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Optimal Multi-Stage Arrhythmia 
Classification Approach
Jianwei Zheng1, Huimin Chu   2, Daniele Struppa1, Jianming Zhang3, Sir Magdi Yacoub4, 
Hesham El-Askary1, Anthony Chang5, Louis Ehwerhemuepha1,5, Islam Abudayyeh   6, 
Alexander Barrett1, Guohua Fu2, Hai Yao7, Dongbo Li2, Hangyuan Guo3* & Cyril Rakovski1

Arrhythmia constitutes a problem with the rate or rhythm of the heartbeat, and an early diagnosis 
is essential for the timely inception of successful treatment. We have jointly optimized the entire 
multi-stage arrhythmia classification scheme based on 12-lead surface ECGs that attains the accuracy 
performance level of professional cardiologists. The new approach is comprised of a three-step noise 
reduction stage, a novel feature extraction method and an optimal classification model with finely 
tuned hyperparameters. We carried out an exhaustive study comparing thousands of competing 
classification algorithms that were trained on our proprietary, large and expertly labeled dataset 
consisting of 12-lead ECGs from 40,258 patients with four arrhythmia classes: atrial fibrillation, general 
supraventricular tachycardia, sinus bradycardia and sinus rhythm including sinus irregularity rhythm. 
Our results show that the optimal approach consisted of Low Band Pass filter, Robust LOESS, Non 
Local Means smoothing, a proprietary feature extraction method based on percentiles of the empirical 
distribution of ratios of interval lengths and magnitudes of peaks and valleys, and Extreme Gradient 
Boosting Tree classifier, achieved an F1-Score of 0.988 on patients without additional cardiac conditions. 
The same noise reduction and feature extraction methods combined with Gradient Boosting Tree 
classifier achieved an F1-Score of 0.97 on patients with additional cardiac conditions. Our method 
achieved the highest classification accuracy (average 10-fold cross-validation F1-Score of 0.992) using an 
external validation data, MIT-BIH arrhythmia database. The proposed optimal multi-stage arrhythmia 
classification approach can dramatically benefit automatic ECG data analysis by providing cardiologist 
level accuracy and robust compatibility with various ECG data sources.

ECGs represent the filtered electrical activity generated by the heart. An ECG from lead II presents a normal 
heartbeat under sinus rhythm that has a characteristic shape with three features, a P-wave presenting the atrial 
depolarization process, a QRS complex denoting the ventricular depolarization process, and a T-wave represent-
ing the ventricular repolarization. The normal feature sequence of the cardiac cycle is P-wave, QRS complex, and 
T-wave with sections between them called segments. Three such major segments are the PR, ST, and TP segments. 
Important periods within and between ECG waves are the PR, QT, and RR intervals.

Damage to the heart muscle or nerves can change the electrical activity of the heart and induce a correspond-
ing change in the shape of the ECGs. Thus, ECG is a major clinical diagnostic tool for various heart abnormalities. 
Arrhythmias are a family of conditions characterized by aberrations from the normal rate or rhythm of the heart-
beats. There are several dozen classes of arrhythmia with various distinct manifestations, excessively slow or fast 
heartbeats such as sinus bradycardia and atrial tachycardia, irregular rhythm with missing or distorted wave seg-
ments and intervals, or both. Arrhythmias have a wide and significant impact on public health, quality of life, and 
medical expenditures. For example, the common type of arrhythmia, atrial fibrillation (AFIB), is associated with 
a significant increase in the risk of cardiac dysfunction and stroke. According to the American Heart Association1, 
in 2015 AFIB was the underlying cause of death in 23,862 people and was listed on 148,672 US death certificates. 
The estimates of the prevalence of AFIB in the United States ranged from 2.7 million to 6.1 million in 2010. 
Further, the AFIB prevalence is expected to rise to 12.1 million in 2030 as the average population age increases. 
In the European Union, the prevalence of AFIB in adults older than 55 years was estimated to be 8.8 million (95% 
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OPEN

https://doi.org/10.1038/s41598-020-59821-7
http://orcid.org/0000-0002-8621-0708
http://orcid.org/0000-0002-6366-4205
mailto:hangyuanguo@outlook.com


2Scientific Reports |         (2020) 10:2898  | https://doi.org/10.1038/s41598-020-59821-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

CI, 6.5 –12.3 million) in 2010 and was projected to rise to 17.9 million in 2060 (95% CI, 13.6 –23.7 million). The 
weighted prevalence of AFIB in the Chinese population aged 35 years or older was 0.71%2.

According to the existing screening and diagnostic practice, cardiologists review ECG data, establish the diag-
nosis, and begin implementing subsequent treatment plans such as anticoagulation or radiofrequency catheter 
ablation. However, the demand for high-accuracy automatic heart condition diagnoses has recently increased 
sharply in parallel with the public health policy of implementing wider screening procedures, and the adoption 
of ECG enabled wearable devices. Such classification methods have to properly account for the inter-person and 
intra-personal variability of ECG signals, distortion from noise, missing feature waves and intervals in many 
arrhythmia cases. A variety of algorithms have been proposed for removing noise from raw ECG data, extracting 
salient features from the smoothed ECG signals, and feeding them into an optimal classification method.

Some previous studies3–5 have focused on the separation between AFIB and sinus rhythm (SR). These studies 
achieved a high accuracy of classification rate. Kennedy et al.3 proposed Random Forest (RF) and K Nearest 
Neighbors (KNN) to classify AFIB and SR by the coefficient of sample entropy (CoSEn), the coefficient of var-
iance (CV), root mean square of the successive differences (RMSSD), and median absolute deviation (MAD). 
Zhu et al.4 suggested using maximum margin clustering with an immune evolutionary algorithm and features 
of wave and segment measurements for classifying ectopic heartbeats by the database from MIT laboratories at 
Boston’s Beth Israel Hospital (MIT-BIH). Asgari et al.5 proposed to use features of peak-to-average power ratio 
and log-energy entropy to detect AFIB by support vector machine (SVM) model. A high precision classification 
of a more extensive set of arrhythmia classes has been achieved with extensive neural network classification6. 
However, a complete comparison of the classification accuracy of multiple analytical algorithms and accompa-
nying noise reduction and feature selection techniques for a large number of arrhythmia classes has not been 
performed yet.

In this work, we employed several signal noise reduction techniques, proposed a novel ECG feature extraction 
method, designed and implemented and a large computational comparison study across thousand of compet-
ing classification schemes based on new, proprietary, expertly labeled data. According to clinical relevance, 11 
rhythms labeled by certified physicians were merged into 4 groups (SB, AFIB, GSVT, SR), SB only included sinus 
bradycardia, AFIB consisted of atrial fibrillation and atrial flutter (AFL), GSVT contained supraventricular tach-
ycardia, atrial tachycardia, atrioventricular node reentrant tachycardia, atrioventricular reentrant tachycardia and 
wandering atrial pacemaker, and SR included sinus rhythm and sinus irregularity. These 4 group labels were used 
for training and testing of our models. The pipeline of the proposed multi-stage scheme is presented in Fig. 1. 
We utilized the Butterworth Low-pass filter to remove high-frequency noise, the Robust LOESS to eliminate 
baseline wandering and Non Local Means (NLM) to remove the remaining noise. The features extracted from 
ECGs included measurements of wave and segments provided by ECG machine and relation measurements 
among peaks and valleys, producing up to 39,830 features. In order to study the classification reliability of fea-
tures, we defined 11 distinct feature combinations with respect to the type of features and the lead of the ECGs. 
This feature combination setting aimed to compare the performance of classification schemes using 12-lead and 
single-lead ECG data, and to evaluate the classification capacity of different feature combinations. Moreover, 
aiming to evaluate the additional cardiac conditions impact for the rhythm classification, we separated a small 
subset without such conditions from the entire dataset. Sequentially, these two datasets, with and without addi-
tional cardiac conditions, generated 22 datasets by 11 distinct feature combinations as mentioned above. As a 
common practice in machine learning, we rescaled the subject’s raw ECG signals to have maximum peak values of 
1. Thus, we generated the new 22 datasets by rescaling the original 22 datasets. That allowed us to assess the effect 
of rescaling on classification accuracy as well. Using these 44 datasets, we carried out an exhaustive grid search 
spanning the ranges of all tuning hyperparameters for nineteen base classification algorithms and they combined 
with five optimal strategies such as bagging average, Adaboost, OneVsRest, OneVsOne, and Error-Correcting 
Output-Codes. The hyperparameters tuning, model fitting and optimal strategy evaluating were deployed on each 
dataset respectively. Thus, we compared thousands of competing strategies to discover the optimal multi-stage 
arrhythmia classification routine. The base classification algorithms that we studied were Decision Tree (DT), K 
Nearest Neighbors (KNN), Nearest Centroid (NC), Gaussian Naive Bayesian (GNB), Multinomial Naive Bayesian 
(MNB), Complement Naive Bayesian (CNB), Bernoulli Naive Bayesian (BNB), Linear Classifier (LC), Quadratic 
Discriminant Analysis (QDA), Multinomial Logistic Regression (MLR), Multi-layer Perceptron Neural Net 
(MPN), Ridge Regression Classifier (RRC), Linear Classifiers with Stochastic Gradient Descent (LCSGD), Passive 
Aggressive Classifier (PAC), Linear SVC (SVC), Random Forest (RF), Extremely Randomized Trees (ERT), 
Gradient Boosting Tree (GBT) and Extreme Gradient Boosting Tree (EGBT). Finally, EGBT and GBT models 
achieved the best classification performance and with details presented in the Results section. A presentation of 
complete results that include all competing schemes comparisons is shown in Supplementary sections C and D.

Results
We used confusion matrices and normalized confusion matrices to evaluate the performance of classification 
models and weighted average F1-Score defined in 1 as criteria for selection of the best hyperparameters and 
models.

Figure 1.  The pipeline of scheme.
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 The F1-Score, confusion matrix, and normalized confusion matrix presented below are the average results from 
10-fold cross-validation with 20% testing data and 80% training data.

Firstly, EGBT model using Feature Group 5 dataset of patients without additional cardiac conditions attained 
the highest weighted average F1-Score of 0.988 (shown in Table 1). GBT model using Feature Group 8 dataset 
of patients with additional cardiac conditions attained the highest weighted average F1-Score of 0.97 (shown in 
Table 2). The confusion matrix and normalized confusion matrix for each model were presented in Figs. 2, 3, 4, 
and 5 respectively. For the dataset of patients without additional cardiac conditions, the average F1-Score shown 

F1-Score Precision Recall

AFIB 0.964 0.974 0.954

GSVT 0.979 0.977 0.980

SB 0.996 0.994 0.999

SR 0.989 0.990 0.989

macro avg 0.982 0.984 0.980

micro avg 0.988 0.988 0.988

weighted avg 0.988 0.988 0.988

Table 1.  Report of EGBT with Feature Group 8 dataset of patients without additional cardiac conditions.

F1-Score Precision Recall

AFIB 0.941 0.938 0.944

GSVT 0.949 0.953 0.944

SB 0.993 0.990 0.996

SR 0.977 0.982 0.972

macro avg 0.965 0.966 0.964

micro avg 0.970 0.970 0.970

weighted avg 0.970 0.971 0.970

Table 2.  Report of GBT with Feature Group 5 dataset of patients with additional cardiac conditions.
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Figure 2.  Confusion matrix of EGBT model fed by rescaled Feature Group 8 dataset of patients without 
additional cardiac conditions. The true class labels of AFIB, GSVT, SB and SR are provided by cardiologists who 
read the ECGs. The predicted class labels present the outcomes generated by classification model. Numbers in 
the diagonal line with blue color present the correct prediction. Percentage numbers with blue color present the 
accuracy of associated category.

https://doi.org/10.1038/s41598-020-59821-7


4Scientific Reports |         (2020) 10:2898  | https://doi.org/10.1038/s41598-020-59821-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

in Table 3 of the models using features in group 1 that were provided by the ECG machine is 0.021 lower than that 
of models using features in group 2 that includes engineered features on lead II. That is, the engineered features 
proposed by this work had higher classification capacity than the features measured by ECG machine. The full 
comparison results as mentioned in the introduction section is presented in Supplementary sections D.

Secondly, our results show that the presence of conduction findings such as premature ventricular contraction 
(PVC), right bundle branch block (RBBB), left bundle branch block (LBBB) and atrial premature contraction 
(APC) negatively impacted the accuracy of the arrhythmia classification algorithms. In particular, based on the 
same feature group, the average F1-Score of the ECG dataset with these conditions was lower than that of datasets 
without them by 0.017 to 0.034 respectively (shown in Table 3). Furthermore, the multi-classification strategy 
interacted with the feature groups to provide scenario specific optimal approaches. The best models associated 
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Figure 3.  Normalized confusion matrix of EGBT model fed by rescaled Feature Group 8 dataset of patients 
without additional cardiac conditions. The true class labels of AFIB, GSVT, SB and SR are provided by 
cardiologists who read the ECGs. The predicted class labels present the outcomes generated by classification 
model. Numbers in the diagonal line with blue color present the normalized ratio of correct prediction, which is 
equal to the numbers in the diagonal line of Fig. 2 divided the total number of cases in validation cohort.
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Figure 4.  Confusion matrix of GBT model fed by rescaled Feature Group 5 dataset of patients with additional 
cardiac conditions.The true class labels of AFIB, GSVT, SB and SR are provided by cardiologists who read 
the ECGs. The predicted class labels present the outcomes generated by classification model. Numbers in the 
diagonal line with blue color present the correct prediction. Percentage numbers with blue color present the 
accuracy of associated category.
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Figure 5.  Normalized confusion matrix of GBT model fed by rescaled Feature Group 5 dataset of patients with 
additional cardiac conditions.The true class labels of AFIB, GSVT, SB and SR are provided by cardiologists who 
read the ECGs. The predicted class labels present the outcomes generated by classification model. Numbers 
in the diagonal line with blue color present the normalized ratio of correct prediction, which is equal to the 
numbers in the diagonal line of Fig. 4 divided the total number of cases in validation cohort.
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with each feature group are presented in Table 4. Table 4 shows that EGBT and GBT models dominate the highest 
classifiers for most scenarios.

Thirdly, we tested rescaling effects by the best performance classification models and feature groups reported 
in Tables 1 and 2. The results show that for the dataset of patients with additional cardiac conditions, weighted 
average F1-Score of the non-rescaling method is 0.001 lower than that of the rescaling method, while for the 
dataset of patients with additional cardiac conditions F1-Score of the non-rescaling method is 0.0016 lower than 
that of the rescaling method. For each model mentioned in Tables 1 and 2, the confusion matrix and normalized 
confusion matrix associated with the non-rescaling method are shown in Figs. 6, 7, 8, and 9 respectively. The 
effect of rescaling the subject’s raw ECG signals to have maximum peak values of 1 has a very small positive effect 
on the classification accuracy of arrhythmia types. The idea of this rescaling approach is similar to the inclusion 
of random effects in linear models. Morever, rescaling is a generally recommended preprocessing procedure in 
nonparametric classification methods such as neural networks and boosting trees.

Lastly, we ascertained the performance advantage of our method consisting of noise reduction methods, fea-
ture extraction scheme and Extreme Gradient Boosting Tree classification model to classify normal heart beat and 
four conduction conditions (shown in Table 5) in the MIT-BIH database7. Two RR intervals close to each heart-
beat were used to extract features. The approach we proposed attains an F1-Score of 0.992 that is the weighted 
average score of 10-fold cross-validation with 10% testing data and 90% training data. Compared with available 
studies8–17, the approach we proposed achieved the highest accuracy score by using all the data files in MIT-BIH 
database.

Discussion
We designed and implemented a large scale study aimed at finding the best multi-stage arrhythmia classifica-
tion scheme. We carried out an extensive accuracy comparison among a range of 98 competing methods that 
are manifested in Supplementary section C. These multi-stage schemes consisted of a sequential application of 
denoising techniques, feature extraction methods and classification algorithms. We have provided methodo-
logical advancements to each of these steps. We propose a novel, three stage denoising method that includes 
Butterworth Low-pass filter to remove high-frequency noise (above 50 Hz), the Robust LOESS to eliminate base-
line wandering and Non Local Means (NLM) to remove residual noise. We designed a novel, robust and optimal 
feature extraction strategy based on the magnitudes and lengths of peaks and valleys and distributional character-
istics of their transformations. In particular, for each pair of peaks or valleys, we assessed the empirical frequency 

F1-Score
Dataset of patients without 
additional cardiac conditions

Dataset of patients with 
additional cardiac conditions Difference

Feature Group 1 0.962 0.937 0.025

Feature Group 2 0.983 0.949 0.034

Feature Group 3 0.987 0.961 0.026

Feature Group 4 0.986 0.963 0.023

Feature Group 5 0.987 0.970 0.017

Feature Group 6 0.887 0.868 0.019

Feature Group 7 0.984 0.956 0.028

Feature Group 8 0.988 0.965 0.023

Feature Group 9 0.972 0.954 0.018

Feature Group 10 0.983 0.965 0.018

Feature Group 11 0.987 0.968 0.019

Table 3.  F1-Score comparison for different feature groups.

Dataset of patients with 
additional cardiac conditions

Dataset of patients without 
additional cardiac conditions

Feature Group 1 ERT ERT

Feature Group 2 OneVSOne ERT GBT

Feature Group 3 OneVSRest ERT EGBT

Feature Group 4 GBT GBT

Feature Group 5 ERT GBT

Feature Group 6 OneVSOne GBT GBT

Feature Group 7 ERT EGBT

Feature Group 8 EGBT EGBT

Feature Group 9 GBT GBT

Feature Group 10 EGBT GBT

Feature Group 11 EGBT EGBT

Table 4.  The best classification model list for each feature group.
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distribution of the ratio between the differences of heights and distances of the time, the ratio between the dif-
ferences of widths and the distances of the times, as well as the ratio between the differences of the prominences 
and the distance of the time. The newly obtained features reveal the relationship between attributes of wave and 
time duration, which is a central key for recognizing possible rhythms. Thus, the feature extraction strategy in 
this project is more transparent and interpretable than the one that has been obtained via the use of deep neural 
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Figure 6.  Confusion matrix of EGBT model fed by non-rescaled Feature Group 8 dataset of patients without 
additional cardiac conditions. The true class labels of AFIB, GSVT, SB and SR are provided by cardiologists who 
read the ECGs. The predicted class labels present the outcomes generated by classification model. Numbers 
in the diagonal line with blue color present the correct prediction. The blue color percentage show the general 
accuracy of associated category. Compared with confusion matrix shown in Fig. 2, the effect of rescaling the 
subject’s raw ECG signals to have maximum peak values of 1 has a very small positive effect on the classification 
accuracy of arrhythmia types.
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Figure 7.  Normalized confusion matrix of EGBT model fed by non-rescaled Feature Group 8 dataset of 
patients without additional cardiac conditions.The true class labels of AFIB, GSVT, SB and SR are provided by 
cardiologists who read the ECGs. The predicted class labels present the outcomes generated by classification 
model. Numbers in the diagonal line with blue color present the normalized ratio of correct prediction, which is 
equal to the numbers in the diagonal line of Fig. 6 divided the total number of cases in validation cohort.
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Figure 8.  Confusion matrix of GBT model fed by non-rescaled Feature Group 5 dataset of patients with 
additional conditions. The true class labels of AFIB, GSVT, SB and SR are provided by cardiologists who read 
the ECGs. The predicted class labels present the outcomes generated by classification model. Numbers in 
the diagonal line with blue color present the correct prediction. The blue color percentage show the general 
accuracy of associated category. Compared with confusion matrix shown in Fig. 4, the effect of rescaling the 
subject’s raw ECG signals to have maximum peak values of 1 has a very small positive effect on the classification 
accuracy of arrhythmia types.
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networks6 and other automatic feature extraction methods5 where features are uninterpretable. We performed an 
extensive grid search of the classification method’s hyperparameters. We have shown that the optimal multi-stage 
classification approach as described above consisted of a three-stage noise reduction process, the new empirical 
frequency distribution feature extraction strategy, and extreme gradient boosting tree classification model com-
bined with hyperparameters tuned via an exhaustive grid search attains arrhythmia classification accuracy that 
exceeds the level of professional cardiologists.

Our computational study compared 98 approaches that were trained on a new, expertly labeled high-quality 
data on 40,258 patients from the Shaoxing People’s Hospital (Shaoxing Hospital Zhejiang University School of 
Medicine) and Ningbo First Hospital of Zhejiang University. In total, 22 cardiologist and physician experts labe-
led and reviewed the rhythms and additional cardiac findings. This is a new, large size database of 12-lead ECGs 
and comprehensive rhythms and conditions labels. Previous related studies3–6 were limited in the degree of nov-
elty of the methodological approaches, the size of the samples and the diversity of cardiac conditions considered. 
We have made our database accessible to the scientific community for further scientific endeavors.

We assessed, for the first time, the additional classification accuracy attributable to analyzing 12-lead ECGs vs 
single lead ECGs. We have found that the accuracy based on 12-lead data increases the F1-Score by 1.4%. We have 
also compared the algorithm’s ECG classification accuracy for patients with and without additional heart condi-
tions. The accuracy decreases by 2% on average for patients with additional cardiac conditions such as PVC, APC, 
RBBB, and LBBB. The detrimental effect of these conditions on arrhythmia classification precision has not been 
previously studied3–6. For patients without additional cardiac condition, EGBT model that fed by rescaled features 
extracted from lead II ECGs produced the highest accuracy rate. Given these two results, the approach can have 
important arrhythmia classification applications to data collected from wearable devices such as Apple watch.

Lastly, we used our method to achieve the highest classification accuracy (average 10-fold cross-validation 
F1-Score of 0.992) using an external validation data, MIT-BIH. The proposed optimal multi-stage arrhythmia 
classification approach can dramatically benefit automatic ECG data analysis by providing cardiologist level accu-
racy and robust compatibility with various ECG data sources.

Methods
Study design and patients selection.  Our novel data consisted of 40,258 12-lead ECGs, including 22,599 
males and 17,659 females. The study participants were randomly chosen from over 120,000 subjects who visited 
the Shaoxing People’s Hospital (Shaoxing Hospital Zhejiang University School of Medicine) and the Ningbo First 
Hospital of Zhejiang University between 2013 and 2018. The institutional review board of Shaoxing People’s 
Hospital (Shaoxing Hospital Zhejiang University School of Medicine) and Ningbo First Hospital of Zhejiang 
University approved this study and granted the waiver of the requirement to obtain informed consent. The data 
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Figure 9.  Normalized confusion matrix of GBT model fed by non-rescaled Feature Group 5 dataset of patients 
with additional cardiac conditions.The true class labels of AFIB, GSVT, SB and SR are provided by cardiologists 
who read the ECGs. The predicted class labels present the outcomes generated by classification model. Numbers 
in the diagonal line with blue color present the normalized ratio of correct prediction, which is equal to the 
numbers in the diagonal line of Fig. 8 divided the total number of cases in validation cohort.

F1-Score Precision Recall

/ 0.996 0.998 0.995

L 0.994 0.998 0.992

N 0.991 0.991 0.992

R 0.997 0.998 0.997

V 0.986 0.980 0.991

macro avg 0.993 0.993 0.993

micro avg 0.992 0.992 0.992

weighted avg 0.992 0.992 0.992

Table 5.  Report for the classification of normal heart beat and four conduction conditions. /: Paced beat; L: Left 
bundle branch block beat. N: Normal beat; R: Right bundle branch block beat. V: Premature ventricular contraction.
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contain 20% normal SR and 80% abnormal readings. The age groups with the highest prevalence were 51–60, 
61–70, and 71–80 years representing 19.8%, 24%, and 17.3% respectively.

Each patient’s ECG data were collected over 10 seconds at a sampling rate of 500 Hz and labeled by 
cardiologist-supervised physicians. The data labels included 11 types of rhythm and 67 additional cardiac find-
ings such as PVC, RBBB, LBBB and APC. A detailed description of the enrolled participants’ baseline charac-
teristics and rhythm frequency distribution is presented in Table 6. Since some rare rhythms only have single 
unit readings, according to a suggestion from cardiologists, we have hierarchically merged several rare cases to 
upper-level arrhythmia types. After re-grouping labels of the dataset, this new setting of classes can significantly 
contribute to the training of the best approach. It also complies with and benefits the daily clinical practice. Thus, 
11 rhythms were merged into 4 groups (SB, AFIB, GSVT, SR), SB only included sinus bradycardia, AFIB consisted 
of atrial fibrillation and atrial flutter (AFL), GSVT contained supraventricular tachycardia, atrial tachycardia, atri-
oventricular node reentrant tachycardia, atrioventricular reentrant tachycardia and wandering atrial pacemaker, 
and SR included sinus rhythm and sinus irregularity. Referring to guidelines18–20. that recommend AFIB and 
AFL often coexist, in the present study any ECG with a rhythm of AFIB or AFL was classified into AFIB group. 
Merging sinus rhythm and sinus irregularity to SR group helps with distinguishing such a combination from the 
GSVT group, and sinus irregularity can be easily separated from sinus rhythm later by one single criterion, RR 
interval variation. Supraventricular tachycardia actually is a general term used in the daily ECG screening. For 
example, if the cardiologists cannot confirm atrial tachycardia or atrioventricular node reentrant tachycardia 
purely by ECG, they will give the general name supraventricular tachycardia. Therefore, the practice of merging 
all tachycardia originating from supraventricular locations to GSVT group was adopted in this work. Figures 10, 
11, 12, and 13 depict 12-lead ECGs of randomly selected patients from the SR, AFIB, GSVT and SB groups 
respectively. The detailed definition of rhythm groups subseuently used for classification and the definition of 
rhythms labeled by certified physicians are presented in Supplementary section A.

We also investigated a separate and important issue in ECG analysis, the evaluation of the impact of additional 
cardiac conditions such as PVC, LBBB, RBBB, or APC on the rhythm classification accuracy. We created a subset 
of the data containing ECGs of subjects without such conditions consisting of 20,766 samples. Details on the 
distribution of arrhythmia types in the two datasets and the p-values comparing their prevalence are shown in 
Table 7. The differences between the sample prevalence of SB, SR, AFIB, and GSVT are statistically significant 
with magnitudes of 4.4%, 10.3%, −7.3% and −7.4% respectively.

Noise reduction.  When the ECG data was collected, the major noise contamination sources were power line 
interference, electrode contact noise, motion artifacts, skeletal muscle contraction, baseline wandering, and ran-
dom noise. The baseline wandering could be induced by respiration. The frequency of the power line interference 
is 50-60 Hz while the frequency of the baseline wander is less than 0.5 Hz. The currently available noise reduction 
methods have both pros and cons. Adaptive Filter21 possesses desirable performance, but the reference signal is 
hard to get. Wavelet and Band Pass Filter22 need predetermined thresholds, the Morphology Technique23 with 
dilation and erosion operation has similar issues. In the subsequent analyses, we implemented the Butterworth 
Low-pass filter to remove high-frequency noise (above 50 Hz), the Robust LOESS to eliminate baseline wandering 
and Non Local Means (NLM) to remove the remaining noise24.

Non local means denoising.  The NLM algorithm was introduced to address the preservation of repeated struc-
tures in digital images25. Later, NLM was used to remove noise from ECG data26 and further combined with the 
Empirical Mode Decomposition (EMD)27.

NLM denoising reconstructs the true signal S(i) at all time points i through weighted averaging of all 
points D(j) within predefined range. The weights are determined by a similarity measure between D(i + δ) and 
D(j + δ), δ ∈ Δ.

∑=
∈

S i
Z i

w i j D j( ) 1
( )

( , ) ( )
(3)j N i( )

Acronym Name Full Name Frequency, n(%) Age, Mean ± SD Male,n(%)

SB Sinus Bradycardia 15,528 (38.6) 58.4 ± 14.02 9844 (63.4%)

SR Sinus Rhythm 7,291 (18.1) 54.38 ± 16.17 4107 (56.33%)

AFIB Atrial Fibrillation 7,028 (17.5) 73.07 ± 11.27 4051 (57.64%)

ST Sinus Tachycardia 6,208 (15.4) 54.24 ± 21.41 3208 (51.68%)

AFL Atrial Flutter 1,725 (4.3) 71.57 ± 13.23 1001 (58.03%)

SI Sinus Irregularity 1,773 (4.4) 37.3 ± 22.98 979 (55.22%)

SVT Supraventricular Tachycardia 542 (1.3) 55.44 ± 18.41 289 (53.32%)

AT Atrial Tachycardia 133 (0.3) 65.92 ± 18.7 69 (51.88%)

AVNRT Atrioventricular Node Reentrant Tachycardia 16 (0.03) 57.88 ± 17.34 12 (75%)

AVRT Atrioventricular Reentrant Tachycardia 7 (0.01) 56.43 ± 17.89 5 (71.43%)

WAP Wandering Atrial Pacemaker 7 (0.01) 51.14 ± 31.83 6(85.71%)

Table 6.  Rhythm information and baseline characteristics of the enrolled participants.
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 where Z(i) = ∑j w(i, j) and 

∑ δ δ

λ
=






−

+ − + 




δ∈Δ

Δ

w i j exp
D i D j

L
( , )

[ ( ) ( )]

2 (4)

2

2

wherein λ is a smoothness control parameter, and Δ represents a local patch of samples containing LΔ samples. 
Thus, at each point, the NLM smoothing borrows information from all points that have similar patterns within 
the search range. The similarity measure determines how many periods will be included and averaged. We used 
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Figure 10.  A 12-lead ECG presenting sinus normal rhythm. Normal sinus rhythm usually accompanies a heart 
rate of 60 to 100 beats per minute, with less than 0.16 second variation in the shortest and longest durations 
between successive P waves, and normal PR interval, QRS complex and QT interval.
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Figure 11.  A 12-lead ECG showing atrial fibrillation rhythm that has no visible P waves that are replaced by 
coarse fibrillatory waves and an irregularly irregular QRS complex.
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the Gaussian kernel as a weight function in the smoothing step of our analysis. In this work, we included all 
data points in the patient 10-second ECG data, and set the patch window size to 10 and the smoothness control 
parameter λ to 1.5 times the estimated standard deviation of the noise σ. The median absolute deviation (MAD) 
method was used to estimate the variability of the noise.

MAD R median D median D1 4826 ( ) 1 4826 ( ( ) ) (5)σ = . ∗ = . ∗ −
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Figure 12.  A 12-lead ECG example in GSVT group. In this study, GSVT refers to a group of rhythm that 
contained supraventricular tachycardia, atrial tachycardia, atrioventricular node reentrant tachycardia, 
atrioventricular reentrant tachycardia and wandering atrial pacemaker. The detailed definition of rhythm 
groups for classification and the definition of rhythms labeled by certified physicians are presented in 
Supplementary section A.
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Figure 13.  A 12-lead ECG depicted sinus bradycardia rhythm. Sinus bradycardia can be defined as a sinus 
rhythm with a resting heart rate of 60 beats per minute or less.
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where median denotes the median operator, and D = D(1), …, D(l), …, D(L) is the set of the local residuals of the 
selected homogeneous region of length L in the noisy signal Dn with D(l) = (2Dn(l) − (Dn(l − 1) + Dn(l + 1)))
/ 6 . After passing through the above three denoising filters, the high frequency noise and baseline wandering are 
removed from the raw ECG data.

Features extraction.  In previous studies, neural network models have been successfully employed in 
arrhythmia classification6. These models used sequential transformations of the raw data as features that were 
ultimately fed into a multinomial logistic regression classifier (softmax unit). The architecture of neural networks 
allows an infinite number of such models, and properly training even one of them requires large data and long 
computation time. Another common strategy is to extract features such as peak magnitudes, duration, distances 
between peaks, and their variability in the four major components of beats, P-wave, Q-wave, T-wave, and QRS 
complex. However, these features do not provide sufficient information for high accuracy classification of several 
arrhythmia types, especially the ones characterized by distortion or complete omission of some components. For 
instance, the P-waves of AFIB and AFL are commonly replaced by multiple flutter and fibrillation waves that are 
lower than a normal P-wave in amplitude and do not correspond to the QRS rhythm. Further, using Wavelet or 
Fast Fourier Transformation to extract frequency features will neglect the time domain information.

The major challenges of feature extraction are the variability in wave morphology among and within individ-
uals and the distortion from various conditions. Moreover, individuals with different gender, age and race will 
have different ECGs in both amplitude and frequency. Thus, as a preliminary data manipulation step, we rescaled 
the ECG data using the maximum-minimum algorithm to unify the amplitude scale. We evaluated the rescaling 
influence for classification, and the performance of rescaling is discussed in the Results section.

In this project, we designed a novel and interpretable feature extraction method. As a part of our comparison 
of competing multi-stage classification schemes, we carried out an analysis of feature selection approaches that 
included a total of 11 distinct scenarios. The first and simplest set of features only included 11 basic characteristics 
of the signal while the last and most exhaustive set included 39,830 features. We added age and gender as features 
due to their importance in almost all medical data analyses. Other meaningful features such as the mean and var-
iance of the RR intervals as well as RR interval counts that are only computed in lead II ECG were also included. 
Table 8 shows other features, the Feature Group 1 includes ventricular rate in beats per minute (BPM), atrial rate 
in BPM, QRS duration in millisecond, QT interval in millisecond, R axis, T axis, QRS count, Q onset, Q offset, 
totally 11 variables. The Feature Group 2 in Table 8 includes mean and variance of RR intervals, RR interval count, 
mean and variance of height, width, and prominence of QRS complex, non-QRS peaks, and valleys in lead II 
ECG, totally 23 variables. As depicted in Fig. 14, peaks and valleys here represent the local maxima and minima. 
The prominence of a peak or a valley measures how much the peak or valley stands out due to its intrinsic height 
and its location relative to neighbor peaks or valleys. Thus, the prominence is defined as the vertical distance 
between the peak point and its lowest contour line. For instance, the prominence of peak P2 in Fig. 14 is the verti-
cal distance between point P2 and contour line CL02, rather than the distance between P2 and contour line CL01. 
The peaks and valleys were assigned to 3 subsets, QRS complex, non-QRS peaks, and Valleys. So that the relation-
ship among peaks and valleys were measured on 6 distinct pairwise combinations, which consist of QRS com-
plex Vs QRS complex, non-QRS peaks Vs non-QRS peaks, valleys Vs valleys, QRS complex Vs non-QRS peaks, 
QRS complex Vs valleys, and non-QRS peaks Vs valleys. Sequentially, for the 6 distinct pairwise combinations 
mentioned above, we computed the ratio of width difference over time difference, the ratio of height difference 
over time difference, and the ratio of prominence difference over time difference. However, such ratios cannot 
be directly used as feature inputs to the classification model, since each patient will have a different number of 
such ratios. Therefore, we formed an empirical frequency distribution table spanning 100 groups between the 
maximum value and minimum value of ratios. The same empirical frequency distribution table was constructed 
for the attributes of peaks and valleys (height, width, and prominence), and the location difference between peaks 
and valleys in 6 distinct pairwise combinations. For instance, in Figs. 15, 16, 17 the frequencies of each variable 
(height, width and prominence) that extracted from Lead II can be used as features feeding into a classification 
model and each variable has uniform 100 length. The full demonstration for feature extraction from 12 leads ECG 
can be found in Supplementary section B. Thus, the Feature Group 6 is designed for lead II ECG and consists of 
a total of 900 frequencies of height, width, prominence for QRS complex, non-QRS peaks, and valleys; a total of 
600 frequencies of location difference; and a total of 1800 frequencies of the ratio between width difference and 
time difference, the ratio between height difference and time difference, and the ratio between prominence differ-
ence and time difference. The remaining feature groups derive from the features in group 1, 2, and 6. From what 
has been discussed above, we proposed a feature extraction method that can fully reveal the empirical frequency 

Rhythm

Participants With 
Additional Cardiac 
Conditions, n(%)

Participants Without 
Additional Cardiac 
Conditions, n(%) P-value

SB 15,528 (38.57%) 8,914 (42.93 %) 0.001

SR 9,064 (22.52%) 6,812 (32.80 %) 0.001

AFIB 8,753 (21.74%) 3,003 (14.46 %) 0.001

GSVT 6,913 (17.17%) 2,037 (9.81 %) 0.001

Total 40,258 (100%) 20,766 (100 %)

Table 7.  Participants with and without additional cardiac conditions.
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distribution of P, Q, R, S, T and the segments among them, the key factors to identify rhythms, and the results 
discussed later testified such strategy is reliable and robust.

Grid search for hyperparameters.  We carried out the additional analysis that focused on the optimal 
selection of hyperparameters via a comprehensive grid search. We selected the optimal values of the hyperpa-
rameters based on the maximum average F1-Score over 10-fold validation datasets. The hyperparameters and 
the corresponding classification algorithms implemented in the scikit-learn package28 are presented in Table 9.

Ensemble classification methods.  After completing the identification of the optimal hyperparameters, 
ensemble machine learning methods based on multiple sampling can be used to improve classification results. We 
studied two families of ensemble methods: averaging, and boosting. The first method consists of building numer-
ous classifiers that are independently trained on different observed samples, and the individual results are aver-
aged. This approach has the computational advantage of carrying out the independent training steps in parallel. 
In contrast, the second method builds a set of classification models that will work sequentially. A boosting model 
i is trained to classify observations. The misclassified samples from model i are added to the training samples for 
model i + 1. This process continues until a quasi-optimal model with the lowest misclassification probability is 
obtained. In this work we compared Bagging Average29, Random Forest30, AdaBoost31, GBT, EGBT32, and ERT33.

Multi-classification problems can be decomposed into multiple binomial classification problems. In this 
study, we compared several strategies for the above decomposition such as, One Vs Rest, One Vs One, and 
Error-Correcting Output-Codes. After combining ensemble methods and the multi-classification strategies 
with meta classifiers including DT, KNN, NC, GNB, MNB, CNB, BNB, LC, QDA, MLR, MPN, RRC, LCSGD, 

Feature 
Group Feature Description

Number of 
Features

1 Ventricular Rate, Atrial Rate, QRS Duration, QT Interval, R axis, T axis, QRS count, Q Onset, Q Offset 11

2 Mean of RR intervals, Variance of RR intervals, RR interval count, mean and variance of height, width, prominence 
for QRS complex, non-QRS peaks, and valleys in lead II 23

3 Features in Group 1, mean of RR, variance of RR interval, RR interval count, mean and variance of height, width, 
prominence for QRS complex, non-QRS peaks, and valleys in lead II 32

4 Mean of RR interval, Variance of RR interval, RR interval count, mean and variance of height, width, prominence for 
QRS complex, non-QRS peaks, and valleys in all leads 221

5 Features in Group 1, Mean of RR interval, Variance of RR interval, RR interval count, mean and variance of height, 
width, prominence for QRS complex, non-QRS complex, and valleys in all leads 230

6

For lead II ECG, a total of 900 frequencies of height, width, prominence for QRS complex, non-QRS peaks, and 
valleys; a total of 600 frequencies of location difference for QRS complex Vs QRS complex, non-QRS peaks Vs non-
QRS peaks, valleys Vs valleys, QRS complex Vs non-QRS peaks, QRS complex Vs valleys, and non-QRS peaks Vs 
valleys; a total of 1800 frequencies including ratio between difference in heights and difference in locations, between 
difference in width and difference in locations, between difference in prominence and difference in locations, for 
QRS complex Vs QRS complex, non-QRS peaks Vs non-QRS peaks, valleys Vs valleys, QRS complex Vs non-QRS 
peaks, QRS complex Vs valleys, and non-QRS peaks Vs valleys.

3,302

7 Features in Group 2 and Group 6 3,323

8 Features in Group 1, Group 2, and group 6 3,332

9 Features in Group 6 in all leads 39,602

10 Features in Group 4 and Group 9 39,821

11 Features in Group 3 and Group 9 39,830

Table 8.  Feature groups table.
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Figure 14.  The definition of height, width, and prominence measurements in this study. The prominence of 
a peak or a valley measures how much the peak or valley stands out due to its intrinsic height and its location 
relative to neighbor peaks or valleys. Thus, the prominence is defined as the vertical distance between the peak 
point and its lowest contour line. For instance, the prominence of peak P2 is the vertical distance between point 
P2 and contour line CL02, rather than the distance between P2 and contour line CL01.
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PAC, SVC, RF, ERT, GBT and EGBT, 98 different combinations were compared in this study. Using 10-fold 
cross-validation, we found the best hyperparameters through an exhaustive grid search method. These optimal 
values attained the highest weighted average F1-Score for the validation datasets.

Gradient boosting tree classifier.  Gradient boosting tree classifier is an additive model that assembles a 
certain number of weak classifiers such as decision trees. The boosting procedure optimizes a cost function to find 
the best group of decision trees. Explicit regression gradient boosting algorithms34,35 were developed by Jerome 
H. Friedman. Unlike popular stochastic gradient decent optimization, gradient boosting tree classifier needs to 
learn both best-fit functions and hyperparameters. The boosting tree model is a sum of M decision trees, which 
can be formulated as following: 

f x T x( ) ( ; )
(6)

M
m

M

m
1

∑ θ=
=

 where 

( )T x I x R( ; )
(7)j

J
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1
. Decision tree partitions the space of all joint predictor values into disjoint regions 

Rj, j = 1, 2, . . . , J. A constant γj is assigned to each such region according to the rule x ∈ Rj → f(x) = γj. Therefore, 
after training data is given, the learning object is to minimize the cost or loss function to find θm. Since directly 
minimizing the loss function L(yi − fM(x)) is difficult, it can be approximated in a forward stagewise boosting 
fashion by minimizing loss function iteratively in (6) at a time.
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Figure 15.  Empirical frequency distribution of QRS complex height, width, and prominence in lead II. The 
Y-axis presents the frequencies of height, width and prominence, and X-axis presents the scale that measures 
height, width and prominence of QRS complex. The unit step of X-axis is (the maximum of height, width or 
prominence - the minimum of height, width or prominence)/100. The frequencies shown in the rows named 
SR, AFIB, GSVT, and SB were computed from ECGs presented in Figs. 10, 11, 12, 13 respectively. The full 
demonstration for feature extraction from 12 leads ECG can be found in Supplementary section B.
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Figure 16.  Empirical frequency distribution of non-QRS peaks height, width, and prominence in lead II. The 
Y-axis presents the frequencies of height, width and prominence, and X-axis presents the scale that measures 
height, width and prominence of non-QRS peaks. The unit step of X-axis is (the maximum of height, width or 
prominence - the minimum of height, width or prominence)/100.The frequencies shown in the rows named 
SR, AFIB, GSVT, and SB were computed from ECGs presented in Figs. 10,11,12,13 respectively. The full 
demonstration for feature extraction from 12 leads ECG can be found in Supplementary section B.
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Figure 17.  Empirical frequency distribution of valleys height, width, and prominence in lead II. The Y-axis 
presents the frequencies of height, width and prominence, and X-axis presents the scale that measures height, 
width and prominence of valleys. The unit step of X-axis is (the maximum of height, width or prominence - the 
minimum of height, width or prominence)/100.The frequencies shown in the rows named SR, AFIB, GSVT, 
and SB were computed from ECGs presented in Fig. 10,11,12,13 respectively. The full demonstration for feature 
extraction from 12 leads ECG can be found in Supplementary section B.
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Thus, the key question turns to finding proper regions Rjm and the one approximated solution is to fit the mth 
iteration tree function T(x; θm) as close as possible to the negative gradient gim = I(yi = Ck) − Pk(x) where Pk(x) is 
the probability of the outcome variable that belongs to the K th class Ck.

P x e
f x

( )
( ) (10)

k

f x

l
K

l

( )

1

k

∑
=

=

 Finally, a pseudo gradient boosting algorithm is given as following36:

	 1.	 Start with a constant model fk0, k = 1, 2, …, K;
	 2.	 For m = 1 to M:
	 2.1	 For k = 1, 2, …, K:

		  2.1.1	 compute rikm = yik − pk(xi), i = 1, 2, …, N;
		  2.1.2	 Fit a regression tree to the targets rikm, i = 1, 2, …, N, giving terminal regions Rjkm, j = 1, 2, …, Jm;

Model Name Hyperparameter Name Hyperparameter Options

DT

criterion ‘gini’, ‘entropy’

splitter ‘best’, ‘random’

max_features ‘auto’, ‘sqrt’, ‘log2’, None

KNN

n_neighbors 15 31

weights ‘uniform’, ‘distance’

algorithm ‘ball_tree’, ‘kd_tree’

NC shrink_threshold 0.01, 0.1, 0.2, 0.3

GNB var_smoothing 10−7~−12

MNB alpha 0, 0.1, 0.5, 0.8,1

CNB alpha 0, 0.1, 0.5, 0.8,1

BNB alpha 0, 0.1, 0.5, 0.8,1

MLR solver ‘newton-cg’, ‘lbfgs’, ‘saga’, ‘sag’

RRC
alpha 1e-3, 1e-2, 1e-1, 1

solver ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’

LCSGD

loss ‘hinge’, ‘log’, ‘modified_huber’, ‘squared_hinge’, ‘perceptron’

alpha 1e-3, 1e-2, 1e-1, 1

learning_rate ‘constant’, ‘optimal’, ‘invscaling’, ‘adaptive’

eta0 0.01, 0.001, 0.0001

PAC
C 0.001, 0.01, 0.1,1

loss ‘hinge’, ‘squared_hinge’

SVC
loss ‘hinge’, ‘squared_hinge’

C 0.001, 0.01, 0.1, 1

RF

n_estimators 300, 500, 800

criterion ‘gini’, ‘entropy’

bootstrap True, False

max_features ‘auto’, ‘sqrt’, ‘log2’, None

ERT

n_estimators 300, 500, 800

criterion ‘gini’, ‘entropy’

bootstrap True, False

max_features ‘auto’, ‘sqrt’, ‘log2’, None

GBT

loss deviance, exponential

learning_rate 0.1, 0.01, 0.001, 0.1

subsample 0.1, 0.5, 0.9

n_estimators 300, 500, 800

max_features ‘auto’, ‘sqrt’, ‘log2’, None

EGBT

tree_method ‘auto’, ‘exact’, ‘approx’, ‘hist’

grow_policy ‘depthwise’, ‘lossguide’

n_estimators 300, 500, 800

learning_rate 0.001, 0.01

max_depth 10, 15, 20, 50, 100

Table 9.  Hyperparameters table.
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		  2.1.3	 For j = 1, 2, …, Jm compute γ = ∗−
∑

∑ −

∈

∈

jkm
K

K

r

r r

1

(1 )

xi Rjkm
ikm

xi Rjkm
ikm ikm

;

		  2.1.4	 Update ( )f x f x I x R( ) ( )km k m j

J

jkm jkm, 1 1

m
γ= + ∑ ∈−

=
;

	 3.	 Output = = … .f x f x k K( ) ( ), 1, 2, ,k kM ;

The GBT and EGBT models used in this work were both tree boosting models but with different numerical 
implementations. EGBT enhances the boosting optimization by the Newton-Raphson method and provides more 
hyperparameters for the penalization of trees and the shrinking of the leaf nodes.

Codes availability
The source code of converter tool that converts ECG data file from XML format to CSV format can be found 
https://github.com/zheng120/ECGConverter, which contains both binary executable files, source code, and 
the user manual. The MATALB program for ECG denoising was put under https://github.com/zheng120/
ECGDenoisingTool.

Data availability
Data records presented in this work consist of four parts: raw ECG data, denoised ECG data, diagnostic file, 
and attributes dictionary file. These files are available online from figshare (Data Citation 1: Figshare https://doi.
org/10.6084/m9.figshare.c.4560497.v1).
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