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Abstract

In my doctoral research, I developed econometric estimators with strong appli-

cations in analysis of heterogeneous consumer demand. The first chapter de-

velops an estimator for grouped patterns of heterogeneity in an approximately

sparse setting. This setting is used to estimate demand shocks, competition

sets and own-price elasticities for different groups of consumers. The second

chapter, which is joint work with Stefan Hoderlein and Alexander Meister, de-

velops a nonparametric estimator of the marginal effects in a panel data even

if there are only a small number of time periods. This is used to estimate the

heterogeneous marginal effects of increasing income on consumption of junk

food. The third chapter, which is joint work with Stefan Hoderlein and Solvejg

Wewal, is the first difference-in-differences model for binary choice outcome

variables when treatment effects are heterogeneous. We apply this estimator

to examine the heterogeneous effects of a soda tax.

Chapter 1: “Approximately Sparse Models and Methods with Grouped Pat-

terns of Heterogeneity with an Application to Consumer Demand” introduces

post-Lasso methods to time-varying grouped patterns of heterogeneity in linear

panel data models with heterogeneous coefficients. Group membership is left

unrestricted and the model is approximately sparse, meaning the conditional

expectation of the variables given the covariates can be well-approximated by

a subset of the variables whose identities may be unknown. I estimate the pa-

rameters of the model using a grouped fixed-effects estimator that minimizes
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a post-Lasso least-squares criterion with respect to all possible groupings of

the cross-sectional units. I provide conditions under which the estimator is

consistent as both dimensions of the panel tend to infinity and provide infer-

ence methods. Under reasonable assumptions, applying this estimator to a

consumer demand application allows me to partition consumers into groups,

deal with price endogeneity without instrumental variables, estimate demand

shocks, and identify compliments and substitutes for each group. I then use

this estimator to estimate demand for soda by identifying different groups’

competition sets as well as demand shocks using Homescan data.

Chapter 2: In “A Panel Data Estimator for the Distribution and Quantiles

of Marginal Effects in Nonlinear Structural Models with an Application to the

Demand for Junk Food”, we propose a framework to estimate the distribution

of marginal effects in a general class of structural models that allow for arbitrary

smooth nonlinearities, high dimensional heterogeneity, and unrestricted correla-

tion between the persistent components of this heterogeneity and all covariates.

The main idea is to form a derivative dependent variable using two periods of

the panel, and use differences in outcome variables of nearby subpopulations to

obtain the distribution of marginal effects. We establish constructive nonpara-

metric identification for the population of “stayers” (Chamberlain, 1982), and

show generic non-identification for the “movers”. We propose natural semi-

parametric sample counterparts estimators, and establish that they achieve

the optimal (minimax) rate. Moreover, we analyze their behavior through a

Monte-Carlo study, and showcase the importance of allowing for nonlinearities

and correlated heterogeneity through an application to demand for junk food.

In this application, we establish profound differences in marginal income ef-

fects between poor and wealthy households, which may partially explain health

issues faced by the less privileged population.

Chapter 3: In “A Binary Choice Difference-in-Differences Model with Het-
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erogeneous Treatment Effects and an Application on Soda Taxes”, we answer

how should Differences-in-Differences be implemented when outcomes are bi-

nary and we expect heterogeneous effects. The scope for applications is clearly

vast, including labor force participation, product purchase decisions, enroll-

ment in health insurance and much more. However, assumptions necessary to

measure heterogeneous effects in classic Difference-in-Difference models break

down with a binary dependent variable. We propose a model with a nonpara-

metric random coefficient formulation that allows for heterogeneous treatment

effects with a binary dependent variable. We provide identification of the aver-

age treatment effect on the treated (ATT) along with identification of the joint

distribution of the actual and counterfactual latent outcome variable in the

treatment group which allows us to show the heterogenous treatment effects.

We suggest an estimator for the treatment effects and evaluate its finite sam-

ple properties with the help of Monte Carlo simulations. We further provide

extensions that allow for more flexible empirical applications, such as including

covariates. We apply our estimator to analyze the effect of a soft drink tax

on consumer’s likelihood to consume soda and find heterogeneous effects. The

tax reduced the likelihood of consumption for the most consumers but not for

those who were most likely to be consuming previously.
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Chapter 1

Approximately Sparse Models and Methods with

Grouped Patterns of Heterogeneity with an Ap-

plication to Consumer Demand

1.1 Introduction

Unobserved heterogeneity is a consistent issue in many microeconometric mod-

els. Even in large panel data sets with many variables, there is still large un-

explained variation. Applied researchers face a trade-off between using flexible

approaches to model unobserved heterogeneity and building parsimonious spec-

ifications. This heterogeneity can enter a model through slope-heterogeneity as

well as unobserved individual and time heterogeneity.

Often researchers use individual or time fixed effects to capture much of the

unobserved heterogeneity. These can often be biased by an incidental parame-

ter’s problem and often don’t have enough data to accurately estimate. Further,

these estimates often lead to computational difficulties because of large numbers

of parameters. One way around this issue is to model individual heterogeneity

as a small number of unobserved types (Keane and Wolpin, 1997; Hahn and

Moon, 2010). These models may lead to the “incidental parameter bias” when

dealing with short panels (Nickel, 1981). I will improve this by using a frame-

work that allows for clustered time patterns of unobserved heterogeneity that

are common within groups of individuals (Bonhomme and Manresa, 2015).

A further issue depends on slope heterogeneity. Traditional panel data mod-

els simply assume slope homogeneity such that the regression parameters are
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the same across individuals. While convenient and simple, this approach has

been rejected in multiple studies (Hsiao and Tahmiscioglu, 1997; Lee et al., 1997;

Durlauf et al., 2001; Browning et al., 2007). Other researchers will use individ-

ual specific slope heterogeneity where regression parameters are estimated for

each individuals (Baltagi et al., 2000; Hsiao and Pesaran, 2008). This requires

sufficient within individual variation of the covariates as well as a sufficiently

long time-series component of the data. Further, these estimates could have

high variance making inference difficult. These problems are exacerbated in

cases where the number of parameters are large.

The basic model I use to address these challenges will take the following

form based on the work of Bonhomme and Manresa (2015):

yit = x′itθgi + αgit + vit (1.1.1)

such that i = 1, ..., N and t = 1, ..., T where N is the number of individuals and

T is the number of time periods. The covariates xit are contemporaneoustly

uncorrelated with vit but may be correlated with the group-specifice unobserv-

ables αgit. The number of groups is set by the researcher. My addition to the

work of Bonhomme and Manresa is that I assume that θgi varies between groups

and is approximately sparse, which means that the conditional expectation of

the yit given xit can be well-approximated by a subset of the variables whose

identities may be unknown. This can be seen as adding constraints such that

the individual slope parameters are constrained to be equal to certain group

parameters, and some of the group parameters are constrained to be zero.

This model uses group-specific time effects to address unobserved hetero-

geneity. This allows for time effects to differ across individuals while allowing

larger portions of the data to identify each parameter which avoids many of

the problems with standard fixed-effects approaches. In order to address the

slope heterogeneity concerns, I use group-specific slope parameters and assume
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approximate sparsity. I will use Post-Lasso methods based on Belloni et al.

(2012), which is an extension on the classic Lasso (Tibshirani, 1996), in order

to shrink the parameter space which will improve estimation.

I will use this approach in a consumer demand framework. Consumer de-

mand can be challenging because researcher have many heterogeneous con-

sumers and many different prices. In a product space estimation approach, as

the number of products increases, the parameters needed to estimate the model

increases exponentially. Thus, in order to get stable estimation, researchers of-

ten make significant assumptions about consumer behavior. One way to do

that is to impose functional form assumptions on utility and grouping prod-

ucts together. This is called the Almost Ideal Demand System (Deaton, 1980).

Another solution to these problems is to use a product characteristic approach

instead, but the researcher will still have to determine what characteristics to

include as well as making other assumptions on consumer preferences. My ap-

proach will allow the data to tell us information about the consumer preferences

and minimize the assumptions made by the researcher.

Assume yit is a log quantity and xit is log price. This would imply θgi is the

group specific own- and cross-price elasticities. Using my estimator allows each

group to have different own- and cross-price elasticities and will set many of the

cross-price elasticities to zero. Assuming that the cross-price elasticity space

is approximately sparse is reasonable since consumers will often only consider

a subset of all possible items when making purchasing decisions because of

search costs, and may only consider the prices of some of those products, which

I will call their competition set. My model is imposing constraints on price

elasticities such that individual price elasticitis are equal to each other and

some price elasticities are set to zero. However, this model allows the data to set

which price elasticities are applied to, rather than leaving that to assumptions

determined by the researcher’s intuition.
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In addition, these elasticities can allow us to identify different products’ in-

teraction effects (substitutes or complements) even when the number of prod-

ucts is large. It will also identify how some products may be substitutes for

some consumers, while not (or perhaps even complements) for others. Identify-

ing complements and substitutes from a large number of products is a helpful

addition to the literature.

My model further informs us more about consumer demand by using time-

varying group fixed effects. These time-varying fixed effects can help us identify

different trends in demand between different groups of individuals. For example,

consumers may not consume unhealthy food at the start of the year as a new-

years resolution, but will eat more unhealthy food throughout the year and

their resolution fades (Cherchye et al., 2017). There also may be seasonal trends

in consumption that may not hold for everyone. Grouped time-varying fixed

effects can then measure demand patterns and shocks for groups of individuals.

Further, these time-varying grouped fixed-effects will capture many of the

shocks that would lead to endogeneity issues in my estimates. However, if a

demand shock impacts the whole population or only subset of my sample, these

shocks will be captured by α and they will not bias my estimates of θ. Thus,

I argue that I do not need to use instrumental variables to measure cross-price

effects.

For my application of consumer demand, I will look at the Nielsen Scanner

Data which is available through the Kilts Center at the University of Chicago

Booth School of Business. I will focus on aggregate monthly purchases in 2014.

I will estimate the demand for the most popular soft drink product based on

demographic characteristics of the individual as well as the prices of the soft

drink product and other popular soft drink products based on my data.
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1.1.1 Related Work

Beyond the basic AIDS approach (Deaton, 1980) to consumer demand, another

product space demand estimation was done by Hausman et al. (1994) in a three

stage approach. First, they estimated demand for product category. Second,

they estimated demand for the various groups of products and third was the

demand for individual products within the groups. There has been additional

work to help use the data to help identify which groups to use and include

(Blundell and Robin, 2000). Adding heterogeneity into an AIDS was done

by Jorgenson (1990). For a review of methods to add heterogeneity when

aggregating results, see Stoker (1993).

A different possible demand estimation solution in this setting involves in-

cluding many product characteristics to a BLP, (Berry et al., 1995a), type

model. This is done by using lasso to estimate high dimensional product char-

acteristics space by Gillen et al. (2014) and using double-Lasso (Gillen et al.,

2015) to control for the large number of demographic characteristics. They can

include many product characteristics, but considering how difficult it is to get

product characteristics data, it is impossible to get every product characteristics

consumers might consider.

Additional research addressing consumer demand with many prices and con-

sumer heterogeneity using machine learning techniques has been done by Cher-

nozhukov et al. (2019). To estimate the aggregate price and income-elasticities,

they similarly use a Lasso estimate but rely on double machine learning to

relax the sparsity assumptions (Chernozhukov et al., 2018). Heterogeneity is

introduced on an individual level with individual slope parameters which are

averaged (as in Chamberlain (1982, 1992)) and regulated using a ridge penalty

for how far away the individual parameter is from the average.

While this structure allows a relaxing of the sparsity assumption, to model

heterogeneity, it requires a long time dimension for identification and assumes
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time homogeneity of preferences. This assumption is common and useful in

econometric panel data models (See Chernozhukov et al. (2013), Graham and

Powell (2012), Hoderlein and White (2012), Chernozhukov et al. (2015) and

Chernozhukov et al. (2019) for examples). While this assumption is helpful in

allowing enough within individual varition to identify the slope parameters, it

may not hold in consumer demand settings and is not required for my model.

There is a significant literature on estimating the subsets of goods a con-

sumer considers when making a purchasing decision. Estimating the probability

of each subset of goods being in an individual’s consumption set has been of

interest in psychology and marketing (Hauser and Wernerfelt, 1990; Shocker

et al., 1991). In economics, they are often used as a generalization of discrete

choice models (Caplin and Dean, 2015; Abaluck and Adams, 2017). Chiong and

Shum (2018) estimate a discrete choice model with high dimensional choice sets

using machine learning to shrink the initial product space to a smaller subset

while keeping the estimation consistent. Barseghyan et al. (2019) establishes a

model that does not require strict assumptions to estimate demand preferences

and perform welfare analysis but is unable to point identify the choice sets.

While my estimation can choose what I call an individual’s competition set, I

cannot identify their consideration set. There may be additional research on

how these two sets compare.

Some papers in the economic literature have used individual choice data

to esitmate parameters to estimate interactive effects (substitutes or comple-

ments) for a very small number of items; see Chintagunta and Nair (2011) and

Berry et al. (2014) for summaries of this literature. Some researchers have

attempted to treat each potential bundle as a discrete alternative and impose

a parametric structure to identify complementary between items (Train et al.,

1987; Gentzkow, 2007). Song and Chintagunta (2007) build a model to estimate

whether to purchase and how much to purchase each good. However, because
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of the computational difficulties of these models, the number of goods included

is very small and chosen by the researcher. My approach allows the data to tell

us which goods may be compliments or substitutes.

There is also previous research dealing with heterogeneity and lasso using

a random coefficients model (Fan and Li, 2012). While this allows some coef-

ficients to be set to zero, it does not consistently let some variables set to zero

for some individuals but not others and is in a cross-sectional setting. It also

doesn’t identify the parameters for each individual but instead identifies the

distribution of the parameters.

Grouping individuals together is an effective way to measure heterogene-

ity when estimating consumer demand. For example, consumer brand choice

analysis using individuals or groups of individuals yield similar general trends

(Oliveira-Castro et al., 2006). Further, it is common to group individuals to-

gether based on where they live (Huang and Lin, 2007), their income level

(Aasnass and Rødseth, 1983), their search costs (Koulayev, 2009), or some

combination of these (Asano and Fiuza, 2015; Bester and Hansen, 2016).

Su et al. (2016) develops the C-Lasso to shrinks individual coefficients to

group-specific coefficients. While it allows for individual fixed-effects, this

model solely relies on the coefficients for group classification and does not group

on unobserved heterogeneity. This is important in my setting sense I am group-

ing consumers not only on their price elasticites but their demand shocks over

time. Further, Su et al. does not use a Lasso within each group, which often

leads to large variation in situations with many covariates. The extenstion (Su

and Ju, 2017) allows for fixed effects with time interactions based on Bai (2009)

but often requires large time series data points for proper classification.

Ando and Bai (2016) expands on these ideas to use interactive fixed effects

and minimizes sum of least squared errors with a shrinkage penalty to allow for

large number of covariates. This paper differs from mine in a few important

7



ways. It requires N and T to go to infinity simultaneously since it uses the

SCAD penalty of Fan and Li (2001) and interactive fixed-effects. It also does

not have a way to estimate the regularization parameter since cross-validation

is normally infeasible because computation is very intensive in these types of

models.

The number of groups in this paper and the papers listed above is fixed.

There are methods in a standard panel model to use a kmeans clustering algo-

rithm to identify the number of groups and sort the individuals into the groups

prior to estimating the model (Bonhomme et al., 2017) which allows the number

of groups to grow as the sample size grows. This does not allow for covariates to

have different effects on each group which is a significant feature of my model.

A different approach to this answer is done by Su et al. (2019) where individuals

can change groups over time. My approach does not currently allow for such

generalizations so this remains left for future research.

1.2 Estimator

This section will begin with a discussion of the model and estimator. Then I

will discuss computational methods.

1.2.1 Model

This model (1.1.1), based on the model in Bonhomme and Manresa (2015),

contains three types of parameters: the parameter vector θg ∈ Θ for all g ∈

{1, ..., G}; the group-specific time effects αgit ∈ A, for all g and all t ∈ {1, ..., T};

and the group membership variables gi for all i ∈ {1, ..., N} which maps indi-

vidual units into groups. The parameter spaces Θ and A are subsets of RP and

R, respectively. Let γ ∈ ΓG denote a particular grouping (or partition) of the

N units, where ΓG is the set of all possible groupings.

The grouped fixed-effects estimator is defined as the solution of the following
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minimization problem:

(
θ̂GFE, α̂GFE, γ̂GFE

)
= arg min

(θ,α,γ)∈ΘG×AGT×ΓG

N∑
i=1

T∑
t=1

(yit − x′itθgi − αgit)2 (1.2.1)

which is the minimum over all possible groupings γ of the N units into G

groups, common group parameters θ, and group-specific time effects α.

In my setting, which differs from Bonhomme and Manresa’s model here, I

will assume that the θs will be approximately sparse, defined formally below.

Condition 1. - Approximately Sparse: Each optimal function of fg(xit) is

well-approximated by a function of unknown s > 1 variables:

yit = fg(xit) + vit,

||θASg ||0 ≤ s = o(N),

fg(xit) = x′itθ
AS
g + αgit + a(xit)

EN [a(xit)
2]1/2 ≤ cs ≤

√
s/N

(1.2.2)

This requires that there are at most s terms that are able to approximate

the conditional expectation of yit. This allows the support of θAS, T , to be

unknown. Note that the number s is chosen such that the approximation error

is of the same magnitude as the estimation error. The underlying key growth

condition is:

s log(P ∨N) = o(N) (1.2.3)

This requires that the number covariates required to estimate yit is sufficiently

small in comparison to the sample size.

In my consumer demand setting, this is a reasonable assumption. Con-

sumers often will only consider items in their consideration set and they cannot

consider large numbers of products every time they make a purchase decision.

Further, allowing for approximate sparsity allows for us to add quadratic and

other higher order terms for competing prices (Banks et al., 1997) that may or

may not be included in the post-Lasso estimation.

Thus, my post-Lasso grouped fixed-effects estimator is defined as the solu-
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tion of the following minimization problem:

(
θ̂PL, α̂PL, γ̂PL, B̂PL

)
= arg min

(θ,α,γ)∈BG×AGT×ΓG

N∑
i=1

T∑
t=1

(yit − x′itθgi − αgit)2 (1.2.4)

For given values of θ and α, the optimal group assignment for each individual

unit is:

ĝi(θ, α) = arg min
g∈{1,...,G}

T∑
t=1

(yit − x′itθg − αgt)2 (1.2.5)

where I take the minimum g in case of a non-unique solution. The standard

GFE estimator relies on the usual least squares criterion function:

Q̂(θ, α) := EN [(yit − x′itθĝi(θ,α) − αĝi(θ,α)t)
2] (1.2.6)

where ĝi(θ, α) is given by equation (1.2.5). The Lasso estimator is defined as a

solution to the following optimization problem:

(
θ̂L, α̂L

)
= arg min

(θ,α)∈ΘG×AGT
Q̂(θ, α) +

λ

n
‖Υ̂θ‖1 (1.2.7)

where λ is the penalty level and Υ = diag(ψ1, ..., ψP ) is a diagonal matrix

specifying penalty holdings. I will use the infeasible “ideal” penalty loadings:

Υ0 = diag(ψ0
1, ..., ψ

0
P ) ψ0

j =
√

En[x2
ijtv

2
it] j = 1, ..., P (1.2.8)

Since vit is unobserved, the ideal penalty loadings are infeasible. However, by

using conservative penalty loadings at first, such as vit = yit−y, and estimating

vit from the residuals, I can iterate to a feasible penalty loadings estimator.

These penalty loadings allow for sharp convergence.

Ideal penalty loadings are used to introduce self-normalization of the first-

order condition of the lasso problem. I follow the work of Belloni et al. (2012)

10



to use moderate deviation theory from Jing et al. (2003) to bound deviations

which allows a penalty level λ/N such that the lasso estimator converges at an

oracle rate. This strategy allows the maximum of normalized scores to be well

approximated by a standard normal quantile (Peña et al., 2008).

The penalty level, λ/N , should dominate the noise and this can be achieved

using moderate deviation theory with the following choice for λ:

λ = c2
√
nΦ−1(1− ψ/(2P )), (1.2.9)

with ψ → 0, log(1/ψ) = O(log(P ∨N))

I set ψ = 0.1/ log(P ∨N) and c = 1.1 as recommended based on simulation

studies in Belloni et al. (2012). This provides a theoretical strategy to use

Lasso penalty that doesn’t require cross-validation (which is will be very costly

because of computation time) or any kind of guess work to choose our penalty

value, λ. These plug-in values have been shown to be effective in estimation

(Bickel et al., 2009; Drukker and Liu, 2019).

I will then use the GFE estimator applied to the model selected by Lasso.

Specifically,

T̂ = support(θ̂L) = {j ∈ {1, ..., P} : |θ̂Lgj| > 0} (1.2.10)

The set B̂ can contain additional variables not selected by Lasso, but the number

of such variables must not be larger than the number selected by Lasso. Thus,

T̂ ⊆ B̂. The post-Lasso estimator can be written as:

(
θ̂PL, α̂PL

)
∈ arg min

(θ,α)∈B̂G×AGT
Q̂(θ, α, γ) (1.2.11)

where Q̂(θ, α, γ) is defined from equation (1.2.6). Thus, my Post-Lasso

estimates of θ and α are given by (1.2.11) and of gi is given by (1.2.5).
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1.2.2 Computation

Equation (1.2.11) minimizes a piecewise-quadratic function, where the partition

of the parameter space is defined by different values of ĝi(θ, α). However, the

number of partitions of N into G groups increases dramatically as N increases

so minimizing across all partitions is in-feasible. The following algorithm can

be used to minimize equation (1.2.11) and improve upon this problem.

Algorithm 1. (iterative)

1. Let γ(0) be some starting assignment to groups. Set s = 0.

2. Compute:

(
θ̃(s+1), α̃(s+1)

)
= arg min

(θ,α)∈ΘG×AGT
En[(yit − x′itθg(s)i − αg(s)i t

)] +
λ

n
‖Υ̂θ‖1

(1.2.12)

3. Select B̂(s+1) ⊇ T̂ (s+1) where T̂ (s+1) is defined by equation (1.2.10).

(
θ(s+1), α(s+1)

)
= arg min

(θ,α)∈B̂G,(s+1)×AGT

N∑
i=1

T∑
t=1

(yit−x′itθg(s)i −αg(s)i t
)2 (1.2.13)

4. Compute for all i ∈ {1, ..., N}:

g
(s+1)
i = arg min

g∈{1,...,G}

T∑
t=1

(yit − x′itθ(s+1)
g − α(s+1)

gt )2 (1.2.14)

5. Set s = s+ 1 and go to Step 2 (until numerical convergence).

This algorithm alternates between three steps. The first step is to choose

the variables that are chosen for each group using a Lasso selection technique.

The second step updates θ and α as a post-Lasso. The last step is assigning

each individual unit i to the group gi which minimizes their objective function:

(yit − x′itθ
(s+1)
g − α(s+1)

gt )2.

Unfortunately, the solution depends on the chosen starting values since the

least squares objective function is not globally convex (Bai, 2009). Thus, find-
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ing the true values requires using many starting assignments to find which one

minimizes the objective function. This algorithm improves upon this and al-

lows for computation without choosing every partition of N individuals into

G groups. Drawing random starting values provides a practical approach for

many problems.

For higher dimensional problems, I can improve on this using a process

similar to the kmeans clustering algorithm (Forgy, 1965) which uses another

algorithm that exploits recent advances in data clustering (Hansen et al., 2010).

This extension, called Algorithm 2, is outlined in Appendix 1.7.1. A compar-

ison of two very similar algoriths is done by Bonhomme and Manresa (2015).

Computation remains a challenge as N grows large, so there remains potential

for further research to improve these techniques.

1.3 Asymptotic Properties

In this section, I discuss the asymptotic properties of my post-Lasso grouped

fixed-effects (PL-GFE) estimator as N and T tend to infinity in model (1.1.1).

1.3.1 Setup

Consider the following data generating process:

yit = x′itθ
0
g0i

+ α0
g0i t

+ vit (1.3.1)

where g0
i ∈ {1, ..., G} denotes group membership, θ0

g0i
is approximately sparse,

and where the 0 superscripts refer to true parameter values. I assume that the

number of groups G = G0 is known, but I will discuss estimating the number

of groups later in the paper.

Let
(
θ̃, α̃
)

be the infeasible PL-GFE estimator where group membership gi

is fixed to its population counterpart g0
i :
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(
β̃, α̃

)
= arg min

(θ,α)∈ΘG×AGT

N∑
i=1

T∑
t=1

(
yit − x′itθg0i − αg0i t

)2

. (1.3.2)

This is the post-Lasso estimator in the pooled regression of yit on xit and the

interactions of population group dummies and time dummies.

The main result in this section provides conditions where estimated groups

converge to their population counterparts and the PL-GFE estimator defined

in equation (1.2.4) is asymptotically equivalent to equation (1.3.2) as N and T

tend to infinity and N/T ν → 0 for some ν > 0. This allows T to grow much

more slowly than N as long as ν > 1.

1.3.2 Consistency

Consider the following assumptions.

Assumption 1.1. There exists a constant M > 0 such that:

a. Θ and A are compact subsets of RP and R, respectively.

b. E (||xit||2) ≤M , where || · || denotes the Euclidean norm.

c. E(vit) = 0, and E(v4
it) ≤M .

d.
∣∣∣ 1
NT

∑N
i=1

∑T
t=1

∑T
s=1 E(vitvisx

′
itxis)

∣∣∣ ≤M .

e. 1
N

∑N
i=1

∑N
j=1

∣∣∣ 1
T

∑T
t=1 E(vitvjt)

∣∣∣ ≤M .

f.
∣∣∣ 1
N2T

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 Cov(vitvjt, visvjs)

∣∣∣ ≤M.

In Assumption 1.1.a, the parameter space must be compact. Non-stationarity

in the covariates and errors are ruled out in Assumptions 1.1.b and 1.1.c. These

three assumptions allow us to do my analysis in a bounded space. Assumptions

1.1.d and 1.1.f impose conditions on the time series dependence of errors and co-

variates. Assumptions 1.1.e restricts the amount of cross-sectional dependence.
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Note that this is satisfied when vit is independent across units. Assumptions

1.1.d-f are common in large factor models (Stock and Watson, 2002).

This assumptions must also hold for approximation error using only us-

ing θ from the support T . Assumption 1.1.c implies that E(a(xit)) = 0, and

E(a(xit)
4) ≤ M for some M > 0. This holds because the approximation error

is chosen to be no larger than the model error vit. However, I need to make

further assumptions:

Assumption 1.2. There exists a constant M ′ > 0 such that:

a.
∣∣∣ 1
NT

∑N
i=1

∑T
t=1

∑T
s=1 E(a(xit)a(xis)x

′
itxis)

∣∣∣ ≤M ′.

b. 1
N

∑N
i=1

∑N
j=1

∣∣∣ 1
T

∑T
t=1 E(a(xit)a(xjt))

∣∣∣ ≤M ′.

c.
∣∣∣ 1
N2T

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 Cov(a(xit)a(xjt), a(xis)a(xjs))

∣∣∣ ≤M ′.

Assumption 1.2 establishes the same weak dependence conditions on this

error, a(xit), as on the model error, vit. Assumption 1.1.d. and 1.2.a. allows

for lagged outcomes. In consumer demand, Assumptions 1.1 and 1.2 can allow

us to use lagged prices as covariates and allow the consumers to make dynamic

decisions, which can be important for some consumer demand applications

(Hendel and Nevo, 2006).

In a consumer demand setting, Assumptions 1.1 restricts how much demand

shocks can effect multiple individuals outside of the grouping decided by the

model, as well as how much the demand shocks can last multiple periods outside

of grouped demand shocks. Further, Assumption 1.2 implies that the response

to other individual price changes not included in the post-Lasso estimate follow

the same restrictions as the error terms. This means that these approximation

error terms have restrictions over the time series dependence and how much

they effect multiple individuals outside of the group effect.

Now consider the following additional assumptions on group classification:

Assumption 1.3.
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a. For all g ∈ {1, ..., G} : plimN→∞
1
N

∑N
i=1 1{g0

i = g} = πg > 0.

b. There exist constants a > 0 and d1 > 0 and a sequence α[t] ≤ e−at
d1

such that, for all i ∈ {1, ..., N} and g ∈ {1, ..., G}, {vit}t,{a(xit)}t and

{α0
gt}t are strong mixing processes with mixing coefficients α[t]. Moreover,

E(α0
gtvit) = 0 and E(α0

gta(xit)) = 0 for all g ∈ {1, ..., G}.

c. There exist constants b > 0 and d2 > 0 such that Pr(|vit| > m) ≤ e1−(m
b

)d2

for all i, t, and m > 0.

d. There exist constants b > 0 and d2 > 0 such that Pr(|a(xit)| > m) ≤

e1−(m
b

)d2 for all i, t, and m > 0.

Assumptions 1.3.a establishes that each of the G population groups has

a large-number of observations. Assumptions 1.3.b-d restrict the dependence

and tail properties of vit and a(xit). Specifically, both vit and a(xit) are as-

sumed to be strongly mixing with a faster-than-polynomial decay rate with

tails also decaying at a faster-than-polynomial rate. These strengthen some

aspects of Assumption 1.1. Further, α0
gt is also assumed to be strongly mixing

and contemporaneously uncorrelated with vit and a(xit). This will be discussed

further in Section 1.3.3. These assumptions allow me to bound misclassifation

probabilities.

In the consumer demand case, these assumptions hold as long as there is

the density large individual demand shocks (even if caused by price change

of products left out of the model) is low. This assumption holds as long as

individual demand shocks are not correlated with group aggregate demand

shocks.

Now consider the following assumptions about the random coefficients model:

Assumption 1.4.

a. There exists a ρ̂→p ρ > 0 such that, for all

g : minγ∈ΓG maxg̃∈{1,...,G} ρ̂(γ, g, g̃) ≥ ρ̂, where ρ̂(γ, g, g̃) is the minimum
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eigenvalue of the following (P + T )× (P + T ) matrix (with P = dimxit):

M(γ, g, g̃) ≡

1

N

N∑
i=1

1{g0
i = g}1{gi = g̃}



1
T

∑T
t=1 xitx

′
it

1√
T
xi1

1√
T
xi2 . . . 1√

T
xiT

1√
T
xi1 1 0 . . . 0

1√
T
xi2 0 1 . . . 0

...
...

...
. . .

...

1√
T
xiT 0 0 . . . 1



b. For all g 6= g̃, there exists a cg,g̃ > 0 such that plimN,T→∞
1
N

∑N
i=1 D

0
gg̃i ≥

cg,g̃ and, for all i ∈ {1, ..., N}, plimT→∞D
0
gg̃i ≥ cg,g̃, where D0

gg̃i =

1
T

∑T
t=1(x′it(θ

0
g − θ0

g̃) + α0
gt − α0

g̃t)
2.

c. There exists a constant M∗ > 0 such that

sup
i∈{1,...,N}

Pr

(
1

T

T∑
t=1

||xit||2 ≥M∗

)
= o(T−δ)∀δ > 0

d. For all constants c > 0

sup
i∈{1,...,N}

Pr

(
1

T

T∑
t=1

||vitxit|| > c

)
= o(T−δ)∀δ > 0

e. For all constants c > 0

sup
i∈{1,...,N}

Pr

(
1

T

T∑
t=1

||a(xit)xit|| > c

)
= o(T−δ)∀δ > 0

Assumption 1.4.a. is a relevance condition which is similar to a full rank

condition in standard models. This requires that xit has enough within-group

variation over time and across units. Bonhomme and Manresa (2015) outlines

many cases where this holds. Assumption 1.4.b. is a group separation condition.

Intuitively it is satisfied if, for all i and g̃ 6= g, {xit}t and {α0
gt − α0

g̃t}t are not
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collinear. Assumption 1.4.c. holds as long as covariates have bounded support,

or if they satisfy specific tail conditions. Assumption 1.4.d-e. impose further tail

condition properties on 1
T

∑T
t=1 ||vitxit|| and 1

T

∑T
t=1 ||a(xit)xit||. These condi-

tions will hold if xit satisfies mixing and tail conditions outlined in Assumption

1.3.

In the consumer demand application, it is common to divide consumers

in groups based on specific covariates like income and income level (Huang

and Lin, 2007; Aasnass and Rødseth, 1983; Asano and Fiuza, 2015). However,

grouping individual based on unobserved heterogeneity will allow individuals

with varying covariates so I can identify the effect of these covariates within

each group.

I also impose additional moment conditions on xit and vit to insure conver-

gence of the post-Lasso coefficients.

Condition 2. - The following conditions on the error terms. Let ỹit = yit −

E[yit]:

a. There exists a constant M > 0 such that maxj≤P E[ỹ2
it] + E[x2

itj ỹ
2
it] +

1/E[x2
itjv

2
it] ≤M .

b. There exist constants Km > 0 such that maxj≤P E[|x3
itjv

3
it|] ≤ Km.

c. K2
m log3(P ∨N) = o(N) and s log(P ∨N) = o(N).

d. maxi≤N,t≤T,j≤P x
2
itj[s log(P ∨N)]/N →p 0.

Parts a-b. introduce moment conditions beyond what were outlined before

but follow similar intuition. Parts c-d establish growth conditions such that

the number of variables needed to approximate yit, s, does not grow too fast in

relation to N .

This growth condition makes sense in my application to consumer demand.

As the number of consumers increase, most of the consumers will fall into
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already defined groups. These groups will have the same competition sets so s

will not increase too quickly in relation to N .

To outline the next regularity condition, I must define sparse eigenvalues.

To begin, I will define the m-sparse subset of a unit sphere as:

∆(m) = {δ ∈ Rp : ‖δ‖0 ≤ m, ‖δ‖2 = 1} ,

and define minimal and maximal m-sparse eigenvalue of the gram matrix M =

EN [xitx
′
it] as

φmin(m)(M) = min
δ∈∆(m)

δ′Mδ and φmax(m)(M) = max
δ∈∆(m)

δ′Mδ

This allows me to establish the following condition:

Condition 3. For any C > 0, there exist constants 0 < κ′ < κ” <∞, which do

not depend on N but may depend on C, such that, with probability approaching

1, as N, T →∞,

κ′ ≤ φmin(Cs)(E[xitx
′
it]) ≤ φmax(Cs)(E[xitx

′
it]) ≤ κ”

Condition 3 establishes that only certain small submatricies of the empir-

ical Gram matrix are well-behaved. This conditions hold for standard i.i.d.

sampling, but holds for more general cases as well,as outlined in Belloni and

Chernozhukov (2013).

I assume that the number of variables selected by post-Lasso is not signifi-

cantly larger than the model selected by Lasso. Specifically, let T̂ be the set of

variables selected by Lasso, and B̂ be the set of variables selected by post-Lasso.

There exists some c such that

|B̂ \ T̂ | ≤ c(1 ∨ |T̂ |) (1.3.3)
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This means that the number variables that must be included whether they are

selected by the Lasso estimator or not should be relatively small. In an ap-

plication to consumer demand, one can include own-price elasticity in every

post-Lasso estimation but the number of cross-price elasticities or demographic

effects included beyond those selected by the Lasso identification must be lim-

ited. I will not include any covariates beyond those selected by the Lasso

identification in my application.

If one was focused on estimating a singular parameter such as own-price

elasticity, one could use the double machine learning method (Chernozhukov

et al., 2016) to solve this problem. This would significantly weaken the assump-

tions needed for convergence and asymptotic normality. It would also increase

computation time in order to properly cross-validate the machine-learning pa-

rameters. However, my focus is on a set of parameters (cross-price elasticities

as well as own-price elasticities) so I will keep my assumptions and proceed.

With these conditions, I can provide the next result which shows that my

PL-GFE estimator and the infeasible least squares estimator with known pop-

ulation groups in equation (1.3.2) are asymptotically equivalent.

Theorem 1.1. Suppose assumptions 1, 2, and 3 all hold as well as conditions

1, 2, and 3 and equation (1.3.3). Also, λ is chosen from equation (1.2.9). Then,

for all δ > 0, as N,T tend to infinity:

Pr

(
sup

i∈{1,...,N}
|ĝi − g0

i | > 0

)
= o(1) + o(NT−δ), (1.3.4)

and:

θ̂g = θ̃g + op(T
−δ)∀g (1.3.5)

and

α̂gt = α̃gt + op(T
−δ)∀g, t. (1.3.6)

Proof. See Appendix 1.7.2. �
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The following assumptions allow to simply characterize the asymptotic dis-

tribution of the Post-Lasso estimator (θ̂, α̂). I denote xgt as the mean of xit in

group g0
i = g.

Assumption 1.5.

a. For all i, j, t, and g: E (1{g0
i = g}xjtvit) = 0.

b. For all g, there exist positive definite matricies Σθg and Ωθg such that:

Σθg = plim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

1{g0
i = g}(xit − xgt)(xit − xgt)′

Ωθg = lim
N,T→∞

1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
[
1{g0

i = g}1{g0
j = g}vitvjs(xit − xgt)(xjs − xgs)′

]
(1.3.7)

c. As N and T tend to infinity: 1√
NT

∑N
i=1

∑T
t=1 1{g0

i = g}(xit − xgt)vit →d

N (0, σθg) .

d. For all (g, t):

limN→∞
1
N

∑N
i=1

∑N
j=1 E

(
1{g0

i = g}1{g0
j = g}vitvjt

)
= ωgt > 0

e. For all (g, t), and as N and T tend to infinity: 1√
N

∑N
i=1 1{g0

i = g}vit →d

N (0, ωgt).

Assumptions 1.5.a-c. imply that the least squares estimator for θg has a

standard asymptotic distribution. Assumption 1.5.a holds if xit is strictly ex-

ogenous or fixed and the observations are independent across units. In the

framework of consumer demand, I will discuss this assumption in depth in Sec-

tion 1.3.3. Assumptions 1.5.d-e. allow for αgt to have a standard asymptotic

distribution.
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Theorem 1.2. Suppose the conditions under Theorem 1.1 and Assumption 1.5

hold. Let N and T tend to infinity such that, for some ν > 0, N/T ν → 0. Then

I have for all g:

√
NT

(
θ̂g − θ0

g

)
→d N

(
0, [Σθg]

−1Ωθg[Σθg]
−1
)
, (1.3.8)

and for all (g, t):
√
N
(
α̂gt − α0

gt

)
→d N

(
0,
ωgt
π2
g

)
. (1.3.9)

where πg is defined in Assumption 3 and Σθ, Ωg, and ωgt are defined in As-

sumption 5.

Proof. The proof follows the proof for Corollary 1 in Bonhomme and Manresa

(2015). Note that because of our assumptions on the growth rate of s and p

(See Condition 2), θ converges at a
√
NT rate because of the penalty loadings

based on the work done by Belloni et al. (2012). �

Thus, under the conditions of Theorem 1.2, my PL-GFE estimator of θ0
g0i

is root-NT consistent and asymptotically normal as long as T can increase

polynomially more slowly than N . My estimator of α0
g0i t

are root-N consistent

and asymptotically normal. Notice that the fixed effect convergence rate is

consistent with other standard time fixed-effects. Lastly, the estimated group

membership indicators are uniformly consistent for the population asN/T ν → 0

for some ν > 0.

1.3.3 Price Endogeneity

In the Industrial Organization literature, there is a large concern about price

endogeneity. A common issue is that prices are set in response to changes in

demand, which would bias common estimates for price elasticity unless one uses

instrumental variables. This becomes particularly challenging in my setting

where I have a large number of prices that would need instruments. Further, in
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many cases estimates based on instrumental variables can be swayed by one or

two data points (Young, 2019), which can be particularly dangerous with noisy

demand data.

It is common to use Hausman instruments (prices in one city as an in-

strument in another city) to deal with price heterogeneity (Hausman et al.,

1994). There can be some failure when using these instruments. For example,

Hausman estimates that Kellogg Raisin Bran and Post Raisin Bran have a neg-

ative (and statistically significant) cross-price elasticity (Hausman, 1996) even

though they are most likely close substitutes. Problems like this are not rare in

the literature (Nevo, 2011). Many of the problems comes from the assumption

about Hausman instruments that city demand shocks are uncorrelated.

Many authors have tried to avoid these problems by using other instruments,

like choosing average prices of retail chains outside of the store in which the

consumer is shopping (DellaVigna and Gentzkow, 2017; Hitsch et al., 2017).

This instrument is chosen because retail chains change their prices over time

in a coordinated manner across stores at least partially because they face a

constant marginal cost (Stroebel and Vavra, 2019). They thus assume that the

timing of chain-level sales is unrelated to local demand shocks. However, this

does not capture how the chains may change their prices across store because

of a demand shock from the group of consumers that shop at their stores.

It is worth acknowledging that the demographics of consumers is similar

across stores within a chain. Thus, some have suggested to use demographics

of other stores in a chain as an instrumental variable (George and Waldfogel,

2003). This has been used in estimating demand for soda and other unhealthy

foods (Allcott et al., 2018, 2019). While demographics can be useful in control-

ling for the groups of consumers and their demand, this does not capture the

unobserved heterogeneity that may dictate which stores consumers may go to.

I use the time-varying grouped fixed-effects estimator, αgit, and group spe-
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cific slope parameters, θgi , to control for these endogeneity problems. To il-

lustrate this, I will use a simple example of just trying to estimate one item’s

own-price elasticity with my model. Let pit be the log price of the good and qit

be the log quantity purchased of that good.

qit = αgit + θgipit + vit (1.3.10)

Based on the proof of Theorem 1.2, my estimates of θg will be unbiased as

long as the expected value of

√
NT

(
θ̂g − θ0

g

)
=

(
1

NT

N∑
i=1

T∑
t=1

1
{
g0
i = g

}(
pit − pg0i t

)(
pit − pg0i t

)′)−1

...

...

(
1√
NT

N∑
i=1

T∑
t=1

1
{
g0
i = g

}(
pit − pg0i t

)
vit

)

tends towards zero as N and T go to infinity where pg0i t is the mean of pit in

group g0
i = g. This will hold as long as individual price deviation away from

group average price is uncorrelated with individual shocks in demand. With

the stores setting the prices, this does not seem like a big concern in my setting

since they will respond to group changes in demand when setting prices.

Further, my estimates of αgt will be unbiased as long as my estimates of θg

are unbiased and

√
N
(
α̂gt − α0

gt

)
=

1√
N

∑N
i=1 1 {g0

i = g} vit
1
N

∑N
i=1 1 {g0

i = g}
+ op(1)

tends towards zero as N goes to infinity. This will hold as long as individual

group assignment is uncorrelated with individual demand shock. This should

hold since individuals with correlated shocks would lead to a group time shock

which is captured in the model.

I will illustrate these arguments with a few examples. On the demand

side, households have a store-choice problem that effects the prices since con-
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sumers have unobserved preferences between stores and unobserved shopping

costs (Allcott et al., 2017). However, these individuals can be grouped together

which allows their effect to be measured by αgit. On the supply side, there are

often price discounts around seasonal peaks in demand (Chevalier et al., 2003).

Further, advertising to an individual can lead to an increase of purchases for

similar consumers (Hartman, 2010). Both of these (and most other supply-side

effects) would be captures by the grouped fixed effects estimator. As stores try

to optimize their pricing decisions, they should be doing so by targeting groups

of consumers, rather than individual consumers and my method can identify

those groups as well as their demand shocks.

There is also a concern about storing products. Stores will often put their

goods on sale for a week (Pesendorfer, 2002) and consumers will respond by

buying that good and storing it when the good is no longer on sale (Hendel

and Nevo, 2006). Estimating demand in the setting can sometimes lead to

overestimates of own-price elasticity as well as underestimate some cross-price

elasticities. I can minimize these problems by aggregating sales and price to a

monthly level as well as including lagged variables, which I can do because of

Assumptions 1.1 and 1.2.

Note that if one desires to control for endogeneity beyond the fixed effects es-

timators discussed in this section, a standard instrumental variable approach is

not feasible using a grouped fixed-effects estimator. In order to perform statis-

tical inference and maintain consistency of the grouped fixed-effects estimator,

we must use a linear panel data. Therefore, in order to handle endogeneity,

the researcher must use a control function approach similar to that used by

Chernozhukov, Hausman and Newey (2019). Analysis of using this technique

with my PL-GFE estimator is left for further research.
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1.3.4 Choice of number of groups

I will follow the the analysis of large factor models (Bai and Ng, 2002) and

interactive fixed-effects panel data models (Bai, 2009), to create an information

criterion to consistently estimate the number of groups, G0, to be used in my

estimator. Consider the following class of information criteria based on model

(1.1.1):

I(G) =
1

NT

N∑
i=1

T∑
t=1

(
yit − x′iθ̂

(G)
ĝi
− α̂(G)

ĝit

)2

+GhNT , (1.3.11)

where (G) refers to the GFE estimator with G groups and hNT is a penalty. The

estimated number of groups would be defined by:

Ĝ = arg min
G∈{1,...,Gmax}

I(G), (1.3.12)

where Gmax is an upper bound on G0 and is assumed to be known by the

researcher1. Following Bai and Ng (2002) and (Bai 2009), it can be shown

that the number of groups Ĝ is consistent for G0 if, as N and T go to infinity,

hnt goes to zero and (N ∧ T )hnt tends to infinity. The first condition assures

that Ĝ ≥ G0 with probability approaching one and the second guarantees that

Ĝ ≤ G0.

Consider the following Bayesian Information Criterion (BIC):

BIC(G) =
1

NT

N∑
i=1

T∑
t=1

(
yit − x′iθ̂

(G)
ĝi
− α̂(G)

ĝit

)2

+ σ̂2GT +N +GP

NT
ln(NT ),

(1.3.13)

where σ̂2 is a consistent estimator of the variance of vit
2. If N and T go

1The issue of selecting Gmax is left for future research.
2I can use the following equation:

σ̂2 =
1

NT −GmaxT −N − PGmax

N∑
i=1

T∑
t=1

(
yit − x′iθ̂ĝi − α̂ĝit

)2
.
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to infinity at the same rate, Ĝ is consistent for G0. If T goes to infinity more

slowly than N such that T/N tends towards zero, the BIC criterion implies

Ĝ ≥ G0 but Ĝ may be inconsistent. Some simulations that show the accuracy

of the criterion are included in Appendix 1.7.3.

1.4 Monte Carlo Simulations

I will run simulations similar to Belloni et al. (2012). I will construct my

simulations off my model:

yit = x′itθgi + αgit + vit.

For simplicity, xit, αgit, and vit are all normally distributed N(0, 1). I set G = 4.

I provide results for N = 100 and 200, as well as T = 7 and 12. θgi come from

three possible distributions. There will be 20 possible covariates, P = 20. For

the first simulation, I will set θgi such that each group has three covariates

with θgi = 1 and the rest will be set to zero, s = 3. There will be a similar

problem where s = 10 which could lead the Lasso to perform poorly with the

given sample size. The last simulation will use approximate sparsity rather

than absolute sparsity such that for each θgi to be a randomized order of the

following sequence: (1, 0.7, 0.72, ..., 0.719, 0.720).

I will report the group fixed-effects estimator (GFE) along with my post-

Lasso grouped fixed-effects estimator (PL-GFE). For each estimator, I report

the median bias and median absolute deviation (MAD) for both the fixed ef-

fects, α, and the covariate coefficients, θ. I also include the rate at which units

are misclassified to the wrong group (G-M). The results are reported in Table

1.1.

Simulation 1 and 2 both show that my PL-GFE out performs GFE by having

a smaller bias and deviation for both α as well as θ. It also misidentifies groups
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less frequently. The most dramatic improvements are for θ.

For the case in Simulation 3 which is approximately sparse, there are slight

improvements to the bias of θ but significant improvements to the MAD of θ.

These come at a sacrifice of slight increases in bias and MAD of α. The group

misidentification rate is better for PL-GFE when N is small but when N is

sufficiently small, GFE performs just as well.

In order to prepare for analysis of consumer demand, I do these simulations

again in a scenario where the covariates are correlated. Thus, xit is drawn from

a multivariate normal distribution N (0,Σ) where Σ is a P × P matrix that

takes the value of 1 along the diagonal and 0.1 on every value off the diagonal.

The value 0.1 is an approximation of the value estimated from the prices in my

data. The results are shown in Table 1.2.

All three of these simulations show that when there is this much correlation

between the covariates, the PL-GFE estimator always outperforms the GFE

estimator. The Lasso selection accurately identifies the important covariates,

while the correlation leads to bias and higher variance for the basic GFE estima-

tor. This holds whether there is extreme sparsity, some sparsity, or approximate

sparsity.

In the case of approximate sparsity, the addition of covariate covariance

lead to the PL-GFE estimator significantly outperforming the GFE for the case

N = 100 and T = 7. For instance, the misclassification rate drops by more

than 35%. This illustrates the importance of the PL-GFE estimator in cases

where N and T are relatively small but there are large amounts of correlated

covariates.

This is helpful for my application to consumer demand since I expect prices

to be correlated. Thus, using the PL-GFE will be more effective since it can

determine what prices are actually influencing the purchase decisions of the

consumer more accurately than the GFE would in this situation. This will
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hold even if the competition set is not particularly “small” or if other prices

have very small effects on purchasing decisions. If price does not enter linearly,

I can add higher order price terms and let the data determine which terms are

important in modeling consumer behavior.
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1.5 Application: Consumer Demand of Soda

I will now estimate consumer demand based on product level data using my

post-Lasso grouped fixed effects estimator.

1.5.1 Nielsen Homescan Data

I will look at the Nielsen Scanner Data which is available through the Kilts

Center at the University of Chicago Booth School of Business.3 I will focus on

the results from 2014. This is a helpful application for estimating consumption

behavior since it contains detailed information based on price and quantity of

purchases of many products as well as many household characteristics.

The data contains a representative sample of households in the United States

that use in-home scanners to record all of their purchases intended for personal,

in-home use. Nielsen matches the product scanned by the household to the ac-

tual price of the store where the product was bought. Nielsen estimates that

recorded purchases account for about 30% of total household consumption. I

will refer to the sum over all expenditure in the Nielsen data as total expendi-

ture, which I will use as the relevant total outlay variable because of additive

separability of the utility function. This variable can be used in derivations

involving economic rationality and be the relevant “income” variable.

There are a few concerns with the data. It relies on participants success-

fully recording their purchases in their home, so they may suffer from some

recording error. However, patterns of consumption in this data set are con-

sistent with other commonly used data sets in the literature. Aguilar (2007)

finds that life-cycle pattern of household expenditures recorded in Homescan

3Researcher(s) own analyses calculated (or derived) based in part on data from The Nielsen
Company (US), LLC and marketing databases provided through the Nielsen Datasets at
the Kilts Center for Marketing Data Center at The University of Chicago Booth School of
Business. The conclusions drawn from the Nielsen data are those of the researcher(s) and do
not reflect the views of Nielsen. Nielsen is not responsible for, had no role in, and was not
involved in analyzing and preparing the results reported herein.
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Data is consistent with those reported for food expenditures at home in Panel

Study of Income Dynamics (PSID). Einav (2010) finds that these issues are

not more serious than those in any other consumption surveys like the Current

Population Survey (CPS). Lin (2018) compares the fraction of expenditures on

different categories of products in the Nielsen Homescan Data and finds the

results consistent to results from the Consumer Expenditure Survey (CES).

These issues are discussed further in Appendix 1.7.4.

I will focus on soft drink purchases. The demand for soft drinks and other

comparable drinks has been examined in many settings as policymakers have

been considering the impacts of “soda taxes” (See Allcott et al. (2019) for an

overview. See Falbe et al. (2016), Sturm et al. (2010), and Cawley et al. (2018)

for examples). In particular, there is a strong interest in soft drink consumption

among different groups of individuals (Dubois et al., 2019), such as children

(Han and Powell, 2013) and low-income households (Drewnowski and Specter,

2004; Currie, 2009). It is important to know what the substitution patterns

are and the price elasticity for different consumers since these taxes may have

a negative effect on the groups of individual they are meant to help (Allcott

et al., 2018). For these reasons, I will focus on consumers that purchase large

amounts of soft drinks, which is one of the major focus groups for policymakers

for the US Department of Health (2016).

I will aggregate sales to a monthly level and simply estimate the demand

for the most bought soft drink product (Coca-Cola) based on demographic

characteristics of the individual as well as the prices of the soft drinks and

other popular soft drink products based on my data. The products I examine

are broken up based on brand and type of product such as 12-pack, 6-pack or

size of individual pack. The exact clarification of these size are anonymized to

comply with the source of the data but I will refer to them as Size A, B, C, D

and E. The Coca-Cola size that I will focus on will be considered Size B for the
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remainder of the paper.

I only focus on consumers that purchase at least twelve units of the Coca-

Cola Size B in my sample during the year and soft drinks that are sold over

20,000 times in my sample. That limits my sample to 1,721 individuals (N =

1721) over twelve periods (T = 12) and twenty other sodas besides the Coca-

Cola product most purchased. My estimates for prices of sodas when consump-

tion is zero is an average of the price faced by similar consumers shopping at the

same or similar stores which is similar to a method discussed by Chernozhukov

et al. (2019). A detailed description of this mechanism as well as my summary

statistics for my sample are included in Appendix 1.7.4.

In this setting, I am assuming that the amount of soda each individual buys

will depend on the prices of only a subset of the other sodas available. Other

soda prices will have zero effect because of individual preferences and search

costs. There is not enough information to identify each individual’s competition

set, but I will break down the sample into groups and find the competition set

for each group using my PL-GFE estimator.

1.5.2 Coefficient Estimates

I will estimate the following model using my post-Lasso grouped-effects esti-

mator:

QCocaCola
it = θ1giXi + θ2giP

CocaCola
it + θ3giP

OtherSoftDrinks
it + θ4giEit + αgit + vit

(1.5.1)

where QCocaCola
it is the log quantity purchased of Coca-Cola Size B products

by consumer i in time t. Xi are the demographic characteristics of consumer

i, including household income, age, education level, and number of children.

Eit is the log of household expenditure for each month to estimate total outlay

(“income”) elasticity of the household, θ4gi . Because I do not know how many

children a family has, I cannot estimate this elasticity at an individual level
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Table 1.3

Price θg Estimates

G: 1 2 4 5 6 7 8

Brand Size

Pepsi A 0 0 0 0 0 0 0

B 0 −0.289∗
0 0 0 0 0

(0.151)
Diet P A 0 0 0 0 0 0 0

B 0 0 0 0.133∗∗ 0 0 0
(0.063)

MD A 0 0 0 0 0 0 0
B 0 0 0 0.076 0 0 0

(0.130)
Diet MD A 0 0 0 0 0 0 0
Coca-Cola A 0 0 0 0 0 0 0

B −0.508∗∗∗−0.490∗∗∗
0 0 −0.525∗∗∗−10.522∗∗∗

0

(0.075) (0.071) (0.058) (0.238)
C 0 0 -0.334 0 0 0 0.527∗∗

(0.285) (0.217)
D 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0

Diet CC A 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0

B 0 −0.235∗∗
0 0 0 0

0.255∗∗∗

(0.099) (0.075)
CC Zero A 0 0 0 0 0 0 0

B 0 0 0 0.085 0 0 0
(0.061)

C-F CC Zero A 0 0 0 0 0 0 0
Dr. Pepper A 0 0 0 0 0 0 0

B -0.346 0 0 0 0 0 0
(0.212)

Diet Dr. P A 0 0 0 0 0 0 0
Diet P is short for Diet Pepsi. MD is short for Mountain Dew. CC is short for Coca-Cola.
C-F is short for Caffeine Free. Dr. P is short for Dr. Pepper. Note that the Coca-Cola
Size B is the own-price elasticities. All other estimates are cross-price elasticities. Values in
parenthesis are estimates of the standard deviation. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01
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with this data. PCocaCola
it is the log price of Coca-Cola while POtherSoda

it is the

log price of the fourteen other most popular sodas for each individual i in time t.

Thus, θ2gi and θ3gi are estimates for each groups own- and cross-price elasticities

respectively. I use individual clustered standard errors. I will use ten groups,

which is chosen using the BIC criterion in Appendix 1.7.3.2.

I will now discuss the overall results before briefly examining the demand

patterns of certain group of consumers. Table 1.3 contains my estimates for the

own-price (θ2gi) and cross-price elasticities (θ3gi). Notice that the main compe-

tition for the Coca-Cola Size B products that I am trying to estimate is mostly

other Size B products. The only other type of product whose price has a signif-

icant effect in estimating demand for Coca-Cola Size B products is Coca-Cola

Size C products. Most competitors have a positive cross-price elasticity within

reasonable ranges, but there are exceptions that will be discussed later. Own

price elasticity generally falls around -0.5 which is similar to other estimates

(Chernozhukov et al., 2019). This is because we are taking out individuals from

Group 7 with high own-price elasticity. I will discuss this group further on in

the paper.

Table 1.4 contains my estimates for the demographic effects on Coca-Cola

Size B demand. Note that the numbers for log of overall expenditure, which

can be an estimate of “income” elasticity, are positive and around 0.2, which

is similar to previous estimates (see Allcott et al. (2018) for example). It may

be a bit low compared to the average value because we are focused on the

subgroup of consumers who purchase soda frequently. Remember that the

parameters that are set to zero from the Lasso selection does not imply that

the value of that coefficient is zero, but that it is close to zero and the value

does not have a significant impact on predicting quantity of soda purchased.

Most of the variables I originally included were not selected by the post-Lasso

selection in any group so these not included in the table. Even many of the
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demographic variables that are included are not statistically significant. Very

few demographic variables are included and statistically significant because

individuals with different demographic effects are often split between different

groups so there are very few significant demographic effects within each group.

The demographics of each group of consumers is discussed in Appendix 1.7.5.2.

Table 1.4

Demographic θg Estimates

Group: 2 4 5 8 9

Demographic

Log(Expenditure) 0.204∗ 0.151 0.215∗∗ 0.176∗∗ 0.581∗∗∗

(0.119) (0.128) (0.104) (0.088) (0.112)
Male Head High School Education -0.233 0 0 0 0

(0.283)
Married -0.153 0 0 0 0

(0.278)
Cable 0 0 0 0.180∗ 0

(0.104)
Internet 0 0 0.133 0 0

(0.261)
Note that the first row is a measure of “income” elasticity for various groups. Further, the
only demographic variables included in this table are those with at least one non-zero θg.
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

My estimates for group time-varying fixed effects (αgt) is displayed in Figure

1.1. The first graph contains all the group fixed effects while the second ignores

two groups with fixed effects significantly different than the majority of the

groups, Group 7 and Group 9. I will discuss those groups more later. Note

that you cannot compare the fixed-effects across groups as differences of demand

because of their different values of θg. However, you can see how demand for

Coca-Cola Size B changes over time within a group, and find group demand

shocks. Additional information on the fixed values, included their fixed point

estimates and their standard errors, can be found in Appendix 1.7.5.1.
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Figure 1.1: My estimates for αgt. The graph on the right excludes the case
where G = 7 and G = 9.

1.5.3 Results Discussion

In this section, I will discuss the demand estimates of a few unique groups. A

detailed examination of the demographics of each group is left for Appendix

1.7.5.2. I will reference the distribution of purchase quantities of Coca-Cola

Size B products for each group, which is contained in Figure 1.3 in Appendix

1.7.5.2.

Group 7 is a particularly interesting case. The own-price elasticity is very

low, while the fixed-effects are very high as well. This would imply that Coca-

Cola Size B products were only purchased (or purchased at a much higher rate)

when they are on sale. Further, using an indicator in the data for whether the

item was on sale, I can say that the soda purchased in Group 7 was on sale 66%

of the time versus just 53% of the time in non-dynamic groups. Thus, they are

about 25% more likely to purchase soda on sale compared to their peers. This

seems similar to the research done by (Hendel and Nevo, 2006) that consumers

purchase good when they are on sale and store them during periods the goods

are not on sale. Thus, for this group, an dynamic analysis would need to be

done to determine the true own-price elasticity.

Group 1 has an own-price elasticity of Coca-Cola of -0.51 which is consistent
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with previous results. The demand of this group seems to have season trends

since it increases in the summer and decreases in the winter. Of note is the

negative cross-price elasticity of Dr. Pepper. This would appear counterintu-

itive but there are some explanations. Quantity purchased of Dr. Pepper and

Coca-Cola is positively correlated and has an R2 of about 0.1. Further, when

Coca-Cola is purchased, the consumers are more likely to purchase 3-4 products

in each time period meaning that when they buy soda, they seem to buy mul-

tiple quantities of soda. This pattern continues for groups 2 and 4. Thus, for

groups 1, 2 and 4, consumers do not consume any soda most periods, but when

they do, they consume more than one unit of multiple kinds of soda. Using the

same type of sales analysis with group 7, I find that soda purchased by these

groups are purchased on sale 64% of the time versus just 52% in non-bundling

groups. These consumers appear to like bundles of soda and their demand

may be more precisely estimated using a bundle choice estimation such as the

methods outlined by Chintagunta and Nair (2011) or Berry et al. (2014).

Group 9 also has unique fixed-effects, but in the opposite way. Group 9

has fixed-effects that are lower than any other group each month. It also has

the highest estimated income-elasticity. That seems to imply that the primary

driver of how much members of this group purchase soft drinks is their income

each month. It is also worth noting that members of this group also have a large

negative price shock in January, that could be because of new years resolution

to eat healthy or some other reason.

1.5.4 Implications

My PL-GFE estimator can have practical implications for firms as well as policy

makers. By having group specific aggregate demand shocks, researchers can

evaluate how different groups responded to certain events in time as well as

group time trends. For example, if a Coca-Cola appeared in a movie that came
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out in July, researchers could use the PL-GFE estimator and notice that the

only groups that had a positive demand shocks in that month were groups 2 and

10 while there was an actual negative shock for individuals in group 6. While

these groups do not seem to be geographically concentrated in certain regions

of the country, groups 2 and 10 are the two youngest groups while group 6 is the

second oldest. This allows the researchers to know which types of individuals

seemed to positively and negatively respond to the July event.

By having group specific price elasticities, researchers can evaluate imple-

mentation of different treatments on specific groups they are interested in. For

example, when assessing the consequences of soda taxes, researchers are par-

ticularly interested in low-income households and households with children, as

outlined in Section 1.5.1. I will proceed in evaluating the each of these sub-

groups using my PL-GFE estimates.

The group with the highest fraction of households with a yearly income

lower than $25,000 is group 8. Because this group only has positive cross-price

elasticities for other Coca-Cola products, it appears that they choose Coca-Cola

based on their price relative to other Coca-Cola products. This would imply

that raising the price of one product would not decrease their consumption of

Coca-Cola Size B products because they would substitute to another Coca-Cola

product. It is also worth noting that this group had a large negative demand

shock in November, so it is worth examining what happened this month to lead

to this shock.

The group with the highest fraction of households that have children under

13 years of age are groups 3 and 6. Group 3 does not have any significant covari-

ates, but it does appear to have a trend to increase their soft drink purchases

throughout the year. This would imply that price did not have a significant

impact on these households, so there may be better policies if the goal is to

decrease soft drink consumption in these households. Group 6, however, has a
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significant negative own-price elasticity, which makes sense because household

heads in group 6 are much less likely to have full-time jobs than household-heads

in group 3.

The group that consumes the most soda overall was group 5. They are also

the oldest group. This group had positive cross-price elasticities for Diet Pepsi,

Mountain Dew and Coca-Cola Zero Size B products. They further have the

most consistent demand across the twelve month period. They do not seem to

have strong specific preference in terms of which soda they choose to consume.

These examples illustrate how researchers can use the PL-GFE estimator to

provide insights that are not available through more basic or standard estima-

tors. Researchers in firms can use it to see how demand is effected across time

and before and after certain events for different groups of individuals and then

further identify unique characteristics about these groups of individuals such

as age and where they live. Further, policy makers can use these estimates to

predict consequences of certain policies for different groups of individuals rather

than solely on the aggregate or average effect of their policy.

1.6 Conclusion

This paper introduces post-Lasso techniques to a grouped fixed-effects model

(PL-GFE) to deal with situations with a large number of variables and signifi-

cant unobserved heterogeneity. I use this PL-GFE model to estimate a demand

system which has many prices and heterogenous consumers with grouped time-

varying demand shocks. I am able to group individuals together based on

their demand shocks as well as how they respond to prices. Using grouped

time-varying fixed-effects allows me to use prices in my model rather than in-

struments which improves precision and does not impose instrumental variable

assumptions on the model.

My application was able to find significant heterogeneity among the con-
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sumers of soda. Groups had different and often unique demand shocks. We

were able to identify which consumers were likely to only purchase Coca-Cola

when it was on sale, as well as consumers whose Coca-Cola consumption was

particularly dependent on their income. Through my estimator, we were able to

examine groups with particularly high interest households (low-income house-

holds, households with children, and households that consume large quantities

of soda) and understand their consumption behavior better.

There are a few ways to expand my work in this paper. One would be

to include individual heterogeneity or random coefficients within each group.

Combining random coefficients with lasso technique would increase the com-

putation time which is already a major burden but it could decrease the large

variation often needed to compute random-coefficients model. Although com-

bining random coefficients with lasso has been done (Fan and Li, 2012), it has

not been done with the penalty loadings (Belloni et al., 2012) which could

improve them.

Further, because I make the assumption that demand shocks only effect

groups of individuals for the groups as determined by the estimation procedure,

individuals cannot change groups (Su et al., 2017) and the number of groups

cannot change (Bonhomme et al., 2017). Thus, in a consumer demand setting I

would be hesitant to extend to scenarios covering a long period of time because

scenarios like this are possible. However, there may be a way to accommodate

individuals changing groups or number of groups changing over time which can

then accommodate settings with large T .

Demand estimation is often done in a discrete choice. Changing the struc-

ture of this to a logit like structure may be helpful and can be done using a

Lasso-type estimator as well (Belloni et al., 2016). However, the asymptotics

of the grouped fixed effects would be difficult and in its current form would

introduce bias. Leaving out grouped-fixed effects would require instrumental
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variables if one were to try and estimate demand, which could be problematic

in large-variable cases like those examined in this paper. This is left for future

work.
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1.7 Appendix

1.7.1 Computation

I will use the (hdm) package in R explained in (Chernozhukov et al., 2016) to

accelerate the Post-Lasso computation. If I were to use Algorithm 1 in most

empirical application, an infeasibly large number of starting values would need

to be used to get reliable solutions. To illustrate, if I were to have N = 1000

and G = 10 then that would open 9.59 ∗ 1029 possible combinations. Note

that each starting iteration of Algorithm 1 addresses many combinations but

the possible combinations is so large that the number of iterations needed to

achieve the proper solution would remain infeasibly large. This can be helped

by using parallel computing and it is extremely parallelizable, but there are

further improvements to be made.

I can significantly decrease the computation time further by using an ex-

tension to Algorithm 1 (Bonhomme and Manresa, 2015) which introduces the

Variable Neighborhood Search method (Hansen and Mladenović, 2001; Hansen

et al., 2010). This would increase the number of combinations covered by each

iteration of the algorithm. This specific algorithm extends from (Pacheco and

Valencia, 2003) and (Brusco and Steinley, 2007). As before, let γ = {g1, ..., gN}

be a generic partition of N units into G groups.

Algorithm 2. (Variable Neighborhood Search)

1. Let γinit be some starting assignment to groups.

Perform steps 2-3 of Algorithm 1 to obtain Post-Lasso estimates of (θ, α)

based on this initial group.

Set itermax and neighmax to some desired values.

Set j = 0.

Set γ∗ = γinit

2. Set n = 1.
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3. (Neighborhood jump) Relocate n randomly selected units to n randomly

selected groups, and obtain a new grouping γ′.

Perform steps 2-3 of Algorithm 1 to obtain Post-Lasso estimates of (θ
′
, α
′
).

4. Set
(
θ(0), α(0)

)
=
(
θ
′
, α
′)

and do Algorithm 1.

5. (Local search) Obtain a new grouping γ” based on the (θ, α) from Step 4.

6. If the objective function using γ” improves relative to using γ∗ set γ∗ = γ”

and go to Step 2. Otherwise, set n = n+ 1 and go to the next step.

7. If n ≤ neighmax, then go to Step 3. Otherwise go to the next step.

8. Set j = j + 1. If j > itermax, then Stop. Otherwise, go to Step 2.

Algorithm 2 combines two different search techniques. It applies a local

search (Step 5) which guarantees that a local optimum is attained since re-

assigning any single individual to a different group will not decrease the ob-

jective function. Secondly, re-assigning randomly selected units into randomly

selected groups (Step 3) allows for broader exploration. This is a neighborhood

jump of increasing size up to size neighmax which is chosen by the researcher.

Algorithm 2 adds two parameters to be set by the researcher: the maximum

neighborhood size neighmax and maximum number of iterations itermax. Along

with Algorithm 1, the researcher still has do determine Ns, the number of start-

ing values. In my simulations, I set Ns = 5000, neighmax = 20 and itermax = 20

to guarantee convergence. The parameters set should be large enough to always

yield the same result. Ns can be split between processors and this algorithm is

also extremely parallelizable which can make most computations feasible with

this estimator.

In order to insure convergence in my empirical application with N = 1, 721,

I set Ns = 100, 000. This is very demanding computationally, but by splitting

it between 8000 nodes, it can be completed in a few days. However, once my

estimator is calculated, I can use the identified groups to find trends and learn

about consumers, which is not computationally intensive at all. There is a large
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starting cost to use my estimator, but the resulting groups and estimates have

many uses that are not demanding computationally.

1.7.2 Proof of Theorem 1.1

Proof. I will follow a similar pattern to the Proposition S4 in the supplementary

appendix to Bonhomme and Manresa (2015). Let γ0 = {g0
1, ..., g

0
N} denote the

population grouping. Let also γ = {g1, ..., gN} denote any grouping of the

cross-sectional units into G groups. Let:

Q̂(θ, α, γ) =
1

NT

N∑
i=1

T∑
t=1

(yit − x′itθgi − αgit)2 (1.7.1)

Note that my estimator minimized Q̂(·) over all (θ, α, γ) ∈ BG × AGT × ΓG.

Note also:

Q̂(θ, α, γ) =
1

NT

N∑
i=1

T∑
t=1

(νit + a(xit) + x′it(θ
AS
g0i
− θgi) + α0

gASi t − αgit)
2 (1.7.2)

Consider the following auxiliary objective function over the same domain.

Q̃(θ, α, γ) =
1

NT

N∑
i=1

T∑
t=1

(x′it(θ
AS
g0i
− θgi) + αASg0i t

− αgit)2 +
1

NT

N∑
i=1

T∑
t=1

ν2
it

+
1

NT

N∑
i=1

T∑
t=1

a(xit)
2 +

2

NT

N∑
i=1

T∑
t=1

νita(xit) (1.7.3)

Lemma 1.7.1. Let Assumption 1.1 and Condition AS hold. Then:

plim
N,T→∞

sup
(θ,α,γ)∈ΘG×AGT×ΓG

|Q̂(θ, α, γ)− Q̃(θ, α, γ)| = 0 (1.7.4)
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Proof. I have:

Q̂(θ, α, γ)− Q̃(θ, α, γ) =
2

NT

N∑
i=1

T∑
t=1

νit(xit(θ
0
g0i
− θgi) + α0

g0i t
− αgit)

+
2

NT

N∑
i=1

T∑
t=1

a(xit)(xit(θ
0
g0i
− θgi) + α0

g0i t
− αgit)

I know that the first term goes to zero based on lemma S3 from the supplemen-

tary appendix of Bonhomme and Manresa (2015) based on Assumption 1.1. I

will now focus on the second term.

2

NT

N∑
i=1

T∑
t=1

a(xit)(xit(θ
0
g0i
− θgi) + α0

g0i t
− αgit) =

2

NT

N∑
i=1

T∑
t=1

a(xit)x
′
itθ

0
g0i

+
2

NT

N∑
i=1

T∑
t=1

a(xit)α
0
g0i t

− 2

NT

N∑
i=1

T∑
t=1

a(xit)αgit −
2

NT

N∑
i=1

T∑
t=1

a(xit)x
′
itθgi (1.7.5)

Consider the last term. Note that.

(
1

NT

N∑
i=1

T∑
t=1

a(xit)x
′
itθgi

)2

≤ 1

N

N∑
i=1

‖θgi‖
2

∥∥∥∥∥ 1

T

T∑
t=1

a(xit)xit

∥∥∥∥∥
2

(1.7.6)

The left term is bounded based on Assumption 1.1.a and the right term is

bounded based on Assumption 1.2.a. This holds for the first term in equation

(1.7.5) as well so both of these terms are uniformly op(1). Now I will focus on

the third term in equation (1.7.5).

1

NT

N∑
i=1

T∑
t=1

a(xit)αgit =
G∑
g=1

[
1

NT

N∑
i=1

T∑
t=1

1{gi = g}a(xit)αgt

]

=
G∑
g=1

[
1

T

T∑
t=1

αgt

(
N∑
i=1

1{gi = g}a(xit)

)]
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Using the Cauchy-Schwartz inequality, for all g ∈ {1, ..., G} :.

(
1

T

T∑
t=1

αgt

(
N∑
i=1

1{gi = g}a(xit)

))2

≤

(
1

T

T∑
t=1

α2
gt

)
×

 1

T

T∑
t=1

(
1

N

N∑
i=1

1{gi = g}a(xit)

)2


Assumption 1.1.a implies that the first item is uniformly bounded. I will now

focus on the second item.

1

T

T∑
t=1

(
1

N

N∑
i=1

1{gi = g}a(xit)

)2

=
1

TN2

N∑
i=1

N∑
j=1

1{gi = g}1{gj = g}
T∑
t=1

a(xit)a(xjt)

≤ 1

N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1

T

T∑
t=1

a(xit)a(xjt)

∣∣∣∣∣
=

1

N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1

T

T∑
t=1

E(a(xit)a(xjt))

∣∣∣∣∣
+

1

N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1

T

T∑
t=1

(a(xit)a(xjt)− E(a(xit)a(xjt))

∣∣∣∣∣
I will address the first term using Assumption 1.2.b:

1
N2

∑N
i=1

∑N
j=1

∣∣∣ 1
T

∑T
t=1 E(a(xit)a(xjt))

∣∣∣ ≤ M
N

. Using the CS inequality on the

second term gives us:

(
1

N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1

T

T∑
t=1

(a(xit)a(xjt)− E(a(xit)a(xjt))|)2 ≤

1

N2

N∑
i=1

N∑
j=1

(
1

T

T∑
t=1

(a(xit)a(xjt)− E(a(xit)a(xjt))

)2

which is bounded by M
T

based on Assumption 1.2.c. Thus, 2
NT

∑N
i=1

∑T
t=1 a(xit)αgit

is uniformly op(1). Thus, with the results of the inequality in (1.7.6), equation

(1.7.5) is uniformly op(1) and this ends the proof of Lemma A1. �
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Let dH (θ1, θ2) and dH (α1, α2) to denote the Hausdorff distances on RGP

and RGT , respectively, where P = dimxit, defined by:

dH(a, b) =

max

{
max

g∈{1,...,G}

(
min

g̃∈{1,..,G}

1

T

T∑
t=1

(ag̃t − bgt)2

)
,

max
g̃∈{1,..,G}

(
min

g∈{1,...,G}

1

T

T∑
t=1

(ag̃t − bgt)2

)}

Lemma 1.7.2. Let all the conditions of Theorem 1.1 hold. Then, as N , T tend

to infinity:

dH

(
θ̂, θ0

)
→p 0, and dH

(
α̂, α0

)
→p 0

Proof. Let (θ, α, γ) ∈ ΘG × AGT × ΓG. For ease of notation, let ||θg|| =

(
∑P

k=1 θ
2
gk)

1
2 and ||αg|| = (

∑P
k=1 α

2
gt)

1
2 . As in Lemma S4 of the supplementary

appendix of (Bonhomme and Manresa, 2015):

Q̃(θ, α, γ)−Q̃(θAS, α0, γ0) ≥
G∑
g=1

ρ̂× min
g̃∈{1,...,G}

[∥∥θASg − θg̃∥∥2
+

1

T

T∑
t=1

(α0
gt − αg̃t)2

]
(1.7.7)

Where ρ̂ is bounded away from zero asymptotically by Assumption 1.4.a.

Let

(θ̂, α̂, γ̂) ∈ B̂G ×AGT × ΓG. Remember that

sup(θ,α,γ)∈ΘG×AGT×ΓG

[
Q̃(θ̂, α̂, γ̂)− Q̂(θ, α, γ)

]
= op(1) (Bonhomme and Man-

resa, 2015) and B̂ ⊆ Θ. Also note that Q̂(θ̂, α̂, γ̂) ≤ Q̂(θAS, α0, γ0) since I

assume θAS ∈ T , from my AS assumption, and T ⊆ B̂ (Belloni and Cher-

nozhukov, 2013). Thus, using Lemma 1.7.1:

Q̃(θ̂, α̂, γ̂) = Q̂(θ̂, α̂, γ̂) + op(1) ≤ Q̂(θAS, α0, γ0) + op(1) = Q̂(θ0, α0, γ0) + op(1)

= Q̃(θ0, α0, γ0) + op(1)
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If I combine this fact with equation (1.7.7), then I get the following:

max
g∈{1,...,G}

[
min

g̃∈{1,...,G}

(∥∥∥θ0
g − θ̂g̃

∥∥∥2

+
1

T

T∑
t=1

(α0
gt − α̂g̃t)2

)]
= op(1)

The rest of the proof follows Lemma S4 of the supplementary index of Bon-

homme and Manresa (2015) and holds under Assumption 1.4.b. �

This proof shows that there exists a permutation σ : {1, ..., G} → {1, ..., G}

such that:

∥∥∥θ̂σ(g) − θ0
g

∥∥∥2

+
1

T

T∑
t=1

(
α̂σ(g)t − α0

gt

)
→p 0 (1.7.8)

I may relabel such that σ(g) = g. For any η > 0, let Nη denote the set of

parameters (θ, α) ∈ ΘG × AGT that satisfy
∥∥θg − θ0

g

∥∥ < η. and 1
T

∑T
t=1(αgt −

α0
gt) < η for all g ∈ {1, ..., G}. I will now work on the following result:

Lemma 1.7.3. For η > 0 small enough I have, for all δ > 0 and as N and T

go to infinity:

sup
(θ,α)∈Nn

1

N

N∑
i=1

1{ĝi(θ, α) 6= g0
i } = op(T

−δ).

Proof. Based on the definition of ĝi(·), for all g ∈ {1, ..., G} :

1{ĝi(θ, α) = g} ≤ 1

{
T∑
t=1

(yit − x′itθg − αgt)2 ≤
T∑
t=1

(yit − x′itθg0i − αg0i t)
2

}
.

Now consider:

1{ĝi(θ, α) 6= g0
i } =

G∑
g=1

1

N

N∑
n=1

1{g0
i 6= g}1{ĝi(θ, α) = g}

≤
G∑
g=1

1

N

N∑
n=1

1{g0
i 6= g}1

{
T∑
t=1

(yit − x′itθg − αgt)2 ≤
T∑
t=1

(yit − x′itθg0i − αg0i t)
2

}
︸ ︷︷ ︸

=Zig(θ,α)

.

(1.7.9)
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I will proceed by bounding Zig(θ, α)∀(θ, α) ∈ Nη, by a quantity that does not

depend on (θ, α). Consider:

Zig(θ, α) = 1{g0
i 6= g}1

{
T∑
t=1

(
(αg0i t − αg) + (x′itθg0i − x

′
itθg)

)
(vit + a(xit)

+xitθ
0
g0i

+ α0
g0i t
−
x′itθg + x′itθg0i + αgt + αg0i t

2

)
≤ 0

}
,

≤ max
g̃ 6=g

1

{
T∑
t=1

((αg̃t − αg) + (x′itθg̃ − x′itθg)) (vit + a(xit)

+xitθ
0
g̃ + α0

g̃t −
x′itθg + x′itθg̃ + αgt + αg̃t

2

)
≤ 0

}
,

Let us define:

At =

∣∣∣∣∣
T∑
t=1

((αg̃t − αg) + (x′itθg̃ − x′itθg))

×
(
vit + a(xit) + xitθ

0
g̃ + α0

g̃t −
x′itθg + x′itθg̃ + αgt + αg̃t

2

)
−

T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)

×

(
vit + a(xit) + xitθ

0
g̃ + α0

g̃t −
x′itθ

0
g + x′itθ

0
g̃ + α0

gt + α0
g̃t

2

)∣∣∣∣∣
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At ≤

∣∣∣∣∣
T∑
t=1

((αg̃t − αg) + (x′itθg̃ − x′itθg)) vit

−
T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)
vit

∣∣∣∣∣
+

∣∣∣∣∣
T∑
t=1

((αg̃t − αg) + (x′itθg̃ − x′itθg)) a(xit)

−
T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)
a(xit)

∣∣∣∣∣
+

∣∣∣∣∣
T∑
t=1

((αg̃t − αg) + (x′itθg̃ − x′itθg))
(
x′itθ

0
g̃ −

x′itθg + x′itθg̃
2

)
−

T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)(

x′itθ
0
g̃ −

x′itθ
0
g + x′itθ

0
g̃

2

)∣∣∣∣∣
+

∣∣∣∣∣
T∑
t=1

((αg̃t − αg) + (x′itθg̃ − x′itθg))
(
α0
g̃t −

αgt + αg̃t
2

)
−

T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)
)

(
α0
g̃t −

α0
gt + α0

g̃t

2

)∣∣∣∣∣
Using the CS inequality, for any (θ, α) ∈ Nη:

AT ≤TC1
√
η

(
1

T

T∑
t=1

∥∥v2
it

∥∥)+ TC2
√
η

(
1

T

T∑
t=1

∥∥a(xit)
2
∥∥)

+ TC3
√
η

(
1

T

T∑
t=1

‖xitvit‖

)
+ TC4

√
η

(
1

T

T∑
t=1

‖xita(xit)‖

)

+ TC5
√
η

(
1

T

T∑
t=1

‖xit‖

)
+ TC6

√
η

(
1

T

T∑
t=1

‖xit‖2

)
+ TC7

√
η

where C1, C2, C3, C4, and C5 are constants independent of η and T . There-
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fore:

Zig(θ, α) ≤max
g̃ 6=g

1

{
T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)
...

...

(
vit + a(xit) + xitθ

0
g̃ + α0

g̃t −
x′itθ

0
g + x′itθ

0
g̃ + α0

gt + α0
g̃t

2

)

≤ TC1
√
η

(
1

T

T∑
t=1

∥∥v2
it

∥∥)+ TC2
√
η

(
1

T

T∑
t=1

∥∥a(xit)
2
∥∥)

+TC3
√
η

(
1

T

T∑
t=1

‖xitvit‖

)
+ TC4

√
η

(
1

T

T∑
t=1

‖xita(xit)‖

)

+TC5
√
η

(
1

T

T∑
t=1

‖xit‖

)
+ TC6

√
η

(
1

T

T∑
t=1

‖xit‖2

)
+ TC7

√
η

}

The right hand side of the inequality in the indicator function does not depend

on (θ, α), so define: sup(θ,α)∈NηZig(θ, α) ≤ Z̃ig, where:

Z̃ig(θ, α) = max
g̃ 6=g

1

{
T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)

(vit + a(xit)) ≤

− 1

2

T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)2

+ TC1
√
η

(
1

T

T∑
t=1

∥∥v2
it

∥∥)

+ TC2
√
η

(
1

T

T∑
t=1

∥∥a(xit)
2
∥∥)+ TC3

√
η

(
1

T

T∑
t=1

‖xitvit‖

)

+ TC4
√
η

(
1

T

T∑
t=1

‖xita(xit)‖

)
+ TC5

√
η

(
1

T

T∑
t=1

‖xit‖

)

+TC6
√
η

(
1

T

T∑
t=1

‖xit‖2

)
+ TC7

√
η

}

Thus, by bringing this back to equation (1.7.9),

sup
(θ,α)∈Nη

1

N

N∑
i=1

1{ĝi(θ, α) 6= g0
i } ≤

1

N

N∑
i=1

G∑
g=1

Z̃ig. (1.7.10)

Take M̃ > max(
√
M,M∗), where M and M∗ are given by assumptions 1.1 and

1.4.c, respectively. Note that E(v2
it) ≤

√
M and E(a(xit)

2) ≤
√
M because the

approximation error has the same magnitude as the model error.Now consider:
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Pr(Z̃ig = 1) ≤
∑
g̃ 6=g

Pr

(
T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)

(vit + a(xit))

≤− 1

2

T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)2

+ TC1
√
η

(
1

T

T∑
t=1

∥∥v2
it

∥∥)

+ TC2
√
η

(
1

T

T∑
t=1

∥∥a(xit)
2
∥∥)+ TC3

√
η

(
1

T

T∑
t=1

‖xitvit‖

)

+ TC4
√
η

(
1

T

T∑
t=1

‖xita(xit)‖

)
+ TC5

√
η

(
1

T

T∑
t=1

‖xit‖

)

+ TC6
√
η

(
1

T

T∑
t=1

‖xit‖2

)
+ TC7

√
η

≤
∑
g̃ 6=g

[
Pr

(
1

T

T∑
t=1

∥∥v2
it

∥∥ ≥ M̃

)
+ Pr

(
1

T

T∑
t=1

∥∥a(xit)
2
∥∥ ≥ M̃

)

+ Pr

(
1

T

T∑
t=1

‖xitvit‖ ≥ C1

)
+ Pr

(
1

T

T∑
t=1

‖xita(xit)‖ ≥ C2

)

+ Pr

(
1

T

T∑
t=1

‖xit‖ ≥ M̃

)
+ Pr

(
1

T

T∑
t=1

‖xit‖2 ≥ M̃

)

+ Pr

(
1

T

T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)2 ≤ cg,g̃

2

)

+ Pr

(
T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)

(vit + a(xit))

≤ −T cg,g̃
4

+ T (C1 + C2)
√
η
√
M̃

+T (C3 + C4 + C7)
√
η + T (C5 + C6)

√
ηM̃
)]

(1.7.11)

For the rest of the proof, I will take advantage of Lemma B5 from Bonhomme

and Manresa (2015).

Lemma. B5 Let zt be a strongly mixing process with zero mean, with strong

mixing coefficients α[t] ≤ e−at
d1 and with tail probabilities Pr(|zt| > z) ≤

e1−( z
b

)d2 , where a, b, d1 and d2 are positive constants. Then, for all z > 0 I
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have, for all δ > 0:

T δPr

(∣∣∣∣∣ 1

T

T∑
t=1

zt

∣∣∣∣∣ ≥ z

)
→T→∞ 0.

By assumptions 1.1.a. and 1.4.b, I have

limT→∞
1
T

∑T
t=1 E

[(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)2
]

= cg,g̃.Thus, for T large enough:

1

T

T∑
t=1

E
[(

(α0
g̃t − α0

g) + (x′itθ
0
g̃ − x′itθ0

g)
)2
]
≥ 2cg,g̃

3

Now I can apply Lemma B5 to

zt =
(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)2 − E

[(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)2
]

which

satisfies appropriate mixing and tail conditions because of Assumptions 1.1.a.

and 1.3.c.. Take z =
cg,g̃

6
and for all δ > 0 and as T tends to infinity:

Pr

(
1

T

T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)2 ≤ cg,g̃

2

)
= o

(
T−δ

)
(1.7.12)

Continuing with this reasoning, let zt = v2
it − E [v2

it] and z = M̃ −
√
M and

using Lemma B5 gets us:

Pr

(
1

T

T∑
t=1

v2
it ≥ M̃

)
= o

(
T−δ

)
(1.7.13)

for all δ > 0. This holds because {v2
it}t is strongly mixing since {vit}t is strongly

mixing from Assumption 1.3.b. The same logic gets us the following as well:

Pr

(
1

T

T∑
t=1

a(xit)
2 ≥ M̃

)
= o

(
T−δ

)
(1.7.14)

For the next step, let c be the minimum of cg,g̃ over all g 6= g̃.

η ≤

 c

8
(

(C1 + C2)
√
M̃ + (C3 + C4 + C7) + (C5 + C6)M̃

)
2

(1.7.15)
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This provides an upper bound on η, so using an η that satisfies this upper

bound, I get:

Pr

(
T∑
t=1

(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)

(vit + a(xit))

≤ −T cg,g̃
4

+ T (C1 + C2)
√
ηM̃3/2 + T (C3 + C4)

√
ηM̃ + TC5

√
η
)

≤ Pr
((

(α0
g̃t − α0

g) + (x′itθ
0
g̃ − x′itθ0

g)
)

(vit + a(xit)) ≤ −
cg,g̃
8

)
Because of Assumptions 1.3.b-d,

{(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)

(vit + a(xit))
}
t

has zero mean, is strongly mixing with faster than polynomial decay rate and

satisfies the tail condition of Lemma B5. Thus, let zt =
(
(α0

g̃t − α0
g) + (x′itθ

0
g̃ − x′itθ0

g)
)

(vit + a(xit))

and z =
cg,g̃

8
.

Pr
((

(α0
g̃t − α0

g) + (x′itθ
0
g̃ − x′itθ0

g)
)

(vit + a(xit)) ≤ −
cg,g̃
8

)
= o

(
T−δ

)
(1.7.16)

Plugging in equations (1.7.12), (1.7.13), (1.7.14), and (1.7.16) into equation

(1.7.11) and using Assumptions 1.4.c-e. I get:

1

N

N∑
i=1

G∑
g=1

Pr
(
Z̃ig = 1

)
≤G(G− 1) sup

i∈{1,...,N}

[
Pr

(
1

T

T∑
t=1

‖xitvit‖ ≥ C1

)

+Pr

(
1

T

T∑
t=1

‖xita(xit)‖ ≥ C2

)

+Pr

(
1

T

T∑
t=1

‖xit‖ ≥ M̃

)

+Pr

(
1

T

T∑
t=1

‖xit‖2 ≥ M̃

)]
+ o(T−δ)

=o(T−δ)

To complete the proof for Lemma 1.7.3: Choose η that satisfies equation
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(1.7.15). For all δ > 0 and ε > 0.

Pr

(
sup

(θ,α)∈Nη

1

N

N∑
i=1

1{ĝi(θ, α) 6= g0
i } > εT−δ

)
≤ Pr

(
1

N

N∑
i=1

G∑
g=1

Z̃ig > εT−δ

)

≤
E
(

1
N

∑N
i=1

∑G
g=1 Z̃ig

)
εT−δ

= o(1)

(1.7.17)

�

The rest of the proof of this theorem follows Theorem 1.2 of Bonhomme

and Manresa (2015). �

1.7.3 Number of Groups

I will simulate to estimate the capability of the BIC estimator in Equation

(1.3.13).Then I will use it to estimate the number of groups in my estimation

application.

1.7.3.1 Groups Simulations

I will use each of the simulations from Section 1.4. Remember that the first

case is very sparse with three non-zero coefficients and 17 zero coeffients; the

second case is sparse with ten non-zero and ten zero coefficients; the last case

is approximately sparse. For each of the simulations, I simulate four scenarios,

when G = 4 and when G = 10 and when N = 100 and N = 200. The simulation

is run 500 times.

The simulation results from Table 1.5 compare quite favorably compared

to those done by Bonhomme and Manresa (2015). This makes sense because

their simulations rely on covariate coefficients being consistent across groups,

which increases the overall variation significantly compared to my model where

coefficients are different for each group of individuals.
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As long as the results are sufficiently sparse, such as in Simulation 1, then

the BIC criterion applied to my PL-GFE estimator performs very well and

correctly identifies the number of groups over 99% of the time in each case of

N and G0 simulated.

There are significant errors when N is small relative to G and the sparsity

assumption may not be fully satisfied. Specifically, the correct number of groups

in Simulation 2, when S = 10, is misidentified more than 30% of the time when

N = 100 and G0 = 10. However, if N increases to 200, the misidentification

almost ceases completely. A similar trend exists in Simulation 3, but it is

less magnified. The overall trend that if the sparsity assumption may not be

satisfied, a large N will be required to properly identify Ĝ.

1.7.3.2 Groups for Consumer Demand of Soft Drinks

Here I will apply the methodology outlined by Section 1.3.4 to my soft drink

data outlined in Section 1.5 to choose the number of groups used in my es-

timation. The calculated Baisian Information Criterion is reported in Table

1.6.

Thus, I will use G = 10 or ten groups because it has the lowest BIC esti-

mates. N is sufficiently large with respect to G based on my simulations such

that I feel confident that it is the best choice to explain the consumer behavior

in my data.

All of the numerical values of these criteria are pretty similar and this is not

the only way to choose the number of groups. One can choose the number of

groups based on prior beliefs of what the groups will be (Bonhomme and Man-

resa, 2015). For instance, in a consumer demand case, you may be interested in

which consumers only buy products when they are on sale and stores products

while they are not on sale, such as in group 7 in my study. These consumers

can be estimated dynamically using the model from Hendel and Nevo (2006).
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Table 1.5
Choice of Number of Groups (BIC)

Simulation 1
S=3

N = 100 N = 200

G0 = 4 G0 = 4

G = 2 3 4 5 6 G = 2 3 4 5 6

%(Ĝ = G) 0 0 100 0 0 %(Ĝ = G) 0 0 99.8 0.2 0

G0 = 10 G0 = 10

G = 8 9 10 11 12 G = 8 9 10 11 12

%(Ĝ = G) 0 0 99.6 0.2 0.2 %(Ĝ = G) 0 0 100 0 0

Simulation 2
S=10

N = 100 N = 200

G0 = 4 G0 = 4

G = 2 3 4 5 6 G = 2 3 4 5 6

%(Ĝ = G) 0 5.6 93.2 1.2 0 %(Ĝ = G) 0 0 99.2 0.8 0

G0 = 10 G0 = 10

G = 8 9 10 11 12 G = 8 9 10 11 12

%(Ĝ = G) 22 7 67.6 3 0.4 %(Ĝ = G) 0 0.2 99.8 0 0

Simulation 3
Exponential

N = 100 N = 200

G0 = 4 G0 = 4

G = 2 3 4 5 6 G = 2 3 4 5 6

%(Ĝ = G) 0 0.2 97.6 2.2 0 %(Ĝ = G) 0 0 98.8 1.2 0

G0 = 10 G0 = 10

G = 8 9 10 11 12 G = 8 9 10 11 12

%(Ĝ = G) 5.2 2.2 90.4 2.0 0.2 %(Ĝ = G) 0.2 0.4 99 0.4 0
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Table 1.6
Demand Estimation BIC Estimates

G = 4 5 6 7 8 9 10 11 12

BIC = 13.62 13.38 13.23 13.12 13.05 12.98 12.93 12.97 12.98

This table reports the Bayesian information criterion for the number of groups, G. Gmax is
set at 15.

By choosing two groups, you may be able to identify which consumers purchase

goods dynamically versus statically.

Choosing groups may sometimes be more art than science. However, the

purpose of my PL-GFE estimator is to eliminate research discretion as much

as possible. Researchers can include as many variables as they would like

so they do not need to choose specific variables that they think will matter.

The PL-GFE estimator will determine which variables are important to which

individuals based on the data and not researcher imputed parameters. For this

reason, I recommend using BIC to allow the data to determine the number of

groups.

1.7.4 Nielsen Scanner Data

There are a few issues to keep in mind when dealing with this Homescan data.

The first issue is with misreporting of quantity. Einav et al. (2010) exam-

ines which goods are more likely to be subject to this error. They find that

consumable goods like small drinks (like many soft drinks) is likely to be con-

sumed before getting home so are more likely to not be scanned. There are also

recording errors such as when a six-pack of goods are purchased and recorded

as quantity six. These are both problems that can add noise to my results, but

should not bias my results because quantity is only a dependent variable in my

model.

Another source of measurement error that is more concerning can come from

the price. Individuals record their purchases by scanning the items they buy

when they get home. The individuals input the quantity they purchase and
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Nielsen matches it with the average price of the good at the store where they

purchased it that week. This can lead to two types of errors. The first comes

from the price changing in the middle of the week. These types of errors are

approximately normally distributed.

The second type of error comes from not including discounts from loyalty

cards. Einav et al. (2010) examines a retailer used in the Homescan data

which has loyalty cards and finds that loyalty cards are used in about 75-80%

of the transactions. Further, this would bias my prices upwards, which when

comparing Homescan data with data from the retailer finds that the prices

used in the Homescan data is about 7% higher. On the other hand, these price

measurement errors may be overestimated since some retailers do not have

loyalty cards at all. Further, Homescan data errors are comparable to errors

found in other commonly used data sets (Einav et al., 2010; Aguiar and Hurst,

2007; Lin, 2018). Additional examination of this measurement error and it’s

effect on the results is left for future research.

When there is no good purchased, I attempt to find the average price for

each month at the store the most commonly purchase soft drinks at by matching

with Nielsen Retail Scanner Data. If I am unable to identify the store where the

individual commonly purchases soft drinks in the month, of if the store’s prices

are unavailable, I estimate the prices based on average prices paid by similar

consumers. The subset of similar consumers I choose is explained below. If

there were no prices in the subset I tried to match, I moved to a broader subset

below.

1. Individuals with the same favorite retail chain, income level, county and

zip-code

2. Individuals with the same favorite retail chain, income level, and county

3. Individuals with the same favorite retail chain, and zip-code

4. Individuals with the same favorite retail chain, and county
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5. Individuals with the same favorite retail chain, income level, and desig-

nated market

6. Individuals with the same favorite retail chain, and designated market

7. Individuals with the same zip-code

8. Individuals with the same county

9. Individuals with the same designated market

10. Individuals with the same favorite retail chain

11. All individuals

One could also calculate prices based on an average price consumer paid in

different time periods or by using price they paid in the period before or after.

These different methods do not change the results significantly and my method

allows more price variation over time for each individual. Summary statistics

for the quantity and price of each product is included in Table 1.7 Remember

that I focused my estimator on the group of individuals who averaged one

purchase of Coca-Cola Size B products in a month. This group of individuals

is not representative of the populations, and the demographics of the group is

included in Table 1.8.

1.7.5 Consumer Demand Estimation Results

Below are additional results from my estimation on the demand for soda from

Section 1.5. First, I will examine the estimates for the time-varying grouped

fixed-effects (αgt). Then I will examine the different demographics of the dif-

ferent groups of consumers.

1.7.5.1 Fixed Effects

Table 1.9 contains the means and standard deviations of each groups time-

varying fixed-effects, αgt. Remember that comparing different fixed-effects

across groups is infeasible because of different θg values. For instance, Group 7
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Table 1.7

Brand Size Price Quantity

Pepsi A 1.373 0.069
(0.530) (0.740)

B 3.702 0.212
(0.846) (1.114)

Diet Pepsi A 1.590 0.024
(1.739) (0.454)

B 2.995 0.040
(1.814) (0.456)

Mountain Dew A 1.363 0.043
(1.826) (0.444)

B 3.76 0.126
(0.745) (0.775)

Diet Mountain Dew A 1.673 0.014
(1.739) (0.358)

Coca-Cola A 1.428 0.441
(0.353) (2.280)

B 3.671 2.340
(1.067) (3.301)

C 3.004 0.236
(0.634) (2.613)

D 1.66 0.165
(0.234) (1.136)

E 1.173 0.112
(1.289) (2.228)

Diet Coca-Cola A 1.538 0.059
(1.837) (0.816)

B 3.060 0.196
(1.651) (1.194)

C 2.692 0.023
(1.903) (0.385)

Coca-Cola Zero A 1.668 0.042
(1.936) (0.755)

B 2.993 0.077
(1.727) (0.652)

Caffeine Free Coca-Cola Zero A 1.69 0.005
(1.875) (0.145)

Dr. Pepper A 1.39 0.045
(0.796) (0.508)

B 3.79 0.173
(1.651) (0.953)

Diet Dr. Pepper A 1.678 0.009
(1.767) (0.211)

Price average is considered its median average monthly price and quantity average is its
mean monthly quantity for each individual. Standard deviation is included in the

parenthesis.
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Table 1.8

Demographic Value Household Male Female

Household Size 2 0.424
≥ 3 0.437

Income Level < 25,000 0.150
> 50, 000 & < 100, 000 0.381

> 100, 000 0.131
Age < 35 0.210 0.145

> 55 0.436 0.442
No Head 0.179 0.088

Type of Residence Multi-Family house 0.099
Mobile-home 0.060

Household Composition Live with spouse 0.704
Live with roommates 0.020

Live with family 0.135
Children Teenager 0.136

Child 0.170
Job Status Full-time 0.468 0.316

Part-time 0.083 0.167
Education High School 0.768 0.876

College 0.255 0.293
Marriage Status Married 0.729

Previously married 0.178
Race Black/African-American .051

Asian .023
Hispanic .061

Region New England 0.044
Mid-Atlantic 0.083

East North Central 0.219
West North Central 0.080

South Atlantic 0.207
East South Central 0.087
West South Central 0.136

Mountain 0.068
Appliances Owns listed appliances 0.034

Cable Subscription 0.769
Internet Connection 0.951
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has the largest fixed-effects for every time period, but individuals in that group

bought less Coca-Cola on average than individuals outside of that group.

Table 1.9

Fixed-Effects (αgt) Estimates

Group: 1 2 3 4 5 6 7 8 9 10

Month

January -2.08 -3.89 -2.51 0.52 -0.85 -3.80 11.61 -3.27 -9.60 0.98
(1.10) (1.19) (1.73) (1.37) (1.03) (1.20) (1.16) (1.06) (1.17) (1.29)

February -3.44 1.17 -3.07 -3.30 -1.73 -2.89 11.40 -3.29 -6.03 -1.50
(1.09) (1.18) (1.75) (1.40) (1.02) (1.18) (1.15) (1.08) (1.19) (1.31)

March -1.19 -3.19 -3.61 -2.58 -1.41 0.52 11.03 -2.50 -4.99 -0.69
(1.11) (1.18) (1.74) (1.39) (1.05) (1.20) (1.14) (1.07) (1.18) (1.32)

April -1.15 -1.97 -4.17 -3.99 -1.50 -0.73 11.57 -2.34 -5.17 0.04
(1.12) (1.18) (1.73) (1.37) (1.05) (1.19) (1.16) (1.04) (1.14) (1.29)

May -0.91 -3.62 -3.05 -4.13 -1.42 -0.27 11.41 -2.57 -5.28 -0.08
(1.14) (1.18) (1.78) (1.33) (1.03) (1.18) (1.13) (1.07) (1.18) (1.31)

June -0.25 -3.21 -1.27 -3.55 -1.40 -0.69 11.32 -2.52 -5.36 -2.34
(1.14) (1.18) (1.74) (1.38) (1.04) (1.21) (1.15) (1.08) (1.19) (1.30)

July 2.37 -1.72 -2.05 -5.18 -1.68 -3.90 10.82 -2.46 -5.26 -1.20
(1.09) (1.20) (1.73) (1.38) (1.01) (1.19) (1.14) (1.07) (1.15) (1.31)

August -0.77 -3.52 0.50 -2.99 -1.12 -0.81 11.17 -2.16 -5.38 -1.65
(1.13) (1.18) (1.74) (1.37) (1.03) (1.20) (1.15) (1.06) (1.17) (1.35)

September -1.82 -3.57 -0.36 -4.94 -1.77 -2.61 11.33 -3.08 -5.53 -2.45
(1.11) (1.17) (1.72) (1.36) (1.05) (1.22) (1.15) (1.05) (1.15) (1.32)

October -2.48 -3.69 -0.80 -3.64 -1.51 -2.53 11.32 -3.80 -6.00 -1.23
(1.01) (1.19) (1.74) (1.38) (1.04) (1.19) (1.16) (1.08) (1.16) (1.32)

November -2.59 -3.80 0.64 -4.93 -1.01 -2.09 11.59 -7.10 -3.91 0.89
(1.11) (1.19) (1.74) (1.37) (1.03) (1.20) (1.13) (1.04) (1.17) (1.30)

December -1.87 -3.33 -1.07 -3.85 -1.58 -1.80 11.36 -4.33 -6.25 -2.54
(1.12) (1.20) (1.78) (1.38) (1.03) (1.19) (1.17) (1.08) (1.19) (1.30)

The estimates for each αgt is listed above with the standard deviation of each estimate listed
below in parenthesis.

However, one can compare fixed-effects over time within each group. For

this purpose, I include graphs of each groups’ time-varying fixed-effects along

with their 95% confidence bands in Figure 1.2. There you can see some groups

do not change demand over time (see Groups 5 and 7), some groups general

increasing or decreasing trends across multiple time periods (see Groups 1 and

3), and some groups have single time period shocks (see Groups 2 for a positive

shock and Group 9 for a negative shock).
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Figure 1.2: The solid lines are my PL-GFE estimates the the dotted lines are
the 95% confidence bands of my estimates.
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1.7.5.2 Demographics of Groups

Since I know which individuals are in each group, I can estimate the demo-

graphics of each group and compare the groups with each other. The estimates

for the average for the demographic variables I included in my model is shown

in Table 1.10. Remember that the PL-GFE estimator groups individuals based

on their response to prices, θg, and their time-varying fixed-effects, αgt. Thus,

demographics does not directly factor into groupings so the groupings in my

case do not have distinct demographic characteristics, but there are important

differences that could tell us more about the groups.

Further, with knowledge of group membership I know the purchase history

of each individual in the group. This can allow me to see which products are

more often bought in one group or another. I will use this information to

graph the distribution of Coca-Cola Size B purchases of each group in Figure

1.3. With these resources and the estimates from my PL-GFE estimator, I will

expound on information I know about each of the groups of consumers. This

discussion expands on the discussion in Section 1.5.3.

Group 1, which has Dr. Pepper as a complement to Coca-Cola, consumes

less soda overall than any other group. As discussed previously, they don’t

purchase Coca-Cola often, but when they do they normally purchase more

than one unit of it and often with Dr. Pepper. They appear to consume more

Coca-Cola in the Summer and less in the Winter. Compared to other groups

they are more likely to live along the East Coast of the United States in states

like Massachusetts, Connecticut, Maryland and Virginia, while being less likely

to live in the middle of the United States in states like Utah, Colorado, Ohio

and Michigan. Compared to most other groups, there are high-income families

with a stay-at home mother.

Group 2, which has Pepsi and Diet Coca-Cola as complements for Coca-

Cola, has lower total soda expenditure than every other group besides Group
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Table 1.10.A

Group Summary Statistics

Group: 1 2 3 4 5

Demographic

Log(Expenditure) 8.656 8.604 8.612 8.532 8.803
(0.580) (0.577) (0.561) (0.578) (0.596)

Soda Expenditure 102.93 110.26 140.28 116.42 288.20
(67.28) (80.14) (122.68) (83.47) (178.72)

CC Bought 18.07 18.61 22.12 17.43 60.20
(6.62) (6.33) (11.15) (5.33) (29.38)

Household Size = 2 0.405 0.386 0.393 0.436 0.442

Household Size ≥ 3 0.458 0.503 0.441 0.443 0.401
Income < 25,000 0.137 0.157 0.159 0.164 0.143

> 50, 000 & < 100, 000 0.353 0.451 0.393 0.379 0.387
> 100, 000 0.157 0.111 0.124 0.121 0.120

Age < 35 0.216 0.222 0.241 0.221 0.194

Age > 55 0.399 0.444 0.414 0.436 0.498

Teenager Dependent 0.144 0.144 0.083 0.107 0.106

Child Dependent 0.196 0.203 0.228 0.136 0.092
Male Full Time Job 0.477 0.444 0.524 0.486 0.415

Female Full Time Job 0.209 0.288 0.310 0.357 0.327

High School 0.758 0.732 0.759 0.757 0.797
College 0.248 0.268 0.255 0.229 0.253

New England 0.078 0.039 0.062 0.043 0.041

Mid-Atlantic 0.078 0.118 0.076 0.093 0.101

East North Central 0.150 0.183 0.193 0.264 0.235

West North Central 0.059 0.098 0.083 0.057 0.051

South Atlantic 0.288 0.176 0.214 0.157 0.244
East South Central 0.098 0.072 0.076 0.121 0.101

West South Central 0.144 0.163 0.193 0.143 0.120

Mountain 0.026 0.085 0.034 0.036 0.060

Sample Size 153 153 145 140 217

These are the means for each of these demographic variables for each group. The continuous
variables includes a standard deviation in parenthesis as well. Log(Expenditure) is the log of
the monthly expenditure of the household. Soda Expenditure is the total spent on soda by
the household in the year. CC Bought is the number of Coca-Cola Size B products bought
by each household. If not specified, the variable is applied to the male head of the household.
Sample size is the number of individuals in each group. For each demographic variable, the
highest value is highlighted in green while the lowest is highlighted in red.
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Table 1.10.B

Group Summary Statistics

Group: 6 7 8 9 10

Demographic

Log(Expenditure) 8.640 8.590 8.703 8.660 8.626
(0.578) (0.518) (0.588) (0.617) (0.583)

Soda Expenditure 124.29 127.59 172.81 170.54 143.47
(87.38) (122.63) (201.16) (123.44) (84.11)

CC Bought 18.96 24.80 30.25 31.07 27.19
(8.44) (15.43) (17.13) (14.75) (13.85)

Household Size = 2 0.363 0.429 0.457 0.461 0.449
Household Size ≥ 3 0.462 0.432 0.431 0.404 0.411

Income < 25,000 0.163 0.094 0.181 0.177 0.165

> 50, 000 & < 100, 000 0.263 0.424 0.394 0.369 0.361

> 100, 000 0.150 0.173 0.106 0.106 0.120

Age < 35 0.206 0.191 0.234 0.213 0.184

Age > 55 0.463 0.451 0.410 0.440 0.373

Teenager Dependent 0.150 0.150 0.164 0.199 0.108
Child Dependent 0.225 0.162 0.181 0.156 0.152

Male Full Time Job 0.406 0.552 0.457 0.454 0.430

Female Full Time Job 0.293 0.387 0.309 0.277 0.348

High School 0.744 0.786 0.771 0.745 0.804

College 0.213 0.289 0.255 0.284 0.234

New England 0.025 0.045 0.027 0.021 0.057

Mid-Atlantic 0.081 0.060 0.080 0.078 0.076

East North Central 0.188 0.252 0.213 0.227 0.266

West North Central 0.088 0.090 0.085 0.113 0.076
South Atlantic 0.213 0.177 0.197 0.199 0.209

East South Central 0.144 0.056 0.101 0.057 0.057

West South Central 0.081 0.094 0.181 0.149 0.127

Mountain 0.088 0.105 0.074 0.078 0.063

Sample Size 160 266 188 141 158

These are the means for each of these demographic variables for each group. The continuous
variables includes a standard deviation in parenthesis as well. Log(Expenditure) is the log of
the monthly expenditure of the household. Soda Expenditure is the total spent on soda by
the household in the year. CC Bought is the number of Coca-Cola Size B products bought
by each household. If not specified, the variable is applied to the male head of the household.
Sample size is the number of individuals in each group. For each demographic variable, the
highest value is highlighted in green while the lowest is highlighted in red.
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1. Like Group 1, they don’t purchase Coca-Cola often, but when they do they

normally purchase more than one unit of it and often with other sodas. They

also appear to have a demand shock in February. Compared to households

in other groups, households in Group 2 have more than two individuals in

the household, are most likely to have annual income between $50,000 and

$100,000. The male heads of these households are least likely to have a High-

School education. This appears to be working class households.

Group 4, which has Coca-Cola Size C as a complement for Coca-Cola Size

B, but the least Coca-Cola Size B overall and make the fewest overall purchases

compared to every other group. Similar groups 1 and 2, they do not frequently

buy Coca-Cola Size B products but when they do, they purchase large quan-

tities of Coca-Cola Size B products and often do so along with Coca-Cola Size

C products. They had a demand shock of Coca-Cola in January. There are no

other demographic characteristics unique to this group, but it is the smallest

out of all of the groups.

The Group 3 PL-GFE estimate selected no covariates in the model, so the

estimation comes from its estimates of αgt. There is a trend in the αgt such that

it increases over time, implying that Coca-Cola 12-pack consumption increases

throughout the year. Compared to other groups, households in group 3 are

often younger and are more likely to have young children in the household.

Group 9 is similar in that αgt is lowest in January and increases to a steady

level after March. Thus, in both of these groups, consumers that consume less

in the beginning of the year, perhaps because of a new-years resolution, and

increase throughout the year. Group 9 also has the highest income-elasticity

out of all of the groups. Group 3 are much more likely to have young children

in the home, while Group 9 is much more likely to have a teenager in the home.

The Group 10 PL-GFE estimate selected no covariates in the model, so

the estimation comes from its estimates of αgt. There seems to be a general
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trend in the αgt such that it decreases over time besides a demand shock in

November. Compared to other groups, the male head of household is most

likely to be between 35 and 55 and they are the most likely to have graduated

from high school. It may be worth what is driving these households to their

unique demand time-trend.

Group 5 consumes the most goods overall, soda overall and Coca-Cola com-

pared to other groups. They have no distinct time trend in their fixed-effects

but have substitutes in Diet Pepsi, Mountain Dew and Coca-Cola Zero. Com-

pared to other groups, these are often older households without children living

at home.

Group 8 has a negative demand shock in November and has substitutes

in Coca-Cola Size C products, and Diet Coca-Cola Size B products. They

have the lowest income compared to individuals in other groups, but purchase

soda and Coca-Cola more than any group besides Group 5. However, they

are more likely to have income below $50,000 and least likely to have income

over $100,000. They are also the most likely to have children living in the

household. These appear to be low-income households that purchase Coca-

Cola consistently and will choose the cheapest product from their competition

set of Coca-Cola products.

The most unique characteristic of group 6 is the shape of its fixed effects

graph, since it appears to have multiple demand shocks. Compared to other

groups, this group is most likely to have a household size of one and least likely

to have a male with a full time job in the household. They are also least likely to

have gone to college. This group has many unique demographic characteristics

and multiple unique demand shocks. This group might be individuals that

respond to advertising or other cultural trends, but I cannot tell what with the

data I have.

Group 7 is the group that appears to follow the consumer model of Hendel
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Figure 1.3: These show the distribution of the amount of Coca-Cola Size B
products that are purchased each month for each group.

and Nevo (2006). There doesn’t appear to be a demand shock for individuals at

specific times. These individuals appear to have higher income, more likely to

have a full-time job and more likely to have graduated from college compared to

other groups. Also, compared to other groups they are less likely to live in the

Mid-Atlantic, which is the most densely populated region which would make

sense because storage would be more expensive for these households. This is

also the largest group.
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Chapter 2

A Panel Data Estimator for the Distribution

and Quantiles of Marginal Effects in Nonlinear

Structural Models with an Application to the

Demand for Junk Food

2.1 Introduction

It is commonplace that panel data allows researchers to model the impact of

correlated unobserved individual specific heterogeneity, as is illustrated by the

fixed effects approach and generalizations to linear random coefficients models

(Chamberlain, 1982; Wooldridge, 2005; Graham and Powell, 2012; Arellano and

Bonhomme, 2012). A particular challenge, however, arises with the presence of

nonlinearities in many microeconometric models, even in models that do not

feature a limited dependent variable. This situation arises frequently in eco-

nomics. While economic models often exhibit qualitative restrictions stemming

from constrained optimization of rational agents, e.g., convexity or monotonic-

ity, they feature linearity or additivity only in exceptional cases. In consumer

demand which motivates the application of this paper, this has led to the rise

and popularity of nonlinear models (e.g., the QUAIDS, (Banks et al., 1997)),

and nonparametric and nonseparable models in general, because they capture

important aspects of the data that are otherwise missed.

But while it is now commonly found that microeconomic relationships should

allow for nonlinearities on the individual level, there is even more experimental

and observational evidence that individuals differ across the population in ways
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that are not entirely captured by observable variables. There are basically two

ways to deal with this complex unobserved heterogeneity: considering average

effects, or recovering the distribution of heterogeneity parameters. The former is

easier to obtain than the latter, and frequently less stringent assumptions have

to be imposed for its recovery. As a case in point, in a cross-section setup, av-

erage treatment effects are identified under general conditions, while to recover

heterogeneous functions or parameters one has to, for instance, impose mono-

tonicity of the structural function in a scalar unobservable (Matzkin, 2003), or a

linear random coefficients structure (Hoderlein and Mammen, 2007). Moreover,

when covariates are endogenous, further restrictions are necessary (Imbens and

Newey, 2009; Kasy, 2011; Hoderlein et al., 2017).

This paper establishes the strength of panel data to allow recovery of the

distribution of heterogeneous nonparametric marginal effects, even if covariates

are correlated and the time span considered is very short. More precisely, we

show that the distribution of marginal effects of a general class of structural

models is nonparametrically identified. This allows for arbitrary dependence

between the time-invariant unobservable and the covariates of interest, provided

as little as two observations are available for the individuals. Formally, we

consider a nonparametric and heterogeneous model of the form

Yk,t = Φ(Xk,t, Ak) + Uk,t , k = 1, . . . , n; , t = 1, . . . , T , (2.1.1)

where Yk,t ∈ Y ⊆ R, and Xk,t ∈ X ⊆ RJ are observable variables, and Ak ∈

A ⊆ R∞ and Uk,t ∈ U ⊆ R are unobserved. Note that in this model, the

dimension of Ak is not restricted, and the structural function φ is assumed

to be smooth in the sense of being twice continuously differentiable in xj for

all j = 1, .., J, with bounded second derivatives, but is otherwise unrestricted.

Moreover, we allow for arbitrary dependence (correlation) between any element

of Ak and any element of Xk,t for any k, t. These facts make our model different
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from the models of Altonji and Matzkin (2005) and Evdokimov (2010) with

which it shares structural similarities.

The main result in this paper establishes nonparametric identification of

the (marginal) distribution of marginal effects ∂xjφ(x,A), for j = 1, . . . , J , and

all x ∈ X , even with many regressors and only two time periods (i.e., T = 2).

If T ≥ J + 1, we also show that the joint distribution of all marginal effects,

i.e., ∇xφ(x,A) = (∂x1φ(x,A), . . . , ∂xJφ(x,A))′ is identified, for all x ∈ X , see

Remark 2.4. As a corollary, we obtain identification of objects like the aver-

age structural marginal effect, as well as the variance of marginal effects. An

important limitation of our analysis is that we can only make statements for

the population for which Xk,1 = Xk,2 = ... = Xk,T , i.e., we are only identifying

the distribution f∇xφ(x,A)|X1−X2=0 for the “stayers” (in the sense of Chamberlain

(1982)). To fix ideas, in our demand application this will be the population

for which income and prices stay approximately constant. As an important

contribution, we establish that this limitation is not an accident of the iden-

tification approach taken, but a consequence of a profound non-identification

result for nonlinear marginal effects outside of the stayers sub-population. The

intuition behind this result is as follows: Suppose the true model is a J-th order

polynomial in a scalar Xit with random coefficients on every term. Then, the

number of time periods acts as limiting factor for our ability to learn about

this complex models - if J exceeds T − 1,; there is generic non-identification

(i.e., with T = 2, at most a linear random coefficients model is identified for

x2 6= x1).

The essential idea which underlies this strong constructive identification

result for the stayers is as follows: Unlike with repeated cross section data,

we utilize the fact that we observe individuals repeatedly in a panel to form a

derivative dependent variable ∂Y/∂X. Specifically, by considering individuals

whose Xk,2 is close to their Xk,1 we construct a sample counterpart to the
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limiting process when taking derivatives. A complication arises because we

have to correct for the transitory error Uk,t. This is done by considering people

who have exactly Xk,2 = Xk,1 = x for every x ∈ X (or, in the sample, almost

exactly), because for these individual all changes in Yk,t can be attributed to

changes in Uk,t. In the sample, we thus use the difference between people who

are at or very near the diagonal from those who are near, but not quite as near,

to the diagonal. The difference in the distribution of Yk,t is then due to the

(heterogeneous) causal marginal effect of Xk,t. This effect depends, obviously,

in general on the position Xk,2 = Xk,1 = x we consider; by letting the position

x vary, we obtain an arbitrary nonlinear relationship. Fig. 1 illustrates the

population used in the sample. Finally, that this works only near the diagonal

(i.e., only for the stayers) is due to the fact that higher order terms in the

derivative approximation only disappear in this neighborhood.

Figure 2.1: The shaded region is the region we will use, which is more than h1

away from where X1 = X2 but less than h2 away from where X1 = X2.

The baseline specification allows us to identify the marginal distribution

of every marginal effect needing only two time periods. However, its driving

force is the time invariance of the unobservable as well as the structural func-

tion. With more time periods, we may relax this assumption and allow for the

structural relationship to change over time under restrictions on the way time
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enters which may be weakened as T becomes large. Several other extensions

are briefly discussed in this paper: The approach can be augmented to allow

for discrete covariates; however, the effect of interest has to be on a continuous

variable. More generally, we may control for additional covariates through a

semiparametric specification. Finally, we conjecture that the approach can be

extended to a discrete dependent variable if one exogenous regressor with large

support is available, similar to Honoré and Lewbel (2002).

When it comes to estimation, we follow a semiparametric route. That is,

we assume that the distribution of marginal effects follows a known parametric

distribution governed by a finite parameter θ(x) which depends on the posi-

tion X1 = X2 = x at which we evaluate the conditional distribution. As such,

our approach can be described as conditionally parametric. The advantage of

such a procedure is as follows: Since our identification argument and the as-

sociated sample counterparts estimator is based on (conditional) characteristic

functions, we avoid having to invert these estimators to obtain the (conditional)

density. In the sample, this inversion step comes at the cost of having to pick

an additional regularization parameter. Moreover, since one of the main objec-

tives of our approach is to get an estimator for the quantiles of marginal effects

as well, we avoid having to add another cumbersome inversion. Instead, the

conditional parametric approach obtains all of these quantities: the conditional

characteristic function, density, as well as the quantiles in one convenient step.

Moreover, the characteristic function need not be observed for every value of

the argument (s, say).

The core principle employed in our estimator is a minimum contrast step.

We first form the sample counterpart to the identified nonparametric character-

istic function for every value of X1 = X2 = x, and then pick the the parameter

θ(x) that minimizes the contrast (distance) between the approximating para-

metric specification and this object. For this estimator, we establish the (op-
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timal) minimax rate, and establish that our estimator achieves this rate. The

rate is governed by the dimensionality of X and the fact that we work with the

set X1 = X2 = x. If there is no Uk,t and X is scalar, the rate is equivalent to

a two dimensional nonparametric regression. Having, in addition, a Uk,t that

follows an ordinary smooth distribution slows the convergence rate down by

the expected factor, α, due to the added deconvolution step in removing the

influence of Uk,t.

Importantly, this paper contains an application to consumer demand for

junk food. Because of the relationship to obesity and other adverse health

effects, this is a question of obvious importance for the society (see also the

short literature review in the applied section). A key concern is that “poor”

households - which we define to be households with low total expenditure for

goods that Nielsen scanner data tracks - spend marginally more on junk food

than wealthy, high income households. This means that a model that forces all

households to have the same “income” and price elasticities, i.e., a linear ran-

dom coefficients model, is not able to capture this important feature. Similarly,

we want to control for unobserved factors that are correlated with poverty, e.g.,

education levels, in particular regarding nutrition, and hence it is imperative

to allow for the unobservables to be correlated. Therefore, we feel that our

approach, which allows for nonlinearities, high dimensional heterogeneity, and

complicated correlation patterns, is particularly well suited for this application.

When applying our approach to the Nielsen Homescan data, we indeed find

evidence of the aforementioned nonlinearities. Indeed, for every dollar spent

on Nielsen products, poor households seem to consume twice as much junk

food on average compared to wealthy households, even implicitly controlling

for persistent correlated effects like education. Moreover, there also seems to

be more heterogeneity within poor households (compared to wealthy ones),

perhaps a function of the larger degree of addiction to an unhealthy lifestyle of
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at least parts of this subpopulation. It is interesting to muse about the reason

for the significant correlation between expenditure levels and marginal effects,

even after controlling for fixed factors. We also find very reasonable price

elasticities that increase in the own price. Since we use a bundle of goods and

Stone-Lewbel prices, we feel that this reflects heterogeneity in the composition

of junk food. The more high level it is, the higher the price and the more elastic

demand. More details can be found in the section on the application below.

Related Literature: Analyzing nonlinear panel data models has a long

tradition, dating back to the conditional ML approach by Rasch (1961); see

also Andersen (1970), Chamberlain (1982) and Chamberlain (1984) for models

with non-additive individual heterogeneity. Nonlinear parametric panel data

models have frequently been analyzed. For an overview of work related to

discrete choice models, see Arellano (2003). Closely related to our work is

that of Graham and Powell (2012), and Arellano and Bonhomme (2012), who

consider estimation of moments and the distribution of random coefficients in a

linear correlated coefficient panel data model. Compared to this line of work, we

allow for the structural model to be arbitrarily nonlinear. Chamberlain (2010)

discusses the identification of the dynamic panel data binary choice model, and

why the logistic distribution assumption is required for identification of βo,

unless one is willing to assume unbounded support for one of the regressors,

as is the case in Manski (1987). For other nonlinear fixed effects models, see

also Hausman et al. (1984) for panel count data and Honoré (1992) for panel

censored regression. Like all of this work, our approach assumes a fixed number

of time periods. Indeed, it is one of the appealing features of our approach that

we only require T = 2.

All of the work just described is concerned with a specific semiparametric

model, e.g., the dynamic binary choice model. Approaches that are closer in

spirit to our work are those of Chernozhukov et al. (2009), who consider discrete
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variation, whereas we consider derivatives, and Graham and Powell (2012), who

focus on a linear heterogeneous population (i.e., the structure is linear in the

coefficients, with coefficients that vary across the population) and not on a fully

nonseparable structure. Other than the differences mentioned above, Graham

and Powell (2012) also require (at least) as many time periods as regressors

plus one, while we require only two time periods, even with a large number of

regressors. Less closely related is the work on the correlated random coefficients

models in panel data, see in particular Wooldridge (2005) and Murtazashvili

and Wooldridge (2008). This line of work studies the linear random coefficients

model as well, but imposes restriction on the correlation between time invariant

individual specific effects and covariates of interest. In contrast, our approach

allows for unobserved heterogeneity to enter nonlinearly and does not limit its

correlation with the covariates of interest.

Finally, related is also the literature on nonseparable models using panel

data, in particular Altonji and Matzkin (2005), Evdokimov (2010), Hoderlein

and White (2012) and Chernozhukov et al. (2015). Unlike our paper, Altonji

and Matzkin (2005) impose constraints on the correlation between Ak and the

Xk,t process, but are more general in the structural function φ in that they

allow interaction between the transitory error Uk,t and the other variables, and

focus on averages. Evdokimov (2010) also imposes additivity of the error Uk,t,

but assumes that Ak is a scalar and independent of Xk,t. Hoderlein and White

(2012) and Chernozhukov et al. (2015) again admit a more general structural

function φ (as in Altonji and Matzkin (2005)), but are only able to identify

averages of the marginal effects, even though Chernozhukov et al. (2015) use

distributional information. Instead, in this paper we use a deconvolution step to

purge the model from the influence of Uk,t. This also allows to impose different,

and arguably weaker, assumptions on the Uk,t.process. In particular, we do not

require the stationarity assumption in their papers (Manski, 1987).
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Outline of the Paper: Section 2 introduces the model and the precise

assumptions we require. In Section 3, we present the general non-identification

result for arbitrary values x2 6= x1, which motivates our focus on the set of

stayers. Section 4 then presents the main constructive nonparametric identi-

fication result and discusses extensions. Section 5 establishes the asymptotic

lower bound for any estimator under this scenario. In Section 6, we introduce

our conditional parametric estimator and the modeling assumptions, establish

an upper bound under these conditions, and show that our estimator achieves

the minimax rate. Section 7 analyzes the finite-sample performance of our es-

timators using several example of nonlinear heterogeneous DGPs. Section 8

discusses the application to consumer demand for junk food. The final section

contains a summary and concluding remarks.

2.2 The Model: Basic Structure and Main Assumptions

We consider the panel data model

Yk,t = Φ(Xk,t, Ak) + Uk,t , k = 1, . . . , n; , t = 1, . . . , T , (2.2.1)

where allXk,t and Yk,t are observed. Therein, the random vectors (Xk,t, Ak, Uk,t)t=1,...,T

are i.i.d. (i.e. independent copies) for all k = 1, . . . , n. Therefore, when ad-

dressing identification issues, we omit the index k in the notation of all random

variables. We impose the following assumptions:

(A.2.1) The random vectors U := (U1, . . . , UT ) and (A,X1, . . . , XT ) are indepen-

dent.

This assumption is similar in spirit to the strict exogeneity assumptions

commonly invoked in the panel data literature. It could be weakened, as is

obvious from the proof. In particular, for T = 2 and using the notation ∆S =

S1 − S2 for any random variable S, we only need that ∆U independent of
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∆X,A|X1. However, since we use this stronger version in the construction of

the estimator, we impose it henceforth.

(A.2.2) The random vector X := (X1, . . . , XT ) has a T -dimensional Lebesgue

density.

Our goal is to identify the conditional distribution L(Zj | X) of the random

variable

Zj :=
∂Φ

∂x
(x,A) |x=Xj ,

given X. From a famous result in probability theory (e.g. p. 439, Theorem 33.3,

Billingsley (1995)), we learn that there exists a function ζj from the domain RT

to the set of all probability measures on the Borel σ-field B(R) of R such that

{
ζj(X)

}
(B) = P [Zj ∈ B | X] , a.s. ,

for all elements B of the Borel σ-field B(R). This equation, however, does

not determine the value of the mapping ζj at any fixed x ∈ RT . In particular,

the value of ζj at one singular x ∈ RT can be changed without switching to

an observationally non-equivalent model due to condition (A2). As a conse-

quence, identification and estimation of ζj(x), for any specific value x ∈ RT , is

impossible unless continuity conditions are assumed such as

(A.2.3) There exists a function ζj on the domain RT to the set of all probability

measures on B(R) which is continuous with respect to the Fourier distance

on its codomain; and satisfies

{
ζj(X)

}
(B) = P [Zj ∈ B | X] , a.s. ,

for all B ∈ B(R).1

1Here, the Fourier distance between two probability measures P and Q on B(R) is defined
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Condition (A.2.3) resembles the usual constraints in the setting of standard

nonparametric regression where the regression function is required to be con-

tinuous under continuously distributed covariates in order to attain pointwise

consistency at a fixed site. The following lemma shows that ζj(x) is uniquely

determined for each x in the support of X.

Lemma 2.2.1. Assume two functions ζj and ζ̃j which satisfy the continuity

assumptions imposed on ζj in (A.2.3); and

{
ζj(X)

}
(B) = P [Zj ∈ B | X] =

{
ζ̃j(X)

}
(B) a.s., ∀B ∈ B(R) .

Then the restrictions of ζj and ζ̃j to the support SX of X coincide.

2.3 Non-Identification

Now we focus on the question for which elements x of SX the probability mea-

sure ζj(x) can be identified from the observed data (Xt, Yt), t = 1, . . . , T , under

the Assumptions (A.2.1)–(A.2.3). Using the notation p(x) := (1, x1, . . . , xT )†

and q(x) := (0, 1, 2x, . . . , TxT−1)†, we provide the following useful tool.

Lemma 2.3.1. The vectors p(x1), . . . , p(xT ), q(xj), for any j ∈ {1, . . . , T}, are

linearly independent if and only if all x1, . . . , xT differ from each other.

By H(x), x = (x1, . . . , xT ), we denote the linear hull of p(x1), . . . , p(xT ). The

squared distance between H(x) and q(xj) is called τj(x).

by
F(P,Q) := sup

s∈R

∣∣P ft(s)−Qft(s)
∣∣ , (2.2.2)

where P ft(s) :=
∫

exp(isx)dP (x) denotes the Fourier transform of P . Note that the total
variation distance TV(P,Q) between P and Q, i.e.

TV(P,Q) := sup
B∈B(R)

|P (B)−Q(B)| ,

dominates the Fourier distance F(P,Q). The set of all probability measures on B(R),
equipped with the Fourier distance F , forms a complete metric space thanks to the com-
pleteness of the space C0(R) and Lévy’s continuity theorem (e.g. Williams, 1991, section
18.1).
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Lemma 2.3.2. The function τj is continuous and takes on only strictly positive

values on the set TX :=
⋂
k 6=l{x ∈ RT : xk 6= xl}.

In order to prove a non-identification result, we may, in addition, assume

that the function Φ and the distribution of the random vector U, as well as the

distribution of the covariates X, are known. Concretely, we impose that

Φ(x,A) =
T∑
t=0

Atx
t . (2.3.1)

Let q∗j (x) denote the orthogonal projection of q(xj) onto the orthogonal

complement of H(x) with respect to RT+1 as this notation has already been

used in the proof of Lemma 2.3.2. This lemma also yields q∗j (x) 6= 0 for all

x ∈ TX since |q∗j |2 = τj. Then we are ready to define the random variables

A[b] := A[0] +
√
b δ q∗j (X) , b ≥ 0 , (2.3.2)

where the random variable δ is standard normal; A[0] is an arbitrary (T + 1)-

dimensional random vector; and (X,A[0]) and δ are independent. Then

L[b](A | X) = L(A[b] | X) , b ≥ 0 ,

denote competing candidates for the conditional distribution of A given X.

The conditional characteristic function of V :=
(
Φ(X1, A), . . . ,Φ(XT , A)

)
given X equals

ψV |X(t) = E
{

exp
(
i

T∑
k=1

tkΦ(Xk, A)
)
| X
}

= E
{

exp
(
i

T∑
l=0

Al

T∑
k=1

tkX
l
k

)
| X
}

= ψA|X

( T∑
k=1

tkX
0
k , . . . ,

T∑
k=1

tkX
T
k

)
,

for all t ∈ RT whenever (2.3.1) holds true. Hence, for the candidates L[b](A | X),
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b ≥ 0, it holds that

ψ
[b]
V |X(t) = exp

(
− 1

2
b
∣∣∣ T∑
k=1

tkp(Xk)
†q∗j (X)

∣∣∣2) · ψA[0]|X

( T∑
k=1

tkp(Xk)
)

= ψA[0]|X

( T∑
k=1

tkp(Xk)
)
,

for all t ∈ RT and b ≥ 0 so that the conditional distributions L[b](V | X)

coincide almost surely for all b ≥ 0. Therefore, the distribution of the observed

data (X, Y ) with Y := (Y1, . . . , YT ), are identical for all candidates (b ≥ 0)

thanks to the independence of U and (A,X). Therefore one is unable to decide

what is the value of b based on the distribution of the observations.

Due to (2.3.1) and (2.3.2) we have Z
[b]
j = (A[b])†q(Xj) so that

ζ
[b]
j (x) = L

(
A[0]†q(xj) | X = x

)
∗ N(0, bτ 2

j (x)) , (2.3.3)

where ∗ denotes convolution. Consider N(0, 0) as the Dirac measure which is

concentrated at 0. The corresponding Fourier transform equals

{
ζ

[b]
j (x)

}ft
(s) = ψA[0]|X=x

(
sq(xj)

)
· exp

(
− 1

2
bs2τ 2

j (x)
)
, s ∈ R . (2.3.4)

We impose the Assumption

(A.2.4) The random vector A[0] has a conditional Lebesgue density fA[0]|X=x given

X = x for all x ∈ RT ; moreover, we have that

lim
y→x
F
(
L(A[0] | X = x),L(A[0] | X = y)

)
= 0 , ∀x ∈ RT .

In Assumption (A.2.4), we have extended the definition of the Fourier dis-

tance in (2.2.2) to probability measures on B(RT+1) in a natural way by the

supremum norm distance of the Fourier transforms of both measures. Note

that Assumption (A.2.4) is satisfied in particular if A[0] has a Lebesgue density
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and A[0] and X are independent, which is related to the scenario considered

in Evdokimov (2010). The following lemma verifies Assumption (A.2.3) in our

setting.

Lemma 2.3.3. The functions ζ
[b]
j in (2.3.3) are continuous for any b ≥ 0 with

respect to the Fourier distance on the codomain under the Assumption (A.2.4).

Furthermore Lemma 2.3.2 and the equation (2.3.3) yield that, for all b 6=

b′ > 0, the probability measures ζ
[b]
j (x) and ζ

[b′]
j (x) are different from each other

for all x ∈ SX ∩ TX where we use the following result.

Lemma 2.3.4. Let Q be an arbitrary probability measure on B(R). Then the

equality Q ∗ N(0, α) = Q ∗ N(0, α′) implies α = α′ for all α, α′ ∈ [0,∞).

Thus, we have established the following theorem about non-identification

of ζj(x), for all x ∈ SX ∩ TX , i.e., values of x for which x1 6= x2, in the model

(2.2.1).

Theorem 2.1. In the model (2.2.1), fix some j = 1, . . . , T ; select the function

Φ as in (2.3.1); and grant the Assumptions (A.2.1) and (A.2.2). Set the random

variable A equal to A[b] in (2.3.2) where the choice of A[0] is only restricted by

Assumption (A.2.4). Then the corresponding distributions of the observations

(X, Y ) coincide for all b ≥ 0 while Assumption (A.2.3) is satisfied for all b ≥ 0;

and ζ
[b]
j (x) 6= ζ

[b′]
j (x) holds true for all b 6= b′ and x ∈ SX ∩ TX .

2.4 Identification

Now assume that T = 2 and j = 1. According to Theorem 2.1, the function ζ(x)

cannot be identified from the data distribution unless we restrict to x ∈ SX\TX ,

which equals {(x1, x2) ∈ SX : x1 = x2}. Moreover we impose

(A.2.5) There exists some ρ > 0 such that the density fX of X = (X1, X2) is
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continuous and strictly positive on the strip

S(ρ)
X := {(x1, x2) ∈ R2 : |x1 − x2| ≤ ρ} .

Under Assumption (A.2.5) it holds that SX\TX is a subset of S(ρ)
X . The

smoothness condition (A.2.4) is quantified via the Assumption

(A.2.6) The function Φ is twice continuously differentiable and we have

E
(

sup
ξ∈[X1,X2]∪[X2,X1]

∣∣∣∂jΦ
∂xj

(ξ, A)
∣∣∣ ∣∣∣X1, X2

)
≤ cΦ a.s.,

for j = 1, 2 and some constant cΦ. Moreover ζ1 satisfies the Lipschitz

condition

F
(
ζ1(x), ζ1(y)

)
≤ cζ |x− y| , ∀x, y ∈ S(ρ)

X ,

for some constant cζ ∈ (0,∞).

We introduce the notation

∆Y := Y1 − Y2 = ∆Φ + ∆U ,

∆Φ := Φ(X1, A)− Φ(X2, A) ,

∆U := U1 − U2 ,

∆X := X1 −X2 . (2.4.1)

The Assumption saying that

(A.2.1’) the random variables ∆Φ and ∆U are conditionally independent given

X; and ∆U and X are independent,

is weaker than the Assumption (A.2.1) and suffices to show that the corre-
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sponding conditional characteristic functions satisfy

ψ∆Y |X = ψ∆Φ|X · ψ∆U , a.s. . (2.4.2)

In fact, as mentioned before and as is obvious from what follows, this assump-

tion could even be weakened further, but since we implement our estimator

with this stronger assumption we desist from doing so. For some h0 ∈ (0, ρ) let

us consider the term

TU(h0, s) := E exp(is∆Y ) · 1S(h0)X

(X)/P
[
X ∈ S(h0)

X

]
= Eψ∆Y |X(s) · 1S(h0)X

(X)/P
[
X ∈ S(h0)

X

]
= ψ∆U(s) · Eψ∆Φ|X(s) · 1S(h0)X

(X)/P
[
X ∈ S(h0)

X

]
,

for any s ∈ R, which is directly accessible from the distribution of the obser-

vation (X, Y ). Therein note that P
[
X ∈ S(h0)

X

]
> 0 is guaranteed for any

h0 ∈ (0, ρ) by Assumption (A.2.5); and that we have used (2.4.2). By Assump-

tion (A.2.6) it holds that

∣∣Eψ∆Φ|X(s) · 1S(h0)X

(X) − P
[
X ∈ S(h0)

X

]∣∣ ≤ cΦ |s|E|∆X| · 1S(h0)X

(X)

≤ cΦ |s|h0 P
[
X ∈ S(h0)

X

]
, (2.4.3)

so that ∣∣TU(h0, s)− ψ∆U(s)
∣∣ ≤ cΦ |s| |ψ∆U(s)|h0 ,

and, thus, limh0↓0 TU(h0, s) = ψ∆U(s) for any s ∈ R. Therefore ψ∆U and,

hence, the distribution of ∆U are identified from the distribution of (X, Y ).

This motivates the following estimator of ψ∆U(s),

ψ̂
(h0)
∆U (s) :=

n∑
k=1

exp
(
is∆Yk

)
· 1S(h0)X

(Xk,1, Xk,2)
/ n∑

k=1

1S(h0)X

(Xk,1, Xk,2) , (2.4.4)
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based on the moment method, for some h0 ∈ (0, ρ) still to be selected. By

convention put ψ̂
(h0)
∆U (s) equal to 0 if the denominator in (2.4.4) vanishes.

Writing S(h1,h2)
X := S(h2)

X \S(h1)
X for some ρ > h2 > h1 > 0, we consider the

term

TZ := TZ(x, h1, h2, h3, s) := Eψ∆U(−s/∆X) exp(is∆Y/∆X)1S(h1,h2)X

(X)1[0,h3](|X1 − x|)

/E
∣∣ψ∆U(s/∆X)

∣∣21S(h1,h2)X

(X)1[0,h3](|X1 − x|)

= E
∣∣ψ∆U(s/∆X)

∣∣2ψ∆Φ|X(s/∆X)1S(h1,h2)X

(X)1[0,h3](|X1 − x|)

/E
∣∣ψ∆U(s/∆X)

∣∣21S(h1,h2)X

(X)1[0,h3](|X1 − x1|) ,

for some h3 > 0 and any fixed x = (x1, x2) with x1 = x2, which is directly acces-

sible from the distribution of (X, Y ) as ψ∆U has already been identified. Again

we have used (2.4.2). Combining Assumption (A.2.5) with the Assumption

(A.2.7) The characteristic function ψ∆U does not vanish,

we may ensure that the denominator of the term TZ does not vanish. Assump-

tion (A.2.6) and Taylor approximation yield that

∆Φ = Z1 ·∆X + R , (2.4.5)

where the random remainder term R satisfies

∣∣R∣∣ ≤ 1

2
cΦ(∆X)2 a.s. .

It follows from there that, on the event
{
X ∈ S(h1,h2)

X

}
∩ {|X1 − x1| ≤ h3}, we

have that

∣∣ψ∆Φ|X(s/∆X)− {ζ1(x)}ft(s)
∣∣ ≤ (cΦ|s|/2

)
h2 + cζ (2h3 + h2) ,
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using Assumption (A.2.6) so that

lim
h2↓0

TZ(x, h1, h2, h3, s) = {ζ1(x)}ft(s) ,

for all s ∈ R where we arrange that h1 = h2/2 and h3 = h2 to calculate the

limit. Note that x ∈
⋂
h2>0 S

(h2/2,h2)
X . Therefore ζ1(x) is identified. Moreover

the quantity TZ along with its asymptotic behavior motivates an estimator of

{ζ1(x)}ft(s), namely

ψ̂
(h0,h1,h2,h3)
Z1

(x; s)

:=
n∑
k=1

exp
(
is∆Yk/∆Xk

)
ψ̂

(h0)
∆U (−s/∆Xk) · 1S(h1,h2)X

(Xk,1, Xk,2) ·K(|Xk,1 − x1|/h3)

/{
ρn +

n∑
k=1

∣∣ψ̂(h0)
∆U (s/∆Xk)

∣∣2 · 1S(h1,h2)X

(Xk,1, Xk,2) ·K(|Xk,1 − x1|/h3)
}
,

(2.4.6)

for some 0 < h0 < h1 < h2 < ρ, h3 > 0, some kernel function K and some ridge

parameter ρn > 0 in order to prevent the denominator from getting too close

to zero. This approach to heteroskedastic deconvolution is inspired by Delaigle

and Meister (2007); Delaigle et al. (2008).

Before studying the estimator (2.4.6) let us summarize the identification

result in the following theorem.

Theorem 2.2. Under the Assumptions (A.2.1’), (A.2.2), (A.2.3) and (A.2.5)–

(A.2.7), ζ1(x) is identified in the model (2.2.1) for any x = (x1, x2) ∈ R2 with

x1 = x2 from the distribution of the observations (X, Y ).

Remark. The model (2.2.1) may be generalized to the setting of multiple

regressors, i.e. one observes the i.i.d. data (Xk,t, X
′
k,t, Yk,t), k = 1, . . . , n, t =

1, 2, where

Yk,t = Φ(Xk,t, X
′
k,t, Ak) + Uk,t .
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Then we modify the definition

Zj :=
∂Φ

∂x
(x, x′, A) |x=Xj ,x′=X′j

,

and that of ζj accordingly. Let us assume that (X1,1, X
′
1,1, X1,2, X

′
1,2) has a

four dimensional Lebesgue density, which is continuous and strictly positive.

Also impose additional Lipschitz conditions on ζ1 and its partial derivatives

with respect to the bivariate component (x, x′) in Assumption (A.2.6). Then

Theorem 2.2 can be extended to identify ζ1(x, x′) at any (x, x′) = (x1, x2, x
′
1, x
′
2)

with x1 = x2 and x′1 = x′2. For any unitary matrix U define

Φ̃(x, y, a) := Φ(UT (x, y)T , a) .

Then use the above arguments to identify the conditional distribution of

∂Φ̃

∂x
(W1,W

′
1, A) = U1,1 ·

∂Φ

∂x
(X1, X

′
1, A) + U1,2 ·

∂Φ

∂x′
(X1, X

′
1, A) ,

givenW1 = W2 andW ′
1 = W ′

2 based on the data Zj and (Wj,W
′
j)
T = U(Xj, X

′
j)
T

for j = 1, 2. That opens the perspective to identify any directional derivative

of Φ at x1 = x2 = x and x′1 = x′2 = x′ and, hence, the gradient of Φ under

appropriate smoothness conditions on Φ and ζ1.

Remark. If there are more time periods, it is also possible to allow for a

time trend. Specifically, we allow for a linear time trend which modifies the

structural function φ by adding the same the structural function in each time

period. More formally, the model takes the form

Yk,t = Φ0 (Xk,t, Ak)+Φ1 (Xk,t, Ak) t+Ukt, t = 1, . . . , T, k = 1, . . . , n, (2.4.7)

where Φ0 and Φ1 satisfy analogous conditions to before. To identify this model,

91



we require T = 4. Since

Y1,2 − Y1,1 = U1,2 − U1,1 + Φ1(X1,1, A1) ,

Y1,4 − Y1,3 = U1,4 − U1,3 + Φ1(X1,3, A1) ,

holds on the event {X1,1 = X1,2, X1,3 = X1,4} we are able to identify the con-

ditional distribution of ∂xΦ1(x,A) |x=X1,1 given X1,1 = x at x = λ · (1, 1, 1, 1),

λ ∈ R, by the arguments from section 2.4 under the given assumptions. More-

over

2Y1,1 − Y1,2 = 2U1,1 − U1,2 + Φ0(X1,1, A1) ,

4Y1,3 − 3Y1,4 = 4U1,3 − 3U1,4 + Φ0(X1,3, A1) ,

holds on {X1,1 = X1,2, X1,3 = X1,4} again so that the conditional distribution

of ∂xΦ0(x,A) |x=X1,1 given X1,1 = x at x = λ · (1, 1, 1, 1), λ ∈ R, is identified as

well. Note that continuity conditions analogous to Assumption (A.2.6) have to

be imposed on both Φ0 and Φ1.

Remark. Our framework may be extended to allow for additional covariates,

denoted in the following by St. The main motivation to do so stems typically

from the objective to simply control for these variables; their influence is typi-

cally of lesser interest. Due to the curse of dimensionality, it is impractical to

let them enter in an unrestricted fashion. Hence we propose a partially linear

structure, i.e.,

Yk,t = Φ (Xk,t, Ak) + γ′Sk,t + Ukt, t = 1, . . . , T, k = 1, . . . , n, (2.4.8)

where γ ∈ Rdim(St) is a fixed parameter. Constructive identification of γ is

straightforwardly established by noting that, conditional on Xk,1 = Xk,2 = x,
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this equation is

Yk,t = Ãk + γ′Sk,t + Ukt, t = 1, . . . , T, k = 1, . . . , n, (2.4.9)

where Ãk = Φ (x,Ak) is a classical, time invariant, additive “fixed effect”. This

implies that, for every value of x, we obtain a classical linear fixed effect model.

Since the coefficient γ is invariant over x, we can then average out over x. A

sample counterpart estimator to this identification argument would produce an

estimator that converges at the dim(X) nonparametric regression rate (because

we have to impose that Xk,1 = Xk,2).

Finally, after forming Yk,t − γ′Sk,t, the further analysis can proceed exactly as

outlined above.

2.5 Asymptotic Lower Bound

In this section, we investigate the limits for the asymptotic performance of an

arbitrary estimator under the conditions of Theorem 2.2. For that purpose we

consider the polynomial approach (2.3.1) with T = 2 and the random vector A

equals

A =


X1X2 − (X1 +X2)B/2

B −X1 −X2

1

 , (2.5.1)

where the random vector B remains to be specified. Under given X = (X1, X2),

observing

Y1 + Y2 = U1 + U2 ,

∆Y/∆X = B + ∆U/∆X , (2.5.2)

is equivalent with the observation of the data (Y1, Y2), i.e. the random variable

(Y1, Y2) can be uniquely reconstructed from (2.5.2) and vice versa. Then ζ1(x),
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at any x = (x1, x2) with x1 = x2, equals the conditional distribution of B given

X = x. With respect to the random vector U we impose Assumption (A.2.1)

and

(A.2.8) U = (U1, U2) has the bivariate Lebesgue density

(s, t) 7→ 2f∆U(s− t)f∆U(s+ t) ,

where the Fourier transform of the univariate density f∆U satisfies

0 < cU,1 ≤ (1 + |t|α) ·
∣∣ψ∆U(t)

∣∣ ≤ cU,2 < ∞ , ∀t ∈ R ,

for some constants α > 0 and cU,1 < cU,2. Moreover ψ∆U is twice contin-

uously differentiable and its derivatives satisfy

sup
t

(1 + |t|α+`) ·
∣∣ψ(`)

∆U(t)
∣∣ ≤ cU,3 ,

for another constant cU,3 > 0 and ` = 1, 2.

Under the Assumption (A.2.8), f∆U is an ordinary smooth density in the ter-

minology of Fan (1991). Moreover (A.2.8) yields that U1 + U2 and ∆U are

independent and that ∆U has the density f∆U . Considering (2.5.2), it follows

that

(Xj,t,∆Yj/∆Xj), j = 1, . . . , n, t = 1, 2 , (2.5.3)

forms a sufficient statistic for ζ1(x) in the model in which the data (Xj,t, Yj,t),

j = 1, . . . , n, t = 1, 2, are observed. Therefore we may focus on that experiment

in which only the i.i.d. sample (2.5.3) is available.

Let us now determine the conditional distribution of B given X. Define

f0(x) := c · {1− cos(x)}2/x4 , x ∈ R ,
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with some constant c > 0 such that f0 integrates to one. We introduce

f
[θ]
B|X(t) :=

3

4
· (1+ |t|)−4 +

1

2
f0(t) · {1+θ ·K

(
|X−x|/θ

)
·cos(4t)

}
, ∀t ∈ R ,

(2.5.4)

for any θ ∈ [0, 1], as the competing conditional densities of B given X. Therein

K denotes some continuously differentiable kernel function which is supported

on [−1, 1], bounded by 1 and satisfies K(0) = 1. As f ft0 is supported on

[−2, 2] the function f
[θ]
B|X is a probability density indeed. Moreover we put

f
[0]
B|X(t) := 3(1 + |t|)−4/4 + f0(t)/2.

With respect to the design distribution we modify Assumption (A.2.5) via

(A.2.5’) There exists some ρ > 0 such that the density fX of X = (X1, X2) is

continuous and strictly positive on the ball around x = (x1, x1) with the

radius ρ. Moreover fX is compactly supported.

We provide the following lower bound on the convergence rates for the estima-

tion of the parameter θ in the model (2.5.4).

Theorem 2.3. We impose that Φ has the polynomial shape (2.3.1) with T = 2;

that A and B obey (2.5.1) and (2.5.4), respectively; and that the Assumptions

(A.2.1), (A.2.2), (A.2.5’) and (A.2.8) hold true. Then Assumption (A.2.6) is

satisfied for appropriate finite constants cΦ and cζ. For an arbitrary sequence

of estimators (θ̂n)n, where θn is based on the i.i.d. data (Xj,t, Yj,t), j = 1, . . . , n,

t = 1, 2, there exists a constant d > 0 such that

lim inf
n→∞

sup
θ∈[0,1]

P
(n)
θ

[
|θ̂n − θ|2 > d2 · n−1/(2+α)

]
> 0 .

2.6 A Conditional Parametric Estimator

In this section, our goal is to construct a parametric estimator of ζ1(x) which

attains the convergence rates outlined in Theorem 2.3. The parametric nature
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of the estimation problem is represented by the following assumption

(A.2.9) For some fixed x = (x1, x2) ∈ R2 with x1 = x2, there exists a parametriza-

tion

θ ∈ Θ ⊆ Rd, θ 7→ ζ1(θ;x) ,

of the admitted conditional measures ζ1(x) for d ≥ 1 such that

inf
θ′ 6=θ∈Θ

FR
(
ζ1(θ′;x), ζ1(θ;x)

)
/|θ′ − θ| ≥ cp > 0 ,

holds true for some fixed R ∈ (0,∞).

Therein FR denotes following distance between two probability measures P and

Q,

F2
R(P,Q) :=

∫ R

−R

∣∣P ft(t)−Qft(t)
∣∣2dt .

The specific parametrization in (2.5.4), which has been used to prove the lower

bound in Theorem 2.3, satisfies Assumption (A.2.9) when putting

c2
p =

π

8

∫
f 2

0 (t)dt .

As the estimator θ̂ of θ we define that θ̃ which minimizes the contrast

functional

γ(x; θ̃) :=

∫ R

−R

∣∣ψ̂(h0,h1,h2,h3)
Z1

(x; s)− {ζ1(θ̃;x)}ft(s)
∣∣2ds ,

among all θ̃ ∈ Θ where ψ̂
(h0,h1,h2,h3)
Z1

is as in (2.4.6) and h0, h1, h2 and h3 remain

to be selected.

The following theorem provides an upper bound on the estimation error of

our estimator θ̂ under appropriate selection of the smoothing parameters. For

simplicity we restrict to the uniform kernel K.
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Theorem 2.4. We consider the model (2.2.1) for T = 2 under the Assumptions

(A.2.1’), (A.2.2), (A.2.5’), (A.2.6), (A.2.8) and (A.2.9). The distribution of

(X1, X2) and the constants in the assumptions are imposed to be fixed while Φ,

θ and the distributions of A and (U1, U2) may move in n and d. Then, our

estimator θ̂ of θ satisfies

∣∣θ̂ − θ∣∣2 = OP
(
n−1/(2+α)

)
,

under the selection K = 1[0,1], ρn � 1, h2 = 2h1, h3 � h1, h0 � h2
1, h1 �

n−1/(4+2α).

Combining Theorem 2.3 and 2.4, it follows that our estimator θ̂ achieves the

optimal minimax convergence rate. It is remarkable that, in spite of the para-

metric nature of the estimation problem, the usual square-root-asymptotics

are not attainable by any estimator. In the error-free case (i.e. α = 0), the

convergence rate is OP (n−1/4) with respect to the non-squared estimation error.

Critically we mention that the asymptotic order of h1 in Theorem 2.4 de-

pends on the parameter α from Assumption (A.2.8), which is usually unknown.

Therefore we propose a data-driven choice of h1 (and h0, h2, h3 according to

Theorem 2.4) by splitting the sample. Precisely the estimator θ̂ is only based on

bqnc of the complete sample for some constant q ∈ (0, 1). All other observations

are used to construct an empirical selector ĥ1 of h1 as follows: Define

α̂ := −
(

log
∣∣ψ̂(h4)

∆U (sn)
∣∣) / log sn ,

with some deterministic positive parameters h4 and sn > 1 and the estimator

of ψ∆U from (2.4.4); and, finally,

ĥ1 := n−1/(4+2α̂) . (2.6.1)
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The following result suffices to show that the asymptotic upper bound from

Theorem 2.4 is maintained when using the split-of-the-sample estimator with

the plug-in selector ĥ1 for h1. Nevertheless a rough upper on α is required to

be known in order to select the parameter γ in Theorem 2.5.

Theorem 2.5. We impose the conditions of Theorem 2.4; and we choose K =

1[0,1], sn = nγ for some γ ∈ (0, 1/(1 + 2α)); and h4 = 1/sn. Then there exist

some positive constants b0 and b1 such that the estimator ĥ1 in (2.6.1) satisfies

lim
n→∞

P
(
n1/(4+2α) · ĥ1 ∈ [b0, b1]

)
= 1 .

Remark. Note that we estimate the parameter α under general nonparametric

constraints (see Assumption (A.2.8)), leading to the empirical bandwidth ĥ1 in

(2.6.1). If more restrictive parametric assumptions are imposed on the distri-

bution of ∆U then the parameter α could also be estimated e.g. by maximum

likelihood methods.

2.7 Simulation

For an illustration of the estimator in the univariate case, remember the panel

data model in (2.2.1). Within this class of models, we constructed two leading

specifications: a second and a third-order polynomial in the sole regressor Xk,t.

Yk,t = Φ (Xk,t, Ak) + Uk,t where:

Φ (Xk,t, Ak) = A0,k + A1,kXk,t + A2,kX
2
k,t Quadratic 1D Model

Φ (Xk,t, Ak) = A0,k + A1,kXk,t + A2,kX
2
k,t + A3,kX

3
k,t Cubic 1D Model

where, for all k = 1, . . . , n and t = 1, . . . , T :

• Aj,k ∼ N (0, .5) ∀ j ∈ {0, 1, 2, 3}

• Xk,t ∼ .5 + ex ex ∼ N (0, .5)
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• Uk,t ∼ ev ev ∼ Laplace(0, .1)

Since this is a univariate case, we can simply nonparametrically estimate the

distribution of the conditional characteristic functions by using our estimator

from Equation (2.4.6).

We select a proper α to optimize our results, and determine the bandwidths

in the following way: h1 = n−1/(4+α), h2 = 2h1, h3 = h1, h0 = h2
1, as suggested

by Theorem 2.4. While these are the asymptotically most efficient bandwidths,

there may be better bandwidths in practical application. The restrictions that

the bandwidths must obey imply that 0 < h1 < h2 < ρ and h3 > 0.

We will compute the values of µ and σ to minimize the Euclidean distance

between φ̂Z(s, x) and the characteristic normal distribution.

φ∆Z(s, x) = exp(iµs− σ2s2/2)

2.7.1 Results in the Baseline Specification

The specifications outlined above have easily represented true values. These

are given by:

Zk,t :=
∂Φ

∂x
(x,A)|x=Xk,t = A1,k + 2A2,kXk,t Quadratic 1D Model

Zk,t :=
∂Φ

∂x
(x,A)|x=Xk,t = A1,k + 2A2,kXk,t + 3A2

3,kX
2
k,t Cubic 1D Model

To display the true model, we use an oracle kernel density estimator that uses

the (in the real world unobserved) values of Zk.t. Figures 2.2 and 2.3 show the

results comparing our estimator to the true distribution estimated by such an

oracle kernel density estimator.

Start out by considering Figure 2.2: The blue line in the left two graphs

corresponds to the true mean, resp., standard deviation, of the conditional

marginal effects. The left two graphs display moreover the estimated condi-
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tional means, resp. standard deviations, for each value of x, and the corre-

sponding estimation uncertainty as given by bootstrap 95% confidence bands.

As is evident, the estimated means track the true values very closely, while

the standard deviations perform (expectedly) worse, yet still deliver a quite

satisfactory fit.

On the right are two contour graphs showing first a contour plot of the

true conditional density of the marginal treatment effects along with the condi-

tional means, as estimated using again an oracle kernel density estimator, and

secondly an estimate of the conditional densities estimated using our method.

As before, our estimator for the density of marginal effects matches the true

distribution of the marginal effect very closely.

Figure 2.2: Estimates of quadratic 1D model using: α = 2 and N = 10,000.The
black line is our estimate. The dotted lines are our 95% confidence bands
estimated with 100 bootstraps. The blue line is the true means and standard
deviation we are trying to estimate.

Figure 2.3 then repeats the exercise for the cubic model and obtains similar,

if slightly worse, performance, which is to expected given the slightly more

complex model.

We also include an estimate of the quantiles of marginal effects in Figure 2.4,

using our approach. This is done by inferring the quantiles from the conditional

normal density, for which we have estimates of µ and σ for each value of X.
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Figure 2.3: Estimates of cubic 1D model using: α = 2 and N = 10,000. The
dotted lines are our 95% confidence bands estimated with 100 bootstraps. The
blue line is the true means and standard deviation we are trying to estimate.

Figure 2.4: Estimates of Quantile Effects.
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Note that these are conditional densities of marginal effects, so the most

dense regions are on the boundaries where the standard deviation is the lowest,

even though most of the data are near the mean of X. We can also estimate

the joint densities of Z := ∂Φ
∂x

(x,A) and X, by multiplying our estimate of the

conditional density with the density of X, f(x). We estimate the density of

X using a kernel density estimation function. The resulting joint densities are

displayed in Figure 2.5 below:

Figure 2.5: Estimates of joint distribution of the quadratic 1D model on the
left and of the cubic 1D model on the right using the same parameters as above.

2.7.2 A Violation of Conditional Normality: Skewed Distribution

of Effects

Next, in order to evaluate the robustness of our estimation procedure, we study

the performance of our estimator in a simulation scenario which violates the

conditional parametric assumption imposed for semiparametric estimation. We

will assume that A comes from a mixed normal distribution.

• Aj,k ∼ 0.5 · N (0.7, 0.2) + 0.5 · N (−0.25, 0.1) ∀ j ∈ {0, 1, 2, 3}

This function is skewed to the right, i.e., it will not exhibit symmetrical

marginal effects. The results for both the cubic case and quadratic case are
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included below. In Figures 2.6 and 2.7, we see that our estimates of the means

are still quite accurate. However, our estimates for the standard deviation are

slightly too high, since the estimated density exhibits a wider spread because

of the skewed density of marginal effects.

Figure 2.6: Estimates of quadratic 1D model using: α = 2 and N = 10,000.The
black line is our estimate. The dotted lines are our 95% confidence bands
estimated with 100 bootstraps. The blue line is the true means and standard
deviation we are trying to estimate.

Moreover, the joint and conditional estimated densities (see Figures 2.6,

2.7, and 2.8) do a reasonable job in capturing the general orientation of effects,

but are unsurprisingly not fully able to capture the true model perfectly, as

we (wrongly) impose normality of the conditional distribution. Note, however,

that estimated conditional means are quite close to the true results, and the

overall performance appears to be reasonably robust against violations of the

parametric specification.

2.8 Empirical Application

In this section, we study the performance of our estimation procedure using

real world data. We consider the estimation of the distribution of marginal

effects of every additional dollar on the consumption of junk food. Because
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Figure 2.7: Estimates of cubic 1D model using: α = 2 and N = 10,000. The
dotted lines are our 95% confidence bands estimated with 100 bootstraps. The
blue line is the true means and standard deviation we are trying to estimate.

Figure 2.8: Estimates of joint distribution of the quadratic 1D model on the
left and of the cubic 1D model on the right using the same parameters as above.
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of the implied health consequences, as outlined below this question is highly

policy relevant. In addition, our model is very well suited to capture differences

in these marginal effects between wealthy and poor households, which are not

captured at all by linear random coefficients models. This ability to exhibit

differences for different wealth and income levels is crucial for the policy debate,

as it is widely believed that excessive consumption of junk food is particularly

prevalent at the lower end of the income distribution. As such, we hope that

our estimator is able to inform this policy debate by providing a more nuanced

picture of the distribution of marginal effects.

We start out with an overview of the data we use in our estimation exercise.

After that, we provide a brief review of the policy debate surrounding junk food

demand, especially with respect to differences in income. We then display our

empirical findings which corroborate many of the suggestions put forward in

the literature.

2.8.1 Data

2.8.1.1 An Overview

For our application, we use the Nielsen Scanner Dataset which is available

through the Kilts Center at the University of Chicago Booth School of Busi-

ness2. We will focus our study on the year 2014 where there are about 55,000

individuals. This is a helpful dataset for estimating demand behavior since it

contains detailed information based on price and quantity of all retail purchases

as well as detailed household characteristics for all consumers. The data contain

a representative sample of households in the United States who use in-home

scanners to record all of their purchases intended for personal, in-home use.

2Researcher(s) own analyses calculated (or derived) based in part on data from The Nielsen
Company (US), LLC and marketing databases provided through the Nielsen Datasets at
the Kilts Center for Marketing Data Center at The University of Chicago Booth School of
Business. The conclusions drawn from the Nielsen data are those of the researcher(s) and do
not reflect the views of Nielsen. Nielsen is not responsible for, had no role in, and was not
involved in analyzing and preparing the results reported herein.
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Nielsen matches the product scanned by the household to the actual price of

the store where the product was bought. Nielsen estimates that about 30% of

household consumption is accounted for by these purchases.

We will call this sum over all Nielsen expenditure categories total expen-

diture; under additive separability of the utility function this is the relevant

total outlay variable. The same variable also takes the place in derivations

involving economic rationality - under additive separability, this is the relevant

“income” variable, e.g., to analyze Slutsky negative semidefiniteness. For this

model, we estimate the total outlay (“income”) and own price elasticities and

the marginal effects of an additional unit of total outlay (“income”) on the

demand for junk food. Nielsen aggregates millions of universal product codes

(UPC) into different groups of food.

We define junk food as any food classified as potato chips, candy or car-

bonated beverages by Nielsen. Junk food is a good example in our situation

because these items lie on one extreme of the nutrition-taste trade-off (Blay-

lock et al., 1999). Junk food sacrifices almost all of its nutrition for taste. We

aggregate the data to a monthly level such that period 1 is January 2014 and

period 2 is February 2014. Of course, we could use different months as the time

periods in our dataset as long as these periods exclude the irregular Christmas

shopping period.

Prices are more precisily an aggregate price index called Stone-Lewbel (SL)

cross section prices (see Lewbel (1989) and Hoderlein and Mihaleva (2008)).

Generally speaking, SL prices use the fact that within a category of goods

(junk food in our case), people have different tastes for the individual goods.

Using standard aggregate price indices for junk food implicitly assumes that

all individuals have identical Cobb Douglas preferences for all goods within

this category, but SL prices allow all individuals to have heterogeneous Cobb

Douglas preferences for the various commodities in this bundle. This implies
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that the typical approach of using aggregate price indices is a restrictive case of

using SL prices. For this reason, SL prices should always be used when possible.

Total expenditure for all Nielsen goods and all junk food is aggregated each

month as well. In order to get the proper expenditure, we only use households

with two individuals and no children and divide expenditure by two, in order

to estimate average expenditure per consumer. This is justified, as junk food

is arguable a private good, and household composition effects can be expected

to be negligible.

2.8.1.2 Limitations

There are a few concerns with the data. The data rely on participants success-

fully recording their purchases in their home, so they may suffer from recording

error. The specific issue that we might be concerned with is that consumers

may consume a good when it is purchased and will not record the purchase

when they return home. Einav et al. (2010) finds that consumable goods like

soft drinks, chips, or candy are likely to be consumed before getting home so

are more likely to not be scanned. There are also recording errors such as when

a six-pack of goods are purchased and recorded as quantity six. However, these

errors only seem to have minor effects. When compared to data from grocery

store recorded sales, the data in Nielsen Homescan data matched 94% of the

time (Einav et al., 2010).

Another potential source of measurement error is related to the price rather

than the quantity. Individuals record their purchases by scanning the items they

buy when they get home. The individuals input the quantity they purchase,

and Nielsen matches it with the average price of the good at the store where

they purchased it that week. This can lead to two types of errors. The first

comes from the price changing in the middle of the week, though frequent

changes during several weeks are less likely. The second type of error comes
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from not including discounts from loyalty cards. Einav et al. (2010) examines

a retailer used in the Homescan data which has loyalty cards and finds that

loyalty cards are used in about 75-80% of the transactions. Further, this would

bias our prices and expenditure upwards. When comparing Homescan data

with data from the retailer, Einav et al. (2010) finds that the prices used in the

Homescan data is about 7% higher and the overall expenditure is 10% higher.

On the other hand, these price measurement errors may be overestimated since

some retailers do not have loyalty cards at all.

Finally, homescan data errors are comparable to errors found in other com-

monly used data sets. Aguiar and Hurst (2007) finds that life-cycle pattern

of household expenditures recorded in Homescan Data is consistent with those

reported for food expenditures at home in Panel Study of Income Dynamics

(PSID). Einav et al. (2010) finds that these issues are not more serious than

those in any other consumption surveys like the Current Population Survey

(CPS). Lin (2018) compares the fraction of expenditures on different categories

of products in the Nielsen Homescan Data and finds the results consistent to

results from the Consumer Expenditure Survey (CES). In sum, we feel that

these potential sources of measurement error may bias our results somewhat,

but are unlikely to invalidate them.

2.8.2 Literature Review

There is a large literature on the determinants, extent and consequences of the

consumption of junk food. As regards determinants, sometimes low-income

propensity to consume unhealthy is attributed to the cost of healthy food (see,

e.g.,Drewnowski and Darmon (2005), Golan et al. (2008), and Drewnowski and

Eichelsdoerfer (2010)). However, Carlson and Frazão (2012) found that junk

food is cheaper on a per-calorie basis than healthier foods like fruits, vegetables,

whole grains and proteins, but that the healthier foods are actually cheaper on
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a per-serving basis. Rider et al. (2012) found that health attributes have been

found to not be associated with higher average transaction prices.

When it comes to extent and possible consequences, obesity is one of the

most important health problems in the United States, as well as many other

countries. Many of the junk foods we consider are high in sugar, and excess

sugar consumption is strongly linked with many diet-related diseases such as

diabetes, cancers and heart disease (World Health Organization, 2015). Obe-

sity leads to several hundred billion dollars spent on medical costs in the US

annually, about 10-27 percent of all medical costs Finkelstein et al. (2009);

Cawley et al. (2015). Thus, consumption of unhealthy food, such as junk food,

can have a major impact on individual well being as well as the economy at

large.

Our estimator allows for a more nuanced picture of the demand patterns

for junk food, and hence enables policy makers to better target policy mea-

sures on subgroups of the population. Obesity and diabetes rates are higher for

low income individuals (Drewnowski and Specter, 2004; Robbins et al., 2001).

Binkley and Golub (2011) and Chen et al. (2012) all found that low-income

households consume less nutritious foods. Allcott et al. (2017) showed that

even when controlling for supply side factors, high-income households have a

greater demand for healthy foods. We add to this literature a more differen-

tiated description of the distribution of marginal effects for individuals with

different incomes, which crucially relies on the added flexibility that our ap-

proach warrants relative to linear random coefficients models, e.g.,Graham and

Powell (2012).

2.8.3 Income Elasticities and Marginal Effects of Income

To begin, as a building block for our model, but also to obtain naive “income”

elasticities, we display the mean budget share of junk food (i.e., the proportion

109



Figure 2.9: Nardaya-Watson kernel regression estimator of Budget Share of
Junk Food based on total expenditures

of Nielsen recorded junk food over all Nielsen recorded items) for each house-

hold, ωk,t, as the dependent variable and total log expenditure, Ek,t, as the

right hand variable in the first period (denoted t). Throughout this subsection,

we control for prices by using households whose prices are in a neighborhood

of the median price in period t, denoted p. Thus, the model we estimate is as

follows:

ωk,t = Φ (Ek,t, Ak,t, pt) + Uk,t (2.8.1)

The associated graph is included in Figure 2.9. Note that budget share is

decreasing with total expenditure which strengthens the idea that low-income

households eat more unhealthy food than high-income households. The convex

curve implies that both the marginal effect of income on consumption of junk

food and the income-elasticity of demand of junk food varies across expenditure.

We will use our method to estimate Zj(e, p) = ∂Φ
∂e
e. We then follow standard

arguments from Almost Ideal Demand System (AIDS) (Deaton, 1980), and use

equation (2.8.2) estimate to identify and estimate the elasticity of income, εd
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Figure 2.10: Estimates of Elasticity of demand using: α = 6. For this sample,
N = 6, 870

using our estimate of Zj(e, p) from equation (2.8.1).

εdj (e, p) =
Zj(e, p)

ωj(e, p)
+ 1 (2.8.2)

To utilize this for the estimation of the elasticities, we use ωj(e, p) which, as

mentioned, is estimated using Nadaraya-Watson kernel regression estimator.

This allows us then to estimate the conditional density of income elasticities of

demand for junk food. The means and standard deviations of the coefficients, as

well as the conditional density of marginal effects, are displayed in Figure 2.10.

The pointwise standard errors have been constructed using the naive bootstrap.

Note that the income elasticities of demand decrease with expenditure, and are

clearly significantly non-linear. Thus, given an one percent increase in income,

low-income individuals will increase their junk food consumption by a higher

percentage than high-income individuals.

Note that these are estimates of the conditional density of income elas-

ticities of the demand for junk food conditioned on “income” (as discussed,

actually total Nielsen goods expenditure). We can estimate the joint density

by multiplying this conditional density by the distribution of total expenditure,
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measured using a kernel density estimation. The result of this procedure can be

seen in Figure 2.11 where we also include estimates of the conditional quantiles

of the distribution of income elasticities and income.

Figure 2.11: Joint distributions are calculated by multiplying the conditional
distribution by the distribution of expenditure.

Furthermore, we can then use the elasticity estimates to estimate the density

of marginal effects of an unit of additional income on the demand for junk food,

using the following identity: Let q be the quantity of junk food consumed.

Consider

εd(e, p) =
∂ log(q)

∂ log(e)
=
∂q

∂e

e

q
=
∂q

∂e

p

ω(e, p)
(2.8.3)

Since we control for own price and keep it constant, we can normalize price

to be equal to one for computational ease. Thus, we can estimate the marginal

effect of an additional dollar on consumption of junk food, ∂q
∂e

. The result of this

analysis is displayed in Figure 2.12, along with the quantile of these marginal

effects. The effects follow the same trend as the income elasticities of demand,

but the difference between low-income individuals and high-income individuals

is more pronounced.

To understand this graph better we show, in Figure 2.13, the estimated

density of marginal effects of income on consumption of junk food for different
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Figure 2.12: Estimates of the marginal effect of an additional dollar of expen-
diture on junk food using: α = 6. For this sample, N = 6, 870

groups based on their income quantile. Specifically, we graph the distribution

of marginal effects for those at the .2, .4, .6 and .8 quantiles of the income

distribution. To illustrate this point, consider the following example. In our

example, low income individuals have income elasticities of about 0.8 and high

income individuals have income elasticities of about 0.5. Consider that low

income budget share of junk food is 0.08 while high income budget share of junk

food is about 0.04. If we plug these values into equation (2.12), for low income

individuals we obtain 0.8 = ∂q
∂e

1
0.08

so that the marginal effect is ∂q
∂e
∼= 0.064.

For high income individuals, ∂q
∂e
∼= 0.02. Thus, while the income elasticity of

low income individuals is on average only 50% higher than the elasticity of

high income individuals, the marginal effect of income on quantity of junk food

consumed of poor individuals is more than twice as high compared to their high

income counterparts. In other words, for every dollar they spend on Nielsen

goods, they consume more than twice the quantity of junk food.

Remember that these densities of marginal effects are conditional on total

expenditure (“income”). To estimate the joint density, as before we multiply

the estimate of the conditional density by a kernel density estimate of total

expenditure (“income”). The results for the joint density of marginal effects
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Figure 2.13: Conditional density and different expenditure quantiles of the
estimates of marginal effect.

are found in Figure 2.14, along with the density of marginal effects for those in

the .2, .4, .6 and .8 quantiles of the “income” distribution. As is to be expected,

this reweighting results in the 0.6 quantile of the income distribution to deliver

the density with largest values, rather than the edge case of the 0.8 quantile as

is the case with the conditional densities.

Figure 2.14: Joint distributions are calculated by multiplying the conditional
distribution by the distribution of expenditure

Finally, note that a naive estimator could be based on an estimated deriva-

tive of the budget share graph in Figure 2.9. However, we expect these estimates

to be biased because they do not account for the endogeneity stemming from
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the correlation between the high dimensional unobservables and income. The

results are included below in Figure 2.15, which exhibit significant differences

from our previous estimates.

Figure 2.15: Mean and 95% bands of the mean of our estimates of income
elasticity and marginal effect estimates compared to a nonparametric estimate
of the derivative of the budget share graph.

Additional results with a different method to control for prices can be found

in the appendix.

2.8.4 Own Price Elasticities

Following similar steps as above, we estimate own-price elasticities by using the

budget share of junk food for each household, ωk,t, as the dependent variable

and log of our SL price indices, Pk,t, as the right hand variable, but control

again for income by selecting households with total expenditure close to the

median, denoted e. Thus,

ωk,t = Φ (e, Pk,t, Ak,t) + Uk,t (2.8.4)

We will use our method to estimate Z̃j(p, e) = ∂Φ
∂p

(p, e, A) |p=Pj , and use

equation (2.8.5) to identify the elasticity of income, εp using our estimate of

Z̃j(e, p) from equation (2.8.4).
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εpj(e, p) =
Z̃j(e, p)

ωj(e, p)
(2.8.5)

We use again the Nadaraya-Watson estimator of ωj(e, p), now as a function

of price, see Figure 2.16.

Figure 2.16: Nadaraya-Watson kernel regression estimator of Budget Share of
Junk Food based on prices

With the estimate of budget share conditional on price, we can use our esti-

mate of the density of Z̃j(e, p) and equation (2.8.5) to estimate the conditional

distribution of own-price elasticities of for junk food. Below are the means and

standard deviations of the coefficients as well as a contour map of the density

in Figure 2.17, along with bootstrap standard errors. Note that own-price elas-

ticities generally are negative and decrease with prices, i.e., increase in absolute

value. Thus, given an increase of one percent in price, the reduction in demand

for high-priced junk food is larger than for low-priced junk food.

Note again that these estimates are for the own-price elasticity for junk

food conditional on price (and income). We can estimate the joint distribution

by multiplying this conditional distribution by the density of expenditure, es-

timated using a kernel density estimation, see Figure 2.18 for the result. We

also include the quantile estimates of own-price elasticities which allows to as-

sess the difference in quantiles of consumers’ own-price elasticities at different
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Figure 2.17: Estimates of Elasticity of demand using: α = 6. For this sample,
N = 8, 086

prices.

Figure 2.18: Joint distributions are calculated by multiplying the conditional
distribution by the distribution of prices.

Finally, we compare our results again with the naive procedure that takes

the derivative of the budget share regression, which differ because they do

not properly account for the correlation stemming from the high dimensional

correlated unobservables, see Fig 2.19.
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Figure 2.19: Mean and 95% bands of the mean of our estimates of own-price
elasticity compared to a nonparametric estimate of the derivative of the budget
share graph.
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2.9 Appendix

2.9.1 Proofs

Proof of Lemma 2.2.1: As B(R) is generated by a countable system of sets (e.g.

consider the intervals (−∞, q], q ∈ Q) the uniqueness theorem for probability

measures guarantees that the measures ζj and ζ̃j coincide almost surely by the

assumptions of the lemma. Thus the set

Zj :=
{
x ∈ RT : ζj(x) 6= ζ̃j(x)

}
,

is a L(X)-null set; and Zj is open in RT thanks to the continuity of ζj and

ζ̃j. Hence, the random vector X lies in the closed set SX\Zj almost surely. As

SX is defined as the intersection of all those closed sets in which X is located

almost surely, it follows that

SX = SX\Zj ,

so that ζj(x) = ζ̃j(x) for all x ∈ SX . �

Proof of Lemma 2.3.1: For any x ∈ R, we consider the (T + 1) × (T + 1)-

Vandermonde matrix M(x) which contains p(x1)†, . . . , p(xT )†, p(x)† as its rows;

and the matrix N(x) which is obtained from M(x) by replacing its last row

by q(x). Note that detN(xj) = 0 is equivalent to linear independence of the

vectors p(x1), . . . , p(xT ), q(xj). Thanks to the multilinearity of the determinant

and the well-known representation of determinants of Vandermonde matrices

we deduce that

detN(x) =
d

dx
{detM(x)} =

( ∏
1≤k<l≤T

(xl − xk)
)
· d
dx

T∏
t=1

(x− xt) .
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Thus, detN(xj) vanishes if and only if at least two of the x1, . . . , xT coincide

or the polynomial x 7→
∏T

t=1(x−xt) has a multiple zero at xj. The latter claim

requires at least one of the xt for t 6= j to coincide with xj, which implies the

first claim. �

Proof of Lemma 2.3.2: We easily recognize by definition that the vectors

p(x1), . . . , p(xT ), q(xj) are all continuous functions in x ∈ RT . Applying a

Gram-Schmidt process we obtain that

p∗k(x) = p(xk)−
k−1∑
l=1

(
p(xk)

†p∗l (x)
)
p∗l (x)/

∣∣p∗l (x)
∣∣2 , k = 1, . . . , T ,

q∗j (x) = q(xj)−
T∑
l=1

(
q(xj)

†p∗l (x)
)
p∗l (x)/

∣∣p∗l (x)
∣∣2 ,

τj(x) =
∣∣q∗j (x)

∣∣2 ,
for x ∈ X so that τj is continuous on TX as well. The positivity of τj is an

immediate consequence of Lemma 2.3.1 as τj(x) = 0 implies linear dependence

between p(x1), . . . , p(xT ), q(xj). �

Proof of Lemma 2.3.3: For any x, y ∈ RT , b ≥ 0, we deduce by the triangle

inequality that

F
(
ζ

[b]
j (x), ζ

[b]
j (y)

)
≤ F

(
L(A[0] | X = x),L(A[0] | X = y)

)
+ sup

s∈R

∣∣ψA[0]|X=x

(
sq(xj)

)
− ψA[0]|X=x

(
sq(yj)

)∣∣
+ sup

s∈R

∣∣ψA[0]|X=x

(
sq(xj)

)∣∣ · ∣∣∣ exp
(
− 1

2
bs2τ 2

j (x)
)
− exp

(
− 1

2
bs2τ 2

j (y)
)∣∣∣ .

(2.9.1)

The first term in (2.9.1) converges to 0 as y → x by Assumption (A.2.4). As A[0]

has a conditional Lebesgue density given X = x it follows from the Riemann-
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Lebesgue lemma (see e.g. Bochner et al. (1949)) that lim|u|→∞ ψA[0]|X=x(u) = 0.

Thus, for any ε > 0, there exists some R > 0 such that
∣∣ψA[0]|X=x(u)

∣∣ < ε/4 for

all u with |u| > R. Since |q(x)| ≥ 1 for all x ∈ R the second term in (2.9.1)

obeys the upper bound

ε/2 + sup
|s|≤R

∣∣ψA[0]|X=x

(
sq(xj)

)
− ψA[0]|X=x

(
sq(yj)

)∣∣ . (2.9.2)

As the function x 7→ q(x) is continuous and any characteristic function is

uniformly continuous, (2.9.2) is bounded from above by ε whenever |y − x|

is sufficiently small with respect to only ε and R. Therefore the second term

tends to 0 as y → x.

It remains to consider the third term in (2.9.1). Let ε and R be as in the

previous paragraph. Then the third term is smaller or equal to

ε/2 + sup
|s|≤R

∣∣∣ exp
(
− 1

2
bs2τ 2

j (x)
)
− exp

(
− 1

2
bs2τ 2

j (y)
)∣∣∣ . (2.9.3)

As x 7→ τj(x) is continuous (see Lemma 2.3.2) and the exponential mapping

is uniformly continuous on any bounded domain, the term (2.9.3) is bounded

from above by ε whenever |y − x| is sufficiently small with respect to ε and R.

Finally we have shown that all three terms in (2.9.1) converge to 0 as y tends

to x. �

Proof of Lemma 2.3.4: Applying Fourier transformation to both sides of the

given equality we obtain that

Qft(x) · exp
(
− 1

2
αx2
)

= Qft(x) · exp
(
− 1

2
α′2
)
, ∀x ∈ R .

As Qft is continuous and satisfies Qft(0) = 1 there exists a non-void open

neighborhood of 0 in which Qft does not vanish. Therefore the functions
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x 7→ exp
(
− αx2/2

)
and x 7→ exp

(
− α′2/2

)
coincide on this neighborhood

so that α = α′. �

Proof of Theorem 2.3: Thanks to (2.5.4) and the compact support of fX , which

is guaranteed by Assumption (A.2.5’), we may easily verify the first part of

Assumption (A.2.6) for some cΦ sufficiently large. With respect to the second

part we deduce that

F
(
ζ1(y), ζ1(z)

)
≤ cζ · |y − z| ,

for all y, z ∈ R where cζ := ‖K ′‖∞/2. Thus Assumption (A.2.6) holds true.

As the statistic ∆Yj, j = 1, . . . , n, has been shown to be sufficient for ζ1(x)

and, hence, for the parameter θ, we may consider P
(n)
θ as the image measure of

this statistic. Now we put θn := 3d ·n−1/(4+2α) so that at least one of the events

{|θ̂n − θn| > d · n−1/(4+2α)} and {|θ̂n| > d · n−1/(4+2α)} occurs. For sufficiently

large n it holds that

sup
θ∈[0,1]

P
(n)
θ

[
|θ̂n − θ| > d · n−1/(4+2α)

]
≥ 1

2
− 1

2
TV
(
P

(n)
θn
, P

(n)
0

)
.

By standard information-theoretic arguments, we deduce that

TV
(
P

(n)
θn
, P

(n)
0

)
≤

2
{(

1 + Eχ2
(
f

(θn)
B|X ∗ f∆U(·/(X1 −X2)), f

(0)
B|X ∗ f∆U(·/(X1 −X2))

))n
− 1
}1/2

where χ2 stands for the χ2-distance between two measures. By Parseval’s iden-
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tity, it holds that

Eχ2
(
f

(θn)
B|X ∗ f∆U(·/(X1 −X2)), f

(0)
B|X ∗ f∆U(·/(X1 −X2))

)
≤ const. · θ2

n · EK2
(
|X − x|/θn

)
·
∫ ∣∣{f0 cos(4·)} ∗ f∆U(·/(X1 −X2))

∣∣2(t)(1 + t4)dt

= const. · θ2
n ·max

{
EK2

(
|X − x|/θn

)
|X1 −X2|−2`2

·
∫ ∣∣{f ft0

}(`1)
(t± 4)

∣∣2 ∣∣ψ(`2)
∆U (t/(X1 −X2))

∣∣2
: `1, `2 ∈ N0, `1 + `2 ≤ 2

}
= O

(
θ4+2α
n

)
.

Therefore, choosing d > 0 sufficiently small, we may ensure that

lim sup
n→∞

TV
(
P

(n)
θn
, P

(n)
0

)
< 1 ,

which completes the proof of the theorem. �

Proof of Theorem 2.4: Writing

N0 :=
n∑
k=1

1S(h0)X

(Xk,1, Xk,2) ,

N1 :=
n∑
k=1

1S(h1,h2)X

(Xk,1, Xk,2) · 1[0,h3](|Xk,1 − x1|) ,

we introduce the events

E0 := {N0 ≥ c · nh0} ,

E1 := {N1 ≥ c · nh3(h2 − h1)} ,

for some constant c > 0. By Chebyshev’s inequality and Assumption (A.2.5’)

we deduce that the probabilities for the complements of E0 and E1 converge to
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zero as n tends to infinity for c > 0 sufficiently small. The events E0 and E1 are

contained in the σ-field σX which is generated by the random variables Xk,t,

k = 1, . . . , n, t = 1, 2.

Now put εn := dn−1/(4+2α) for some constant d > 0. By Assumption (A.2.9)

the inequality

∫ R

−R

∣∣{ζ1(θ̂;x)}ft(s)− {ζ1(θ;x)}ft(s)
∣∣2ds ≥ c2

p ε
2
n ,

holds true on the event {|θ̂ − θ| > εn}. Then it follows from the definition of θ̂

that ∫ R

−R

∣∣ψ̂(h0,h1,h2,h3)
Z1

(x; s)− {ζ1(θ;x)}ft(s)
∣∣2ds ≥ 1

4
c2
p ε

2
n ,

whenever |θ̂ − θ| > εn. Hence, by Markov’s inequality, we deduce that

P
[
|θ̂ − θ| > εn

]
≤ 4c−2

p ε−2
n

·
∫ R

−R
E 1E0∩E1

∣∣ψ̂(h0,h1,h2,h3)
Z1

(x; s)− {ζ1(θ;x)}ft(s)
∣∣2ds

+ 1− P (E0 ∩ E1) . (2.9.4)

By a standard bias-variance decomposition for the conditional expectation, the

Cauchy-Schwarz inequality and Assumption (A.2.6), we obtain that

E
{∣∣ψ̂(h0,h1,h2,h3)

Z1
(x; s)− {ζ1(θ;x)}ft(s)

∣∣2 | σX , ψ̂(h0)
∆U

}
≤ (2ρn + 1)/

{
ρn + Ξ̂U

}
+ 4

{
cΦRh2/2 + cζ(2h3 + h2)

}2
+ 4 Ξ̂∆ /

{
ρn + Ξ̂U

}
,

(2.9.5)
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for all s ∈ [−R,R] where σX denotes the σ-field generated by X1, . . . , Xn; and

Ξ̂U :=
n∑
k=1

∣∣ψ̂(h0)
∆U (s/∆Xk)

∣∣2 · 1S(h1,h2)X

(Xk,1, Xk,2) · 1[0,h3](|Xk,1 − x1|) ,

Ξ̂∆ :=
n∑
k=1

∣∣ψ̂(h0)
∆U (s/∆Xk)− ψ∆U(s/∆Xk)

∣∣2 · 1S(h1,h2)X

(Xk,1, Xk,2) · 1[0,h3](|Xk,1 − x1|) ,

ΞU :=
n∑
k=1

∣∣ψ∆U(s/∆Xk)
∣∣2 · 1S(h1,h2)X

(Xk,1, Xk,2) · 1[0,h3](|Xk,1 − x1|) .

We deduce by Assumption (A.2.6) that

E
(
Ξ̂∆ | σX

)
≤ N1/N0 + R2c2

Φ ΞU h
2
0/h

2
1 . (2.9.6)

Thus, on the event E3(s) := {Ξ̂U > ΞU/2}, |s| ≤ R, the conditional expectation

of term (2.9.5) given σX obeys the upper bound

O
(
h2

2 + h2
3 + h2

0/h
2
1 + 1/ΞU +N1/(ΞUN0)

)
, (2.9.7)

where Ξu has the asymptotic lower bound N1 ·h2α
1 with uniform constants by the

Assumptions (A.2.5’) and (A.2.8). On the complement of E3(s), the conditional

expectation of term (2.9.5) given σX is bounded from above by

O(n2) · exp
{
−N0(1− 1/

√
2− cΦh0/h1)2c2

U,1(1 +R/hα1 )−2/8
}
, (2.9.8)

by Assumption (A.2.6) and Hoeffding’s inequality. Applying the expectation

to the terms (2.9.7) and (2.9.8) – multiplied by 1E0∩E1 – we conclude that the

right hand side of (2.9.4) tends to zero if, first, the limit superior is taken with

respect to n→∞ and, then, the limit d→∞ is applied. �
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Proof of Theorem 2.5: It suffices to show the existence of some c > 0 such that

lim sup
n→∞

P
(∣∣α̂− α∣∣ > c/ log n

)
= 0 . (2.9.9)

Using that the probability of E4 (equivalent to the event E0 from the proof of

Theorem 2.4 when replacing h0 by h4) converges to 1; that (2.4.2) holds true;

and Hoeffding’s inequality – conditionally on σX – we can verify (2.9.9) when

c is sufficiently large with respect to γ. �

2.9.2 Summary Statistics

Below is the Summary Statistics for the data we used in our empirical applica-

tion.

Table 2.1
January 2014 February 2014

SL Price Index 0.7751 0.8069
(0.5850) (0.5769)

Junk Food Share 0.0567 0.0639
(0.0596) (0.0631)

Total Expenditure 477.96 448.33
(325.43) (302.09)

This table contains the mean and standard deviation (in parenthesis beneath the means)
for the variables that we use in our analysis

2.9.3 Application with Different Prices

Below are the results when we control for prices a little differently. Here, price

is controlled such that price is centered around the .4 quantile. This serves as

a robustness check on the results from our empirical application of the paper.

The overall trends are consistent in both cases.

The only difference of significance is that the decline of mean Elasticity of

Demand does not change as much for low-income vs. high-income individuals

(see Figure 2.20 compared to Figure 2.10). For example, in our base case,
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Figure 2.20: Estimates of Elasticity of demand using: α = 6. For this sample,
N = 8, 631

mean income elasticity for low-income individuals is about 0.8 and for high

income individuals it is about 0.5. In our adjusted case, the income elasticity

of low-income individuals is 0.8 while for high income individuals it’s about 0.6.

This is a minor difference and the results from these estimates easily fit in our

confidence bands from our paper.

Our marginal effects estimation in this case is also very similar (see Figures

2.12 and 2.22). These results imply that these results are consistent across

different prices, as long as prices are properly controlled for.
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Figure 2.21: Joint distributions are calculated by multiplying the conditional
distribution by the distribution of expenditure.

Figure 2.22: Estimates of the marginal effect of an additional dollar of expen-
diture on junk food using: α = 6. For this sample, N = 8, 631
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Figure 2.23: Conditional density and different expenditure quantiles of the
estimates of marginal effect.

Figure 2.24: Joint distributions are calculated by multiplying the conditional
distribution by the distribution of expenditure
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Chapter 3

A Binary Choice Difference-in-Differences Model

with Heterogeneous Treatment Effects and an

Application on Soda Taxes

3.1 Introduction

Difference-in-Differences Models are a well established method for policy evalu-

ation and treatment effect estimation in the applied microeconomics literature.

Some early examples of the use of Difference-in-Differences include Ashen-

felter (1978) and Ashenfelter and Card (1985), who have used Difference-in-

Differences methods to quantify the effects of training programs on earnings.

Other well-known examples are Card (1990) and Card and Krueger (1994), who

have explored the effects of exogenous changes in labor market conditions on

employment and wages. A more recent paper by Abadie and Dermisi (2008)

estimates the effects of a terrorist threat on agglomeration economies in central

business districts using a Difference-in-Differences approach.

The reasons for the abundant use of Difference-in-Differences models in ap-

plied research are manifold. First, Difference-in-Differences models are easy to

implement, as they can be estimated via simple OLS. This allows for covariates

to be included as additional regressors in a straightforward way. Second, one

of the coefficients from the OLS regression can be directly interpreted as the

Average Treatment Effect on the Treated (ATT) which is usually the object of

interest in the treatment effect literature. Third, the Difference-in-Differences

approach does not require a strict exogeneity assumption, as the two-period
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panel structure of the data allows us to deal with time-invariant unobserved

heterogeneity.

Binary outcome variables are very common in applied economics research,

e.g. when studying labor force participation decisions, retirement decisions, fer-

tility decisions, etc. Unfortunately, the standard linear Difference-in-Differences

model breaks down for binary dependent variables as soon as continuous covari-

ates are included in the estimation procedure. The classical OLS assumptions

(constant marginal effects, normality of the error term, and homoskedastic error

terms) are then usually violated and thus standard inference will be wrong.

A possible remedy is to use Probit or Logit models which are able to account

for the non-linearity inherent in models with binary outcome variables, but do

not carry over some of the other convenient properties of standard Difference-

in-Differences model. Namely, the standard Probit and Logit models do not

allows for correlation between treatment status and time invariant unobserv-

ables. Also, the marginal probability of the interaction term of the pre-post

treatment dummy and the treatment-control group dummy does not equal the

ATT as holds true in the standard Difference-in-Differences model for continu-

ous outcomes. While adding heterogeneity to standard Probit or Logit models

has been done using a control function approach (Petrin and Train, 2010), to our

knowledge the proper extension of Differences-in-Differences models to binary

outcome variables allowing for continuous covariates has not been discussed so

far.

Further, neither Probit, Logit or OLS approaches account fully for hetero-

geneity. Specifically, they do not allow for possible correlation of heterogeneous

unobservables. For example, they do not allow for correlation between het-

erogeneous time invariant unobservables and heterogeneous treatment effects.

Ignoring these effects could lead to biased estimates of the ATT, incorrect stan-

dard error estimation and, thus, flawed inference.
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To close this gap in the literature, we propose a nonparametric binary

choice Difference-in-Differences model with heterogeneous treatment effects.

Our model accounts both for the non-linearity that emerges from the binary

outcome setting and for treatment effect heterogeneity via the introduction of

random coefficients. These random coefficients allow us to estimate the dis-

tribution of treatment effects on the treated which allows us to estimate the

quantile treatment effects. As in the original Difference-in-Differences set-up,

our model allows for correlation between treatment status, treatment effect and

time-invariant unobservables.

The main idea of the paper is analogous to continuous outcome Difference-

in-Differences. The data is split into a treatment group, affected by a par-

ticular treatment, and a control group, not affected by this treatment. We

observe units in the treatment and the control group both before the treatment

occurs and after the treatment occurs. It is important that we observe the

same units before and after treatment. Furthermore, it is essential that pre-

treatment observations are not causally affected by later occuring treatment

due to anticipations effects.

In order to identify the ATT in a Difference-in-Differences model, one needs

to be able to compare the actual post-treatment outcomes in the treatment

group with the counterfactual post-treatment outcomes in the treatment group

had treatment not occurred. The former are generally directly observable in

the data. The latter are not and must thus be identified off the Difference-in-

Differences model. How is it done? One has to make some type of common

trend assumption for the treatment and control group. Namely, outcomes would

develop similarly over time in the treatment group and the control group if no

treatment occurred. This allows us to use the control group to isolate the

time trend and thus to predict a post-treatment counterfactual outcome for the

treatment group, absent treatment.
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Several additional layers of complications arise in our case. First, binary

outcome variables force us to work with latent outcome variables instead of

directly observable outcome variables. Second, to identify the whole distribu-

tions of the random coefficients we need to introduce special regressors as the

variation in the binary outcome variables is not sufficient. Third, we switch to

a nonparametric set-up.

Applications: As binary outcome variables are very common in microeco-

nomic modeling, applications of our proposed model are manifold. They range

from the classical labor economic issues of female labor force participation, fer-

tility decisions, and preventive health care decisions all the way to individual

consumer demand estimation as a central question of the industrial organization

literature.

In the labor economics literature, the body of existing applications using

Difference-in-Differences methods in the context of a binary outcome variable

is large. Two recent examples are Staubli (2011) and Campolieti and Riddell

(2012). Both investigate the effect of a change in disability policy on employ-

ment and disability enrollment in Austria and Canada, respectively. Further-

more, papers by Schönberg and Ludsteck (2014) and Bargain et al. (2012) ex-

plore the effects of policy changes on female labor force participation. Schönberg

and Ludsteck (2014) use the expansion in maternity leave coverage in Germany

as treatment, whereas Bargain et al. (2012) make use of the introduction of

divorce laws in Ireland as an exogenous shifter.

Prifti and Vuri (2013) and Dyer and Fairlie (2004) are recent examples of

papers studying the fertility decision and out-of wedlock births, respectively.

Prifti and Vuri (2013) look at the effects of a chance in employment protection

legislation in Italy, whereas Dyer and Fairlie (2004) compare outcomes in states

with family caps with outcomes in states without family caps. Lastly, Gruber

and Poterba (1994) estimate the effects of tax incentives on the decision to buy
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health insurance.

To the best of our knowledge, difference-in-differences methods have so far

not been used in individual consumer demand and willingness-to-pay estima-

tion. Our model would be well-suited for investigating the effect of a public

policy on the willingness-to-pay for a public good via contingent valuation stud-

ies as in Lewbel et al. (2011). Further, it fits our model better than standard

DiD models because one would expect individual willingness-to-pay to be corre-

lated with individual treatment effect. The fact that we are able to identify the

joint distribution of actual and counterfactual latent outcomes, i.e. actual and

counterfactual willingness-to-pay in this context, could be of political relevance.

Our application will examine the effect of a Sugar-Sweetened Beverages

(SSB) tax implemented in Cook County, Illinois. We will do a difference-in-

differences estimation comparing individuals in Cook County to individuals

in neighboring counties. Under reasonable assumptions, our estimator will

evaluate the effect of the SSB tax on consumers’ likelihood to pay for soda.

We will be able to estimate many aspects of the heterogeneous effects of the

tax as well as the ATT.

Related Literature: Difference-in-Differences models have a long tradition

in applied microeconomics. Theoretical literature on Difference-in-Differences

methods is however fairly limited. Lechner (2011) provides an extensive overview

of Difference-in-Differences models for continuous outcome variables. Some re-

cent papers have extended the classical model in several directions. Athey and

Imbens (2006) propose a scale invariant version of the Difference-in-Differences

model. Another model by Bonhomme and Sauder (2011) accounts for treatment

effect heterogeneity and is thus most closely related to our model. However,

Bonhomme and Sauder (2011) along with all other papers cited above, do not

allow for binary outcome variables.

Our paper also contributes to the literature on special regressors. Special
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regressors are exogenous regressors with full or large support that have been

suggested to introduce additional observable variation into e.g. binary choice

models thus helping identification of parameters or distributions of interest.

Leading references are the papers by Lewbel (2000) and Dong and Lewbel

(2015) and the survey article by Lewbel (2014).

Furthermore, our model features nonparametrically identified and estimated

random coefficients and thus relates to the random coefficients literature. Hoder-

lein et al. (2010) discuss nonparametric identification of a linear random coef-

ficient model, whereas Ichimura and Thompson (1998) and Gautier and Ki-

tamura (2013) show nonparametric identification of a binary choice random

coefficient model.

Lastly, there is a large strand of literature on consumer heterogeneity in

discrete choice models used for demand estimation in industrial organization.

Examples include parametric approaches as the random coefficients Logit model

suggested in Berry et al. (1995b), as well as nonparametric approaches as dis-

cussed in Berry and Haile (2010) and Fox and Gandhi (2016).

Outline of the Paper: Section 2 focuses on the main identification result. We

start with a discussion of the precise assumptions we require, and present and

discuss the main result, which establishes the identification of the average treat-

ment effect on the treated (ATT) in the binary choice Difference-in-Differences

Model with heterogeneous treatment effects. Further, we present two exten-

sions. Extension 1 shows identification of the joint distribution of the actual

and counterfactual latent outcomes for the treatment group. Extension 2 out-

lines how covariates can be included in the basic model in two alternative ways.

Section 3 proposes a sample counterpart estimator of our model. Section 4

documents the results from Monte Carlo simulations. Section 5 contains the

results of an empirical application of our estimator on the SSB tax in Cook

County, Illinois. Section 6 contains a summary and concluding remarks.
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3.2 Identification

3.2.1 Basic Model without Covariates

Notation and Assumptions: Our proposed model makes use of the latent

variable formulation and takes the following form for t = 1, 2.

Y ∗1 = B1 − Z1 (3.2.1)

Y ∗2 = B2 +B3D − Z2

B2 = B1 + V2

Yt = 1{Y ∗t < 0}

Yt denotes the binary (observed) outcome variable of interest. Y ∗t denotes the

latent outcome variable, which is unobservable. 1{·} represents the indicator

function, such that Yt = 1 if Y ∗t < 0, and Yt = 0 otherwise. D is a binary

variable denoting whether an individual obtains treatment (D = 1) or belongs

to the control group (D = 0). B = (B1, B2, B3) are random coefficients with

unknown distribution satisfying the above restrictions. V2 can be interpreted as

a time trend plus potential shock at t = 2. B3 denotes the effect of treatment

on the latent outcome variable Y ∗2 . Z = (Z1, Z2) are special regressors.

Example for Empirical Application: Effect of an advertising campaign on

the willingness to pay for a good. D = 1 denotes individuals who are exposed

to the campaign (treatment group), D = 0 denotes individuals who are not

exposed to the campaign (control group). Price, Zt, is chosen randomly from a

known distribution with large support in the course of the contingent valuation

experiment conducted both before and after treatment occurs. At both time

points individuals make decisions on whether they will purchase (Yt = 1) the

good or not (Yt = 0) at price Zt. Yt is observed by the econometrician. B1
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represents the individual preference heterogeneity, i.e. willingness to pay for

the good and B3 the treatment effect. V2 summarizes both trends between

time periods in demand for the good as well as second period shocks. The

latent outcome variable Y ∗t can thus be directly interpreted as the offered price

minus the individual’s willingness to pay, which would be their utility from

purchasing that good. If the willingness to pay exceeds the price, the individual

will purchase the good. 1.

We impose the following assumptions on the model:

Assumption A.3.1 Let (Ω, F, P ) be a complete probability space on which

are defined the random vectors (B1, B2, B3, V2) : Ω → B1 × B2 × B3 × V2,

B1 ⊆ R, B2 ⊆ R, B3 ⊆ R, V2 ⊆ R, and (D, Yt, Y
∗
t , Zt) : Ω→ D ×Y ×Y∗ ×Z,

D = {0, 1}, Y = {0, 1}2, Y∗ ⊆ R2, Z ⊆ R2, t = 1, 2, such that for t = 1, 2, (i)

Y ∗1 = B1 − Z1

Y ∗2 = B2 +B3D − Z2

B2 = B1 + V2

Yt = 1{Y ∗t < 0}

where (ii) realizations of (D, Yt, Zt) are observable, whereas those of (Y ∗t , B1, B2, B3, V2)

are not.

Assumption A.3.2 There is no pre-treatment effect in period 1, i.e. there is

no causal effect of D on Y ∗1 .

Assumption A.3.3 V2 ⊥ D,B1, Z.

Assumption A.3.4 Z ⊥ B1, B3|D.
1Please note that we are laxly calling Zt the price here, where Zt is actually the negative

price. Similarly for the willingness to pay B1. This is just to make the example more intuitive
and comes at no cost, as we can always arbitrarily recode our binary Yt variable. Further, the
willingness to pay and treatment effect variables (B1 and B3) are actual ratios of willingness
to pay and treatment effect and the price elasticity, since the price variable has no coefficient.
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Assumption A.3.5 Z has full support and the support of Z2 − Z1 spans

the support of V2.

Discussion of Assumptions: Assumption A.3.1 formally specifies the data

generating process discussed at the beginning of this section. The special re-

gressors Z are crucial for the identification of the distributions of the random

coefficients in the model, as they introduce observable variation, where the out-

come variables can only take on one of two values. The effect of Z on the latent

variable is assumed to be of known sign. The corresponding coefficients are

normalized to one ensuring identification of the remaining coefficients of the

model2.

Assumption A.3.2 is one of the classical Difference-in-Differences assump-

tions. If individuals in the treatment group somehow anticipate the treatment

and react to this anticipation, our estimate of the average treatment effect on

the treated (ATT) will be biased. What does this assumption say in the con-

text of our example? If the news reports on the advertising campaign before

the campaign begins, the treated individuals might exhibit higher willingness

to pay already before treatment actually takes place. Thus there would be an

anticipation effect, the assumption would be violated and our estimated ATT

would be biased towards zero.

Next, Assumption A.3.3 contains three independence assumption. First,

V2 ⊥ D replaces another classical Difference-in-Differences assumption of com-

mon time trends in the treatment and control groups. The time trend V2 is

random in our model and needs to be independent of treatment status D. As

in classical Difference-in-Differences we will identify the time trend from the

control group and then use it to construct the counterfactual outcomes of the

treatment group had they not been treated. If the time trends are different in

the two groups, then the Difference-in-Differences identification strategy breaks

2Please see Appendix 3.7.2 for a detailed discussion of the restrictions we impose on the
coefficients on Z.
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down. What does this condition mean in terms of our purchase decision ex-

ample? If the treatment group was also affected by a different sales campaign

besides the advertising campaign we are examining, but the control group was

not, then the time trend in the two groups absent our treatment of interest

would likely not look the same. Our strategy of identifying the time trend of

the treatment group off the control group would thus fail.

Second, V2 ⊥ B1 is a technical assumption that becomes necessary for our

identification proof as both the intercept B1 and the time trend V2 are random

in our model. If V2 ⊥ B1|D does not hold, we cannot perform convolution with

fB1|D=1 and fV2|D=1 to obtain fB1+V2|D=1 in our identification proof. Let’s look

at this assumption in the light of our example. B1 represents the individual’s

willingness to pay. V2 denotes the time trend that includes preference changes

along with personal preference shocks. Our assumption says that any preference

changes from period 1 to period 2 are unrelated to individual’s initial willingness

to pay. This might be violated if individuals with a higher initial willingness

to pay live clustered in certain areas. Thus, individuals living in each of these

areas might change their preference to be more aligned with their neighbors

between the pre-treatment and post-period time periods. Thus, preferences

might change systematically differently for high versus low willingness to pay

individuals.

The last independence V2 ⊥ Z imposes that the time trend has to be inde-

pendent of the special regressors in either of the periods. In our example this

means that the offered prices cannot depend on the time trend, i.e. it cannot be

the case that individuals that experience a demand shock between the two time

periods are offered higher or lower prices than other individuals. This assump-

tion would easily hold if we could randomly assign prices to our individuals as

in Lewbel et al. (2011). This exogeneity assumption may be difficult to satisfy

in most other empirical applications, but Extension 3 discussed in section 3.2.5

139



allows for a control function approach that allows for an endogenous special

regressor.

The next assumption, A.3.4, is another exogeneity assumption on the spe-

cial regressors Z. The special regressors Z need to be independent of the

random coefficients B1, B3, conditional on the treatment status D. What does

this assumption mean in terms of our example? Within treatment and control

groups, the initial willingness to pay B1, and the treatment effect B3 are not

correlated with prices Z. Again, this assumption is not trivially valid, but Ex-

tension 3 in Section 3.2.5 allows for more flexible empirical applications. This

assumption – combined with the third independence assumption in A.3.3 – is

needed in our identification proof, as this allows us to scratch the conditioning

on Z. If the Z’s were still conditioned on, we would not be able to integrate

over the Z’s and thus our proof would break down.

Finally, the last assumptions, A.3.5 are support assumptions on Z. In our

willingness to pay example, these assumptions are met as long as prices vary

sufficiently over time. This may not be the case in empirical applications as

stores will keep the price near equilibrium, but Extension 4 discussed in Section

3.3.5 allows for a semi-parametric approach that allows for special regressors

with limited support. The first part of assumption A.3.5 is a classical special

regressor assumption. To help overcome the fact that Y exhibits only very little

variation due to its binary character a variable Z with plenty of variation is

needed3. See Lewbel (2000), Lewbel (2014), or Dong and Lewbel (2015) for

more information on how special regressors can be used to ensure identification

in a binary choice model. The second part of assumption A.3.5 is a necessary

condition for our identification proof to go through, as the distribution of the

time trend V2 is broadly speaking identified as a difference of control group

3Please note that the full support assumption on Z is a sufficient condition for the identifi-
cation of the ATT under arbitrary distributions of the random coefficients. If some combina-
tions of random coefficients have distributions with restricted support, this assumption can
we weakened accordingly. Moreover, Z could actually be a linear combination of more than
one variable. See Extension 2 for more information on how to apply this idea in practice.
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outcomes Z between the two observed time periods before and after treatment.

The Main Result: The assumptions introduced above now allow us to identify

the object of interest, the ATT. Our result is as follows:

Theorem 3.1. Let Assumptions A.3.1 – A.3.5 hold. Then

ATT =

∫
CATT (z2) FZ2(dz2),

where

CATT (z2) = P 1[Y2 = 1|D = 1, Z2 = z2]− P 0[Y2 = 1|D = 1, Z2 = z2]

= FB1+V2+B3|D(z2; 1)− FB1+V2|D(z2; 1)

= FB1+V2+B3|D(z2; 1)−
∫ ∞
−∞

∫ ∞
−∞

fB1+V2,B1|D(y + x, x; 0)dxFB1|D(z2 − y; 1)dy,

and

FB1+V2+B3|D(Z2; 1) = P [Y2 = 1|D = 1, Z2 = z2],

fB1+V2,B1|D=0 = ∂Z1∂Z2P [Y2 = 1, Y1 = 1|D = 0, Z = z],

FB1|D=1 = P [Y1|D = 1, Z1 = z1].

Remark: 2.1 - Discussion of Theorem 3.1: Our main result establishes

that the ATT is identified in our model. The ATT is usually the primary ob-

ject of interest in the treatment effect literature, as it measures the average

treatment effect on the actually treated population. In our example above, the
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ATT measures the average effect of the advertising campaign on the probabil-

ity that the households consume the product among treated households, i.e.

households who were subject to the advertising campaign. The proof of The-

orem 3.1 can be found in Appendix 3.7.1. Note that if FB1+V2+B3|D(z2; 1) and

FB1+V2|D(z2; 1) are uniform distributions, our model breaks down to a simple

Linear Probability Model.

3.2.2 Extension 1: Joint Distribution of Latent Variables

Even though the focus of our paper lies in identifying the ATT in this model,

as shown in the previous section, we can actually identify the joint distribution

of all random coefficients in the model conditional on being treated. For this

we need to go through characteristic functions.

Theorem 3.2. Let Assumptions A.3.1 – A.3.5 hold. Then

ΦB1,B3,V2|D=1(σ, t, r) = E {exp [i(σB1 + tB3 + rV2)] |D = 1}

= E {exp [i(σB1 + tB3)] |D = 1} × E {exp(irV2)|D = 1} ,

where

E {exp(irV2)|D = 1} = E

{
exp [ir(Z2 − Z1)]ψ(Z1, Z2, 0)

fZ|D(Z; 0)

∣∣∣∣D = 0

}
,

and

E {exp [i(σB1 + tB3)] |D = 1} =
E
{

exp[i(σZ1+t(Z2−Z1))]ψ(Z1,Z2,1)
fZ|D(Z;1)

∣∣∣D = 1
}

E
{

exp[it(Z2−Z1)]ψ(Z1,Z2,0)
fZ|D(Z;0)

∣∣∣D = 0
} ,

with

ψ(z1, z2, d) = ∂z1∂z2P [Y2 = 1, Y1 = 1|D = d, Z = z] .
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Remark: 2.2 - Discussion of Theorem 3.2: This theorem establishes that

the model proposed by us is fully identified. The proof of Theorem 3.2 can

be found in Appendix 3.7.1. Starting from the above result, it is easy to show

that the joint distribution of the actual and counterfactual latent variables

in the post-treatment period are also identified for the treatment group, i.e.

fB1+V2+B3,B1+V2|D=1 is identified4. In our example above, this distribution would

capture the joint distribution of the actual and counterfactual willingness to pay

of individuals in the treatment group, i.e. individuals who were subject to the

anti-smog campaign. This could be of high interest to policy makers, e.g. when

deciding on the pricing of public goods.

3.2.3 Extension 2A: Conditioning on Covariates

Our proposed model can be easily adjusted to include covariates as is common

in applied research by conditioning everything on the covariates. This can even

help to relax some of our assumptions of the previous section, as these will now

only have to hold conditional on the covariates. Let us go back to our example

to illustrate this point.

When e.g. demand trends are different in treatment and control groups,

our assumption A.3.3 does not hold, as V2 6⊥ D, and identification in our

basic model without covariates breaks down. But what if demand trends are

really only different for people on different income levels and the differential

time trends in treatment and control group are due to the different income

distributions in the two groups? Then we get that among people with the

same income environmental trends are independent of treatment status, i.e.

V2 ⊥ D|X, and we can identify our model conditional on X.

Alternatively, when B1 ⊥ Z|D is not satisfied, as e.g. within treatment and

control groups, individuals with higher willingness to pay are offered higher

4For example, obtain fB1,V2,B3|D=1 via multivariate inverse Fourier transform.
Then, apply change of variables to obtain fB1+V2+B3,B1+V2,V2+B3|D=1. Lastly, get
fB1+V2+B3,B1+V2|D=1 via integration.
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prices, then again identification in our basic model without covariates breaks

down. But what if the above dependency was fully driven by a third factor, say

income? Then, once we condition on income, we will not see any relationship

between willingness to pay and prices among individuals of the same income

in treatment and control groups, respectively, i.e. B1 ⊥ Z|D,X, and again we

can identify our model conditional on X.

Model:

Y ∗1 = B1(X,ω)− Z1

Y ∗2 = B2(X,ω) +B3(X,ω)D − Z2

B2(X,ω) = B1(X,ω) + V2(X,ω)

Yt = 1{Y ∗t < 0}

where X denotes the random vector of observable covariates and ω denotes the

unobservable random scalar.

Assumption A.3.2.1 There is no pre-treatment effect in period 1, i.e. there

is no causal effect of D on Y ∗1 conditional on X.

Assumption A.3.3.1 V2 ⊥ D,B1, Z|X.

Assumption A.3.4.1 B1, B3 ⊥ Z|D,X.

Assumption A.3.5.1 Z has full support and the support of Z2 −Z1 spans

the support of V2 conditional on X.

3.2.4 Extension 2B: Exogeneous Covariates with Fixed Coefficients

Of course conditioning everything on the covariates also means that we obtain

all distributions of the random coefficients conditional on the covariates, i.e. we
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receive a different set of distributions for every possible set of values x. If the

set of possible values that the covariate vector X can take on becomes large, e.g.

due to a continuous variable in X, conditioning on all covariates might become

infeasible in practice. In this case we suggest to include exogenous covariates

with fixed coefficients into the model.

Model:

Y ∗1 = B1 +X1γ1 − Z1

Y ∗2 = B2 +B3D +X2γ2 − Z2

B2 = B1 + V2

Yt = 1{Y ∗t < 0}

where X1 and X2 denote the respective sets of obervable covariates, and γ1 and

γ2 denote the vectors of fixed coefficients.

3.2.5 Extension 3: Using a Control Function with an Endogenous

Special Regressor

Finding an exogenous special regressor can be difficult in many scenarios, so

it may be necessary to use an instrumental variable. For example, in demand

estimation, price seems like a logical special regressor but has some endogeneity

concerns that are typically solved by using instrumental variables. Controlling

for this type of endogeneity opens the door to many more empirical applications.

We will use a control function approach first introduced by Heckman and

Robb (1985). This approach is helpful in our case because it is powerful when

dealing with heterogeneous effects and is useful for nonparametric models Arel-

lano and Bond (1991). Thus, we assume the following model:
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Model:

Y ∗1 = B1 − Z1

Y ∗2 = B2 +B3D − Z2

B2 = B1 + V2

Yt = 1{Y ∗t < 0}

Zt = G(Wt) + εt

Where Wt is the instrumental variable and G(Wt) is the control function.

Thus, we can adjust our estimator as long as W holds standard IV assumptions

like E[ε|W ] = 0. Thus, we now only need the following assumptions to hold

rather than assuming that Z is exogenous:

Assumption A.3.3.2 V2 ⊥ D,B1,W.

Assumption A.3.4.2 B1, B3 ⊥ W |D.

Assumption A.3.5.1 W has full support and the support of W2−W1 spans

the support of V2 conditional on ε.

In our previous example, this would allow us to use different instrumental

variables for price, such as Hausman Instruments (Hausman et al., 1994), the

average prices in neighboring cities of the good. These Hausman prices must be

independent of the consumer’s willingness to pay for a good in the pre-treatment

or post-treatment time period as well as the time trend of demand, which

is similar to standard assumptions made in the demand estimation literature

where these are commonly used.

3.3 Estimation

3.3.1 Basic Model without Covariates

Estimation is performed via sample counterparts.
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ÂTT =
1

n

n∑
i=1

ĈATT (z2i),

where

ĈATT (z2) = F̂B1+V2+B3|D(z2; 1)− F̂B1+V2|D(z2; 1).

F̂B1+V2+B3|D=1 can be directly estimated from the data via nonparametric re-

gression:

F̂B1+V2+B3|D(z2; 1) = P̂ [Y2 = 1|D = 1, Z2 = z2].

Estimating the counterfactual CDF F̂B1+V2|D=1 involves generating data and

then estimating the generated data’s empirical CDF.

Consider:

FB1+V2|D(z2; 1) =

∫ ∞
−∞

∫ ∞
−∞

1{b1 + v2 < z2}fB1,V2|D(b1, v2; 1)db1dv2

=

∫ ∞
−∞

∫ ∞
−∞

1{b1 + v2 < z2}fB1|D(b1; 1)fV2|D(v2; 1)db1dv2

And thus for generated data b1i and v2i:

F̂B1+V2|D(z2; 1) =
1

n

n∑
i=1

1{b1i + v2i < z2}

How to generate b1i and v2i?

1. Generating b1i:

(a) Estimate FB1|D=1 via local constant regression of P [Y1 = 1|D =

1, Z1 = z1].
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(b) Perform inverse transform sampling to obtain generated data points

b1i.

2. Generating v2i
5:

(a) Estimate ∂z1FB1+V2,B1|D=0(z2, z1) via local linear regression of P [Y2 =

1, Y1 = 1|D = 0, Z = z] (partial derivative).

(b) Estimate fB1|D=0(z1) via local linear regression of P [Y1 = 1|D =

0, Z1 = z1] (first derivative).

(c) Obtain FV2(z2−z1) = FV2|D=0(z2−z1) as the ratio of ∂z1FB1+V2,B1|D=0(z2, z1)

over fB1|D=0(z1). Average over all FV2(z2 − z1) with z2 − z1 = v2 to

obtain FV2(v2).

(d) Perform inverse transform sampling to obtain generated data points

v2i.

3.3.2 Extension 2A: Conditioning on Covariates

Include X’s into all local polynomial regressions mentioned above and get all

densities as before but conditional on X.

3.3.3 Extension 2B: Exogeneous Covariates with Fixed Coefficients

1. Estimate γ1 and γ2 semi-parametrically via average derivative estimator,

e.g. Ichimura (1991), Klein & Spady (1993), etc.

2. Generate new Z variables and proceed with estimation as before.

3.3.4 Extension 3: Using a Control Function with an Endogenous

Special Regressor

1. Estimate Ĝ(W ) non-parametrically from the equation Z = Ĝ(W ) + ε.

5The intuition behind this estimation is that the variation in Z moves the same as the
variation in V2. Thus, the different movements of Z can allow us to trace what happened
with V2 across the distribution
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2. Use Ĝ(W ) and Z to estimate ε̂

3. Include ε̂’s into all local polynomial regressions mentioned above and get

all densities as before but conditional on ε̂.

3.3.5 Extension 4: Semi-parametric Estimation for Special Regres-

sors with Limited Support

In applications it is often not plausible to find special regressors Z with full

support. In this section, we thus extend our model to handle special regressors

with compact support via a semi-parametric approach. The basic argument

is an extrapolation argument. First, we estimate non-parametrically the two

CDFs of interest F̂B1|D=1 and F̂V2 as described above, but only on a compact

support. In a second step, we then construct a minimum-distance parametric

estimator on the limited support based on a known parametric distribution

(with full support), e.g. the normal distribution. We can then use the estimates

for the parameters of these known distributions to obtain estimates for our

CDFs of interest outside the compact support provided by the special regressors

Z. Once we put the non-parametric and parametric part together, we can

perform inverse transform sampling as if the special regressors had full support.

Formally, let Z1 ∈ [z1, z1] and Z2 ∈ [z2, z2]. The process of generating

b1i now needs an additional step between 1(a) and 1(b), as F̂B1|D=1 is only

obtained for z1 < b1 < z1. To obtain F̂B1|D=1 for b1 < z1 and b1 > z1, minimize

the following criterion:

min
θ

N1∑
i=1

[
F̂B1|D=1(z1i)− CDF (z1i, θ)

]2

,

where z1i are the sample realizations of Z1 for D = 1. For a normal distribution,
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this yields:

min
µ,σ

N1∑
i=1

[
F̂B1|D=1(z1i)−

1√
2π

∫ (z1i−µ)/σ

−∞
exp(−t2/2)dt

]2

.

The process of generating v2i also needs an additional step between 2(c)

and 2(d), as F̂V2 is only obtained for z2 − z1 < v2 < z2 − z1. To obtain F̂V2 for

v2 < z2 − z1 and v2 > z2 − z1, minimize the following criterion:

min
θ

N0∑
i=1

[
F̂V2(v2i)− CDF (v2i, θ)

]2

,

where v2i are the sample realizations of Z2 − Z1 for D = 0. What follows is

analogous to generating b1i.

This approach is less prone to misspecification than a fully parametric ap-

proach, as we only use a parametric distribution where we cannot obtain esti-

mates non-parametrically in the estimation of the counterfactual CDF F̂B1+V2|D=1

due to limited support of the special regressors Z. The actual CDF F̂B1+V2+B3|D=1

can always be estimated fully nonparametrically.

Note that you can use both Extension 3 and Extension 4 in our model.

However, in order to properly, the CDF functions must be constructed condi-

tional on εi. We will demonstrate this in our empirical application.

3.3.6 Extension 5: Parametric Estimation for Special Regressors

with Limited Support

An alternative approach to work around a limited support of the special regres-

sors is to fully parametrize the estimation of our model. This means that we

either have to assume parametric distributions directly for B1 +V2 +B3|D = 1,

B1|D = 1, and B1 + V2, B1|D = 0 or indirectly through distributional assump-

tions on the random coefficients including their dependence structure.
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The easiest way for now seems to be to assume normal distributions for the

three expressions above, two univariate normal distributions and one bivariate

normal distribution. This can be extended later on. Once we know the three

above mentioned quantities have normal distributions, we can find the respec-

tive parameters of these distributions via univariate and bivariate Probit.

For B1|D = 1, e.g., we can write:

P [Y1 = 1|D = 1, Z1 = z1] = P [B1 < z1|D = 1, Z1 = z1]

= P [B1 < z1|D = 1]

= Φ

(
z1 − µ
σ

)
= Φ

(
−µ
σ

+
1

σ
z1

)
= Φ(β0 + β1z1)

Once we have F̂B1+V2+B3|D(z2; 1), f̂B1+V2,B1|D(z2, z1; 0), and F̂B1|D(z1; 1), we can

plug in the sample values for z2 and integrate numerically to obtain ĈATT (z2)

for all z2.

ĈATT (z2) = F̂B1+V2+B3|D(z2; 1)−
∫ ∞
−∞

∫ ∞
−∞

f̂B1+V2,B1|D(y + x, x; 0)dxF̂B1|D(z2 − y; 1)dy

Take the sample average over all z2 to obtain an estimate of the ATT.

Another advantange of the fully parametric approach is that covariates X can

be easily included.

How is this different from the Probit model that practitioners like to estimate

for binary choice difference-in-differences? In terms of estimation, practitioners

usually estimate only one Probit model of the following specification:

P̂ [Y = 1|D = d, T = t,X = x] = Φ(β0 + β1D + β2T + β3DT + δX),
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where Y and X are the stacked observations of the pre-treatment and post-

treatment periods, the dummy variable D denotes treatment status and the

dummy variable T denotes whether the observation is pre-treatment or post-

treatment. Following from the discussion by Puhani (2012), the proper ATT

estimate is then:

ÂTT =
1

n

n∑
i=1

(Φ(β0 + β1 + β2 + β3 + δxi)− Φ(β0 + β1 + β2 + δxi)) ,

where n is the number of observations in the treatment group post-treatment in

the sample. Clearly, this quantity is different from the quantity above. What is

the intuition? The standard Probit model does not allow for correlation between

treatment status and time invariant unobservables, but our model does. This

is why our model requires some extra steps. To obtain the counterfactual

distribution for the treatment group had the treatment not occurred, one has

to use information on the time trend V2 which has to be identified off the control

group first.

3.4 Monte Carlo Simulations

We run Monte Carlo simulations of our model with different set-ups. We start

off with a low dependence DGP, with P (Yt = 1) around one half in expectation.

Then, we run different variations increasing P (Yt = 1) (Variation a), increasing

P (Yt = 1) further (Variation b), and decreasing P (Yt = 1) (Variation c) by

changing the mean of the distributions of the random coefficients B1 and B3.

Next, we manipulate the binomial distribution of the treatment indicator D to

both a lower probability (Variation d) and a higher probability (Variation e).

A second set of simulations assumes a higher dependence structure in the

DGP. In particular, the random coefficients B1 and B3, as well as the time

trend plus potential shock in the second period V2 now follow different distri-
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butions for treatment and control group. In a first variation of this scenario,

we extend this high dependence to the special regressors Z as well and make

their distribution different for treatment and control group (Variation a). In a

second variation, we introduce dependence between the random coefficient B3,

measuring the heterogeneous treatment effect on the latent outcome variable,

and the time trend plus potential second period shock V2 (Variation b).

We run simulations with 1000 repetitions and sample sizes N = 1, 000. We

estimate the ATT the following ways: we use our standard non-parametric esti-

mator (CHW), our estimator using the semi-parametric specification as outlined

in Extension 4 (CHW-P), a basic linear probability model (LPM), a standard

Probit model, and a Oracle model. The oracle model is estimated by taking

the distance between the true and counterfactual distributions of the latent

variable based on the unobserved random coefficients. Bandwidths for the non-

parametric estimations are determined via grid search. Let us recall the model:

Y ∗1 = B1 − Z1

Y ∗2 = B2 +B3D − Z2

B2 = B1 + V2

Yt = 1{Y ∗t < 0}

3.4.1 Simulation Set-Up 1 (Low Dependence DGP)

Distribution of unobservables:

(B1, B3, V2) ∼ N(µ0,Σ0) with µ0 =


−0.5

−0.5

1

 and Σ0 =


1 0.3 0

0.3 1 0

0 0 1


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Distribution of observables:

(Z1, Z2) ∼ N(µZ ,ΣZ) with µZ =

0

0

 and ΣZ =

 4 0.5

0.5 4



D is binomial with probability 0.5.

Variations:

(a) µ0 replaced with µa0 =


1.5

1.5

1



(b) µ0 replaced with µb0 =


2.5

2.5

1



(c) µ0 replaced with µc0 =


−2.5

−2.5

1


(d) D is binomial with probability 0.3.

(e) D is binomial with probability 0.8.

3.4.2 Simulation Set-Up 2 (Higher Dependence DGP)

Distribution of unobservables: (B1, B3, V2) ∼ N(µd,Σd)

with µ1 =


−1.5

−1.5

1

 and Σ1 =


1 0.3 0

0.3 1 0

0 0 1

 for D = 1,
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and µ0 =


−0.5

−0.5

1

 and Σ0 =


1 0.3 0

0.3 1 0

0 0 1

 for D = 0.

Distribution of observables:

(Z1, Z2) ∼ N(µZ ,ΣZ) with µZ =

0

0

 and ΣZ =

 4 0.5

0.5 4



D is binomial with probability 0.5

Variations:

(a) Distribution of observables now different for D = 0 and D = 1: (Z1, Z2) ∼

N(µdZ ,Σ
d
Z)

with µ1
Z =

0

0

 and Σ1
Z =

 4 0.5

0.5 4

 for D = 1

and µ0
Z =

0.5

0.5

 and Σ0
Z =

 6 0.5

0.5 6

 for D = 0

(b) Distribution of unobservables with higher dependence structure:
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(B1, B3, V2) ∼ N(µd,Σd)

with µ1 =


−0.3

−0.7

1

 and Σ1 =


1 0.3 0

0.3 1 0.1

0 0.1 1

 for D = 1,

and µ0 =


−0.5

−0.5

1

 and Σ0 =


1 0.5 0

0.5 1 0.1

0 0.1 1

 for D = 0.

3.4.3 Simulation Results

Below are the results of simulations for sample size N = 1, 000. Our model

does consistently better than LPM and Probit, sometimes even better than an

oracle estimator that estimates the distributions directly off the (in practice

unobservable) realizations of random coefficients via empirical CDF. Gains of

the CHW estimator compared to LPM and Probit seems to be mainly due

to smaller biases. The gains for the CHW-P estimator appear to be smaller

than the CHW estimator for most simulations but there are still significant

improvements to the bias of the estimator.

Note that the Oracle estimates are biased in the same direction as the

LPM and Probit estimates. This is because it generally suffers from the same

bias as those estimates: they do not allow for correlation between treatment

effect and time invariant unobservables. These correlations seem realistic in

our applications to consumer demand and are thus included in each of our

simulations.

We further show examples of simulations of the CATT random coefficients
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compared to the oracle and true CATT values in Figure 3.1. Note that these

are singular simulations so they have higher variance than the average of our

bootstrap estimates. The CHW and CHW-P estimates are generally very close

and generally have similar shape and density as the true estimates.

Table 3.1: Simulation Results
Set-up Category CHW CHW-P LPM Probit Oracle
1 MSE 0.0013 0.0013 0.0023 0.0021 0.0013
1 Bias 0.0175 -0.0090 0.0368 0.0361 0.0359
1 Var 0.0010 0.0012 0.0010 0.0008 0.0001
1a MSE 0.0005 0.0007 0.0012 0.0008 0.0005
1a Bias 0.0010 -0.0111 -0.0218 -0.0190 -0.0207
1a Var 0.0005 0.0006 0.0007 0.0004 0.0000
1b MSE 0.0011 0.0008 0.0010 0.0009 0.0006
1b Bias 0.0165 0.0108 0.0235 0.0234 0.0230
1b Var 0.0009 0.0007 0.0006 0.0003 0.0000
1c MSE 0.0015 0.0016 0.0040 0.0038 0.0032
1c Bias -0.0229 -0.0276 0.0580 0.0547 0.0559
1c Var 0.0010 0.0023 0.0006 0.0008 0.0001
1d MSE 0.0013 0.0020 0.0023 0.0021 0.0014
1d Bias 0.0160 0.0186 0.0347 0.0341 0.0359
1d Var 0.0011 0.0016 0.0011 0.0009 0.0001
1e MSE 0.0017 0.0024 0.0027 0.0026 0.0013
1e Bias 0.0190 -0.0164 0.0375 0.0378 0.0360
1e Var 0.0013 0.0021 0.0013 0.0012 0.0000
2 MSE 0.0025 0.0035 0.0084 0.0048 0.0072
2 Bias 0.0218 0.0262 0.0869 0.0633 0.0845
2 Var 0.0021 0.0028 0.0008 0.0008 0.0001
2a MSE 0.0025 0.0035 0.0050 0.0054 0.0071
2a Bias -0.0038 -0.0024 0.0648 0.0672 0.0838
2a Var 0.0024 0.0035 0.0008 0.0009 0.0001
2b MSE 0.0014 0.0016 0.0037 0.0036 0.0026
2b Bias 0.0215 -0.0039 0.0538 0.0532 0.0499
2b Var 0.0009 0.0015 0.0008 0.0008 0.0001

This table compares simulation results for several estimators: CHW, CHW-P, LPN, and
probit. The sample size is N = 1000.

3.5 Empirical Application

In this section, we discuss all matters pertaining to our empirical implementa-

tion where we examine whether the taxes on Sugar Sweetened Beverages (SSBs)

157



Figure 3.1: These graphs show the distribution of CATT for each of our sim-
ulations. We graph the true CATT values, oracle CATT values, CHW CATT
values and CHW-P CATT values.
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effected the fraction of individuals that consumed soda in Cook County, Illinois.

This is an evaluation of the extensive effects of the tax: the impact of the tax

on whether or not consumers purchased soda. We give an overview of the tax

implementation, examine the data, discuss the current literature on the issue,

and present the results.

3.5.1 SSB Tax

SSB tax was first implemented in Berkeley, California in November 2014 which

specifically a one-cent-per-ounce soda . Starting in 2017, it was followed by

many other cities implementing soda tax of different levels, including Philadel-

phia, PA, Oakland, CA, Albany, CA, Boulder, CO, San Francisco, CA and

Seattle, WA. Since the tax level was different for most of these cities, we will

examine the effect of the one-cent-per-ounce SSB tax implemented in Cook

County, Illinois where the majority of the population lives in Chicago and thus

is the largest single implementation of a SSB tax in the US.

The tax was passed into law in November 2016, and was expected to go into

effect in July 1, 2017. However, on June 27th, the Illinois Retail Merchants

Association filed a suit to challenge the constitutionality of the tax. On July

28th, the lawsuit was dismissed and the tax was implemented at the beginning

of August. This sudden implementation of the tax prevented most consumers

from purchasing large amounts of soda right before the treatment started. The

government decided to repeal the tax in October of 2017 and the tax expired

on December 1, 2017.

For most customers, the tax was shown as a line-item on their receipt.

Some retailers simply added the tax to the display price at checkout. This

could decrease the impact of the tax on soda consumption Chetty et al. (2009).

However, many large retail stores in the area added a disclaimer to soda bev-

erages stating that the tax would be added at the register. While this setting
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could lead to a significant impact on consumer information on the tax, this

tax was newsworthy and I will assume that all of our households knew about

the tax when making their purchase decision. In the end, a full Difference-in-

Difference analysis is necessary because people respond to this tax differently

than a standard price change.

3.5.2 Data

We will look at the Nielsen Scanner Data which is available through the Kilts

Center at the University of Chicago Booth School of Business6. We will focus

our study on the year 2014 where there are about 2,000 households in our area of

interest. This is a helpful dataset for estimating consumption behavior since it

contains detailed information based on price and quantity of all retail purchases

as well as detailed household characteristics for all of the consumers. The data

contains a representative sample of households in the United States that use

in-home scanners to record all of their purchases intended for personal, in-home

use. Nielsen matches the product scanned by the household to the actual price

of the store where the product was bought. Nielsen estimates that about 30%

of household consumption is accounted for by these purchases.

I will be doing a difference-in-difference analysis comparing Cook County to

other counties in the designated market area surrounding Chicago to determine

how the SSB tax effected whether households purchased soda. Because the

law suits happened to soon before the tax was implemented, and Figure 3.2

shown below, we do not find evidence of a significant increase in the number

of individuals who purchased soda right before the soda tax was implemented

(as well as the fact that the tax was authorized less than a week before it was

6Researcher(s) own analyses calculated (or derived) based in part on data from The Nielsen
Company (US), LLC and marketing databases provided through the Nielsen Datasets at
the Kilts Center for Marketing Data Center at The University of Chicago Booth School of
Business. The conclusions drawn from the Nielsen data are those of the researcher(s) and do
not reflect the views of Nielsen. Nielsen is not responsible for, had no role in, and was not
involved in analyzing and preparing the results reported herein.
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implemented), so we will use July 2017 as our pre-period. Although there has

been evidence that consumers purchase soda when it is cheap in bulk and store

it until it is on sale again (Hendel and Nevo, 2006), we avoid this problem by

focusing on monthy sales and whether or not households consumed soda.

Note that it is possible that the SSB tax in Cook County decreased the

probability a household consumed soda in the suburbs, but there is no evidence

of this in the data and it is unlikely since the purchases being measured are

made at retail stores which likely occur at stores near where the consumers’

homes. Using similar cities to Chicago is a possible alternative but that might

lead to other demand shocks that would bias our results.

Figure 3.2: These graphs compare the fraction of consumers who purchased
soda each month. The black vertical line is the implementation of the SSB tax
in Cook County.

We aggregated the data to a monthly level such that period 1 is July 2017

and period 2 is September 2017. We chose September 2017 as the post-period

to allow for the use of August 2017 as our instrumental variable to control

for endogoneity, which we will discuss more later. We will use a measure of

price deviation as our special regressor. Price is estimated using an aggregate

price index called Stone-Lewbel (SL) cross section prices (see Lewbel (1989)

and Hoderlein and Mihaleva (2008)). Generally, SL prices use the fact that
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within a category of goods (soda in our case), people have different tastes for

the individual goods. Using standard aggregate price indices implicitly assumes

that all individuals have identical Cobb Douglas preferences for all goods within

a category, but SL prices allow all individuals to have heterogeneous Cobb

Douglas preferences. This implies that the typical approach of using aggregate

price indices is a restrictive case of using SL prices. For this reason, SL prices

should always be used when possible.

There are a few concerns with the data. The data relies on participants

successfully recording their purchases in their home, so they may suffer from

some recording error. The specific issue that we should be concerned with is

that consumers may consume a good when it is purchased so will not record the

purchase when they return home. Einav et al. (2010) finds that consumable

goods like soft drinks are likely to be consumed before getting home so are

more likely to not be scanned. However, these errors only have minor effects

on estimates. When compared to data from grocery store recorded sales, the

data in Nielsen Homescan data matched 94% of the time Einav et al. (2010).

The major source of measurement error that is more concerning can come

from the price rather than the quantity. Individuals record their purchases

by scanning the items they buy when they get home. The individuals input

the quantity they purchase and Nielsen matches it with the average price of the

good at the store where they purchased it that week. This can lead to two types

of errors. The first comes from the price changing in the middle of the week.

These types of errors are approximately normally distributed. The second type

of error comes from not including discounts from loyalty cards. Einav et al.

(2010) examines a retailer used in the Homescan data which has loyalty cards

and finds that loyalty cards are used in about 75-80% of the transactions.

Further, this would bias our prices upwards, which when comparing Homescan

data with data from the retailer finds that the prices used in the Homescan
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data is about 7% higher and the overall expenditure is 10% higher. On the

other hand, these price measurement errors may be overestimated since some

retailers do not have loyalty cards at all.

However, Homescan data errors are comparable to errors found in other

commonly used data sets. Aguiar and Hurst (2007) finds that life-cycle pattern

of household expenditures recorded in Homescan Data is consistent with those

reported for food expenditures at home in Panel Study of Income Dynamics

(PSID). Einav et al. (2010) finds that these issues are not more serious than

those in any other consumption surveys like the Current Population Survey

(CPS). Lin (2018) compares the fraction of expenditures on different categories

of products in the Nielsen Homescan Data and finds the results consistent to

results from the Consumer Expenditure Survey (CES).

3.5.3 Literature Review

Obesity is one of the most important health problems in the United States as

well as other countries. Most soft drinks are high on sugar and excess sugar

consumption is strongly linked with many diet-related diseases such as diabetes,

cancers and heart disease World Health Organization (2015). Obesity leads to

several hundred billion dollars spent on medical costs in the US annually, about

10-27 percent of all medical costs as shown in Finkelstein et al. (2009); Cawley

et al. (2015). This is particularly relevant for policy makers since 88% of obesity

related medical expenses as shown in Cawley and Meyerhoefer (2012). Thus,

consumption of unhealthy food, such as soft drinks, can have a major economic

impact. About 40% of sugar and 7% of total calories consumed by Americans

come from soft drinks (United States Department of Agriculture, 2020; Allcott

et al., 2019).

There is a strong interest in soft drink consumption among different groups

of individuals (Dubois et al., 2019), such as children (Han and Powell, 2013) and
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low-income households (Drewnowski and Specter, 2004; Currie, 2009). Alcott

et al. (2017) showed that even when controlling for supply side factors, high-

income households have a greater demand for healthful foods.

The demand for soft drinks and other comparable drinks has been examined

in many settings as policymakers have been considering the impacts of “soda

taxes” (See Allcott et al. (2019) for an extensive overview). Many papers

examine how these taxes effects sales at the store level (Silver et al., 2017;

Seiler et al., 2019). However, this fails to capture the aggregate effect since

there is evidence that sales in neighboring towns increases and consumers move

across borders for purchases (Seiler et al., 2019; Bollinger and Sexton, 2018).

Other research has attempted to find the aggregate effect of SSB taxes on

each consumer. Sturm et al. (2010) examines soda taxes in a broad sense rather

than a specific SSB tax to see which types of consumers are effected by them the

most. Falbe et al. (2016) examined the SSB taxes in San Francisco, Oakland

and Berkeley by using repeated cross-sectional surveys to estimate how much

soft drink consumption decreased across consumers. Cawley et al. (2018) finds

that consumers in Boulder purchased 8.9 ounces of SSB less per shopping trip.

Allcott et al. (2018) used the obesity costs outlined above and estimates the

external as well as internal costs of SSB consumption. They use these estimates

to propose an optimal tax rate for the US between 1 and 2.1 cents per ounce,

while the optimal tax rate for a city is between 0.5 and 1 cent per ounce because

of the availability of cross-border shopping.

Our analysis differs from the above analysis in that it examines whether the

households we are looking at purchase soft drinks at all, rather than examining

how much soft drinks each household consumes: we are focused at looking at

the extensive effect of the tax. Thus, our approach will look at how effective the

Cook County SSB tax was at decreasing the fraction of families that consumed

soft drinks. This could be a particularly important treatment effect since sugar
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can be addictive (see Avena et al. (2008) for an overview) so eliminating it

from the household could be a more effective long-term outcome.

3.5.4 Results

3.5.4.1 Model

We want to compare the soda consumption between the Cook County (Chicago)

and neighboring suburbs before and after the SSB tax was implemented. The

basic linear graphical depiction of the model is shown below in Figure 3.3.

Figure 3.3: This is a graphical depiction of the linear estimation of the ATT.

Our model follows similarly to the example used in Section 3.2.1. D = 1

denotes households who live in Cook County while D = 0 denotes households

who live in neighboring suburbs. At both time points, households make de-

cisions on whether they will purchase (Yt = 1) soda or not (Yt = 0) with a

”price” of Zt. B1 represents the willingness to pay for soda and B3 represents

the treatment effect. V2 summarized both trends between time periods in de-

mand for soda as well as asecond period shocks. The latent outcome variable,

Y ∗t , can be interpreted as the ”price” minus the household willingness to pay,

or their utility from purchasing soda7.

7Note that because we are doing price deviations, B1 and B3 is their meaning (willingness
to pay and treatment effect receptively) minus the average price faced by the consumer. This
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Using basic ”price” as a special regressor can be particularly dangerous.

Price is likely correlated with a consumer’s willingness to pay since consumers

with higher willingness to pay will go to stores where goods are more expensive.

Remember based on Assumptions A.3.3.1 and A.3.4.1, our special regressor

must be independent of B1, B3, and V2. To avoid this problem, we will focus

on price deviations, P̄i−Pit, which will take this effect out. We estimate P̄i by

averaging out all Pit, SL price indicies, across time. For ease of notation, these

price deviations will be labeled as P .

Note that Assumption A.3.5 is most likely violated because we do not have

enough price variation to identify the entire CDFs that are required with the

basic CHW estimator. For this reason, we will use our semiparametric estima-

tor, CHW-P, as outlined in Extension 3.

There may be additional concern about price endogeneity. We will generate

a control function using nonparametric regression to predict Pt based on Pt−1,

thus using Pt−1 as my instrumental variable, and calculate ε̂i as the residuals

from these estimates. We can examine whether it is necessary to include ε̂i in

my estimates by regressing quantity of Pt and ε̂i and testing whether ε̂i has a

significant effect. We find that the p-value of excluding ε̂i as calculated using

the control function is 0.77, implying that it might not be necessary. Further,

we find that the percentage of soda products on sale and on display is about

the same in both time periods. However, we will implement our estimator to

compare the results when we control for endogeneity versus when we do not.

We will use both Extensions 3 and 4 by conditioning our estimation on ε̂i and

call this estimate our CHW-P-IV estimator.

3.5.4.2 Numerical Results

Below in Table 3.2 we have the different estimates of ATT as well as bootstrap

estimates of the standard error and confidence bands. We can conclude that the

has a scale effect on utility but not impact of our estimates of CATT or ATT.
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average treatment effect of the SSB tax in Cook County lead to 9.5-9.8% drop

in probability each household that was treated consumes soda. Notice that

both the estimates using CHW-P and CHW-P-IV are larger than the LPM

and Probit estimation. Thus, using more basic estimators will cause you to

underestimate the effect of the SSB tax even though the true average effect is

contained in the confidence bounds.

Table 3.2: Empirical ATT Estimates
CHW-P CHW-P-IV LPM Probit

ATT -0.0949 -0.0978 -0.0856 -0.0862
SE of ATT (0.0200) (0.0678) (0.0211) (0.0206)
90% Bands [-0.114,-0.057] [-0.274, -0.030] [-0.119, -0.060] [-0.119, -0.055]
This table contains our estimates of the ATT in the first row. Bootstrap estimates of the
standard error and 90% confidence bands are included in rows two and three respectively

Because we made additional parametric assumptions, we can learn addi-

tional information that is unattainable using more basic methods. Beyond the

ATT that we have found, we have the distribution of the CATT conditioned

on P , as shown in Figure 3.4. The standard deviation of the CATT effects

for CHW-P was 0.0397, while for CHW-P-IV was larger at 0.0576 which might

just come from a smaller sample size and a decreased range of the support of P

because of our conditioning. It also might come from the curse of dimension-

ality by conditioning on another variable. Here you can see that the effect is

significantly right skewed for both estimators, which meant that while the effect

was large for most people, about 10% of the population has an effect greater

than zero. The quantiles of the distribution are shown in Table 3.3.

Table 3.3: Empirical Quantile Estimates
0% 20% 40% 60% 80% 100%

CHW-P -0.1618 -0.1216 -0.1049 -0.0920 -0.0749 0.0814
CHW-P-IV -0.3864 -0.1330 -0.1117 -0.1017 -0.0631 0.0813

This table contains our quantile estimates of the CATT for our CHW-P and CHW-P-IV
estimates.

Furthermore, with our estimates we can look at F̂B1+V2+B3|D(z2; 1), which
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Figure 3.4: Density of the CATT conditional on the special regressor, price
deviation. The one on the left is our CHW-P estimator CATT while the one
on the right is our CHW-P-IV estimator of CATT.

is just P̂ [Y2 = 1|D = 1, Z2 = z2] and F̂B1+V2+B3|D(z2; 1) which is P̂ [Y2 = 1|D =

0, Z2 = z2]. Our CHW-P estimates are shown in Figure 3.5. From examining

these distributions you can see that generally, the higher he likelihood that the

consumer purchases soda without the tax, the less likely the tax is to have en

effect. This implies that this tax has no effect on the individuals most likely to

purchase soda.

Note that we also have the distributions of our other random coefficients,

which can provide other insights depending on the setting. Because our B1 dis-

tribution is not centered on 1, it is clear that our households respond differently

to the tax than to a similar price change.

Examining the CHW-P-IV estimates are trickier to visualize because our

CATT estimates are conditioned on ε̂ as well as P . I will first plot the CDF of

F̂B1+V2+B3|D,ε(z2; 1) and F̂B1+V2|D,ε(z2; 1) in Figure 3.6. Note that they have a

similar shape: The likelihood to consume soda at large negative price deviations

is high but never increased about 0.5 in the data. The effect of positive price

deviations differ between individuals that have high ε̂ and low ε̂ values. Indi-

viduals with high ε̂ values were much more likely ton consume soda no matter
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Figure 3.5: These graphs show the CDFs for our CHW-P estimates. Graph
on the left shows our estimates for F̂B1+V2+B3|D(z2; 1) and F̂B1+V2|D(z2; 1). The
graph on the right is a histogram to understand the density of the distribution
of price-deviations, P .

what the price deviation was. This makes sense since these households gener-

ally either faced higher prices the period before or lower prices in the current

period.

Our CATT estimates are taken by taking the difference between the two

distributions shown in Figure 3.6. This distribution, as well as the joint density

of our data, is shown in Figure 3.7. From here we can see that the effect was

the the smallest for the individuals that faced the lowest prices (highest price

deviations), while it was largest on individuals who did not seem to have any

price deviation, but had low ε̂ or those who had a ε̂ near zero and low price

deviations. This would imply it had the greatest effect on individuals who had

faced low prices in the period before, but had their prices return to normal.

This implies that the treatment might be effective at preventing households

from building a habit of purchasing soda.

By constructing the CATT distribution, we can focus on specific subgroups

of individuals and their ATT. We will focus on two groups of individuals

that have been a focus in the literature: households with children and low-

income households (Dubois et al., 2019; Han and Powell, 2013; Drewnowski
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Figure 3.6: These graphs show the CDFs for our CHW-P-IV estimates. Graph
on the left shows our estimates for F̂B1+V2+B3|D,ε(z2; 1) while the graph on the

right shows our estimates for F̂B1+V2|D,ε(z2; 1).

Figure 3.7: These graphs show distribution of CATT conditional on ε̂ and P
for our CHW-P-IV estimates. Graph on the left shows our estimates of CATT.
The graph on the right shows the joint distribution of price-deviations, P , and
ε̂.
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and Specter, 2004; Currie, 2009). We define low-income households as house-

holds with lower than $35,000 of yearly income. The ATT for the households

with low-income was -0.0942 and for households with children was -0.0910.

Based on the CATT distribution of each of these subgroups, shown below in

Figure 3.8, this slight decrease in ATT for the households with children come

from an increase density of the tail. Thus, a slightly higher fraction of these

households have an ATT close to zero compared to the whole population. Low-

income households CATT distribution is very similar to the population CATT

distribution.

Figure 3.8: These graphs compare the CATT distribution for the total group of
households and the subgroups of households with low income and households
with children.

Note that across these results, our CHW-P-IV estimates follow our CHW-P

results closely. The CHW-P-IV is slightly larger so using the CHW-P results

may be underestimating the bias but this difference is minor. Note that the

spread of the CHW-P-IV estimator is much larger and may come from the

curse of dimensionality. However, if we were to use price rather than price

deviation, our results change significantly and we get a ATT of about -0.25.

This shows evidence that using price alone would have endogeneity but using

price deviation appears to control for the endogeneity.
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3.5.5 Implications

Note that both the CHW-P and CHW-P-IV estimates show a similar pattern

in which consumers generally are ten percent less likely to consume soda after

the soda tax but there remains a group between 5-10% of the population for

which the tax has no effect. We were able to show that these individuals are

the same individuals that were most likely to consume soda without the soda

tax.

This is all evidence that is consistent with the idea that consumers who con-

sume the most soda are addicted and cannot be persuaded to stop consuming

soda by a relatively small soda tax. This coincides with the research by Allcott

et al. (2019) and Bernheim and Rangel (2004) which find similar patterns of

addiction or habit formation in terms of responding to taxes for “sin goods”

like soda and cigarettes. This might encourage a more focused policy on pre-

venting teenagers from consuming soda to prevent such addiction suggested by

O’Donoghue and Rabin (2003). However, we do not find that our treatment has

a significantly larger or different effect on households with teenagers or children

(see Figure 3.8) which is predicted by O’Donoghue and Rabin (2003).

3.6 Summary and Conclusions

This paper is the first to extend the Difference-in-Differences methodology to

binary outcome variables. Additionally, our nonparametric random coefficient

representation rids us of functional form assumptions and allows for unobserved

heterogeneity to be correlated with treatment status. We show identification of

the average treatment effect on the treated (ATT) with and without covariates

and as a further extension, the identification of the full joint distribution of the

latent outcome variables. We propose a sample counterpart estimator for the

ATT that we evaluate with the help of Monte Carlo simulations. These show

favorable small sample properties compared to the estimators conventionally
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used for binary choice Difference-in-Differences estimation.

We provide an empirical application to estimate the effect of a Sugar-

Sweetened Beverages tax on customer’s likelihood to consume soft drinks. We

find that the tax in Cook County, Illinois led to consumers on average to de-

crease their likelihood of consuming soft drinks by about 10% while about 10%

of consumers (who were most likely to consume soft drinks previously) did not

change their likelihood to consume soft drinks. This is consistent with the

previous literature that some consumers are addicted to “sin goods”.

Further research could focus on extending the model to discrete outcome

variables with more than two outcomes. We also leave the assessment of large-

sample properties of our proposed estimator to future research. Further research

could extend our estimator to a panel data framework or with a continuous

treatment effect. Examples of possible applications of our estimator were out-

lined in the Introduction and include estimating the effect of job training on

unemployment, tax incentives on health insurance, and public policy that relies

on individual’s willingness to pay.
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3.7 Appendix

3.7.1 Mathematical Appendix

Proof of Theorem 3.1: Our main object of interest is the ATT. We can

rewrite the ATT in the following way:

ATT =

∫
CATT (z2) FZ2(dz2)

The CATT (z2) can then be rewritten as:

CATT (z2) = P 1[Y2 = 1|D = 1, Z2 = z2]− P 0[Y2 = 1|D = 1, Z2 = z2]

= P (B1 + V2 +B3 < z2|D = 1, Z2 = z2)− P (B1 + V2 < z2|D = 1, Z2 = z2)

= P (B1 + V2 +B3 < z2|D = 1)− P (B1 + V2 < z2|D = 1)

= FB1+V2+B3|D(z2; 1)− FB1+V2|D(z2; 1)

The first line writes out the definition of the CATT in the context of a bi-

nary outcome as the difference between the actual probability of success of a

treated individual and the counterfactual probability of success had a treated

individual not been treated, both conditional on z2. The equality between line

two and line three makes use of our assumptions A.3.3 and A.3.4 that yield

B1, B3, V2 ⊥ Z|D.

We need: FB1+V2+B3|D(z2; 1) and FB1+V2|D(z2; 1).

Obtaining FB1+V2+B3|D(z2; 1) is straightforward, as this part is directly observ-
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able in the data:

FB1+V2+B3|D(z2; 1) = P [B1 + V2 +B3 < z2|D = 1]

= P [Y2 = 1|D = 1, Z2 = z2]

Obtaining FB1+V2|D(z2; 1) is more involved, as this part is counterfactual and

thus not directly observable in the data:

FB1+V2|D(z2; 1) =

∫ z2

−∞
fB1+V2|D(t; 1)dt

=

∫ z2

−∞

∫ ∞
−∞

fV2|D(y; 1)fB1|D(t− y; 1)dydt

=

∫ z2

−∞

∫ ∞
−∞

fV2|D(y; 0)fB1|D(t− y; 1)dydt

=

∫ z2

−∞

∫ ∞
−∞

∫ ∞
−∞

fV2,B1|D(y, x; 0)dxfB1|D(t− y; 1)dydt

=

∫ z2

−∞

∫ ∞
−∞

∫ ∞
−∞

fB1+V2,B1|D(y + x, x; 0)dxfB1|D(t− y; 1)dydt

=

∫ ∞
−∞

∫ ∞
−∞

fB1+V2,B1|D(y + x, x; 0)dx

∫ z2

−∞
fB1|D(t− y; 1)dtdy

=

∫ ∞
−∞

∫ ∞
−∞

fB1+V2,B1|D(y + x, x; 0)dxFB1|D(z2 − y; 1)dy

The first line uses the definition of the CDF. The second and third line make

use of assumption A.3.3. In the second line we use the convolution formula

for independent random variables as V2 ⊥ B1. In the third line we use V2 ⊥ D.

The fourth line reformulates the conditional density of V2 as the marginal den-

sity of the joint conditional density of V2 and B1. The fifth line uses the change

of variables formula. The sixth line pulls in the limits of integration for dt and

the seventh line again uses the definition of the CDF.

Given assumption A.3.5, fB1+V2,B1|D=0 and FB1|D=1 are directly observable in

the data, where
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fB1+V2,B1|D=0 = ∂z1∂z2P [Y2 = 1, Y1 = 1|D = 0, Z = z],

FB1|D=1 = P [Y1 = 1|D = 1, Z1 = z1].

This completes the proof. �
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Alternative Proof of Theorem 3.1 going only through densities:

We can rewrite the ATT in the following way:

ATT =

∫
CATT (z2) FZ2(dz2)

The CATT (z2) can then be rewritten as:

CATT (z2) = P 1[Y2 = 1|D = 1, Z2 = z2]− P 0[Y2 = 1|D = 1, Z2 = z2]

= P (B1 + V2 +B3 < z2|D = 1, Z2 = z2)− P (B1 + V2 < z2|D = 1, Z2 = z2)

= P (B1 + V2 +B3 < z2|D = 1)− P (B1 + V2 < z2|D = 1)

= FB1+V2+B3|D(z2; 1)− FB1+V2|D(z2; 1)

=

∫ z2

−∞
fB1+V2+B3|D(t; 1)dt−

∫ z2

−∞
fB1+V2|D(t; 1)dt

=

∫ z2

−∞
[fB1+V2+B3|D(t; 1)− fB1+V2|D(t; 1)]dt

We need: fB1+V2+B3|D(t; 1) and fB1+V2|D(t; 1).

Start off with:

P [Y2 = 1, Y1 = 1|D = 1, Z = z] = P [B1 + V2 +B3 < z2, B1 < z1|D = 1]

= FB1+V2+B3,B1|D(z2, z1; 1)

=

∫ z2

−∞

∫ z1

−∞
fB1+V2+B3,B1|D(x, y; 1)dydx

Taking the derivative with respect to z2 and z1 yields:

∂z1∂z2P [Y2 = 1, Y1 = 1|D = 1, Z = z] = fB1+V2+B3,B1|D(z2, z1; 1)
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Obtain the first density via integration:

fB1+V2+B3|D(z2; 1) =

∫ ∞
−∞

fB1+V2+B3,B1|D(z2, t; 1)dt

Also via integration obtain:

fB1|D(z1; 1) =

∫ ∞
−∞

fB1+V2+B3,B1|D(t, z1; 1)dt

If we know fV2 we can do convolution and we are done.

Use P [Y2 = 1, Y1 = 1|D = 0, Z = z] similarly as above and obtain fB1+V2,B1|D(z2, z1; 0).

By change of variables:

fV2,B1|D(z2 − z1, z1; 0) = fB1+V2,B1|D(z2, z1; 0)

Obtain fV2|D(z2 − z1; 0) via integration.

fV2|D(z2 − z1; 0) =

∫ ∞
−∞

fV2,B1|D(z2 − z1, t; 0)dt

Then use V2 ⊥ D and thus fV2|D(z2 − z1; 0) = fV2(z2 − z1) = fV2|D(z2 − z1; 1).

Now use convolution:

fB1+V2|D(z2 − z1; 1) =

∫ ∞
−∞

fB1|D(t; 1)fV2((z2 − z1)− t)dt

This completes the proof. �
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Proof of Extension 1:

Define:

ψ(z1, z2, d) = ∂z1∂z2P [Y2 = 1, Y1 = 1|D = d, Z = z]

= ∂z1∂z2

∫
B

1 {z2 > b2 + b3d}1 {z1 > b1} fB|D(b; d)db

= ∂z1∂z2

∫ z2

−∞

∫ z1

−∞

∫
B

1 {s2 = b2 + b3d}1 {s1 = b1} fB|D(b; d)dbds

=

∫
B

1 {z2 = b2 + b3d}1 {z1 = b1} fB|D(b; d)db

The equality between line one and line two makes use of our assumptions A.3.3

and A.3.4 which yield B1, B3, V2 ⊥ Z|D.

Now consider:

E

{
exp [i(sZ1 + tZ2)]ψ(Z1, Z2, d)

fZ|D(Z; d)

∣∣∣∣D = d

}
=

∫
Z

∫
B

exp [i(sz1 + tz2)] 1 {z2 = b2 + b3d}1 {z1 = b1} fB|D(b; d)dbdz

= E {exp [i(sB1 + t(B2 +B3d))] |D = d}

= E {exp [i((s+ t)B1 + t(V2 +B3d))] |D = d}

Let ∆Z = Z1 − Z0. Hence, with s = −t, and for d = 0, we get:

E

{
exp(it∆Z)ψ(Z1, Z2, 0)

fZ|D(Z; 0)

∣∣∣∣D = 0

}
= E {exp(itV2)|D = 0}

And with s+ t = σ, and for d = 1, we get:

E

{
exp [i(σZ1 + t(Z2 − Z1))]ψ(Z1, Z2, 1)

fZ|D(Z; 1)

∣∣∣∣D = 1

}
= E {exp [i(σB1 + t(V2 +B3))] |D = 1}
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Under the assumption that V2 is independent of B3, B1|D = 1, we get:

E {exp [i(σB1 + tB3)] |D = 1}E {exp(itV2)|D = 1}

And thus, as E {exp(itV2)|D = 1} = E {exp(itV2)|D = 0}, due to assumption

A.3.3, we obtain:

E
{

exp[i(σZ1+t(Z2−Z1))]ψ(Z1,Z2,1)
fZ|D(Z;d)

∣∣∣D = 1
}

E
{

exp(it∆Z)ψ(Z1,Z2,0)
fZ|D(Z|0)

∣∣∣D = 0
} = E {exp [i(σB1 + tB3)] |D = 1} ,

This is the joint characteristic function of B1 and B3 conditional on D = 1.

The joint characteristic function of B1, B3, and V2 conditional on D = 1 can

then easily be constructed in the following way:

ΦB1,B3,V2|D=1 = E {exp [i(σB1 + tB3 + rV2)] |D = 1}

= E {exp [i(σB1 + tB3)] |D = 1} × E {exp(irV2)|D = 1}

= E {exp [i(σB1 + tB3)] |D = 1} × E {exp(irV2)|D = 0}

=
E
{

exp[i(σZ1+t(Z2−Z1))]ψ(Z1,Z2,1)
fZ|D(Z;1)

∣∣∣D = 1
}

E
{

exp[it(Z2−Z1)]ψ(Z1,Z2,0)
fZ|D(Z;0)

∣∣∣D = 0
} ×

E

{
exp [ir(Z2 − Z1)]ψ(Z1, Z2, 0)

fZ|D(Z; 0)

∣∣∣∣D = 0

}

This completes the proof. �
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3.7.2 Understanding Restrictions on Coefficients of Zt

Original Model:

Ỹ ∗1 = B̃1 − ΓZ1

Ỹ ∗2 = B̃2 + B̃3D − ΓZ2

B̃2 = B̃1 + Ṽ2

Yt = 1{Ỹ ∗t < 0}

Restrictions:

1. The random coefficients on Z1 and Z2 are the same, i.e. the effect that

Zt has on the latent variable Y ∗t stays constant over the two time periods

t = 1, 2.

2. Γ 6= 0 and we know the sign of Γ, i.e. there is an effect of Zt on Y ∗t and

we know its direction.

For Γ > 0, we can divide the first two equations by Γ and obtain:

Ỹ ∗1
Γ

=
B̃1

Γ
− Z1

Ỹ ∗2
Γ

=
B̃2

Γ
+
B̃3

Γ
D − Z2

B̃2 = B̃1 + Ṽ2

Yt = 1{Ỹ ∗t < 0}

Remark B.1: This last assumption is not restrictive, as we can always divide

Zt’s by minus one to obtain a positive Γ.

Now let’s redefine our coefficients: Y ∗1 =
Ỹ ∗1
Γ
, Y ∗2 =

Ỹ ∗2
Γ
, B1 = B̃1

Γ
, B2 = B̃2

Γ
, B3 =

B̃3

Γ
, V2 = Ṽ2

Γ
.
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This leaves us with the basic model introduced in the main text.

Y ∗1 = B1 − Z1

Y ∗2 = B2 +B3D − Z2

B2 = B1 + V2

Yt = 1{Y ∗t < 0}

3.7.3 Data

There are a few issues to keep in mind when dealing with this Homescan data.

The first issue is with misreporting of quantity. Einav et al. (2010) examines

which goods are more likely to be subject to this error. They find that consum-

able goods like small drinks (like many soft drinks) is likely to be consumed

before getting home so are more likely to not be scanned. This could add noise

to our results, but should not bias the results because quantity is only a depen-

dent variable and we assume that these problems effect those in Cook County

as well as those in the suburbs equally.

Another source of measurement error that is more concerning can come from

the price. Individuals record their purchases by scanning the items they buy

when they get home. The individuals input the quantity they purchase and

Nielsen matches it with the average price of the good at the store where they

purchased it that week. This can lead to two types of errors. The first comes

from the price changing in the middle of the week. These types of errors are

approximately normally distributed.

The second type of error comes from not including discounts from loyalty

cards. Einav et al. (2010) examines a retailer used in the Homescan data

which has loyalty cards and finds that loyalty cards are used in about 75-80%

of the transactions. Further, this would bias my prices upwards, which when
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comparing Homescan data with data from the retailer finds that the prices

used in the Homescan data is about 7% higher. On the other hand, these price

measurement errors may be overestimated since some retailers do not have

loyalty cards at all. Further, Homescan data errors are comparable to errors

found in other commonly used data sets Einav et al. (2010); Aguiar and Hurst

(2007); Lin (2018). Additional examination of this measurement error and it’s

effect on the results is left for future research.

When there is no good purchased, we find the average price plus tax for each

month at the store the most commonly purchase soft drinks at by matching

with Nielsen Retail Scanner Data. If I am unable to identify the store where the

individual commonly purchases soft drinks in the month, of if the store’s prices

are unavailable, I estimate the prices based on average prices at stores used

by similar consumers. The subset of similar consumers I choose is explained

below. If there were no prices in the subset I tried to match, I moved to a

broader subset below.

1. Individuals with the same favorite retail chain, income level, county and

zip-code

2. Individuals with the same favorite retail chain, income level, and county

3. Individuals with the same favorite retail chain, and zip-code

4. Individuals with the same favorite retail chain, and county

5. Individuals with the same favorite retail chain, income level, whether they

lived in Cook County, and designated market

6. Individuals with the same favorite retail chain, whether they lived in Cook

County, and designated market

7. Individuals with the same zip-code

8. Individuals with the same favorite retail chain, and designated market

9. Individuals with the same income level and county

10. Individuals with the same income level and whether they lived in Cook

183



County

11. Individuals with the same county

12. Individuals on whether they lived in Cook County

13. Individuals with the same designated market

14. Individuals with the same favorite retail chain

15. All individuals

Below is the Summary Statistics for the Nielsen Scanner Data we used

in application for each month and the total data across both months. Our

sample contains 1,008 households in Cook County and 1,080 households from

neighboring counties.

Table 3.4
July 2017 September 2017 Total

SL Price Index 0.5639 0.5886 0.5762
(0.4153) (0.4067) (0.4112)

Price Deviation -0.0059 0.0188 0.0064
(0.2634) (0.2391) (0.2518)

εi -0.0155 0.0080 -0.0038
(0.2451) (0.2195) (0.2329)

Quantity 0.4713 0.3966 0.4339
Chicago 0.4828 0.4828 0.4828

Estimate of each variable mean for each time period and across both time periods is
included. The Standard Deviation is included below in parenthesis. Quantity is a measure

of whether the individual purchased soft drinks. Chicago is a measure of whether they lived
in Chicago.εi is the errors left over from the control functions described previously.
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