin vectors ~S1,2 of each of the

compact objects [321]. This gives us 8 intrinsic parameters to describe gravitational

waves from compact binary mergers such as binary black hole mergers. There are ad-

ditional possible intrinsic parameters that we can consider when modeling the physics

of binary black hole mergers, and there are yet more parameters that we will need to

model the physics of compact objects with matter such as binary neutron stars and

neutron star-black hole binaries. We do not consider them in this section.

Additional parameters are needed to describe gravitational waves from compact

binary mergers. The gravitational waveform observed by an Earth-based detector

network depends on six additional parameters: the signal’s time of arrival tcoalescence,

the binary’s luminosity distance dL, and four Euler angles that describe the transfor-

mation from the binary’s radiation frame to the detector network frame [322]. These

angles are the binary’s right ascension α, declination δ, a polarization angle Ψ, and

the inclination angle ι. The inclination angle is the angle between the binary’s angu-

lar momentum axis L̂ and the line of sight. These parameters are typicaly considered

as extrinsic parameters since they are not properties of the source of the gravitational

waves. Bearing all of these parameters in mind this brings the dimensionality of the
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problem of Bayesian inference up to 14.

Modeling gravitational waves from compact binaries is currently a challenging

problem for Bayesian inference due to the dimensionality of the signal parameter

space. This is further complicated by degeneracies between many of the signal’s

parameters. For example, to leading order the gravitational waveform depends on the

chirp massM≡ (m1m2)3/5/(m1 +m2)1/5 [35]. The mass ratio q enters the waveform

at higher orders and is more difficult to measure. This results in an amplitude-

dependent degeneracy between the component masses [323]. Similarly, the binary’s

mass ratio can be degenerate with its spin [324]. In Chapter 6 of this dissertation we

will explore difficulties of Bayesian inference due to parameter degeneracy.

Given a set of parameters ~θ, one can obtain a model of the gravitational-wave

signal from a binary merger using a variety of different waveform modeling methods,

including, but not limited to: post-Newtonian theory (see e.g. Ref. [36] and references

therein) and analytic models calibrated against numerical simulations [37, 38, 39, 40,

41, 42, 43]. The specific choice of waveform model and marginal prior distribution

probabilities on parameters specify a π(~θ |H) for a Bayesian analysis. The decision

of what parameters ~θ and prior π(~θ |H) to use depends on the physics that we wish

to explore in the model. A variety of waveform models are available for use in PyCBC

Inference, either directly implemented in PyCBC or via the LIGO Algorithm Library

(LAL) [325].

5.8 The Likelihood function for Gravitational Wave Analysis

In this section we follow the description of the likelihood function given in [303].

The gravitational wave strain data observed by gravitational-wave detector networks

enters Bayes’ theorem through the likelihood L(d | ~θ) in Eq. (5.8). Currently, PyCBC

Inference assumes that each detector produces stationary, Gaussian noise ni(t) that

is uncorrelated between the detectors in the network. The observed data is then

di(t) = ni(t) + si(t), where si(t) is the gravitational waveform observed in the ith

detector. For detectors that are not identical and co-located (as in the case of the

Advanced LIGO-Virgo network), each detector observes a slightly different waveform

due to their different antennae patterns which are functions of the sky position (right

ascension and declination) and polarization [322].
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Under these assumptions, the appropriate form of L(d | ~θ) is the likelihood for a

signal of known morphology in Gaussian noise (see e.g. Ref. [34] for its derivation),

which is given by

L(d | ~θ) ∝ exp

[
−1

2

N∑
i=1

〈ñi(f)|ñi(f)〉
]

= exp

[
−1

2

N∑
i=1

〈
d̃i(f)− s̃i(f, ~θ)|d̃i(f)− s̃i(f, ~θ)

〉]
,

(5.69)

where N is the number of detectors in the network. The constant of proportionality

for this Gaussian likelihood is not important for Bayesian inference under MCMC

simulation since the constant drops out when proposals are made by the MCMC for

how to traverse the parameter space [326]. This proportionality constant also cancels

out when calculating Bayes factors. The inner product 〈ã | b̃〉 is〈
ãi(f) | b̃i(f)

〉
= 4R

∫ ∞
0

ãi(f)b̃i(f)

S
(i)
n (f)

df , (5.70)

where R denotes the real part of the integral, S
(i)
n (f) is the power spectral density

of the of the ith detector’s noise. Here, d̃i(f) and ñi(f) are the frequency-domain

representations of the data and noise, obtained by a Fourier transformation of di(t)

and ni(t), respectively. The model waveform s̃i(f, ~θ) is the waveform in the frequency

domain. For a specified prior distribution on parameters, PyCBC Inference calculates

Eq. (5.69) and completes Bayesian inference for estimating parameter posterior dis-

tributions and estimating Bayesian evidences.
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Figure 16: (Light blue, solid) The probability of hypothesis HA being favored over

hypothesis HB after observation of the data d when considering calculating the natural

log of the odds ratio for each hypothesis. (Red, dashed) The posterior probability

of HB is the complement of the posterior probability of HA if there are only two

hypotheses available to test. When log10 O = 0, the probability for each hypothesis

is 50%.
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Figure 17: The z-score pertaining to the same level of probability for hypothesis 1

being favored over hypothesis 2 when considering the lnOHA
HB

. When lnOHA
HB

= 0, the

z-score is 0σ and the probability for each hypothesis is 50%. A z-score of > 5σ has

the same probability value as an odds ratio of > 107.
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Figure 18: The divergence of statistical inference for three hypothetical log Bayes

factor estimators E1, E2, E3 who are estimating the combined logarithm of the Bayes

factor over many observations. Each observation has a true ln B of hypothesis HA

relative to HB of 0.05, indicating no statistical significance at the level of a single

observation. Over 400 events however the combined logarithm of the Bayes factor is

20. The estimator E1 (light blue) estimates the logarithm of the Bayes factor for each

observation through an unbiased method, measuring a mean value of µi = 0.05 for

each observation with standard deviation σi = 0.05. Here i denotes the observation

number. The estimator E2 (light red) estimates the logarithm of the Bayes factor for

each observation through an unbiased method, measuring a mean value of µi = 0.05

for each observation with a very large standard deviation σi = 0.3. The estimator

E3 (light green) estimates the logarithm of the Bayes factor for each observation

through a slightly biased method, instead measuring a mean value of µi = 0 for each

observation but has a small measuring uncertainty of σi = 0.05. The inferences of

these estimators diverge after many observations due to systematic and statistical

uncertainty.
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Figure 19: The subplots of the thermodynamic integrand and subsequent derivatives

of the thermodynamic integral. (Top) The thermodynamic integrand when compared

to the inverse-temperature β. The curve should be smooth and montonic, however

it is very difficult to inspect the integrand on a linear β scale. (Middle) The second

derivative of the logarithm of the evidence is the variance of the power-posterior at an

inverse temperature β. There is some indication that an inflection point happens in

the curvature of the integrand at high temperature. (Bottom) The third derivative of

the logarithm of the evidence is also the third-order cumulant of the power-posterior

distributions at an inverse-temperature β. It is difficult to inspect the behavior of

this derivative on the linear β scale.
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Figure 20: The subplots of the thermodynamic integrand and subsequent derivatives

of the thermodynamic integral. (Top) The thermodynamic integrand when compared

to the inverse-temperature β. The curve should be smooth and montonic, however

there is some indication at β = 10−9 that this condition is not strictly met in the

Markov Chain Monte Carlo simulation. (Middle) The second derivative of the loga-

rithm of the evidence is the variance of the power-posterior at an inverse temperature

β. This function should also be smooth however there is some indication that at high

temperature that the derivatives are not stable. (Bottom) The third derivative of the

logarithm of the evidence is also the third-order cumulant of the power-posterior dis-

tributions at an inverse-temperature β. Here we can see that the derivatives are not

very sable or smooth. This may motivate moving our analysis to new multi-tempered

samplers that are optimized for thermodynamic integration.
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Figure 21: The first subplot denotes the untempered log-likelihood samples when

drawn from the power-posteriors at β. The expectation value of the untempered log-

likelihood when drawn from these power-posteriors is the thermodynamic integrand

and is plotted in red. The thermodynamic integral over all geometric paths given from

the samples is drawn in the second subplot. The sample-log-integral distribution is

approximately a Gaussian distribution. The standard error of the mean value of the

log evidence is given by the sample standard deviation divided by the square root of

the number of samples. The 90% confidence interval on the sample distribution in the

log-evidence is drawn in dashed orange lines. The 90% confidence region from this

standard error is shaded in red. The final subplot is a zoom-in on this 90% confidence

region showing the error estimate on the thermodynamic integral due to Monte Carlo

sampling.
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Figure 22: The partitioning of the MCMC analysis to check on the convergence of

the thermodynamic integrand and the thermodynamic integration. The dark-green

bar at the top represents all of the samples collected by the MCMC analysis. This

analysis is divided into 12 partitions represented by the dark gray lines. The light-

green segments represent partitions of the analysis that independent samples can be

drawn from. The black region represents samples discarded as burn-in samples for the

MCMC. The light grey region represents data that is ahead of the partition and thus

not used in drawing independent samples for that partition. Partition 12 produces

the identical samples as drawing independent samples according to the nacl algorithm

from PyCBC at the end of the analysis.
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Figure 23: The convergence of the thermodynamic integrand for a gravitational wave

analysis using 51 temperatures. This analysis neglected β = 0, but is otherwise

an acceptable representation of the thermodynamic integrand. The Iteration-Start

denotes the point is taken from a segment beginning with that MCMC iteration

and ending with the MCMC iteration denoted as Iteration-End. These iterations

correspond to the segments found in Fig. 22. The logarithm of the evidence is shown

also in the figure caption, and as the MCMC analysis progresses the integral converges

to a set value. The thermodynamic integrand can be visually seen to converge to a

S-like curve but the shape and curvature are unique to hypotheses and choice of

data. Early in the MCMC analysis the thermodynamic integrand can be mishaped

as the power-posteriors have not all converged. Experience has told us that the power-

posteriors that take the longest to converge tend to be in the region where the average

log likelihood changes rapidly. Here this is in the region between β ∈ (10−2, 1).
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Figure 24: The convergence of the thermodynamic integral for a gravitational wave

analysis using 51 temperatures as a function of the MCMC iteration. These choice

of points of iterations correspond to the segments found in Fig. 22. As the analysis

progresses the logarithm of the evidence from all quadrature methods tend towards

a fixed value.
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Chapter 6

Searching for a Measurable

Pressure-Gravity Mode Instability

in GW170817

6.1 Introduction

The discovery of the binary neutron star merger GW170817 [54] has given us a new

way to explore the physics of neutron stars. Recent studies have measured the star’s

tidal deformability and placed constraints on the equation of state of the neutron

stars [54, 55, 56, 57, 19, 58, 59, 60, 61, 62]. [63] have suggested that the star’s tidal

deformation can induce nonresonant and nonlinear daughter wave excitations in p-

and g-modes of the neutron stars via a quasi-static instability. This instability would

remove energy from a binary system and possibly affect the phase evolution of the

gravitational waves radiated during the inspiral. Although [327] concluded that there

is no quasi-static instability and hence no effect on the inspiral, [64] claims that

the instability can rapidly drive modes to significant energies well before the binary

merges. However, the details of the instability saturation are unknown and so the size

of the effect of the p-g mode coupling on the gravitational-waveform is not known [64].

The discovery of the binary neutron star merger GW170817 by Advanced LIGO and

Virgo provides an opportunity to determine if there is evidence for nonlinear tides

from p-g mode coupling during the binary inspiral.
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Since the physics of the p-g mode instability is uncertain, [328] developed a param-

eterized model of the energy loss due to nonlinear tides. This model is parameterized

by the amplitude and frequency dependence of the energy loss, and the gravitational-

wave frequency at which the instability saturates and the energy loss turns on. For

plausible assumptions about the saturation, [328] concluded that > 70% of binary

merger signals could be missed if only point-particle waveforms are used, and that

neglecting nonlinear tidal dynamics may significantly bias the measured parameters

of the binary. Bayesian inference can be used to place constraints on nonlinear tides

during the inspiral of GW170817. An analysis by [18] computed Bayes factors that

investigate whether the GW170817 signal is more likely to have been generated by

a model which includes nonlinear tides or one which does not. [18] find a Bayes

factor of order unity, and conclude that the GW1701817 signal is consistent with

both a model that neglects nonlinear tides and with a model that includes energy

loss from a broad range of p-g mode parameters. However, the prior space used in

this analysis includes a large region of parameter space where the amplitude of the

effect produces a gravitational-wave phase shift that is extremely small. In this case,

a waveform that includes p-g mode parameters will have a likelihood that is identical

to the likelihood of the waveform without the p-g mode instability. The p-g mode

model extends the standard waveform model by adding additional parameters that

describe the nonlinear tidal effects. However, when including new parameters in a

hypothesis if the likelihood does not vary across large portions of the prior volume

for these new parameters relative to the likelihood of the original model, then the

Bayes factor will not penalize this additional prior volume, nor will it penalize any

extraneous parameters in the model (see e.g. [278, 275]). We examine prior space of

p-g model used by [18] and find that although the p-g model model contains regions

that are not consistent with the standard model, there are large regions of the prior

space where the likelihood is high because the p-g mode model is degenerate with the

standard model. These regions of prior space dominate the evidence and hence the

Bayes factor neither favors nor disfavors the inclusion of p-g mode parameters.

We investigate a variety of different prior distributions on the p-g mode parameters

beginning with a prior distribution that is similar to that tested in [18] and includes

large regions of the parameter space that produce a negligible gravitational-wave

phase shift. When comparing the evidence for this model with the standard waveform
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model used by [19] we find a Bayes factor of order unity, as expected. We then

investigate a prior distribution in which the p-g mode instability parameters are

constrained to induce a phase shift to the waveform that is greater than 0.1 radians.

This phase shift is calculated from the time the waveform enters the sensitive band

of the detector to the time when the waveform reaches the innermost stable circular

orbit. We choose this threshold to exclude trivial regions of the parameter space

that produce a non-measurable effect. However, we again find a Bayes factor of

order unity when compared to the model hypothesis that does not model the p-g

mode instability. Investigation of these results showed that this is due to parameter

degeneracies between the p-g mode model and the intrinsic parameters of the standard

waveform model.

Finally, we reduce the prior space to contain only the regions where the p-g mode

waveform is not degenerate with the standard model by computing the fitting fac-

tor [329] of p-g signals against a set of standard waveforms. We do this to restrict

the region of parameter space to that where the p-g effect is measurably distinct from

a model that neglects nonlinear tides. We calculate the Bayes factor as a function

of the fitting factor. We find that as the p-g mode parameter space is restricted to

exclude regions that have a high fitting factor with standard waveforms, the Bayes

factor decreases significantly. Regions of the nonlinear tide parameter space that have

a fitting factor of less than 99% (98.5%) are strongly disfavored by a Bayes factor

of 15 (25). While certain prior distributions of p-g mode parameters are consistent

with the data, we find that these distributions are ones that contain large regions of

non-measurable parameter space either because the effect produced is too small to

measure, or the effect is degenerate with other parameters of the standard model. We

conclude that the consistency of the GW170817 signal with the model of [328] is due

to degeneracies and that regions where non-linear tides produce a measurable effect

are strongly disfavored.
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6.2 A Waveform Model for Nonlinear Tides from a p-g mode

instability

As two neutron stars orbit each other, they lose orbital energy Eorbital due to gravi-

tational radiation ĖGW . The gravitational waveform during the inspiral is well mod-

eled by post-Newtonian theory (see e.g. [210]). The effect of the p-g mode insta-

bility is to dissipate orbital energy by removing energy from the tidal bulge of the

stars [63, 64, 328]. Once unstable, the coupled p- and g-modes are continuously

driven by the tides, giving rise to an extra energy dissipation ĖNL for each star in

the standard energy-balance equation [35]

Ėorbital = −ĖGW − Ė1
NL − Ė2

NL. (6.1)

Since the details of how the nonlinear tides extract energy from the orbit is not known,

[328] constructed a simple model of the energy loss and calculated plausible values

for the model’s parameters. In this model, the rate of orbital energy lost during the

inspiral is modified by

ĖNL ∝ Afn+2Θ(f − f0), (6.2)

where A is a dimensionless constant that determines the overall amplitude of the

energy loss, n determines the frequency dependence of the energy loss, and f0 is the

frequency at which the p-g mode instability saturation occurs and the effect turns

on. By solving Eq. (6.1), [328] computed the leading order effect of the nonlinear

tides on the gravitational-wave phase as a function of A, n, and f0. In this analysis,

they allowed each star to have independent values of A, f0, and n, but found that

the energy loss due to nonlinear tides depends relatively weakly on the binary’s mass

ratio. Hence, they consider a model that performs a Taylor expansion in the binary’s

component mass [330] and include only the leading order terms in the binary’s phase

evolution. Given this, we parameterize our nonlinear tide waveform with a single set

of parameters A, n, and f0, by setting Ė1
NL = Ė2

NL. We keep only the leading order

nonlinear tide terms when we obtain the quantities t(f) and φ(f) used to compute

the stationary phase approximation [27, 102, 331]. This approach is reasonable for

GW170817, since both neutron stars have similar masses and radii [19].

The dependence of A, n, and f0 on the star’s physical parameters is not known [64].

[328] estimate that plausible parameter ranges are A . 10−6, 0 . n . 2, and 30 .
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f0 . 80 Hz. [332] found that the frequency at which the instability begins to grow is

equation-of-state dependent and can occur at gravitational-wave frequencies as high

as 700 Hz. [333] suggest that the instability may only act during the late stages

of inspiral, (above 300 Hz), otherwise the large energy dissipation will cause the

temperature of the neutron stars to be very large.

In this chapter, we compare two models for the gravitational waves radiated by

GW170817. The first is the standard restricted stationary-phase approximation to

the Fourier transform of the gravitational waveform h̃(f), known as the TaylorF2

waveform [27]. We begin with the same waveform model used by [19], which is ac-

curate to 3.5 PN order in the orbital phase, 2.0 PN order in spin-spin, self-spin and

quadrupole-monopole interactions, 3.5 PN order in spin-orbit coupling, and includes

the leading and next-to-leading order corrections from the star’s tidal deformabil-

ity [84, 83, 103, 216, 208, 334, 209, 211, 335, 336, 337]. We then construct a second

model that adds the leading order effect of nonlinear tides computed using the model

of [328]. Below we detail the construction of this second model, by computing the

leading order nonlinear tidal Fourier phase term for the TaylorF2 model as well as

the leading order nonlinear tidal energy dissipation.

We begin our derivation with the energy balance equation presented in [328],

Ėorbit = −ĖGW − 2ĖNL, (6.3)

for Ėorbit being the rate of energy loss of a quasi-circular orbit, ĖGW being the energy

rate loss due to gravitational waves in the point-particle model, and ĖNL being the

rate of energy loss from each star’s p-g mode instability. We assume that the energy

losses from p-g mode instability will be comparable in each star. The Ė notation

refers to the derivative of the energy with respect to time. We now give explicit

values to these energy rates with respect to gravitational wave frequency, f .

Ėorbit = −G
2/3π2/3M5/3ḟ

3f 1/3
(6.4)

is the orbital energy decay. The gravitational wave energy rate as a function of

frequency is

ĖGW =
32G7/3 (πMf)10/3

5c5
. (6.5)

Finally, we take from [328] that each star, indexed by i, should have an energy
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dissipation rate of

ĖNL,i =
(2Gmi)

2/3m1m2

M
(πfref)

5/3A

(
f

fref

)n+2

Θ(f − f0) (6.6)

where mi is the component mass of the neutron star, M is the total mass (M = m1

+ m2). Assuming that the binaries have equal mass in Eq.. (6.6) and solving for ḟ ,

we arrive at the following expression

df

dt
= π

(
f

fref

)7/3

f 2
ref ×

[
96

5

(
GMπfref

c3

)5/3(
f

fref

)4/3

+ 6A

(
f

fref

)n
Θ(f − f0)

]
.

(6.7)

Given Eq. 6.7, we can now consider a time domain signal of the form, h(t) = A(t)

eφ(t), where h(t) is the strain of the gravitational wave at some time t before merger,

A(t) is the amplitude of the gravitational wave strain at that same time, and φ(t) is

the orbital phase of the binaries[338]. This stationary phase approximation lets us

approximate the Fourier transform of this time domain signal as

h̃(f) =

∫ ∞
−∞

h(t)dt =

∫ ∞
−∞

A(t)e−2πift+φ(t)df ≈ B̃(f)e−iΨ(f) (6.8)

where B̃(f) is the Fourier amplitude of the frequency domain waveform, and Ψ(f) is

the Fourier phase of the frequency domain waveform. We express this Fourier phase

as

Ψ(f) = 2πft(f)− φ(f).. (6.9)

One can derive t(f) by solving the differential equation given in Eq.. (6.7). For

convenience we redefine and reorganize this differential equation as:∫ t

tc

dt =

∫ x

xc

fref

κ

x−7/3dx

αx4/3 + Θ(x− x0)βxn
(6.10)

where x= f/fref , dx= df/fref , x0 = f0/fref , and κ= πf 2
ref . The integration bounds are

the time of coalescence (tc = 0) to some time t prior to merger, and from dimensionless

frequency at coalescence (xc = fc/fref = ∞) to dimensionless frequency x prior to

merger. Here α and β are given by the following expressions:

α =
96

5

(
GπMfref

c3

)5/3

(6.11)
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β = 6A (6.12)

We can simplify the differential equation given in Eqn. (6.10) if we assume that the

point particle gravitational wave contribution dominates (α � β), we take a power

series expansion assuming large α relative to β. This gives to lowest order in β:∫ t

tc

dt =

∫ x

xc

fref

κ

(
1

αx11/3
+

Θ(x− x0)βxn−5

α2(n− 5)

)
dx (6.13)

The first term in Eq.. (6.13) corresponds to the lowest order post-Newtonian result

from the point-particle model. Integrating the second term and respecting the Θ(x−
x0) so as to align the waveform at merger (t = 0), we arrive at the leading order

contribution of p-g mode instability to t(f):

∆t(f) =


−25
1536

1
π

A
n−4

(
GMπfref

c3

)−10/3
(
f0

fref

)n−4

, f < f0

−25
1536

1
π

A
n−4

(
GMπfref

c3

)−10/3
(

f
fref

)n−4

, f ≥ f0

(6.14)

Following a similar approach we can calculate φ(f) via dφ = 2πfdt = 2π(f/ḟ)df .

Taking the same power series expansion, integrating so that the waveform coalesces

at t = 0, and examining the leading order contribution from p-g mode instability we

arrive at ∫ φ

φc

dφ =

∫ x

xc

fref

κ

(
1

αx8/3
+

Θ(x− x0)βxn−4

α2(n− 4)

)
dx. (6.15)

Integrating this through from φc, the phase at coalescence, to some earlier φ prior to

coalescence, and integrating the right hand side of Eq.. (6.15) we get the lowest order

post-Newtonian correction to the phase for the point particle model in integrating the

x−8/3 term and the lowest order correction due to p-g mode instability in integrating

the xn−4 term. Thus the correction to the gravitational wave phase due to p-g mode

instability is

∆φ(f) =


−25
768

A
n−3

(
GMπfref

c3

)−10/3
(
f0

fref

)n−3

, f < f0

−25
768

A
n−3

(
GMπfref

c3

)−10/3
(

f
fref

)n−3

, f ≥ f0

(6.16)
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Finally, we can express the Fourier phase in terms of Eq.s. (6.14) and (6.16) as:

∆Ψ(f) =


2πf∆t(f0)−∆φ(f0), f < f0

2πf∆t(f)−∆φ(f), f ≥ f0

(6.17)

which fully expanded becomes:

∆Ψ(f) =


− 25

768
A
(
f0

fref

)n−3 [
f
f0

1
n−4
− 1

n−3

]
, f < f0

− 25
768
A
(
GMπfref

c3

)−10/3
(

f
fref

)n−3 [
1

n−4
− 1

n−3

]
, f ≥ f0

(6.18)

Here, fref is a reference frequency which we set to 100 Hz following [328], G is Newton’s

gravitational constant, c is the speed of light, and M = (m1m2)3/5/(m1 + m2)1/5 is

the chirp mass of the binary.1 This waveform model can have a degeneracy in the

gravitational wave phasing with chirp mass when n = 4/3. For this value of n,

the Fourier phase in Eq. (6.18) for nonlinear tides is Ψ(f) ∝ f−5/3, which is the

same power law dependence as the chirp mass phasing. A degeneracy occurs when

f0 is comparable or lower than the frequency at which chirp mass can be accurately

measured. In this case, the p-g mode instability is degenerate with changing the chirp

mass. In principle, there will be other degeneracies with other intrinsic parameters

of the gravitational wave signal for other values of n.

We generate the standard TaylorF2 waveform using the LIGO Algorithm Li-

brary [325] and multiply this frequency-domain waveform by the term due to the

nonlinear tides,

h̃TaylorF2+NL(f) = h̃TaylorF2(f)× exp[−iΨNL(f)]. (6.19)

The Fourier phase for the nonlinear tides is implemented as a patch to the version

of the PyCBC software [339] used by [19]. Both the standard and nonlinear tide

waveform models are terminated when the gravitational-wave frequency reaches that

1Appendix A of [328] gives the change to the gravitational-wave phase φ(f) as a function of

frequency and not the change to the Fourier phase Ψ(f) (see e.g. [331] for a discussion of how these

differ). The former quantity is useful to compute the change in the number of gravitational-wave

cycles, but the latter is required to compute the modification to the TaylorF2 waveform. The study

by [18] corrects this mistake.
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of a test particle at the innermost stable circular orbit of a Schwarszchild black hole

of mass M = m1 + m2. For the neutron star masses considered here, this frequency

is between 1.4 kHz and 1.6 kHz.

We also derive the first-order energy dissipation from p-g modes in the frequency-

domain. This can be solved as,

ENL,i (f
′) =

∫ f ′

0

(
dENL,i

dt

)(
dt

df

)
df. (6.20)

In this derivation we only keep the leading order in A, so we take dt
df

from the

point-particle term in the approximation and neglect terms in A2. The derivation

in Eq. (6.7) made use of the simplification that m1 = m2, but we do not take this

approach here. The point-particle form of dt
df

is [338]:

dt

df
=

5

96

c5

G5/3π8/3M5/3f 11/3
. (6.21)

Placing this equation into Eq. (6.6) and then placing Eq. (6.21) into Eq. (6.20) gives:

dENL,i

df
=

5

96

(2mi)
2/3 m1m2Ac

5

G(m1 +m2) πM5/3
f
−n−1/3
ref f (n−5/3)Θ(f − f0) (6.22)

Integrating this Eq. (6.22) over all frequencies gives us the energy dissipated by the

p-g mode instability for a neutron star of mass mi:

ENL,i(f) =
5

96

(2mi)
2/3 m1m2Ac

5

Gπ (m1 +m2)M5/3
f
−n−1/3
ref

(
fn−2/3 − fn−2/3

0

) 1

n− 2/3
. (6.23)

Dimensional analysis confirms that Eq. (6.23) is in the form of Joules. In our case

however, we are only concerned with the energy dissipated by the p-g mode instability

at fISCO when the stars have finally merged. For neutron stars fISCO is always greater

than f0, and so the energy dissipation, summing over the contributions from both

stars, is:

ENL(fISCO) =
5

96

(2m1 + 2m2)2/3 m1m2Ac
5

GπM5/3
f
−n−1/3
ref

(
f
n−2/3
ISCO − f

n−2/3
0

) 1

n− 2/3
.

(6.24)

In the next section we move on to describing appropriate prior distribution for

the p-g mode instability parameters as well as the other intrinsic parameters for

GW170817.
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6.3 Bayesian Model Priors

Bayes’ theorem offers a methodology for evaluating the plausibility of models rel-

ative to a given data set, and then updating these prior model beliefs with better

hypotheses. Bayes’ theorem states, in the notation of Chapter 5, that

P
(
~θ |H,d

)
=
π
(
~θ |H

)
L
(
d|H, ~θ

)
Z (d|H)

, (6.25)

where Z (d|H) is the evidence of the model H, π
(
~θ |H

)
is the is the prior distribution

of the parameters given the signal model, L
(
d|H, ~θ

)
is the likelihood of the data for

a particular set of parameters ~θ, and P
(
~θ |H,d

)
is the posterior distribution of the

parameters given the signal model. The likelihood used in this analysis assumes a

Gaussian model of detector noise and depends upon the noise-weighted inner prod-

uct between the gravitational waveform and the data from the gravitational-wave

detectors [340, 341]. The choice of prior distributions on the parameters of the signal

model represent the hypothesis that we want to test. The posterior distributions

reflect how to update ones beliefs with respect to the likelihood and the data. Thus,

by examining many different parameter hypotheses we can investigate the extent to

which GW170817 is accurately modeled by p-g mode instability waveform models.

In our analysis, we fix the sky location and distance to GW170817 [342, 343]

and assume that both neutron stars have the same equation of state by imposing

the common radius constraint [19]. In the case of the standard TaylorF2 waveform

HTaylorF2, our analysis is identical to that described in [19]. This analysis considered

three prior distributions on the binary’s component mass. Here, we only consider the

uniform prior on each star’s mass, with m1,2 ∼ U [1, 2]M�, and the Gaussian prior

on the component masses m1,2 ∼ N(µ = 1.33, σ = 0.09)M� [148]. For both mass

priors, we restrict the chirp mass to the range 1.1876M� <M < 1.2076M�. Since

our analysis is identical to that of [19], we refer to that paper for the details of the

data analysis configuration.

Given the uncertainty on the range of the nonlinear tide parameters, we follow [18]

and let n ∈ U [−1.1, 2.999], draw A from a distribution uniform in log10 between 10−10

and 10−5.5, and f0 ∈ U [10, 100] Hz. We use this along with a uniform prior distribution

on the mass from [19].
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We also consider two alternative choices of drawing f0: we draw f0 from a uniform

distribution between 15 and 100 Hz, as used by [328], and from a uniform distribution

between 15 and 800 Hz to allow for the larger values of f0 suggested by [332] and [333].

For these choices we consider A uniform in log10 between 10−10 to 10−6. For these

alternative prior distributions we also consider applying a further constraint on the

parameters. Since some combinations of A, n, and f0 can produce extremely small

gravitational-wave phase shifts [328], we place a cut on the gravitational-wave phase

shift due to nonlinear tides

δφ(fISCO) =
−25

768

A

n− 3

(
GMπfref

c3

)−10/3
[(

f0

fref

)n−3

−
(
fISCO

fref

)n−3
]
, (6.26)

where fISCO is the termination frequency of the waveform (which is always larger than

f0 in our analysis). This gravitational-wave phase shift from the p-g mode instability

is strictly negative, but we take the convention of using the absolute value of the phase

shift for convenience. We restrict the prior space to values of δφ > 0.1 rad. Phase

shifts of δφ ≈ 0.1 rad have an overlap between the two waveform models greater than

99.98%. This cut means that the resulting priors on A, n, and f0 are not uniform,

but are biased in favor of combinations of parameters that may produce a measurable

effect on the phasing of the waveform due to nonlinear tides. While δφ is a simple

proxy for how similar or dissimilar two waveforms are, formally this is given by the

match between two waveforms. A δφ of 1 radian may have a low overlap with a

waveform if the radian is accumulated over a large bandwidth but a high overlap if

the radian is accumulated near the very end of the signal. Fig. 25 shows a depiction

of the prior distributions used when using a permissive prior on δφ, similar to [18],

and when using a constraint on the p-g mode parameters such that δφ > 0.1 rad.

A stricter approach to constructing a prior distribution that considers p-g mode

effects that are distinguishable from standard waveforms is to examine the fitting

factor between a distribution of p-g mode waveforms and a set of comparable TaylorF2

waveforms. To do so, we examine the fitting factor of our Bayesian inference analysis

with respect to a template bank of non-spinning, mass-only TaylorF2 waveforms.

We construct a template bank of ∼ 20, 000 non-spinning, mass-only waveforms of

comparable masses to the prior distribution on the mass parameters. The template

bank is constructed with component masses, m(1,2) ∈ (1.0, 2.0)M�, chirp masses,

Mc ∈ (1.1826, 1.2126)M�, and a minimal match placement of 99.9%. We then place
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a threshold on the evidence calculation from the Bayesian analysis based on the

maximum overlap with this template bank of standard waveforms. This permits an

analysis of the Bayes factor for nonlinear tides where the prior distribution on p-g

mode parameters is determined by the fitting factor with a set of standard signals.

6.4 Bayesian Parameter Estimation and Hypothesis Testing

Methods

We use the gravitational-wave strain data from the Advanced LIGO and Virgo de-

tectors for the GW170817 event, made available through the GW Open Science

Center [48, 344]. We then repeat the analysis of [19] using the waveform model

HTaylorF2+NL to compute the evidence p(d |HTaylorF2+NL).

We use Bayesian model selection to determine which of the two waveform models

described in Sec. 6.2 is better supported by the observation of GW170817. Bayes’

theorem in Eq. (6.25) permits us a method for model comparison through the ratio of

the evidence from each model. This ratio of the model evidences is called the Bayes

factor, which we denote as B. A Bayes factor greater than unity indicates support for

the model in the numerator, while a Bayes factor less than unity indicates support

for the model in the denominator. The Bayes factor can be written as,

BNL
!NL =

Z(d |HNL)

Z(d |H!NL)
. (6.27)

The numerator of Eq. (6.4) is the evidence for nonlinear tides Z(d |NL). For the

denominator of Eq. (6.4), we use the evidence Z(d | !NL) provided as supplemental

materials by [19]. We have used NL (!NL) to denote the nonlinear tidal (standard

models).

Posterior distributions for parameters of interest can be also computed by marginal-

izing the posterior probability distribution over other parameters. Marginalization to

obtain the posterior probabilities and the evidence is performed using Markov Chain

Monte Carlo (MCMC) techniques. To compute posterior probability distributions and

evidences, we use the PyCBC Inference software [339, 303] using the parallel-tempered

emcee sampler [283, 284]. This sampler allows the use of multiple temperatures to

sample the parameter space [283, 285, 286]. These multiple temperatures β permit

the construction of tempered posterior distributions that form a slow thermodynamic



116

transition from the prior distribution to the posterior distribution in Eq. 6.25. Tem-

pered posteriors are called power-posteriors in [49, 50]. The power-posterior can be

according to:

P(~θ |d, H)β ∝ π(~θ |H)L(d | ~θ,H)β. (6.28)

The normalization constant for a power-posterior is the evidence for that power-

posterior, given as Z(d |H)β =
∫
π
(
~θ |H

)
L(d | ~θ,H)βd~θ.

From these power-posterior distributions we use the thermodynamic integration

method [49, 50] to estimate the logarithm of the evidence, ln Z, given as:

lnZ =

∫ 1

0

〈lnL〉β dβ. (6.29)

The estimate of the evidence is determined by the integral over inverse temperatures,

β, of the average untempered log likelihood, 〈lnL〉β, drawn from the power-posterior

corresponding to the inverse temperature β. An approximation to this integral can

be made through use of trapezoid rule integration method. Following [19] we use 51

temperatures where we use a combination of geometric and logarithmic temperature

placements to improve the accuracy of the integral [292].

We verify the results of the thermodynamic integration evidence calculation by

comparing it with the steppingstone algorithm [51], which utilizes the same like-

lihoods from multi-tempering sampling as the thermodynamic integration method.

Both trapezoidal rule thermodynamic integration and steppingstone methods can

have some bias in the estimate of the logarithm of the Bayesian evidence due to a

finite number of temperatures being used. This bias is mitigated by an increased

number of temperatures [51, 304]. Additionally, this bias can be mitigated in ther-

modynamic integration by improving the order of the quadrature integration [290].

We also use a higher order trapezoidal rule from [290] and verify that the results are

consistent.

We also estimate the error for each method of evidence calculation. The thermo-

dynamic integration method and steppingstone algorithm both contain Monte Carlo

error [287]. For the thermodynamic integration method the Monte Carlo error on the

thermodynamic integral can be estimated following the methodology of [287]. We use

this same uncertainty estimate for the higher order trapezoidal rule as well. In [51]

there is a Monte Carlo variance estimate for the logarithm of the evidence from the

steppingstone method that we also use here.
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The last source of error in the evidence calculation that we consider is whether

the MCMC has converged to stable likelihood values across all of the temperatures.

This requires examining the stability of the evidence calculations as the MCMC pro-

gresses. Independent samples are drawn according to the nacl method as described

by [303] at various points in the run. This method takes a specific endpoint iteration,

takes half the endpoint iteration as the starting point iteration, and calculates the

autocorrelation length of the samples between the starting point and the endpoint

iteration. Independent samples are drawn in intervals of the maximum autocorre-

lation length for the samples within this segment. We divide the full run into 12

segments and calculate the evidence from each one of these segments to examine how

the evidence progresses along the MCMC iterations. Gradually the evidence begins

to settle towards a constant value as the MCMC progresses. We take the difference

between the last two evidence estimates as the convergence error.

We estimate the total error on our evidence calculations, σlnZ , by adding the

errors in quadrature according to,

σlnZ =
√
σ2

MC + σ2
convergence . (6.30)

Here, the error σMC is the Monte Carlo error and σconvergence is the convergence error.

Finally, to estimate the Bayes factors we model the log evidence as a normal distribu-

tion, with mean given from the log evidence calculation, and standard deviation given

by the error propagation formula in Eq. (6.30). The logarithm of the Bayes factor

can then be calculated from the difference in the logarithm of the evidences. The

standard Bayes factor is then the exponential of the logarithm of the Bayes factor.

As a means of verifying the results from the above Bayes factor calculations we also

make use of the Savage-Dickey density ratio method [52, 53, 310] for calculating the

Bayes factor of the model where the p-g mode parameters were chosen independently

of one another. This is the approach taken in [18].

For certain kinds nested models where prior distributions on parameters are fac-

torizable, or independent from one another, there exists a method for deriving the

Bayes factor for two models from one parameter estimation Markov-Chain Monte

Carlo analysis. If there exists a parameter A for which at a critical value Acrit the

parameter model is equivalent to a nested model that has no parameterization in

A, then the Bayes factor for the model with A compared to the model without A
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is taken as the limit of the prior density at Acrit relative to the posterior density at

Acrit when sampled from the model that includes A. This method does not require

a multi-dimensional integral or one-dimensional integral to be approximated. In the

case of the p-g mode instability the parameter that effectively turns on and turns off

the instability is the amplitude factor A. The Bayes factor form the Savage-Dickey

density ratio is the ratio of the probability densities between the prior distribution

density as A → 0 and the posterior distribution density as A → 0. This expression

can be written as:

BNL
!NL = lim

A→0

π
(
A |HNL

)
P (A |d, HNL)

. (6.31)

Formally, the parameter model is constructed such that the prior density on A is

distributed uniformly in log10A and so the limit cannot be strictly taken from within

the data acquired in these analyses. However, when Ais10−10, the matched-filter is

not sensitive enough to to distinguish the difference between A = 0 and A = 10−10

to > 99.99% overlap. This indicates that substituting A → 0 for A → 10−10 will

generate indistinguishable results in this analysis.

This changes the problem of inference from numerical integration to that of prob-

ability density estimation. In our analysis, only the unconstrained δφ model has a

marginal prior distribution on A that is independent of all of the other parameter

priors. This model is similar to [18], where A is uniform in log10 between 10−10 and

10−5.5. Our prior distributional density is analytic and we know the exact prior prob-

ability density at 10−10 is 0.22222. This reduces the probability density inference

to the marginal posterior distribution density on A at 10−10. There are a variety

of methods for estimating the density of a probability distributions from samples of

data that we introduced in Chapter 5. We consider the histogram method using

Scott’s binning method [312], the histogram method using the Freedman-Diaconis

binning method [313], the Gaussian kernel density estimator GetDist from [20], and

the logspline estimator from [314].

6.5 Results

Compared to the standard waveform model, we find that the p-g mode model with

priors where δφ is unconstrained gives a Bayes factor of order unity. When we use

p-g mode priors where δφ > 0.1 radians we also find a Bayes factor of order unity.
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Following the Bayes factor interpretation of [278, 345], these Bayes factors cannot

be considered to be statistically significant. A Bayes factor of unity indicates that

whatever prior beliefs we had about the plausibility of the p-g mode instability prior

to the observation of GW170817 is unchanged by the observation of GW170817.

For the narrow range of 15 ≤ f0 ≤ 100 Hz where δφ > 0.1 rad, we find that the

Bayes factor is ∼ 0.7. This is also true of the prior range 10 ≤ f0 ≤ 100 Hz with

unconstrained δφ. The broader range 15 ≤ f0 ≤ 800 Hz, where δφ > 0.1 rad, we find

that B ∼ 0.7 as well. Our estimated statistical error on Bayes factors due to Monte

Carlo uncertainty and convergence uncertainty is ∼ ±0.1 at the 90% confidence level.

In Section 6.5.1 we discuss the performance of the Bayes factor estimation from the

multi-tempered Bayesian evidence estimators. In Section 6.5.2 we verify the results

of the multi-tempered Bayes factor estimates with the Savage-Dickey density ratio

test for the unconstrained δφ model.

6.5.1 Multi-Tempered Bayes Factors

Our Bayes factor estimation from 6 multi-tempered estimators on the logarithm of the

Bayes factor can be seen in Fig. 27 when comparing the hypothesis on p-g mode insta-

bility for the unconstrained δφ prior to the hypothesis presented in [19] for the uniform

mass prior with a common equation of state constraint. The 6 multi-tempered estima-

tors are fully described in Chapter 5; they are the thermodynamic integration method

with the trapezoidal rule, a first-order correction to the trapezoidal rule, Simpson’s

rule, a first-order correction to Simpson’s rule, a cubic integration rule, and the step-

pingstone method. The different methods give similar probability distributions on

the estimate of the Bayes factor. Those Bayes factor uncertainty distributions follow

a log-normal distribution and have tails that skew towards a Bayes factor of unity.

The Bayes factors for all hypotheses using all of the quadrature methods in Chap-

ter 5 can be seen in Table 8. The median values of the Bayes factors range between

roughly 0.63 and 0.76, with the 5th and 95th percentile interval being ∼ ±0.1. Un-

der a binary choice between the p-g mode instability model and the standard model

we can calculate a posterior probability of the nonlinear tidal hypothesis. Without

giving preference to either model, we calculate a posterior probability of P(HNL |d)

between 34 % and 46% at the 5% and 95% confidence levels. These posterior prob-

abilities correspond to an odds of 0.5 : 1 and 0.85 : 1, which are not statistically
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significant and indicate that the data are uninformative to testing either hypothesis.

If we consider all models collectively, the posterior probability on any one particular

model reduces significantly due to the increase in number of hypotheses available to

consider.

6.5.2 Savage-Dickey Density Ratio Bayes Factors

We report on the Bayes factors from the Savage-Dickey density ratio test on the model

for p-g mode instability for an unconstrained δφ prior compared to a standard model.

The Savage-Dickey density ratio requires us to know the probability density for the

marginal prior and posterior on A at 10−10.

Since the marginal prior and posterior distribution functions on A are distributed

logarithmically, it is convenient to do the density estimation in the log10A. Under

this change of variables the marginal prior distribution on log10A is uniform between

−10 and −5.5, hence the prior distribution function is:

π (log10A) =
1

−5.5− (−10)
= 0.22, −10.0 ≤ log10A ≤ −5.5 (6.32)

Following this we estimate the marginal posterior probability density of log10A us-

ing the Savage-Dickey density ratio methods in Chapter 5. We use the two histogram

density estimator methods with Scott’s binning rule and the Freedman-Diaconis bin-

ning rule for the posterior probability density estimation. We also use the Gaussian

kernel density estimator GetDist, and the logspline density estimating package found

in R for this posterior probability density estimation. A comparison of the density

estimates for the marginal posterior probability density on log10A for the different

density estimators can be seen in Fig. 28. We then calculate the Savage-Dickey density

ratio Bayes factor and use a bootstrap resampling method to resample the posterior

distribution 5, 000 times to get a confidence interval on our Bayes factor estimates.

The results can be seen in Fig. 29, and are summarized in Table 9.

6.5.3 Parameter Estimation Results

Bayes factor hypothesis testing only provides half of the Bayesian inference method [276].

In this section we examine the results of the parameter estimation if we assume that

nonlinear tides are present in the GW170817 signal. Remarkably, when we consider
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the way that the nonlinear tides enter the Fourier phase in Eq. (6.18), we see that if

n = 4/3 then the nonlinear tides enter the Fourier phase of the waveform with the

same power law dependence on frequency f as the chirp mass, that is Ψ(f) ∝ f−5/3.

We also note that for the effect of nonlinear tides to be degenerate with chirp mass,

they must turn on at a frequency f0 that is close to the low-frequency limit of the

detector’s sensitive band. If the effect turns on at higher frequencies, then the phasing

will change in the detector’s sensitive band and it is more difficult to compensate for

the nonlinear tide effect with a change in chirp mass.

The marginalized posterior distributions on parameters shown in Fig. 33 show

a strong degeneracy between the source-frame chirp mass Msrc and nonlinear tides

that creates a tail in the chirp mass posterior skewed towards lower values of chirp

mass than the value measured using the standard waveform model,Msrc = 1.1867±
0.0001M� [19]. We see a peak in the posteriors of n and f0 at n . 4/3 and f0 . 35 Hz.

This parameter degeneracy is also correlated with large A, where 10−8 . A < 10−6.

The samples with large posterior values of δφ seen in Fig. 33 are strongly correlated

with source-frame chirp masses Msrc . 1.1866. We have examined the change to

the posterior distribution when changing the low-frequency cutoff of the likelihood

integration from 20 Hz to 25 Hz, and to 30 Hz. In these analyses, the peak in the

posterior of f0 tracks the low-frequency cutoff of the likelihood integration, confirming

that this effect is due to the chirp-mass degeneracy with the low-frequency cutoff. The

chirp mass degeneracy is also present in the analysis with the broader range of f0,

however it is not as pronounced in the posterior samples due to the larger prior space

being explored.

We also examine the leading order estimated energy dissipated through nonlinear

tides for the case of a uniform prior on the mass, with 15 ≤ f0 ≤ 100 Hz, with

a δφ > 0.1 radian constraint. In our analysis, the 95th percentile of the estimated

energy dissipated through nonlinear tides from our prior distribution is approximately

2.6 × 1051 ergs at the terminating frequency of the TaylorF2 waveform, fISCO. The

estimated energy radiated by gravitational waves by neutron stars of the estimated

mass range of GW170817 is greater than ∼ 1053 ergs. Our analysis finds the energy

dissipated through nonlinear tides at the 95% posterior credible percentile is 3 ×
1050 ergs. We find our 95% posterior credible percentile to be less than the 90%

confidence interval constraint of . 2.7× 1051 ergs in [18]. Samples from our posterior
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distribution that have dissipation energies greater than the 90% credible interval tend

to come from two modes in the parameter space. The first mode is from parts of the

parameter space with large A, for n ∼ 4/3, low f0, and δφ ∼ 100 rad. The second

mode is from parts of the parameter space with A & 10−8, for 1.6 . n < 3.0, and

δφ ∼ 1 − 10 rad. The high end of the nonlinear tidal energy constraints are thus

dominated by waveforms that are degenerate with the standard signal.

6.5.4 Improving the Chirp Mass Degeneracy with an Independent Elec-

tromagnetic Observation

In this section we consider whether the chirp mass degeneracy could be mitigated by

the measurement of the chirp mass by an independent electromagnetic observation.

We find that we require a very strong constraint on the chirp mass independent of

the gravitational wave data to mitigate the parameter degeneracy from the p-g mode

instability. Here we make a quantitative analysis of how accurate an electromagnetic

observer’s measurement of the chirp mass would have to be to constrain the chirp

mass back to the measurements found in [19].

To do so we consider the joint posterior distribution, P(M|dGW,dEM), from two

statistically independent data sets, the gravitational wave data dGW, and a mock

electromagnetic data set dEM. We then define a (hyper) prior on the chirp mass that

we believe credible from the joint observation of GW170817 from gravitational wave

detectors and a mock electromagnetic observer. The joint posterior distribution on

the chirp mass is then

P(M|dGW,dEM) =
π(M)

Z(dGW,dEM)
L(dGW,dEM |M). (6.33)

We can separate L(dGW,dEM |M) into L(dGW |M)L(dEM |M) since the measure-

ments are statistically independent measurements of the chirp mass of the binaries.

This gives

P(M|dGW,dEM) =
π(M)

Z(dGW,dEM)
L(dGW |M)L(dEM |M). (6.34)

Here Z(dGW,dEM) is the normalizing constant that maintains the equality. Since

we only consider one parameter M we can calculate this normalizing constant us-

ing a fine-grid trapezoidal rule. We denote this normalizing constant as c from now
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on. To find the marginal likelihood of L(dGW |M) we use Bayes’ theorem from

the available marginal posterior distribution on M. That is, we use L(dGW |M) =

P(M|dGW)/πGW(M) for the properly normalized marginal posterior and prior dis-

tributions on the chirp mass. We can now express the joint posterior distribution

as

P(M|dGW,dEM) =
π(M)

c
× P(M|dGW)

πGW(M)
× P(M|dEM)

πEM(M)
(6.35)

Now, since our electromagnetic observer is purely hypothetical we let P(M|dEM)

be a Gaussian distribution whose mean value estimation of the chirp mass is centered

at the posterior mode of the standard models marginal chirp mass posterior distri-

bution [19]. We will vary the standard deviation of this Gaussian distribution to see

when the mock electromagnetic observer constrains the joint observation to be nearly

identical to the measurement of the chirp mass from the standard model of [19]. We

specify our (hyper) prior π(M) = πGW(M) = πEM(M). The prior of πGW(M) was

uniform in chirp mass in the detector fram betweenM∈ (1.1876, 1.2076). The mock

estimation procedure can be seen in Fig. 30 where we find that an electromagnetic

observer would need a constraint on σM < 0.0001M�. This corresponds to a measure-

ment error on the chirp mass of less than 0.017 %, well outside the realm of current

methods.

One might consider an improvement on this approach by using the marginal chirp

mass distribution when marginalizing over all p-g mode models and then comparing

it to the marginal chirp mass distribution when marginalizing over all models in [19].

The result, however, is qualitatively identical.

6.5.5 Strict Constraints on the p-g mode instability

Given the observed parameter degeneracies and the statistically nonsignificant results

of the nonlinear tidal hypotheses that we have tested, we now investigate whether

there are regions of the parameter space where nonlinear tidal effects are not de-

generate with standard waveforms. We do this by thresholding the results of our

Bayesian MCMC analysis p-g waveforms on their fitting factor with standard wave-

forms. We combine the results of our analysis on the uniform mass, δφ > 0.1 rads,

narrow f0 prior distribution model to obtain 22, 600 independent samples. We then

examine the fitting factor of every independent sample, from every temperature, with
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a non-spinning, mass-only template bank of TaylorF2 waveforms with comparable

masses to GW170817. For simplicity, we only keep the mass parameters and p-g

mode parameters in the overlap calculations, since the correlation between nonlinear

tidal dynamics is most apparent in the measured chirp mass. When we examine the

fitting factor between nonlinear tidal waveforms and this template bank we observe

that there is a very high match between standard templates and nonlinear tidal wave-

forms when n = 4/3. The nonlinear tidal waveforms that least match this template

bank tend to be those parameterized by large amplitude and large gravitational-wave

phase shift. We then recompute the Bayes factor when discarding samples from the

analysis below a particular fitting factor with the template bank. To ensure a robust-

ness of the point-estimate we use a bootstrap method to estimate the Monte Carlo

error for this Bayes factor estimate [318]. The bootstrap estimated Monte Carlo error

tends to be much larger than the convergence error for this analysis and so we neglect

inclusion of convergence error in the estimate. A statistically significant Bayes factor

of ∼ 30 (20), against nonlinear tides, is found when the waveform has an overlap

less than 98.5 (98.85)% match with the standard waveform, see Fig. 31. While this

metric is insufficient to rule out the p-g mode instability, it is a useful metric in under-

standing why the evidence is nearly identical to the evidence from [19]. We find that

portions of the p-g mode parameter space that most contribute towards the evidence

come from regions of the parameter space that have a high overlap with standard

waveforms. This occurs either through A being too small to induce a large change in

the phase of the waveform or through an associated parameter degeneracy with the

chirp mass caused by large A, low f0, and n ∼ 4/3.

6.6 Discussion

We have used the observation of GW170817 and the model of [328] to look for evidence

of nonlinear tides from p-g mode coupling during the inspiral [63, 64, 332]. Over the

broad prior space, we find a Bayes factor of unity which gives an inconclusive result

on whether nonlinear tides are favored or disfavored in GW170817, consistent with

[18]. This Bayes factor can be interpreted as stating that there is insufficient evidence

to change our prior beliefs about the credibility of the p-g mode hypothesis after the

observation of GW170817. A closer examination of the posterior distribution lead us
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to conclude that nonlinear tides are consistent with the signal GW170817 because

they either cause very small phase shifts to the waveform, or the nonlinear tides must

enter the waveform in a way that is degenerate with the other intrinsic parameters

of GW170817. Regions of the nonlinear tide parameter space that have a fitting

factor of less than 99% (98.5%) are disfavored by a Bayes factor of 15 (25). we find

that waveforms from a p-g mode instability with overlap > 98.5 %, tend to either

induce a very small phase shifts to the waveform or are degenerate with other intrinsic

parameters of GW170817. This leads us to conclude that modeling GW170817 with

nonlinear tidal parameters may not offer advantages over using a simpler model. We

conclude that the consistency of the GW170817 signal with the model of [328] is due

to parameter degeneracy and that regions where nonlinear tides produce a measurable

effect are strongly disfavored.

In principle, one could improve our analysis by separately parameterizing the am-

plitude, turn-on frequency, and frequency evolution for each star as in [18]. However,

we find our results to be broadly consistent with [18], and so we do not expect these

to affect the main conclusion of our paper. Further improvements on the parametric

model of p-g mode instability could include a higher order post-Newtonian expansion

of the instability, or further understanding of the instability’s interaction with neutron

star magnetic fields [64]. Nonlinear tides are poorly understood and the contribution

from other stellar oscillation modes may yet contribute to a more accurate picture

of the interior dynamics of neutron stars [333]. Current models of the gravitational-

wave phase shift caused by nonlinear tides from the p-g mode instability suffer from

parameter degeneracies with the other intrinsic parameters of a neutron star binary.

A measurement of the binary’s chirp mass that is independent of gravitational-wave

observations would break this degeneracy. However, for a system like GW170817,

this would require measurement of the binary’s chirp mass to a precision greater

than ∼ 0.02% using an electromagnetic counterpart, which is implausible. Absent

improved theoretical understanding of nonlinear tides from p-g mode coupling that

can excludes degenerate regions of the parameter space a priori, we do not expect

this situation to improve with future detections.

Finally, we now it will ever be possible to accumulate sufficient evidence to rule-in,

or rule-out the presence of nonlinear tides due to a p-g mode instability. When more
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binary neutron star events are detected by gravitational wave networks it will be pos-

sible to take advantage of the fact that we can accumulate evidence for hypotheses

across statistically independent events. The Bayes factor for testing the same hy-

potheses for many events is the product of the Bayes factor for the hypothesis for

each individual observation of the merger of binary neutron stars. As more binary

neutron star events are detected we can accumulate evidence for or against p-g mode

instability through continuous testing of these hypotheses on these individual events.

We can also update our parameter inference on the nonlinear tidal parameters to

potentially constrain them more sharply. In Chapter 5 we described how to use the

Bayes factor for N events to build a combined Bayes factor via following expression.

There are no publicly available binary neutron stars other than the observation of

GW170817 to build evidence for the nonlinear tidal hypothesis so we consider the

hypothetical case where multiple GW170817-like neutron star events are detected.

To do so we consider the results of our current analysis on GW170817. Here we

consider two estimators for the logarithm Bayes factor, the thermodynamic integra-

tion method which we found to have a log Bayes factor of µ ∼ −0.38, and at worst

σ ∼ 0.1, and the logspline estimator with the Savage Dickey density ratio which

we found to have a log Bayes factor of µ ∼ −0.46, σ ∼ 0.06. While the log Bayes

factor for the thermodynamic integration method is formally log-normal, the Bayes

factor estimated from the logspline estimator is not formally log-normal. This dis-

crepancy does not significantly affect our proposed analysis. We also consider the

analysis of [18] which found a log Bayes factor of 0.03+0.70
−0.58 at 90% confidence using

the Savage-Dickey density ratio. We model this as a Gaussian distribution in the

logarithm Bayes factor with µ = 0.03, σ = 0.4 so as to have a similar 90% interval

width. The hypothesis test of [18] is distinct from our own in that the waveform model

parametrizes the nonlinear tidal parameters for each star independently and makes

different assumptions about the correlation between the nonlinear tidal parameters

and the masses of the binaries. This could be considered a systematic difference in

the waveform modeling that could potentially impact Bayesian inference. In Chapter

5 we discussed how a combined Bayes factor for continued testing of a hypothesis

over many observations could be attained by multiplying the Bayes factor from each

observation. We illustrate this method in Fig. 32 where we show the divergence of

the Bayes factors after 15 repeat observations of GW170817 for Bayesian hypothesis



127

test techniques and potentially due to waveform systematics. After 15 repeat ob-

servations of GW170817 our thermodynamic integration and logspline Savage-Dickey

density ratio estimates give a statistically significant result where we can confidently

reject the nonlinear tidal hypothesis. Our model of the analysis of [18] suggests a

different decision, i.e. statistical significance is not achieved. The assumptions of

this approach are very strong and are not motivated by realistic physics, but they

highlight the importance of the need for robust understanding of our systematic and

statistical uncertainties when we use Bayesian hypothesis testing.

A more realistic approach would be to consider the a realistic population of binary

neutron star mergers. Considerations for the source properties have been discussed

in this chapter of this dissertation as well as in chapter 3 of this dissertion. A soft-

ware injection campaign where simulated binary neutron stars drawn from a model

of the population of neutron stars could be considered like in chapter 3 of this dis-

sertation. Simulated signals could be added to different Gaussian noise realizations

informed by the expected sensitivity of future observing runs from Advanced LIGO

and Virgo. Bayesian inference and hypotheses could be performed on each simulated

signal and predictions about future events could be made. The largest contributor to

the Bayesian inference will in all likelihood be due to signals with the largest signal

to noise ratio rho. For isotropically and homogeneously distributed binary neutron

star mergers we can expect a power-law distribution on the ρ [346, 347]. More specif-

ically, we can expect that for a network of interferometers with a signal to noise ratio

detection threshold of ρthreshold that our distribution will follow

p(ρ) = 3
ρ3

threshold

ρ4
. (6.36)

This expression is a normalized probability distribution function in the domain that

ρ > ρthreshold. The signal to noise ratio ρ is permitted to go to positive infinity. From

Eq. (6.36) we can expect an average ρ to be equal to 3
2
ρthreshold. If we assume a very

conservative ρthreshold = 11, then the probability of observing a gravitational wave

neutron star mergers with signal to noise ratio greater than or equal to the signal to

noise ratio of GW170817 (ρ ≈ 34) is ∼ 3 %. At a signal to noise ratio of ∼ 34 we have

found that the p-g mode instability hypothesis has a Bayes factor of approximately

1. We expect that 97% of neutron star detections will have a lower signal to noise

ratio than GW170817 and so we expect that the Bayes factor will be less informative
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for the p-g mode instability hypothesis than it was for the observation of GW170817.

For these 97% of mergers the parameter degeneracies between the nonlinear tidal

parameters and the other intrinsic parameters of the binary may be more pronounced

and less informative. Moreover, the study of [328] found that the nonlinear tidal

parameters are degenerate with the inferred luminosity distance of the binary. While

the waveform model of [328] incorrectly used the stationary phase approximation in

the construction of the waveform model, c.f. this study and [18], this degeneracy could

potentially obscure future studies of the nonlinear tidal hypothesis with future binary

neutron stars. With all of this in mind, i.e. the difficulties in parameter estimation

and Bayesian hypothesis testing, we may have to wait for hundreds of binary neutron

star mergers to accumulate sufficient evidence to make a decision on whether binary

neutron stars are contain nonlinear tides from a p-g mode instability. Additional

choices on conductin and tuning an MCMC analysis in addition to what choice of

prior distributions in the modeling will make this endeavor all the more difficult.
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Figure 25: Prior probability distributions on the parameters (f0, n, A) for the wave-

form model HNL = HTaylorF2+NL and the resulting prior on the gravitational wave

phase shift δφ shift due to nonlinear tides. The dark blue, solid lines shows the

priors when f0 is drawn from a uniform distribution between 15 and 100 Hz with a

δφ ≥ 0.1 rad constraint restricting some of the prior space. The pink, dotted lines

represent prior distributions on the nonlinear tidal parameters similar to [18].
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Figure 26: The estimates of the logarithm of the evidence from multi-temper evidence

integration methods. We model the logarithm of the evidence as a Gaussian in log-

space. These data are for the logarithm of the evidence from the unconstrained δφ

prior for the p-g mode instability model. The trapezoidal rule estimates the lowest

log evidence for this model, and the cubic rule has the smallest estimated statistical

error uncertainty (the smallest confidence interval). The mean values of the higher

order quadrature rules appear to be closer together to one another than they are to

the trapezoidal rule.
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Figure 27: The distribution for the Bayes factor for nonlinear tides from p-g mode

instability from the unconstrained δφ prior relative to the uniform mass, common

equation of state prior from [19] under the assumption that the logarithm of the

evidence for each model is well approximated by a Gaussian distribution. but our

method is sufficiently accurate in the high-sample limit. When the uncertainty on

the logarithm of the evidences in the Bayes factor estimation are sufficiently small,

the Bayes factor distribution is approximately normal in shape, but formally they are

log-normal distributions.
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Figure 28: The prior and posterior density estimations from different density esti-

mators for the parameter log10A. The prior density is uniform in log10 and is 0.2

between −10 and −5.5. The Logspline curve (dark grey) is the density estimation

under the logspline density estimator. The GetDist (light pink curve) is the Gaus-

sian kernel density estimator described in [20]. The histograms are FD and Scott

for the Freedman-Diaconis binning rule and Scott’s binning rule, respectively. We

can see here that there is some wasted prior space at large log10A. Removing this

low-likelihood region from the prior hypothesis model would likely move the p-g mode

instability Bayes factor closer to unity.
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Figure 29: A comparison of the Bayes factor estimates for p-g mode instability with

the permissive prior on δφ vs no p-g mode instability from different methods. Here,

SDDR refers to the Savage Dickey density ratio test for each corresponding estimator

technique. We compare these results to the higher order trapezoidal rule from ther-

modynamic integration. The other multi-tempered Bayes factors are comparable to

the one shown here and so are not displayed. The estimates generally agree as can

be seen from comparing values in Table 8 and Table 9.
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Figure 30: (Top) The prior distribution on the chirp mass for two gravitational wave

astrophysical hypotheses. The first hypothesis is the uniform mass and constrained

equation of state constraint model from [19], while the second model is the p-g mode

instability hypothesis with unconstrained δφ. The marginal posterior distributions on

the chirp mass are in dashed-blue and solid, light-red, respectively. (Bottom) Combin-

ing a simulated Gaussian electromagnetic posterior on the chirp mass (light-blue) and

a prior on the chirp mass we can combine the posterior distributions from the gravita-

tional wave data with the p-g mode instability from the unconstrained δφ model with

this electromagnetic posterior to construct a joint posterior distribution (solid, red)

that closely matches the inferred chirp mass for GW170817 from [19]. The simulated

Gaussian electromagnetic posterior has mean centered at the maximum a posteriori

value from [19], µ = 1.186731M�, and standard deviation, σ = 0.000085M�.
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Figure 31: The estimated Bayes factors for nonlinear tidal parameters when the

samples are filtered by the fitting factor to a non-spinning, mass-only template bank

of TaylorF2 waveforms. The convention in Bayes factor is switched from the main

body of the text to represent the Bayes factor for the ratio of evidence for no nonlinear

tides, p (d |HTaylorF2), to the evidence for nonlinear tides, p (d |HTaylorF2+NL). This

is abbreviated as B !NL
NL . The three methods for estimating the Bayes factor are the

thermodynamic integration method from trapezoid rule integration (dark grey, dashed

line), the thermodynamic integration method from the higher order trapezoid rule

(yellow, small-dashed line), and the steppingstone algorithm (dark pink, solid line).

A bootstrap method is used to estimate approximate errors on the Bayes Factors.

Error bars represent 5th and 95th percentiles. The sampling error becomes large at

a fitting factor . 99%.
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Figure 32: (Top) A comparison of Gaussian approximations of the logarithm of the

Bayes factor using different estimators or waveform systematics. Note that the LVC

estimate here is a rough Gaussian approximation based on the reported bounds in [18].

The 90% confidence regions are shaded in. Positive log Bayes factors are indicative of

support for the p-g mode hypothesis, while negative log Bayes factors are indicative

of support for the null hypothesis. (Bottom) For repeated GW170817-like binary

neutron star mergers the cumulative logarithm of the Bayes factor for the p-g mode

hypothesis vs the null hypothesis begin to diverge in estimation. The solid lines

represent the cumulative median estimates, while the shaded regions represent the

cumulative 90% confidence intervals. Waveform systematics or uncontrolled variables

in the Bayes factor estimation methods may be the main driver of this divergence

and future meta-analyses will have to control for these sorts of uncertainty.
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Figure 33: The marginalized posterior distributions for the uniform mass prior and

a f0 restricted to the range 15 and 100 Hz. The vertical lines on the marginalized

histograms display the 5th, 50th, and 95th percentiles of the posteriors. The three-

detector network signal to noise ratio for each sample is given on the color-bar. The

posterior scatter plots show 50% and 90% credible interval contours. The posteriors

on n is peaked n . 4/3 and for values of f0 close to the lower end of the detector’s

low frequency sensitivity. In this region of parameters space, the effect of nonlinear

tides is degenerate with chirp mass, causing a secondary peak in the chirp mass

posterior. It can be seen from the δφ–M plot (lower left) that large phase shifts

due to nonlinear tides are due to points in parameter space where a value of chirp

mass can be found that compensates for the phase shift of the nonlinear tides. These

are the combined posteriors from 9 runs. It is notable that the the peaks in the f0

posterior, at f0 ≈ 30 Hz and f0 ≈ 70 Hz seem to be reversed from those in Fig 2. of

[18]. Note that the marginalized posterior for A is diminished for A < 10−8 due to

the δφ prior constraint.
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Chapter 7

Conclusions

In Chapter 2, we discussed the PyCBC search pipeline, a matched-filter search pipeline

for the detection of compact binary coalescence, and the results that it gathered during

LIGO’s first observing run. In the first observing run, the LIGO detectors observed

gravitational waves from the merger of two stellar-mass black holes, GW150914. The

binary coalescence search detects GW150914 with a significance greater than 5.1σ

during this first observing run. Detailed parameter estimation for GW150914 is re-

ported in Ref. [2], the implications for the rate of binary black hole coalescences in

Ref. [348], and tests for consistency of the signal with general relativity in Ref. [349].

Ref. [350] discusses the astrophysical implications of this discovery. During the first

observing run PyCBC also discovered a second binary merger, GW151226 [136]. A

third gravitational wave candidate, LVT151012, was also discovered but was only

found with a false alarm rate less than 0.44 yr−1, and could not be confidently claimed

as a gravitational wave candidate.

In Chapter 3, we reported the non-detection of binary neutron stars and neutron

star-black hole mergers in Advanced LIGO’s first observing run. We estimated the

sensitive volume of Advanced LIGO to such systems and were able to place 90%

confidence upper limits on the rates of binary neutron star and neutron star-black

hole mergers, improving upon limits obtained from Initial LIGO and Initial Virgo

by roughly an order of magnitude. Specifically, we constrained the merger rate of

binary neutron star systems with component masses of 1.35±0.13M� to be less than

12,600 Gpc−3 yr−1. We also constrained the rate of neutron star-black hole systems

with neutron star masses of 1.4M� and black hole masses of at least 5M� to be less
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than 3,210 Gpc−3 yr−1 for a population where the component spins are (anti-)aligned

with the orbit. Lastly, we constrained the rate of neutron star-black hole systems

with isotropic spin distributions in the components of the spin direction to be less

than 3,600 Gpc−3 yr−1.

We compared these upper limits with existing astrophysical rate models and found

that the current upper limits are in conflict with only the most optimistic models of

the merger rate for binary systems with neutron stars. For continued non-detections

of binary neutron star mergers and neutron star-black hole mergers in the second and

third observing runs, we estimated plausible upper limits on the rate of these mergers

given estimates of the detector sensitivity during the second and third observing runs.

Finally, we have explored the implications of this non-detection of binary neutron

stars and neutron star-black hole binaries on the beaming angle of short GRB. We

find that, if one assumes that all GRB are produced by binary neutron star mergers,

then the opening angle of gamma-ray radiation must be larger than 2.3+1.7
−1.1

◦
; or larger

than 4.3+3.1
−1.9

◦
if one assumes all GRB are produced by neutron star-black hole mergers.

In Chapter 4, we presented a full catalog of gravitational-wave events and can-

didates from a PyCBCbased, templated, matched-filter search of the LIGO O1 open

data. Our analysis improved upon [17, 246] and the analysis of Chapter 2 by using

improved ranking of candidates via a phase, amplitude and time delay consistency

check, an improved background model, and a template bank targeting a wider range

of sources [45, 46, 47]. We verifed the discovery of GW150914 and GW151226 and

report an improved statistical significance of the candidate event LVT151012. In the

analysis of [17, 246] LVT151012 was found to have a false alarm rate of approxi-

mately 1 per 2 years, but in the analysis of 1-OGC we found that LVT151012 could

be instead found with a false alarm of 1 per 24 years. If the analysis had restricted

itself to a search of the parameter space where binary black holes had been discovered

before, the false alarm rate could have been estimated at 1 per 446 years. We also

found that in our analysis the probability of LVT151012 being of astrophysical origin

is approximately 98%. With these improvements of the statistical significance esti-

mation we confidently claim LVT151012 as a gravitational wave event and designate

it GW151012. Apart from the detections of GW150914, GW151012, and GW151226,

none of the other candidate events in the 1-OGC analysis were found to be sta-

tistically significance. All of these candidates are listed in our catalog available at



142

www.github.com/gwastro/1-ogc.

In Chapter 5 we developed tools for Bayesian hypothesis testing. We discussed how

to calculate the Bayes factor, a likelihood ratio used to evaluate the relative statistical

significance of hypotheses. We looked at Markov-Chain Monte Carlo methods for

calculating Bayes factors such as the thermodynamic integration method and the

steppingstone method. We also introduced the Savage-Dickey density ratio method

for calculating Bayes factors of nested hypotheses.

In Chapter 6, we examined the detection of GW170817, a binary neutron star

merger discovered by LIGO and Virgo during their second observing run [54]. We

conducted Bayesian parameter estimation and hypothesis testing to examine whether

nonlinear tides from a nonresonant, nonlinear p-g mode instability were compatible

with the observation of GW170817. Our resulting analysis showed that nonlinear tides

were broadly compatible with the observation of GW170817, although we found that

this occurred because the nonlinear tides either did not cause a measurable change

to the waveform or the nonlinear tidal parameters were degenerate with the other

intrinsic parameters in the signal. We also found that we could rule out nonlinear

tides from a p-g mode instability that matched standard waveforms with < 98.5%

match with a Bayes factor of ∼ 25.

The field of astrophysics will in the not too distant future be able to answer

many long standing questions regarding compact binaries through increased number

of gravitational wave detections. In this thesis, we presented methods for investigating

astrophysical implications for non-detections of gravitational waves as well as methods

for improving the sensitivity of compact binary coalescence searches towards already

detected classes of binary systems. We also developed Bayesian hypothesis testing

methods for investigating astrophysical models on detected signals.

www.github.com/gwastro/1-ogc
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