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Abstract: Land use and land cover change (LULCC) has directly played an important role in the
observed climate change. In this paper, we considered Dujiangyan City and its environs (DCEN) to
study the future scenario in the years 2025, 2030, and 2040 based on the 2018 simulation results from
2007 and 2018 LULC maps. This study evaluates the spatial and temporal variations of future LULCC,
including the future potential landscape risk (FPLR) area of the 2008 great (8.0 Mw) earthquake of
south-west China. The Cellular automata–Markov chain (CA-Markov) model and multicriteria based
analytical hierarchy process (MC-AHP) approach have been considered using the integration of
remote sensing and GIS techniques. The analysis shows future LULC scenario in the years 2025, 2030,
and 2040 along with the FPLR pattern. Based on the results of the future LULCC and FPLR scenarios,
we have provided suggestions for the development in the close proximity of the fault lines for the
future strong magnitude earthquakes. Our results suggest a better and safe planning approach in the
Belt and Road Corridor (BRC) of China to control future Silk-Road Disaster, which will also be useful
to urban planners for urban development in a safe and sustainable manner.

Keywords: LULCC modeling; Cellular automata–Markov (CA-Markov); Future potential landscape
risk (FPLR); Dujiangyan City and environs (DCEN); SW China

1. Introduction

The land use land cover change and its modeling (LULCC-M) approach has recently been
considered by the scientific community to observe environmental changes at level 4, such as local,
regional, national, and global. To achieve the Sustainable Development Goals framework designed
by the United Nations (UN) 2030, Sustainable Development Goals (SDGs) have been considered
worldwide. Changes above level 4 are heavily impacted by natural hazards, i.e., earthquakes, floods,
landslides, and forest fires. The term ‘land use and land cover changes’ (LULCC) refers to human
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modifications of the terrestrial surface of the earth, as well as the study of land surface change [1],
and the term ‘transition’ defines the process of changing, or the change of something from one form
or state to another [2]. The study of LULC change is considered as an important aspect to observe
parameters which are responsible for overall changes [3–16], landscape changes [17–22], landscape
fragmentation [23,24], changes in ecosystems [25,26], climate changes [27], growth of urban areas [28,29],
sustainable development [30,31], and environment and risk evaluation of earthquake-affected cities [16].
Sui and Ming’s [31] idea of LULCC on sustainable development in China has attracted the attention of
scientists and planners worldwide. However, LULCC at spatiotemporal scales in metropolitan areas
has been carried out worldwide in earthquake-affected cities, watersheds, coastal areas, and wildlife
sanctuary areas using multitemporal remote sensing satellite data [16,32–43].

To support LULCC, land-use change models (LUCM) are considered as effective tools to analyze
the causes and consequences of land-use change. Moreover, the LULC model is found to be effective
when predicting the future state and spatial distribution of LULC using the gained knowledge from
previous years [44]. Many scientists, such as Singh et al. [45–49], Dey and Singh [50], Okada et al. [51],
and Dey et al. [52], have conducted studies related to surface, ocean, and atmospheric parameters
associated with the Gujarat earthquake of 26 January 2001. Singh and Singh [53] also performed
lineament mapping associated with the changes in stress in the epicentral areas of the Gujarat
earthquake using remote sensing data. In addition, group of scientists carried out a detailed analysis
of damages and numerous parameter changes associated with the deadly 2008 Wenchuan earthquake
which occurred in south-west (SW) China [54–61]. The remote sensing and GIS techniques have been
widely used to assess LULCC, especially in inaccessible mountainous regions [62–65]. Moreover,
high-resolution remote sensing images have also been used in efficient image segmentation [66]
and knowledge transfer to automatically update LULCC databases [67] in different areas of China.
In connection with the LULCC study, research on the lineament structural change caused by earthquakes
in South America and China has been carried out using ASTER (Terra) [68] and Landsat (5-TM and
8-OLI) [16] satellite data, respectively.

Numerous methods, such as mathematical-equation-based, spatiotemporal modeling [69],
system dynamic simulation [70], statistical, cellular and hybrid models [71], cellular and agent-based
models or a hybrid of the two [72], and the cellular automata–Markov chain (CA-Markov)
model [44,73–76], have been utilized in different research. CA-Markov initial conditions,
parameterization of the model, calculations of the transition probabilities, and determination of
the neighborhood rules were defined by the remote sensing and GIS datasets [77–81]. The CA-Markov
model is one of the most ideal and widely accepted methods for LULCC modeling because it considers
‘t-1’ to ‘t’ to project probabilities of LULCC for the future date ‘t+1’ [44,82,83]. The probabilities are
generated based on past and future changes [44]. The CA-Markov model has the ability to simulate
changes in different LULC and can possibly simulate the transition from one category of LULC change
to another [44]. However, a combined CA-Markov model to simulate future LULCC by integrating
natural and socioeconomic data is still a challenge due to the different datasets.

In Sichuan province, many earth observation data have been used for land management,
monitoring, and degradation studies [84–87], especially after the Wenchuan earthquake. Dujiangyan
City and its environs (DCEN) are located at the southeast of the Tibet plateau under Sichuan province.
Asia’s Water Tower (AWT) suffers from frequent geological disasters, and therefore, the region needs
close attention. In the past, DCEN were not studied in detail, but by observing the area in 2018,
Nath et al. [16], studied major landscape changes in the area first time using Landsat datasets. The area
is close to the epicenter of the deadly Wenchuan earthquake of 12 May 2008, and they observed the
LULCC, including the landscape risk patterns (LRP) that developed in the 2007–2018 time period.
However, in the DCEN region, risk evaluation studies are limited. The present study focuses in
LULCC for the period 2007–2018 which will help to make plans and take steps to improve ecological
environments, which are a threat due to future changes in LULC. Therefore, the present study is
an important effort to closely monitor the DCEN area so that appropriate action can be considered.
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In connection with this, future land use and land cover change (FLULCC) and future potential
landscape risk (FPLR) patterns for the years 2025, 2030, and 2040 were observed based on the cellular
automata–Markov chain (CA-Markov) modeling and multicriteria-based analytical hierarchy process
(MC-AHP) approach. LULCC modeling and FPLR assessment was carried out by integrating remote
sensing and GIS techniques developed for the first time in the DCEN area. However, this study
considers it a unique approach to model the DCEN area closely, focusing on FLULCC along with the
FPLR scenarios up to 2040.

Comparison and analysis of LULC in the distant past and in recent times is important in order to
understand the changes in spatiotemporal LULC [88–92]. After the earthquake, the China government
began to rebuild the city in 2008–2010, where the survivors along with new residents from outside areas
started living all together without having any prior or aftermath knowledge, including any further
presence or not of risk in their locality. In this research, two multitemporal Landsat-image-based
LULC maps of 2007 and 2018 (adopted with permission from Nath et al. [16]) were considered for
the simulation study of 2018. The year 2007 was considered for actual existing LULC prior to the
earthquake (BEQ) in 2008 (8.0 Mw), and January 2018 is considered for recent LULC changes and the
LRP of the study area. The disaster chain effects are the main properties of knowing the landscape risk.
Based on the method followed by Nath et al. [16], in this study, FPLR scenarios were also developed
using Remote sensing and GIS tools. Moreover, multiple parameters such as earthquake epicenter
locations, local geology, fault lines, geomorphological features, and Lineament density (LD) of 2018 and
future projected LULC datasets of 2025, 2030, and 2040 were considered to know the FPLR scenarios in
the study area, where few parameters are likely to change with time.

The present study focuses on quantitative analysis of spatiotemporal changes of future LULC
changes in 2025, 2030, and 2040 based on the 2018 LULC simulation and further considers recent
LR 2018 data with ancillary layers to identify FPLR areas across the DCEN. In this study, examples
are shared for each future LULC map preparation, referring to 2018 as the earlier example and 2025
as the recent one, and so on. However, the broad objectives of this study were to examine three
issues: (1) quantitatively evaluating FLULC changes in the DCEN in considering 2018 simulation data,
(2) quantitatively evaluating future LULCC in different time domain matrices’ data such as comparing
earlier LULC datasets with the recent one (2018–2025, 2025–2030, 2030–2040, and 2018–2040) used
for the DCEN regions; and (3) identifying and evaluating FPLR areas in consideration of important
multiple environmental parameters. This study will be useful in understanding the above three
objectives for the landscape planning and environmental management in this area in an effective and
sustainable manner. Finally, it will be contributing to achieving the Goal 11 (“Sustainable Cities and
Communites”) of the United Nations (UN) 2030 Sustainable Development Goals (SDGs) to make cities
inclusive, safe, resilient and sustainable [93].

2. Materials and Methods

2.1. Study Area

DCEN is a county-level city located in the Sichuan province of China, which covers an area of
318.30 km2. The city, which suffered a deadly earthquake in 2008, is now a UNESCO world heritage
site and underwent massive renovations in 2013. It shares a border with southern Nagawa Tibet in the
north, due to which it receives many tourists. The geography of the study site is mountainous with
many forests, rivers, bridges, and urban infrastructures [16]. The study area of DCEN (30◦53′0′′ N to
31◦4′30′′ N and 103◦27′5′′ E to 103◦43′0′′ E) is an earthquake-affected city in SW China, part of the
provincial capital of Chengdu of Sichuan province (Figure 1).
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Figure 1. Location map of the study area in Dujiangyan City and its environs (DCEN) in SW China; 
in the left panel, the top and bottom inset maps show the location of Sichuan province within the 
boundary of China and the DCEN within Sichuan province, respectively. The right panel indicates 
the digital elevation model (in meters), including overlay of important places (marked as white circles 
with black dots) and geological fault lines. 

This study area of DCEN was first adopted by Nath et al. [16] and has been considered in the 
present study with prior permission to investigate the LULCC modeling and FPLR assessment. 
DCEN has a humid subtropical climate (Köppen Cwa) with cool, dry winters and hot, very wet 
summers. DCEN has 17 towns, including two townships. According to Google Earth, the elevation 
and slope in DCEN mostly varies from 668 to 1861 m from above mean sea level (AMSL), and the 
maximum slope and average slope are 67.9% and 18.9%, respectively. The study area has suffered 
floods and landslide disasters in the past, and greater earthquakes and aftershocks occurred in 2008–
2009 and afterwards.  

2.2. Data 

The remote sensing data used in this study were based on the Landsat 5 thematic mapper (TM) 
and Landsat 8 operation land imager (OLI). The spectral resolution and bands of the data were used 
in this study (Table 1). Two Landsat satellite images, Landsat 5 TM in 2007 and Landsat 8 OLI in 
2018, were considered in the present study. However, it is worth noting that in this study, the two 
datasets were originally obtained from the United States Geological Survey (USGS) Landsat archive: 
2007 and 2018 [94]. The choice of those images was made to observe future LULCC modeling and 
FPLR assessment. 

Table 1. Details of data used in the present study. 

SL. No. Satellite sensors Year Image 
acquisition time Path/Row Resolution 

 (m) Image type 

1 
2 

Landsat 5 TM 
Landsat 8 OLI 

2007 
2018 

18 September 2007 
19 January 2018 

130/38 
130/38 

30 
30 

Level-1 GeoTIFF 
Level-1 GeoTIFF 

Note: In the 2nd column TM refers to thematic mapper, and OLI refers to operation land imager. Source: USGS 
Earth Explorer Landsat archive (https://earthexplorer.usgs.gov) [94].  

Figure 1. Location map of the study area in Dujiangyan City and its environs (DCEN) in SW China;
in the left panel, the top and bottom inset maps show the location of Sichuan province within the
boundary of China and the DCEN within Sichuan province, respectively. The right panel indicates the
digital elevation model (in meters), including overlay of important places (marked as white circles with
black dots) and geological fault lines.

This study area of DCEN was first adopted by Nath et al. [16] and has been considered in the
present study with prior permission to investigate the LULCC modeling and FPLR assessment. DCEN
has a humid subtropical climate (Köppen Cwa) with cool, dry winters and hot, very wet summers.
DCEN has 17 towns, including two townships. According to Google Earth, the elevation and slope in
DCEN mostly varies from 668 to 1861 m from above mean sea level (AMSL), and the maximum slope
and average slope are 67.9% and 18.9%, respectively. The study area has suffered floods and landslide
disasters in the past, and greater earthquakes and aftershocks occurred in 2008–2009 and afterwards.

2.2. Data

The remote sensing data used in this study were based on the Landsat 5 thematic mapper (TM)
and Landsat 8 operation land imager (OLI). The spectral resolution and bands of the data were used
in this study (Table 1). Two Landsat satellite images, Landsat 5 TM in 2007 and Landsat 8 OLI in
2018, were considered in the present study. However, it is worth noting that in this study, the two
datasets were originally obtained from the United States Geological Survey (USGS) Landsat archive:
2007 and 2018 [94]. The choice of those images was made to observe future LULCC modeling and
FPLR assessment.

Table 1. Details of data used in the present study.

SL. No. Satellite Sensors Year Image
Acquisition Time Path/Row Resolution (m) Image Type

1 Landsat 5 TM 2007 18 September 2007 130/38 30 Level-1 GeoTIFF
2 Landsat 8 OLI 2018 19 January 2018 130/38 30 Level-1 GeoTIFF

Note: In the 2nd column TM refers to thematic mapper, and OLI refers to operation land imager. Source: USGS
Earth Explorer Landsat archive (https://earthexplorer.usgs.gov) [94].

https://earthexplorer.usgs.gov
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The image covers less than 5% cloud in original satellite images, 2% in 2007, 4.65% and 2018
(4.65%). Due to the presence of cloud cover in the epicentral area, we only considered the area near
the 2008 earthquake epicenter (8.0 Mw). The area of interest (AOI) is demarcated in the satellite
images with the help of the polygon feature using the ArcGIS 10.6 software (ESRI, Redlands, USA)
environment. The two Landsat images were geometrically corrected and projected to a WGS 84 (World
Geodetic System 1984) into a Universal Transverse Mercator (UTM) Zone 48N coordinate system.
Detailed preprocessing of the Landsat 5 TM and 8 OLI images was carried out by Nath et al. [16] to get
surface reflectance images. The Landsat classified images of LULC of 2007 and 2018 (adopted from
Nath et al. [16]) were used in the present study with permission and with the color code changed.

In addition, a shuttle radar topographic mission (SRTM) with 30m resolution was used for the
digital elevation model (DEM) (Figure 1), followed by a derived topographic feature (i.e., slope).
Moreover, the frequency of Mw 4.0 and higher earthquakes in the epicenter and its vicinity regions is
shown for the periods 12 May 2008 to 8 September 2019 in Figure 2 (modified from Nath et al. [16]).
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Figure 2. Location of earthquake points in DCEN; earthquake points are represented with red dot
circles and crisscrossed fault lines are displayed in the map (data extracted, point plotting, and mapping
exercise performed in the ArcGIS 10.6 software environment); the temporal earthquake epicenter data
points are considered from 12 May 2008 to 8 September 2019. The inset image shows frequency of
earthquakes in different magnitudes that struck in the DCEN and its vicinity areas.

All the maps have been prepared at a 1: 1,25,000 scale except Figure 2, which was prepared at a 1:
35,00,000 scale. A combination of geological maps, fault lines, epicenter points, FLULC of 2018, 2025,
2030, and 2040, and the lineament density (LD) map of 2018 were used to identify the FPLR areas.

2.3. Methodology

The integrated research methodological workflow requires four main steps (Figure 3). Step 1:
Image preprocessing of two multitemporal remote sensing images, Landsat 5 TM and Landsat 8 OLI,
image subsetting based on AOI and modification of multiple layers using a reclassifying operator,
image classification using MLC techniques and accuracy assessment, and then model validation and
simulated LULC mapping of 2018 generation with TerrSet 18.2 software based on the two images. Step
2: Creation of FLULC maps based on the CA-Markov model first, then transition matrix table creation
based on different time periods with dynamic degree estimation, including overall change. Step 3:
PCA image creation based on the Landsat 8 OLI image and the lineament-based lineament density (LD)
map adopted from Nath et al. [16], multiple layer integrations, including individual FLULC maps and
weighted-score-based FPLR risk maps, and thematic classification performed, as shown in Figure 3.
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filter was applied with 5 iterations to model the LULC for the years 2025, 2030, and 2040. 
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Figure 3. A research flowchart model used in this study. Note: RS, remote sensing; TM, thematic
mapper; OLI, operation land imager; AOI, area of interest; GIS, geographical information system; LCM,
land change modeler; FLULC, future land use and land cover; MLC, maximum likelihood classifier;
CA-Markov, cellular automata–Markov; LD, lineament density; PCA, principal component analysis;
MC-AHP, multicriteria based analytical hierarchy process; FPLR, future potential landscape risk.

2.3.1. LULCC Modeling Using Land Change Modeler

In the present study, we used the Clark Lab’s land change modeler (LCM) of TerrSet 18.21 version
software to develop FLULC maps based on the preprocessed classified historical satellite images of 2007
and 2018 (adopted from Nath et al. [16]). TerrSet is an integrated geospatial software system widely
used by the scientific community to monitor and model the earth system processes for sustainable
development. However, the LCM was especially developed for the vertical application to analyze
LULCC and empirical modeling and project future changes. These two classified maps were used to
model the LULC of the study area for the future time periods (i.e., 2025, 2030, and 2040). In addition,
multiple GIS data layers have been considered and performed subsetting based on AOI along with
multiple layers using the reclassifying operator of ArcGIS 10.6 version software.

In order to run the future predictions, the integrated CA-Markov approach [44] was used. Based on
the 2007 and 2018 images, the transition probability matrix (TPM) and transition probability areas
(TPA) were prepared from the Markov model. The transition suitability image (TSI) was also produced.
Finally, the TPA, TPM, and TSI were integrated in the CA-Markov model. A 5*5 contiguity filter was
applied with 5 iterations to model the LULC for the years 2025, 2030, and 2040.

In addition, the model further needed to be validated first before running the simulation. Since the
actual LULC image of 2018 was already available, adopted from Nath et al. 2018 [16], and was
compared with the simulated LULC map of 2018 to evaluate its final agreement, the model validation
was carried out using the Markov chain TPM of LULC classes for the periods 2007–2018 (shown in
Table 2). The validation was done using the Kappa index of agreement and chi-square test statistics.
The simulated 2018 image was used for the FLULCC prediction. Moreover, the TPM of FLULC
classes in each time periods (such as, 2018–2025, 2025–2030, and 2030–2040) was obtained using the
Markov model.
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Table 2. Markov chain transition probability matrix (TPM) of land use land cover (LULC) classes in
2018 (simulated) by percentage based on 2007 and 2018 LULC data.

2018

FLULC Classes BU F AG RA WB BL

BU 0.8987 0.0025 0.0000 0.0330 0.0148 0.0510
F 0.0000 0.9894 0.0000 0.0098 0.0003 0.0006

2007 AG 0.2292 0.0683 0.0000 0.1011 0.0000 0.6014
RA 0.4744 0.0000 0.0000 0.2385 0.0000 0.2871
WB 0.0000 0.0000 0.0000 0.0303 0.9697 0.0000
BL 0.0000 0.0228 0.5693 0.0000 0.0000 0.4079

2.3.2. FLULC Dynamic Degree Estimation and Transition Matrices Computation Method

To estimate the dynamic degree (DD) changes between the various types of FLULC, i.e., to know
whether there has been any loss in the area or gain in certain LULC types when comparing images for
different periods, for a single FLULC type, we used the DD model to represent the spatiotemporal
characteristics of FLULC change. The dynamic estimation can be calculated using the approach of
Liu et al. [7–9]:

D =
Ab−Aa

Aa
T
× 100% (1)

where D represents the DD model, which refers to rate of change; Aa is the area in the initial year; Ab is
the area in the terminal year; and T is the temporal scale. In our case, the time comparisons are 7, 5, 10,
and 22 years, respectively.

The DD model finally serves to generate statistical data in a table with DD (%) and Gain and Loss
(%). Furthermore, transition matrix (TM) tables of 2018–2025, 2025–2030, 2030–2040, and 2018–2040
were computed based on the simulated LULC data of 2018, which were generated from the original
2007 and 2018 image results. Therefore, based on the 2018 simulated LULC results, similar statistical
results for the different time periods of 2018–2025, 2025–2030, 2030–2040, and 2018–2040 are prepared in
this study. These data (vector format) were analyzed and conversion was carried out using ArcGIS 10.6
software, which allows the identification of the areas where changes will occur, and those LULC were
not altered in the FLULC. Furthermore, all of the results obtained using GIS software were exported to
a text file and the databases were later used for statistical analysis.

2.3.3. FPLR Evaluation Method

In this study, the LR evaluation methodological concept adopted from Nath et al. [16], Richards
and Jia [92], Anderson et al. [95], and Singh et al. [96] was used to determine the FPLR exposure
based on the 2018 data and multiple features of the earth surface, including the projected LULC data
of the years 2025, 2030, and 2040. This type of integrated assessment results will help planners to
know about the potential threats in the coming decades in their areas, which might affected people,
property, and the environment. Geology is one of the important parameters used for earthquake risk
evaluation in DCEN for urban development. The concept of Tudes and Yigiter [97] which says that
“development will take place where there is low risk of earthquake” was utilized for the suitability
analysis of the city of Adana in Turkey. Thereafter, by modifying this concept, Nath et al. [16] focused
on the 2008 earthquake which affected Dujiangyan City, where the LR areas with defined categories
were identified and an observation of cities’ growth towards an active fault line was suggested to
control further development. The concept of LR mapping and procedural steps was already discussed
by Nath et al. [16]; therefore, we have not included such a discussion here. The lineament map from
the satellite image was prepared using PCI image, followed by the corresponding lineament density
(LD) map of 2018, which was further used in the FPLR assessment, subject to change with time.

Recently, the multicriteria evaluation (MCE) method has been used to assess and aggregate
weighted maps (criterion) based on expert knowledge of factor influence and interactions with
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LULC [92,93]. Each FPLR map is derived using MCE by combining the information from multiple
criteria to form a single index of evaluation [92,96,97].

Multiple parameters, such as the future LULC maps of 2025, 2030, and 2040, the 2018 lineament
feature, the 2018 LD map, fault lines, and the epicenter, overlaid along with the local geology map,
slope, aspect, and DEM, are used as reference datasets in integrated mapping. Moreover, the geology
map was adopted from Nath et al. [16], which was modified and re-attributed by them as zone I–IV
according to its existing category [98]. In this study, based on the above important layers, integrated
overlay maps were prepared in three different time frames, 2025, 2030, and 2040, by following the
previous method [16]. In the next stage, multiple buffer creations (i.e., 5, 10, 15, 20, and 25 km distance)
and weightage (5, 4, 3, 2, 1) were given for each layer, such as important places, past earthquake
epicenters, and fault lines, and along with LD-2018 and LULC-2025, 2030, 2040 data sets were considered
further for FPLR evaluations. The weighted score value assigned was similar to the score followed by
Nath et al. [16], i.e., “higher the risk value” when “buffer distance is lower”, and “lower the risk value”
when “buffer distance is higher”. FLULC class was designated with risk priority from very high to
very low followed by a previously adopted weighted score (Nath et al. 2018), such as, BU=1, RA=1,
F=2, WB=3, BL=4, and AG=5. In this aspect, FLULC classes were designated as BU—built-up area;
F—forest area; AG—agricultural area; RA—reconstructed area; WB—water bodies; and BL—barren
land. This order was finally adopted and followed in the FLULC, FLULCC mapping, and FLULCC
matrix table generation.

Details of the meaning and individual weighted assigned score of each layer are given in
Supplementary Table S1a–g. This table is based on certain conditions and should be interpreted as:
If the category of FPLR is ‘very high risk’ and ‘high risk’, it is close to the earthquake epicenter. On
the other hand, ‘medium risk’ represents close to the high-risk area. Similarly, when the value is low,
it indicates ‘low risk’ to ‘very low risk’, i.e., the risk is low because the area is far away from the past
epicenters and geological fault lines. Reclassification was performed for all the layers with the aid
of the field calculator of ArcGIS 10.6 software. In the next section, a new total risk weighted value
field is created and weighted score is assigned automatically in the integrated database table for the
FPLR maps of 2025, 2030, and 2040 in a consecutive manner. The geoprocessing wizard of the ‘union’
operator function of ArcGIS 10.6 has been applied to combine the data values of all layers. The total
FPLR was defined by the integration of all weighted values as shown in Equation (2).

FPLR[T_Weight] = [ IP_B_Weight] + [EQ_B_Weight] + [F_B_Weight] + [Risk_Geol]
+ [LD2018_Risk] + [FLULC ( i.e. 2020, 2030, and 2040_Risk]

(2)

where FPLR[T_Weight] refers to future potential landscape risk (total weight); [IP_B_Weight] refers to
important places buffer weight; [EQ_B_Weight] refers to earthquake point buffer weight; [F_B_Weight]
refers to fault-based buffer weight; [Risk_Geol] refers to risk factor of geological zone; [LD2018_Risk]
refers to lineament density-based risk factor; and [FLULC2020/2030/2040_Risk] indicates future land
use and land cover 2020, 2030, and 2040 risk factor value.

FPLR may be subject to change when the new time-oriented data of lineaments, LD maps, and
more recent earthquake epicenters are incorporated in future. Therefore, the FPLR maps of three
different times such as 2025, 2030, and 2040 in this study, have some limitations only when they are
considered in the above-mentioned data layers in future. However, the present research studied the
DCEN area to give an idea of how LR will change in future when the future LULC changes in this area.
This idea of developing FPLR maps is considered as a pioneering approach for the monitoring of the
city sustainability of the DCEN area.

In this stage, for better visualization purposes, a further classification procedure of the natural
breaks (Jenks) method with a five-class range (graduated color ramp applied with the blue to red
intensification) was implied for each FPLR map. Finally, the prepared FPLR maps of 2025, 2030,
and 2040 were masked based on the study area boundary. The entire mapping phases were performed
in the multiple software domain, such as Clark Lab’s LCM of TerrSet 18.21, ArcGIS 10.6 including the
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previously adopted ENVI 5.3, PCI Geomatica 2018, and RockWorks 16 version software, considered
for earlier map preparation.

3. Results

3.1. Validation of Future LULCC Prediction

The actual land use of 2018 was compared with the simulated 2018 land use based on the
CA-Markov model. Table 3 and Figure 4 show the chi-square (χ2) test result for the validation of the
model. We hypothesized that the area statistics of the actual and the simulated image were the same.

Table 3. Validation of the land use land cover change (LULCC) prediction based on the actual and
simulated 2018 LULC image.

Chi-Square Test

LULC Classes Simulated Land Use in 2018 (O) Actual Land Use in 2018 (E) (O − E)2/E

BU 14.94 18.49 0.68
F 38.63 43.73 0.60

AG 15.56 9.61 3.69
RA 0.89 5.17 3.55
WB 5.75 5.42 0.02
BL 24.23 17.58 2.52

Total 100.00 100.00 11.05

Note: χ2 = Σ(O − E)2/E = 11.05; df = 5 and χ2
0.05 (5) = 11.07; Data shown in the 2nd and 3rd columns as in O and E

represent the percentage share of individual LULC classes used for model validation.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 10 of 26 
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Figure 4. Comparison and model validation of areas (in percentage) of simulated vs. actual LULC
classes in the year 2018. The LULC classes as designated as: BU—built-up area; F—forest area;
AG—agricultural area; RA—reconstructed area; WB—water bodies; and BL—barren land.

However, this does not necessarily validate the agreement on the spatial distribution of the LULC
classes of the study site. To solve this problem, we performed a more sophisticated Kappa index of
agreement between the two images. Moreover, the Kappa coefficient value was measured using the
following set of conditions: < 0 = less than chance agreement, 0.01–0.40 = poor agreement, 0.41–0.60 =

moderate agreement, 0.61–0.80 = substantial agreement, and 0.81–1.00 = almost perfect agreement.
According to Mukherjee et al. 2009 [99], these statistics measure the goodness of fit between the model
predictions and reality, which is corrected for accuracy by chance.

The results of the model evaluation performed by the Clark Lab’s LCM module of TerrSet 18.21
version software represents a validation analysis of the agreement/disagreement components (Table 4),
which is further partitioned into 0.0818 (error due to quantity/DisagreeQuantity) and 0.1665 (error due
to allocation/DisagreeGridcell). Therefore, the data table inferred that the main disagreement between
the two maps was due to an allocation error rather than quantity errors between the simulated and
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actual 2018 LULC images. However, the tabulated chi-square (χ2) value was found to be greater than
the calculated one; therefore, we failed to reject the null hypothesis (Table 3). Thus, the CA-Markov
model was a good fit to run the future prediction of the LULC for the study site.

Table 4. Results of validation analysis of two images (agreement/disagreement components values).

Agreement/Disagreement Value Value (%)

Agreement Chance 0.1429 14.29
Agreement Quantity 0.0961 9.61

Agreement Strata 0.0000 0.00
Agreement Gridcell 0.5127 51.27

Disagreement Gridcell 0.1665 16.65
Disagreement Strata 0.0000 0.00

Disagreement Quantity 0.0818 8.18

Moreover, the overall accuracy of the prediction based on the CA-Markov model could be obtained
from the Kno index, which is the standard Kappa index of agreement. The Klocation index validates
the simulation to predict the location. All these index of agreement results are shown in Table 5, and the
average value is found to be 0.73, which means that the LULC categories of the actual and simulated
image were more than 70% similar.

Table 5. Accuracy assessment of the simulated land use image of 2018.

Index Value

Kno 0.71
Klocation 0.76

KlocationStrata 0.76
Kstandard 0.67

Source: Value calculated by the LCM module of TerrSet Software.

3.2. FLULC Change, Dynamic Degree and Gain and Loss Estimation based on 2018–2040 data

Based on the developed successful simulation of LULC changes in 2018 (Figure 5a), the FLULCC
for the different time periods 2025, 2030, and 2040 was generated (Figure 5b–d). The descriptive
statistical results (Table 6) revealed that from 2018 to 2025, DCEN will have a higher DD in AG (5.47%)
than the three other time differences, suggesting faster changes of LULC in the study area (R2 = 0.982)
(Figure 6c). The BU area shows a negative DD with a −1.11% yr−1 decrease in the time period of
2018–2025 compared to the next three time periods, indicating that the areas of BU will be at risk for
future earthquakes.

Table 6. Dynamic degree (DD) (%) estimation between different times based on LULC total area
coverage (km2) from 2018 to 2040.

Total Projected Area Coverage (km2) DD (%) between Different Times

LULC Classes 2018 2025 2030 2040 2018–2025 2025–2030 2030–2040 2018–2040

BU 58.83 51.06 49.56 48.99 −1.11 −0.59 −0.11 −0.76
F 139.20 122.97 122.98 122.99 −1.67 0.01 0.01 −0.53

AG 30.58 42.30 45.00 46.08 5.47 1.28 0.24 2.30
RA 16.47 1.84 2.28 2.40 −12.69 4.78 0.53 −3.88
WB 55.96 81.28 19.76 79.16 6.46 −0.37 −0.07 1.88
BL 17.26 18.85 18.72 18.68 1.32 −0.14 −0.02 0.37

Total 318.30 318.30 318.30 318.30

Note: BU—built-up area; F—forest area; AG—agricultural area; RA—reconstructed area; WB—water bodies;
and BL—barren land. Source: Image statistical results retrieve from ENVI 5.3, LCM of IDRISI-18.21, and ArcGIS
10.6 software based on future projected images of 2025, 2030, and 2040 and DD (%) values calculated by the authors
considering Equation (1).
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However, the change rate decreases from −0.59 % yr−1 for the period 2025–2030 to −0.11% yr−1 for
the period 2030–2040, respectively, whereas for 2018–2040, the overall change in BU shows a negative
trend of development of −0.76% yr−1 (R2 = 0.981) (Figure 6a). On the other hand, F also shows a
negative change of −1.67% yr−1 in the first phase for the period 2018–2025.

However, Nath et al. [16] reported that after the earthquake, negative changes of DD with
−2.03% yr−1 decreased from 2008 to 2018 due to landslides induced by the 8.0 Mw earthquake and two
recorded aftershocks, including expansion of the city in the north which resulted in forest loss within
the DCEN. The scenario of F shows a positive DD 0.01% yr−1 for 2025–2030, which will remain stable
in 2030–2040 and overall will show as negative DD trend with a decrease of −0.53% yr−1 (R2 = 0.933)
over the period 2018–2040 (Table 6 and Figure 6b).

The FLULC change will occurr in RA with a high negative DD change of −12.69% yr−1 in
2018–2025, and in the next two time periods of 2025–2030 and 2030–2040, positive changes in DD will
be observed—4.78% and 0.53% yr−1, respectively. Overall, in the 2018–2040 time period, this trend will
negatively impact RA and DD, leading to a change of −3.88% yr−1 (R2 = 0.922) in DCEN, which is
clearly evident in different time intervals. From 2007 to 2018, it showed a −4.67% yr−1 decrease,
whereas in the 2018–2025 and 2025–2030 periods, it decreased −12.69% yr−1 and increased 4.78% yr−1,
respectively. By contrast, BL is projected to increase 1.32% yr−1 in 2018–2025 (Table 6). Moreover,
in future, WB will change significantly, with an increasing trend of 6.46% yr−1 in 2018–2025 and a
decreasing trend of−0.37% and−0.07% yr−1 in 2025–2030 and 2030–2040, respectively. Overall, WB will
by 1.88% yr−1 (R2 = 0.912) in 2018–2040 (Figure 6e).
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Figure 6. Percentage distribution of FLULC of the DCEN area of SW China from 2018 to 2040. The trends
of individual LULC were prepared based on the projected LULC maps of 2018, 2025, 2030, and 2040 by
applying a 2nd-order polynomial regression curve with a regression equation and R2 values; (a) BU,
(b) F, (c) AG, (d) RA, (e) WB, and (f) BL.

With the above changes, BL also shows the same trend of WB, which is an overall change of
0.37% yr−1 (R2 = 0.903) in 2018–2040 (Figure 6f). The overall tendencies of WB suggest that if any
high-intensity earthquake occurs in this area, WB will probably migrate or the area may be flooded,
and also, the frequency of landslides events may increase due to tectonic influence. To crosscheck
FLULCC, we performed a change difference of FLULC based on a similar time interval where in each
stage, two earlier images and a recent one (for example, 2018 as the earlier ones and 2025 as the recent
one) were considered to study changes. This was performed by the minus operator of the Spatial
Analyst toolbar of ArcGIS 10.6 software. The change difference maps in different time periods are
shown in Figure 7a–d, where a light green color represents ‘no change’ and brick red and blue colors
represent ‘negative’ and ‘positive’, respectively.
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Further, the future temporal LULC area coverage percentage (%) with the gain/loss (%) estimation
was compared for the periods 2018–2040 (Table 7) and is shown in Figure 8a, followed by the per
year rate of change (%) with trend lines for different periods of FLULC (Figure 8b). To display the
trendlines of the future different time periods, a 2nd-order polynomial regression curve (shown in four
different colors) was used with regression equations and R2 values. This predicted model data help
us to achieve a minimum error. Nath et al. [16] earlier reported that in 2007, prior to the earthquake
(BEQ) in 2008, the major percentages of LULC in the DCEN were F (39.49%), BL (21.81%), AG (19.80%),
and BU (12.74%), whereas in 2008 (AEQ), F (54.90%) increased due to massive plantation activities by
the Chinese and local county government.

However, the modeling results show different scenarios with regard to projected changes in LULC
in future. The projected BU result shows the coverage area will be 15.39% in 2040 and 16.04% in
2025, both of which are lower than 2018, 18.49%. Overall, the BU data suggest a decline of −3.10%
in 2018−2040 (Table 7 and Figure 8a) to −0.14% yr−1, compared to −0.47% (−0.09% yr−1) during
the 2025–2030 period and −0.18% (−0.02%) during the 2030–2040 period (Table 7 and Figure 8a,b).
By contrast, there is an overall projected loss of −5.09% (−0.23% yr−1) and −4.42% (−0.20% yr−1),
respectively, for F and RA during the 2018–2040 period. Compared to the decreasing scenarios, AG,
WB, and BL suggest an increase of 4.87% (0.22 yr−1), 7.29% (0.33% yr−1), and 0.45% (0.02% yr−1),
respectively (Table 7, Figure 8a,b).



ISPRS Int. J. Geo-Inf. 2020, 9, 134 14 of 25

Table 7. Gain/loss (%) estimation between different times based on LULC total area coverage (%) from
2018 to 2040.

LULC Classes
Total Projected Area Coverage (%) Projected Gain/Loss (%) between Different Times

2018 2025 2030 2040 2018–2025 2025–2030 2030–2040 2018–2040

BU 18.49 16.04 15.57 15.39 −2.45 −0.47 −0.18 −3.10
F 43.73 38.63 38.64 38.64 −5.10 0.01 0.00 −5.09

AG 9.61 13.29 14.14 14.48 3.68 0.85 0.34 4.87
RA 5.17 0.58 0.72 0.75 −4.59 0.14 0.03 −4.42
WB 17.58 25.54 25.06 24.87 7.96 −0.48 −0.19 7.29
BL 5.42 5.92 5.88 5.87 0.50 −0.04 −0.01 0.45

Total 100.00 100.00 100.00 100.00

Note: BU—built-up area; F—forest area; AG—agricultural area; RA—reconstructed area; WB—water bodies;
and BL—barren land. The per year change is not displayed in this table; the calculated result is referred to in the
relevant text. The positive value refers to projected gain (%) and the negative value refers to projected loss (%)
during different time periods.
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Based on the polynomial regression data fitted to a polynomial equation in three simulated
time periods and the overall scenario, the regression equation and R2 values show each trend line.
During the period 2018–2025, the R2 value is 0.234, whereas R2= 0.358 and R2 = 0.298 for the periods
2025–2030, and 2030–2040, respectively. However, during the overall 2018–2040 periods, the R2 value
is 0.251. Our model-based results given in Table 7 and Figure 8b suggest that the 2008 earthquake
affected the DCEN area that will be undergoing change which will continue in the future predicted time
period up to 2040, unless proper LULC planning and effective measures to minimize the multifarious
disastrous risk are not adopted at the policy and decision-making level immediately.

3.3. Analysis of FLULC Transition Probability Matrix (TPM) by Percentage

In reference to Table 2, the 2018 LULC simulated image was generated based on the two available
past classified LULC images of 2007 and 2018, adopted by Nath et al. [16]. By considering the 2018
simulated result, attempts were made to classify and generate the FLULC of three time periods, 2025,
2030, and 2040 (Figure 5a–d). The bolded values along the TPM diagonal axis indicate the TP of LULC
type will remain unchanged from time (t1) to time (t2), whereas the off-diagonal TPM axes show
that a given LULC will undergo a change from one category to another. The derived changes were
clearly depicted through the 6*6 FLULC class matrix table, where rows represent the previous LULC
categories during time (t1), and the column represents the later LULC classes (t2). For example, the row
in 2007 represents actual LULC classes, while the column refers to 2018 LULC classes and thus helps in
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the prediction of 2018 LULC (Table 2). Similarly, the rows represent the year 2018 and the column
represents the 2018 (simulated) image year and predictions for the year 2025 (Table 8).

Table 8. Markov chain TPM of FLULC classes for the period 2018–2040 by percentage.

Given: Transition Probabilities of Changing to:

FLULC Classes Year BU F AG RA WB BL

2018–2025 0.9763 0.0002 0.0004 0.0009 0.0112 0.0111
BU 2025–2030 0.9888 0.0000 0.0000 0.0000 0.0080 0.0032

2030–2040 0.9900 0.0000 0.0000 0.0000 0.0072 0.0028
2018–2025 0.0000 0.9943 0.0020 0.0027 0.0003 0.0007

F 2025–2030 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
2030–2040 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

AG 2018–2025
2025–2030

0.0737
0.0495

0.0000
0.0000

0.8456
0.8928

0.0047
0.0007

0.0000
0.0000

0.0760
0.0571

2030–2040 0.0355 0.0000 0.9230 0.0005 0.0000 0.0410
2018–2025 0.3489 0.0000 0.0012 0.6339 0.0000 0.0161

RA 2025–2030 0.2549 0.0000 0.0000 0.7334 0.0000 0.0117
2030–2040 0.1443 0.0000 0.0000 0.8487 0.0000 0.0069
2018–2025 0.0000 0.0000 0.0000 0.0010 0.9990 0.0001

WB 2025–2030 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2030–2040 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2018–2025 0.0000 0.0002 0.0033 0.0002 0.0000 0.9963

BL 2025–2030 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
2030–2040 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Furthermore, similar to those, two predicted LULCs of 2030 and 2040 were generated. All these
future TPMs were successfully produced in the LCM module of TerrSet Software during the
post-classification comparison of the future pairs of image-based results—2018–2025, 2025–2030,
and 2030–2040. The results directed at “from-to” change information identifying how many changes
and where will occur in the above-mentioned time period are shown in an integrated manner (Table 8).
The results highlighting the FLULC changing status in the coming time period show multiple categorical
dynamic change conditions.

The FLULC data for the period 2018–2025 show that the BU class has a probability of 1.12% and
1.11% to change into WB and BL, respectively (Table 8), which shows the future disastrous activities
in the DCEN area. The highest level of FLULC transformation is observed in RA, where TP 34.89%
will transform into another class, such as BU, in 2018–2025, with a smaller transformation of 25.49%
and 14.43% into BU during the periods 2025–2030 and 2030–2040, respectively. The RA will remain as
RA with a TP of 63.39%, 73.34%, and 84.87%, respectively, during the three time periods. The F, WB,
and BL classes show the highest stability to remain a F, WB, and BL with a probability of 100% for each
category during the 2025–2030 and 2030–2040 time periods. Similarly, the BU class was also found to
be stable with a TP of 97.63%, 98.88%, and 99.00% to remain as the BU class during the three different
time periods. The AG class has a TP of 84.56%, 89.28%, and 92.30%, respectively, for the three time
periods to remain as AG and a much lower TP of 7.60%, 5.70%, and 4.10% to be converted into BL.
This change is obvious and always has a tendency to put pressure on AG, which likely to lead to an
increase in the urban and rural population in the DCEN area.

3.4. FPLR Area Identification, Mapping and Pattern of Change Analysis

In the final level analysis, this study further utilized MC-AHP approach to evaluate the FPLR
zone for the periods 2025, 2030, and 2040. In a recent study, Nath et al. [16] suggested that the study
area is undergoing stress and shows various LR zones with a particular focus on risk with LULC. The
LR data of 2018 help to discover the FPLR areas with some limitations because of the changing nature
of the lineaments, faults, and future earthquake locations, which will have significant impact on the
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landscape of the DCEN. By contrast, the structure of the DCEN is dominated by numerous faults, as
shown in the present study.

For future landscape planning and sustainability of the DCEN area, it is important to prepare
FPLR maps (Figure 9a–c) as well as to identify the areas which will be at risk in the future. These FPLR
maps are prepared by considering all environmental parameters with risk priority details based on the
methods adopted from Nath et al. [16]. The DCEN area was identified as an earthquake-prone area in
the past as well as recently by observing the ongoing stress pattern and frequency of earthquakes in
this region. This may also pose a serious threat in the coming decades, too. Therefore, the study area
needs emergency attention to assess the FPLR areas at the landscape level. To prepare FPLR maps,
multiple landscape factors such as geology, slope, aspect, fault lines, lineament, and its 2018 density
(Figure S1a–g), as well as the FLULC maps of 2025, 2030, and 2040 were considered followed by the
integrated weighted overlay (IWO) method, which was performed in each FPLR map preparation.
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Moreover, Table 9 represents the FPLR area statistics and risk levels prepared based on the
developed FPLR maps of 2025 (Table 9a), 2030 (Table 9b), and 2040 (Table 9c). The three final FPLR
maps were developed (Figure 9a,c) based on the integrated layer weighted score, which is referred
to in this study as AHPA, the particular method of which is discussed in Section 2.3.3. Based on the
overall weighted data (OWD), 13 is assigned as the ‘lowest’ and 31 is marked as the ‘highest’ score.
The quantiles natural break (Jenks) method with a five-class range has been applied in the ArcGIS 10.6
software environment for classifying the score. The class range was finally designated as 13–18—very
low risk, 18–20—low risk, 20–23—medium risk, 23–25—high risk, and 25–31—very high risk.
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Table 9. FPLR identification and pattern of change analysis based on integrated datasets in different
zones. (a) FPLR of 2025; (b) FPLR of 2030; (c) FPLR of 2040.

a.

Total Risk
Weight

Class Range

Risk
Category

Risk Area
(km2)

Risk Area
(%)

Geological Zone
under Risk

Landscape Type
under Risk

(Priority Based)

Important
Locations

under Risk

13–18 Very Low 6.53 2.05 Zone- III, IV, II BU, AG, WB, F, BL 4, 5
18–20 Low 16.25 5.11 Zone- IV, III, II BU, BL, WB 4, 8, 6, 5, 7
20–23 Medium 116.21 36.51 Zone- IV, III, II, I BU, F, AG, BL 6, 3, 4, 5, 8, 3, 2
23–25
25–31

High
Very High

110.21
69.10

34.62
21.71

Zone-I, IV, II, III
Zone- II, I, IV

F, BU, AG, BL
WB, AG, F, BU, BL

1, 2, 3, 4, 7, 6, 8
2, 3, 4, 8, 7

Total 318.30 100.00

b.

Total Risk
Weight

Class Range

Risk
Category

Risk Area
(km2)

Risk Area
(%)

Geological Zone
under Risk

Landscape type
under Risk

(priority based)

Important
Locations

under Risk

13–18 Very Low 7.28 2.29 Zone- III, IV BU, AG, WB 4, 5
18–20 Low 17.78 5.59 Zone- IV, III, II AG, WB, BU, BL 5, 6, 7, 8, 1, 3
20–23 Medium 112.02 35.19 Zone- IV, III, II, I BU, AG, F, BL 4, 5, 6, 7, 8, 3, 1
23–25
25–31

High
Very High

111.12
70.10

34.91
22.02

Zone- I, II, IV, III
Zone- II, I, IV

F, AG, BL, WB
WB, F, AG, BU, BL

1, 2, 3, 5, 7, 8
3, 2, 1, 8, 7, 6

Total 318.30 100.00

c.

Total Risk
Weight

Class Range

Risk
Category

Risk Area
(km2)

Risk Area
(%)

Geological Zone
under Risk

Landscape Type
under Risk

(Priority Based)

Important
Locations

under Risk

13–18 Very Low 7.28 2.29 Zone-III, IV, II BU, AG, BL 4, 5
18–20 Low 75.10 23.59 Zone- IV, III, II, I BU, F, AG, WB 4, 5, 6, 7, 1
20–23 Medium 111.38 34.99 Zone- IV, I, II, III F, AG, BU, BL 8, 1, 4, 5, 6, 7
23–25
25–31

High
Very High

54.40
70.14

17.09
22.04

Zone-I, II, IV
Zone-II, I, IV

F, AG, BL
WB, AG, BU, BL, F

2, 3, 7, 8
3, 2, 1, 8, 7

Total 318.30 100.00

Note: BU—built-up area; F—forest area; AG—agricultural area; RA—reconstruction area; WB—water bodies;
BL—barren land; and important locations (1–8) are referred to as: 1 = Yingxiuzhen, 2 = Dabeiping, 3 = Zipingpuzhen,
4 = Puyangzhen, 5 = Xujiazhen, 6 = Dujiangyan, 7 = Juyuanzhen, and 8 = Zhongxingzhen, respectively; Source:
Authors: table prepared based on the integrated data overlay techniques, total weighted score, and its classification
and area calculations using the raster calculator of ArcGIS 10.6 software, and important location numbering given
based on the locations under each risk category.

Table 9a shows a maximum area of 116.21 km2 under the medium risk category in 2025 (Figure 9a
and Table 9a), which covers 36.51% of the total area of DCEN and will be gradually decreasing from
112.02 to 111.38 km2 between 2030 and 2040, respectively, compared to 119.54 km2 (37.56%) in 2018 as
reported by Nath et al. [16]. Based on FPLR data for the three time periods, a 110.21 km2 (34.62%) area
was marked as high risk for 2025, which shows a small increase, 111.12 km2 (34.91%) for 2030, and a
slowdown in 2040 and a share of 54.40 km2 (17.09%) of the DCEN compared to its share of 149.23 km2

(46.88%) in 2018. By contrast, a 69.10 km2 (21.71%) area will be marked as a very high risk area in
the year 2025, which will slightly increase to 70.10 km2 (22.02%) in the year 2030 and remain almost
unchanged at 70.14 km2 (22.04%) in 2040. However, in the period 2018, the area was under very high
risk for 25.37 km2 (7.97%) [16].

In comparison to 2018, the FPLR areas of the very high risk category will grow approximately
2.5 times in 2025–2040. The rest of the areas will be very low to low risk categories in future
(Table 9a-c) and (Figure 9a–c), representing 6.28–7.28 km2 in 2025–2040 and 16.25–17.78 km2 in
2025–2030, further projected to grow 4.5 times on average as a low risk category up to 2040. This result
suggests that in future, the risk pattern will gradually decrease, which is expected for any city’s
sustainability and free from disaster risk. However, the FPLR table suggests that the study area (DCEN)
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will not be free from any disaster, as the risk pattern will be progressing until what is reported for the
year 2040.

4. Discussion

In this section, we would like to address a few issues that have been observed during FLULC
change model predictions in the changing landscape of the DCEN. Firstly, the predicted and observed
data are not perfectly matched; therefore, a higher-level accuracy is not achieved. Generally, a higher
level of accuracy is expected when the model is run through the LCM module of TerrSet 18.21
version software. We also detected FLULC scenarios, and its trends of change in the percentage and
rate of change were observed per year based on different predicted time periods from 2018 to 2040.
In connection with this study, the two LULC maps [16] for the years 2007 and 2018 were considered
to prepare raster maps and other relevant vector layers to model FLULC and its changing pattern.
In addition, we also used all the parameters into FPLR assessment and modeled FPLR scenarios of the
DCEN area for the three time periods of 2025, 2030, and 2040, respectively. The CA-Markov model was
adopted in this study to predict the FLULC of 2018 (simulated), 2025, 2030, and 2040 for the DCEN area.

Furthermore, the FLULC images were used to generate future potential landscape matrix (FPLM)
tables based on the different time periods of 2018–2025, 2025–2030, 2030–2040, and overall 2018–2040.
The model and observed data provide over 70% accuracy, which represents a substantial agreement
(Section 3.1) of the model validation and its utilizations. Based on the FLULC image output, we produced
FLULCC matrix tables of different time periods that show the LULCC transformation from one category
to another, as well as its unchanged categories.

In developing and developed countries, the LULC changes and predictive approaches using
the CA-Markov model were used across the globe in recent times. However, those studies solely
represented the particular LULC changes identified in the selective regions. However, those studies
were not focused on the FPLR approaches which were given much less attention and documented
less in the past. In recent times, the DCEN area showed changes in LULC for the first time prior to
and after the earthquake of 2008 as well as its present status, including the integrated approach to
assess the LR pattern [16]. Our study area, SW China of Sichuan province, particularly the DCEN area,
frequently experiences earthquakes of different intensity that cause landslides, etc. Figure 2 shows the
impact of the earthquakes of varying magnitudes from 12 May 2008 to 8 September 2019. After the
2008 earthquake, Chinese economic development focused deeply on city restructuring, redevelopment,
and expansion works due to an inflow migration of people in city areas from neighboring rural areas,
thus putting pressure on the landscape of this area. The recent study by Nath et al. [16] shows LULCC in
the past, including present LR risk areas and patterns of risk that developed in the earthquake-affected
areas. Therefore, based on the earlier study and ongoing changes in stress pattern due to tectonic
activities, the present study focused on the FLULCC, its trends of change, and FPLR assessment in the
earthquake stress regions. This LULCC modeling and FPLR study is a newly adopted approach in the
DCEN area and is particularly needed to check whether the DCEN area will achieve the sustainability
goals or not in future along with the projected landscape modifications.

This study first developed and analyzed FLULC mapping and identified the different FLULCC in
different time periods, 2018–2025, 2025–2030, 2030–2040, and overall 2018–2040 in the DCEN area of
SW China. Here, FLULC gain/loss (%) as well as rate of change per year in the corresponding time
frame were computed. Our projected results showed that the BU class has a probability of 1.12% and
1.11% to change into WB and BL, respectively (see Table 8) during the period 2018–2025, which is
indicative of future disastrous activities in the DCEN area. Moreover, the highest level of FLULC
transformation was observed in RA, with a TP of 34.89% to transform into another class, such as BU in
the 2018–2025 time period, and a smaller transformation in 2025–2030 (25.49%) and 2030–2040 (14.43%)
time period. The FLULC changes are observed in the central part, north–south (N-S), northeast (NE),
and east (E) directions of the study area, which will be reflected in the FLULC maps (Figure 5a–d) as
well as in change difference maps (Figure 7a–d) for different time periods. According to the predicted
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LULC change statistics, further developmental work, including BU area expansion, will continue in
future. Moreover, BU also have a high potential risk in future because of an ongoing stress pattern and
more earthquake occurrences in the future, which will affect direct modifications of the landscape in
the DCEN area.

However, in 2018–2040, the BU data suggest decreasing conditions (−3.10%) of −0.14% yr−1,
which will further decerase (−0.47%) at a rate of −0.09% yr−1 during the periods 2025–2030 and −0.18%
with a −0.02% yr−1 in the period 2030–2040. The results of the earlier studies [16] suggested that the
LULC was changed through modifications caused by natural and anthropogenic activities, such as
massive development of infrastructure, BU area expansion, forest loss, etc. Moreover, based on the
FLULC maps, the study further examined FLULC transformation during different time periods by
getting the change difference matrix tables (showing in percentage) generated during the CA-Markov
chain analysis stage through the LCM module of TerrSet software. The individual time-period-based
change matrix table is presented in an integrated manner (Table 8).

In addition, this study finally prepared and analyzed FPLR maps for the years 2025, 2030, and
2040 (Figure 9a—c) by applying the IWO technique, with risk priority becoming very high close to
adjoining fault lines, and epicenter areas, and lower in the areas farthest from fault lines. The basic
assumption followed in this study is similar to the concept developed by Nath et al. [16], which was
that the “higher” the LD value, the more the rock fractured in the surface area and vice versa. However,
these two parameters have a natural tendency to change in future through the course of time, as is
clearly evident from recent studies [16]. Therefore, from this study, it can be inferred that the DCEN
area will be at risk in the coming decades with particular activities such as earthquakes, landslides
induced by earthquakes, regular landslides, liquefactions induced damage, slope failure, etc.

Therefore, this study further identified the risk according to geological zones in three projected
years, 2025, 2030, and 2040. The geological zones II, I, and IV were identified as in the very high risk
category (Table 9a), where landscape types WB, AG, F, BU, and BL were found under high stress in the
DCEN until 2025. By contrast, in 2030, the risk pattern will change, with a small increase from 69.10%
to 70.10%, and the landscape of WB, F, AG, BU, and BL will be under very high stress. However,
the risk will remain unchanged until 2040, with the only changes identified at the landscape levels in
the order of WB, AG, BU, BL, and F. Among all the landscape risk categories in three years, the medium
category risk area will be ranked top, with a share of 36.51% in 2025, and it will gradually decrease
in the following two periods, 35.19% in 2030 and 34.99% in 2040. By contrast, the very high, high,
and medium category risks will probably be developed in future, as the pace of development will
continue closely towards the direction of numerous fault lines, which makes the city become vulnerable.

In this study, the FLULCC modeling results and FPLR areas and probable priority-based risk
assessment raised a question on the environmental sustainability of the DCEN area in the coming
decades. Thus, a priority-based sustainable solution would be further recommended, as well as
checking the unsustainable LULC movements in the study areas. Therefore, by observing the FPLR
pattern, it is high time to properly inspect and discuss with the locals what to do and what their concerns
are regarding the future landscape change and FPLR, which will be incorporated in the future planning
of this area to make the DCEN area sustainable. Moreover, the remote sensing and GIS integrated
techniques help to build a model and validate it and are found to be ideal for plausible future LULCC
prediction which may further help to identify future probable risk areas at spatiotemporal scale.

5. Conclusions

The present study utilized geospatial data of the two past LULC maps of 2007 and 2018, LR
map of 2018, and other associated derived map products used in an integrated manner to develop
FLULC maps, future changing trends, and generate FPLR maps of the DCEN. As the DCEN area
was previously affected by a high-intensity earthquake (8.0) and its landscape was severely affected
afterwards [16], this DCEN area is among the highly seismic-prone areas affected in the SW of China.
The present tectonic stress pattern as discussed in the present study is not stable and will be greatly
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affected in future, as discussed by Nath et al. [16] through LR analysis. In this research, we studied how
the landscape of the DCEN area will be changing in future based on the allocated different time periods
of 2018–2025, 2025–2030, 2030–2040 and overall projected change in 2018–2040 and quantitatively
analyzed and evaluated the changing nature of LULC in the future. The presented results based on the
integrated FPLR maps show a future risk pattern observed through the FPLRA along with FPLULC in
the DCEN area.

From CA-Markov modeling, changes in LULC will occur in the future in the DCEN area which may
be very devastating if the area is affected by high-intensity earthquakes. Therefore, all developmental
planning should be focused on finding a nature-based solution that ensures there is less risk and works
in conjunction with sustainability goals, with a further suggestion to stop and check developmental
activities in the fault and close adjoining areas, and if possible resettle urban dwellers elsewhere,
far from the fault lines. The detailed analysis in the present study will be of great use for baseline
information to assist city planners, local administrations, and earthquake engineers for future planning
and development and technical-know-how about upcoming landscape changes and FLR of DCEN.

An earlier study [16] suggested that the city expansion, LULCT, and its trend continues towards
risk-prone areas, which was evident from the recent satellite image of 2018 showing the ongoing
tectonic stress level. However, the idea of FLULCC coupled with FPLR assessment used in the present
study is a new approach in earthquake-prone areas, a new unique idea that helps to assess risk in a
meaningful manner. This study helps us to know the FPLR areas, including their pattern of risk and
priority-based landscape risk identification.

Finally, we found that the multitemporal Landsat images of 2007 and 2018 are very useful to
generate a LULC simulation image of 2018, followed by a FLULC image for the years 2025, 2030,
and 2040 of DCEN using the LCM of TerrSet software. To understand the FLULC, its trends, and future
gain and loss estimation of DCEN in the future, we further calculated the matrix of the FLULC in
different time domains. However, based on the integrated layers, including the FLULC of 2025, 2030,
and 2040, the LD of 2018 (which will change with time) and other ancillary data were recoded with
risk priority with the weighted sum method, applied to prepare FPLR maps of DCEN in a consecutive
manner for the years 2025, 2030, and 2040. As we observed, DCEN was identified as a risk-prone area
in an earlier study [16], something which may continue to be true in future. The FLULC plan for the
study area should be made in advance and needs to be incorporated at policy level by city planners
and local administrators with a special consideration of the FLULC maps, its change, and FPLR maps.
This study of FLULC changes with integrated FPLR mapping techniques was found to be ideal for
future sustainable development in the DCEN area, which is under the Belt and Road Corridor (BRC) of
P.R.C. China.

The findings of this study might serve as an example for any earthquake-prone city around the
world, including the BRC, which will help to exclusively monitor future Silk Road disaster activities.
The present study provides future projections about LULC change in the DCEN area, which may
be checked in advance for further landscape damage. Geospatial (such as Remote sensing and GIS)
integrated software techniques were also found to be ideal, helping to know the FLULC changing
status, including in the FPLR areas. Moreover, the present study proved that the integrated techniques
have the ability to know FPLR areas and the probable pattern of change in the BRC. Thus, to minimize
the FPLR factors of DCEN, it is high time to exchange the results of the FLULC status and its probable
change direction, including the FPLR pattern with academics, city planners, national policy makers,
and locals to make the DCEN area of the BRC safe, sound, and disaster-proof. Detailed analysis shows
a useful future prediction of Silk-Road disaster, which may further help towards achieving the UN
2030 sustainable goals.

Supplementary Materials: The following are available online at http://www.mdpi.com/2220-9964/9/2/134/s1,
Table S1a–g: Multiple Parameter-based risk weight calculation for FPLR, Figure S1a–f: Individual parameter-based
risk map preparation.
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