
Chapman University Chapman University 

Chapman University Digital Commons Chapman University Digital Commons 

ESI Working Papers Economic Science Institute 

2-10-2020 

A Capital Asset Pricing Model with Market Sentiment A Capital Asset Pricing Model with Market Sentiment 

Mark Schneider 

Manuel A. Nunez 

Follow this and additional works at: https://digitalcommons.chapman.edu/esi_working_papers 

 Part of the Econometrics Commons, Economic Theory Commons, and the Other Economics 

Commons 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chapman University Digital Commons

https://core.ac.uk/display/289149522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/esi_working_papers
https://digitalcommons.chapman.edu/esi
https://digitalcommons.chapman.edu/esi_working_papers?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/342?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/344?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/353?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/353?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages


A Capital Asset Pricing Model with Market Sentiment A Capital Asset Pricing Model with Market Sentiment 

Comments Comments 
ESI Working Paper 20-06 



A Capital Asset Pricing Model with Market Sentiment

Mark A. Schneider∗ and Manuel A. Nunez†

February 10, 2020

Abstract

We derive a capital asset pricing model with market sentiment from a representative
agent that exhibits two basic behavioral biases – ambiguity aversion and positive skewness
preference. The asset pricing formula generalizes the classical CAPM by accounting for
model uncertainty, positive skewness, disaster risk, and market sentiment, thereby linking
four strands of the literature. We apply the Market Sentiment CAPM to provide a unified
explanation for the beta anomaly and three other market anomalies, and to predict how they
are affected by sentiment. The Market Sentiment CAPM provides a theoretical foundation
for the pricing of sentiment in the cross-section of returns.
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1 Introduction

The capital asset pricing model (CAPM) pioneered by Sharpe (1964) and Lintner (1965) was a
major advance in financial theory. It has penetrated the finance industry where it is commonly
used in capital budgeting decisions and to evaluate the performance of mutual fund managers.
It has also reached the popular press where its relationship between an asset’s expected return
and systematic risk, beta, has become one of the best-known equations in economics.

Despite its widespread influence, research has uncovered asset pricing anomalies in which
some assets earn systematically higher returns than other assets in a manner unexplained by
beta. Early work by Black et al. (1972) documented the beta anomaly in which stocks with
high (low) betas earn low (high) abnormal returns. The beta anomaly is now recognized to be
“one of the most persistent anomalies in empirical asset pricing research.” (Bali et al., 2017, p.
2369). More recent anomalies have been documented by Baker and Wurgler (2006), Bali et al.
(2011), and Bégin et al. (2020), who find that market sentiment and idiosyncratic risk affect the
cross-section of stock returns.

The CAPM can be derived from a representative investor who maximizes a linear tradeoff
between the mean and standard deviation of portfolio returns. The model was traditionally
derived under conditions of risk (under the assumption that the true distribution of portfolio
returns is known). In practice, means and standard deviations are not known exactly and hence
investors are exposed to model uncertainty – the risk of optimizing a portfolio with respect to
the “wrong” probability distribution. Investors may therefore care about portfolio decisions that
are robust to mis-specified probability models.

In this paper, we extend the CAPM to incorporate a role for model uncertainty. In particular,
we consider an investor who cares about (i) expected returns with respect to some prior, (ii)
risk or dispersion of returns with respect to that prior, and (iii) robustness of returns to a
mis-specified prior. The resulting market sentiment capital asset pricing model incorporates a
role for model uncertainty, positive skewness, disaster risk, and market sentiment. A literature
pioneered by Hansen and Sargent (2001) considers investors who are concerned about holding
mis-specified probability models of asset returns and who have preferences from robust control
theory. Kraus and Litzenberger (1976), Harvey and Siddique (2000), Brunnermeier et al. (2007),
and Barberis and Huang (2008), study investors who prefer positively skewed returns. Rietz
(1988), Barro (2006), and Gabaix (2012) consider the impact of rare economic disasters on asset
prices. De Long et al. (1990), Barberis et al. (1998), Hong and Stein (1999), and Barberis
et al. (2015) model the effects of investor sentiment on asset prices. However, each of these
papers on sentiment studies an economy with one safe asset and one risky asset. The market
sentiment CAPM provides a simple approach to relate these literatures, and differs from the
classical models of sentiment by focusing on the cross-section.

We make the following contributions:

1. The Market Sentiment CAPM: We derive the market sentiment CAPM from a rep-
resentative investor who exhibits two basic behavioral biases: skewness preference and
ambiguity aversion.

2. A more comprehensive account of systematic risk: The market sentiment CAPM
incorporates a role for positive systematic skewness, systematic disaster risk, market un-
certainty, and market sentiment as dimensions of systematic risk in addition to systematic
volatility (beta).
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3. A unified explanation for four market anomalies: We apply the market sentiment
CAPM to provide a unified theoretical explanation for the beta anomaly (Black et al.,
1972), the idiosyncratic volatility puzzle (Ang et al., 2006), the max premium (Bali et al.,
2011), and the crash premium (Chabi-Yo et al., 2018).

4. Predicting properties of the beta anomaly: The market sentiment CAPM predicts
the dependence of the beta anomaly on market uncertainty, its dependence on market
sentiment, and its concentration among high beta stocks with high maximum returns,
each of which has empirical support.

5. Predicting the effects of market sentiment on the cross-section: The market
sentiment CAPM predicts how each anomaly we study is affected by market sentiment,
consistent with the empirical evidence.

6. Providing support for an approach to implement the Market Sentiment CAPM
empirically: We note how the market sentiment CAPM provides a theoretical foundation
for the Level, Slope, and Curve factor model (Clarke, 2016), and we provide new evidence
supporting this interpretation.

Our approach is related to two current papers. Ding et al. (2019) generalize the model of De Long
et al. (1990) to include two risky assets, one of which is assumed to be more prone to sentiment.
Our approach differs in that we generalize the CAPM, we consider a role for model uncertainty,
positive skewness, and disaster risk in addition to market sentiment, and we apply our model to
explain four prominent asset pricing anomalies.

In independent and concurrent work, Barberis et al. (2019) apply prospect theory to study
anomalies in the cross-section of returns. Our work differs in several respects: Barberis et al.
(2019) use the original version of cumulative prospect theory from Tversky and Kahneman
(1992). Due to the complex rank-dependent probability weighting function in that model, that
approach precludes the possibility of a closed form characterization of equilibrium returns, and
instead the paper relies on simulations. Barberis et al. (2019) consider a larger number of
anomalies than we do here. However, they do not consider the beta anomaly or the effects of
market sentiment on market anomalies. In contrast, we obtain a closed form representation
of asset risk premia resulting in a linear factor model for the cross-section and we investigate
the comparative statics of our model with respect to changes in market sentiment and market
uncertainty.

2 Skewness Preference and Ambiguity Aversion

Two robust behavioral biases for choice under risk and uncertainty are ambiguity aversion (Ells-
berg, 1961) and skewness preference (Tversky and Kahneman, 1992). One form of ambiguity
aversion is a preference for making decisions that are robust to mis-specified probability mod-
els (Wald, 1950; Hurwicz, 1951).

Ambiguity aversion and skewness preference are not only laboratory phenomena – they pro-
vide explanations for failures of economic theory in markets: ambiguity aversion provides an
explanation for buying-selling price gaps in markets (Dow and da Costa Werlang, 1992) and for
the equity premium puzzle (e.g., Ju and Miao, 2012). Skewness preference can explain much
of the risk-seeking behavior observed in markets such as the simultaneous purchasing of lottery
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tickets and insurance (Friedman and Savage, 1948), the overpricing of long-shots in betting mar-
kets (Weitzman, 1965), and the over-valuation of positively skewed financial assets (Barberis and
Huang, 2008).

Given the strong behavioral support for ambiguity aversion and skewness preference and their
relevance in applications, it seems desirable for a model of choice under risk and uncertainty to
predict both behaviors. We observe that both behaviors are naturally accommodated by a model
of robust decision making. Robust decision models typically focus on worst-case scenarios. A
less conservative approach pioneered by Hurwicz (1951) maximizes the convex combination of
the worst-case and best-case scenarios. The Hurwicz α-criterion provides a simple approach to
incorporating a preference for robustness toward model uncertainty (by overweighting the worst
outcome), and a preference for positively skewed returns (by overweighting the best outcome).

Formally, let there be a non-empty finite set of states S, a non-empty convex set of possible
outcomes X in R, and a set of ambiguous acts F , where an act f ∈ F is a mapping f : S → X.
Denote by f(s) the outcome that occurs if act f is chosen and state s occurs. Let ∆(S) denote
the set of all possible probability distributions on S with generic element π.

We consider a representative investor who cares primarily about three features of asset re-
turns: (i) the expected return on an asset with respect to the investor’s prior π; (ii) risk or
dispersion of returns with respect to π; and (iii) robustness of returns to different specifica-
tions of π. The investor is contemplating investment in n risky assets. Denote by Rj ∈ F ,
for j = 1, . . . , n, the act obtained by investing in the j-th asset, where, rjs := Rj(s) ∈ X is
the return of asset j in state s. Further, if the investor has subjective probability distribution
π ∈ ∆(S) across states, denote by rj := Eπ(Rj) =

∑

s∈S πsrjs the expected return on asset j
across states. Let rj := maxs∈S rjs and rj := mins∈S rjs. There is an additional safe asset with
return r0 > 0 in every state, corresponding to the constant act R0 that maps every state to r0.
Given wj ∈ R, j = 0, . . . , n, such that

∑n
j=0 wj = 1, we call the mixture act R :=

∑n
j=0 wjRj a

portfolio with holdings vector w.
The investor evaluates portfolios according to risk-return-robustness preferences given by

V (R) = µ(R)− ρσ(R) + γψ(R). (1)

where µ(R) =
∑

s∈S πsR(s) = w0r0 +
∑n
j=1 wjrj is the expected return of the portfolio,

σ(R) =
(

∑

s∈S πs (R(s)− µ(R))
2
)1/2

=

(

∑

s∈S πs

(

∑n
j=1 wj(rjs − rj)

)2
)1/2

is the standard

deviation of the portfolio, and ψ(R) = αmaxs∈S(R(s)−w0r0) + (1−α)mins∈S(R(s)−w0r0) =

αmaxs∈S
{

∑n
j=1 wjrjs

}

+ (1 − α)mins∈S
{

∑n
j=1 wjrjs

}

is the robust (Hurwicz) value of the

risky assets in the portfolio. The parameter ρ ≥ 0 represents the agent’s degree of risk aversion,
α ∈ [0, 1] represents the agent’s degree of optimism (the degree to which the agent overweights
the best-case scenario), and γ ≥ 0 represents the agent’s perceived ambiguity (the degree of
uncertainty in the agent’s beliefs). Consequently, the agent places relatively greater weight on
robustness (represented by the Hurwicz criterion) as the agent becomes more uncertain about
her subjective prior distribution π, since µ and σ depend on π, but the Hurwicz criterion does
not.

The preference function (1) spans three prominent decision models: risk-neutral subjective
expected utility (ρ = 0, γ = 0), mean-variance analysis (ρ > 0, γ = 0), and a special case of
prospect theory (Tversky and Kahneman, 1992) with a textbook prospect theory probability
weighting function (Wakker, 2014) that overweights the tails of the distribution (ρ = 0, γ > 0).
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Further, it yields a separation of the investor’s beliefs (represented by π), the investor’s perceived
ambiguity (represented by γ), and the investor’s ambiguity attitudes (represented by α). When
γ = 0, the agent perceives no ambiguity (the probabilities are known precisely) and (1) reduces
to the classical mean-variance model (Markowitz, 1952). Our approach extends the CAPM to
the more general domain of uncertainty where the probability model is not precisely known, in
which case a concern for robustness becomes important.

3 The Market Sentiment CAPM

To set up the investor’s portfolio problem, let r denote the vector [r1, . . . , rn]
T , rs denote the

vector [r1s, . . . , rns]
T , w denote the vector [w1, . . . , wn]

T , and C denote the matrix
∑

s∈S πs(r
s−

r)(rs − r)T . Matrix C is the covariance matrix of the risky assets and is assumed to be positive
definite. Function V can be re-written as V (R) = r0w0 + rTw− ρ(wTCw)1/2 + γαmaxs w

T rs+
γ(1−α)mins w

T rs. The investor wishes to maximize V subject to w0+e
Tw = 1, where e denotes

the n-dimensional all-ones vector. This is equivalent to maximizing the unrestricted function

g(w) := r0 + (r − r0e)Tw − ρ(wTCw)1/2 + γαmax
s
wT rs + γ(1− α)min

s
wT rs. (2)

If g has an optimal solution w∗, then rm := w∗0r0 +
∑n
j=1 w

∗
j rj is the optimal expected value of

the portfolio.

Proposition 1 If function g from (2) has an optimal nonzero solution w∗ and is differ-
entiable at w∗, then

rj − r0 = βj(rm − r0) + γα(βjr − rj) + γ(1− α)(βjr − rj) (3)

for all j = 1, . . . , n, where

βj =
Cov(Rj , R∗)

σ2(R∗)
, (4)

R∗ is the optimal portfolio corresponding to holdings (w∗0 , w
∗), w∗0 = 1− eTw∗, and s, s ∈ S

are such that r := w∗T rs ≥ w∗T rs, and r := w∗T rs ≤ w∗T rs, for all s ∈ S.

In addition to the CAPM risk premium, (3) includes a positive skewness premium which
yields lower equilibrium expected returns for assets with high potential in the best market state,
and an ambiguity premium which yields higher equilibrium expected returns for assets that are
less robust in the worst market state. We refer to expression (3) as the Market Sentiment
CAPM identity. Note that (3) can be written equivalently as a linear factor model:

rj − r0 = βj(rm − r0) + βj(−αγ) + β
j
(1− α)γ (5)

where βj = rj − βjr and β
j
= βjr − rj . Our specification of βj reflects the intuition that

stocks with higher maximum returns (high rj) have higher exposure to bullish sentiment. The
bullish sentiment factor is then given by −αγ, which captures the intuition that investors pay a
premium for assets that are exposed to investor optimism. Under the specification of β

j
, stocks

with lower minimum returns (low rj) have higher exposure to bearish sentiment, where the
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bearish sentiment factor is γ(1− α) > 0. Note that one could use an alternative two-parameter
specification which does not require a dependence between bull and bear market factors. In
particular, γα and γ(1−α) in the robust term in (1) can be replaced by non-negative weights α
and α, respectively. Identity (5) highlights a central implication of our approach – that investor
sentiment is priced in equilibrium.

In practice, many retail investors face short-sale constraints and even institutional investors
often have limited negative holdings. Under the assumption of no-short selling (wj ≥ 0 for all
j), and the following construction of the market state space, function g from (2) does have an
optimal solution that is differentiable at w∗. To construct the state space, let each asset j have
possible returns given by a set Sj (e.g., returns the representative agent believes are possible).
We define the market state space by the Cartesian product S =

∏n
j=1 Sj . Then the state space

consists of all possible configurations of asset payoffs. It thus includes scenario (s1, . . . , sn),
where sj = maxs∈S rjs for all j = 1, . . . , n, and scenario (s1, . . . , sn), where sj = mins∈S rjs
for all j = 1, . . . , n. Since we are assuming that w∗ ≥ 0, notice that (s1, . . . , sn) = s and
(s1, . . . , sn) = s, where s and s are as defined in Proposition 1, that is, they are the best and
worst market scenarios, respectively. Under this state space, each asset attains its best (worst)
returns in multiple states including states where other assets do not perform well (poorly). In
this respect, the market sentiment CAPM predicts that idiosyncratic maximum and minimum
returns rj and rj (tail risk) for an asset are priced in equilibrium but other forms of idiosyncratic
risk are not priced. Consistent with this prediction, Bégin et al. (2020) find that “the normal
component of idiosyncratic risk, which is easily diversifiable, is not priced after accounting for
other sources of risk. Firm-specific jump risk, however, is priced” (p. 199). They conclude that
“Tail risk thus plays a central role in the pricing of idiosyncratic risk” (p.155).

To highlight the pricing of idiosyncratic risk, note that (3) can be rewritten as

rj − r0 = βj(rm − r0 + γ(αr + (1− α)r))− rjγα− γ(1− α)rj . (6)

In addition to systematic volatility βj , the market sentiment CAPM accounts for market sen-
timent α, market uncertainty γ, positive systematic skewness r, and systematic disaster risk r.
From (6), we see that the market sentiment CAPM also prices extreme idiosyncratic positive re-
turns rj , idiosyncratic disaster risk rj , and consequently, idiosyncratic volatility (which depends
on both rj and rj).

4 Market Anomalies and Market Sentiment

We apply the market sentiment CAPM to provide a unified theoretical explanation for four asset
pricing anomalies and their observed dependence on market sentiment.

4.1 The Crash Premium and Market Sentiment

Rietz (1988), Barro (2006), and Gabaix (2012) posit a role for disaster risk as a major determinant
of asset prices. A similar implication emerges under the market sentiment CAPM since the
representative investor overweights the worst market state. A prediction of these approaches is
that assets that perform poorly in the worst states will command a large risk premium. Chabi-Yo
et al. (2018) investigated this prediction empirically and identify a crash premium: stocks with
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strong lower-tail dependence with the market return (LT ) have higher average future returns
than stocks with weak lower tail dependence (HT ).

Corollary 1 (Crash premium): Consider two stocks HT and LT such that βHT = βLT ,
rHT = rLT , and rHT > rLT . Then, for all α < 1 and γ > 0, we have

(i) (Crash premium) rLT − rHT = γ(1− α)(rHT − rLT ) > 0.

(ii) (Crash premium and sentiment) rLT − rHT is decreasing in α.

Prediction (ii) implies a negative relationship between sentiment and crash-sensitive stocks.
This prediction is distinct from the rare disaster framework since it does not relate the risk of
rare-disasters to market sentiment. Consistent with prediction (ii), Chabi-Yo et al. (2018, Table
5) find that an increase in sentiment is associated with a lower crash premium.

4.2 The Max Premium and Market Sentiment

Bali et al. (2011) identified a “max effect” in which stocks with high maximum returns (HR)
earn lower average returns than stocks with low maximum returns (LR). This effect is predicted
by the market sentiment CAPM since, under the Cartesian product structure of the state space,
an asset’s own maximum return is priced.

Corollary 2 (MAX effect): Consider two stocks HR and LR such that βHR = βLR,
rHR > rLR, and rHR = rLR. Then, for all α > 0 and γ > 0, we have

(i) (MAX effect) rLR − rHR = γα(rHR − rLR) > 0.

(ii) (MAX effect and sentiment) rLR − rHR is increasing in α.

Corollary 2 (ii) is supported empirically by Fong and Toh (2014), who find that high maximum
return stocks perform poorly relative to low maximum return stocks following periods of high
sentiment. In addition, rLR − rHR is increasing in market uncertainty γ. Consistent with this
prediction, Cheon and Lee (2018) find the premium of low maximum return stocks over high
maximum return stocks to be greater following periods of higher market uncertainty.

4.3 Idiosyncratic Volatility and Market Sentiment

Stocks with high idiosyncratic volatility earn low average returns (Ang et al., 2006). This
idiosyncratic volatility puzzle is difficult to explain by traditional models in which idiosyncratic
risk is not priced. But even if investors are under-diversified and are exposed to idiosyncratic
risk, one might expect that stocks with high idiosyncratic volatility earn higher average returns.
Under the market sentiment CAPM, stocks with high idiosyncratic volatility are predicted to
earn low average returns if they also have high maximum returns. In contrast, stocks with high
idiosyncratic volatility and low maximum returns are predicted to earn high average returns.
These predictions are supported by Bali et al. (2011), who observed that the low returns on
stocks with high idiosyncratic volatility (HV ) are due to HV stocks with high maximum returns.
For stocks with similar maximum daily returns, Bali et al. found that average returns are
higher for stocks with higher idiosyncratic volatility. Baker and Wurgler (2006) found that HV
stocks perform poorly relative to stocks with low idiosyncratic volatility periods following of high
sentiment. These findings are predicted by the market sentiment CAPM:
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Corollary 3 (Idiosyncratic volatility): Consider two stocks HV and LV such that βHV =
βLV and σHV > σLV . Then, for all 0 < α < 1 and γ > 0, we have

(i) (IVOL and high MAX stocks) rHV − rLV < 0 if rHV > rLV + 1−α
α (rLV − rHV ).

(ii) (IVOL and low MAX stocks) rHV − rLV > 0 if rHV < rLV + 1−α
α (rLV − rHV ).

(iii) (IVOL and sentiment) rHV − rLV is decreasing in α if rHV < rLV and rLV < rHV .

Corollary 3 implies that HV stocks with sufficiently high maximum returns earn low expected
returns, while HV stocks with sufficiently low maximum returns earn high expected returns,
consistent with Bali et al. (2011). The implication in Corollary 3 that high idiosyncratic volatility
stocks have higher maximum and lower minimum returns than low idiosyncratic volatility stocks
also has empirical support: Bali et al. (2011, Table 8) find that the average cross-sectional
correlation between stocks with high idiosyncratic volatility and stocks with high maximum
returns and the correlation between high idiosyncratic volatility and stocks with low minimum
returns are each approximately 0.75.

4.4 The Beta Anomaly and Market Sentiment

Bali et al. (2017) remark “The positive (negative) abnormal returns of portfolios composed of low-
beta (high-beta) stocks, which we refer to as the beta anomaly, is one of the most persistent and
widely studied anomalies in empirical research of security returns” (p. 2370). The beta anomaly
was first documented by Black et al. (1972) and challenges the central empirical prediction of
the CAPM that investors demand higher expected returns for assets with higher systematic risk.
The market sentiment CAPM predicts the comparative statics of the beta anomaly as presented
in the following result.

Corollary 4 (Beta anomaly): For two stocks HB and LB such that βHB > βLB, we have
rHB < rLB (the beta anomaly) if and only if

γαrHB > (βHB − βLB) (rm − r0 + γ(αr + (1− α)r)) + γαrLB + γ(1− α) (rLB − rHB) . (7)

In Corollary 4, the beta anomaly occurs if a high beta stock earns lower expected returns
than a low beta stock. This definition is consistent with the empirical finding by Frazzini and
Pedersen (2014) that “a betting against beta (BAB) factor, which is long leveraged low-beta
assets and short high-beta assets, produces significant positive risk-adjusted returns” (p. 1).
Under inequality (7), the beta anomaly occurs if and only if γαrHB is sufficiently high. Hence,
(7) implies: (i) the beta anomaly holds in times of high market uncertainty (high γ); (ii) the beta
anomaly holds in times of high market sentiment (high α); (iii) The beta anomaly concentrates
in high beta stocks with high maximum returns (high rHB). Each of these predictions has
empirical support: Hong and Sraer (2016) find that the beta anomaly is greater in times of high
market uncertainty. Antoniou et al. (2016) find that the beta anomaly is greater in times of high
market sentiment (optimistic periods) than in times of low sentiment (pessimistic periods). Bali
et al. (2017) find that the beta anomaly is due to high-beta stocks with high maximum returns.

Most studies of the beta anomaly have been empirical, identifying variables that mitigate
the anomaly. A prominent model of the beta anomaly is Frazzini and Pedersen’s (2014) model
with leverage constraints. However, that model does not explain the empirical findings that the
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beta anomaly depends on market sentiment (Antoniou et al., 2016) and that it is concentrated
in high beta stocks with high maximum returns (Bali et al., 2017). Both of these predictions are
novel implications of the market sentiment CAPM.

5 Market Sentiment CAPM Empirical Implementation

In bringing the model to data, a common practice is to use factor-mimicking portfolios that
“represent” the risk factors in place of using the factors themselves. We propose that a plausi-
ble factor-mimicking bull sentiment portfolio is an optimistic-minus-pessimistic (OMP) portfolio
that is long stocks with optimistic sentiment and short stocks with pessimistic sentiment. We pro-
pose that a plausible factor-mimicking bear sentiment portfolio is a weak-minus-strong (WMS)
portfolio that is short stocks with strong sensitivity to sentiment-driven overpricing and long
stocks with weak sensitivity to overpricing. An alternative specification for a bear sentiment
portfolio is a safe-minus-risky (SMR) portfolio that is short safe (low volatility) stocks and long
risky (high volatility) stocks.

We argue that a recently proposed factor model (Clarke, 2016) provides a natural specification
of bull and bear sentiment portfolios. Clarke uses principal components analysis to extract the
risk factors associated with expected returns. From the first three principal components he
extracts a level factor, a slope factor and a curve factor which form a new three-factor model for
the cross-section. The level factor is essentially a market factor as it has a 0.95 correlation with
CRSP value-weighted market index. The slope factor is a portfolio that is long low expected
return stocks and short high expected return stocks. The curve factor is short stocks with
extreme positive or negative returns and long stocks with moderate returns.

5.1 The Slope Factor as a Bull Sentiment Factor

An OMP portfolio captures the intuition that bullish sentiment increases as stocks with opti-
mistic sentiment have higher returns. It should: (i) earn negative expected returns (since in (3),
αγ > 0); (ii) be negatively related to the mispricing factors of Stambaugh and Yuan (2017),
which are long underpriced (pessimistic) stocks and short overpriced (optimistic) stocks; (iii)
be negatively related to the betting-against-beta (BAB) factor of Frazzini and Pedersen (2014),
which is long low beta stocks and short high beta stocks (since high beta stocks are more sensi-
tive to optimistic sentiment than low beta stocks). To evaluate the interpretation of the slope
factor, we correlated its historical returns across the full sample of available data for the level,
slope, and curve factors (July, 1964 through December, 2015) with the two mispricing factors
from Stambaugh and Yuan (2017), and with the BAB factor. Consistent with these predictions:
(i) the slope factor earns negative average returns; (ii) The two mispricing factors (MGMT and
PERF) have, respectively, a -0.18 correlation and a -0.51 correlation with the slope factor; (iii)
The BAB factor has a -0.25 correlation with the slope factor (in each case, p < 0.001). These
observations indicate that the slope factor could be plausibly interpreted as an OMP portfolio
that mimics the bull sentiment factor.
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5.2 The Curve Factor as a Bear Sentiment Factor

A WMS portfolio captures the intuition that bearish sentiment increases as stocks with strong
sensitivity to overpricing have lower returns. It should: (i) earn positive expected returns; (ii)
be positively related to the Stambaugh and Yuan (2017) mispricing factors; (iii) be positively
related to the BAB factor (since the MGMT, PERF, and BAB factors are each long (short)
stocks with weak (strong) sensitivity to overpricing). Consistent with these predictions: (i) the
curve factor earns positive average returns; (ii) The MGMT and the PERF mispricing factors
have, respectively, a 0.31 correlation and a 0.14 correlation with the curve factor; The BAB
factor has a 0.22 correlation with the curve factor (in each case, p < 0.001). These observations
indicate that the curve factor could be plausibly interpreted as a WMS portfolio that mimics
the bear sentiment factor.

An SMR portfolio also predicts a positive correlation between the curve factor and the BAB
factor since the BAB factor is long safe (low-beta) stocks and short risky (high-beta) stocks.
These observations indicate that the curve factor could be plausibly interpreted as a WMS
or a SMR portfolio that mimics the bear sentiment factor. Alternatively, one might employ
either mispricing factor from Stambaugh and Yuan (2017) as a factor-mimicking bear sentiment
portfolio as these factors are long pessimistic stocks and short optimistic stocks.

6 Conclusion

We derived a generalization of the capital asset pricing model that accounts for model uncertainty,
positive skewness, disaster risk, and market sentiment, thereby linking four primary strands of
the asset pricing literature. The resulting market sentiment CAPM can be expressed as a three-
factor asset pricing model for the cross-section of returns.

We applied the market sentiment CAPM to provide a unified explanation of four market
anomalies. Notably, the market sentiment CAPM provides a novel explanation for the beta
anomaly and predicts its observed dependence on market uncertainty, on market sentiment,
and on stocks with extreme positive returns. We also discussed how one might construct factor-
mimicking portfolios for the bull and bear sentiment factors. Our approach provides a theoretical
foundation for the pricing of sentiment in the cross-section of stock returns.

Appendix

Proof of Proposition 1: Since g is differentiable at w∗ and attains its maximum at that point,
it satisfies the necessary condition ∇g(w∗) = 0. Hence, w∗ satisfies the following equation

r + γ
(

αrs + (1− α)rs
)

= r0e+ ρ
Cw∗

(

w∗TCw∗
)1/2

. (8)

Multiplying by w∗ and then adding r0w
∗
0 to both sides of (8), we obtain

rm + γ (αr + (1− α)r)− r0 = ρ
(

w∗TCw∗
)1/2

. (9)
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We multiply both sides of (8) by ej , the j-th canonical vector in Rn, to obtain

rj + γ (αrjs + (1− α)rjs)− r0 = ρ
w∗Cej

(

w∗TCw∗
)1/2

. (10)

Combining (9) and (10), we obtain

rj + γ (αrjs + (1− α)rjs)− r0
rm + γ (αr + (1− α)r)− r0

=
ρ

w∗Cej

(w∗TCw∗)1/2

ρ
(

w∗TCw∗
)1/2

=
w∗Cej

w∗TCw∗
= βj ,

from which

rj + γ (αrjs + (1− α)rjs)− r0 = βj (rm + γ (αr + (1− α)r)− r0) ,

and (3) follows.
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