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ARTICLE INFO ABSTRACT

The electronic structure, specific heat, and thermal conductivity of silicon embedded in a monolayer graphene
nanosheet are studied using Density Functional Theory. Two different shapes of the substitutional Si doping in
the graphene are studied, a triangular and a dot shape. The silicon doping of a graphene nanosheet, with the
silicon atoms arranged in a triangular configuration in ortho- and para-positions, opens up a band gap trans-
forming the sheet to a semiconducting material. The opening of the band gap is caused by the presence of the
repulsion force between the silicon and carbon atoms decreasing the density of states around the Fermi energy.
Consequently, the specific heat and the thermal conductivity of the system are suppressed. For graphene na-
nosheet doped with a dot-like configuration of silicon atoms, at the ortho-, meta-, and para-positions, the valence
band crosses the Fermi level. This doping configuration increases the density of state at the Fermi level, but
mobile charge are delocalized and diminished around the silicon atoms. As a result, the specific heat and the
thermal conductivity are enhanced. Silicon substitutionally doped graphene nanosheets may be beneficial for
photovoltaics and can further improve solar cell devices by controlling the geometrical configuration of the
underlying atomic systems.
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Introduction

A graphene nanosheet is a 2D material with remarkable qualities in
terms of mechanical [1], electrical [2], chemical [3], optical [4], and
thermal [5] properties. The investigation of a single layer graphene and
its characteristics [6] has paved the way to generate enormous interest
and intense activity in graphene research [7,8]. The graphene material
has been used as the basic building block for graphitic materials with
different directions. It may be wrapped up into zero-dimensional full-
erene [9,10] leading to the improvement of the band gap [11], rolled
into one-dimensional nanotubes [12], or stacked into three-dimensional
graphite [13]. According to the atomic arrangement, the graphene
structures can be classified into two categories which are “zigzag” and
“armchair”. These two types of graphene have different electronic
characteristics, especially the creation of non-bonding edge states lo-
calized in the zigzag-shaped edges and electron wave interference in the
armchair-shaped ones play important roles in the functionality of gra-
phene [14]. The two types, “zigzag” and “armchair”, can be constructed
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in the form of graphene nanoribbons which are promising structures in
electron transport [15-17].

The physical properties of graphene can be controlled by doping,
which is the process of adding impurities to intrinsic graphene. For
instance, silicon, Si, doped graphene has emerged as new 2D materials
called siligraphenes, demonstrating attractive optical properties and
extreme thermal stability [18,19]. The band gap of siligraphenes de-
pends on the ratio of the Si doping, that is determined by the re-
lationship between the reactants and products in a chemical reaction
producing the graphene [20,21]. One can expect to use g-SiC, for solar
cell materials due to the opening band gap, 1.09 eV [20]. Increasing the
ratio of Si doping to construct g-SiC3 and g-SiCs, the characteristics of a
topological insulator appear in g-SiC3 [22] and g-SiCs emerges as a
semi-metal with excellent gas sensing properties [23]. Furthermore, in
g-SiC, the band gap is increased to 1.13 eV actively encouraging pho-
tovoltaics devices within the visible light range [19].

Recently, there has been an increased and strong motivation to
explore thermal characteristics of graphene and related composite
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materials from the technological point of view. Electrical and thermal
measurements of siligraphenes have shown that g-SiC can be seen as
fascinating material with interesting properties [24]. It has been de-
monstrated that the thermal properties of g-SiCs are better compared to
g-SiC,, and the thermal conductivity of g-SiC, is exponentially en-
hanced with temperature but for g-SiCs it is parabolically changed [25].
Exploration has shown that the effective thermal conductivity in an
optimized mixture of graphene and multilayer graphene can be en-
hanced [5]. Furthermore, both graphene and graphite at room tem-
perature can be utilized to increase the efficiency of solar cell devices
due to a high-recorded thermal property dominated by the acoustic
phonons [26].

Motivated by the aforementioned studies, we model a graphene and
siligraphene nanosheets. The electronic and the thermal characteristics
are studied using Density Functional Theory (DFT). We model two
different shapes of substitution Si doping in the graphene: triangle and
“dot” shapes. In the triangle shape the Si-atoms are substitutionally
embedded in the ortho- and para-positions of the honeycomb structure
of graphene. This opens up a band gap leading to the suppression of
thermal conductivity. In the “dot” shape, the Si-atoms are sub-
stitutionally doped in the ortho-, para-, and meta-positions of graphene.
In the “dot” structure, the enhancement of thermal properties of the
system is observed.

In Section “Model” the structure of graphene nanosheet is briefly
overviewed. In Section “Results” the main achieved results are ana-
lyzed. In Section “Conclusion” the conclusion of the results is presented.

Model

We model a monolayer graphene nanosheet consisting of a 3 x 3
supercell with a diamond shape that is comprised from 32 carbon
atoms. We consider the vacuum space in z-axis to be 9.74 A. The con-
vergence of the SCF calculation is set to 1073 eV, and the geometry of
the system is fully relaxed with a Gamma-centered 8 X 8 X 1 k-mesh for
both pure and doped graphene nanosheets until the calculated force is
smaller than 0.008 eV/A. In addition to the pristine graphene, we con-
sider two geometrical shapes of Si-atoms in doped graphene, the tri-
angle and the “dot” shape. The triangle Si doped graphene is formed if
two Si-atoms are put at the ortho-positions (green) and one Si-atom is
placed in a para-position (red) as is shown in Fig. 1. The “dot” Si doped
graphene can be built by adding two Si-atoms at the ortho-positions,
two Si-atoms at the meta-positions (green) and two Si-atoms at the
para-positions [27].

The electronic structure is calculated via the plane-wave projector-
augmented wave method implemented in the Quantum Espresso (QE)
package [28]. In the QE package, the approach is based on an iterative
solution of the Kohn-Sham equation of the DFT theory [29]. In the DFT
approach, the generalized gradient approximation (GGA) method, and
the exchange-correlation functions are realized in the non-relativistic
Perdew-Burke Emzerhof pseudo-potential (PBE) [30]. In addition, The
plane-wave basis is arranged to a kinetic energy cut-off equal to 490 eV
[31]. The DFT scheme can thus be used to investigate the band struc-
ture, the density of state (DOS), and the charge density distribution [32]
of the system.

The thermal properties of the system are studied using the
Boltzmann theory implemented in the BoltzTraP package [33], where
the specific heat, c, of the system can be calculated via

0, (Tse)
c(Tw) = [ n(e)e - u)[“—]ds
f aT e))
and the electronic thermal conductivity, x°, is determined by
o 3, (Tic)
iy (Tow) = 2TQ f i, (e)(e — #)2[_55 de @

where ¢; j(¢) indicates the conductivity tensors, and Q is the number of
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Fig. 1. Schematic diagram indicating the ortho (green), the meta (blue), and
the para (red) positions of doping in the honeycomb structure. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

K point which are sampled in Brillouin zone [33].

Results

In this section, we present the main results obtained from the cal-
culations. We start with the pristine graphene nanosheet without an Si-
dopant. Initially, we let the system fully relax. After the structural re-
laxation, the bond length of the C-C atoms is found to be 1.42 A, and the
lattice constant becomes a = 2.46 A, these values are in good agreement
with the literature [34]. Fig. 2 displays the pristine graphene nanosheet
(left panel) and its charge density distribution (right panel). It seems
that the honeycomb structure with the 3 X 3 supercell is clearly ob-
served in the charge density distribution without any defect or de-
formation in the crystal structure indicating a pure graphene nanosheet.

The electronic structure of the pristine graphene system is presented
in Fig. 3, with the band structure (left panel) and the density of state
(right panel). The dashed black line in the energy axis indicates the
Fermi level, Er. As expected, there is no band gap between the valence
and the conduction bands at the K point. It turns out that the DOS is
zero at the point where the band gap is zero (see Fig. 3 (right panel)).
The band structure and the DOS of pristine graphene for different
numbers of supercells have been investigated by many research groups,
where the zero band gap and the DOS have been predicted for a
monolayer [36], a bilayer [37], and a trilayer [18,38]. We note that in
our calculations the spin-orbit interaction (SOI) is neglected. In the
presence of the SOIL, we find a tiny band gap at the K point with a
magnitude 0.98 peV which is in good agreement with an estimate ob-
tained from a tight-binding model [39]. The gap can be referred to the
interactions of the 7 orbital bonds. A bit larger band gap is seen when
higher orbits of the carbon atoms are included in the calculations [40].

We now consider Si atoms substitutionally doped in the graphene
nanosheet with different geometries or configurations: triangle- and
“dot”-shapes. In the triangle Si-doped graphene, we assume three Si
atoms (blue color) forming a triangle shape embedded in the center of
the graphene nanosheet as is shown in Fig. 4 (top left panel). Two of the
Si-atoms are placed at the ortho-positions and the third one is em-
bedded in a para-position forming a triangle shape. In addition, a
configuration with six Si-atoms forming a “circle” or a “quantum dot”
shape embedded in the center of the graphene nanosheet (bottom left
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Fig. 2. The pure graphene nanosheet with 3 x 3 supercell (left panel) and the charge density distribution (right panel). The carbon atoms, C, are golden colored. The
bond length C-C is 1.42 A, and the lattice constant is a = 2.46 A. Xcrysden is used to produce the pure graphene supercell (left panel) [35].

panel) is also considered in this study in which the six Si-atoms are
distributed over the ortho-, meta-, para-positions.

The configuration and the distribution of embedded Si atoms in
graphene have been investigated [41], and it has been shown that the
location of Si atoms on the graphene (not the concentration) can easily
be used to tune the electronic structure of the system. The Si doped
graphene nanosheets are called siligraphene nanosheets [42]. These
two selected shapes are analogous to the triangle shape of semi-
conducting nanowires that have been used to control the efficiency of
the solar cells [43] and the quantum dots embedded in semiconductor
quantum wires used to design the resulting charge distribution [44-46]
and thermoelectric [47] currents. Motivated by these geometrical
shapes of the semiconducting materials, we consider the triangle and
dot Si-dopant configurations and investigate their electrical and
thermal properties.

To check the stability of Si doped graphene we need to calculate the
formation energy (Ey) from the below equation

Ef = Er — Nctc — Nsi ;- 3)

Herein, Et is the total energy of the Si doped graphene, Nc and Ng; are
the number of carbon and silicon atoms in the Si doped graphene, re-
spectively, and u. and ug are the chemical potentials of the single
carbon and single silicon atom, respectively [48,49]. The formation
energy of the triangle configuration of Si doped graphene is
— 108.701 eV which is smaller than that of the “dot” configuration of the
Si doped graphene, — 85.769 eV. The smaller formation energy, the
more stable structure is obtained. So, the triangle configuration of the Si
doping atoms is more stable than the dot configuration of the Si doping
atoms.

We examined the stability of the triangle configuration of the Si
dopant structure by moving one Si atom from a para-position to a next
neighbor site of a para-position and see that the formation energy be-
comes — 106.495 eV. It indicates that the stability is slightly reduced by
moving away one Si atom from the triangle configuration at the center
of the system. In addition, if one Si atom of an ortho-position is moved
from the dot configuration to a next neighbor site of an ortho-position,
the formation energy is increased to — 75.095 eV. It demonstrates that
our model of a dot configuration is more stable. It has been reported
that if the positions of doped atoms are varied in a structure with low
doping concentration the stability is slightly changed. But for a high
doping concentration, changing positions of doping atoms has bigger
influences on the stability of the structure [27].

The charge density distribution of the graphene nanosheet with the
triangle (top right panel) and the “dot” shape (bottom right panel) are
demonstrated in Fig. 4. We should mention that the Si-atoms embedded
in the graphene changes the bond length C-C to 1.413 A in the triangle,
and to 1.53 A in the “dot” structures. The bond length modification of
C-C can be referred back to the repulsion force generated between C
and Si atoms. These changes influence the charge distribution of the
system. It can be clearly seen that in both structures the charge is de-
localized around the Si-atoms. This indicates that the Si-atoms loose
charge and act as “donors” [50]. The delocalization of charge around
the Si-atoms may also be referred to the fact that the Si-atoms have a
larger atomic radius than carbon [51]. The delocalization of charge has
also been observed in other materials such as semiconductors [52]
leading to enhanced transport. The strength of the interaction is thus
increased represented by a repulsion force that expels charge away
from the center of the siligraphene nanosheet, i.e., charge carriers

Energy (eV)
o
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DOS (states/eV)

Fig. 3. Band structure (left panel) and the DOS (right panel) of the pristine monolayer graphene nanosheet. The horizontal dashed black line represents the Fermi

level, Ep. The bond length C-C is 1.42 A, and the lattice constant is a = 2.46 A.
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exceed a bit in other places of the system.

Fig. 5 shows the electronic band structure of the triangle (top panel)
and the “dot” (bottom panel) Si-doped graphene nanosheet. The re-
pulsion force formed in the presence of triangle Si-dopant opens a band
gap, E; = 0.448 eV, at the K point as is seen in Fig. 5 (top panel) [53,54].
This leads to the Si-doped graphene becoming a semiconducting ma-
terial.

The electronic band structure of the “dot” Si-doped graphene gives a

Energy (eV)
o

_J
=
=y
_

Energy (eV)
o

r K M r

Fig. 5. Calculated electronic band structure of the graphene nanosheet with
triangle (top panel) and “dot” shape (bottom panel) Si-dopants. The horizontal
dashed black lines represent the Fermi level, Er.
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Fig. 4. A graphene nanosheet with a triangle con-
figuration of Si-doping atoms (top left panel) and its
charge density distribution (top right panel). Two Si-
atoms are located at the ortho-positions while one
Si-atom is at the para-position. The graphene na-
nosheet with the “dot” configuration of Si-doping
atoms (bottom left panel) and its charge density
distribution (bottom right panel). The six Si-atoms
are distributed over the ortho-, meta-, para-posi-
tions.

totally different physical picture in which valence bands cross the Fermi
energy. The crossing energy bands have been predicted for different
material structures and it has been demonstrated that the magnitude
and the direction of the energy band gap can be sensitively controlled
by the dopant type and concentration [55,37]. The crossing band
structure is related to the atomic concentration in the primitive unit cell
of the Si-doped graphene nanosheet in which the atoms feel almost the
same potential energy at a specific ratio of dopant concentration.
Consequently, the band gap closes down, and the conduction, or the
particulars of the valence band crossing the Fermi level, depend on the
dopant type [50,37].

The changes in the band structure will directly influence the DOS as
is displayed in Fig. 6 for the graphene with triangle (blue color) and
“dot” (red color) Si-dopant. For instance, the DOS vanishes in the range
of the band gap for the triangle Si-doped graphene, and the DOS around
the Fermi level is increased to finite values for the “dot” Si-doped
graphene due to the formation of the Fermi-momentum states.

We now present the thermal properties of the aforementioned
structures including the specific heat and the electronic thermal con-
ductivity. The Heat capacity can be calculated or measured by the ratio
of the heat added to or removed from the graphene or Si-doped gra-
phene to the resulting temperature change [56]. Therefore, the specific

45

Triangie Si—dopént
40 b Dot Si-dopant J
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15
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Energy (eV)

Fig. 6. Density of state, DOS, of the triangle (blue color) and “dot” (red color)
Si-doped graphene nanosheets. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Specific heat, c, for the graphene without (w/0) Si-dopant (golden
diamond), and the graphene with triangle (blue circle) and dot (red square) Si-
dopant.
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Fig. 8. Thermal conductivity, x°, for the pristine graphene (golden diamond),
and the graphene with triangle (blue circle) and “dot” (red square) Si-dopant.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

heat can be defined as the heat capacity per unit mass of the material.
Fig. 7 shows the specific heat, ¢, for the graphene without (w/0) Si-
dopant (golden diamond), and the graphene with triangle (blue circle)
and “dot” (red square) Si-dopant. It can be seen that the specific heat
increases with the temperature for all three cases. The specific heat for
the triangle Si-doped graphene is competing with the pristine graphene
structure. Below 400K the specific heat of the triangle Si-dopant
structure is decreased due to the opening band gap that resists the heat
transport at “low” temperature. But above 400K the specific heat is
increased compared to the pristine graphene which is related to the
effect of high temperature reducing the effective band gap. Further-
more, the specific heat is drastically enhanced for the “dot” Si-doped
graphene in which valence bands are crossed by the Fermi energy. The
crossing valence bands arise a heat transfer in the system. We should
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mention that our calculated specific heat for the pristine graphene is in
a good agreement with other calculations of the specific heat for gra-
phene valid for temperatures below 800K [57].

In Fig. 8 the electronic thermal conductivity is presented for the
pristine graphene (golden diamond), and the graphene with triangle
(blue circle) and “dot” (red square) Si-doping atoms. The opening of the
band gap for the graphene with triangle Si-doping atoms arises less DOS
around the Fermi energy. Consequently, the charge carriers is de-
creased in the selected range of temperatures and the thermal con-
ductivity is thus suppressed compared to the pristine graphene. But the
increased DOS in the graphene with dot Si-dopant configuration in-
creases the number of charge carriers and the thermal conductivity is
thus enhanced.

Conclusions

We have studied thermal properties of graphene nanosheets with Si
atoms with triangle or “dot” shape configuration of dopants. Density
functional theory had been used to calculate the band structure, the
density of states, and the charge density distribution. We found that the
Si-impurities in both doped systems play a donor role giving charge to
the graphene structure leading to delocalized charge around the Si-
impurities. As a result, a repulsion force in the triangle Si-doped gra-
phene arises a band gap that can be controlled by the concentration of
the Si-dopant. The opening band gap in the triangle Si-doped graphene
leads to decreases in both the specific heat and the thermal conductivity
at low temperatures. Furthermore, as the concentration of silicon atoms
is higher in the “dot” Si-doped graphene the induce repulsion forces are
higher than in the triangular configuration of dopants. Valence bands
thus cross the Fermi-energy in the “dot” Si-doped graphene with re-
sulting increases in the density of state and the number of charge car-
riers. As a result, the specific heat and the thermal conductivity are
enhanced.
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