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ABSTRACT

In today’s world, many applications are characterized by the availability of large amounts of

complex-structured data. It is not always possible to fit the data to predefined models or distribu-

tions. Model dependent signal processing approaches are often susceptible to mismatches between

the data and the assumed model. In cases where the data does not conform to the assumed model,

providing sufficient performance guarantees becomes a challenging task. Therefore, it is important

to devise methods that are model-independent, robust, provide sufficient performance guarantees

for the task at hand and, at the same time, are simple to implement. The goal of this dissertation is

to develop such algorithms for two-sided sequential binary hypothesis testing.

In this dissertation, we propose two algorithms for sequential non-parametric hypothesis test-

ing. The proposed algorithms are based on the random distortion testing (RDT) framework. The

RDT framework addresses the problem of testing whether a random signal, Ξ, observed in addi-

tive noise deviates by more than a specified tolerance, τ , from a fixed model, ξ0. The data-based

approach is non-parametric in the sense that the underlying signal distributions under each hy-

pothesis are assumed to be unknown. Importantly, we show that the proposed algorithms are not

only robust but also provide performance guarantees in the non-asymptotic regimes in contrast

to the popular non-parametric likelihood ratio based approaches which provide only asymptotic

performance guarantees.

In the first part of the dissertation, we develop a sequential algorithm SeqRDT. We first in-

troduce a few mild assumptions required to control the error probabilities of the algorithm. We

then analyze the asymptotic properties of the algorithm along with the behavior of the thresholds.

Finally, we derive the upper bounds on the probabilities of false alarm (PFA) and missed detec-

tion (PMD) and demonstrate how to choose the algorithm parameters such that PFA and PMD

can be guaranteed to stay below pre-specified levels. Specifically, we present two ways to design

the algorithm: We first introduce the notion of a buffer and show that with the help of a few mild



assumptions we can choose an appropriate buffer size such that PFA and PMD can be controlled.

Later, we eliminate the buffer by introducing additional parameters and show that with the choice

of appropriate parameters we can still control the probabilities of error of the algorithm.

In the second part of the dissertation, we propose a truncated (finite horizon) algorithm, T-

SeqRDT, for the two-sided binary hypothesis testing problem. We first present the optimal fixed-

sample-size (FSS) test for the hypothesis testing problem and present a few important preliminary

results required to design the truncated algorithm. Similar, to the non-truncated case we first ana-

lyze the properties of the thresholds and then derive the upper bounds on PFA and PMD. We then

choose the thresholds such that the proposed algorithm not only guarantees the error probabilities

to be below pre-specified levels but at the same time makes a decision faster on average compared

to its optimal FSS counterpart. We show that the truncated algorithm requires fewer assumptions

on the signal model compared to the non-truncated case. We also derive bounds on the average

stopping times of the algorithm. Importantly, we study the trade-off between the stopping time and

the error probabilities of the algorithm and propose a method to choose the algorithm parameters.

Finally, via numerical simulations, we compare the performance of T-SeqRDT and SeqRDT to

sequential probability ratio test (SPRT) and composite sequential probability ratio tests. We also

show the robustness of the proposed approaches compared to the standard likelihood ratio based

approaches.
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1

CHAPTER 1

INTRODUCTION

Past few decades have seen a proliferation of the sensor networks. It was predicted in 2017 that

there will be more than 4 devices for every human on earth by the end of 2020, which might

very well turn out to be an underestimate [17]. We are surrounded by sensors now more than ever.

From every handheld device we use, to the watches we wear, to the cars we drive, to our homes and

office buildings, all are equipped with multitude of sensors which we rely upon to make everyday

decisions. These decisions are often about some phenomenon of interest and the devices have to

make these decisions based on some noisy observations of the phenomenon. In this dissertation,

we focus on one such decision making problem referred to as binary hypothesis testing. We define

a hypothesis as [5]:

Definition 1.1. A hypothesis is a statement about a population parameter.

The population parameter here refers to the underlying phenomenon of interest. And the goal

of a binary hypothesis test is to decide, based on the noisy observations, which of the two comple-

mentary hypotheses is true [5]:

Definition 1.2. The two complementary hypotheses in a binary hypothesis test are called the null

and the alternate hypotheses. They are denoted byH0 andH1, respectively.

Hypothesis testing is one of the fundamental problems in the area of statistical signal process-
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ing. A majority of sensors we are surrounded with are performing some hypothesis testing on

a daily basis. Some examples include, face or fingerprint based identification in mobile devices,

localization and navigation sensors in self-driving vehicles, the sensors deployed in surveillance

systems, fire alarms, radars detecting a target, and many more. With this increased number of sen-

sors, the amount and the diversity of the available data has also grown exponentially. Therefore, it

is not always possible to fit the data to predefined models. In cases where the data does not conform

to the assumed model, providing sufficient performance guarantees for hypothesis testing becomes

a challenging task. Therefore, it is important to devise methods that are model-independent, robust,

provide sufficient performance guarantees for the task at hand and, at the same time, are simple to

implement.

For the examples discussed above, in the context of face or fingerprint based identification in

mobile devices, the goal of the designed algorithm would be to allow access of the device to the

registered user and prevent an adversary from accessing the device. In this case, null hypothesis

will refer to the signal corresponding to the registered user and the alternate to the signal corre-

sponding to an adversary trying to get into the system. Note here that the algorithm designer has

no knowledge of the alternate hypothesis other than the fact that it is different from the null hy-

pothesis. These kind of problems, when we have some prior knowledge about the null hypothesis

but have no knowledge of the alternate hypothesis, fall under the category of two-sided hypothesis

testing. Moreover, some hypothesis testing problems can be sequential in nature, i.e., a decision

about the hypotheses has to be made in an online fashion. For example, a radar detection system

must decide in an online fashion, the presence or absence of a target by collecting observations

sequentially. The goal of this dissertation is to develop algorithms for such two-sided sequen-

tial binary hypothesis testing that are model-independent, robust, provide sufficient performance

guarantees for the task at hand and, at the same time, are simple to implement.

Next, we motivate the problem considered in this dissertation, list the major contributions of

the dissertation, and finally, discuss the organization of the dissertation.
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1.1 Motivation

Standard binary hypothesis testing problems [19], based on a fixed number of samples, test the

null (H0) versus the alternate (H1) hypotheses, i.e.,


Observations : Y1, Y2, . . . , YN ∼ Pξ

with


H0 : ξ = ξ0,

H1 : ξ = ξ1

where, Y1, Y2, . . . , YN represent N random observations generated from a probability distribution

Pξ and the goal is to make a decision based on the observations whether ξ = ξ0 (hypothesis H0)

or ξ = ξ1 (hypothesisH1) is true. The decision is usually made through the Bayesian, minimax or

Neyman-Pearson frameworks. Such tests are referred to as fixed-sample-size (FSS) tests. However,

many decision making problems are inherently sequential in nature, i.e, observations are collected

sequentially and are processed one after the other [4, 8, 41, 42].


Observations : Y1, Y2, . . . ∼ Pξ

with


H0 : ξ = ξ0,

H1 : ξ = ξ1

where Y1, Y2, . . . refer to a sequence of observations generated from an underlying distribution Pξ.

In contrast to the FSS tests, for a sequential test, the stopping time of the algorithm is random which

is generally a function of the observations collected until that point. In his seminal works [39, 40],

Wald proposed his celebrated sequential procedure, namely, the sequential probability ratio test

(SPRT) for testing two simple hypotheses. These hypotheses are termed as simple as the values of

the parameters ξ0 and ξ1 under both hypotheses are assumed to be precisely known [27]. For such

problems, SPRT is optimal in the sense that it makes a decision faster on average, compared to all

the procedures including FSS tests that guarantee the same probabilities of false alarm (PFA) and
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missed detection (PMD). However, in many practical scenarios the precise values of the parameters

might not be available. In such cases, composite hypothesis testing models provide a popular

approach to model the hypothesis testing problem [5, 27]. In this dissertation, we work with one

such popular composite hypothesis testing model termed as two-sided testing [18]


Observations : Y1, Y2, . . . ,∼ Pξ

with


H0 : ξ = ξ0,

H1 : ξ 6= ξ0

Note that the parameter of interest is assumed to be precisely known, i.e., ξ = ξ0, under the null

hypothesis and there is no assumption on the parameter of interest under the alternate hypothesis,

i.e., ξ 6= ξ0. It is important to note that the optimality of SPRT (or SPRT based procedures) is lost

when there is a mismatch between the assumed and the true signal models or the hypotheses to be

tested are composite [9, 11, 16, 36, 40].

For composite binary hypothesis testing problems, variants of SPRT have been developed. Of

particular interest are invariant SPRT (ISPRT), weighted SPRT (WSPRT) and generalized SPRT

(GSPRT) [36]. ISPRT relies on the principle of invariance [19, 29] to reduce the composite hy-

pothesis to a simple one, which then makes it possible to apply Wald’s SPRT [40]. However, this

simplification imposes strong restrictions on the hypotheses to be tested [13, 36]. On the other

hand, WSPRT assigns a suitable weight function to the unknown parameters [36], although it

is not always possible to upper bound the probabilities of error and find an appropriate weight

function, even in asymptotic regimes. In contrast, GSPRT approximates the likelihood ratio

by replacing the unknown parameters in the likelihood by their maximum likelihood (ML) esti-

mates [20, 35, 36]. Various versions of GSPRT have been proposed in the literature with different

thresholds [12, 14, 15] and most of the literature is focused on the design of one-sided tests for

testing single parameter families of distributions. Moreover, it is important to note that most of the

algorithms discussed above are developed for exponential families of distributions and guarantees
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are asymptotic, which do not upper bound the probabilities of error [12, 14, 15, 36]. Importantly,

GSPRT based approaches have heavy computational complexity even for simplest of models and,

therefore, are difficult to implement online [7]. The goal of this dissertation is to design sequential

non-parametric binary hypothesis testing algorithms with the following properties:

• The underlying signal distribution under each hypothesis is assumed to be unknown, and

importantly, the algorithms do not rely on independence (or i.i.d) assumptions on the ob-

servations either. This makes the algorithm robust to mismatches in the distributions of the

signals, compared to likelihood ratio based approaches.

• The upper bounds on PFA and PMD are guaranteed to stay below pre-specified levels even

in non-asymptotic regimes, which is naturally of practical interest. Moreover, the proposed

algorithms are faster on an average compared to the FSS algorithm.

• The algorithms are simple in structure with low computational complexity and, therefore,

are easy to implement online.

It must be noted that non-parametric sequential hypothesis testing approaches have been consid-

ered in the past, with limited to no success, as guaranteeing both PFA and PMD below certain

pre-specified levels may not be feasible for such non-parametric sequential testing problems as

shown in the works [9, 29, 30]. The approaches proposed in [9] are based on approximating the

likelihood ratio by employing estimates of the unknown parameters to be tested. These approaches

impose restrictive assumptions on these estimates to guarantee robustness and asymptotic optimal-

ity when there is a mismatch between the assumed and the true distribution. This is of limited use

in practical problems, which are non-asymptotic in nature.

Moreover, SPRT and other composite hypothesis testing approaches discussed above are ex-

tensions of likelihood theory in that they assume precise knowledge of the distributions of the

observations under each hypothesis to compute the likelihood ratio, perhaps up to a vector param-

eter in case of nuisance parameters [14, 20, 36]. However, in practice, prior knowledge or good

models for the distributions under each hypothesis are often not available. This is all the more
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detrimental as likelihood ratio tests are not robust to uncertainty or model mismatch. Moreover,

many approaches in sequential testing make stationarity or i.i.d. assumptions on the observed

process under each hypothesis [36, 43]. Such assumptions are questionable in practice and em-

phasize the need for devising testing approaches that assume little knowledge of the underlying

signals to be tested. To overcome these limitations, in this dissertation, we propose two such al-

gorithms, T-SeqRDT and SeqRDT, which are based on an alternative binary hypothesis testing

formulation. Importantly, we show that the proposed algorithms fulfill all the properties desired by

a non-parametric sequential algorithm as listed above.

1.1.1 Main Idea

To begin with, let us assume that Y is a one-dimensional observation, with probability distribution

parameterized by ξ. As discussed above, consider a two-sided hypothesis testing problem as

H0 : ξ = ξ0

H1 : ξ 6= ξ0

In practice, testing the signal for a precise value of ξ0 might be too stringent due to measurement

errors, environmental fluctuations other than noise and other factors [24]. Therefore, it is reason-

able to allow for some fluctuations around ξ0 and design the null hypothesis H0 to test for the

signal in the neighborhood of ξ0. In this respect, we assume that Y is a corrupted observation of

the signal to be tested, Ξ, and that Ξ is a random distorted version of ξ0 with unknown distribution.

The hypothesis testing problem then becomes:

H0 : |Ξ− ξ0| 6 τ

H1 : |Ξ− ξ0| > τ (1.1)
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where τ ∈ [0,∞) represents the distortion. Problem (1.1) was first considered in the form of

random distortion testing (RDT) in [24], where the signal of interest, Ξ, with an unknown distri-

bution, was embedded in i.i.d. Gaussian noise. The authors showed that the optimal tests (under

certain criteria) were simple in design and, at the same time, independent of the signal distribu-

tions, thereby did not need the computation of the likelihood ratios in contrast to the SPRT based

approaches which rely on approximating the likelihood ratios of the observations under the two

hypotheses. The authors extended the RDT formulation to FSS tests, BlockRDT [25] where the

authors generalized the RDT formulation by replacing the signal Ξ, in (1.1), by its empirical mean

over time. Although the detection performance improved with the number of samples, the designer

had control only over PFA and no control over PMD. In this dissertation, we show that (in Chap-

ter 4) with an additional assumption on the underlying hypothesis (1.1), the FSS test, BlockRDT,

can be designed to achieve desired PFA and PMD. However, the FSS test might need a very large

number of samples to achieve the desired performance. Therefore, the need for faster decision

making as well as the inherent sequential nature of many decision problems lead us to define a

novel RDT based framework for sequential testing. For the proposed formulation we first pro-

pose a non-truncated (infinite horizon) sequential algorithm, SeqRDT and in the second part of the

dissertation, we then develop a truncated (finite horizon) sequential algorithm, T-SeqRDT.

Below we list the main contributions and the organization of this dissertation.

1.2 Major Contributions

The goal of this dissertation is to develop sequential algorithms for non-parametric hypothesis

testing. Specifically, we want the proposed algorithms to be simple in design but at the same

time guarantee performance in the non-asymptotic regimes unlike the traditional composite (or

non-parametric) likelihood ratio based schemes which generally only guarantee asymptotic per-

formance. To this end, in this dissertation and as motivated earlier we use RDT based approaches

to develop novel sequential algorithms which do not rely on the knowledge of the precise distri-
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butions of the underlying signals, and thereby, by design do not require the computations or even

approximation of the likelihood ratios. Below we list the major contributions of the dissertation.

• We propose a novel RDT based framework for non-parametric two-sided sequential hypoth-

esis testing and introduce two sequential algorithms to solve the two-sided binary hypothesis

testing problem.

• We first motivate the structure of the tests and the thresholds used to design the sequential

tests. We then propose a non-truncated algorithm, SeqRDT, and analyze its asymptotic per-

formance. We analyze the properties of the thresholds and introduce the notion of a buffer

which helps in controlling PFA and PMD of the algorithm. Next, we derive bounds on PFA

and PMD and show that SeqRDT can be designed to achieve arbitrarily low PFA and PMD.

Finally, we introduce additional parameters in the algorithm which we show can be chosen

carefully to eliminate the buffer for SeqRDT.

• We introduce a truncated algorithm, T-SeqRDT. We design the truncation window for the

algorithm using the optimal FSS test which is discussed before introducing T-SeqRDT along

with a few important preliminary results necessary to design T-SeqRDT. We first analyze the

properties of the proposed thresholds and then derive bounds on PFA and PMD. Importantly,

we show that the designed thresholds can guarantee pre-specified PFA and PMD. Moreover,

we analyze the average stopping time of T-SeqRDT and provide insights into the trade-off

between the average stopping time and the error probabilities of T-SeqRDT.

• For both the algorithms SeqRDT and T-SeqRDT, we propose methods to choose the model

parameters efficiently. Finally, we extend the proposed framework for testing of distorted

signals and show that the proposed algorithms are not only efficient for testing of distorted

signals but also are faster on average compared to the optimal FSS test. Moreover, we

show the generalization of the proposed approach for different types of underlying signal

(distortion) distributions. We show that the proposed algorithms are robust to mismatches

compared to the likelihood ratio based approaches like SPRT, GSPRT and WSPRT.
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We believe that the proposed non-parametric hypothesis testing approaches can be an alternative

for the two-sided composite likelihood ratio based approaches especially when the knowledge of

the underlying signal distributions are not precisely known.

Below we discuss the organization of the dissertation.

1.3 Organization of the Dissertation

The dissertation is organized into six chapters. In Chapter 2, we first introduce the problem and

then discuss an important application where the proposed formulation is being applied. We make

a few remarks about the proposed problem formulation and then in the latter part of the chap-

ter, we discuss the past literature aimed at solving standard composite and non-parametric binary

hypothesis testing problems.

In Chapter 3, we propose the non-truncated sequential algorithm, SeqRDT, to solve the hy-

pothesis testing problem introduced in Chapter 2. We motivate the algorithm by analyzing asymp-

totic properties of the test statistic along with the thresholds. We then propose the algorithm and

analyze the threshold properties before providing the performance guarantees for the algorithm.

Importantly, in the design of the algorithm we introduce the concept of a buffer which helps in

controlling PFA and PMD of SeqRDT. Later in the chapter, we introduce an additional parameter

to avoid the need of the buffer and present the approach to design the algorithms both with and

without the buffer.

In Chapter 4, we propose the truncated sequential algorithm, T-SeqRDT, to solve the hypothesis

testing problem introduced in Chapter 2. We first introduce the optimal FSS test and provide a

few preliminary results which we use to design T-SeqRDT. Specifically, we use the FSS test to

design the truncation window (truncation time) of the algorithm, i.e., the time when we decide

to stop the algorithm and make a decision if the algorithm has not reached a decision until that

time instant. We then discuss the properties of the thresholds and the truncation window of the

algorithm. After discussing these properties, we derive bounds on PFA and PMD of T-SeqRDT and
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show that the designed thresholds can guarantee pre-specified PFA and PMD. We also analyze the

average stopping time of T-SeqRDT and provide insights into the trade-off between its average

stopping time and the error probabilities. Finally, we propose an approach to choose the algorithm

parameters which minimizes the upper bounds on the average stopping time while guaranteeing

PFA and PMD to be below pre-specified levels.

In Chapter 5, we present the proposed framework for testing of distorted signals. Specifically,

we test the signals for Gaussian, heavy-tailed and deterministic distortions and compare the pro-

posed algorithms to SPRT, GSPRT and WSPRT. Moreover, we show that the proposed sequential

algorithms are faster on average compared to the optimal FSS test. The simulations suggest that

the proposed approaches are robust to mismatches compared to the standard likelihood approaches.

Finally, in Chapter 6 we conclude the dissertation with some possible future directions we intend

to pursue.

Before proceeding further we first discuss the notations along with a useful lemma we will use

in the rest of the dissertation.

1.4 Notations

All the random variables are defined on the same probability space (Ω,F ,P). We denote by

M(Ω,R) the set of all real random variables defined on (Ω,F). Given U ∈ M(Ω,R): PU(B) =

P
[
U ∈ B

]
with

[
U ∈ B

]
= {ω ∈ Ω : U(ω) ∈ B} when B is a Borel set of R. A domain B of U

is any Borel set B of R such that PU(B) = 1.

Given ξ ∈ R and σ ∈ [0,∞), Z ∼ N (ξ, σ2) implies Z is Gaussian distributed with mean ξ and

variance σ2. The Generalized Marcum Function [32] with order 1/2 is denoted by [23, Eq. (19)

and Remark V.3],

Q 1
2
(|ξ|, η) = P

[
|Z| > η

]
, (1.2)
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for Z ∼ N (ξ, 1). For any (a, b) ∈ [0,∞)× [0,∞), we have

Q 1
2
(a, b) = 1− Φ(b− a) + Φ(−b− a) (1.3)

where Φ is the cumulative distribution function (cdf) of a standard normal Gaussian random vari-

able, i.e., Gaussian random variable with zero mean and unit variance. Below we present a Lemma

from [32, Theorem 1] to show the behavior of Q 1
2

with its two arguments:

Lemma 1.1 (Behavior of the Marcum function). Whatever its order, the Generalized Marcum

function — and thus Q 1
2

— increases with its first argument and decreases with its second.

Given γ ∈ (0, 1) and ρ ∈ [0,∞), λγ(ρ) is defined as the unique solution in x to Q 1
2
(ρ, x) = γ

[24, Lemma 2, Statement (i)], so we have:

Q 1
2
(ρ, λγ(ρ)) = γ. (1.4)

The set of all sequences defined on N (resp. [[1, N ]] = {1, 2, . . . , N}) and valued inM(Ω,R) is

denoted byM(Ω,R)N (resp. M(Ω,R)[[1,N ]]). Given U inM(Ω,R)N (resp. U ∈ M(Ω,R)[[1,N ]]),

the realization of U at n ∈ N (resp. n ∈ [[1, N ]]) is called a sample of U and denoted by Un.

Each Un is an element of M(Ω,R). Given N ∈ N, the sample mean of U over the N samples

U1, . . . , UN is denoted as:

〈U〉N =
1

N

N∑
n=1

Un.

The minimum of two real numbers a1 and a2 is denoted by a1

∧
a2 and

∧n
i=1 ai denotes the mini-

mum of n real numbers a1, a2, . . . , an.

1.5 Bibliographic Note

Most of the research work appearing in this dissertation has already been published at various

venues and has appeared in the publications listed below.
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CHAPTER 2

BACKGROUND

In this chapter, we discuss the hypothesis testing problem to be solved. We first discuss an impor-

tant real life example where the proposed frameworks are applicable. We make a few important

remarks and finally, discuss the past literature where composite or non-parametric sequential hy-

pothesis testing problems have been considered along with some popular sequential algorithms for

binary composite hypothesis testing.

2.1 A Novel Sequential Testing Framework

Let Ξ = (Ξn)n∈N be an element of M(Ω,R)N. This discrete-time random process models the

random mixture of a distorted signal of interest and possible interference. Standard two-sided

composite hypothesis testing approaches test for

H0 : ξ = ξ0

H1 : ξ 6= ξ0

where ξ is the parameter of interest. As discussed earlier in Section 1.1.1 of Chapter 1, we assume

the signal to be, Ξ, a distorted version of ξ. This implies that the binary testing problem can be
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framed in the standard hypothesis testing framework as: assume that the random process under

null hypothesis (H0) is generated from a family of underlying joint distribution Pξ=ξ0 , i.e, Ξ =

(Ξn)n∈N ∼ Pξ=ξ0 , and under alternate hypothesis (H1), from a disjoint family of distributions,

Pξ 6=ξ0 , i.e., Ξ = (Ξn)n∈N ∼ Pξ 6=ξ0 . No assumption is made on the stationarity or the distribution of

Ξ = (Ξn)n∈N. In this respect, the samples Ξn are not necessarily i.i.d. We summarize the problem

as: 

Observation : Y = Ξ +X ∈M(Ω,R)N

with


Ξ, X ∈M(Ω,R)N,

X1, X2, . . .
i.i.d∼ F, F unknown.

H0 : Ξ = (Ξn)n∈N ∼ Pξ=ξ0 ,

H1 : Ξ = (Ξn)n∈N ∼ Pξ 6=ξ0

This problem is difficult to tackle as very little or no knowledge of the underlying signal distribu-

tions is assumed under both hypotheses; thereby, likelihood ratio based tests (SPRT or GSPRT) are

not suitable for such problems. As an alternative to likelihood ratio based approaches, we propose

tests based on RDT [24], where we associate a non-parametric distance related criterion with each

hypothesis which is independent of the distributions of the actual hypotheses. This non-parametric

criterion serves as a surrogate to the actual hypotheses to be tested. Next, we present the model in

more detail.

We assume that Ξ is observed in additive and independent Gaussian noise X = (Xn)n∈N.

The observation process is Y = (Yn)n∈N such that Yn = Ξn + Xn for all n ∈ N, and we write

Y = Ξ + X . In our formulation, Ξ models the distortion around a fixed known and deterministic

model ξ0. We, however, expect that, for N large enough, the empirical mean 〈Ξ〉N remains close

to ξ0 under H0 and drifts significantly away from ξ0 under H1. We then say that this problem is

the testing of the null hypothesis — a random event, actually — H0 : |〈Ξ〉N − ξ0| 6 τ against the

alternate hypothesis (event) H1 : |〈Ξ〉N − ξ0| > τ , on the basis of observation Y . The hypothesis
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testing problem is, therefore, given as:



Observation : Y = Ξ +X ∈M(Ω,R)N

with


Ξ = (Ξn)n∈N ∈M(Ω,R)N,

X1, X2, . . .
iid∼ N (0, 1),

Ξ and X are independent.

∃N0 ∈ N,


H0 : ∀N > N0, 0 6 |〈Ξ〉N − ξ0| 6 τ (a-s)

H1 : ∀N > N0, τ < |〈Ξ〉N − ξ0| 6 τH (a-s)

(2.1)

where, τ ∈ [0,∞) is the tolerance and τ < τH < ∞. Note that for the above hypothesis testing

model when testing with a fixed number of samples N (a block of N samples), we refer to the

designed algorithm as BlockRDT [25]. We will discuss BlockRDT in detail in Chapter 4 which we

then use to develop the truncated sequential algorithm. Here, N0 and the tolerances τ and τH are

known a priori based on some prior knowledge (or experience) about the signal1. The algorithms

based on formulation (2.1) have already been used for biomedical signal processing applications,

specifically for the detection of Auto-positive end expiratory pressure (Auto-PEEP) [22] which we

discuss below. Moreover, for illustration purposes, below we give a few simple examples where

formulation (2.1) can be easily used. Before that we make a few useful remarks about the model

discussed above:

Remark 2.1. Note that the above problem (2.1) tests whether the deviation of the signal mean

〈Ξ〉N around a fixed model ξ0 is below (or above) a specified tolerance τ for the null hypothesis (or

the alternate hypothesis) to be true. As indicated above, this non-parametric criterion then serves

as a surrogate to the complete knowledge of the signal distributions and thus avoids their prior

knowledge. Likelihood ratio based tests are, therefore, not feasible for the above problem.

Remark 2.2. Note that the RDT framework of (1.1) is the same as that given in (2.1) for N = 1.
1This knowledge can follow from machine learning training procedures or be based on some statistical knowledge

of the signal. Discussion of these procedures is beyond the scope of this dissertation.
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Fig. 2.1: Example 1: AutoPEEP Detection, An example of flow signal.

The formulation in (2.1) generalizes the RDT framework of (1.1) for testing with multiple samples,

i.e., for the FSS test, BlockRDT, and sequential hypothesis testing approaches. An alternative

testing problem would be to use 〈 |Ξn − ξ0|〉N instead of |〈Ξ〉N − ξ0| in (2.1). This would allow a

larger class of distortions. However, designing such a test would require stronger assumptions of

|Ξn−ξ0| 6 τ underH0 and |Ξn−ξ0| > τ underH1 for all n ∈ N in comparison to the condition of

(2.1), where introducing N0 in (2.1) gives the designer the flexibility to design the testing problem

for models when the condition |〈Ξ〉N − ξ0| 6 τ (resp. |〈Ξ〉N − ξ0| > τ ) might not hold true for

smaller values of N ∈ N underH0 (resp. H1).

Example 1 (Automatic detection of AutoPEEP). AutoPEEP is a common ventilatory abnormal-

ity that is usually observed in patients with severe asthma or chronic obstructive pulmonary dis-

ease [22]. The presence of AutoPEEP indicates an insufficient expiratory time and it is measured

by a pressure transducer of a mechanical ventilator [37, 38]. It can be visually observed and de-

tected through the flow signal as depicted in Figure 2.1. AutoPEEP is present if the flow signal at

the end of each expiration as indicated in Figure 2.1 does not return to zero. The detection of Au-

toPEEP usually requires an expert at the patient’s bedside [3]. To eliminate or reduce this human

intervention an RDT based formulation was presented in [22] where a detector for automatic de-

tection of AutoPEEP was developed. In the design, the authors accounted for various factors other
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Fig. 2.2: Example 3: Bounded Regime Testing.

than noise like the mechanical vibration of the air tube, the patient movement, the electro-magnetic

interference, by introducing a tolerance, τ , in the hypothesis test as discussed above in (2.1).

Example 2 (Gaussian-mean testing). The sequential testing problem (2.1) embraces the testing of

the mean of a Gaussian process [36] when, given two known real values ξ0 and ξ1 with ξ0 6= ξ1,

where we have

UnderH0 : Ξn = ξ0 for all n ∈ N

UnderH1 : Ξn = ξ1 for all n ∈ N

Note that here we have τ = 0, N0 = 1 and where the observations Y are corrupted version of the

signal Ξ embedded in X ∼ N (0, 1) in (2.1).

Example 3 (Bounded regime testing). Given ξ ∈ R and h ∈ [0,∞), we say that Ξ follows the

(bounded) regime (ξ, h) and write Ξ ∼ (ξ, h) if, for any N ∈ N, |〈Ξ〉N − ξ| 6 h. A sufficient

condition for Ξ ∼ (ξ, h) is that |Ξn − ξ| 6 h (a-s) for any n ∈ N. From Figure 2.2, suppose that Ξ

satisfies either H0 : Ξ ∼ (ξ0, h0), where the regime (ξ0, h0) is given, or H1 : Ξ ∼ (ξ1, h1), where

(ξ1, h1) is any possibly unknown regime other than (ξ0, h0). We say that the regimes (ξ0, h0) and

(ξ1, h1) are separate if |ξ1 − ξ0| > h0 + h1, which amounts to assuming that (ξ0 − h0, ξ0 + h0) ∩
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(ξ1 − h1, ξ1 + h1) = ∅, please refer to Figure 2.2. When (ξ0, h0) and (ξ1, h1) are separate, testing

H0 against H1 is the particular problem (2.1) with h0 6 τ < |ξ1 − ξ0| − h1, τH > |ξ1 − ξ0| + h1

and N0 = 1.

2.1.1 Sequential Tests: Definitions

We first define a sequential test and the class of algorithms we are interested in. In later chapters,

we develop two algorithms in the class C(α, β) as defined in this section.

Following the standard terminology [36] with a slight change of notation, we define a sequential

test for the binary hypothesis testing problem (2.1) as a pair (T,D), where T is the stopping time

and D is a decision rule taking values in {0, 1,∞} such that, for each 1 ≤ N ≤ T :

D(N)=


0 H0 is accepted

1 H1 is accepted

∞ repeat the test with N + 1 samples.

(2.2)

Further, the stopping time T for the non-truncated (infinite horizon) test is defined as:

T = min{N ∈ N : D(N) 6=∞}. (2.3)

It must also be noted that the stopping time T is a random variable and is a function of the random

observations. From the definition, we notice that the non-truncated test can potentially run forever.

Similarly, for the truncated (finite horizon) test we define the stopping time T as:

T = inf{N ∈ N : N 6 N0 +W ∗ − 1,D(N) 6=∞}. (2.4)

where the condition N 6 N0 +W ∗ − 1 guarantees that T ≤ N0 + W ∗ and we refer to W ∗ as the

truncation window of the algorithm. Note that W ∗ = ∞ for non-truncated sequential procedures.

It is also worth noticing that FSS tests are particular cases of tests (T,D), with stopping time being
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a deterministic constant T = N and D valued in {0, 1}.

Now to define the class of tests which are of interest to us, we define C (α, β) as: Given two

specified levels α and β in (0, 1/2), we define the class of tests:

C (α, β) = {(T,D) : sup
Ω0

PFA(D) ≤ α, sup
Ω1

PMD(D) ≤ β} (2.5)

with

Ω0 = {Ξ ∈M(Ω,R)N : ∀N > N0, |〈Ξ〉N − ξ0| 6 τ (a-s)},

and

Ω1 = {Ξ ∈M(Ω,R)N : ∀N > N0, |〈Ξ〉N − ξ0| > τ (a-s)}

and where

PFA(D)
def
= P [D(T ) = 1 ] , underH0, (2.6)

is the PFA and

PMD(D)
def
= P [D(T ) = 0 ] , underH1. (2.7)

is the PMD.

We are interested in the class of tests C (α, β) which implies that a given test (T,D) belongs

to C (α, β) if it can guarantee the PFA and PMD to stay below pre-specified levels α and β, re-

spectively. Throughout this work, the levels α and β are chosen in the interval (0, 1/2). The goal

of this work is to first design a non-truncated and then a truncated sequential algorithm belonging

to C (α, β) which solves Problem 2.1. Moreover, we desire that the proposed algorithms make a

decision faster on average compared to the optimal FSS test, BlockRDT discussed in Chapter 4.

Before proceeding further, next we discuss in detail the popular methods addressed in the

literature on sequential methods that deals with composite hypothesis testing.
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2.2 Literature Review: Composite Hypothesis Testing

In this section, we discuss composite as well as the non-parametric approaches for sequential

binary hypothesis testing and discuss how generalized SPRT (GSPRT) based approaches are not a

good choice for the two-sided hypothesis testing models discussed in this work. Below, we discuss

the approaches for the two-sided hypothesis testing problem considered in the work. Specifically,

we consider the two-sided composite hypothesis testing problem of the mean of a Gaussian process

with unknown mean underH1, i.e.,



Observation : Y = ξ +X ∈M(Ω,R)N

with


X ∈M(Ω,R)N,

X1, X2, . . .
i.i.d∼ N (0, 1)

H0 : ξ = ξ0,

H1 : ξ 6= ξ0.

Note that this is a particular case of the general problem considered above (cf Eq. (2.1) earlier),

where the signal is a randomly distorted version of ξ. Now we discuss the methods to tackle com-

posite hypothesis testing problems and the assumptions each method needs to impose on the signal

model to perform the two-sided hypothesis tests as mentioned above. To the best of our knowledge,

there are three ways to tackle composite or non-parametric hypothesis testing problems. Below we

briefly discuss each of the methods:

1. Principle of invariance: For some hypothesis testing problems, one may use the principle

of invariance [18, 29] to reduce the composite hypothesis to a simple one, which makes it

possible to apply Wald’s SPRT [40]. This type of test is referred to as an invariant SPRT

(ISRPT). This reduction is useful but, in practice, it can be applied in only a handful of cases

as it imposes strong restrictions on the hypothesis to be tested [13, Sec 2]. Please look at

examples in [36, Chapter 3, Sec 6]. On the other hand, the hypothesis tests considered in this
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dissertation are fairly general where the composite hypothesis cannot be reduced to simple

hypothesis with invariant statistics.

2. Composite hypothesis tests: Composite hypothesis testing procedures are most popular

in the literature and enjoy various asymptotic optimality properties for sequential testing

of composite hypotheses [36, Chapter 5]. Composite sequential testing can be carried out

in three frameworks namely, the generalized sequential likelihood ratio tests (GSLRT) or

generalized sequential probability ratio tests (GSPRT), the minimax tests and weighted se-

quential probability ratio tests (WSPRT). Next we discuss these approaches one-by-one:

a) Generalized sequential probability ratio tests (GSPRT): GSPRT or GSLRT compares

the generalized likelihood ratio with predetermined thresholds. In its most general form, it

is represented as


If Λ̂N ≤ λL, decideH0 and stop;

If Λ̂N ≥ λH , decideH1 and stop;

If λL ≤ Λ̂N ≤ λH , compute Λ̂N+1 and repeat;

where Λ̂N is the generalized likelihood ratio of the observations, i.e., the unknown parameter

ξ underH1 denoted by ξ1 is replaced with its maximum-likelihood (ML) estimate [20,35,36].

The thresholds λL and λH are chosen as

λL =
β

1− α
and λH =

1− β
α

.

which are the same as the SPRT thresholds. Various versions of GSPRT have been proposed

in the literature with similar test statistics but different thresholds and testing rules [12, 14,

15]. Below, we list the drawbacks of the above approaches compared to the RDT based

approaches proposed in this dissertation:

• The literature on GSRPT is largely focused on the design of one-sided tests for test-
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ing single parameter hypotheses [12, 14, 15, 36]. In this sense, this dissertation takes a

step towards advancing the state-of-the-art and addresses a two-sided hypothesis test-

ing problem, where the signal distribution is unknown, but the signal is embedded in

Gaussian noise.

• Most of the literature on sequential composite hypothesis testing provides guarantees

when the observations follow “exponential parameter families" of distributions. More-

over, the guarantees are usually asymptotic and are provided in terms of minimizing the

Bayesian cost [12, 14, 15, 36]. Usually, the asymptotic order of PFA and PMD are de-

rived without any upper bound on the error probabilities, as it is difficult to bound the

error probabilities. In contrast, for the algorithms proposed in this dissertation, we do

not claim optimality. However, we guarantee upper bounds on the PFA and PMD, even

in non-asymptotic regimes which are naturally of more practical interest compared to

the asymptotic regimes.

• To derive asymptotic results, most of the literature assumes independence of observa-

tions over time, whereas our approach makes no such assumption on the signal model

and, at the same time, guarantees performance in the non-asymptotic regimes as well.

• Most importantly, GSRPT needs the knowledge of the distributions of the observations

whereas, in contrast, the algorithms proposed in this work do not rely on the knowledge

of the signal distributions.

• Moreover, GSRPT based approaches have heavy computational complexity even in

simplest of cases and for simplest of models. Therefore, it is difficult to implement

them online [7], whereas the algorithms proposed in this dissertation are not only sim-

ple in structure but also have very low computational complexity.

Most of the same issues that exist with GSPRT also exist with minimax formulations [36,

Chapter 5, Sec 3]. Here, we do not discuss them in detail to avoid duplication.

c) Weighted sequential probability ratio test (WSPRT): WSPRTs can be thought of as
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Bayesian equivalent of FSS tests, in the sense that some suitable weight functions are as-

signed to the unknown parameters [36, Chapter 5] and the likelihood ratio is averaged over

these weight functions. However, it is not always possible to upper bound the error proba-

bilities and find an appropriate weight function even with asymptotic analysis. On the other

hand, as discussed earlier, the algorithms proposed in this dissertation provide upper bounds

on error probabilities even in non-asymptotic regimes, even without the knowledge of signal

distributions or any independence assumptions. For simulation purposes in Chapter 5, we

consider a problem where WSPRT proposed by Wald [36, 40] for Gaussian mean testing

with unknown mean and variance can be applied. However, it must be noted that the test

proposed by Wald can only be applied when the received observations are Gaussian dis-

tributed [40, Chapter 4], whereas for the models considered in this work the observations are

modeled as " unknown distributed signal + Gaussian noise".

3. Non-parametric approaches: In [9, 29–31], the authors mention that guaranteeing both

PFA and PMD to stay below certain pre-specified levels for non-parametric sequential hy-

pothesis testing approaches may not be feasible. Also, the authors propose some non-

parametric approaches for sequential binary hypothesis testing. The proposed approaches

are based on the likelihood ratio tests (GSPRT) in the sense that they approximate the like-

lihood statistic with estimates of the unknown parameters to be tested. With appropriate

assumptions on the estimates, which can be restrictive in many practical scenarios, the au-

thors show the asymptotic optimality of the operating characteristic and the average sample

number of the sequential tests. However, in the simulations in Chapter 5 we show that this

asymptotic optimality is of limited practical use as the non-asymptotic performance of the

algorithm is not satisfactory even for simple models.

The above discussion implies that our model is more general than the above mentioned approaches

as we do not need to know the signal distribution or even if it is deterministic or not. More impor-

tantly, the proposed tests with little knowledge (cf Assumption 2.1) of the signal distributions are

able to provide performance guarantees. Also, many of the approaches either make i.i.d. (or inde-
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pendence) assumptions even for asymptotic analysis. In contrast, our proposed tests do not require

the signals to be iid across time and at the same time the associated analyses are non-asymptotic

in nature. Furthermore, the proposed tests are simple in structure as well as in computational com-

plexity compared to the above tests where the test statistic as well as the thresholds might not even

be available in closed form in many cases.

2.3 Summary

In this chapter, we presented the sequential framework we consider in this dissertation. We then

discussed a few examples along with a few remarks detailing the scenarios where the proposed

algorithms are applicable. Then we defined a sequential test along with the stopping time for

both non-truncated and truncated formulations. We also defined the class of tests, C (α, β), which

are of interest to us. Finally, we discussed some key works on the composite hypothesis testing

problem and highlighted the differences of each of the algorithms with the approach proposed in

this dissertation.
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CHAPTER 3

SEQUENTIAL RANDOM DISTORTION

TESTING

3.1 Introduction

In this chapter, we propose an algorithm to solve the sequential hypothesis testing problem pre-

sented in Chapter 2. We propose a novel sequential algorithm, SeqRDT. We first introduce a few

assumptions required to design the sequential algorithm. Then we motivate the algorithm design

by analyzing the properties of the proposed test statistic. Next, we propose the algorithm and an-

alyze its asymptotic properties. We introduce the notion of buffer which is then used to control

the probabilities of error of the algorithm. We then derive upper bounds on PFA and PMD of the

algorithm and give an approach to choose an appropriate buffer size. Importantly, we show that

without any prior knowledge of the signal distribution, SeqRDT guarantees pre-specified values

of PFA and PMD, whereas, in contrast, the likelihood ratio based tests need precise knowledge

of the signal distributions under each hypothesis. We also introduce an additional parameter in

the algorithm and present another algorithm which eliminates the need of the buffer. Finally, we

present the complete algorithm with all the steps and conclude the chapter.
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3.1.1 Problem Statement

In this section, we introduce some assumptions required to control the PFA and PMD correspond-

ing to the proposed algorithm. Specifically, we first introduce an assumption which is required to

analyze the asymptotic properties of the algorithm. Then we introduce another assumption, which

makes it possible to control the probabilities of error of the proposed algorithm in non-asymptotic

regimes. Before introducing the assumptions we state the problem again:



Observation : Y = Ξ +X ∈M(Ω,R)N

with


Ξ = (Ξn)n∈N ∈M(Ω,R)N,

X1, X2, . . .
iid∼ N (0, 1),

Ξ and X are independent.

∃N0 ∈ N,


H0 : ∀N > N0, 0 6 |〈Ξ〉N − ξ0| 6 τ (a-s)

H1 : ∀N > N0, τ < |〈Ξ〉N − ξ0| 6 τH (a-s)

(3.1)

where, τ ∈ [0,∞) is the tolerance and τ < τH <∞. Now the goal is to solve the above problem in

a sequential manner and propose an algorithm such that the algorithm belongs to the class C (α, β)

as defined in Chapter 2. For this purpose, we introduce the following assumptions.

3.1.2 Assumptions

To solve problem (3.1) sequentially, we introduce two assumptions. The first assumption can be

regarded as a weak notion of ergodicity. The second one concerns the case of finite sample sizes.

Both assumptions are used below to state different results. Their use depends on the available

amount of prior information regarding the process.
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Assumption 1 ((a-s) convergence of 〈Ξ〉N ). There exist τ− ∈ [0, τ) and τ+ ∈ (τ,∞), such that:


UnderH0 : lim sup

N→∞
|〈Ξ〉N − ξ0| 6 τ− (a-s),

UnderH1 : lim inf
N→∞

|〈Ξ〉N − ξ0| > τ+ (a-s).

Remark 3.1. The above Assumption [(a-s) convergence of 〈Ξ〉N ] is automatically satisfied if the

signal, Ξ, is stationary and ergodic [2, Ch. 4, Sec. 24]. In this case, there exists ξ ∈ R such

that E [ Ξn ] = ξ for every n ∈ N, so that [(a-s) convergence of 〈Ξ〉N ] holds with 〈Ξ〉∞ = ξ and

ξ ∈ {ξ0, ξ1} with ξ = ξ0 and ξ = ξ1 underH0 andH1, respectively.

Basically, Assumption [(a-s) convergence of 〈Ξ〉N ] will prove helpful to characterize the rel-

evance of the sequential procedure introduced later in the chapter in the asymptotic regime. The

next assumption is aimed at establishing additional results in non-asymptotic situations.

Assumption 2 (Bounded behavior of |〈Ξ〉N − ξ0|). There exist τ− ∈ [0, τ) and τ+ ∈ (τ,∞) such

that:  UnderH0 : ∀N > N0, |〈Ξ〉N − ξ0| 6 τ− (a-s),

UnderH1 : ∀N > N0, |〈Ξ〉N − ξ0| > τ+(a-s).

Now in the following remark we discuss the implications of the two assumptions discussed

above.

Remark 3.2. At this stage, it is crucial to emphasize the significance of Assumption [(a-s) con-

vergence of 〈Ξ〉N ] and Assumption [Bounded behavior of |〈Ξ〉N − ξ0|], as well as the differences

between them with respect to the two hypotheses in (3.1).

As can be seen, the Assumption [(a-s) convergence of 〈Ξ〉N ] addresses the asymptotic regime,

whereas the Assumption [Bounded behavior of |〈Ξ〉N−ξ0|] does not. The two assumptions will be

helpful to better control the performance of the test, specifically, PFA and PMD of the sequential

test proposed later in the chapter. This better control will actually be rendered possible via the

strict inequalities between τ− and τ , on the one hand, and between τ+ and τ , on the other hand.

By so proceeding, |〈Ξ〉N − ξ0| is kept away from τ , under both H0 and H1. The decision will
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then turn out to be all the more reliable as τ− and τ+ drift away from τ , which can be seen

as the indifference zone between the two hypotheses in (3.1). Note also that, if the Assumption

[Bounded behavior of |〈Ξ〉N − ξ0|] holds true this implies that the Assumption [(a-s) convergence

of 〈Ξ〉N ] will also hold true.

Next, we contrast the need for the two assumptions above in comparison to the RDT proposed

in [24] and its FSS version, BlockRDT proposed in [25].

Remark 3.3. It must be noted that the Assumption [Bounded behavior of |〈Ξ〉N − ξ0|] was not

required in both RDT [24] and its FSS version, BlockRDT [25]. Motivated by the Neyman-Pearson

framework [21, 27], the tests proposed in these works were designed to guarantee PFA below a

pre-specified level, while guaranteeing a minimal PMD for FSS tests, without any control over this

probability. As already emphasized in the previous remark, the Assumption [Bounded behavior of

|〈Ξ〉N − ξ0|] gives the algorithm designer control over both PFA and PMD for FSS tests, as well

as for the sequential testing framework proposed in this work.

We now give two simple examples to illustrate the two assumptions [(a-s) convergence of

〈Ξ〉N ] and [Bounded behavior of |〈Ξ〉N − ξ0|].

Example 4. (i) Consider a random variable U with unknown distribution. We assume the two

hypotheses as:

Under H0 : |U | 6 τ−

Under H1 : |U | > τ+

Suppose further that Ξn = U+∆n, for n ∈ N where the ∆ns are i.i.d with zero mean and unknown

distribution. Now, with the application of strong law of large numbers [6], we know that 〈Ξ〉N will

converge almost surely to U . This implies that Assumption [(a-s) convergence of 〈Ξ〉N ] will be

satisfied.
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(ii) Consider a random variable Un ∼ N (ξi, 1) for n ∈ N and i ∈ {0, 1}. We assume,

Under H0 : ξ = ξ0 = 0

Under H1 : ξ = ξ1 6= 0

with |ξ1| > τ+ > τ−. If Ξn = 1
n

∑n
i=1 Ui, Assumption [(a-s) convergence of 〈Ξ〉N ] is verified.

Moreover, the above process is a non-stationary Markov process under both hypotheses and a

variant of the random walk. Similarly, for many problems of practical interest as discussed earlier

in Chapter 2, we can show that Assumption [Bounded behavior of |〈Ξ〉N − ξ0|] can be verified

with little prior knowledge of the underlying signals. This will become clearer in the Chapter 5

where we analyze the performance of the algorithms.

Next, we discuss the structure of the tests used to design SeqRDT and their asymptotic proper-

ties.

3.2 Test statistic

Given γ ∈ (0, 1) and τ > 0, let us define TN,γ : RN → {0, 1} for any sequence x = (xn)n∈N ∈ RN

by :

TN,γ (x) =

 0 if |〈x〉N − ξ0| 6 λγ(τ
√
N)/
√
N

1 otherwise
. (3.2)

Proposition 3.1 below describes the asymptotic behavior of such tests under Assumption [(a-s)

convergence of 〈Ξ〉N ]. These tests play a crucial role in the design of SeqRDT for the problem

stated in (2.1).

Proposition 3.1. Given γ ∈ (0, 1) and τ ≥ 0, TN,γ exhibits the following asymptotic behavior for

testingH0 againstH1 in (3.1):
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(i) we have

underH0 : P [ TN,γ(Y ) = 1 ] 6 γ, (3.3)

underH1 : P [ TN,γ(Y ) = 0 ] 6 1− γ. (3.4)

(ii) under Assumption [(a-s) convergence of 〈Ξ〉N ], we have,

lim
N→∞

P [ TN,γ(Y ) = 1 ] =

 0 underH0

1 underH1

. (3.5)

PROOF:

Proof of statement (i): From (3.2) and Lemma A.1,

P [ TN,γ(Y ) = 1 ] 6 E
[
Q 1

2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)
) ]

. (3.6)

Therefore, underH0 and for any N > N0, we have:

P [ TN,γ(Y ) = 1 ] 6 Q 1
2

(
τ
√
N, λγ(τ

√
N)
)
.

According to (1.4), the upper-bound in the second inequality above equals γ and the inequality

follows.

We prove (3.4) similarly. We begin by combining (3.2) and Lemma A.1 to get

P [ TN,γ(Y ) = 0 ] 6 1− E
[
Q 1

2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)
) ]

. (3.7)

It then suffices to use the hypothesis underH1 for N > N0 in (3.7) above to get the final result.

Proof of statement (ii): UnderH0 and Assumption [(a-s) convergence of 〈Ξ〉N ], we have

lim sup
N→∞

|〈Ξ〉N − ξ0| 6 τ− < τ (a-s).
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It then follows from Lemma A.2 that:

lim
N→∞

Q 1
2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)
)

= 0 (a-s).

We then derive from (3.6) and the Lebesgue dominated convergence theorem [6] that, underH0:

lim
N→∞

P [ TN,γ(Y ) = 1 ] = 0.

Similarly, underH1 and the Assumption [(a-s) convergence of 〈Ξ〉N ] we have

lim inf
N→∞

|〈Ξ〉N − ξ0| > τ+ > τ (a-s).

Then from Lemma A.2 we have that

lim
N→∞

Q 1
2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)
)

= 1 (a-s).

By injecting this equality into (3.7) and using the Lebesgue dominated convergence theorem [6]

again, we obtain:

lim
N→∞

P [ TN,γ(Y ) = 1 ] = 1.

underH1.

This concludes the proof.

Proposition 3.1 (i) implies that with the use of only one threshold, λγ(τ
√
N)/
√
N , PFA is guar-

anteed to stay below γ, but PMD is only guaranteed to be below 1 − γ. Therefore, with only one

threshold, we can design a test which simply controls PFA, without any control over PMD. In con-

trast, with the use of two thresholds along with the Assumption [Bounded behavior of |〈Ξ〉N−ξ0|],

the designer can control both PFA and PMD of the algorithm as we demonstrate in the later part

of this chapter. Moreover, intuition suggests that one of these thresholds should be small enough

to reduce PFA. In contrast, the other one should be sufficiently high so as to make PMD small.
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Such a strategy naturally leads to a sequential approach. Also, Proposition 3.1 (ii) highlights the

importance of the Assumption [(a-s) convergence of 〈Ξ〉N ] in achieving arbitrarily low PFA and

PMDs for large but fixed sample sizes. However, we need to control the number of samples, which

again highlights the need for a sequential approach. As a matter of fact, with the thresholds de-

signed according to (3.2), we can design a sequential test capable of reducing the decision-making

time for the testing problem defined in (3.1), while guaranteeing certain performance levels. This

sequential approach yields the algorithm SeqRDT described below.

3.3 The Non-Truncated Algorithm: SeqRDT

Section 3.2 above motivates a sequential approach involving two thresholds designed using (3.2).

One of these thresholds must guarantee a PFA that is upper bounded from above, while the other

aims at upper-bounding PMD. Given any natural number M > N0 − 1, the sequential procedure

SeqRDT suggested by Proposition 3.1 for testing H0 against H1 in (3.1) is specified by defining

the stopping time:

T = min
{
N ∈ N : DM(N) 6=∞

}
, (3.8)

and the decision rule as:

with:



DM(1) = DM(2) = . . . = DM(M) =∞,

for N > M,DM(N) =


0 if |〈Y 〉N − ξ0| 6 λL(N),

∞ if λL(N) < |〈Y 〉N − ξ0| 6 λH(N),

1 if |〈Y 〉N − ξ0| > λH(N),

(3.9)

with

λL(N) =
λγ(τ
√
N)√

N
and λH(N) =

λγ′(τ
√
N)√

N
,

τ ∈ (0,∞) and γ, γ′ ∈ (0, 1) must be such that γ′ < γ, which implies λL(N,wL) < λH(N,wH).

Here, DM(N) represents the decision variable as defined in Chapter 2. Specifically, we have
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DM(N) = 0 which is equivalent to saying thatH0 is decided, DM(N) = 1 is equivalent to saying

that H1 is decided and DM(N) = ∞ is equivalent to saying that no decision is made at the N th

sample and that the algorithm will update the statistic and repeat the test with the (N+1)th sample.

Note that M is the number of samples SeqRDT waits for before starting the test. We refer to this

M as the buffer size. An appropriate M can be chosen based on some elementary knowledge of

the signal. This will be made clearer in the coming section and in Chapter 5.

The choice for γ and γ′ can be made as follows. The PFA of SeqRDT is:

PFA(DM)
def
= P [DM(T ) = 1 ] underH0. (3.10)

In the same way, the PMD is:

PMD(DM)
def
= P [DM(T ) = 0 ] underH1. (3.11)

Since the goal of the sequential algorithm is to guarantee PFA(DM) and PMD(DM) to be below

certain pre-specified levels α and β, respectively, Proposition 3.1 leads us to choose γ = 1 − β

and γ′ = α with α, β ∈ (0, 1/2). This assumption is required to ensure λL(N) < λH(N) (refer to

Proposition 3.2 (i)). Moreover, typical values of α and β are of the order of 10−1 to 10−4, so the

assumption is not particularly restrictive. Henceforth, we always assume α, β ∈ (0, 1/2) and set

the lower and the upper thresholds, respectively as:

λL(N) =
λ1−β(τ

√
N)√

N
and λH(N) =

λα(τ
√
N)√

N
. (3.12)

Next, we analyze the properties of the proposed thresholds.

3.3.1 Properties of the Thresholds

Proposition 3.2 below validates that the thresholds proposed above in (3.12) are appropriate for

SeqRDT under both asymptotic and non-asymptotic regimes.
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Proposition 3.2. We have:

(i) For all N ∈ N, we have

λL(N) < λH(N).

(ii) The threshold λH(N) is decreasing in N ∈ N and lower bounded by τ ,

(iii) For N large enough, the threshold λL(N) is increasing in N and upper bounded by τ ,

(iv) Both thresholds approach τ as N increases:

lim
N→∞

λH(N) = lim
N→∞

λL(N) = τ.

PROOF:

The proof of statement (i) is given in Lemma A.6 of the Appendix. The proofs of statement

(ii) and (iii) are provided in Lemma A.7 and Lemma A.8, respectively, given in the Appendix. The

proof of statement (iv) is given in Lemma A.3 (ii) of the Appendix.

Proposition 3.2 (i) and (ii) imply that, as N → ∞, the test will reduce to a non-sequential test

as both thresholds become equal to τ . In Figures 3.1 and 3.2, we plot the two thresholds λH(N)

and λL(N) defined in (3.12) for different parameter values. We notice that the threshold behavior

corroborates the result of Proposition 3.2 (ii), (iii) and (iv).

The question addressed now is then “Can this choice of thresholds give some performance

guarantees, i.e, can we control PFA(DM) and PMD(DM) of SeqRDT such that SeqRDT belongs to

C (α, β)?".

Before stating several theorems to answer this question, we establish the following straightfor-

ward inequalities, which will prove useful at several places in the sequel. With the same notation

as above, for any given ε ∈ {0, 1}, we have:

P
[
DM(T ) = ε

]
= P

([
DM(T ) = ε

]
∩
[
T ≥M + 2

])
+ P

[
DM(M + 1) = ε

]
. (3.13)
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Fig. 3.1: λL(N) and λH(N) vs N for α = β = 0.1 and τ = 2.

Now using [DM(T ) = ε] ⊂ [DM+1(M + 1) 6= 1− ε], we have

P
[
DM(T ) = ε

]
6 1− P

[
DM(M + 1) = 1− ε

]
. (3.14)

Next, we discuss the asymptotic properties of the proposed algorithm.

3.3.2 Asymptotic Analysis of SeqRDT

Note that the algorithm SeqRDT (with stopping time defined in (3.8), the decision rule defined in

(3.9) and the thresholds as defined in (3.12)) can potentially run forever. Therefore, it is important

to guarantee that the stopping time of the algorithm stays finite with probability one. The next

Theorem states this result and also studies the behavior of PFA and PMD with the buffer size, M .

Theorem 3.1 (Asymptotics: T , PFA(DM) and PMD(DM)). If α, β ∈ (0, 1/2) and Assumption [(a-s)

convergence of 〈Ξ〉N ] holds true, then:
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Fig. 3.2: λL(N) and λH(N) vs N for α = β = 0.01 and τ = 0.5.

(i) We have

P [T <∞ ] = 1 under bothH0 andH1;

(ii) We also have

lim
M→∞

PFA(DM) = lim
M→∞

PMD(DM) = 0.

PROOF:

Proof of statement (i): We have [T = ∞] if and only if DM(N) = ∞ for each N > M .

Therefore,

P [T =∞ ] 6 P [DM(N) =∞ ]

for any N >M + 1.
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Since we have

[
DM(N) =∞

]
=
[
λL(N) < |〈Ξ〉N + 〈X〉N − ξ0| 6 λH(N)

]
,

This implies that we further have:

P [DM(N) =∞ ] = P
[
Tλ1−β(τ√N)/

√
N (Y ) = 1

]
− P

[
Tλα(τ

√
N)/
√
N (Y ) = 1

]
.

According to Proposition 3.1(ii), lim
N→∞

P [DM(N) =∞ ] = 0. Hence the result.

Proof of statement (ii): The PFA is

PFA(DM) = P
[
DM(T ) = 1

]
underH0.

Using (3.14), we have

PFA(DM) 6 1− P
[
DM(M + 1) = 0

]
.

The right hand side (rhs) in this equality can be rewritten P
[
|〈Y 〉M+1 − ξ0| > λL(M + 1)

]
. It

follows from (3.12) and Lemma A.1

PFA(DM) 6 E
[
Q 1

2

(√
M + 1|〈Ξ〉M+1 − ξ0|, λ1−β(τ

√
M + 1)

) ]
. (3.15)

We then derive from Assumption [(a-s) convergence of 〈Ξ〉N ] and Lemma A.2 that, underH0,

lim
M→∞

Q 1
2

(√
M + 1 |〈Ξ〉M+1 − ξ0|, λ1−β(τ

√
M + 1)

)
= 0 (a-s).

The Lebesgue dominated convergence theorem [6] then implies that lim
M→∞

PFA(DM) = 0.

Similarly, we derive from (3.14), (3.12) and Lemma A.1 that, regardless of [(a-s) convergence
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of 〈Ξ〉N ]:

PMD(DM) 6 1− E
[
Q 1

2

(√
M + 1|〈Ξ〉M+1 − ξ0|, λα(τ

√
M + 1)

) ]
. (3.16)

It then suffices to apply Assumption [(a-s) convergence of 〈Ξ〉N ], Lemma A.2 and the Lebesgue

dominated convergence theorem [6] to obtain the second equality in (ii).

Hence the proof.

The above theorem implies that under Assumption [(a-s) convergence of 〈Ξ〉N ], i.e., if the empir-

ical mean of the signal centered around ξ0 converges away from τ , the sequential test (3.9) takes

a decision in finite time with probability one. The theorem also implies that PFA and PMD di-

minish with the increasing buffer size, M . Next, we give some performance guarantees for the

non-asymptotic regime. In this regard, the next theorem shows that without any assumption on the

signal model, the bounds on PFA and PMD can be loose. Therefore, we make use of the Assump-

tion [Bounded behavior of |〈Ξ〉N − ξ0|] to derive tighter bounds on PFA and PMD and use these

bounds to choose an appropriate buffer size, M , such that PFA and PMD can be controlled and the

algorithm SeqRDT belongs to C (α, β). We derive two bounds in the next section.

3.3.3 Non-Asymptotic Analysis of SeqRDT

In this section, we derive bounds on PFA and PMD of SeqRDT in the next two theorems.

Theorem 3.2 (Non-Asymptotics: PFA(DM) and PMD(DM)). PFA(DM) and PMD(DM) are bounded

as: 
Q 1

2

(
0, λα(τ

√
M + 1)

)
6 PFA(DM) 6 1− β,

1−Q 1
2

(
τH
√
M + 1, λ1−β(τ

√
M + 1)

)
6 PMD(DM) 6 1− α.
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PROOF: UnderH0, we derive from (3.9), (3.10), (3.13), (3.12), and Lemma A.1 that:

PFA(DM) > P [DM(M + 1) = 1]

> E
[
Q 1

2

(√
M + 1|〈Ξ〉M+1 − ξ0|, λα(τ

√
M + 1)

) ]
(3.17)

The bounds on PFA(DM) result from the inequalities satisfied by |〈Ξ〉M+1 − ξ0| under H0 and

(3.17), for the lower bound, and (3.15) along with (1.4) given in Chapter 1, for the upper bound.

Similarly, for the probability of missed detection, under H1, (3.9), (3.11), (3.12), (3.13) and

Lemma A.1 yield

PMD(DM) > P [DM(M + 1) = 0]

> 1− E
[
Q 1

2

(√
M + 1|〈Ξ〉M+1 − ξ0|, λ1−β(τ

√
M + 1)

) ]
. (3.18)

We obtain the bounds on PMD(DN0) from the inequalities satisfied by |〈Ξ〉M+1− ξ0| underH1 and

(3.18), for the lower bound, and (3.16) along with (1.4) given in Chapter 1, for the upper bound.

The lower bounds for PFA(DM) and PMD(DM) derived in Theorem 3.2 always stay below levels

α and β, respectively. Theorem 3.2 also states that, without any assumption, the upper bounds

on PFA(DM) and PMD(DM) although bounded by unity, are loose. Hence, by assuming further

knowledge of the signal through Assumption [Bounded behavior of |〈Ξ〉N−ξ0|] we derive tighter

upper bounds on PFA(DM) and PMD(DM) in the next theorem. These bounds will be used to choose

appropriate buffer sizes for SeqRDT and will help in guaranteeing that SeqRDT belongs to the class

C (α, β).

Theorem 3.3 (Non-Asymptotics: PFA(DM) and PMD(DM)). (i) Under Assumption [Bounded be-
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UB1FA(M) = Q 1
2

(
τ−
√
M + 1, λ1−β(τ

√
M + 1)

)
, (3.20)

UB2FA(M) = Q 1
2

(
τ−
√
M + 1, λα(τ

√
M + 1)

)
+

∞∑
N=M+2

[(
Q 1

2

(
τ−
√
N, λα(τ

√
N)
))

∧( N−1∧
K=M+1

(
Q 1

2

(
τ−
√
K,λ1−β(τ

√
K)
)
−Q 1

2

(
0, λα(τ

√
K)
)))]

,

(3.21)

UB1MD(M) = 1−Q 1
2

(√
M + 1 τ+, λα(τ

√
M + 1)

)
, (3.22)

UB2MD(M) = 1−Q 1
2

(
τ+
√
M + 1, λ1−β(τ

√
M + 1)

)
+

∞∑
N=M+2

[(
1−Q 1

2

(
τ+
√
N, λ1−β(τ

√
N)
))

∧( N−1∧
K=M+1

(
Q 1

2

(
τH
√
K,λ1−β(τ

√
K)
)
−Q 1

2

(
τ+
√
K,λα(τ

√
K)
)))]

.

(3.23)

havior of |〈Ξ〉N − ξ0|], PFA(DM) and PMD(DM) for SeqRDT are bounded as:


Q 1

2

(
0, λα(τ

√
M + 1)

)
6 PFA(DM) 6 UB1FA(M)

∧
UB2FA(M),

1−Q 1
2

(
τH
√
M + 1, λ1−β(τ

√
M + 1)

)
6 PMD(DM) 6 UB1MD(M)

∧
UB2MD(M).

(3.19)

where a1

∧
a2 = min(a1, a2) for a1, a2 ∈ R. UB1FA(M), UB2FA(M), UB1MD(M) and UB2MD(M)

are finite and are given in (3.20) (3.21), (3.22) and (3.23), respectively.

(ii) Moreover we have that UB1FA(M)
∧

UB2FA(M) and UB1FA(M)
∧

UB2FA(M) decrease with

M .

PROOF:

Proof of statement (i): When Assumption [Bounded behavior of |〈Ξ〉N − ξ0|] holds true, we

have 0 6 |〈Ξ〉M+1 − ξ0| 6 τ− under H0. Injecting these inequalities into (3.17) and (3.15) yields
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the bounds:

Q 1
2

(
0, λα(τ

√
M + 1)

)
6 PFA(DM) 6 UB1FA(M).

We obtain UB2FA(M) by first writing:

[
DM(T ) = 1

]
=
[
DM(M + 1) = 1

]
∞⋃

N=M+2

([
DM(N) = 1

]
∩
[
DM(K) =∞,∀K ∈ [[M + 1, N − 1]]

])
.

Now using the union bound and from the Frechet inequality it follows that:

P
[
DM(T ) = 1

]
6 P

[
DM(M + 1) = 1

]
+

∞∑
N=M+2

P
[
DM(N) = 1

]∧( N−1∧
K=M+1

P
[
DM(K) =∞

])
. (3.24)

For any N >M + 1, Lemma A.1 and Assumption [Bounded behavior of |〈Ξ〉N − ξ0|] imply that

underH0, we have:

P
[
DM(N) = 1

]
6 Q 1

2

(
τ−
√
N, λα(τ

√
N)
)
. (3.25)

For any K ∈ [[M + 1, N − 1]], we can write:

P
[
DM(K) =∞

]
= P

[
〈Y 〉K − ξ0| > λL(K)

]
− P

[
〈Y 〉K − ξ0| > λH(K)

]
. (3.26)

Again from Lemma A.1, Assumption [Bounded behavior of |〈Ξ〉N − ξ0|] underH0 we have:

P
[
DM(K) =∞

]
6 Q 1

2

(
τ−
√
K,λ1−β(τ

√
K)
)
−Q 1

2

(
0, λα(τ

√
K)
)
. (3.27)

The bound UB2FA(M) follows by injecting (3.25) and (3.27) into (3.24).

The bounds UB1MD(M) and UB2MD(M) on PMD(DN0) follow similarly from (3.16), (3.18),

(3.26) and Lemma A.1, and using Assumption [Bounded behavior of |〈Ξ〉N − ξ0|] underH1. The
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proof of the convergence of UB1MD(M) and UB2MD(M) are given in Appendix A.9.

Proof of statement (ii): For any given ρ ∈ [0,∞) such that ρ 6= τ and for all γ ∈ (0, 1), it follows

from Lemma A.5 that the mapping

N 7→ Q 1
2

(
ρ
√
N, λγ(τ

√
N)
)

for N ∈ N is decreasing if ρ < τ and increasing if ρ > τ . Therefore, UB1FA(M) and UB1MD(M)

also decrease with M . A careful inspection of UB2FA(M) and UB2MD(M) reveals that each term

involved in these bounds is decreasing with M . Statement (ii) follows since the minimum of two

decreasing terms is decreasing.

Hence the proof.

3.3.4 Parameter Selection

Note that, Theorem 3.3 above makes it possible to choose the least buffer size M that guarantees

specified values for the upper bounds UB1FA(M)
∧

UB2FA(M) and UB1MD(M)
∧

UB2MD(M).

Therefore, with the choice of an appropriate buffer size M , we can expect to control PFA(DM)

and PMD(DM) under desired levels and ensure that SeqRDT belongs to the class C (α, β). More

precisely, if we want a test that guarantees PFA(DM) 6 α and PMD(DM) 6 β for specified 0 <

α < 1/2 and 0 < β < 1/2, we can choose an appropriate M as follows.

First, choose M1 such that we have

UB1FA(M1)
∧

UB2FA(M1) 6 α.

Afterwards, choose M2 such that we ahve

UB1MD(M2)
∧

UB2MD(M2) 6 β.

The buffer size can then be fixed toM = max(M1,M2). In Chapter 5, we will proceed in this man-
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Fig. 3.3: Upper bound on PFA(DM) and PMD(DM) vs M (please see Theorem 3.3)

ner to choose the buffer size. It is, however, important to emphasize that the upper bounds given

in Theorem 3.3 could still be loose in some scenarios, as the terms UB2FA(M) and UB2MD(M)

are derived from the intersection of multiple events. However, according to Theorem 3.3 (i) and

(3.19) these bounds will always stay below UB1FA(M) and UB1MD(M) even if UB2FA(M) and

UB2MD(M) are loose. Importantly, we show in Chapter 5, that the tightness of these bounds de-

pends on the underlying signal distributions and these bounds can in fact be tight for some signal

distributions. Moreover, we show in Chapter 5 that the proposed algorithm, SeqRDT makes a

decision faster on an average compared to the optimal FSS test discussed in the next chapter.

Now we know that with the test as defined in (3.9) with stopping time defined in (3.8) and with

the thresholds as designed in (3.12), we can ensure that SeqRDT belongs to the class C (α, β).

This was ensured with the help of a buffer, M , as designed above. Next, we present an alternative

design to SeqRDT where we eliminate the need for this buffer.
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3.4 Alternate Design: Eliminating the Buffer

In this section, we eliminate the need for the buffer, M , by introducing an additional parameter in

the design of the algorithm. Specifically, we update the thresholds given in (3.12) by introducing

this additional parameter. Before introducing this parameter, let us have a look at the behavior of

the upper bounds derived in Theorem 3.3 with increasing buffer size, M .

In Figure 3.3, we plot the upper upper bounds derived in Theorem 3.3 with the buffer size, M ,

for two pairs of α, β values, specifically, we have α = β = 0.01 and α = β = 0.001. The plot

confirms the observation of Theorem 3.3 (ii), which implies that we can choose the buffer size, M ,

large enough such that SeqRDT belongs to C (α, β). Importantly, we make another observation

from Figure 3.3, which is, to achieve the same level of PFA and PMD performance the algorithm

with smaller α and β values requires smaller buffer size,M . This follows from the Figure 3.3 above

which shows that to achieve PFA = 0.01 and PMD = 0.01 the algorithm with thresholds designed

using α = β = 0.001 requires a smaller buffer size, M (approximately M = 50), compared to the

algorithm with thresholds designed using α = β = 0.01 (approximately M = 170).

Based on the above observation we introduce an additional scaling parameter wN0 and design

the thresholds given in (3.12) with α replaced by α/wN0 and β replaced by β/wN0 with wN0 > 1.

This choice of thresholds will reduce the buffer size, M , as can be seen in the Figure 3.3 above,

which also suggests that we can choose the parameter wN0 large enough such that the buffer size,

M , becomes equal to N0 (please see (3.1)).

3.4.1 Designing the Thresholds

Based on the discussion above we update the thresholds given in (3.12) with α replaced by α/wN0

and β replaced by β/wN0 , therefore we have the new thresholds as:

λL(N,wN0) =

λ1− β
wN0

(τ
√
N)

√
N

and λH(N,wN0) =
λ α
wN0

(τ
√
N)

√
N

. (3.28)



46

Note that we only update the thresholds, the rest of the test including the stopping time (3.8) and

the decision rule (3.9) stay the same. Next, we analyze the properties of the thresholds proposed

above in (3.28).

Proposition 3.3. For wN0 > 1:

(i) We have

λL(N,wN0) < λH(N,wN0),

for all N ∈ N.

(ii) The threshold λH(N,wN0) is decreasing in N ∈ N and lower bounded by τ .

(iii) For N large enough, the threshold λL(N,wN0) is increasing in N and upper bounded by τ .

(iv) Both the thresholds approach τ as N increases:

lim
N→∞

λH(N,wN0) = lim
N→∞

λL(N,wN0) = τ.

PROOF: Since α, β ∈ (0, 1/2) and wN0 is greater or equal to 1, we have

0 <
α

wN0

<
1

2
< 1− β

wN0

.

Thus the proof of statement (i) is given in Lemma A.6 of the Appendix. Proof of Statements (ii)

and (iii) are given in Lemmas A.7 and A.8, respectively, given in the Appendix. The proof of

statement (iv) is given in Lemma A.3 of the Appendix.

Similar to the case of the thresholds λH(N) and λL(N) as defined in (3.12), Proposition 3.3

above ensures λL(N,wN0) < λH(N,wN0), which is made possible by the assumption that wN0 >

1. This makes the thresholds defined in (3.28) a valid choice for designing a sequential algorithm.

Moreover, both the thresholds tend to τ as N increases, which intuitively implies that the chance

of making a decision should be higher for larger N .

Now, we analyze the behavior of the thresholds with respect to parameters wH and wL, when

N is fixed.
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Proposition 3.4. For wN0 > 1 we have

(i) λH(N,wN0) increases when wN0 increases,

(ii) λL(N,wN0) decreases when wN0 increases,

(iii) We have

lim
wN0
→∞

λH(N,wN0) =∞ and lim
wN0
→∞

λL(N,wN0) = 0.

PROOF:

The proof of statements (i) and (ii) are given in Lemma A.6 of the appendix. Statement (iii)

follows from (1.4) in Chapter 1 and the fact that the Marcum function (1.2) (in Chapter 1) is a

complementary cdf.

In this section, we analyzed the properties of the thresholds proposed in (3.28). Next, we derive

the upper bounds on PFA and PMD of the algorithm and show that we can choose appropriate

parameters such that the algorithm belongs to C (α, β) for arbitrary pre-specified α and β.

3.4.2 Analysis of SeqRDT

In this section, we bound PFA and PMD of SeqRDT for the thresholds as defined in (3.28)

Theorem 3.4 (Non-Asymptotics: PFA(DM) and PMD(DM)). (i) Under Assumption [Bounded be-

havior of |〈Ξ〉N−ξ0|] and for the thresholds designed according to (3.28), PFA(DM) and PMD(DM)

for SeqRDT are bounded as:



Q 1
2

(
0, λ α

wN0

(τ
√
M + 1)

)
6 PFA(DM)

6 UB1FA(M,wN0)
∧

UB2FA(M,wN0),

1−Q 1
2

(
τH
√
M + 1, λ1− β

wN0

(τ
√
M + 1)

)
6 PMD(DM)

6 UB1MD(M,wN0)
∧

UB2MD(M,wN0).

(3.29)

where a1

∧
a2 = min(a1, a2) for a1, a2 ∈ R. UB1FA(M,wN0), UB2FA(M,wN0), UB1MD(M,wN0)
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UB1FA(M,wN0) = Q 1
2

(
τ−
√
M + 1, λ1− β

wN0

(τ
√
M + 1)

)
, (3.30)

UB2FA(M,wN0) = Q 1
2

(
τ−
√
M + 1, λ α

wN0

(τ
√
M + 1)

)
+

∞∑
N=M+2

[(
Q 1

2

(
τ−
√
N, λ α

wN0

(τ
√
N)
))

∧( N−1∧
K=M+1

(
Q 1

2

(
τ−
√
K,λ1− β

wN0

(τ
√
K)

)
−Q 1

2

(
0, λ α

wN0

(τ
√
K)
)))]

,

(3.31)

UB1MD(M,wN0) = 1−Q 1
2

(
τ+
√
M + 1, λ α

wN0

(τ
√
M + 1)

)
, (3.32)

UB2MD(M,wN0) = 1−Q 1
2

(
τ+
√
M + 1, λ1− β

wN0

(τ
√
M + 1)

)
+

∞∑
N=M+2

[(
1−Q 1

2

(
τ+
√
N, λ1− β

wN0

(τ
√
N)

))
∧( N−1∧

K=M+1

(
Q 1

2

(
τH
√
K,λ1− β

wN0

(τ
√
K)

)
−Q 1

2

(
τ+
√
K,λ α

wN0

(τ
√
K)
)))]

.

(3.33)

and UB2MD(M,wN0) are finite and are given in (3.30) (3.31), (3.32) and (3.33), respectively.

(ii) We have that UB1FA(M,wN0)
∧

UB2FA(M,wN0) and UB1FA(M,wN0)
∧

UB2FA(M,wN0) de-

crease with M .

(iii) Moreover, we have that UB1FA(M,wN0)
∧

UB2FA(M,wN0) and UB1FA(M,wN0)
∧

UB2FA(M,wN0)

decrease with wN0 for wN0 large enough.

PROOF:

The proof of statement (i) and (ii) follows from the same series of arguments as the proof of

Theorem 3.3

Proof of statement (iii): Proof of statement (iii) follows from a simple inspection of the indi-

vidual terms of the upper bounds. Let us first consider the upper bound on PFA,

UB1FA(M,wN0)
∧

UB2FA(M,wN0).

Note that as wN0 increases, the term UB1FA(M,wN0) approaches 1 which follows from the defi-
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nition of the threshold given in (1.4) from Chapter 1. Now consider the second term of the bound

UB2FA(M,wN0). Let us consider the first and the second terms of UB2FA(M,wN0), we have the

mapping

wN0 7→ Q 1
2

(
τ−
√
N, λ α

wN0

(τ
√
N)
)
,

decreasing with wN0 . Similarly, we have the mapping

wN0 7→ Q 1
2

(
τ−
√
N, λ1− β

wN0

(τ
√
N)

)
−Q 1

2

(
0, λ α

wN0

(τ
√
N)
)
,

increasing with wN0 . This implies that in the upper bound UB2FA(M,wN0) as wN0 increase the

terms of type Q 1
2

(
τ−
√
N, λ α

wN0

(τ
√
N)
)

will dominate and will make the bound smaller and

smaller as wN0 increases further. This further implies that the term UB2FA(M,wN0) will dominate

in the bound UB1FA(M,wN0)
∧

UB2FA(M,wN0) and will capture the behavior of the upper bound

at large values of wN0 .

The result for UB1MD(M,wN0)
∧

UB2MD(M,wN0) follows from a similar argument.

Hence we have the proof.

The above Theorem 3.4 implies that the upper bounds on PFA and PMD of SeqRDT are a

function of the buffer size, M , and the parameter wN0 . Now, the goal is to choose these parameters

such that SeqRDT belongs to the class C (α, β) and at the same time makes a decision faster on

average compared to the optimal FSS test.

3.4.3 Parameter Selection

In this section, we utilize the statements of Theorem 3.4 (ii) and (iii) to design an algorithm to

choose the parameter, wN0 , such that the buffer is eliminated, i.e., it becomes equal to N0 (please

see (3.1)).

Note that, from Theorem 3.4 (ii) and (iii) we see that if we increase the parameter, wN0 , then

in order to maintain

UB1FA(M,wN0)
∧

UB2FA(M,wN0) ≈ α,
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i.e., to keep the upper bound tight, we will need to reduce the buffer size, M . This implies that

we can potentially eliminate the buffer by choosing a sufficiently large value of the parameter,

wN0 . Note that this behavior was also captured in Figure 3.3. In Algorithm 1, we list the steps of

SeqRDT. Note that we can choose to run Algorithm 1 with a buffer (Option I) or without a buffer

(Option II). The thresholds in the algorithm are chosen according to the Option chosen.

Algorithm 1: SeqRDT

Initialize Given N0, τ , τ−, τ+, α and β.

1. Parameter Selection

Option I: Choose M as given in Section 3.3.4 or alternately choose

Option II: wN0 as given in Section 3.4.3

2. Compute Thresholds

Option I: λH(N) and λL(N) using (3.12) or alternatively choose

Option II: λH(N,wN0) and λL(N,wN0) (3.28)

While λL(N) < |〈Y 〉N − ξ0| 6 λH(N)

N = N + 1

End

If |〈Y 〉N − ξ0| 6 λL(N)

AcceptH0

else if |〈Y 〉N − ξ0| > λH(N)

RejectH0

End If

Finally, we discuss an important extension of the hypothesis testing frameworks presented in

this dissertation. Note that for the hypothesis testing problem addressed in this chapter, with the

hypotheses as given in (3.1), the inequalities are assumed to be satisfied in (a.s.) sense. However,

in some cases the inequalities might not be satisfied in (a.s.) sense but might rather be satisfied in

a weaker sense. The next section discusses such a scenario.
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3.5 An Extension

Suppose that, instead of (3.1) where the inequalities are assumed to be satisfied in (a-s) sense, we

have:

UnderH∗0 : P
[
for all N > N0, |〈Ξ〉N − ξ0| 6 τ

]
> 1− ε,

UnderH∗1 : P
[
for all N > N0, |〈Ξ〉N − ξ1| > τ

]
> 1− ε.

with a small positive constant ε 6 min(α, β). Under the assumptions of Theorem 3.3, SeqRDT can

still be used as follows to test H∗0 against H∗1 with guaranteed bounds on PFA and PMD, and

thereby, can be guaranteed to belong to the class C (α, β). Let us consider Option I in Algorithm 1

given above.

Indeed, given α, β ∈ (0, 1), choose M so that

UB1FA(M)
∧

UB2FA(M) 6 α

and

UB1MD(M)
∧

UB2MD(M) 6 β

in (3.19). UnderH∗0, the PFA, P∗FA, of SeqRDT satisfies:

P∗FA = P [DM(T ) = 1 ] (3.34)

6 P(Ωc
0) + P

[
DM(T ) = 1

∣∣Ω0

]
P(Ω0)

6 ε+ P
[
DM(T ) = 1

∣∣Ω0

]
P(Ω0), (3.35)

with Ω0 =
[
for allN > N0, |〈Ξ〉N−ξ0| 6 τ

]
. Consider the probability space

(
Ω0,FΩ0 ,P (•|Ω0)

)
,

whereFΩ0 is the trace σ-algebra ofF on Ω0 and P (•|Ω0) is the conditional probability that assigns

to eachA ∈ FΩ0 the probability P (A|Ω0). According to Theorem 3.3, P
[
DM(T ) = 1

∣∣Ω0

]
6 α−ε

and thus P∗FA 6 α. Similarly, we have P∗MD 6 β.
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This extension can be useful in practice. For example, consider the case when the signal, Ξ =

(Ξn)n∈N, comes from a Gaussian distribution, i.e., Ξn ∼ N (0, σ2). In this case, the probabilities

given in (3.1) will not be satisfied in (a-s) sense for a finite N0, but will be satisfied in a weaker

sense as given in (3.34) above. Similarly, the above formulation is applicable for the cases when

the signal, Ξ, is any i.i.d (or not) random variable sequence with unbounded support underH0 and

H1 and such that 〈Ξ〉N → ξ0 underH0 and 〈Ξ〉N → ξ1 underH1, with ξ0 6= ξ1.

However, in Chapter 5, we show that the proposed algorithms work with assumptions even

weaker than as given in (3.34) above.

3.6 Summary

In this chapter, we proposed an algorithm to solve the sequential hypothesis testing problem pro-

posed in Chapter 2 and stated in (3.1). We first introduced a few key assumptions required to

design the sequential algorithm and help ensure that the proposed algorithms belong to the class

C (α, β). Then we motivated the algorithm design by analyzing the properties of the proposed test

statistic. We then proposed the algorithm and analyzed its asymptotic properties. We introduced

the notion of a buffer which is then used to control PFA and PMD of the proposed algorithm.

We then derived the upper bounds on PFA and PMD of the algorithm and provided a method to

choose an appropriate buffer size. We showed that we can choose a buffer size which ensures

that the proposed algorithm, SeqRDT, belongs to the class C (α, β). Importantly, we showed that

without any prior knowledge of the underlying signal distributions, SeqRDT is shown to guaran-

tee pre-specified PFA and PMD, whereas, in contrast, the likelihood ratio based tests need precise

knowledge of the signal distributions under each hypothesis. In the later part of the chapter, we in-

troduced an additional parameter in the algorithm (with updated thresholds) and presented another

design of the algorithm which eliminated the need of the buffer. Finally, we presented the steps of

the algorithm for both the designs with and without buffer size and showed a simple extension of

the proposed frameworks when the proposed hypotheses are not true in (a.s.) sense but are rather

true in a weaker sense.
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CHAPTER 4

TRUNCATED SEQUENTIAL RANDOM

DISTORTION TESTING

4.1 Introduction

As discussed earlier in Chapter 1, in his seminal works [39, 40], Wald proposed his celebrated

sequential procedure, namely, SPRT for testing two simple hypotheses. SPRT is optimal in the

sense that it makes a decision faster on average, compared to all the procedures including FSS

tests achieving the same PFA and PMD. However, this optimality is lost in some cases when

there is a mismatch between the assumed and true models for the underlying hypotheses to be

tested [1, 33, 34], i.e, SPRT can have larger stopping times on average compared to the FSS tests

that achieve the same error probabilities. To avoid these scenarios, a truncated version of SPRT

was proposed in [33], where the truncation time was chosen based on the FSS test. However,

the error probabilities achieved by truncated SPRT are usually higher than those achieved by non-

truncated SPRT. In addition, larger truncation times are needed to guarantee error probabilities

below predefined levels. The purpose of this chapter is to propose a truncated sequential algorithm

for non-parametric hypothesis testing framework introduced in Chapter 2. In this chapter, we in-

troduce a truncated version of the algorithm, SeqRDT, proposed in Chapter 3. Similar to truncated
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SPRT, we also design the truncation window of the algorithm using the optimal FSS test.

In this chapter, we first state the problem and discuss the assumption required to control PFA

and PMD of the proposed truncated algorithm. We then introduce the optimal FSS test and discuss

some important preliminary results which play an important role in the design of the truncation

time of the truncated sequential algorithm. We then extend the algorithm, SeqRDT, proposed in

the preceding chapter and introduce a new truncated sequential algorithm, T-SeqRDT, to solve the

binary hypothesis testing problem introduced in Chapter 2. Similar to SeqRDT, we first analyze the

properties of the proposed thresholds. We derive bounds on PFA and PMD of T-SeqRDT and show

that we can choose the parameters of the thresholds along with the truncation window to ensure

that T-SeqRDT belongs to class C (α, β). In contrast to SeqRDT, for T-SeqRDT we analyze the

bounds on the average stopping time of T-SeqRDT and provide insights into the trade-off between

the average stopping time and the error probabilities of the algorithm. Finally, we give an approach

to choose the parameters of the thresholds and the truncation window size of the algorithm.

Next, we state the problem along with a crucial assumption which helps not only in controlling

the PFA and PMD of the proposed algorithm but also helps in designing the truncation window of

the truncated algorithm, T-SeqRDT.

4.2 Problem Statement

In this section, we introduce an important assumption required to control the PFA and PMD of

the proposed algorithm. Also, as stated earlier in Chapter 3, the FSS tests only guarantee the PFA

to be below a pre-specified level and cannot control the associated PMD similar to the Neyman-

Pearson frameworks [21,27]. The assumption introduced in this section makes it possible to design

FSS tests such that PMD can also be guaranteed to stay below pre-specified level. Importantly, the

assumption introduced in this section also helps in designing the truncation window of the proposed
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algorithm. Before introducing the assumptions, we state the problem again:



Observation : Y = Ξ +X ∈M(Ω,R)N

with


Ξ = (Ξn)n∈N ∈M(Ω,R)N,

X1, X2, . . .
iid∼ N (0, 1),

Ξ and X are independent.

∃N0 ∈ N,


H0 : ∀N > N0, 0 6 |〈Ξ〉N − ξ0| 6 τ (a-s)

H1 : ∀N > N0, τ < |〈Ξ〉N − ξ0| 6 τH (a-s)

(4.1)

where, τ ∈ [0,∞) is the tolerance and τ < τH <∞. Now, to exhibit elements of C (α, β), we will

make use of the following assumption.

Assumption 3 (Behavior of |〈Ξ〉N − ξ0| underH1). There exists τ+ ∈ (τ,∞) such that:

UnderH1 : ∀N > N0, |〈Ξ〉N − ξ0| > τ+(a-s).

The Assumption [Behavior of |〈Ξ〉N−ξ0| underH1] states that under the alternate hypothesis,

H1, the empirical mean of the signal centered around the model, ξ0, is bounded away from τ . This

assumption is similar in nature to that of the indifference zone assumed in [12,36]. Here the region

(τ, τ+) represents the indifference zone.

Remark 4.1. SeqRDT proposed in Chapter 3 imposed stricter conditions on the signal compared

to Assumption [Behavior of |〈Ξ〉N − ξ0| underH1]. Beyond Assumption [Behavior of |〈Ξ〉N − ξ0|

underH1], it was assumed in the SeqRDT framework that

UnderH0, for all N > N0,we have |〈Ξ〉N − ξ0| 6 τ− (a-s),

with τ− ∈ [0, τ). Therefore, SeqRDT required more parameters than T-SeqRDT. In addition,

performance bounds were guaranteed by SeqRDT via the use of a buffer or via introducing a
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parameter which was then used to eliminate the buffer. The buffer size as well as the parameter was

selected using τ− and τ+ along with τ and τH defined in (4.1). In contrast, T-SeqRDT proposed

in this chapter does not need to know τ− or even τH . It requires the knowledge of τ and τ+ only

to guarantee performance, i.e., to ensure that the algorithm belongs to C (α, β) with pre-defined

levels α and β.

Next, we first define a FSS test BlockRDT and show that with the use of Assumption [Behavior

of |〈Ξ〉N − ξ0| underH1], BlockRDT can be designed so as to belong to C (α, β). Then, by using

BlockRDT, we define the truncated sequential test, T-SeqRDT, that also belongs to C (α, β) as well

but at the same time makes a decision faster on average compared to BlockRDT.

4.3 Optimal Fixed Sample Size (FSS) Test: BlockRDT

In this section, we discuss the FSS testing framework to solve the binary hypothesis testing problem

defined in (4.1) for a fixed number of samples N > N0. Specifically, suppose that we have only N

samples from our observation Y so that Y = Ξ +X ∈M(Ω,R)[[1,N ]] in (4.1):



Observation : Y = Ξ +X ∈M(Ω,R)[[1,N ]]

with


Ξ = (Ξn)n∈N ∈M(Ω,R)[[1,N ]],

X1, X2, . . . XN
iid∼ N (0, 1),

Ξ and X are independent.

∃N > N0,


H0 : 0 6 |〈Ξ〉N − ξ0| 6 τ (a-s)

H1 : τ < |〈Ξ〉N − ξ0| 6 τH (a-s)

where, τ ∈ [0,∞) is the tolerance and τ < τH < ∞. To solve this hypothesis testing problem,

the authors in [25, 26] consider all the FSS tests DN0(N) = T (Y ), where T is any (measurable)

mapping T : RN → {0, 1}. All such mappings T are hereafter called N -dimensional tests. In the
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BlockRDT framework [25, 26], we define the size of a given N -dimensional test T as:

αT = sup
Ξ∈M(Ω,R)[[1,N ]]:P[|〈Ξ〉N−ξ0|6τ ] 6=0

P
[
T (Y ) = 1

∣∣ |〈Ξ〉N − ξ0| 6 τ
]

and T is said to have level γ ∈ (0, 1) if αT 6 γ. No Uniformly Most Powerful (UMP) test with

level γ exists for for BlockRDT. By UMP test with level γ, we mean an N -dimensional test T ∗

such that αT ∗ 6 γ and

P
[
T ∗(Y ) = 1 ||〈Ξ〉N − ξ0| > τ

]
> P

[
T (Y ) = 1 ||〈Ξ〉N − ξ0| > τ

]
for any N -dimensional test T and any Ξ ∈ M(Ω,R)[[1,N ]]. We thus define the subclass of

BlockRDT-coherent tests [26], among which a “best” test exists. We say that an N -dimensional

test T is BlockRDT-coherent if:

[Invariance in mean] Given y, y′ ∈ RN , if:

〈 y〉N = 〈 y′〉N , then T (y) = T (y′).

[Constant conditional power] For all Ξ ∈ M(Ω,R)[[1,N ]] independent of X , there exists a Borel

set B such that |〈Ξ〉N − ξ0| ∈ B (a-s) and, for any ρ ∈ B∩ (0,∞), P
[
T (Y ) = 1 | |〈Ξ〉N − ξ0| = ρ

]
is independent of the distribution of |〈Ξ〉N − ξ0|.

The rationale behind [Invariance in mean] is straightforward and implies that two different

observation processes with the same empirical mean must yield the same decision for T .

[Constant conditional power] means that T should not yield different results for different

distributions of |〈Ξ〉N − ξ0|, conditioned on |〈Ξ〉N − ξ0| = ρ.

Let the class of all BlockRDT-coherent tests with level γ be denoted by Kγ . This class can

be partially pre-ordered as follows: given T , T ′ ∈ Kγ , write that T � T ′ if, for any Ξ ∈

M(Ω,R)[[1,N ]],

(i) T and T ′ satisfy [Constant conditional power] on the same domain B and
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(ii) For all ρ ∈ B ∩ (τ,∞),

P
[
T (Y ) = 1 | |〈Ξ〉N − ξ0| = ρ

]
6 P

[
T ′(Y ) = 1 | |〈Ξ〉N − ξ0| = ρ

]
.

According to [25, 26], the N -dimensional test defined for every x ∈ RN by:

T ∗N,γ (x) =

 0 if |〈x〉N − ξ0| 6 λγ(τ
√
N)/
√
N

1 otherwise.
(4.2)

where λγ(τ
√
N)/
√
N is defined using (1.4), is maximal inKγ: for any T ∈ Kγ , T � TN,γ . Let the

PFA and PMD of T ∗N,γ for BlockRDT be denoted by PB-RDT
FA (N, γ) and PB-RDT

MD (N, γ), respectively.

We have the following proposition [25].

Proposition 4.1. For any γ ∈ (0, 1) and τ > 0, we have:


Q 1

2

(
0, λγ(τ

√
N)
)

6 PB-RDT
FA (N, γ) 6 γ

1−Q 1
2

(
τH
√
N, λγ(τ

√
N)
)

6 PB-RDT
MD (N, γ) 6 1− γ

According to the above proposition, although being optimal for BlockRDT, T ∗N,γ controls PB-RDT
FA (N, γ)

but has no control over PB-RDT
MD (N, γ).

This implies that, without further assumption and for any γ ∈ (0, 1), BlockRDT cannot belong

to the class C (α, β) (with PFA(DN0) and PMD(DN0) replaced by PB-RDT
FA (N, γ) and PB-RDT

MD (N, γ) in

(2.5), respectively) when α, β ∈ (0, 1/2). However, with Assumption [Behavior of |〈Ξ〉N − ξ0|

under H1], the next result implies that we can control PB-RDT
FA (N, γ) such that BlockRDT is in

C (α, β).

Proposition 4.2. For any γ ∈ (0, 1), PB-RDT
FA (N, γ) and PB-RDT

MD (N, γ) are bounded under Assump-
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tion [Behavior of |〈Ξ〉N − ξ0| underH1] as:


PB-RDT

FA (N, γ) 6 γ,

PB-RDT
MD (N, γ) 6 1−Q 1

2

(
τ+
√
N, λγ(τ

√
N)
)

and the upper bound on PB-RDT
MD (N, γ) decreases to 0 with N .

PROOF: The bound follows from Lemma A.1 and the application of Assumption [Behavior of

|〈Ξ〉N − ξ0| under H1]. The upper-bound on PB-RDT
MD (N, γ) decreases with N as a consequence of

Lemma A.5.

Proposition 4.2 implies that for γ = α and a sufficiently largeN such that the bound on PB-RDT
MD (N, γ)

is below β, BlockRDT is in C (α, β). Since this N might be very large in practice, we introduce

a novel truncated sequential algorithm, T-SeqRDT, to control the number of samples and make a

decision faster on average compared to the optimal FSS test, BlockRDT.

4.4 The Truncated Algorithm: T-SeqRDT

In this section, we propose T-SeqRDT. In T-SeqRDT, if no decision has been reached until a spec-

ified time, the decision will be forced using BlockRDT [25], since Proposition 4.2 guarantees that

we can attain arbitrarily small PMD for a bounded PFA under Assumption [Behavior of |〈Ξ〉N−ξ0|

underH1].

Below we state the stopping time and the decision rule for T-SeqRDT. The stopping time is

defined as:

T = inf{N ∈ N : N 6 N0 +W ∗ − 1,D(N) 6=∞}. (4.3)
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and the decision variable DN0(N) for T-SeqRDT is defined as:



DN0(1) = DN0(2) = . . . = DN0(N0 − 1) =∞,

for N0 6 N < N0 +W ∗,

DN0(N)=


0 if |〈Y 〉N−ξ0|6λL(N)

1 if |〈Y 〉N−ξ0|>λH(N)

∞ if λL(N)< |〈Y 〉N−ξ0|6λH(N)

for N = N0 +W ∗,

DN0(N) =

0 if |〈Y 〉N − ξ0| 6 λB-RDT(N)

1 if |〈Y 〉N − ξ0| > λB-RDT(N)

(4.4)

with decisions taken according to (2.2) given in Chapter 2. At time instant N = N0 + W ∗, with

W ∗ ∈ N, the decision is made using BlockRDT, if a decision has not been made until then. Recall

that W ∗ is defined as the truncation window. The three thresholds λL(N), λH(N) and λB-RDT(N)

must be designed jointly so as to guarantee that T-SeqRDT is in C (α, β). In any case, λH(N) and

λL(N) must be such that λL(N) < λH(N). Moreover, we want a decision faster compared to

BlockRDT, the optimal FSS counterpart of T-SeqRDT. The thresholds are chosen with respect to

these constraints. We define the PFA and PMD of T-SeqRDT as:

PFA(DN0)
def
= P [DN0(T ) = 1 ] , underH0, (4.5)

is the PFA and

PMD(DN0)
def
= P [DN0(T ) = 0 ] , underH1. (4.6)

is the PMD.

Earlier in Chapter 3, we proposed a non-truncated sequential algorithm, SeqRDT, to solve the

binary hypothesis testing problem (4.1). Moreover, SeqRDT was shown to belong to class C (α, β)

either with the help of a buffer or with the help of a parameter which helped in eliminating the
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buffer. The upper and lower thresholds respectively for SeqRDT when designed with a buffer were

defined as:

λα(τ
√
N)/
√
N and λ1−β(τ

√
N)/
√
N, (4.7)

and for the design of SeqRDT without the buffer were defined as:

λ α
wN0

(τ
√
N)/
√
N and λ1− β

wN0

(τ
√
N)/
√
N, (4.8)

Note that with both the designs we were able to control both PFA and PMD of SeqRDT. These

thresholds were designed using τ− and τ+ along with τ and τH defined in (4.1), where the meaning

of τ− is recalled in Remark 4.1 above.

4.4.1 Designing the Thresholds and Their Properties

SeqRDT proposed in Chapter 3 was designed to belong to class C (α, β) via the thresholds (4.7)

or (4.8). T-SeqRDT by design eliminates the need for the buffer required in the design of SeqRDT,

while being in C (α, β). In view of the similarity between the T-SeqRDT statistic in (4.4) to that

of BlockRDT in (4.2), we define the thresholds similar in structure to those of BlockRDT. The

thresholds λH(N), λL(N) and λB-RDT(N) for T-SeqRDT are designed as:

λH(N) = λH(N,wH) = λα/wH (τ
√
N)/
√
N

λL(N) = λL(N,wL) = λ1−β/wL(τ
√
N)/
√
N (4.9)

λB-RDT(N) = λB-RDT(N,wBH) = λα/wBH (τ
√
N)/
√
N,

where the parameters wH , wL and wBH give the algorithm designer control over these thresholds

and are equal to or greater than 1. This constraint is necessary to ensure that T-SeqRDT is a valid

sequential test, by guaranteeing that λL(N,wL) < λH(N,wH), as shown in Proposition 4.3 below.

In addition, the parameters wH , wL and wBH must appropriately be chosen so as to guarantee that
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T-SeqRDT belongs to C (α, β). To this end, we study the properties of the thresholds (4.9) and

establish that they satisfy suitable properties for T-SeqRDT.

Proposition 4.3. For wL > 1 and 1 6 wBH 6 wH given:

(i) We have

λL(N,wL) < λB-RDT(N,wBH) 6 λH(N,wH),

for all N ∈ N.

(ii) The thresholds λH(N,wH) and λB-RDT(N,wBH) are decreasing in N ∈ N and lower bounded

by τ .

(iii) For N large enough, the threshold λL(N,wL) is increasing in N and upper bounded by τ .

(iv) All the thresholds approach τ as N increases:

lim
N→∞

λH(N,wH) = lim
N→∞

λB-RDT(N,wBH) = lim
N→∞

λL(N,wL) = τ.

PROOF: Since α, β ∈ (0, 1/2), we have

0 <
α

wH
6

α

wBH
<

1

2
< 1− β

wL
.

Thus the proof of (i) follows from Lemma A.6. Statements (ii) and (iii) follow from Lemmas A.7

and A.8, respectively. The proof of (iv) derives from Lemma A.3.

As discussed earlier, Proposition 4.3 ensures λL(N,wL) < λH(N,wH), which is made possible

by the assumption that wH , wL and wBH > 1. Moreover, all the thresholds tend to τ as N

increases, which intuitively implies that the chance of making a decision should be higher for

larger N .

Now, we analyze the behavior of the thresholds with respect to parameters wH , wL and wBH ,

when N is fixed.

Proposition 4.4. We have

(i) λH(N,wH) increases when wH increases,
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(ii) λL(N,wL) decreases when wL increases,

(iii) λB-RDT(N,wBH) increases when wBH increases,

(iv) We have

lim
wH→∞

λH(N,wH) =∞ and lim
wL→∞

λL(N,wL) = 0.

PROOF: The proof of (i), (ii) and (iii) follows from Lemma A.6. Statement (iv) follows from (1.4)

and the fact that the Marcum function (1.2) is a complementary cdf.

According to Proposition 4.4, λH(N,wH) and λL(N,wL) grow further away as wH and wL

increase. Therefore, thresholds designed with higher values of wH and wL should provide better

PFA(DN0) and PMD(DN0) performance compared to thresholds tuned with lower wH and wL val-

ues, but at the expense of longer stopping times. For SeqRDT proposed in Chapter 3, the error

probabilities were controlled via the buffer or an additional parameter, wN0 , and no control over

the stopping time was provided. For T-SeqRDT, the control over the error probabilities is achieved

by choosing the parameters wH , wL and wBH so as to move the thresholds away from or closer to

each other. This gives the designer control over the average stopping time as well. This will be

discussed in more detail later.

4.4.2 Designing the Truncation Window

The goal of T-SeqRDT is to make a decision faster on average compared to its FSS counterpart,

BlockRDT, while providing sufficient performance guarantees. Thus, it makes sense to base the

choice of the truncation window W ∗ on BlockRDT as follows. For the threshold λB-RDT(N,wBH)

given in (4.9), Proposition 4.2 implies that PB-RDT
FA (N,α/wBH) is always upper bounded by α/wBH

and hence by α as wBH ≥ 1. Moreover, the upper bound on PB-RDT
MD (N,α/wBH) is a decreasing

function of N . We thus propose to choose W ∗ = W ∗(wBH , wBL) as:

W ∗ = W ∗(wBH , wBL)

= min

{
W ∈ N : 1−Q 1

2

(
τ+
√
N0 +W,λ α

wBH
(τ
√
N0 +W )

)
6

β

wBL

}
(4.10)
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with wBL ≥ 1.

Remark 4.2. Note from Proposition 4.2 that BlockRDT with λB-RDT(N,wBH) given in (4.9) for the

number of samples N = N0 +W ∗ is in C (α/wBH , β/wBL).

The parameters wH and wL defined earlier are used to control the upper and the lower thresh-

olds, respectively, via (4.9). On the other hand, the parameters wBH and wBL control the truncation

window, W ∗(wBH , wBL), defined in (4.10) and the assumption wBL ≥ 1 is required to make sure

that the PMD of T-SeqRDT stays below β (see Theorem 4.2 below). All the thresholds along with

the truncation window, which are thus controlled by wH , wL, wBH and wBL, govern the perfor-

mance of T-SeqRDT. Therefore, we next analyse the behavior of W ∗(wBH , wBL) with wBH and

wBL so that wBL, wH , wL and wBH can be fixed to guarantee that T-SeqRDT belongs to C (α, β).

Proposition 4.5. We have

(i) For fixed wBL, W ∗(•, wBL) does not decrease;

(ii) For fixed wBH , W ∗(wBH , •) does not decrease;

PROOF: For any wBH > 1 and any W ∈ N, set:

UBB-RDT
MD (wBH ,W ) = 1−Q 1

2

(
τ+
√
N0 +W,λ α

wBH
(τ
√
N0 +W )

)

For any wBL > 1,

W ∗(wBH , wBL) = minA(wBH , wBL) (4.11)

with:

A(wBH , wBL) =

{
W ∈ N : UBB-RDT

MD (wBH ,W ) 6
β

wBL

}
(4.12)

Proof of (i): Consider wBH 6 w′BH . According to Lemmas 1.1 and A.6, we have:

UBB-RDT
MD (wBH ,W ) 6 UBB-RDT

MD (w′BH ,W ) (4.13)
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Therefore, from (4.11) and (4.12), we have A(w′BH , wBL) ⊆ A(wBH , wBL) and thus

W ∗(w′BH , wBL) > W ∗(wBH , wBL).

Proof of (ii): Fix wBH . If wBL 6 w′BL, then β
w′BL

6 β
wBL

. This implies that

A(wBH , w
′
BL) ⊆ A(wBH , wBL).

Hence the result.

Proposition 4.5 tells us that the smaller the required PFA and PMD for truncation by BlockRDT,

the larger the truncation window for T-SeqRDT, which is natural. This will lead to the trade-off

pinpointed in the next section between this truncation window and the error probabilities of T-

SeqRDT. In addition, the choice of the truncation window using BlockRDT will allow for easier

comparison between T-SeqRDT and BlockRDT.

Remark 4.3. Assumption [Behavior of |〈Ξ〉N − ξ0| under H1] is instrumental in choosing an

appropriate truncation window W ∗ for T-SeqRDT (see Proposition 4.2 and (4.10)). But, if W ∗ is

known a priori, i.e., it is available via some preliminary training procedure or prior experience,

Assumption [Behavior of |〈Ξ〉N−ξ0| underH1] is not needed, while the algorithm will still achieve

the same performance.

Our next goal is to choose the appropriate thresholds (4.9) and window size (4.10), such that

T-SeqRDT is in C (α, β). We proceed by noticing that (4.9) and Proposition 4.5 show that this

question is equivalent to choosing appropriate values of wH , wL, wBH and wBL.

4.5 Analysis of T-SeqRDT

In this section, we calculate bounds on the PFA and PMD of T-SeqRDT. These bounds are used to

derive values for wH , wL, wBH and wBL that guarantee the required performance. Then, we study
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the average stopping time. Finally, we discuss the relationship between the error probabilities and

the average stopping time.

4.5.1 False Alarm and Missed Detection Probabilities

Since closed form expressions for PFA(DN0) and PMD(DN0) cannot be derived, we instead calculate

upper and lower bounds on these error probabilities, for the thresholds (4.9). These bounds provide

useful insights into the behavior of T-SeqRDT. We begin with lower bounds.

Theorem 4.1 (Lower-bounds on PFA(DN0) and PMD(DN0)).


PFA(DN0) > Q 1

2

(
0, λα/wH (τ

√
N0)
)
,

PMD(DN0) > 1−Q 1
2

(
τH
√
N0, λ1−β/wL(τ

√
N0)
)
.

PROOF: Since
[
DN0(T ) = 1

]
⊇
[
DN0(N0) = 1

]
, (2.6) implies that, underH0:

PFA(DN0) > P
[
DN0(N0) = 1

]
(a)
= E

[
Q 1

2

(√
N0|〈Ξ〉N0 − ξ0|,

√
N0λH(N0, wH)

)]
(b)

> Q 1
2

(
0, λα/wH (τ

√
N0)
)

where (a) follows from Lemma A.1, (b) from (4.9), Lemma 1.1 and the fact that under H0, 0 6

|〈Ξ〉N − ξ0| 6 τ (a-s). Similarly, consider the event
[
DN0(T ) = 0

]
and follow the same procedure

as above to get the lower bound for PMD(DN0).

Although the lower bounds do not play any role in designing the thresholds, note that they

decrease with N0 and approach 0 as N0 →∞, which follows from Lemma A.5 and A.4.
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UBFA =
α

wH
+

[
N0+W ∗−1∑
N=N0+1

α

wH

∧(
N−1∧
K=N0

((
1− β

wL

)
−Q 1

2

(
0, λ α

wH
(τ
√
K)
)))]

+
α

wBH

∧(
N0+W ∗−1∧
K=N0

((
1− β

wL

)
−Q 1

2

(
0, λ α

wH
(τ
√
K)
)))

, (4.14)

UBMD =
β

wL
+

[
N0+W ∗−1∑
N=N0+1

β

wL

∧(
N−1∧
K=N0

(
Q 1

2

(
τH
√
K,λ1− β

wL

(τ
√
K)
)
− α

wH

))]

+
β

wBL

∧(
N0+W ∗−1∧
K=N0

(
Q 1

2

(
τH
√
K,λ1− β

wL

(τ
√
K)
)
− α

wH

))
. (4.15)

Theorem 4.2 (Upper-bounds on PFA(DN0) and PMD(DN0)).


PFA(DN0) 6 UBFA 6

(
W ∗

wH
+ 1

wBH

)
α,

PMD(DN0) 6 UBMD 6

(
W ∗

wL
+ 1

wBL

)
β,

where UBFA and UBMD are given in (4.14) and (4.15), respectively, and W ∗ = W ∗(wBH , wBL).

PROOF: We have

[
DN0(T ) = 1

]
=
[
DN0(N0) = 1

]
N0+W ∗⋃
N=N0+1

([
DN0(N) = 1

]
∩
[
DN0(K) =∞,∀K s.t. N0 6 K 6 N − 1

])
.
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Since these events are disjoint, we have

P
[
DN0(T ) = 1

]
= P

[
DN0(N0) = 1

]
+

N0+W ∗∑
N=N0+1

P
([
DN0(N) = 1

]
∩
[
DN0(K) =∞,∀K s.t. N0 6 K 6 N − 1

])
(a)

6 P
[
DN0(N0) = 1

]
+

N0+W ∗∑
N=N0+1

P
[
DN0(N) = 1

]
∧( N−1∧

K=N0

P
[
DN0(K) =∞

])
, (4.16)

where (a) follows from the Frechet inequality. We bound each individual probability on the right

hand side (rhs) of (4.16) underH0. First, for all N0 6 N 6 N0 +W ∗ − 1, we have:

P
[
DN0(N) = 1

] (a)
= E

[
Q 1

2

(√
N |〈Ξ〉N − ξ0|,

√
NλH(N,wH)

)]
(b)

6 Q 1
2

(
τ
√
N, λα/wH (τ

√
N)
)

(4.17)

(c)
= α/wH , (4.18)

where (a) follows from Lemma A.1; (b) results from (4.9), the fact that under H0 : 0 6 |〈Ξ〉N −

ξ0| 6 τ and Lemma 1.1; (c) comes from (1.4).

Second, for N = N0 +W ∗, we have underH0:

P
[
DN0(N) = 1

]
= PB-RDT

FA

(a)

6 α/wBH , (4.19)

where (a) follows from Proposition 4.2 and (4.9).
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Now, for all N0 6 K 6 N0 +W ∗ − 1, we have:

P
[
DN0(K) =∞

]
= P

[
|〈Y 〉K − ξ0| > λL(K,wL)

]
− P

[
|〈Y 〉K − ξ0| > λH(K,wH)

]
(a)
= E

[
Q 1

2

(√
K|〈Ξ〉K − ξ0|,

√
KλL(K,wL)

)]
− E

[
Q 1

2

(√
K|〈Ξ〉K − ξ0|,

√
KλH(K,wH)

)]
(b)

6 Q 1
2

(
τ
√
K,λ1−β/wL(τ

√
K)
)
−Q 1

2

(
0, λα/wH (τ

√
K)
)

(c)
= 1− β/wL −Q 1

2

(
0, λα/wH (τ

√
K)
)
, (4.20)

where: (a) follows from Lemma A.1, (b) from the monotonicity of the Marcum function, (4.9) and

the fact that underH0 : 0 6 |〈Ξ〉N − ξ0| 6 τ , and (c) from (1.4).

The upper bounds on PFA(DN0) follow by substituting (4.18), (4.19) and (4.20) into (4.16) and

using that a1 ∧ a2 6 a1. The upper bounds for PMD(DN0) result from a similar procedure and the

definition of W ∗ via (4.10).

This theorem justifies the definition of the thresholds in (4.9). It is clear that PFA(DN0) and

PMD(DN0) of T-SeqRDT can be controlled such that T-SeqRDT is in C (α, β) by choosing appro-

priate parameters wH , wL, wBH and wBL, which are independent of the signal model. Moreover,

to do so, all these parameters have to be greater than or equal to one. Hereafter, we work with the

looser upper bounds stated in Theorem 4.2. They are simpler to analyze as they depend on fewer

parameters than UBFA and UBMD and give useful insights into the behavior of T-SeqRDT.

We use the threshold λB-RDT(N0 +W ∗, wBH) withW ∗ = W ∗(wBH , wBL) to stop T-SeqRDT if

a decision has not been taken until N0 + W ∗. As pointed out in Remark 4.2, the PFA (resp.

PMD) of the corresponding BlockRDT is upper-bounded by α/wBH (resp. β/wBL). Therefore,

from Theorem 4.2, we see that T-SeqRDT may lose some detection performance compared to

BlockRDT. However, it follows from this same theorem and Subsection 4.4.2 that the upper-bounds

on the false alarm and missed detection probabilities are of the same order for T-SeqRDT and

BlockRDT. For example, if wBH = wBL = 1 and wH = wL = W ∗, T-SeqRDT is in C (2α, 2β)

whereas BlockRDT is in C (α, β). We can thus increase wH , wL, wBH and wBL such that T-
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SeqRDT is in C (α, β). Though this comes at the cost of increasing the average stopping-time, this

is the same behavior as observed for SPRT and discussed in [33]. We show in the next section that

this average stopping time remains always less than N0 +W ∗.

4.5.2 Stopping time of T-SeqRDT

Similar to PFA(DN0) and PMD(DN0), a closed form for the average stopping time of T-SeqRDT is

not derivable. We, however, get an insight into the stopping behavior of T-SeqRDT by bounding

its average stopping time.

Theorem 4.3 (Bounds on the average stopping time). With W ∗ = W ∗(wBH , wBL):

(i) We have 
UnderH0 : E[T ] 6 UBTH0

UnderH1 : E[T ] 6 UBTH1
,

where:

UBTH0
= N0 +W ∗ − βW ∗/wL −

N0+W ∗−1∑
N=N0

Q 1
2

(
0, λα/wH (τ

√
N)
)
,

UBTH1
= N0 +W ∗ − αW ∗/wH −

N0+W ∗−1∑
N=N0

[
1−Q 1

2

(
τH
√
N, λ1−β/wL(τ

√
N)
)]
.

(ii) E[T ] < N0 +W ∗.

PROOF:

Proof of statement (i): Since the random variable T is discrete and valued in {N0, N0+1, · · · , N0+

W ∗} and

E[T ] =
∞∑
N=0

P[T > N ]

= N0 +

N0+W ∗−1∑
N=N0

P[T > N ].



71

By definition of T (4.3),
[
T > N

]
⊂
[
DN0(N) =∞

]
for any N ∈ {N0, N0 + 1, · · · , N0 +W ∗}.

Hence, the following inequality:

E[T ] 6 N0 +

N0+W ∗−1∑
N=N0

P
[
DN0(N) =∞

]
. (4.21)

According to Lemma A.1, we can write:

P
[
DN0(N) =∞

]
= E

[
Q 1

2

(√
N |〈Ξ〉N − ξ0|,

√
NλL(N,wL)

)]
− E

[
Q 1

2

(√
N |〈Ξ〉N − ξ0|,

√
NλH(N,wH)

)]
. (4.22)

UnderH0, 0 6 |〈Ξ〉N − ξ0| 6 τ (a-s) for all N > N0 and thus:

P
[
DN0(N) =∞

] (a)

6 Q 1
2

(√
Nτ, λ1−β/wL(τ

√
N)
)
−Q 1

2

(
0, λα/wH (τ

√
N)
)

(b)
= 1− β/wL −Q 1

2

(
0, λα/wH (τ

√
N)
)
,

where (a) results from the monotonicity of Q 1
2

and (b) from (1.4). The bound on E[T ] under H0

follows by substituting the inequality above into (4.21). Following a similar procedure to bound

(4.22) underH1, we can obtain the bound underH1.

Proof of (ii): The result follows from the bound

P[DN0(N) =∞] < 1 for all N ∈ {N0, · · · , N0 +W − 1}.

Hence the proof.

Theorem 4.3 states that the average stopping time of T-SeqRDT is strictly less than the BlockRDT block

sizeN0+W ∗. Therefore, on the one hand, Theorem 4.2 suggests that T-SeqRDT will lose detection

performance compared to BlockRDT; but on the other hand, Theorem 4.3 shows that T-SeqRDT is

faster on average than BlockRDT. Moreover, the bounds derived in the two theorems depend on

the choice of parameters wH , wL, wBH and wBL. As stated earlier, these parameters are used to
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select the three thresholds and the truncation window required for T-SeqRDT. Next, we study the

behavior of the error probabilities and the stopping time with these parameters.

4.5.3 Trade-off: Error probabilities vs Stopping time

In this subsection, we study how increasing/decreasing PFA(DN0) and PMD(DN0) affect the average

stopping time of T-SeqRDT. Since PFA(DN0), PMD(DN0) and E[T ] are not available in a closed

form, we hereafter study the behavior of the upper bounds for PFA(DN0) and PMD(DN0) with respect

to the upper bounds given for E[T ].

Proposition 4.6 (Behavior with wH and wL). Given wBL and wBH , we have:

(i) As wH and wL tend to∞, T-SeqRDT approaches BlockRDT in the sense that

lim
wL,wH→∞

E[T ] = N0 +W ∗;

(ii) As wH and wL increase, the upper bounds on PFA(DN0) and PMD(DN0) decrease while the

upper bounds on E[T ] increase under each hypothesis.

PROOF:

Proof of (i): Using the definition of the expectation, we have

E[T ] =

N0+W ∗∑
N=N0

NP[T = N ]

> (N0 +W ∗)P[T = N0 +W ∗]

= (N0 +W ∗)P

[
N0+W ∗−1⋂
N=N0

[DN0(N) =∞]

]
(b)

> (N0 +W ∗)

(
1−

N0+W ∗−1∑
N=N0

P
[
DN0(N) 6=∞

])
,
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where (b) follows from the Boole inequality. Moreover, it follows from Proposition 3.4 (iv) that

P
[
DN0(N) =∞

]
= P

[
|〈Y 〉N − ξ0| 6 λH(N,wH)

]
− P

[
|〈Y 〉N − ξ0| 6 λL(N,wL)

]
,

tends to 1 when both wH and wL grow to∞. Therefore, the result follows.

Proof of (ii): From Theorem 4.2, the looser upper bound on PFA(DN0) is an inverse function of wH ,

whereas the looser upper bound on PMD(DN0) is an inverse function of wL. Hence, the first part of

the statement.

Now, let us look at the upper bounds on the average stopping time from Proposition 4.3. Let us

first look at the upper bound under H0. The first term N0 + W ∗ is independent of wL, the second

term βW ∗/wL decreases when wL increases and the third term
∑N0+W ∗−1

N=N0
Q 1

2

(
0, λα/wH (τ

√
N)
)

decreases with increasing wH , as a consequence of Lemmas 1.1 and A.6. This implies that the

upper bound E[T ] under H0 will increase with increasing wH and wL. Similar reasoning follows

for the upper bound underH1.

Proposition 4.6 plays an important role in helping us design T-SeqRDT. Proposition 4.6 (i) states

that, as wL and wH increase, the stopping time of T-SeqRDT approaches the number of samples

required by BlockRDT to belong to C (α/wBH , β/wBL) (see (4.10), Remark 4.2 and discussion

afterwards). Moreover, from Theorem 4.2 notice that for all ε > 0, there exist wL and wH greater

than or equal to one such that T-SeqRDT belongs to the class C (α/wBH + ε, β/wBL+ ε). This can

be achieved by increasing wH and wL, which is equivalent to moving the thresholds λH(N,wH)

and λL(N,wL) away from each other (see Proposition 4.4), hence, increasing the average stopping

time of T-SeqRDT (Proposition 4.6(ii)). This implies that we can choose larger parameter values

wH and wL, which moves the thresholds λH(N,wH) and λL(N,wL) away from each other in order

to reduce PFA(DN0) and PMD(DN0). At the same time, this choice of parameters (or thresholds)

will increase E[T ] of T-SeqRDT. Next, we analyze the behavior of E[T ] with increasing wBH and

wBL.

Proposition 4.7 (Behavior with wBH and wBL). For fixed wL and wH , as wBH and wBL increase,
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the upper bounds on E[T ] increase under each hypothesis.

PROOF: According to Proposition 4.3 (i), we have:

E[T ] 6 N0 +

N0+W ∗−1∑
N=N0

[
1−

(
β/wL +Q 1

2

(
0, λα/wH (τ

√
N )
))]

. (4.23)

We have β/wL < 1/2 since β < 1/2 and wL > 1. Similarly, since α < 1/2 and wH > 1, Lemma

1.1, [24, Lemma 2(ii)] and (1.4) imply that

Q 1
2

(
0, λα/wH (τ

√
N )
)
6

α

wH

< 1/2.

Therefore, the second term on the rhs of (4.23) is a sum of W ∗ positive terms. From Proposition

4.5, we know that W ∗ increases with increasing wBH and wBL. Hence the result underH0.

The proof underH1 follows similarly.

From Proposition 4.5, we know that increasing wBH and wBL will also increase the window size

W ∗(wBH , wBL). Proposition 4.7 above suggests that choosing a larger wBH and wBL, and hence

a larger W ∗(wBH , wBL), while keeping the parameters wL and wH fixed, will increase the upper

bounds on the average stopping time. But, from Theorem 4.2, we see that, to guarantee that T-

SeqRDT belongs to C (α, β), wL and wH cannot stay fixed and must satisfy

wL >
wBLW

∗(wBH , wBL)

wBL − 1
,

and

wH >
wBHW

∗(wBH , wBL)

wBH − 1
.

Clearly, varying wH and wL along with wBH and wBL will also have an impact on the average

stopping time. It is not easy to characterize the average stopping time behavior of T-SeqRDT when

wBH and wBL increase while maintaining PFA and PMD below levels α and β, respectively. How-
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ever, Theorem 4.2 suggests that when wBH and wBL are chosen such that wBH > 1 and wBL > 1,

any α and β can be achieved with:

wL =
wBLW

∗(wBH , wBL)

wBL − 1
(4.24)

and

wH =
wBHW

∗(wBH , wBL)

wBH − 1
. (4.25)

Now the question that arises is: how should we choose wH , wL, wBH and wBH such that E[T ]

is minimized and at the same time T-SeqRDT is in C (α, β)? The next subsection addresses this

question.

4.5.4 Parameter Selection

We need to choose appropriate thresholds (4.9) and the window W ∗(wBH , wBL) (4.10) such that

T-SeqRDT belongs to C (α, β), and at the same time minimizes the average stopping time. The

parameters wH , wL and wBH fully determine the thresholds (4.9), whereas wBH and wBL are

required to design W ∗(wBH , wBL). The choice of the appropriate thresholds and window thus

boils down to selecting suitable values of parameters wH , wL, wBH and wBL. Using (4.24) and

(4.25), we propose to choose the parameters such that the maximum of the two upper bounds on

the stopping time derived in Theorem 4.3 are minimized, i.e.,

(w∗BH , w
∗
BL, w

∗
H , w

∗
L) = arg min

wBH ,wBL,wH ,wL

max(UBTH0
,UBTH1

)

s.t. (4.24) and (4.25) hold, wBH > 1, wBL > 1, wH ≥ 1, wL ≥ 1. (4.26)
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If wBH = wBL, which implies that wL = wH , (4.26) becomes:

(w∗BH , w
∗
H) = arg min

wBH ,wH

max(UBTH0
,UBTH1

)

s.t. (4.24) and (4.25) hold, wBH > 1, wH ≥ 1. (4.27)

The above problem can be further simplified to one-dimensional search via Proposition 4.6(ii),

which tells us that for fixed wBH (and wBL), smaller wH (and wL) implies smaller bounds on E[T ].

Therefore, we can choose wBH (and wBL), hence W ∗(wBH , wBL) so as to minimize wH (and wL)

given by (4.24) and (4.25) as:

w∗BH = arg min
wBH

wBHW
∗(wBH , wBL)

wBH − 1
s.t. wBH > 1. (4.28)

Thereby, the upper bounds derived in Theorem 4.2 are maintained equal to α and β and we expect

Algorithm 2: T-SeqRDT

Initialize Given N0, τ , τ+, α and β.

1. Choose wBL and wBH , thereby W ∗ = W ∗(wBH , wBL), wL = wBLW
∗

(wBL−1) and wH = wBHW
∗

(wBH−1) using

either of (4.26), (4.27) or (4.28).

2. Compute λH(N,wH), λL(N,wL) and λB-RDT(N,wBH) from (4.9)

While λL(N,wL) < |〈Y 〉N − ξ0| 6 λH(N,wH) and N0 6 N < N0 +W ∗

N = N + 1

End

If |〈Y 〉N − ξ0| 6 λL(N,wL) and N < N0 +W ∗

AcceptH0

else if |〈Y 〉N − ξ0| > λH(N,wH) and N < N0 +W ∗

RejectH0

else if |〈Y 〉N − ξ0| 6 λB-RDT(N,wBH) and N = N0 +W ∗

AcceptH0

else if |〈Y 〉N − ξ0| > λB-RDT(N,wBH) and N = N0 +W ∗

RejectH0

End If
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to minimize the stopping time of T-SeqRDT. In the next Chapter, we experimentally show the effect

of wBH and wBL on wL, wH and E[T ], and point out that the parameters can be chosen over a wide

range without significantly impacting E[T ]. Since we have a method to choose appropriate values

for wH , wL, wBH and wBL from which one derives W ∗ = W ∗(wBH , wBL), we can calculate

the thresholds according to (4.9) and, then, perform T-SeqRDT. Algorithm 2 lists the steps of

T-SeqRDT.

4.6 Summary

In this chapter, we extended the non-truncated algorithm, SeqRDT, proposed in the preceding chap-

ter and introduced a novel truncated sequential algorithm, T-SeqRDT, to solve the binary hypothe-

sis testing problem introduced in Chapter 2. In doing so, we first stated Assumption [Behavior of

|〈Ξ〉N − ξ0| under H1], which is required to control PFA and PMD of T-SeqRDT. We then intro-

duced the optimal FSS test, BlockRDT, and showed in Proposition 4.2 that Assumption [Behavior

of |〈Ξ〉N−ξ0| underH1] also helps in controlling PFA and PMD of BlockRDT. Similar to SeqRDT,

we first analyzed the properties of the proposed thresholds and showed that the designed thresh-

olds are appropriate for sequential testing. We derived bounds on PFA and PMD of T-SeqRDT and

showed that we can choose the parameters of the thresholds along with the truncation window to

ensure that T-SeqRDT belongs to the class C (α, β). In contrast to SeqRDT, for T-SeqRDT we

also analyzed the bounds on the average stopping time of T-SeqRDT and provided insights into the

trade-off between the average stopping time and the error probabilities of the algorithm. Finally,

we provided an approach to choose the parameters of the thresholds and the window size of the

algorithm efficiently. One critical feature of the proposed algorithm, T-SeqRDT, is that it gives the

algorithm designer freedom to choose these parameters, thus making it possible to test signals with

arbitrarily low SNRs. Also, the algorithm is robust to mismatches in signal distributions as it does

not rely on the underlying signal distributions.
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CHAPTER 5

EXPERIMENTAL RESULTS FOR

SEQUENTIAL RANDOM DISTORTION

TESTING

5.1 Introduction

In this chapter, we perform some simulations to highlight the advantages of the proposed algo-

rithms, SeqRDT and T-SeqRDT, proposed in Chapters 3 and 4, respectively, compared to the

optimal FSS algorithm, BlockRDT, discussed in Chapter 4 and SPRT as proposed in [39, 40].

Importantly, we compare the proposed algorithms to two popular composite hypothesis tests,

GSPRT [36] and WSPRT as defined in [40]. Moreover, we compare the algorithms for different

types of signal models and show that the proposed approaches are robust to mismatches compared

to the likelihood ratio based approaches.

In the following, we first present the signal model and discuss the experimental setup. We show

how popular mean-testing algorithms can be framed in the SeqRDT and T-SeqRDT frameworks

proposed in this dissertation. Then we present three different signal models and compare the per-

formance of the proposed algorithms with likelihood ratio based approaches. We demonstrate how
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to choose the parameters for the proposed algorithms using the techniques presented in Chapters 3

and 4. Finally, we conclude the section with some numerical results and analysis of the robustness

of the proposed frameworks through numerical simulations. Next, we discuss the experimental

setup for the numerical simulations.

5.2 Experimental Results and Discussion

In this section, we first present the signal model assumed for simulation purposes. Then we discuss

how to frame a standard mean-testing algorithm in the sequential testing framework proposed in

this dissertation. In the later part of the section, we discuss three different practical signal models

we have chosen to conduct the experiments. Next, we discuss the signal model.

5.2.1 Detection with signal distortions

We address the problem of testing the mean of a signal. Let us first consider the case when:

Yn = Ξn +Xn, for n ∈ N

with the signal, Ξ = (Ξ)n∈N, we have

Ξn = ξ0 under H0 vs Ξn 6= ξ0 under H1.

Here, ξ0 is a deterministic constant and the noise is Gaussian, i.e., Xn ∼ N (0, 1) for all n ∈ N.

This model can be formulated in the sequential framework presented in this work (please see (2.1))

with τ = 0 and N0 = 1. This is the classical Gaussian mean-testing problem.

However, in many practical systems, there might be a mismatch between the model and the

actual signal. In many practical applications, the underlying signal, Ξn, will not be a constant ξ0

under the null hypothesis, H0, but a perturbed version of this value. These unavoidable pertur-

bations are difficult to model in a parametric setup. Therefore, likelihood ratio based tests fail to
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guarantee reliable performance [9, 24, 36]. However, the T-SeqRDT and the SeqRDT setups pro-

posed in Chapters 3 and 4, respectively, are not limited by these drawbacks. Therefore, instead of

dealing with a perfect model as described above, we consider the case when the actual signal, Ξn,

is a distorted version of ξi for i ∈ {0, 1}:

Ξn = ξi + ∆n under Hi for i ∈ {0, 1} and n ∈ N.

Here, the ∆ns model possible perturbations with unknown distribution. We thus want to exper-

imentally assess different algorithms for testing Ξ = (Ξn)n∈N when we observe Y = (Yn)n∈N

(please see (2.1), (3.1) or (4.1)). We focus on algorithms in class C (α, β). If the distributions

in play are perfectly known, SPRT is optimal in the sense that it makes a faster decision on av-

erage, compared to all other algorithms in class C (α, β). Otherwise, if the distributions are not

completely known and only partial knowledge of the distortions is assumed, the above hypothesis

testing problem can easily be formulated in the framework of (2.1). Then the problem can be solved

by BlockRDT, SeqRDT or T-SeqRDT. In this respect, we hereafter benchmark T-SeqRDT against

WSPRT, GSPRT, SPRT, BlockRDT and SeqRDT under experimental settings described below.

5.2.2 Experimental setup

We first list the parameters required to design each algorithm. BlockRDT only requires τ , but guar-

antees PB-RDT
FA only, with no control over PB-RDT

MD . With additional knowledge of τ+, BlockRDT can

control both PB-RDT
FA and PB-RDT

MD as illustrated in Proposition 4.2. Likewise, T-SeqRDT also requires

τ and τ+, whereas SeqRDT requires τ−, τ , τ+ and τH . On the other hand, SPRT requires com-

plete knowledge of the signal distributions under each hypothesis. Similarly, WSPRT and GSPRT

also require precise knowledge of the signal distributions at least up to an unknown (possibly vec-

tor) parameter. Note that BlockRDT is a FSS algorithm whereas the rest of the algorithms are

sequential and belong to class C (α, β). For the experimental setup, let us assume τ− to be some

positive real value. We consider ξ1 and ξ0 such that |ξ1 − ξ0| > 4τ−. We set τ+ = |ξ1 − ξ0| − τ−
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and τH ∈ [|ξ1 − ξ0| + τ−,∞). Suppose that the empirical mean of the distortion ∆ = (∆n)n∈N

exhibits the following bounded behavior: there exists some N0 ∈ N such that, for all N > N0,

0 6 |〈∆〉N | 6 τ− and τ+ 6 |〈∆〉N + ξ1 − ξ0| 6 τH . The first inequality captures the signal

behavior under H0, whereas the second inequality captures the signal behavior under H1. The

problem of testing the mean of Ξ = (Ξn)n∈N can be rewritten as:


underH0 : ∀N > N0, 0 6 |〈Ξ〉N − ξ0| 6 τ− < τ (a-s),

underH1 : ∀N > N0, τ < τ+6 |〈Ξ〉N − ξ0| 6 τH (a-s).
(5.1)

We can choose τ ∈ (τ−, τ+). For simulation purposes, we set τ = 2τ−. Note that (5.1) is a

special case of the hypothesis testing problem (2.1) and can thus be tested using the BlockRDT,

SeqRDT and T-SeqRDT frameworks. None of these algorithms need the complete knowledge of

the distortion (or signal) distributions under either hypothesis, unlike SPRT, WSPRT and GSPRT

which require the precise knowledge of these distributions under both hypotheses at least up to

parametric uncertainty. We consider three different types of distortions, two when (5.1) is only

required to be satisfied with high probability and the third when it is satisfied with probability 1 (in

(a-s) sense).

Case 1: Gaussian distortion: We assume ∆n
iid∼ N (0, σ2) for n ∈ N. For simulation purposes,

we choose τ− = σ/4. For this distortion type, the inequalities in (5.1) will only be satisfied with

high-probability. Below, we list the probabilities corresponding to the Gaussian distortion. We

have P[|〈∆〉N | 6 τ ] > 0.9545,P[|〈∆〉N + ξ1 − ξ0| > τ ] > 0.9772,P[|〈∆〉N | 6 τ−] > 0.6827 and

P[|〈∆〉N + ξ1 − ξ0| > τ+] > 0.8413 for all N > N0 with N0 = 16 and |ξ1 − ξ0| > 2τ . Note that

these probabilities increase with N .

Case 2: Heavy-Tailed distortion: We model ∆n as an ᾱ-stable random variable denoted as

∆n
iid∼ S(ᾱ, β̄, γ̄, δ̄) for n ∈ N [28]. The parameters ᾱ ∈ (0, 2], β̄ ∈ [−1, 1], γ̄ > 0 and

δ̄ ∈ (−∞,∞) are the tail-index, location, dispersion and skewness parameters, respectively. In

general, an ᾱ-stable distribution does not admit a closed-form probability density function, ex-
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cept in a few special cases like the Cauchy (ᾱ = 1, β̄ = 0) and Gaussian (ᾱ = 2) distributions.

Moreover, for the Cauchy distribution and for ᾱ ∈ (0, 1], none of the moments of the ᾱ-stable

distribution exist. For ᾱ ∈ (1, 2) the distribution is sometimes referred to as the Pareto-Lévy dis-

tribution and for this class of distributions, all higher moments beyond the mean do not exist. For

simulation purposes, we consider the following two types of heavy-tailed distortions:

Case 2(i) [Pareto-Lévy distortion (ᾱ ∈ (1, 2))]: We assume the distortion to be Pareto-

Lévy distributed with ∆n
iid∼ S(1.5, 0, τ−, 0) for n ∈ N. We thus have: P[|〈∆〉N | 6 τ ] >

0.9885,P[|〈∆〉N + ξ1 − ξ0| > τ ] > 0.9953,P[|〈∆〉N | 6 τ−] > 0.9646,P[|〈∆〉N + ξ1 − ξ0| >

τ+] > 0.9832 for allN > N0 withN0 = 30 and |ξ1−ξ0| > 2τ . Again, note that these probabilities

increase with N .

Case 2(ii) [Cauchy distortion (ᾱ = 1)]: Note that, unlike in the cases involving Gaussian

and Pareto-Lévy distortions, the empirical mean of i.i.d Cauchy distributed random variables is

again Cauchy distributed [28] and none of the moments exist for the Cauchy distribution, thereby,

none of the moments exist for the empirical mean as well. Therefore, the empirical mean of a

Cauchy distorted signal does not converge in the neighborhood of ξ0 and ξ1 under H0 and H1,

respectively, in contrast to the Gaussian and Pareto-Lévy distortions as discussed above. Below,

we show that, although the Cauchy distortion does not exhibit the desired convergence properties,

the proposed algorithms guarantee performance if (5.1) holds with sufficiently high probabili-

ties. To experimentally show this, we assume the distortion to be Cauchy distributed as ∆n
iid∼

S(1, 0, τ−/10, 0) for n ∈ N with the associated probabilities given as: P[|〈∆〉N | 6 τ ] = 0.9682

and P[|〈∆〉N | 6 τ−] = 0.9365 for all N ∈ N. Also, P[|〈∆〉N + ξ1 − ξ0| > τ ] > 0.9894 and

P[|〈∆〉N + ξ1− ξ0| > τ+] > 0.9728 for all N ∈ N and |ξ1− ξ0| > 2τ . Note that, unlike the Cases

1 and 2(i) these probabilities do not increase with N as the distribution of the empirical mean of

a Cauchy distribution remains the same. As a consequence, the probabilities stay the same for all

N ∈ N. To ensure that (5.1) is satisfied with high probability, we need the dispersion parameter,

γ̄, to be small enough. Later in the chapter, we show how the above probabilities, PFA and PMD

vary with γ̄ for T-SeqRDT.
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Case 3 [Deterministic unknown distortion]: The distortion is assumed to be unknown deter-

ministic with |∆n| 6 τ− for all n ∈ N. For simulation purposes, we choose ∆n = τ−. With this

choice, the inequalities in (5.1) are satisfied with probability 1. However, not all types of distor-

tions satisfy (5.1) with probability 1 as shown in Cases 1 and 2. In the next section, we discuss

different algorithms.

5.3 Algorithms: Likelihood Ratio Based Approaches

In this section, we discuss the algorithms we use to solve the above mean testing problem. Cer-

tainly, using (5.1), we can cast the problem in the BlockRDT, SeqRDT and T-SeqRDT frameworks

presented in Chapters 3 and 4. Next, we discuss likelihood ratio based parametric and semi-

parametric approaches that we use for comparison purposes.

5.3.1 Sequential probability ratio test (SPRT)

For SPRT, we assume that the probability density function, fi, of the observations is known under

Hi for i = 0, 1. For α, β ∈ (0, 1/2), and with initialization ΛN = 1, SPRT with stopping time and

decision pair (TSPRT,D) is defined as:

TSPRT = inf{N > 0 : ΛN /∈ (λSPRT
L , λSPRT

H )}

D(N) =


1 if ΛN > λSPRT

H

0 if ΛN 6 λSPRT
L

∞ if λSPRT
L < ΛN < λSPRT

H

where

ΛN =
N∑
n=1

f1(Yi)

f0(Yi)
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is the likelihood ratio based on the observations,

λSPRT
L =

β

1− α
and λSPRT

H =
1− β
α

are the lower and upper thresholds, respectively. We denote the stopping time, PFA and PMD of

SPRT as TSPRT, PSPRT
FA and PSPRT

MD , respectively. For the model described above, SPRT for detecting

the mean with unknown distortions we have

ΛN = exp

(
N
ξ2

0 − ξ2
1

2
+ (ξ1 − ξ0)

N∑
n=1

Yn

)
.

5.3.2 Composite hypothesis test, GSPRT

Note that as discussed in Chapters 1 and 2, standard GSPRT does not work for the two-sided hy-

pothesis testing problem. However, a simple GSPRT can be designed for the case of Gaussian

distortions when the means under H0 and H1 are known but the variances are unknown. Specifi-

cally, the algorithm is aware that the distortion is zero mean Gaussian distributed, but is unaware

of its variance [9]. The generalized log likelihood ratio for such a test is given as:

log Λ̂N =
ξ1 − ξ0

s2
n

N∑
n=1

(
Yn −

1

2
(ξo + ξ1)

)
,

with

s2
n =

1

n− 1

n∑
i=1

(Yi − 〈Y 〉i),

for N ≥ 2. GSPRT uses the same thresholds as SPRT [9]. We denote the stopping time, PFA and

PMD of GSPRT as E [TGSPRT ], PGSPRT
FA and PGSPRT

MD , respectively.

5.3.3 Composite hypothesis test, WSPRT

The idea of WSPRT is somewhat similar to the sequential testing frameworks introduced in this

work. However, there are a few key differences as discussed below. WSPRT considers the problem
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of testing [40, Chapter 4]:

H0 : |ξ − ξ0| < τ vs H1 : |ξ − ξ0| > τ.

In SeqRDT and T-SeqRDT, the signal Ξ is assumed to be a corrupted version of ξ and the distri-

bution of Ξ is assumed to be unknown. In contrast, for WSPRT, ξ is deterministic and the test can

only handle the case when the observations, Yis, are Gaussian distributed [36,40]. We denote PFA,

PMD and the stopping time of WSPRT as PWSPRT
FA , PWSPRT

MD and TWSPRT, respectively. WSPRT uses

the same thresholds as SPRT. However, the likelihood ratio for WSPRT is given as:

Λ̂N =
N∏
n=1

e−(Yn−ξ0+τ)2/2 + e−(Yn−ξ0−τ)2/2

2e−(Yn−ξ0)2/2
.

Note that in the above the distribution under the alternate hypothesis,H1, is replaced by a weighted

average of two distributions and thus the name WSPRT.

5.3.4 Comparison

We define |ξ1 − ξ0| as the SNR and for simulation purposes, we assume τ− = 0.1. For T-SeqRDT,

the thresholds as given in (4.9):

λH(N) = λH(N,wH) = λα/wH (τ
√
N)/
√
N

λL(N) = λL(N,wL) = λ1−β/wL(τ
√
N)/
√
N

λB-RDT(N) = λB-RDT(N,wBH) = λα/wBH (τ
√
N)/
√
N,

and the truncation window W ∗(wBH , wBL) (4.10) defined in Chapter 4 and is as given below:

W ∗ = W ∗(wBH , wBL)

= min

{
W ∈ N : 1−Q 1

2

(
τ+
√
N0 +W,λ α

wBH
(τ
√
N0 +W )

)
6

β

wBL

}
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Fig. 5.1: wH = wL vs wBH = wBL such that UBFA and UBMD in Theorem 4.2 stay equal to α and
β, respectively.

are selected via parameters wH , wL, wBH and wBL, using Algorithm 2 given in Chapter 4. For

the simulations, we assume wBL = wBH , which implies that wH = wL and make use of the

method proposed in (4.28) to choose the parameters. We denote the PFA and PMD by PFA(DN0)

and PMD(DN0), respectively, and the stopping time of T-SeqRDT bt T .

In Figures 5.1 and 5.2, we plot wH against wBH and the stopping time of T-SeqRDT, E[T ],

respectively, for Gaussian distortion as discussed in Case 1 above and for different α, β and τ+.

We notice that wH (and wL) as plotted in Figure 5.1 varies in a similar manner to the average

stopping time of T-SeqRDT, E[T ], as plotted in Figure 5.2. This implies, by choosing a value

of wBH (and wBL) which minimizes wH (and wL), we expect to minimize E[T ] as well. This

behavior was also suggested by Proposition 4.6(ii). Moreover, we see that we can choose wBH and

wBL (hence wH and wL) over a wide range without affecting E[T ] considerably. For simulation

purposes, we select wBH = wBL = 2, which is then used to choose an appropriate W ∗ via (4.10).

We then set wH = wL = 2W ∗. Albeit not unique, these choices guarantee that T-SeqRDT is in
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Fig. 5.2: E[T ] vs wBH = wBL such that UBFA and UBMD in Theorem 4.2 stay equal to α and β,
respectively.

C (α, β) by Theorem 4.2.

In contrast to T-SeqRDT, SeqRDT requires additional knowledge of τ− and τH to design the

test: τ along with levels α and β is used to design the thresholds; τ+, τ− and τH are used to choose

an appropriate buffer size, M , or the parameter, wN0 , which can be chosen to eliminate the buffer,

M . The algorithm is explained in Algorithm 1 in Chapter 3. For simulation purposes, we work

with Option I where instead of wN0 we choose a buffer, M , to control PFA and PMD and ensure

that the algorithm belongs to C (α, β). The thresholds for SeqRDT are chosen as (3.12), and are as

listed below:
λα(τ
√
N)√

N
and

λ1−β(τ
√
N)√

N

We denote by PFA(DM) and PMD(DM) the PFA and PMD, respectively, and by TSeqRDT the stop-

ping time of SeqRDT.

Case 1: For Gaussian distortion, we compare in Table 5.1 the average stopping times of T-

SeqRDT and SeqRDT to the block-size of BlockRDT, for different SNR values, α = β = 0.01 and
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α = β = 0.01
SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

BlockRDT NB-RDT 2165 542 241 87
SeqRDT E [TSeqRDT ] 171.34 145.83 141.12 140.26

T-SeqRDT E [T ] 567.73 349.42 192.82 73.92
α = β = 0.001

BlockRDT NB-RDT 3820 955 425 153
SeqRDT E [TSeqRDT ] 252.55 198.51 185.17 181.80

T-SeqRDT E [T ] 720.08 481.75 298.65 114.88

Table 5.1: Comparison of T-SeqRDT, SeqRDT and BlockRDT for Gaussian distortion.

α = β = 0.001. For SeqRDT, the buffer size M = 90 is selected. From Table 5.1, SeqRDT is the

fastest on average, especially at low SNR values, but needs the most amount of information (all of

τ−, τ , τ+ and τH to design M ) about the signal. BlockRDT is the slowest and requires the same

information (τ and τ+ only) as T-SeqRDT. However, T-SeqRDT is considerably faster on average.

Moreover, at moderate to high SNRs, T-SeqRDT is the fastest among the three algorithms and

considerably outperforms SeqRDT as well. It must be noted that the stopping time of SeqRDT is

limited by the need and the choice of the buffer size, which makes SeqRDT relatively slower

compared to T-SeqRDT, especially at higher SNRs. Importantly, it must be noted that since T-

SeqRDT is a truncated algorithm, its stopping times will never be higher than that of the the FSS

test, BlockRDT, while achieving the probabilities of errors of the same order (please see Chapter 4

for more detailed discussion).

In Table 5.2, we compare the average stopping times, PFAs and PMDs of T-SeqRDT, SeqRDT,

SPRT, WSPRT and GSPRT. From Table 5.2, we notice that, because of the distortion, WSPRT and

SPRT do not belong to C (α, β) as PSPRT
FA , PSPRT

MD and PWSPRT
FA are above the pre-specified levels α and

β. Moreover, GSPRT, even with prior knowledge of the distortion, does not belong to C (α, β),

as the PGSPRT
FA and PGSPRT

MD are orders of magnitude higher compared to α and β, respectively. This

implies that even though GSPRT is asymptotically optimal, it is of little practical significance as

it does not guarantee performance in the non-asymptotic regimes. In contrast, both SeqRDT and

T-SeqRDT, with only limited knowledge about the signal under each hypothesis, are in C (α, β).

Importantly, by design, T-SeqRDT eliminates the need for buffer M , whereas SeqRDT does need
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α = β = 0.01

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

T-SeqRDT

E [T ] 567.73 349.42 192.82 73.92
PFA(DN0) 0.0004 0.0001 0.0001 0.0002

PMD(DN0) 0.0001 0.0003 0.0002 0.0003

SeqRDT
E [TSeqRDT ] 171.34 145.83 141.12 140.26
PFA(DM) 0.00015 0.0002 0.0002 0.00021

PMD(DM) 0.00044 0.00013 4× 10−5 < 10−5

SPRT
E [TSPRT ] 58.98 38.40 27.18 15.84
PSPRT

FA 0.0150 0.0146 0.0131 0.0114

PSPRT
MD 0.0149 0.0143 0.0142 0.0124

WSPRT
E [TWSPRT ] 209.77 198.55 191.85 184.07
PWSPRT

FA 0.0192 0.0185 0.0187 0.0182

PWSPRT
MD < 10−5 < 10−5 < 10−5 < 10−5

GSPRT
E [TGSPRT ] 41.47 26.01 18.07 10.68
PFA(DM) 0.1307 0.1339 0.1377 0.1292

PMD(DM) 0.1430 0.1481 0.1433 0.1325

α = β = 0.001

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

T-SeqRDT

E [T ] 720.08 481.75 298.65 114.88
PFA(DN0) 3× 10−5 2× 10−5 5× 10−5 1× 10−5

PMD(DN0) 1× 10−5 3× 10−5 2× 10−5 < 10−5

SeqRDT
E [TSeqRDT ] 252.55 198.51 185.17 181.80
PFA(DM) 3× 10−5 1× 10−5 4× 10−5 2× 10−5

PMD(DM) 0.00011 3× 10−5 1× 10−5 < 10−5

SPRT
E [TSPRT ] 89.24 57.82 40.56 23.32
PSPRT

FA 0.0022 0.0019 0.0018 0.0016

PSPRT
MD 0.0023 0.0020 0.0019 0.00018

WSPRT
E [TWSPRT ] 304.37 288.09 278.55 267.46
PWSPRT

FA 0.0033 0.0033 0.0030 0.0036

PWSPRT
MD < 10−5 < 10−5 < 10−5 < 10−5

GSPRT
E [TGSPRT ] 68.75 42.39 28.76 16.05
PGSPRT

FA 0.0937 0.0970 0.0981 0.0994

PGSPRT
MD 0.1021 0.1059 0.1047 0.1003

Table 5.2: Comparison of T-SeqRDT, SeqRDT, SPRT and WSPRT for Gaussian distortion. Here,
PFA < 10−5 and PMD < 10−5 indicate that probabilities of errors are at most of the order of 10−5.

such a buffer to guarantee the pre-specified levels α and β. Moreover, the bounds on PFA and

PMD are loose for Gaussian distortion. Therefore, we next consider different types of distortions
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α = β = 0.01

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

T-SeqRDT

E [T ] 576.14 350.71 192.296 75.17
PFA(DN0) 0.0097 0.0095 0.0079 0.0075

PMD(DN0) 0.0003 0.0002 0.0004 0.0013

SeqRDT
E [TSeqRDT ] 171.71 146.85 142.97 141.81
PFA(DM) 0.0088 0.0085 0.0086 0.0089

PMD(DM) 0.0044 0.0013 0.0004 0.0006

SPRT
E [TSPRT ] 58.56 37.83 27.10 15.82
PSPRT

FA 0.0211 0.0204 0.0167 0.0132

PSPRT
MD 0.0200 0.0199 0.0165 0.0148

WSPRT
E [TWSPRT ] 207.63 195.07 189.20 182.07
PWSPRT

FA 0.0454 0.0495 0.0517 0.0505
PWSPRT

MD 0.0001 < 10−4 < 10−4 < 10−4

Table 5.3: Comparison of T-SeqRDT, SeqRDT, SPRT and WSPRT for Pareto-Lévy Distortion.

α = β = 0.05

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

T-SeqRDT

E [T ] 453.05 229.33 117.30 44.59
PFA(DN0) 0.0471 0.0424 0.0357 0.0271

PMD(DN0) 0.0047 0.0040 0.0052 0.0069

SeqRDT
E [TSeqRDT ] 124.73 115.10 113.75 111.23
PFA(DM) 0.0303 0.0299 0.0283 0.0286

PMD(DM) 0.0087 0.0037 0.0025 0.0013

SPRT
E [TSPRT ] 35.51 23.50 17.03 10.07
PSPRT

FA 0.0570 0.0491 0.0481 0.0408

PSPRT
MD 0.0612 0.0531 0.0510 0.0419

WSPRT
E [TWSPRT ] 132.75 124.89 119.00 114.63
PWSPRT

FA 0.1198 0.1162 0.1210 0.1115
PWSPRT

MD 0.0006 0.0002 < 10−4 < 10−4

Table 5.4: Comparison of T-SeqRDT, SeqRDT, SPRT and WSPRT for Cauchy distortion.

to see if the bounds are tight for some other scenarios.

Case 2: For heavy-tailed distortions, we again compare T-SeqRDT, RDT, SPRT and WSPRT.

For Cases 2(i) and 2(ii), via simulation, we obtain PFA, PMD and average stopping times for
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α = β = 0.01 and α = β = 0.05 to obtain Tables 5.3 and 5.4, respectively. The average stopping

time of T-SeqRDT and SeqRDT are similar to those obtained in the Gaussian distortion case.

However, the bounds on PFA and PMD are tight, as a consequence of the heavy-tailed distribution

of the distortion. Moreover, similar to Case 1, SPRT and WSPRT do not belong to C (α, β) for

both Cases 2(i) and 2(ii).

Case 3: Finally, we consider the unknown deterministic distortion case. In this case, (5.1) is

satisfied with probability 1, unlike in Cases 1 and 2. We choose ∆n = τ−, and via simulation

obtain PFA, PMD and average stopping times for α = β = 0.05 and α = β = 0.01. From Table

5.5, T-SeqRDT and SeqRDT belong to C (α, β), whereas SPRT and WSPRT fail to. Also, note

that, similar to Case 2, the bounds on PFA are tight.

In conclusion, the above discussion suggests that likelihood ratio based approaches are sen-

sitive even to small mismatches between the assumed and the true models. On the other hand,

GSPRT based approaches which account for the hypotheses being composite, although being

asymptotically optimal, do not guarantee performance in non-asymptotic regimes. This implies

that GSPRT based approaches are of little practical interest in the practical non-asymptotic sce-

narios. Moreover, as discussed in Chapter 2, GSPRT based approaches are computationally heavy

and cannot be easily implemented online [7]. In contrast, the algorithms proposed in this disser-

tation are robust to mismatches, are capable of providing sufficient performance guarantees even

in non-asymptotic regimes and at the same time are simple in design and are easy to implement

online.

5.4 A note of caution

The above simulation results show that the proposed algorithms SeqRDT and T-SeqRDT are robust

to mismatches and can guarantee performance even in the cases when (5.1) is not always satisfied

with probability 1, as shown in Cases 1 and 2 above. Now, the question that arises is: “When

(5.1) is not satisfied in (a-s) sense, how high do the probabilities of events in (5.1) need to be so
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α = β = 0.01

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

T-SeqRDT

E [T ] 387.86 177.24 106.44 48.42
PFA(DN0) 0.0059 0.0062 0.0063 0.0063

PMD(DN0) < 10−4 < 10−4 < 10−4 < 10−4

SeqRDT
E [TSeqRDT ] 220.10 210.61 206.25 202.16
PFA(DM) 0.0050 0.0065 0.0061 0.0058
PMD(DM) 9× 10−4 < 10−4 < 10−4 < 10−4

SPRT
E [TSPRT ] 70.77 43.40 29.75 16.73
PSPRT

FA 0.0802 0.0537 0.0333 0.0222

PSPRT
MD 0.0006 0.0012 0.0012 0.0014

WSPRT
E [TWSPRT ] 317.05 310.01 305.50 303.89
PWSPRT

FA 0.4566 0.4439 0.4538 0.4569
PWSPRT

MD < 10−4 < 10−4 < 10−4 < 10−4

α = β = 0.05

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

T-SeqRDT

E [T ] 232.18 109.74 63.85 29.34
PFA(DN0) 0.0244 0.0259 0.0232 0.0275

PMD(DN0) 0.0002 0.0004 0.0005 0.0010

SeqRDT
E [TSeqRDT ] 120.23 105.07 101.30 98.78
PFA(DM) 0.0441 0.0442 0.0440 0.0466
PMD(DM) 0.0052 6× 10−4 2× 10−4 < 10−4

SPRT
E [TSPRT ] 39.56 25.38 17.87 10.50
PSPRT

FA 0.1653 0.1265 0.1029 0.0694

PSPRT
MD 0.0070 0.0100 0.0098 0.0113

WSPRT
E [TWSPRT ] 160.72 156.14 152.06 149.89
PWSPRT

FA 0.4299 0.4272 0.4253 0.4202
PWSPRT

MD < 10−4 < 10−4 < 10−4 < 10−4

Table 5.5: Comparison of T-SeqRDT, SeqRDT, SPRT and WSPRT for deterministic distortion.

that the proposed algorithms belong to C (α, β)?" The simulation results of Case 1 suggest that

Gaussian distortions allow for large mismatches, i.e., SeqRDT and T-SeqRDT work even when

the probabilities of events in (5.1) are not very high. On the other hand, Case 2, involving heavy-

tailed distortions, requires these probabilities to be high, i.e., a relatively smaller mismatch. In the

following, we focus our attention on T-SeqRDT for two different cases and show via numerical
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Fig. 5.3: PFA(DN0), PMD(DN0), Probabilities in (5.1) and E[T ] against γ̄ for T-SeqRDT.

experiments how high the probabilities of events under (5.1) need to be for T-SeqRDT to belong to

C (α, β).

Case A: We mentioned earlier in Case 2(ii) that, with Cauchy distortions, we needed the dis-

persion parameter γ̄ to be small. In Figure 5.3, we show how PFA and PMD of T-SeqRDT and the

probabilities associated with (5.1), when they are not satisfied in (a-s) sense, vary with increasing

γ̄, for α = β = 0.05 and SNR = 0.8. Notice that there exists a threshold γ̄ = 0.02 above which

the PFA of T-SeqRDT exceeds the pre-specified level, α = 0.05. This implies that for γ̄ > 0.02, T-

SeqRDT does not belong to C (α, β). Moreover, note that from the middle plot in Figure 5.3 where

we plot the probabilities: P[|〈∆〉N | 6 τ ], P[|〈∆〉N + ξ1− ξ0| > τ ] and P[|〈∆〉N + ξ1− ξ0| > τ+]1

(please see Case 2(ii) in Section 5.2.2 above), we notice that we need these probabilities to be as

high as 95% for T-SeqRDT to belong to C (α, β).

1For T-SeqRDT, there is no constraint on the probability P[|〈∆〉N | 6 τ−], as T-SeqRDT does not rely on the
knowledge of τ−.
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Fig. 5.4: PFA(DN0), PMD(DN0) and E[T ] against probability of impulse, p for T-SeqRDT.

Case B: We perform further simulations for a simple model of impulsive distortion. We assume

that ∆n is Bernoulli distributed as

∆n ∼


10τ− with probability p

0 with probability 1− p

This implies that P
[
|〈∆〉N | 6 τ

]
> 1−p and P

[
|〈∆n − ξ0 + ξ1〉N | > τ

]
= 1 for all N > N0 with

N0 = 1. In Figure 5.4, we show PFA and PMD of T-SeqRDT for α = β = 0.05 and SNR = 0.8.

As expected, as the mismatch grows, PFA grows and crosses the level α if p increases beyond 20%.

The probabilities in the above cases depend on a multitude of parameters like, SNR, tolerances,

levels α and β and, most importantly, on the underlying signal distribution, as shown in all the

above cases. The above discussion shows the flexibility as well as the robustness of T-SeqRDT.
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5.5 Summary

In this chapter, we highlighted the advantages of the algorithms, SeqRDT and T-SeqRDT, proposed

in this dissertation compared to the optimal FSS algorithm, BlockRDT, and SPRT as proposed

in [39, 40]. We also compared the proposed algorithms to two popular composite hypothesis tests,

GSPRT [36] and WSPRT as defined in [40]. We compared the algorithms for different types of

signal models and showed that the proposed algorithms are not only robust to mismatches but also

are capable of guaranteeing PFA and PMD performance, unlike GSPRT and WSPRT which fail to

guarantee performance in non-asymptotic scenarios.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

6.1 Summary

In this dissertation, we developed sequential algorithms for two-sided non-parametric hypothesis

testing. We proposed a novel RDT based framework for sequential hypothesis testing and intro-

duced two sequential algorithms to solve the binary hypothesis testing problem. We first proposed

a non-truncated algorithm, SeqRDT, and analyzed its asymptotic performance. We then analyzed

the properties of the thresholds and introduced the notion of a buffer which helped in controlling

PFA and PMD of the algorithm. We finally, derived bounds on PFA and PMD and showed that

SeqRDT can be designed to achieve arbitrarily low PFA and PMD. Finally, we introduced an addi-

tional parameter in the algorithm which we showed can be chosen such that the need for the buffer

is eliminated.

We then introduced a truncated version of SeqRDT algorithm, T-SeqRDT. We designed the

truncation window for T-SeqRDT using the optimal FSS test, BlockRDT. We first analyzed the

properties of the proposed thresholds and then derived bounds on PFA and PMD. Importantly,

we showed that the designed thresholds guarantee pre-specified PFA and PMD. Moreover, we

analyzed the average stopping time of T-SeqRDT and provided insights into the trade-off be-

tween the average stopping time and the error probabilities of T-SeqRDT. For both the algorithms
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SeqRDT and T-SeqRDT, we proposed methods to choose the model parameters efficiently. Finally,

we extended the proposed framework for testing of distorted signals and showed that the proposed

algorithms are not only efficient for testing of distorted signals but also are faster compared to the

optimal FSS test. We showed that the proposed algorithms are robust to mismatches compared to

the likelihood ratio based approaches like SPRT, GSPRT and WSPRT.

Importantly, the proposed algorithms are simple in design and at the same time guarantee

performance in the non-asymptotic regimes unlike the traditional composite (or non-parametric)

likelihood ratio based schemes which generally only guarantee asymptotic performance. We used

RDT based approaches to develop novel sequential algorithms which do not rely on the knowledge

of the precise distributions of the underlying signals, and thereby, by design do not require the

computations or even approximation of the likelihood ratios.

Next, we discuss some promising future directions of the work proposed in this dissertation.

6.2 Future Directions

In this section, we discuss some promising future directions of the work we presented in this

dissertation that we intend to pursue.

6.2.1 Multi-Dimensional Signals

In this dissertation, we developed sequential algorithms for the case when the underlying signal

as well as the observations were one-dimensional. However, in some hypothesis testing problems,

the signal of interest as well as the observations can be multi-dimensional. We are currently in the

process of extending the algorithms and frameworks presented in this work for the case of multi-

dimensional signals and observations. In the multidimensional case, the testing problem can be
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stated as:

∃N0 ∈ N such that ∀N ≥ N0 we have


UnderH0 : ‖〈Ξ〉N − ξ0‖Σ ≤ τ (a.s)

UnderH1 : ‖〈Ξ〉N − ξ0‖Σ > τ (a.s).
(6.1)

where, Ξ = (Ξn)n∈N is assumed to lie in a d-dimensional space and ‖ · ‖Σ represents the Ma-

halanobis distance and is defined as: ‖x‖Σ =
√

xTΣ−1x. Note, that the positive definite matrix,

Σ, determines the ellipse the underlying signal mean, 〈Ξ〉N , is assumed to converge to according

to (6.1). Developing algorithms for the above case is a challenging task and will be addressed in

detail in future.

6.2.2 Distributed Implementations

The algorithms proposed in the current work are presented for a centralized framework. However,

in the current landscape of wireless sensor technologies, where a large number of sensor networks

are used to solve inference problems. A natural and important extension of the work would be

to develop the algorithms proposed in this dissertation for a distributed framework. Specifically,

where the information is collected via multiple sensors distributed spatially in a region of inter-

est. Moreover, since the algorithms proposed in this dissertation do not rely on the underlying

signal distributions, their extension to distributed frameworks might help with multi-modal signal

processing applications.

6.2.3 Optimality of the Proposed Tests

In this dissertation, we developed sequential algorithms for the non-parametric sequential testing

framework proposed in Chapter 2. Specifically, we designed algorithms which belonged to the

class C (α, β), for pre-sepcified levels α and β of PFA and PMD, respectively. Importantly, we

showed that the proposed algorithms does not only belong to class C (α, β) but are also faster on

average compared to the optimal FSS test. However, in all of the above analysis, we did not address
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one important question that is: “Do the sequential tests proposed in this dissertation provide any

optimality guarantees for the sequential testing framework proposed in Chapter 2?" In future work,

we want to address some questions regarding the optimality of the proposed tests.
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APPENDIX A

APPENDIX: PROOFS OF VARIOUS RESULTS

A.1 Proof of Lemma A1

Lemma A.1. For any N ∈ N and any η > 0, we have:

P [ |〈Ξ〉N + 〈X〉N − ξ0| > η ] = E
[
Q 1

2

(√
N |〈Ξ〉N − ξ0|, η

√
N
) ]

PROOF:

By property of a conditional and taking the independence of 〈Ξ〉N and 〈X〉N into account, we

have:

P [ |〈Ξ〉N + 〈X〉N − ξ0| 6 η ] =

∫ ∞
0

P [ |ρ+ 〈X〉N | 6 η]P |〈Ξ〉N − ξ0|−1(dρ)

It follows from X ∼ N (0, 1) that, for all ρ ∈ [0,∞):

P [ |ρ+ 〈X〉N | 6 η ] = Φ
(√

N(η − ρ)
)
− Φ

(
−
√
N(η + ρ)

)



101

The foregoing and (1.3) imply the result through the equality:

P [ |〈Ξ〉N + 〈X〉N − ξ0| 6 η ] = 1− E
[
Q 1

2

(√
N |〈Ξ〉N − ξ0|, η

√
N
) ]

.

Hence the result.
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A.2 Proof of Lemma A2

Lemma A.2. If the signal, Ξ, satisfies Assumption [(a-s) convergence of 〈Ξ〉N ] given in Chapter

3, then for γ ∈ (0, 1) we have

lim
N→∞

Q 1
2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)
)

=


0 underH0

1 underH1

PROOF:

From Assumption [(a-s) convergence of 〈Ξ〉N ] given in Chapter 3 we have underH0:

lim sup
N→∞

|〈Ξ〉N − ξ0| ≤ τ− (a.s.)

This implies that

P{ω ∈ Ω : lim sup
N→∞

|〈Ξ〉N − ξ0| ≤ τ−} = 1.

which further implies that there exist Ω′ ⊂ Ω and Ω′ ∈ F such that for all ω ∈ Ω′ there exist a

N0(ω) such that P(Ω′) = 1 and we have

|〈Ξ〉N − ξ0| ≤ τ− for all N ≥ N0(ω).

Therefore, for N ≥ N0(ω) from the fact that Q 1
2
(•, λγ(τ

√
N)) is increasing in the first argument,

we have

Q 1
2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)
)
≤ Q 1

2

(
τ−
√
N, λγ(τ

√
N)
)
.

Now taking limits on both sides as N →∞ underH0, from Lemma A.4 we get

lim
N→∞

Q 1
2

(
τ−
√
N, λγ(τ

√
N)
)

= 0.

which implies the result.
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Similarly, under H1 we have from Assumption [(a-s) convergence of 〈Ξ〉N ] given in Chapter

3 that:

lim inf
N→∞

|〈Ξ〉N − ξ0| ≥ τ+ (a.s.)

This implies that there exist Ω′′ ⊂ Ω and Ω′′ ∈ F such that for all ω ∈ Ω′′ there exist a N0(ω) such

that P(Ω′′) = 1 and we have

|〈Ξ〉N − ξ0| ≥ τ+ for all N ≥ N0(ω).

Therefore, for N ≥ N0(ω) and the fact that Q 1
2
(•, λγ(τ

√
N)) is increasing in the first argument,

we have

Q 1
2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)
)
≥ Q 1

2

(
τ+
√
N, λγ(τ

√
N)
)
.

Now taking limits on both sides as N →∞ underH1, we get from Lemma A.4 that

lim
N→∞

Q 1
2

(
τ+
√
N, λγ(τ

√
N)
)

= 1.

which implies the result. Hence the proof
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A.3 Proof of Lemma A3

Lemma A.3. For any γ ∈ (0, 1):

(i) We have

lim
ρ→∞

(
λγ(ρ)− ρ

)
= Φ−1(1− γ),

(ii) And

lim
ρ→∞

λγ(ρ)

ρ
= 1.

PROOF:

We prove (i) only since it straightforwardly implies (ii). Pose gγ(ρ) = λγ(ρ) − ρ and θ =

Φ−1(1− γ). Since Φ(x) + Φ(−x) = 1, (1.3) and the definition of λγ(τ) induce that:

Φ(gγ(ρ)) + Φ(gγ(ρ) + 2ρ) = 1 + Φ(θ). (A.1)

To prove that gγ(ρ) tends to θ when ρ→∞, we proceed by contradiction. If gγ(ρ) does not tend to

θ when ρ→∞, there exists some positive real number ε such that, for all n ∈ N, there exists some

real number ρn > n such that either gγ(ρn) > θ + ε or gγ(ρn) < θ − ε. Basically, lim
n→∞

ρn = ∞.

Consider any η ∈ (0,Φ(θ)−Φ(θ− ε)). Since lim
n→∞

Φ(2ρn + θ+ ε) = 1, there exists N0 ∈ N such

that, for all n > N0:

Φ(2ρn + θ + ε) > 1− η. (A.2)

Similarly, since lim
n→∞

Φ(2ρn + θ − ε) = 1, there exists N1 ∈ N such that, for all n > N1:

Φ(2ρn + θ − ε) < 1 + η. (A.3)

Let n be any integer above max(N0, N1). If gγ(ρn) < θ − ε, we then have Φ(gγ(ρn)) < Φ(θ − ε)
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and Φ(2ρn + gγ(ρn)) < Φ(2ρn + θ − ε). Eqs. (A.1) and (A.3) then imply that:

1 + Φ(θ) < Φ(θ − ε) + Φ(2ρn + θ − ε) < Φ(θ − ε) + 1 + η,

which is impossible because of our choice for η. Therefore, we cannot have gγ(ρn) < θ − ε. We

cannot have gγ(ρn) > θ + ε either because, via (A.1) and (A.2), this inequality implies:

1 + Φ(θ) > Φ(θ + ε) + Φ(2ρn + θ + ε) > Φ(θ + ε) + 1− η, (A.4)

which is contradictory to our choice for η.
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A.4 Proof of Lemma A4

Lemma A.4 (Behavior of Q 1
2

in vanishing noise). Consider τ ∈ [0,∞) and ρ ∈ (0,∞) such that

ρ 6= τ .

for all γ ∈ (0, 1), lim
σ→0

Q 1
2

(
ρ

σ
, λγ(τ/σ)

)
= 1(τ,∞)(ρ).

PROOF:

Let (σn)n∈N be a sequence of positive real values such that lim
n→∞

σn = 0 and set ρn = τ/σn for

each n ∈ N. According to (1.2),

Q 1
2

(ρ
τ
ρn, λγ(ρn)

)
= P

[∣∣ρ
τ

+
X

ρn

∣∣ > λγ(ρn)

ρn

]

for any X ∼ N (0, 1). It follows from Lemma A.3 (ii) that

|ρ
τ

+
X

ρn
| − λγ(ρn)

ρn
=
ρ

τ
− 1 a-s.

Therefore, the cdf of
∣∣(ρ/τ)+(X/ρn)

∣∣−λγ(ρn)/τn converges weakly to 1[(ρ/τ)−1,∞). Since ρ 6= τ ,

this weak convergence implies that

lim
n→∞

P
[∣∣ρ
τ

+
X

ρn

∣∣ > λγ(ρn)

ρn

]
= 1(τ,∞)(ρ).

Hence the result since (σn)n∈N is arbitrary.
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A.5 Proof of Lemma A5

Lemma A.5 (Non-Asymptotic behavior of Q 1
2
). Consider τ ∈ [0,∞), ρ ∈ (0,∞) and γ ∈ (0, 1),

the map:

σ∈ [0,∞) 7→Q 1
2

(
ρσ, λγ(τσ)

)
is


constant equal to γ for ρ = τ

decreasing for ρ < τ

increasing for ρ > τ

PROOF:

Given ρ and τ , we want to study the behavior of

Q(σ) = Q 1
2

(
ρσ, λγ(τσ)

)
= 1− Φ(r−(σ)) + Φ(−r+(σ)) (A.5)

with r+ = λγ(τσ) + ρσ and r− = λγ(τσ)− ρσ. For ρ = τ , it follows from (1.4) thatQ is constant

equal to γ. We thus have 1− Φ(λγ(τσ)− ρσ) + Φ(−λγ(τσ)− ρσ) = γ. After differentiating the

two members of the equality above and after some routine algebra, we obtain:

λ′γ(τσ) =
1− e−2τσλγ(τσ)

1 + e−2τσλγ(τσ)
(A.6)

where λ′γ is the first derivative of λγ . We now differentiate Q defined by (A.5). Some easy com-

putation yields:

Q′(σ) =
1√
2π

(
e−r

2
−(σ)/2 − e−r2+(σ)/2

)(
ρ− τλ′γ(τσ)

1 + e−2ρσλγ(τσ)

1− e−2ρσλγ(τσ)

)

By injecting (A.6) into the equality above, we obtain:

Q′(σ) =
τ√
2π

(
e−r

2
−(σ)/2 − e−r2+(σ)/2

)(ρ
τ
− ∆−(ρ, τ)

∆+(ρ, τ)

)
(A.7)
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with ∆ε(ρ, τ) = 1+εe−2τσλγ (τσ)

1+εe−2ρσλγ (τσ)
and ε ∈ {−1,+1}. For all σ > 0, the sign of Q′ is therefore that of

(ρ/τ)− (∆−1(ρ, τ)/∆+1(ρ, τ)) We verify easily that:


ρ < τ ⇔ ∆−(ρ, τ) > 1⇔ ∆+(ρ, τ) < 1

ρ = τ ⇔ ∆−(ρ, τ) = ∆+(ρ, τ)) = 1

Therefore, if ρ < τ ,
ρ

τ
< 1 <

∆−(ρ, τ)

∆+(ρ, τ)
,

which implies thatQ′(σ) 6 0 and, thus, thatQ is decreasing. On the other hand, if ρ > τ , we have

ρ

τ
> 1 >

∆−(ρ, τ)

∆+(ρ, τ)
,

so that Q is increasing in this case.
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A.6 Proof of Lemma A6

Lemma A.6. Given ρ ∈ (0,∞), the map γ ∈ (0, 1) 7→ λγ(ρ) is decreasing.

PROOF:

The Lemma follows from the definition of λγ(ρ) given in (1.4) (please see Chapter 1) and the

decreasing nature of Q 1
2

with its second argument given in Lemma 1.1 (please see Chapter 1) .
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A.7 Proof of Lemma A7

Lemma A.7.

(P1) For any τ ∈ (0,∞) and any η ∈ (τ,∞), the map σ ∈ (0,∞) 7→ Q 1
2

(
τ/σ, η/σ

)
is increasing.

(P2) The map ρ ∈ (0,∞) 7→ Q 1
2

(
ρ, ρ
)

is decreasing, lower-bounded by 1/2 and

lim
ρ→∞

Q 1
2

(
ρ, ρ
)

=
1

2
.

(P3) For any γ ∈ (0, 1/2), the map ρ ∈ (0,∞) 7→ λγ(ρ)/ρ is decreasing, lower bounded by 1.

PROOF:

Proof of statement (P1): Using (1.3), define Q(σ) as:

Q(σ) = Q 1
2

(
τ/σ, η/σ

)
= 1− Φ(η/σ − τ/σ) + Φ(−η/σ − τ/σ).

We now differentiate Q and some easy computation yields:

Q′(σ) =
1√

2πσ2
e−

(η−τ)2

2σ2

[
(η − τ) + (η + τ)e−

2ητ

σ2

]
.

Thence the result, since η ∈ (τ,∞) implies that Q′(σ) > 0.

Proof of statement (P2): The map ρ ∈ (0,∞) 7→ Q 1
2

(
ρ, ρ
)

is decreasing as a consequence of

(P1). Given ρ ∈ (0,∞),

Q 1
2
(ρ, ρ) =

1

2
+ Φ(−2ρ)

from (1.3). Hence the result.

Proof of statement (P3): Let ρ and ρ′ be two positive real numbers such that 0 < ρ < ρ′.

According to (1.4), we have:

Q 1
2

(
ρ, λγ(ρ)

)
= Q 1

2

(
ρ′, λγ(ρ

′)
)

= γ. (A.8)
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Since γ < 1/2 so that 1/2 < 1− γ, it follows from (P2) and (A.8) that:

Q 1
2
(ρ, ρ) > 1/2 > Q 1

2
(ρ, λγ(ρ)).

The decreasing behavior of Q 1
2

with its second argument implies that λγ(ρ) > ρ, so that λγ(ρ)/ρ

is lower bounded by 1. We then derive from (P1) that x ∈ (0,∞) 7→ Q 1
2

(
ρ/x, λγ(ρ)/x

)
is an

increasing map. Since ρ/ρ′ < 1, we thus have

Q 1
2

(
ρ, λγ(ρ)

)
> Q 1

2

(
ρ′, ρ′

λγ(ρ)

ρ

)
.

This inequality and (A.8) induce that

Q 1
2

(
ρ′, λγ(ρ

′)
)
> Q 1

2

(
ρ′, ρ′

λγ(ρ)

ρ

)
.

The decreasing nature of Q 1
2
(ρ′, ·) then implies that

λγ(ρ
′) < ρ′

λγ(ρ)

ρ
.

Thereby, ρ ∈ (0,∞) 7→ λγ(ρ)/ρ is decreasing in ρ. Since the map ρ ∈ (0,∞) 7→ λγ(ρ)/ρ is

decreasing and lower bounded by 1, this map has a limit ` > 1 when ρ tends to∞. The result then

follows as a consequence of Lemma A.3 (ii).
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A.8 Proof of Lemma A8

Lemma A.8. For γ ∈ (1/2, 1) and ρ large enough, the map ρ ∈ (0,∞) 7→ λγ(ρ)/ρ is increasing,

upper bounded by 1.

PROOF:

According to statement (i) of Lemma A.3,

λγ(ρ)− ρ = Φ−1(1− γ) + κ(ρ),

where κ is such that lim
ρ→∞

κ(ρ) = 0. Since γ > 1/2, Φ−1(1 − γ) < 0. Given η such that 0 <

η < −Φ−1(1 − γ), there exists ρ0 such that, for all ρ > ρ0, κ(ρ) 6 η. Therefore, for all ρ > ρ0,

λγ(ρ)− ρ 6 Φ−1(1− γ) + η < 0. We have hence proved that λγ(ρ) < ρ for ρ large enough.

With hγ(ρ) = λγ(ρ)/ρ,

Φ(ρ(hγ(ρ)− 1))− Φ(−ρ(hγ(ρ) + 1)) = 1− γ.

By differentiation of this equality with respect to ρ and since hγ is differentiable via the implicit

function theorem, we find that h′γ(ρ) has the same sign as

Υ(ρ) =
(
1− hγ(ρ)

)(
e2ρλγ(ρ) +

λγ(ρ) + ρ

λγ(ρ)− ρ

)
.

For ρ large enough, hγ(ρ) < 1 by the first part of the proof and Lemma A.3 implies that

lim
ρ→∞

Υ(ρ) =∞.

Therefore, Υ(ρ) > 0 for ρ large enough and the proof is complete.
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A.9 Convergence of the upper bounds in Theorem 3.3

PROOF:

Let us consider UB2FA(M) given in (3.21), we have:

UB2FA(M) 6
∞∑
N=1

Q 1
2

(
τ−
√
N, λα(τ

√
N)
)
.

Each term of the above summation is positive and t > 0 7→ Q 1
2

(
τ−
√
t, λα(τ

√
t)
)

is decreasing

since τ− < τ , as a consequence of Lemma A.5. Therefore, to show that the above series converges,

it suffices to show that

IFA(ζ) =

∫ ∞
ζ

Q 1
2

(
τ−
√
t, λα(τ

√
t)
)

dt, (A.9)

is finite for some ζ > 0, with α ∈ (0, 1/2) and τ− < τ . From the definition of Q 1
2
(a, b) given in

(1.3), we have:

Q 1
2
(a, b) = Φc(b− a) + Φc(b+ a), (A.10)

where Φc(x) = 1√
2π

∫∞
x

e
−z2
2 dz, also known as the standard Q function, is the complementary cdf

of a standard normal distributed random variable. Using (A.10) in (A.9) and the fact that we have

Φc(λα(τ
√
t) + τ−

√
t) 6 Φc(λα(τ

√
t)− τ−

√
t) for any t, we get

IFA(ζ) 6 2

∫ ∞
ζ

Φc(λα(τ
√
t)− τ−

√
t)dt

(a)

6 2

∫ ∞
ζ

e
−(λα(τ

√
t)−τ−

√
t)2

2 dt,

where (a) results from Φc(x) 6 e−x
2/2 for x > 0 as, for α < 1/2, λα(τ

√
t)− τ−

√
t > 0 according
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to Lemma A.7 (P3). Therefore, to show that IFA(ζ) <∞, it suffices to show

JFA(ζ)
def
=

∫ ∞
ζ

e
−u(t)2

2 dt <∞, (A.11)

with u(t)
def
= λα(τ

√
t)− τ−

√
t.

To prove (A.11), we need the following properties.

(C1) For any t > 0,

u(t) > (τ − τ−)
√
t.

(C2) For any t > 0,

u′(t) =
1

2
√
t

[
τ

1−Gα(t)

1 +Gα(t)
− τ−

]
where:

∀γ ∈ (0, 1), Gγ(t)
def
= e−2τ

√
tλα(τ

√
t).

(C3) There exists A > 0 such that, for any t > A, u′(t) > 0.

(C4) Given any a ∈ (0, τ − τ−), there exists B > 0 such that, for any x > B,

τ
1−Gα(u−1(x))

1 +Gα(u−1(x))
− τ− > a.

PROOF: [Statements (C1), (C2), (C3), and (C4)]

(C1) Lemma A.7 (P3) implies

λα(τ
√
t) > τ

√
t.

Hence (C1) holds.

(C2) This property follows from (A.6) in Lemma A.5.
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(C3) Lemma A.7 (P3) implies Gα(t) 6 e−2τ2t. Thus,

lim
t→∞

(
τ

1−Gα(t)

1 +Gα(t)
− τ−

)
= τ − τ− > 0.

Hence the result.

(C4) From (C3) u(t) increases for t > A > 0, which implies that u−1(x) increases for x > u(A).

It follows that

lim
x→∞

(
τ

1−Gα(u−1(x))

1 +Gα(u−1(x))
− τ−

)
= τ − τ−.

Which implies (C4).

Choose any a ∈ (0, τ − τ−) and ζ > max(A, u−1(B)) where A and B are given by (C3) and (C4),

respectively. By the Jacobi’s transformation formula (see [10, Theorem 12.6], among others) and

the fact that u′(u−1(x)) > 0 for any x > u(ζ) since ζ > A, we have:

JFA(ζ) =

∫ ∞
u(ζ)

1

u′(u−1(x))
e−x

2/2dx. (A.12)

By (C2), ∀x > u(ζ) we have:

u′(u−1(x)) =
1

2
√
u−1(x)

[
τ

1−Gα(u−1(x))

1 +Gα(u−1(x))
− τ−

]
. (A.13)

On the other hand, (C1) implies ∀x > u(ζ) we have:

1√
u−1(x)

>
τ − τ−

x
. (A.14)

Finally, (C4) induces that ∀x > u(ζ):

τ
1−Gα(u−1(x))

1 +Gα(u−1(x))
− τ− > a. (A.15)

By injecting (A.14) and (A.15) into (A.13), we obtain u′(u−1(x)) > a(τ − τ−)/2x for all x >
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u(ζ). Therefore, it results from (A.12) that

JFA(ζ) 6
2

a(τ − τ−)

∫ ∞
0

xe−x
2/2dx <∞

and that (A.11) holds.

The convergence of UB2MD(M) in (3.23) is proved similarly via Lemma A.8 and (A.6) in

Lemma A.5.
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