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On Nudel1man’s problem and indefinite
interpolation in the generalized Schur
and Nevanlinna classes

D. Alpay, A. Dijksma and J. Rovnyak

Abstract. This work is a revised and corrected version of the authors’
joint paper [Trans. Amer. Math. Soc. 355 (2003), 813–836] with T. Con-
stantinescu. Some of the theorems from the original paper that are
withdrawn are recast as new open problems for indefinite interpolation.
Partial results are obtained by other methods, including Kronecker’s
theorem for Hankel operators.
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Carathédory, Fejér, generalized Schur class, generalized Nevanlinna class,
commutant lifting.

1. Introduction and Preliminaries

Nudel1man’s problem may be viewed as a method to implement the operator
approach to interpolation due to Sarason [15]. Assume given a linear operator
A on a complex vector space V into itself. Suppose there is a natural way to
interpret fpAq, where f is an analytic function which is defined and bounded
by one on the open unit disk of the complex plane. The problem is to find
solutions f of the equation b “ fpAqc for given vectors b and c in V. A general
theorem based on the commutant lifting theorem of Sz.-Nagy and Foias [17]
provides conditions for the existence of solutions. Simple choices of A, b, c
yield classical interpolation theorems of the Nevanlinna-Pick, Carathéodory-
Fejér, and Loewner types. See [13, Chapter 2].

Indefinite generalizations of operator methods for interpolation were
pioneered by Ball and Helton [7]. Arocena, Azizov, Dijksma, and Marcan-
tognini [6] use a theorem of Ball and Helton to prove an indefinite form of

Corresponding author, J. Rovnyak: rovnyak@virginia.edu.
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the commutant lifting theorem. This raised the possibility of finding an indef-
inite generalization of Nudel1man’s problem, and such a generalization was
proposed in our paper [3] with T. Constantinescu. However, the proof of the
Main Theorem in [3] has gaps, which are identified in the Corrigendum [4].
Appendix B in this work describes the problems in the proof and includes
an example showing what can go wrong. We have no counterexample to the
original statement of the Main Theorem in [3], but we feel that its validity
is seriously in doubt. Five open questions are identified in the present work,
in Problems 3.3, 4.1, 5.1, 5.3, 5.5. Negative answers to any of them would
provide a counterexample to the original form of the Main Theorem in [3].

This paper is a revised version of [3] that repairs the Main Theorem and
shows the changes needed in the applications. Briefly, a stronger hypothesis
fixes the problems in the proof of the Main Theorem. The applications in [3] to
the classical interpolation problems of Pick-Nevanlinna, Carathéodory-Fejér,
and Sarason survive with minor changes. The main losses are the theorems on
boundary interpolation, for which the stronger hypothesis has not yet been
proved or disproved. The boundary theorems in [3] are reformulated here as
open problems, for which we obtain some partial results.

An effort has been made to make this paper self-contained, and thus we
repeat unaffected results from the original paper, including some verbatim
passages. However, although the statement and proof of the Main Theorem
(Alternative Form) in [3, p. 834] could be inserted verbatim at the end of
this paper, we shall not do so.

Throughout, κ denotes a nonnegative integer. By a Hermitian form or
Hermitian kernel on a set Ω we mean a complex-valued function K on ΩˆΩ
such that Kpζ, zq “ Kpz, ζq for all ζ, z in Ω. We say that K has κ negative
squares and write

sq´K “ κ

if the maximum number of negative eigenvalues (counting multiplicities)

among all matrices
`

Kpζj , ζiq
˘n

i,j“1
, ζ1, . . . , ζn P Ω, n ě 1, is κ. Inner products

are examples of Hermitian forms.

Proposition 1.1. A linear and symmetric inner product 〈¨, ¨〉H on a complex
vector space H has κ negative squares if and only if the maximum dimension
of a strictly negative subspace of H is κ.

For the purpose of this work, a strictly negative subspace of H is a
subspace N such that 〈f, f〉H ă 0 for every f ‰ 0 in N .

Proof of Proposition 1.1. By definition, 〈¨, ¨〉H has κ negative squares if and
only if the maximum number of negative eigenvalues of every Gram matrix

`

〈gj , gi〉H
˘n

i,j“1
, g1, . . . , gn P H, n ě 1,

is κ. By [5, Lemma 1.1.11], this occurs if and only if κ is the maximum
dimension of a strictly negative subspace of H. ˝
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A bounded selfadjoint operator T on a Hilbert space H is said to have
κ negative squares if the inner product

〈f, g〉T “ 〈Tf, g〉H, f, g P H,

has κ negative squares. In this case, we write sq´ T “ κ.

Proposition 1.2. Let H be a Hilbert space, T P LpHq a selfadjoint operator.
Then sq´ T “ κ if and only if the negative spectrum of T consists of a finite
number of eigenvalues of total multiplicity κ.

Proof. Write H “ H´ ‘H`, where H˘ are the spectral subspaces for T for
the intervals p´8, 0q and r0,8q. We must show that the inner product 〈¨, ¨〉T
has κ negative squares if and only if dimH´ “ κ.

Suppose dimH´ “ κ. Then H´ is a strictly negative subspace of
pH, 〈¨, ¨〉T q of dimension κ. Let N be an arbitrary strictly negative subspace
of pH, 〈¨, ¨〉T q. If P´ is the projection onto H´, then P´|N is a one-to-one
linear mapping from N into H´. For if f P N and P´f “ 0, then f P H`
and so 〈f, f〉T “ 〈Tf, f〉H ě 0. Since f P N , f “ 0. Therefore dimN ď κ.
By Proposition 1.1, the inner product 〈¨, ¨〉T has κ negative squares.

Conversely, suppose 〈¨, ¨〉T has κ negative squares. Again by Proposition
1.1, since H´ is a strictly negative subspace of pH, 〈¨, ¨〉T q, H´ has dimension
at most κ, say dimH´ “ κ1. Then by what we just showed, 〈¨, ¨〉T has κ1

negative squares. Hence κ1 “ κ, and therefore dimH´ “ κ. ˝

2. Main Theorem

A function Spzq which is analytic on a subregion of the unit disc is in the gen-

eralized Schur class Sκ “ SκpDq if the Hermitian kernel r1´SpzqSpζqs{p1´zζ̄q
has κ negative squares. In this case, Spzq has an analytic continuation to D
except for at most κ poles. When κ “ 0, S0 is the Schur class of analytic
functions which are defined and bounded by one on D. By the Krĕın-Langer
factorization [10, p. 382], every Spzq in Sκ has the form

Spzq “ Bpzq´1fpzq, (2.1)

where fpzq belongs to S0, Bpzq is a Blaschke product of degree κ, and fpzq
does not vanish at the zeros of Bpzq. Conversely, every such function belongs
to Sκ. Recall that a Blaschke product of degree κ is a function of the form

Bpzq “ c
κ
ź

j“1

z ´ aj
1´ zāj

, |c| “ 1, a1, . . . , aκ P D.

Here the points a1, . . . , aκ need not be distinct.

Assume given a complex vector space V with algebraic dual V 1. We write

px, x1q “ x1pxq
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for the action of a linear functional x1 in V 1 on a vector x in V. Every linear
operator A : V Ñ V has a dual A1 : V 1 Ñ V 1 defined by

px,A1x1q “ pAx, x1q, x P V, x1 P V 1.

Nudel1man’s Problem. Given vectors b, c in V and a linear operator A on V
into itself, find a pair pf,Bq, where f P S0 and B is a Blaschke product of
degree κ, such that

fpAqc “ BpAqb (2.2)

in the sense described below. We call pA, b, cq the data of the problem.

By an admissible set for given data pA, b, cq, we understand a subset D
of V 1 such that1

(i) D is a linear subspace of V 1 which is invariant under A1;
(ii) the sums

ř8

j“0 |pA
jb, x1q|2 and

ř8

j“0 |pA
jc, x1q|2 are finite for all x1 in D;

(iii) there is a constant M ą 0 such that for all x1 in D,

8
ÿ

j“0

|pAjb, x1q|2 ďM
8
ÿ

j“0

|pAjc, x1q|2. (2.3)

When an admissible set D has been chosen, we interpret (2.2) to mean that

8
ÿ

j“0

fjpA
jc, x1q “

8
ÿ

j“0

BjpA
jb, x1q, x1 P D, (2.4)

where fpzq “
ř8

j“0 fjz
j and Bpzq “

ř8

j“0Bjz
j are Taylor expansions.

Theorem 2.1 (Main Theorem). Let pA, b, cq be given data, D an admissible
set. Define a Hermitian form K on D ˆD by

Kpx1, y1q “
8
ÿ

j“0

”

pAjc, x1qpAjc, y1q ´ pAjb, x1qpAjb, y1q
ı

(2.5)

for all x1, y1 P D. Let κ be a nonnegative integer.

(1) If K has κ negative squares, there is a pair pf,Bq, where f P S0 and B
is a Blaschke product of degree κ, such that fpAqc “ BpAqb.

(2) If there is a pair pf,Bq as in p1q, then K has κ1 negative squares for
some κ1 ď κ.

This is proved for the case κ “ 0 in [13, pp. 23–24] using the Sz.-Nagy
and Foias commutant lifting theorem. The general case is derived using the
Ball-Helton almost commutant lifting theorem in the following form.

1We emphasize that condition (iii) for an admissible family in the form used in this paper

is stronger than that of [3]. See Appendix B for an explanation why the stronger form is
needed.



Nudel1man’s problem 5

Theorem 2.2. For each j “ 1, 2, let Tj P LpHjq be a contraction on the Hilbert
space Hj, let Wj P LpGjq be an isometric dilation of Tj on a Hilbert space Gj,
and let Pj be the projection of Gj onto Hj. Let C P LpH1,H2q be an operator
such that CT1 “ T2C.

(1) If sq´ p1´C
˚Cq “ κ, there exists a pair pE , rCq such that E is a closed

W1-invariant subspace of G1 of codimension κ and rC is a contraction
operator on E into G2 satisfying

rCW1|E “W2
rC and P2

rC “ CP1|E .

(2) If there is a pair pE , rCq as in p1q, then sq´ p1´ C
˚Cq ď κ.

Theorem 2.2 is proved in a more general form in Theorem 1.1 in Aro-
cena, Azizov, Dijksma, and Marcantognini [6].

Proof of Theorem 2.1. Let Hc be the set of functions on D of the form

hx1pzq “
8
ÿ

j“0

pAjc, x1qzj , x1 P D. (2.6)

By conditions (i) and (ii) for an admissible set, Hc is a linear subspace of the
Hardy space H2 which is invariant under S˚, where S is multiplication by z
in H2. Condition (iii) assures that the formula

X0 :
8
ÿ

j“0

pAjc, x1qzj Ñ
8
ÿ

j“0

pAjb, x1qzj , x1 P D, (2.7)

defines a bounded operator on Hc into H2. By the definition of X0,

S˚X0h “ X0S
˚h, h P Hc. (2.8)

Let X P Lp sHc, H
2q be the extension by continuity of X0. By (2.5),

Kpx1, y1q “ 〈hx1 , hy1〉H2 ´ 〈X0hx1 , X0hy1〉H2 , x1, y1 P D. (2.9)

An approximation argument shows that the number of negative squares of K
is the same as the number of negative squares of the Hermitian form

〈p1´X˚Xqh, k〉H2 “ 〈h, k〉H2 ´ 〈Xh,Xk〉H2 , h, k P sHc,

which is the same as sq´ p1 ´ X˚Xq. That is, if any one of these numbers
is κ, all are equal to κ. By standard methods for Hilbert space operators,
sq´ p1´XX

˚q “ sq´ p1´X
˚Xq.

Proof of (1). Assume that K has κ negative squares, so sq´ p1´X
˚Xq “ κ.

Set

H1 “ H2 and T1 “ S;

H2 “ sHc and T2 “ E˚2 SE2, where E2 : H2 Ñ H2 is inclusion;

G1 “ G2 “ H2 and W1 “W2 “ S;

C “ X˚ P LpH2,H2q.
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Then W1,W2 are isometric dilations of T1, T2. By (2.8), CT1 “ T2C. Also
sq´ p1´ C

˚Cq “ sq´ p1´XX
˚q “ sq´ p1´X

˚Xq “ κ, and so the assump-
tions of Theorem 2.2(1) are met. By that result, there is a closed S-invariant

subspace E of H2 of codimension κ, and a contraction rC P LpE , H2q such

that S rCf “ rCSf for all f P E , and

Cf “ P2
rCf, f P E . (2.10)

Here P2 is the projection on H2 with range H2. Write ϕ̃pzq “ ϕpz̄q for any

complex-valued function ϕ on D. Then E “ rBH2 where B is a Blaschke
product of degree κ. For any ϕ P H8, let Mϕ be multiplication by ϕ on H2.
For every h P H2,

rCM
rBSh “

rCSp rBhq “ S rC rBh “ S rCM
rBh,

and therefore rCM
rB commutes with S. Since rC is a contraction, rCM

rB “M
rf

for some f P S0. To verify (2.4), consider any x1 P D and h P H2. Then by
(2.10) and (2.7),〈

8
ÿ

j“0

pAjc, x1qzj ,Mf̃h

〉
H2

“

〈
8
ÿ

j“0

pAjc, x1qzj , rCM
rBh

〉
H2

“

〈
8
ÿ

j“0

pAjc, x1qzj , P2
rCM

rBh

〉
H2

“

〈
8
ÿ

j“0

pAjc, x1qzj , CM
rBh

〉
H2

“

〈
8
ÿ

j“0

pAjc, x1qzj , X˚M
rBh

〉
H2

“

〈
8
ÿ

j“0

pAjb, x1qzj , rBh

〉
H2

.

When h “ 1, this reduces to (2.4).

Proof of (2). Assume (2.4) holds for some f and B as in (1). For all x1 P D,〈
8
ÿ

j“0

pAjc, x1qzj , f̃pzq

〉
H2

“

〈
8
ÿ

j“0

pAjb, x1qzj , rBpzq

〉
H2

. (2.11)

Hence for all x1 P D and n ě 0,〈
8
ÿ

j“0

pAjc, x1qzj , znf̃pzq

〉
H2

“

〈
8
ÿ

j“0

pAj`nc, x1qzj , f̃pzq

〉
H2

“

〈
8
ÿ

j“0

pAjc, pA1qnx1qzj , f̃pzq

〉
H2

“

〈
8
ÿ

j“0

pAjb, pA1qnx1qqzj , rBpzq

〉
H2

“

〈
8
ÿ

j“0

pAj`nb, x1qzj , rBpzq

〉
H2

“

〈
8
ÿ

j“0

pAjb, x1qzj , zn rBpzq

〉
H2

.

Let hx1 be as in (2.6). Recalling the definition (2.7) of X0, we deduce that〈
hx1 , f̃g

〉
H2
“

〈
X0hx1 , rBg

〉
H2
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first for gpzq “ zn and then for any g in H2. By the arbitrariness of x1,〈
h, f̃g

〉
H2
“

〈
Xh, rBg

〉
H2
“

〈
h,X˚ rBg

〉
H2
, h P sHc, g P H2.

Therefore the restriction of X˚ to E “ rBH2 is a contraction. Write

X “

ˆ

X1

X2

˙

, X1 P Lp sHc, Eq, X2 P Lp sHc, EKq.

Then X1 is a contraction because X˚1 “ X˚|E is a contraction. Thus

1´X˚X “ 1´X˚1X1 ´X
˚
2X2,

where 1´X˚1X1 ě 0. Since rB is a Blaschke product of degree κ, dim EK “ κ.
Thus ´X˚2X2 has rank at most κ. It follows that sq´ p1 ´ X˚Xq ď κ, and
hence the kernel K has κ1 ď κ negative squares. ˝

3. Classical interpolation problems on the disc

The classical interpolation problem of Pick-Nevanlinna falls within the scope
of Theorem 2.1.

Theorem 3.1 (Cf. [3, Theorem 3.1]). Let z1, . . . , zn be distinct points in the
unit disc D, w1, . . . , wn any complex numbers, and let κ be a nonnegative
integer. Set

P “

ˆ

1´ wjw̄i
1´ zj z̄i

˙n

i,j“1

. (3.1)

(1) If P has κ negative eigenvalues, then there is a pair pf,Bq with f P S0

and B a Blaschke product of degree κ such that fpzjq “ Bpzjqwj for all
j “ 1, . . . , n.

(2) If there is a pair pf,Bq as in p1q, then P has κ1 ď κ negative eigenvalues.

Proof. We apply Theorem 2.1 with V “ Cn. Identify V 1 with Cn with the
pairing px, yq “ x1y1 ` ¨ ¨ ¨ ` xnyn, where xj , yj are the entries of x, y. For
data, choose

A “ diag tz1, . . . , znu, b “

¨

˚

˝

w1

...
wn

˛

‹

‚

, c “

¨

˚

˝

1
...
1

˛

‹

‚

.

We show that D “ V 1 is an admissible set for the data. Conditions (i) and
(ii) are easily verified. We check (iii). For any x in D,

8
ÿ

j“0

pAjb, xqzj “
8
ÿ

j“0

n
ÿ

k“1

zjkwkxkz
j “

n
ÿ

k“1

wkxk
1´ zkz

,

8
ÿ

j“0

pAjc, xqzj “
8
ÿ

j“0

n
ÿ

k“1

zjkxkz
j “

n
ÿ

k“1

xk
1´ zkz

.
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Thus (iii) requires that for some M ą 0,
›

›

›

›

n
ÿ

k“1

wkxk
1´ zkz

›

›

›

›

2

ďM

›

›

›

›

n
ÿ

k“1

xk
1´ zkz

›

›

›

›

2

, x P Cn, (3.2)

where } ¨ } is the norm in H2. The inequality (3.2) is easily brought to the
form of a matrix inequality WCW˚ ďMC, where

C “

ˆ

1

1´ ziz̄j

˙n

i,j“1

, W “ diag tw1, . . . , wnu.

Here

C “
`

〈gi, gj〉
˘n

i,j“1
,

where gkpzq “ 1{p1 ´ zkzq, k “ 1, . . . , n. Since z1, . . . , zn are distinct, the
functions g1, . . . , gn are linearly independent. Therefore C is nonnegative
and invertible [9, p. 407]. Thus δIn ď C ď µIn for some δ, µ ą 0. If
η “ maxt|wk| : k “ 1, . . . , nu, then

WCW˚ ď µη2In ď δ´1µη2C,

which implies (iii) with M “ δ´1µη2. Thus D is an admissible set.
A short calculation shows that the Hermitian form (2.5) is given by

Kpx, yq “
n
ÿ

i,j“1

1´ wjw̄i
1´ zj z̄i

xj ȳi “ 〈Px, y〉Cn ,

for all x, y P Cn. Therefore sq´K “ sq´ P , which by Proposition 1.2 is the
number of negative eigenvalues of P (counting multiplicity). The condition
fpAqc “ BpAqb is also easily seen to be equivalent to the relations fpzjq “
Bpzjqwj , j “ 1, . . . , n. Thus Theorem 3.1 is a special case of Theorem 2.1. ˝

In [3, Theorem 3.1], the matrix (3.1) is replaced by its transpose P t.
This does not change anything, because P and P t have the same eigenvalues
and multiplicities. In fact, for any selfadjoint nˆ n matrix M , the transpose
and conjugate of M coincide: M t “ ĎM . If λ is an eigenvalue for M with
eigenvector x, then Mx “ λx, and so ĎMx̄ “ λx̄. A complete orthonormal
system of eigenvectors x1, . . . , xn for M with eigenvalues λ1, . . . , λn thus in-
duces a complete orthonormal system of eigenvectors x̄1, . . . , x̄n for ĎM with
the same eigenvalues.

Theorem 3.2 of [3] is withdrawn (see Appendix B), but the special case
for countable sets can be derived from Theorem 3.1 using a normal families
argument.

Theorem 3.2 (Cf. [3, Theorem 3.2]). Let Ω be a countable subset of D. Let
S0 : Ω Ñ C be a given function, and let κ be a nonnegative integer. Set

K0pζ, zq “
1´ S0pzqS0pζq

1´ zζ̄
, ζ, z P Ω.

(1) If sq´K0 “ κ, then there is a pair pf,Bq with f P S0 and B a Blaschke
product of degree κ such that fpzq “ BpzqS0pzq for all z P Ω.
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(2) If there is a pair pf,Bq as in p1q, then sq´K0 “ κ1 ď κ.

It is an open question what happens when Ω is uncountable.

Problem 3.3. Is Theorem 3.2 true for an arbitrary subset Ω of D?

The answer is affirmative when κ “ 0 according to the following known
result: For any subset Ω of D, a function S0 : Ω Ñ C is the restriction of
a Schur function f P S0 if and only if the kernel K0 is nonnegative. This
result is due to Krein and Rekhtman [11]; see also Akhiezer [2, p. 104]. It
also follows from our Main Theorem (Theorem 2.1) in the definite case, as
shown in [13, p. 25].

Our proof of Theorem 3.2 (the countable case) uses a compactness prop-
erty of Blaschke products.

Lemma 3.4. Let B1, B2, . . . be a sequence of Blaschke products, each of degree
at most κ. Then there exist positive integers n1 ă n2 ă ¨ ¨ ¨ and a Blaschke
product B of degree κ1 ď κ such that Bnk Ñ B uniformly on all compact
subsets of D.

Proof. Write each Bjpzq as a product of κ factors (in any order),

Bjpzq “ Bj1pzq ¨ ¨ ¨Bjκpzq,

where each Bjkpzq is either a constant of modulus one or a simple Blaschke
factor

γ
z ´ α

1´ ᾱz
, |γ| “ 1 and |α| ă 1.

Consider the sequence of first factors: B11pzq, B21pzq, B31pzq, . . . . If infinitely
many terms in this sequence are constants γk of modulus one, we can find
a subsequence that converges to a constant γ of modulus one as scalars,
and hence as functions uniformly on compact sets. Otherwise infinitely many
terms have the form

γk
z ´ αk
1´ ᾱkz

, |γk| “ 1 and |αk| ă 1.

By passing to a subsequence we can arrange that γk Ñ γ and αk Ñ α as
scalars, where |γ| “ 1 and |α| ď 1. When |α| ă 1, it is easy to see that

γk
z ´ αk
1´ ᾱkz

Ñ γ
z ´ α

1´ ᾱz

uniformly on compact subsets of D. When |α| “ 1, one can show that

γk
z ´ αk
1´ ᾱkz

Ñ η

uniformly on compact subsets of D, where η “ ´γα is a constant of absolute
value one. When κ “ 1, we have produced the required subsequence. For
κ ą 1, we need only repeat the process for the second factors, third factors,
and so on. At each stage we choose the next subsequence from the previous
one. The final subsequence has the required properties. ˝
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Proof of Theorem 3.2. (1) Assume sq´K0 “ κ. Suppose first that Ω is a
finite set consisting of the points z1, . . . , zn. If wj “ Spzjq, j “ 1, . . . , n, then

`

K0pzj , ziq
˘n

i,j“1
“

ˆ

1´ wiw̄j
1´ ziz̄j

˙n

i,j“1

is the transpose P t of the matrix (3.1). As noted above, P and P t have the
same number of negative eigenvalues and multiplicities, and therefore (1)
follows from Theorem 3.1(1) in this case.

Suppose Ω is countably infinite. Choose finite subsets Ω1 Ď Ω2 Ď ¨ ¨ ¨

such that Ω “
Ť8

1 Ωn. We can assume that K0 has κ negative squares on
each of the finite sets. For each n ě 1, by what we just showed there exist
fn P S0 and Bn a Blaschke product of degree at most κ such that

fnpzq “ BnpzqS0pzq, z P Ωn.

By passing to a subsequence, without loss of generality we can assume that
fn Ñ f uniformly on compact subsets of D for some f P S0 (see the theory
of normal families in e.g. Ahlfors [1, Chapter IV]). By passing to another
subsequence using Lemma 3.4, we can also assume that Bn Ñ B uniformly
on compact subsets of D, where B is a Blaschke product of degree κ1 for some
κ1 ď κ.

Consider an arbitrary z P Ω. Then z P Ωn0
for some n0. Hence z P Ωn

for every n ě n0, and so

fnpzq “ BnpzqS0pzq, n ě n0.

Letting n Ñ 8, we obtain fpzq “ BpzqS0pzq. If κ1 “ κ, we are done. If
κ1 ă κ, we can multiply both f and B by κ ´ κ1 simple Blaschke factors to
obtain a pair pf,Bq having the required properties. This proves (1).

(2) This is an immediate consequence of Theorem 3.1(2). ˝

Another choice of data in Theorem 2.1 yields a result of Carathéodory-
Fejér type.

Theorem 3.5 (Cf. [3, Theorem 3.4]). Let wpzq “ w0 `w1z ` ¨ ¨ ¨ `wnz
n be a

polynomial with complex coefficients, and set

T “

¨

˚

˚

˝

w0 w1 ¨ ¨ ¨ wn
0 w0 ¨ ¨ ¨ wn´1

¨ ¨ ¨

0 0 ¨ ¨ ¨ w0

˛

‹

‹

‚

.

Let κ be a nonnegative integer such that κ ď n` 1.

(1) If 1 ´ T˚T has κ negative eigenvalues, then there is a pair pf,Bq with
f P S0 and B a Blaschke product of degree κ such that Bpzqwpzq “
fpzq `Opzn`1q.

(2) If there is a pair pf,Bq as in p1q, then 1 ´ T˚T has κ1 ď κ negative
eigenvalues.
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Corollary 3.6 (Cf. [3, Corollary 3.5]). Let wpzq “ w0 ` w1z ` ¨ ¨ ¨ ` wnz
n

and T be as in Theorem 3.5, and let κ be a nonnegative integer such that
κ ď n ` 1. If 1 ´ T˚T has κ negative eigenvalues, there is a κ1 ď κ and
a function Spzq in Sκ1 which is holomorphic at the origin and such that
wpzq “ Spzq `Opzn`1´κq.

Proof of Theorem 3.5. Let V and V 1 be as in the proof of Theorem 3.1 but
with Cn replaced by Cn`1. For the data pA, b, cq, choose

A “

¨

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 0
1 0 ¨ ¨ ¨ 0 0
0 1 ¨ ¨ ¨ 0 0

¨ ¨ ¨

0 0 ¨ ¨ ¨ 1 0

˛

‹

‹

‹

‹

‚

, b “

¨

˚

˚

˚

˝

w0

w1

...
wn

˛

‹

‹

‹

‚

, c “

¨

˚

˚

˚

˝

1
0
...
0

˛

‹

‹

‹

‚

.

We check that the set D “ V 1 is admissible. Condition (i) in the definition of
admissibility is clear, and (ii) is trivial because Aj “ 0 for j ą n. The sums
in (2.3) can be evaluated, reducing (iii) to the assertion that T is bounded
as an operator on Cn`1 in the Euclidean metric. Thus D “ V 1 is admissible.

The Hermitian form (2.5) is given by Kpx, yq “ 〈p1´ T˚T qx, y〉Cn`1 for
all x, y P Cn`1. In fact, for any x P Cn`1,

Kpx, xq “
`

|x0|
2 ` ¨ ¨ ¨ ` |xn|

2
˘

´
`

|w0x0 ` ¨ ¨ ¨ ` wnxn|
2 ` |w0x1 ¨ ¨ ¨ ` wn´1xn|

2 ` ¨ ¨ ¨ ` |w0xn|
2
˘

“ }x}
2
Cn`1 ´ }Tx}

2
Cn`1

“ 〈p1´ T˚T qx, x〉Cn`1 .

By Proposition 1.2, sq´K is equal to the number of negative eigenvalues of

1 ´ T˚T . The equation fpAqc “ BpAqb with fpzq “
ř8

j“0 fjz
j and Bpzq “

ř8

j“0Bjz
j is equivalent to the identities

f0 “ w0B0, f1 “ w1B0 ` w0B1, . . . , fn “ wnB0 ` wn´1B1 ` ¨ ¨ ¨ ` w0Bn,

or Bpzqwpzq “ fpzq ` Opzn`1q. The result thus follows from the Theorem
2.1, ˝

Proof of Corollary 3.6. Let pf,Bq be a pair as in part p1q of Theorem 3.5.
If Bpzq has a zero of order r at the origin, fpzq has a zero of order at least
r at the origin. Hence Spzq “ fpzq{Bpzq belongs to Sκ1 for some κ1 ď κ
and is holomorphic at the origin, and wpzq “ Spzq ` Opzn´r`1q “ Spzq `
Opzn`1´κq. ˝

A simultaneous generalization of the Pick-Nevanlinna and Carathéo-
dory-Fejér problems can be treated in the same way by choosing A in Jordan
form. The calculations are straightforward but somewhat lengthy, and we
shall not pursue this direction. For the definite case, see [8] and [13, §2.6].

The Main Theorem also yields a result on generalized interpolation in
the sense of Sarason [15]. Let C be an inner function on D, and let

HpCq “ H2 a CH2
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in the inner product of H2. The reproducing kernel for HpCq is given by

KCpw, zq “
1´ CpzqCpwq

1´ zw̄
, z, w P D.

Let S be the shift operator S : hpzq Ñ zhpzq on H2, and let T be the com-
pression of S to HpCq, that is,

T “ PHpCqS|HpCq,

where PHpCq is the projection operator on H2 with range HpCq. The space
HpCq is invariant under S˚ and T˚ “ S˚|HpCq. Since T is completely nonuni-
tary, for any ϕ P H8 an operator ϕpT q on HpCq is defined by the H8-
functional calculus (see [16] and [17, p. 114]):

ϕpT q “ s-lim
rÒ1

ϕprT q.

Equivalently, for this particular situation, ϕpT q “ PHpCqMϕ|HpCq, where Mϕ

is multiplication by ϕ on H2. For every ϕ P H8, ϕpT q commutes with T ,
and ϕpT q is a contraction if ϕ is a Schur function.

Theorem 3.7 (Cf. [3, Theorem 3.6]). Let C be an inner function on the unit
disc, and define T on HpCq as above. Let R be a bounded linear operator on
HpCq such that TR “ RT .

(1) If 1 ´ RR˚ has κ negative squares, then there is a pair pf,Bq, where
f P S0 and B is a Blaschke product of degree κ, such that

BpT qR “ fpT q.

(2) If there is a pair pf,Bq as in p1q, 1 ´ RR˚ has κ1 negative squares for
some κ1 ď κ.

If R is a contraction, the condition in (1) is satisfied with κ “ 0, and in
this case the result reduces to the original theorem of Sarason [15, Theorem 1].

Proof. In the Main Theorem, let V “ HpCq, A “ T , c “ KCp0, ¨q, and
b “ Rc “ RKCp0, ¨q. Let D be the set of continuous linear functionals on
V “ HpCq; thus D “ tx1k : k P HpCqu where for any k P HpCq,

ph, x1kq “ 〈h, k〉HpCq, h P HpCq.

Then A1x1k “ x1T˚k for any k P HpCq, and so condition (i) holds in the

definition of admissibility. To verify (ii), notice that for any kpzq “
ř8

0 ajz
j

in HpCq,
8
ÿ

j“0

|pAjc, x1kq|
2 “

8
ÿ

j“0

|
〈
KCp0, ¨q, T

˚jk
〉
HpCq|

2 “

8
ÿ

j“0

|aj |
2 “ }k}2H2 ă 8.

(3.3)
If we replace c by b and use the identity RT “ TR, we obtain

8
ÿ

j“0

|pAjb, x1kq|
2 “

8
ÿ

j“0

|
〈
KCp0, ¨q, T

˚jR˚k
〉
HpCq|

2 “ }R˚k}2H2 ă 8, (3.4)
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and thus (ii) holds. Condition (iii) is immediate from (3.3) and (3.4) because
R is bounded in the norm of HpCq, which is the norm of H2.

The form (2.5) is given by

Kpx1h, x1kq “
8
ÿ

j“0

”〈
T jKCp0, ¨q, h

〉
HpCq

〈
k, T jKCp0, ¨q

〉
HpCq

´
〈
T jRKCp0, ¨q, h

〉
HpCq

〈
k, T jRKCp0, ¨q

〉
HpCq

ı

“ 〈k, h〉H2 ´ 〈R˚k,R˚h〉H2

“ 〈k, h〉HpCq ´ 〈R˚k,R˚h〉HpCq

“ 〈p1´RR˚qk, h〉HpCq (3.5)

for any h and k in HpCq.
(1) Assume that 1´RR˚ has κ negative squares. By (3.5), the Hermitian

form (2.5) has κ negative squares. Hence by part (1) of the Main Theorem,
there is a function f P S0 and a Blaschke product B of degree κ such that
BpAqb “ fpAqc, that is, if Bpzq “

ř8

0 Bjz
j and fpzq “

ř8

0 fjz
j , then for

every h P HpCq,
8
ÿ

j“0

Bj
〈
T jRKCp0, ¨q, h

〉
HpCq “

8
ÿ

j“0

fj
〈
T jKCp0, ¨q, h

〉
HpCq.

Using Abel summation of these series, we see that

BpT qRKCp0, ¨q “ fpT qKCp0, ¨q. (3.6)

Since R commutes with T , it commutes with BpT q and fpT q. Hence BpT qR
and fpT q agree on the smallest invariant subspace of T containing KCp0, ¨q.
The latter subspace is all of HpCq, and thus we obtain BpT qR “ fpT q.

(2) Assume that a pair pf,Bq exists as in (1). Reversing the preceding
steps, we see that BpAqb “ fpAqc, hence by part (2) of the Main Theorem
the form (2.5) has κ negative squares. Therefore by (3.5), 1 ´ RR˚ has κ1

negative squares for some κ1 ď κ. ˝

4. Boundary problems, disc case

Theorem 3.8 of [3] is withdrawn (see Appendix B), but in its place we can
formulate an open problem. We make a minor change in the hypotheses of
[3, Theorem 3.8] by assuming there that |b{c| ď 1 a.e.; this is a necessary
condition for the desired representation, and so nothing is lost. This change
appears in Problem 4.1 in the hypothesis that |S0puq| ď 1 a.e. It is essential
for the application of Kronecker’s theorem in Theorem 4.2(3).

Let σ be normalized Lebesgue measure on BD “ tu : |u| “ 1u, and write
L2, L8 for L2pBDq, L8pBDq. We identify H2 with a subspace of L2 in the
usual way. The class of boundary functions for SκpDq is denoted SκpBDq. If
∆ is a Borel subset of BD, L2p∆q is the subspace of functions in L2 supported
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on ∆. Let Sκp∆q be the space of restrictions to ∆ of functions in SκpBDq.
The characteristic function of ∆ is denoted 1∆; if ϕ is a function on ∆, we
view ϕ1∆ as a function defined on BD which is equal to ϕ a.e. on ∆ and equal
to zero on the complement of ∆. In what follows, we exclude the degenerate
case that ∆ is a Lebesgue null set.

Problem 4.1 (Cf. [3, Theorem 3.8]). Let S0 be a measurable complex-valued
function on a Borel subset ∆ of BD such that |S0puq| ď 1 a.e. on ∆, and let
κ be a nonnegative integer. Define a Hermitian form on L2p∆q ˆ L2p∆q by

Lpϕ,ψq “ lim
rÒ1

ż

∆

ż

∆

1´ S0puqS0pvq

1´ r2uv̄
ϕpuqψpvq dσpuqdσpvq, ϕ, ψ P L2p∆q.

Does it follow that S0 P Sκp∆q if and only if sq´ L “ κ?

The limit defining the Hermitian form L always exists [13, Theorem A,
p. 30]. In fact, for all ϕ,ψ P L2p∆q,

lim
rÒ1

ż

∆

ż

∆

ϕpuqψpvq

1´ r2uv̄
dσpuqdσpvq

“

8
ÿ

j“0

´

ż

∆

ujϕpuq dσpuq
¯´

ż

∆

vjψpvq dσpvq
¯´́

“ 〈Q´pϕ1∆q, ψ1∆〉L2 ,

(4.1)

where Q´ is the orthogonal projection on L2 whose range is the closed span
of all functions uj , j ď 0.

Theorem 4.2. In Problem 4.1:

(1) The answer is affirmative for κ “ 0.

(2) If S0 P Sκp∆q, then sq´ L ď κ with equality for κ “ 0 and κ “ 1.
Moreover, sq´ L ‰ 0 for all κ ě 1.

(3) If ∆ “ BD, then S0 P SκpBDq if and only if sq´ L “ κ.

Proof. (1) This follows from [13, Theorem A, p. 30].
(2) The case κ “ 0 is covered in (1). Assume κ ě 1 and S0 P Sκp∆q.

The Hermitian form L is an inner product on L2p∆q. Hence by Proposition
1.1, to prove that sq´ L ď κ, it is sufficient to show that any subspace of
L2p∆q which is strictly negative with respect to L has dimension at most κ.

By the Krĕın-Langer factorization, S0 “ B´1f a.e. on ∆, where B is a
Blaschke product of degree κ and f P S0pBDq. By the definite case applied
to f , the Hermitian form

L0pϕ,ψq “ lim
rÒ1

ż

∆

ż

∆

1´ fpuqfpvq

1´ r2uv̄
ϕpuqψpvq dσpuqdσpvq, ϕ, ψ P L2p∆q,

is nonnegative. Write

1´ S0puqS0pvq

1´ r2uv̄
“

1´ fpuqfpvq

1´ r2uv̄
´ S0puq

1´BpuqBpvq

1´ r2uv̄
S0pvq.
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An induction argument shows that

1´BpuqBpvq “ p1´ uv̄q
κ
ÿ

j“1

ejpuqejpvq,

where e1, . . . , eκ are rational functions which are bounded on sD. Thus

1´ S0puqS0pvq

1´ r2uv̄
“

1´ fpuqfpvq

1´ r2uv̄
´

1´ uv̄

1´ r2uv̄

κ
ÿ

j“1

S0puqejpuqejpvqS0pvq.

Therefore for all ϕ,ψ P L2p∆q,

Lpϕ,ψq “ L0pϕ,ψq

´ lim
rÒ1

ż

∆

ż

∆

1´ uv̄

1´ r2uv̄

κ
ÿ

j“1

ϕpuqS0puqejpuqejpvqS0pvqψpvq dσpuq dσpvq.

For all u, v P ∆ and r in p0, 1q,
ˇ

ˇ

ˇ

ˇ

1´ uv̄

1´ r2uv̄

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1´
p1´ r2quv̄

1´ r2uv̄

ˇ

ˇ

ˇ

ˇ

ď 2.

Hence

Lpϕ,ψq “ L0pϕ,ψq

´

κ
ÿ

j“1

ż

∆

ϕpuqS0puqejpuq dσpuq

ż

∆

ejpvqS0pvqψpvq dσpvq. (4.2)

Consider now any subspace N of L2p∆q such that

Lpϕ,ϕq ă 0, 0 ‰ ϕ P N . (4.3)

We show that any κ` 1 elements ϕ1, . . . , ϕκ`1 of N are linearly dependent.
Set

ϕ˚ “ η1ϕ1 ` ¨ ¨ ¨ ` ηκ`1ϕκ`1,

where η1, . . . , ηκ`1 are scalars to be determined. No matter how η1, . . . , ηκ`1

are chosen, ϕ˚ belongs to N because N is a subspace, and so Lpϕ˚, ϕ˚q ď 0.
We choose η1, . . . , ηκ`1, not all zero, such that

ż

∆

ϕ˚puqS0puqejpuq dσpuq “ 0, j “ 1, . . . , κ. (4.4)

Such a choice is possible because (4.4) is a system of κ equations in κ ` 1
unknowns. Then by (4.2) and (4.4),

Lpϕ˚, ϕ˚q “ L0pϕ˚, ϕ˚q ě 0.

Therefore Lpϕ˚, ϕ˚q “ 0 and so ϕ˚ “ 0 by (4.3). This yields a nontrivial
dependence relation for ϕ1, . . . , ϕκ`1. It follows that dimN ď κ, and hence
sq´ L ď κ.

It remains to show that sq´ L ‰ 0. If sq´ L “ 0, then S0 P S0p∆q by
[13, Theorem A, p. 30]. This is impossible since we assume S0 P Sκp∆q with
κ ě 1. Therefore sq´ L ‰ 0. This completes the proof of (2).
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(3) Set

P´ “ projection on L2
´ “ ru

´1, u´2, . . . s,

Q´ “ projection on uL2
´ “ r1, u

´1, u´2, . . . s,

where r¨s indicates closed span in L2. Then P´ “ u´1Q´u.

Assume sq´ L “ κ. Define a Hermitian form L1ph, kq on H2 ˆH2 by

L1ph, kq “ Lpuh, ukq, h, k P H2.

Since L1 is essentially a restriction of L, sq´ L1 “ κ1 ď κ. By (4.1), for all
ϕ,ψ P L2,

Lpϕ,ψq “ 〈Q´ϕ,ψ〉L2 ´ 〈Q´S0ϕ, S0ψ〉L2 .

If ϕ,ψ P uH2, then Q´ϕ “ 0, and so

Lpϕ,ψq “ ´〈Q´S0ϕ, S0ψ〉L2 .

For any h, k P H2,

L1ph, kq “ Lpuh, ukq “ ´〈Q´S0uh, S0uk〉L2 “ ´〈P´S0h, S0k〉L2

“ ´〈P´S0h, P´S0k〉L2 “ ´〈HS0h,HS0k〉L2
´
“ ´

〈
H˚S0

HS0h, k
〉
H2 ,

where HS0
: H2 Ñ L2

´ is the Hankel operator with symbol S0 (see Appendix
A). By Proposition 1.2,

κ1 “ sq´ L1 “ sq´ p´H
˚
S0
HS0q “ rankH˚S0

HS0 “ rankHS0 .

By Kronecker’s Theorem (Theorem A.1), there is a Blaschke product B0 of
degree κ1 such that B0S0 “ f0 P H

8. Since we assume |S0puq| ď 1 a.e. on BD,
|f0puq| ď 1 a.e. on BD, and so f0 P S0pBDq. If B0 and f0 have common zeros
in D, we can remove them by dividing B0 and f0 by appropriate Blaschke
factors. Then we obtain a Blaschke product B of degree κ2 ď κ1 and f P
S0pBDq such that

S0 “ B´1f P Sκ2pBDq.

By part (2) of the theorem proved above,

κ “ sq´ L ď κ2.

By construction, κ2 ď κ1 ď κ, so κ2 “ κ1 “ κ. Thus S0 P SκpBDq, and the
sufficiency part of (3) follows.

Conversely, assume S0 P SκpBDq. Again by part (2),

sq´ L “ κ1 ď κ.

Hence by what we just proved, S0 P Sκ1pBDq. Since S0 P SκpBDq by assump-
tion, this is possible only if κ1 “ κ. Thus sq´ L “ κ, and the necessity part
of (3) follows. ˝
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5. Boundary problems on a half-plane

The half-plane boundary theorems in [3, Section 4] are also withdrawn (Ap-
pendix B). We shall similarly reformulate them here as open problems and
give partial results analogous to the disc case. We omit [3, Theorem 4.5] in
the interest of brevity.

The generalized Schur class SκpC`q on the upper half-plane is the set
of functions

Spzq “ S0

´z ´ i

z ` i

¯

,

where S0 belongs to SκpDq. The generalized Nevanlinna class NκpC`q is the
set of functions fpzq which are analytic on a subregion Ω of C` such that

the Hermitian kernel rfpzq ´ fpζqs{pz ´ ζ̄q has κ negative squares on ΩˆΩ.
If Spzq belongs to SκpC`q, then

fpzq “ i
1` Spzq

1´ Spzq
(5.1)

defines a function in NκpC`q, and every function in NκpC`q is obtained in
this way; when κ “ 0 we exclude Spzq ” 1 from this correspondence. The
associated boundary classes are denoted SκpRq and NκpRq. Given a Borel
subset ∆ of R, Sκp∆q and Nκp∆q are the spaces of restrictions to ∆. Let
H2pC˘q be the Hardy classes for the upper and lower half-planes, H2

˘pRq
their boundary classes. We note that L2pRq is the orthogonal direct sum of
H2
´pRq and H2

`pRq.

Problem 5.1 (Cf. [3, Theorem 4.1]). Let S0 be a measurable complex-valued
function on a Borel subset ∆ of R such that |S0puq| ď 1 a.e. on ∆, and let κ
be a nonnegative integer. Define a Hermitian form on L2p∆q ˆ L2p∆q by

Lpϕ,ψq “ lim
εÓ0

i

2

ż

∆

ż

∆

1´ S0psqS0ptq

s´ t` iε
ϕpsqψptq ds dt, ϕ, ψ P L2p∆q.

Does it follow that S0 P Sκp∆q if and only if sq´ L “ κ?

By [13, pp. 33–34], for all ϕ,ψ P L2p∆q,

lim
εÓ0

i

2

ż

∆

ż

∆

ϕpsqψptq

s´ t` iε
ds dt

“

8
ÿ

j“0

˜

ż

∆

ˆ

t´ i

t` i

˙j
1

t` i
ϕptq dt

¸˜

ż

∆

ˆ

t´ i

t` i

˙j
1

t` i
ψptq dt

¸´́

“ π 〈P´pϕ1∆q, ψ1∆〉L2pRq , (5.2)

where P´ is the projection from L2pRq onto H2
´pRq. Hence the Hermitian

form L is well defined.
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Theorem 5.2. In Problem 5.1:

(1) The answer is affirmative for κ “ 0.

(2) If S0 P Sκp∆q, then sq´ L ď κ with equality for κ “ 0 and κ “ 1.
Moreover, sq´ L ‰ 0 for all κ ě 1.

(3) If ∆ “ R, then S0 P SκpRq if and only if sq´ L “ κ.

Proof. (1) This follows from [13, Theorem B, p. 31].
(2) By (1) it is sufficient to treat the case κ ě 1. Since S0 P SκpC`q, we

can write S0pxq “ Bpxq´1fpxq a.e. on R, where B is a Blaschke product on
C` of degree κ and f P S0pC`q. The Hermitian form

L0pϕ,ψq “ lim
εÓ0

i

2

ż

∆

ż

∆

1´ fpsqfptq

s´ t` iε
ϕpsqψptq ds dt, ϕ, ψ P L2p∆q,

is nonnegative by the known case κ “ 0. Write

1´ S0psqS0ptq

s´ t` iε
“

1´ fpsqfptq

s´ t` iε
´ S0psq

1´BpsqBptq

s´ t` iε
S0ptq.

By induction,

1´BpzqBpwq “
2

i
pz ´ w̄q

κ
ÿ

j“1

ejpzqejpwq,

where each e1pzq, . . . , eκpzq is rational and belongs to H2pC`q. Thus

i

2

1´ S0psqS0ptq

s´ t` iε
“
i

2

1´ fpsqfptq

s´ t` iε
´

s´ t

s´ t` iε

κ
ÿ

j“1

S0psqejpsqejptqS0ptq.

Then for all ϕ,ψ in L2p∆q,

Lpϕ,ψq “ L0pϕ,ψq

´ lim
εÓ0

ż

∆

ż

∆

s´ t

s´ t` iε

κ
ÿ

j“1

ϕpsqS0psqejpsqejptqS0ptqψptq ds dt.

Here ϕS0ej and ψS0ej are in L1p∆q for all j “ 1, . . . , κ, and
ˇ

ˇ

ˇ

ˇ

s´ t

s´ t` iε

ˇ

ˇ

ˇ

ˇ

2

“
ps´ tq2

ps´ tq2 ` ε2
ď 1

for all s, t P ∆ and ε ą 0. Hence

Lpϕ,ψq “ L0pϕ,ψq ´
κ
ÿ

j“1

ż

∆

ϕpsqS0psqejpsq ds

ż

∆

ejptqS0ptqψptq dt.

This identity is parallel to (4.2) in the proof of Theorem 4.2(2). We use it
in the same way to show that any subspace N of L2p∆q which is strictly
negative with respect to L has dimension at most κ. Hence sq´ L ď κ by
Proposition 1.1. The last statement in (2) also follows as in Theorem 4.2(2).

(3) Assume sq´ L “ κ. By (5.2), for all ϕ,ψ in L2pRq,

lim
εÓ0

i

2

ż

R

ż

R

ϕpsqψptq

s´ t` iε
ds dt “ π〈P´ϕ,ψ〉L2pRq,
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and hence

Lpϕ,ψq “ π〈P´ϕ,ψ〉L2pRq ´ π〈P´S0ϕ, S0ψ〉L2pRq.

Let L1 be the restriction of L to H2
`pRq ˆH2

`pRq. For ϕ,ψ in H2
`pRq,

L1pϕ,ψq “ ´π〈P´S0ϕ, S0ψ〉L2pRq,

because P´ϕ “ 0. Then

L1pϕ,ψq “ ´π〈P´S0ϕ,P´S0ψ〉L2pRq

“ ´π〈HS0
ϕ,HS0

ψ〉H2
´
pRq

“ ´π
〈
H˚S0

HS0
ϕ,ψ

〉
H2
`
pRq,

where HS0
: H2

`pRq Ñ H2
´pRq is the Hankel operator with symbol S0 (see

Appendix A). Since L1 is a restriction of L,

sq´ L1 “ κ1 ď κ.

By Proposition 1.2,

κ1 “ sq´ L1 “ sq´ p´H˚S0
HS0

q “ rankH˚S0
HS0

“ rankHS0
.

By Kronecker’s Theorem for the half-plane (Theorem A.3), there is a Blaschke
product B0 on the half-plane of degree κ1 such that the function

f0 “ B0S0

belongs to H8pRq. Since we assume that |S0pxq| ď 1 a.e., f0 is bounded by
one a.e. on R, and hence f0 P S0pRq. Viewed as functions on C`, f0 and B0

may have common zeros. These can be removed by cancelling appropriate
Blaschke factors. We thus obtain a Blaschke product B of degree κ2 ď κ1

and an f P S0pRq having no common zeros, such that

S0 “ B´1f P Sκ2pRq.

By part (2) of the theorem,

κ “ sq´ L ď κ2.

Since κ2 ď κ1 ď κ by construction, κ2 “ κ1 “ κ. Therefore S0 P SκpRq, as
was to be shown.

For the converse direction, suppose S0 P SκpRq. Apply part (2) again to
conclude that sq´ L ď κ. By what we just proved, it follows that S0 P Sκ1

pRq,
where κ1 “ sq´ L. Then S0 P Sκ1pRq X SκpRq, and this is possible only if
κ1 “ κ. ˝
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Problem 5.3 (Cf. [3, Theorem 4.2]). Let f0 be a measurable complex-valued
function on a Borel subset ∆ of R such that Im f0pxq ě 0 a.e. on ∆, and let
κ be a nonnegative integer. Let D be the linear space of measurable functions
ϕ on ∆ such that ϕ and f0ϕ belong to L2p∆q. Define a Hermitian form on
D ˆD by

Lpϕ,ψq “ lim
εÓ0

ż

R

ż

R

f0psq ´ f0ptq

s´ t` iε
ϕpsqψptq ds dt, ϕ, ψ P D. (5.3)

Does it follow that f0 P Nκp∆q if and only if sq´ L “ κ?

Theorem 5.4. In Problem 5.3:

(1) The answer is affirmative for κ “ 0.

(2) If f0 P Nκp∆q, then sq´ L ď κ, with equality when κ “ 0 or κ “ 1.
Moreover, sq´ L ‰ 0 for all κ ě 1.

(3) When ∆ “ R, then f0 P NκpRq if and only if sq´ L “ κ.

Proof. Part (1) follows from the theorem in [13, p. 34].
For parts (2) and (3), set S0pxq “ pf0pxq ´ iq{pf0pxq ` iq. Then

1´ S0psqS0ptq “
2i
“

f0ptq ´ f0psq
‰

“

f0psq ` i
‰“

f0ptq ´ i
‰ . (5.4)

Hence |S0pxq| ď 1 a.e. on ∆ because Im f0pxq ě 0 a.e. on ∆. Define a Her-
mitian form on L2p∆q ˆ L2p∆q by

Kpϕ,ψq “ lim
εÓ0

i

2

ż

∆

ż

∆

1´ S0psqS0ptq

s´ t` iε
ϕpsqψptq ds dt

for all ϕ,ψ P L2p∆q. We show that

sq´K “ sq´ L . (5.5)

By (5.4),

Kpϕ,ψq “ lim
εÓ0

i

2

ż

∆

ż

∆

2i
“

f0ptq ´ f0psq
‰

“

f0psq ` i
‰“

f0ptq ´ i
‰

ϕpsqψptq

s´ t` iε
ds dt

“ lim
εÓ0

ż

∆

ż

∆

f0psq ´ f0ptq

s´ t` iε

ϕpsq

f0psq ` i

ψptq

f0ptq ´ i
ds dt

“ lim
εÓ0

ż

∆

ż

∆

f0psq ´ f0ptq

s´ t` iε
ϕ̃psq ψ̃ptq ds dt

“ Lpϕ̃, ψ̃q, (5.6)

where

ϕ̃psq “
ϕpsq

f0psq ` i
, ψ̃ptq “

ψptq

f0ptq ` i
.

To deduce (5.5), we need to show that V : ϕpxq Ñ ϕpxq{
“

f0pxq ` i
‰

is a

one-to-one mapping from L2p∆q onto D. Let ϕpxq P L2p∆q, and set ϕ̃pxq “
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ϕpxq{
“

f0pxq` i
‰

. Decompose f0pxq into its real and imaginary parts, f0pxq “
upxq ` ivpxq. Then vpxq ě 0 a.e., and so

ˇ

ˇ

ˇ

ˇ

1

f0pxq ` i

ˇ

ˇ

ˇ

ˇ

2

“
1

upxq2 `
“

vpxq ` 1
‰2 ď 1,

ˇ

ˇ

ˇ

ˇ

f0pxq

f0pxq ` i

ˇ

ˇ

ˇ

ˇ

2

“
upxq2 ` vpxq2

upxq2 `
“

vpxq ` 1
‰2 ď 1.

Therefore ϕ̃, f0ϕ̃ belong to L2p∆q, and hence ϕ̃ is in D. Conversely, if ϕ̃ P D,
then ϕ̃, f0ϕ̃ belong to L2p∆q, and hence ϕpxq “

“

f0pxq ` i
‰

ϕ̃pxq is in L2p∆q.
Thus V is one-to-one and onto, and hence (5.5) follows from (5.6).

By (5.1), f0 P Nκp∆q if and only if S0 P Sκp∆q. Thus by (5.5), parts
(2) and (3) of the theorem follow from the corresponding parts of Theorem
5.2. ˝

The classical Loewner Theorem uses difference-quotient kernels and ap-
plies to real-valued functions [3, p. 38]. In Problem 5.3, the Hermitian form
(5.3) can be written in an analogous form when f0 is real valued.

Problem 5.5 (Cf. [3, Theorem 4.4]). Let f0 be a measurable real-valued func-
tion on a Borel subset ∆ of R, and let κ be a nonnegative integer. Let D be
the linear space of measurable functions ϕ on ∆ such that ϕ and f0ϕ belong
to L2p∆q. Define a Hermitian form on D ˆD by

Lpϕ,ψq “ lim
εÓ0

ĳ

|t´s|ąε

f0psq ´ f0ptq

s´ t
ϕpsqψptq ds dt, ϕ, ψ P D. (5.7)

Does it follow that f0 P Nκp∆q if and only if sq´ L “ κ?

The double integral in (5.7) is taken over tps, tq P ∆ ˆ∆: |t ´ s| ą εu,
but we write simply |t´ s| ą ε when no confusion can arise.

Theorem 5.6. In Problem 5.5:

(1) The answer is affirmative for κ “ 0.

(2) If f0 P Nκp∆q, then sq´ L ď κ, with equality when κ “ 0 or κ “ 1.
Moreover, sq´ L ‰ 0 for all κ ě 1.

(3) When ∆ “ R, then f0 P NκpRq if and only if sq´ L “ κ.

As before, let P´ be the projection from L2pRq onto H2
´pRq. Then [14,

p. 113]

P´ “
1

2
p1` iHq, (5.8)

where H : L2pRq Ñ L2pRq is the Hilbert transform. This is defined by

pHϕqpxq “ PV
1

π

ż

R

ϕptq

t´ x
dt “ lim

εÓ0

1

π

ż

|t´x|ąε

ϕptq

t´ x
dt
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for all ϕ in L2pRq. The limit exists pointwise a.e. on R and in the norm of
L2pRq. The operator iH is selfadjoint and unitary. For any Borel subset ∆
of R, let H∆ be the compression of H to L2p∆q. Then for all ϕ in L2p∆q,

pH∆ϕqpxq “ PV
1

π

ż

∆

ϕptq

t´ x
dt

a.e. on ∆. The operator iH∆ is selfadjoint, and therefore H˚∆ “ ´H∆.

Proof of Theorem 5.6. By (5.8), we can write (5.2) in the form

lim
εÓ0

ż

∆

ż

∆

ϕpsqψptq

s´ t` iε
ds dt “

2π

i
〈P´pϕ1∆q, ψ1∆〉L2pRq

“
π

i
〈p1` iHqpϕ1∆q, ψ1∆〉L2pRq

“ π 〈pH∆ ´ iqϕ,ψ〉L2p∆q.

Hence if ϕ, f0ϕ and ψ, f0ψ belong to L2p∆q, the Hermitian form (5.3) is given
by

lim
εÓ0

ż

R

ż

R

f0psq ´ f0ptq

s´ t` iε
ϕpsqψptq ds dt

“ π 〈pH∆ ´ iqpf0ϕq, ψ〉L2p∆q

´ π 〈pH∆ ´ iqϕ, f0ψ〉L2p∆q

“ π 〈H∆pf0ϕq, ψ〉L2p∆q ` π 〈ϕ,H∆pf0ψq〉L2p∆q

` 2π 〈pIm f0qϕ,ψ〉L2p∆q .

The last term on the right side is zero because we assume that f0 is real
valued. For (5.7) we obtain

lim
εÓ0

ĳ

|t´s|ąε

f0psq ´ f0ptq

s´ t
ϕpsqψptq ds dt

“ lim
εÓ0

ż

∆

ˆ
ż

|t´s|ąε

f0psqϕpsq

s´ t
ds

˙

ψptq dt

´ lim
εÓ0

ż

∆

ˆ
ż

|t´s|ąε

ϕpsq

s´ t
ds

˙

f0ptqψptq dt

“ π 〈H∆pf0ϕq, ψ〉L2p∆q ´ π 〈H∆ϕ, f0ψ〉L2p∆q

“ π 〈H∆pf0ϕq, ψ〉L2p∆q ` π 〈ϕ,H∆pf0ψq〉L2p∆q.

Thus (5.3) and (5.7) coincide when f0 is real valued, and so the result follows
from Theorem 5.4. ˝
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Appendix A. Hankel operators

In this appendix, we review Kronecker’s theorem for the disc and half-plane.
The standard source for Hankel operators is Peller [12].

Let P´ be the projection from L2pBDq onto the closed span L2
´ of

u´1, u´2, . . . . The Hardy space H2 is identified with the associated space
of boundary functions in L2pBDq. Given ϕ P L8pBDq, the Hankel operator
Hϕ : H2 Ñ L2

´ is defined by

Hϕf “ P´ϕf, f P H2.

The identity

P´SHϕ “ HϕS (A.1)

is verified by checking the action of each side on un for all n ě 0. By (A.1),
the kernel of Hϕ is invariant under the shift operator S.

Theorem A.1 (Kronecker’s Theorem for the Unit Circle). Let ϕ P L8pBDq.
(1) If rankHϕ “ κ ă 8, there is a Blaschke product B of degree κ such

that Bϕ P H8.
(2) If Bϕ P H8 for some finite Blaschke product B, then rankHϕ ď degB.

Proof. (1) Suppose rankHϕ “ κ. Since Hϕ is one-to-one on the orthogonal
complement of its kernel,

dim
`

H2 a kerHϕ

˘

“ κ. (A.2)

Since kerHϕ is invariant under S, kerHϕ “ BH2 for some inner function B,
by Beurling’s theorem. By (A.2), B is a Blaschke product of degree κ. Since
Hϕ is zero on BH2,

P´ϕB “ HϕB “ 0.

Therefore Bϕ P H2 X L8pBDq “ H8.

(2) Assume B is Blaschke and Bϕ P H8. Then Bϕ P H2 and so HϕB “
P´ϕB “ 0. Since kerHϕ is invariant under S, BH2 Ď kerHϕ. Therefore

rankHϕ “ dim
`

H2 a kerHϕ

˘

ď dim
`

H2 aBH2
˘

“ degB,

as was to be shown. ˝

To derive a version of Kronecker’s Theorem for the real line, we define
mappings α and β “ α´1 connecting the unit disc and upper half-plane by

αpwq “ i
1` w

1´ w
, w P sDzt1u,

βpzq “
z ´ i

z ` i
, z P sC`zt8u.

We use a natural unitary operator U : L2pBDq Ñ L2pRq, which is defined by

Uf “ F,
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where f P L2pBDq and F P L2pRq are connected by

F ptq “
1
?
π

1

t` i
fpβptqq, t P Rzt8u, (A.3)

fpeiθq “
2i
?
π

1´ eiθ
F pαpeiθqq, eiθ P BDzt1u. (A.4)

To check that U is unitary, we show that both mappings f Ñ F and F Ñ f
are isometric. The following formulas to change variables are given in (5-4)
and (5-5) in [14]. For ϕ P L1pBDq,

1

2π

ż 2π

0

ϕpeiθq dθ “
1

π

ż

R

ϕpβptqq

t2 ` 1
dt. (A.5)

For ψ P L1pRq,
ż

R
ψptq dt “

ż 2π

0

´2eiθ

p1´ eiθq2
ψpαpeiθqq dθ. (A.6)

First suppose f P L2pBDq and F is defined by (A.3). By (A.6),

ż

R
|F ptq|2 dt “

ż

R

ψptq
hkkkkkkkkkkikkkkkkkkkkj

1{π

|t` i|2
|fpβptqq|2 dt

(A.6)
“

ż 2π

0

´2eiθ

p1´ eiθq2
ψpαpeiθqq dθ

“

ż 2π

0

´2eiθ

p1´ eiθq2
1{π

|αpeiθq ` i|2
|fpβpαpeiθqqq|2 dθ

“

ż 2π

0

|fpeiθq|2 dθ.

Suppose F P L2pRq is given and f is defined by (A.4). Then

1

2π

ż 2π

0

|fpeiθq|2 dθ “
1

2π

ż 2π

0

ϕpeiθq
hkkkkkkkkkkkikkkkkkkkkkkj

ˇ

ˇ

ˇ

ˇ

2i
?
π

1´ eiθ
F pαpeiθqq

ˇ

ˇ

ˇ

ˇ

2

dθ

(A.5)
“

1

π

ż

R

ϕpβptqq

t2 ` 1
dt

“
1

π

ż

R

1

t2 ` 1

ˇ

ˇ

ˇ

ˇ

2i
?
π

1´ βptq
F pαpβptqqq

ˇ

ˇ

ˇ

ˇ

2

dt

“

ż

R
|F ptq|2 dt.

The unitarity of U follows.
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Define H2
˘pRq and H8pRq as the spaces of boundary functions of the

Hardy classes H2pC˘q and H8pC`q. Write L2pBDq “ H2 ‘H2
´, where

H2 “ r1, u, u2, . . . s, H2
´ “ ru

´1, u´2, . . . s,

and let P˘ be the projections on H2 and H2
´. One can show that

UH2 “ H2
`pRq, UH2

´ “ H2
´pRq,

L2pRq “ H2
`pRq ‘H2

´pRq.

Let P˘ be the projections from L2pRq ontoH2
˘pRq. By the preceding relations,

P˘ “ UP˘U
´1. (A.7)

We define the Hankel operator Hψ : H2
`pRq Ñ H2

´pRq for any ψ P L8pRq
as in Peller [12, p. 51]:

HψF “ P´ψF, F P H2
`pRq.

The following result is given in Peller [12, Lemma 8.3 on p. 51].

Theorem A.2. If ϕ P L8pBDq and ψ P L8pRq are connected by ϕ “ ψ ˝ α,
then

Hϕ “ U´1HψU.

Proof. For all f P L2pBDq,

Uϕf “
1
?
π

1

t` i
ϕpβptqqfpβptqq “ ψptq

1
?
π

1

t` i
fpβptqq “ ψUf.

Therefore
P´Uϕf “ P´ψUf “ HψUf.

By (A.7), P´U “ UP´ and hence

P´Uϕf “ UP´ϕf “ UHϕf.

Thus HψUf “ UHϕf . ˝

Theorem A.3 (Kronecker’s Theorem for the Real Line). Let ψ P L8pRq.
(1) If rankHψ “ κ ă 8, there is a Blaschke product B for the upper half-

plane of degree κ such that Bψ P H8pRq.
(2) If Bψ P H8pRq for some finite Blaschke product B for the upper half-

plane, then rankHψ ď degB.

Proof. Set ϕ “ ψ ˝ α. A function B on C` is a Blaschke product of degree κ
if and only if the function B ˝ α is a Blaschke product of degree κ on D.

(1) If rankHψ “ κ, then rankHϕ “ κ by the Theorem A.2. By Theorem

A.1(1), there is a Blaschke product rB on D of degree κ such that rBϕ belongs

to H8 on D. Then B “ rB ˝ β is a Blaschke product on C` of degree κ, and

Bψ “ p rBϕq ˝ α belongs to H8pRq.
(2) Suppose Bψ P H8pC`q for some finite Blaschke product B. Then

rB “ B ˝ α is a finite Blaschke product on D such that rBϕ “ pBψq ˝ α

is in H8pDq. By Theorem A.1(2), rankHϕ ď deg rB. Therefore rankHψ ď

degB. ˝
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Appendix B. Brief corrigendum

The first and third paragraphs that follow are quoted verbatim from the Cor-
rigendum [4] to the original paper [3]; the second is a paraphrase from [4].
The example at the end is new.

The Main Theorem in [3, p. 816] has gaps. In the proof of Part (1),
the statement on p. 832, line 6, that the operator X0 “ Y0 `K is bounded
is an error, because no reason is given why the finite-rank summand K is
bounded. A similar error occurs in Part (2) on p. 833, line 15, where again it
is asserted without justification that X0 is bounded. A correct version of the
Main Theorem is obtained by replacing the condition (iii) in ([3, Definition
2.1]) with a stronger version:

(iii1) there is an M ą 0 such that
ř8

j“0 |pA
jb, x1q|2 ďM

ř8

j“0 |pA
jc, x1q|2 for

all x1 in D.

Condition (iii1) makes X0 bounded from the start, and then the proof of
the Main Theorem goes through as written. The Main Theorem (Alternative
Form) on p. 834 is correct as written provided that condition (iii1) is adopted.

A number of applications survive this change. The following results in [3]
are true as stated: Theorem 3.1 on Pick-Nevanlinna interpolation, Theorem
3.4 and Corollary 3.5 on Carathéodory-Fejér interpolation, and Theorem 3.6
on Sarason generalized interpolation. (Proofs are given in Section 3 above.)

Other applications do not survive because (iii1) is not satisfied or can-
not readily be verified. Theorem 3.2, its corollary, and Theorem 3.7 are in
this category and are withdrawn. The boundary results in Theorem 3.8, its
corollary, and the results in Section 4 are withdrawn for the same reason. An
exception here is the Alternative form of Corollary 3.9 on p. 824, which does
not use the Main Theorem and is correct as written. The Example on p. 825
remains valid when (iii) is replaced by (iii1).

Example. Let M be a linear subspace of a Hilbert space H, X0 a linear
operator on M into H. We show that the inner product

〈f, g〉M “ 〈f, g〉H ´ 〈X0f,X0g〉H, f, g PM,

on M may have a finite number of negative squares with X0 unbounded in the
norm of H. In fact, let M be the subspace of polynomials in H “ L2p´1, 1q.
Let X0 be the operator

X0 : ppxq Ñ pp0qepxq, p PM,

where epxq ” 1 on p´1, 1q. Then for all p, q PM,

〈p, q〉M “ 〈p, q〉H ´ 〈X0p,X0q〉H “ 〈p, q〉H ´ 2pp0qqp0q. (B.1)

The operator X0 is unbounded in the norm of H because we can make |pp0q|
arbitrarily large for p in M such that }p}H ď 1. Such a polynomial can be
chosen of the form ppxq “ Cp1 ´ x2qn; with C any positive constant, by
various means we can choose n large enough that }p}H ď 1.
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We show that the maximum dimension of a strictly negative subspace
of pM, 〈¨, ¨〉Mq is one. If ppxq “ 1´ x2, then

〈p, p〉M “ 〈p, p〉H ´ 2|pp0q|2 “

ż 1

´1

p1´ x2q2 dx´ 2 “ ´
14

15
ă 0.

Hence there is a one-dimensional strictly negative subspace of pM, 〈¨, ¨〉Mq.
Let N be any strictly negative subspace of pM, 〈¨, ¨〉Mq, so for any p in N ,
〈p, p〉M ď 0 with equality only for p ” 0. We show that any two elements p, q
of N are linearly dependent.

Case 1: pp0q “ 0 or qp0q “ 0. If e.g. pp0q “ 0, then 〈p, p〉M “ 〈p, p〉H ě 0
by (B.1). Since p P N and N is strictly negative, 〈p, p〉M ď 0 with equality
only for p ” 0. Therefore p ” 0, and trivially p and q are linearly dependent.

Case 2: pp0qqp0q ‰ 0. Set r “ qp0qp´pp0qq. Then r P N and rp0q “ qp0qpp0q´
pp0qqp0q “ 0. As above, this implies r ” 0, and hence p and q are linearly
dependent.

A particular instance of this situation is when X0 is the operator defined
in [3, p. 831, line 16]. The example shows that the hypothesis of a finite
number of negative squares, by itself, is not sufficient to conclude that X0 is
bounded.
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Basel, 1994.

[15] D. Sarason, Generalized interpolation in H8, Trans. Amer. Math. Soc. 127
(1967), 179–203.

[16] M. Schreiber, A functional calculus for general operators in Hilbert space,
Trans. Amer. Math. Soc. 87 (1958), 108–118.

[17] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space,
Translated from the French and revised, North-Holland Publishing Co.,
Amsterdam-London; American Elsevier Publishing Co., Inc., New York;
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