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CHAPTER I 

INTRODUCTION 

The problem of identifying a black box - that is, determining its 

input-output relationships by experimental means - occurs under 

different guises in various branches of science. Some writers refer 

l 

to it as the characterization problem. Others term it the measurement 

or the evaluation problem. Some - borrowing a term from physics - call 

it gedanken or thought experiments. In this work, the term "identifica­

tion" is used since it seems to state the crux of the problem with 

greater clarity than the more standard terms cited above. 

System characterization and system identification are basic prob­

lems in system theory. System characterization is primarily concerned 

with the setting up of mathematical models to represent input-output 

relationships; whereas system identification deals with the choice of 

a specific model from a class of models which is mathematically 

equivalent to a given physical system. For a specified input, this 

equivalence is established by comparing the outputs of both the system 

and the model to minimize some functional of the error. If the minimum 

of the functional is less than a predetermined value, the model and 

the system are considered equivalent. 

While numerous methods exist for the identification of a linear 

system, there a:-'e very few practical techniques or methods av L.w"1le 

for the identification of systems containing nonlinear elem nts. �his 

may be attributed partly to the fact that most of the analytic work in 

the area of nonlinear identification assumes the input to be a random 



signal with prespecified properties, usually with white Gaussian noise. 

In practical situations, the identification has to be accomplished on 

the basis of existing input-output data, which may not fit the Gaussian 

assumption or other presupposed restrictions. 

The methods that are presently available for practical identifi­

cation of systems, which contain nonlinear elements, usually employ an 

ordinary differential equation as a model to describe the performance 

of the system. 

Shinbrotl has presented a method for the determination of power 

series approximations to single-valued nonlinear functions in differ­

ential equations used to describe time-invariant systems. The accuracy 

of Shinbrot's method depends on the number of terms used in the power 

series as well as on the rapid converg nee of the power series. Also, 

this method is limited to single-valued nonlinear functio s. 

Clymer2 has proposed an implicit computation technique in which 

2 

a., unknown nonlinear function, f(x), is used to characterize the nonlin­

ear element. This function is then obtained directly for a given 

input, x. The computation is carried out by an implicit circuit which 

contains a mechanization of a differential equation which is complete 

except for the unknown nonlinear characteristic. This unknown charac­

teristic is synthesized by an implicit circuit which continuously com­

pares the values generated for the dependent variable with experimental 

time histories of the dependent variab�e, and which greatly amplifies 

the difference between them. This method is of value since a plot of 

the nonlinear characteristic may be obtained directly on an oscilloscope 



or x-y plotter. But it is somewhat difficult t o  apply due to  the 

problems encountered in stabilizing the implicit circuit. 

Narendra and Gallman 7 proposed an iterative method for the identi­

fication of nonlinear systems from samples of inputs and outputs in 

the presence of noise. The model used for identification consists of 

a no memory gain (of an assumed polynomial form) followed by a linear 

discrete system. The parameters of the pulse transfer function o f  the 

linear system and the coefficients of the polynomial nonlinearity are 

alternately adjusted to  minimize a mean-square error criterion. This 

method is restricted t o  single-valued nonlinearities and requires a 

digital c omputer for implementation. 

R. H. Kohr 3 has given a method to obtain a graphical plot of  an 

unknown nonlinear function versus its argument using analog computer 

when the syst�rn is time-invariant. 

Giese and McGhee4 and Detchmendy and Sridhar5 present procedures 

which minimize ''mean-squared error criteria" to  estimate the unknown 

constants in an assumed nonlinear differential equation model. These 

procedures make use of a digital c omputer. 

Hoberock and Kohr lO have evolved a method for determining an 

ordinary differential equation to describe the performance of a given 

lumped-parameter, time-invariant, nonlinea� system having a single 

input and a single output. This technique utilizes a variation of the 

steepest descent method to minimize a model residue or error and the 

corresponding coefficients o f  the differential equation model which 

give zero or minimum error will be the calculated values of the 

3 
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coefficients in the dif ferential equation. This method may be imple­

mented either on a digital computer or on an analog computer. This 

technique is based on the studies of Kohr 3 and Graupe6 and incorporates 

some o f  the features of both these works. But this method is more 

difficult to implement on an analog computer than that of Kohr. 

In the method given by Hoberock and Kohr, no definite class of 

input signals is specified which will enable complete i entification 

of nonlinear systems. In Kohr's method, random inputs as well as 

periodic inputs may be used for identification. Both single-valued 

and double-valued (memory type) nonlinearities can be identified 

usin� this method. The method requires only an analor, computer. 

The prime purpose of this thesis project is to investigate and 

to implement Kohr's method. Kohr's method o f  identification was sel­

ected for st�dy mainly because o f  the easy accessibility o f  the an­

alog computer, in addition to the other advantages men ioned above. 

In this thesis the method of Kohr is shown to apply to the 

identification of single-valued nonlinearities. However, it is also 

shown in the work to follow that the method does not apply, in gen­

eral, to double-valued nonlinearities. Further, an extension of 

this method is developed herein which enables the determination of  

system order. A number of examples illustrating the implementation 

o f  the method, its restriction, and extension are given in the 

the3is. 



CHAPTER II 

KOHR'S METHOD OF IDENTIFYING SIMPLE NONLINEAR SYSTEMS 

The basic idea of Kohr 3 regarding the identification of simple 

nonlinear systems may be stated as follows: 

Suppose that it is necessary to form the mathematical model, the 

differential equation, to represent a system, S. It is assumed that 

the system is composed of time-invariant, lumped parameter elements. 

The differential equation for the system may be obtained, if the 

following conditions are satisfied. -

5 

1. The input-output relationship of the system S may be accurately 

represented by an ordinary differential equation. 

2. The system S contains a single nonlinear e�ement which may be 

represented by a function of a single variable. 

3. All coefficients of linear terms in the differential equation 

are known. 

The problem of identifying multiple non inear elements and unknown 

linear coefficients will be considered in later paragraphs. 

Let y be the input and x be the output of the systems. Also, let 

the system be represented by the differential equation, 

where 

anpnx + cln-lPn-lx + • • • • •  + ak+lPk+lx + fk (pk x) + 

ak-lPk-lx + • ···· + a1px + a0x = y, (n? k? 0) 

= constant, 

(1) 
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and the nonlinearity is indicated by the function fi.re (pkx), meaning 

that the system contains an element whose performance may be repre­

sented by a nonlinear function of the kth derivative of the output x. 

The nonlinear nature assumed for the function fk (pkx) does �ot preclude 

the possibility that the function may be entirely linear or, otherwise, 

that it may be co�posed of a sum of linear and nonlinear functions of 

pkx. For convenience, it is assumed that the f�ction fk (pkx) includes 

all functions of pkx, linear or nonlinea.r, which appear in (1). 

This equation may be solved for the nonlinear function by 

rearranging the differential equation as 

fk (pkx) = y - (anpnx + an-lPn-lx + • • ·· • + ak+lPk+lx + 

ak-lPk-lx + • • ··· + alPX + a0x) (2) 

Thus it is clear from equation (2) that if the input y, the output x, 

together with 'its derivatives to the nth order, and the linear coeffi­

cients ai are all available, the function fk(pkx) may be computed 

directly. The characteristic cu�ve for the nonlinear element is then 

obtained by plotting fk (pkx) versus pkx. The procedure is illustrated 

in Fig. 2-1, in which the derivatives of the syster.1 output are obtained 

by a derivative co�uter. · 

For real physical syster..s, it is difficult to accomplish the 

scheme illustrated in Fig. 2-1 based on the calculation indicated by (2). 

The prinary corr:putational difficulties arise from the assumptions that 

an arbitrary nu�ber of derivatives of the output are available, that the 

coefficients of the linear terms in the differential equation are all 

known, and that the system contains only one nonlinear element. These 
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three difficulties will be discussed and examined in material to 

foll w. 

The method of obtaining hiRher derivatives of the output from the 

ou put of physical system by direct differentiaTion, using differentia­

tors, is ruled out since any true differ-·ntiator will g eatly amplify 

the high frequency �oise that may be present. The noise amplification 

problem becomes acute when a :;ecc:-1d or third differentiation is 

attempted. ,ie:1ce, some oLher method should be hos+':!n for obtaining 

the deriv tives of the output of the physical system. This becomes 

imperative since no physical system is free from noise. 

A method has been sugges ed by Mathews and Seifert 8 to obtain an 

arbitrary number of approximate derivatives from the output of the 

physical system. The method consists of constructing a linear filter 

in suc1 a manne� that there is &vailable f�om it not only the filtered 

input signal 9 b t also derivatives ft,' filtered input signal. The 

output of the physical syst mis the input to the linear filter. Thus 

the filtered output of the physical system and its derivatives can be 

obtained using this me�hod. 

In order to demon Lrate one method of constructing su ch a filter, 

consider that the filter has an input, W, and an output, Z, which are 

related by 

(3) 

For convenience, this equation is normalized with respect to a cutoff 

frequency, w0 , by use of the substitutions 

8 

(4a) 



d· l . 

9 

qi = - w i-n dn o (4b) 

s (4c) 

Equation (3) then becomes 

(5) 

A block diagram of the filter represented by (5) is shown in Fig. 2-2. 

No differentiator is used in the mechanization of the filter. The 

filter consists only of summing, integrating and coefficient units. 

The general availability of various derivatives of the output is in di­

cated in the figure. For example, the first derivative of the output 

(SZ) is simply the input to the last integrator to the right in the 

figure. Succeedin gly higher derivatives are obtained as the inputs to 

the preceding integrators • 

Returning to the basic problem, let such a linear filter which is 

denoted by the operator L(p), replace the derivative computer in Fig . 2-1, 

and let the system input y be passed through an identical filter, as 

indicated in Fig. 2-3. The filter whose input is x produces an output 

which is denoted by Xe• Thus, 

L(p)x = Xe (6) 

In addition, this filter has available from it the higher derivatives 

of Xe, namely pxc, p2 xc, • • ·•·, pnxc. These derivatives of the filter 

output are related to the derivatives of the input as follows: 

pxc = pL(p)x = L(p)(px) 

(7) 
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The equivalence of pnL(p)x and L(p)(pnx) follows from the commutative 

property of the linear operators pn and L(p). 

A similar operation on th e system input y results in 

L(p )y = Ye (8) 

12 

The application of these two filters results in the computation of a 

quantity gk(pkxc) which is plotted against pkxc. The quantity g)((pkxc) 

is an approximation to the actual nonlinear function fk(pkx) and 

g}((pkxc) = Ye - Canpnxc + an-lPn-lxc + • • • • • + ak+1pk+lxc + 

( 9) 

The right-hand side of this equation may also be obtained by operating 

on (2) with L(p). Thus, 

gk(pkxc) = L(p)fk(pkx) (10) 

This expression gives the relationship between the calculated nonlinear 

function gk(pk'xc) and the actual nonlinear function fk(pkx). An 

accurate determination of fk(pkx) can be made from the function gk(pkXc) 

provided that both have the s ame form, or that 

gk(pkxc) = fk(pkxc) 

Substituting this relations ip into (10) yields 

fk(pkxc) = L(p)fk(pkx), 

and using 

pkxc = L(p )pkx 

it follows that 

fx:[L(p)pkx] = L(p)fk(pkx). 

(11) 

(12) 

(13) 

(14) 

In this last expression the calculated nonlinear quantity is equated 

to the actual nonlinear function which appears on the right. If fk is 
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regarded as a nonlinear operator which operates on  pkx, the res ult of 

( 14 )  is to require that the linear operator L( p )  must commute with  the 

nonlinear operator fJ.c .  If this condition is met , the  characteristic 

curve of the nonlinear element will be obtained by plotting gk (pkxc ) 

as a function of pk xc as indicated in Fig . 2- 3. 

As a consequence of ( 14 )  it is necessary to determine some linear 

operator L (p) which commutes with the variety of nonlinear operators 

encountered in phys ical systems .  According t o  Kohr , one s uch operator 

is the dead time or transport lag operator (or filter) T1 (p) . A 

heuristic argument for the suitabili ty of this operator is as follows : 

the res ult cf passing a time function through a nonline ar operator and 

then p assing this result through a transport lag filter is exactly the 

same when the nonlinear operator ·and the transport lag filter are 

interchanged. ,, The commutabili ty of this transport lag filter with 

various nonlinear operators has been verified experimentally. 

A s inusoidal input was applied to the linear filter and its output 

was fed into the nonlinearity. A plot of the final out put versus 

sinusoidal input was obtained on the x-y plotter. A s imilar procedure 

was repeate d afte r interchanging the linear· filter and the nonlinearity. 

If the two plots were identical, then the linear filter selected was 

commutable with  that nonlinearity. 

Three dis tinct proble�s occur in the applicat ion of differential 

equations and operational mathematics to physical systems . These 

probleF.� have been named  the analys is , instrument, and synthes is 

problems 9 • 

2 5 6 / 2 S  tour D, -<OTA STATE UN IVr- PS lTY LIBRARY 



The analysis problem is  to find the output, given the input and 

the mathematical description of the system. 

,14 

The instrument problem is to find the input, given the output and 

the mathematical description of the system. 

The synthesis problem is to determine the mathematical description 

of the system, given the i nput and the desired output. 

It is clear that the synthesis problem is intimately related to 

engineering design. Typical inputs are often known and the desired 

output may be sub j ect to specification. 

Thus our remaining problem of determining a mathematical form for 

a linear filter L(p )  which will provide the required deri vatives of 

output as well as output, falls under the synthesis category. 

The linear filter will also act as a transport lag device. A 

system whi ch p,roduces a transport lag has a frequency response that 

exhibits a constant amplitude ratio of unity and a phase shift that 

varies linearly with frequency for all frequencies. No filter composed 

of a fi nite nurrber of lumped parameter elements can p·roduce_ exactly 

this response. Therefore, an approximation to the transport lag must 

be accepted and the problem is reduced to selecting the coefficients 

of ( 5 )  which provide a transport lag approximation. 

Hence Kohr investigated the following four sets of · coefficients. 

1. Minimum attenuati on (Butterworth) coefficients. 

2. Linear phase (Bessel ) coefficients. 

3. Fade coefficients. 

4. IT AE ( I ntegral of Time-multiplied Absolute value of  Error) 



coefficients. 

For a given cutof f frequency w0 , as define d in (4), the Butterworth 

coe fficients provide a maximally-flat amplitude characte ristic and a 

phas e  characteristic which is linear only for freque�cies w such that 

w <<  w0 • The converse is true for Bessel coe fficients. The Pade 

coefficient for third-and fourth-order approximations produce undesir­

able resonances in the amplitude response . Pade approx imations for 

fifth and higher orders also represent unstable systems and are 

consequently unusable . The ITAE coefficients provide an amplitude 

response which is flatter than that of Besse l coefficients and a phase 

response which is more linear than provided by the Butterworth coe ffi­

cients. The ITAE coe fficients thus represent  a reasonable compromise 

between the Butterworth and Bessel coefficients . The function 

I =  1: t l e l dt ,is known as �he integral o f  time-multiplied absolute 

15  

va lue o f  error ( ITAE) criterion. Als , Grah m and Lathrop9 demonstrated 

the clear supe riority of the filters with ITAE coefficients over  

binomial and Butterworth filters. Filters with ITAE co�fficients have 

faster transient response than binomial filters and are less oscillatory 

than those of the Butterworth filters. 

According to Graham and Lathrop9 , the ITAE criteri on is selective 

and easy to mechanize on an analog computer. If  analog computation is 

employed in the study of linear or nonlinear systeITs for whi ch no 

stan dard forms are available , the  ITAE criterion may still be  use d  as 

a un:tary figure of merit for the rapid evaluation of a large number of 

filter parameters . 
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The ITAE coefficients used in this study are those which represent 

zero-disp lacement error systems. These coefficients have been estab­

lished for systerrs up to eigh h-orGer by Graham and Lathrop and are 

reproduced in the normalized form of  (5) in Table 1. Standard forms 

can provide a quick and easy method for the synthesis o f  optimum 

dynam ic response in a variety of  applications. 

The transport lag filter required to ffiechani ze the calculation (9) 

may be . selected from Table 1. It is necessary only to establish the 

cutoff frequency o f  the filter as defined by ( 4a) and the order of  the 

filter. 'In order to provide a substantial attenuation of  high fre­

quency noise, it  is us ually desirable to select a filter whose order 

is greater · han th e order of  the syste� W1der consideration. 

Once the filter is chosen, t�e identification system is complete. 

The next step is to excite the system with a periodic input of low 

frequency. The re is usually an upper limit on the input frequency that 

should not be exceeded i f  the nonlinear function is to be acc urately 

determined. The limit depends upon the character of  the nonlinear 

element and also the cutoff  frequency of  the transport lag filter. The 

accuracy of the identification o f  the nonlinearity also depends upon 

knowledge of  the exact values of the coefficients of  all the linear 

terms in ( 9). 

Up to now, the iden ification process has been disctIBsed based on 

the assumption that all the linear coefficients, except the nonlinear 

coefficient to be identified, are known. While prior knowledge of the 

linear coefficients is desirable, since it simplifies the identi fication 



process, i t  is not always required . I f  the linear coe fficients are 

not known beforehand, they can als o be determined. 

17 

Assume that the system is of the form of (1) and that the differ­

ential equation ass umed to represent the system is of  the form 

bnpnxc + bn-lPn-lxc + ·· • + gk( pkxc) + • • • + b1pxc + boxc = Ye 

( 15 )  

In  this situation, ( 10 ) is not satisfi ed and an error equation may be 

es tablished as 

g]c (pkx0 ) - L ( p ) fk (pkx) = C an - bn)pnxc + • • •  + (ak+l - bk+1)pk+lx0 + 

( ak-1 - bk-1 )pk-1xc + • • • + (a1 - b1)pxc + Cao - bo)xc• 

( 16 ) 

The right-hand side of this equation may be seen as the difference 

between the calculated and actual nonlinear functions . Whe n  the right­

hand side approaches zero, the calculated functi on approaches the 

actual nonlinear function. 

In linear systems , a mismatch between the actual system coeffi­

cients and the coefficients in  the assumed differential equation 

results in the plot of gk( pkxc) vs pkxc becoming an ellips e. The plot 

will become a straight line for the correct coefficients . A nulling 

procedure may be us ed to determine the unknown coefficients . This 

procedure consists of  exciting the system with a s inusoidal input of 

an arbitrary frequency w1, and then adj usting the b0 coefficient until 

the ellipse is reduced as nearly as possible to a s traight line . The 

system is then excited at some arbitrari ly higher s inus oidal frequency 

w2, and then b1 is adj usted in this same manner. The procedure is 



continued , incre as ing the frequency each time, until all the coeffi­

cients have been adj us ted. The entire proc�d ure is then repeated from 

the beginning and is continued until all the coefficients take on 

unchanging values. All the frequencies w1, w2 , • • ·· • ,  Wn ,  us ed in 

this procedure should be less than one-tenth of the cutoff frequency 

Wo selected for the linear filter. 

1 8  

The same procedure may als o b e  applied t o  nonline ar systems. In 

nonlinear systems , according to Kohr, a mis match between system coeffi­

cients and th ose in the ass umed equation res ults in the plot of 

gk (pkxc) vs pk xc becoming a clos ed curve which should enclose the 

actual nonlinear function. Kohr als o states that the coefficients in 

the ass umed equation might be closely approximated to  actual coeffi­

cients by adjusting each coefficient so that the area inside the closed 

curve is reduced to a minimum. 

While the cri teria of minimum area ins ide the closed curve t o  

detennine the u.i�known linear coe ffi cients app lies t o  systems containing 

single-valued nonlinearities, it certainly does not apply to systems 

containing double-valued nonlinearities. This statement will be 

s ubs -antiated in the subseq uent cha?ters with experimental res ults 

ob tained by the autho�. 

So far it has been ass umed that the system contains only one 

nonlinear element. In a system which contains more than a single 

nonlinear coe fficient, an iteration procedure like that used for 

unknown linear coefficients moy be us ed t o  determine the nonlinear 

elements. For exa�ple , ass ume that the actual sys tem contains  two 
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nonlinear elements that may be repres ented by fj (pj x)  and fk(pkx) .  The 

system equation may then be written as 

anpnx + an- lpn-lx + • • • • •  + fj ( pj x ) + • • • • • + 

(17 )  

The two n onlin ear functions are determined by the use of two 

equations . In the firs t  equation the calculated nonlinear function 

gj (pj Xc ) is assumed initi ally to be linear and of t�e form ajpj xc, 

while in the second equation the non lin ear function gk (pkxc ) is  allowed 

to retain its nonlinear form. The two equations are 

and , 

gk(pkxc) = Ye - ( anPn Xc + an-lPn-lxc + • • • • • + ajpj xc + • • · • • + 

ak+lPk + lxc + ak-lPk-lxc + • • • • •  + a1pxc + aoxc ) (18 )  

gj (pj xc) = Ye  - ( �pn xc + cin-lPn-lxc + • • · • • + aj+lpj +lxc + 

aj -1P j-1xc + • · · • • + gk ( pkxc ) + •·· · •  + alPXc + aoxc) .  

(19 ) 

Equation ( 18 )  is then s olved  for gk (pkxc) and ( 19) i s  solved for 

gj (p j xc ) .  The solution proceeds iteratively as follows : 

1) A first value of th e fun ction gk(pkxc) is determined from ( 8 )  

by adj usting the coefficient aj for the minimum enclos ed area 

in the plot of gk (pkxc) vs pkxc• 

2 )  The functi on gk ( pkxc )  thus obtained i s  ins ert ed into (19) w i ch 

pe�mits a first det ertu.nation of gj (pj xc ) •  

3) The function gj (p j xc ) thus obtain ed is ins erted  into (1 8 )  in 

place of the quantity ajp j xc• A new f ·nctional form of 



gk (pkx c ) is h - n fou�d .  

4 )  Further i terations are 1.: erforr;;ed l:r1til 8'1i<: (pkxc ) and g j  (p j  Xe ) 

take on unchanging forms. The s �ccessive nonlinear  functions 

obtained for �K ( pkxc ) must be simulated for each new approx i­

mation of g j (p j xc ) and vice versa. The time required to make 

the calculations is ma terially increased when two or more 

nonlinear functions must be determined, due to the time 

required to  mechanize the newly discovered nonlinear function 

for the next calculations. 

20 



CHAPTER I I I  

APPLICATION OF KOHR' S METHOD TO  SYSTEMS 

CONTAINING SINGLE-VALUED NONLINEARITIES 

Kohr's method was applied to first-order systems containing 

single-valued nonlinearities and the experirr:ental results obtained 
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are given in this chapter. Three different first-order systems 

containin g limiting type, dead zone type, and relay type nonlineari ties  

respectively, were i denti fied .  

A. Limiting element in a first-order system ( Fig. 3- 1 ) .  

The system used in the experiment was of the form, 

alPx + f0 (x) = y 

where f0 (x ) is  the nonlinear element ; in this case s aturat ing or 

limiting type of element, and the linear coefficient 

a1 = 1 

(20 ) 

The s imulation scheme given in Appendix A (Fig. A-1 ) w as used in 

the identification of the systems . The s imulation diagram for the 

lirni ting type n online arity is  s hovm in Fig. B-1. 

Figures 3-2 ,  3-3, 3-4, a.�d 3-5 show the calculation of the onlinear 

function for input frequencies 0 . 75,  0. 5 ,  0. 2 5  and 0. 1 rad/sec, respec­

tively. The correct linear coefficient ( 1. 0 )  was used in the calculati on 

to illus trate the error in the identification of the nonlinear function 

at higher than one-tenth of the cutoff frequen cy. The error at hi gher 

frequencies is due to higher harmonic frequencies, generated by the 

nonlinear element, which exceed the bandwidth of the linear filter .  A 
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second-order line ar filter with a cutoff frequen cy o f  1 rad/se c was 

used. An input frequency o f  0.1 rad/se c  gave satis factory results and 

hence was us ed throughout the i dentification of various nonline arities. 

The unknown linear coefficient a1 was found by adj usting the 

coe fficient a1 su ch that the area en close� by the plot g0 (xc) vs Xe 

is minimum. The plots correspondin g to various values of a1 ( viz. , 

1.0 , 1.25 , 1.5 , 0.75 an d 0.5 ) and w = 0. 1 rad/sec are shown in Figures 

3-5 through 3-9. I t  is evident from the plots that th e area enclosed 

is m inimum when a1 = 1.0. The area enclosed by the plo · is minimum for 

the correct coeffi cient, i.e. , 1.0. Also the area enclosed by the plot 

increases when the adjus ted  value of the li ear coeffi cient is higher 

or lower th& the corre ct value. Hence the calculated value of the 

linear coe fficient is 1.0.  The plot g0 C xc ) vs xc , for a1 = 1.0, at an 

input frequency of 0.1 rad/sec, represents the calculated nonlinear 

function (Fig. 3- 5). The calculated nonlinear fun ction clos ely 

approximates the actual nonliuear function ( Fig. 3-1). 
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B. Dead zone element in a first-order system. 

The system was of  the form given by (20 )  with £0 (x ) denoting the 

dead zone element and a1 = 1.0. The simulation of the nonline arity is 

shown in Fig. B-2 and the actual nonlinear function is shown in 

Fig. 3- 10. The g0 ( xc ) vs Xe plots for a1 = 1.0, 1.2 5, 1.5 , 0.75 , and 

0.5  at an input frequency of 0.1 rad/sec are shown in Figur es 3-11, 

3-12, 3-13, 3- 14 , and 3-15 , respectively. The area en close d by the 

plot is minimum when a1 = 1. 0, and hence Fig .  3-11 represents the 

calculated nonline ar function and is nearly the same as th e actual 

nonlinear function. 
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C. Relay element in a firs t-order system. 
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The system was of the form given by ( 20 )  wi th f0 ( x ) denoting the 

relay element and a1 = 1.0. The simulation of the relay was accomplished 

by simulatine the coulomb friction type nonlinearity and then inverting 

the output of it . The s imulation diagram for the coulomb friction is 

showr. in Fig. B- 3 .  The s imulated nonlinear function is shown in 

Fig. 3-16 .  Fig .  3-17 shows the calcula�ed nonlinear functi on corre­

sponding to  minimum area of the plot at an inpu t frequency o f  0 . 1  

rad/sec. The area enclosed by the plot was minimum when the linear 

coefficient was equal to one . 

The i dentific ation of this nonlinearity is not as close as the 

identi fication of the two p revi ous nonlin arities . This is due to the 

nature of the nonlinearity. The large dis continuity in slope causes 

the generati on ,, of more harmonics . The filter eliminates or attenuates 

the harmonics that are outside the pas sban d of the filter . Thus the 

elimination or attenuation of more armonics in the case of relay type 

nonlinearity than in the other two cases p roduces a les s  accurate 

calculation of the non�inear fun ction. 

In all these cases of s ingle-valued nonlinearities, Kohr ' s 

criterion o f  minimum area of the plot identified the nonlinear function 

as well as the linear coefficient and was demons trated to be correct. 
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CHAPTER IV 

KOHR' S METHOD APPLIED TO SYSTEMS CONTAINING 

DOUBLE-VALUED NONLINEARITIES  

42 

Kohr3 s tates that the criterion of minimum area of the plot iden­

tifies systems having double-valued nonlinearities as well. Hence 

Kohr ' s  method was applied to a first-order system containing a memory­

type nonlinearity.  The resulting plots, obtained by  use of  Kohr ' s  

method , are s hown in Figures 4-1 through 4-6 , and discuss ed in this 

chapter. 

The system to be identi fied was of the form a1px + f0 ( x ) = y, 

where a1 = l. O ,  f0(x) represents the backlash-type nonlinear element, 

and y is the s inusoidal input. Second-order filters were used  in the 

identification with the corresponding ITAE coefficients . The cutoff 

frequency used in the filters was 1. 0 rad/sec. The frequency of the 

s inus oidal input applied to  the sys tem was 0 . 1 rad/sec. 

To start with, the linear coefficient a1, to be determined, was 

set up arbitrarily as 1. 5 . The corresponding plot of the nonlinear 

function is s hown in Fig. 4-3. Then the c�efficient a1 was incre ased 

to 2. 0 .  Fig. 4-2 represents the calculated nonlinear function when 

a1 = 2 . 0.  From Figures 4-2 and 4-3, it is obvious that the area 

enclosed by the plot increas es when the coefficient a1 is incre ased 

from 1. 5  to 2. 0 .  According to Kohr, the minimum area of the plo iden­

tifies the nonlinear function an d  determines the linear coefficient or 

coefficients , as the case may be. In this case, only one linear coef­

ficient, a1, is to be · determined. So the linear coefficient a1 was 
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reduced gradually and the corresponding plots were taken. The area 

enclosed by the plot went on de creasing as the linear coeffi cient was 

decreased. The g0 ( xc ) vs Xe plots corresponding to a1 = 1. 0 , o . s ,  and 

0. 0 are shown i n  Figures 4- 4, 4- 5,  and 4-6,  respectively. The area 

e nclosed by the plot was minimum when a1 = 0. 0 and it can be verified 

from the fi gures shown . Hence, according to Kohr' s criterion, the 

calculated linear coefficient is zero, and the corresponding g0 ( xc ) 

vs Xe plot repres ents the calculated nonlinear function. 

By comparing with the actual nonlinear function shown in Fig .  4-1, 

it  may be observed that the plot corresponding to a1 = 1. 0, approximates 

more clos ely the nonlinear function than the plot corresponding to 

a1 = o . o .  Also, the actual linear coefficient is equal to one and not 

zero . Thus the criterion of minimum area of the plot, as s ugges ted by 

Kohr, neither· identi fies the nonlinear function nor determines the 

li near coeffi ci e.1t. However, it does reveal the nature of the double­

valued nonlinearity in the sys tem. 

Thus it is shown that the criteri on of mi nimum area of the plot 

does not apply to sys teras which contain a memory- type,  or double-valued 

nonlinearity while the criteri on is substantiated for systems containing 

single-valued nonlineari ties . 
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CHAPTER V . 

DETERMINAT ION OF THE ORDER OF THE SYSTEM 

Kohr3 mentions that the inability to determine the orde·r of the 

system to be identified is a maj or limitation in his method. If the 

location of the nonlinearity is known, then -the order of the system 

may be determined by a procedure s uggested in  this chapter. The 

procedure is &! extens ion of the technique used by Kohr in identifying 

nonlinear systems . If the procedure is to be s uccess ful, the nonlin­

earity in  the systeQ must be s ingle-valued since Kohr ' s  method, as has 

been s hown, identifies only the s ys tems with single-valued 

nonlinearities. 

If the system is of the form o f  equation ( 1 ) and the assumed 

di fferential equation is of the form of  equation ( 15), then the error 

equation es tablished would be of the form of equation ( 16 ) ,  which is 

reproduced below. 

� (pkxc ) - L(p ) fk ( pkx )  = ( an - bn )pnxc + · • •  + (ak+l - bk+1 )pk +lxc + 

( ak -1 - bk-l )pk-1 + • · •  + (a1 - b1 )pxc + (ao - bo ) xc 

I f  the coefficient of the zeroth derivative of the output is the 

nonlinear coefficient then the error equation becomes 

g0 (xc) - L(p} f0 (x ) = (an - bn )pnxc + (an-1 - bn-1)pn -lxc + • • • + 

(ak - bk )pkxc + • •  • + (a3 - b3 )p 3 xc + (a2 - b2 )p2 xc + ( a1 - b 1 )pxc 

( 16a ) 

I f  the syste� to be identified is of third order, then the coefficients 

of the derivatives higher than third are zero ; i. e. , the coefficients 

The area of the g0 (xc ) vs Xe plot would be a4 ,  a5, • • • • •  , an are zero. 



minimum when 

an-1 = bn-1 

an 
:: bn 

Since a4 , as , , ¾ are all equal to zero, the area of the g0 ( xc) 

vs Xe plot would be minimum when b4, b5, • · • · • , bn are all equal to 

zero , an d  

a1 = b1 

a2 :: b2 

a3 = b 3  

Thus if the calculated coe fficients b;<+l, bk+2, • • • • • , bn are all 

equal to zero ;· then the sys tern is deterrnin d to be of k th order. 

The p rocedure is explained with · an example, and is illustrated 

with e xperiment al resul  s. Let t. e 3ys�em , whose order is to be 
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d terrnined j be a first-order sys tem o f  the form a1px + f0 (x ) = y ,  wh �re 

a1 = 1 . 0 , f0 x) is the single-valued nonlinear fun c ion, y is the 

sinusoidal input, and x is the output. If the approximate order of the 

system is known , then it help s to simplify the proce dure. The system 

mentioned above is assi.:me d to be of second order, and ·chird-o�..,der linear 

filters with ITAE coeffi cients were us ed  i� the identification s cheme. 

Thus the de�ivatives of th e filtere d  out?ut up to third order were 

av · ilab:� fro� the filter . Tje cutoff frequen cy of the line ar fi lters 

used was 1.0 rad/s e c. The differen c =- between the simulation 5 cheme 
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shown in Fig. A- 1 and the simulation scheme used in this example is the 

order of the filters and the subsequent changes. Let b1 , b2 , and b3  

be the coefficients of the first-, second-, and third-order derivatives 

of the filtered output Xe respectively. The coefficients b1, b2 , and 

b3 were controlled by p otentiometers individually. 

The coefficients b1, b2 , and b3  were adj usted by varying the 

potentiometers to  give a minimum area of the plot g0 (xc) vs xc, 

according to the procedure given in Chapter I I  to determine linear 

coefficients for higher  order systems . 

Initially, all the three coefficients were set arbitrarily at 2.0. 

The calculated nonlinear function was plotted for those values 

(Fig. 5- 1) .  Then the coefficient of the first derivative, b1, was 

adj usted for minimum area of the plot. Fig. 5-2 (b1 = 1. 0, b2  = 2.0 , 

and b3 = 2. 0 ) , represents the corresponding plot. The coefficient of 

the second derivative , b2, was next adj usted keeping b1 = 1. 0, and 

b3 = 2 . 0 .  The area was r.tlnimum when b2 was zero and the p lot is shown 

in Fig. 5- 3. Finally the coefficient of the third derivative , b3, was 

varied for minimum area of the plot keeping b1 an d  b2 at 1. 0 and O ,  

respectively. The area was minimun when b3 was zero. Fig. 5- 4 sh ws 

the plot. The procedure was repeated till the coefficients attained 

unchanging values. On t he very second iteration this result was 

achieved. The final plot was the same as Fig.  5-4, corresponding to 

b1 = 1. 0, b2 = o . o ,  and b3 = 0.0. 

When the calculated values of the linear coefficients are known, 

the order of the system may be determined. In this system, for 
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example � the calcul ated coeffi cients o f  t, e second- and third-order 

de ri vatives of the fi��ered ou�put are zero � indic�t ing ther by the 

system to be of firs t  order. Thus the order of the system h as be n 

correctly determined by this p�ocedure. A� a further check, a plot 

( Fig. 5-5 ) was t c.ken for b1 = 1.0, b2 = 1. 0 ,  an d b 3  = 1.0, an arbitrary 

set of inte rmediate values. Fig. 5-6 s . ows the plot corresponding to 

b1 = o . o , b2 = O.O � and b3 = O.O. It is evident from the fi gures that 

the area enclosed in both these plots is individually greater �han the 

area enclos ed by the plot shown in Fig . 5-4. 

If the estimated or assumed orde r is lower than the actual order 

o f  the sys tem , then th e coefficient o f  the highes t order derivative 

of the filtered output will not be zero for minimum e. clos e d  area in 

the plot . A higher order filter should th en be used and th procedure 

repeated till ,, he coefficient of the hig� est order derivative of the 

filtere G  ou put is  obtained as zero corresponding to minimum area of 

the plot. 

The identification technique may soDatime give erroneous results , 

i the order of the system is not determined . For example, if a fi fth­

order sys tem to be identified is assumed to be of thi:.:-d order, then he 

calculated linear ccefficients will be in error since the coefficients 

of the fourth an fifth derivatives are completely ignored in the 

calculatio:i . 
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co rcLUSIONS 

h as b ee verified that Xohr s criterion of minimum area of 

t: e p � ot gives s atis fact ory r s  lts in the identification of  n onlinear 

sys tems containing s ingle-valued nonli�earities, and that it does not 
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apply t o  systems con ai:1ing double-va�ue d nonline arities. Cons equently , 

he procedure given by Kohr for ide. tifying a system which contain more 

t an one nonline arity will give erroneous results, if one of the 

nonl�ne � i  ics is  double-valu2d. 

Ace rding  to  Kohr , detcrrri�il g th orde� o f  the system to be 

iden ified an d the loca ion of the nonline arity within the system are 

the tw o aj or lirni tat io�'1s of his r.iethod. In case no previous infor-

m tion abou - the loc tion o� t: e nonline rity is available, the location 

of the nonl · ne a ity mus t be  ass �me I f  the location o f  the nonlinearity 

is correctly ass umed , th n the calculation would result in a s atis factory 

identi fi catio .. Oti"1 e:.--•;1is e a s a  is factory solution may not result. 

A p roc� dure has been sugges ted i Chapter V for determining the 

order of t' e sys em , v hen t: e location of th e non linearity is known . 

'l'he proce d ·r� may be �ested for ' . igher orde r systems where some o f  the 

line ar coe ffi cie. s o f  the intermedi ate de rivatives are zero, and is 

s �gges�ed  for fu�t e� work. 

It is ces i rable to h ave a cutoff frequency o f  1 . 0  rad/s ec for the 

1 . .c · - · · '  .1- ow c·u7"of ... .c f.._·,-,equency would help to reduce e rrors i�e ar � � �t�r s �� ce tae � 

due �o nois e above t� cutoff frequency . C f  cours e , very low-frequency 

noise wh�C:. lies i� the passbar. oi the filter canA ot b e  reduced. Also , 



a cutoff fre�uen cy of  l. O rad/s e c  simplifies the s c aling pro cedure for 

th fi lte . Ass uQing .at the loop gain is equally dis rib uted among 

the integrat ors , the ir outp uts wi ll be pk xc /w0k. When uJ0 is equal to 

1.0 , the outputs of t .e inte�rators wi ll becorr£ pk xc . Th us a cutoff 

frequency of 1. 0 rad/se c  mak s the d rivatives avai lable dire ctly as 

t: e outputs of in egrators , the reby eliminating the use of a dditional 

amplifiers. 

The calcul ted nonlinear function Day �ot be ac curate due to the 

us e  of �init - approxima�ion of the transport lag and becaus e of noise 
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i�  the system . The quality of the transport lag approximat ion deterio­

r tes wit in cre i. g frequency. \·:hen th e input frequen cy is increased, 

the frequencies of the h armonics a:"e also increased correspon dingly. 

T .us an incre a  e in the in?ut fr q -ency caus es more harmonics of the 

o� �pu� to  be filt ere d o· t .  nenc � s a s atisfactory identification will 

not res ult � f  the inp ut frequen cy e xceeds a certain limi t . This limit 

d pe . ls upon t· e &�u� of the nonlinearity sin ce the harmonics in the 

outp ut c:.re gene r2..,-e by he nonline arity in the system. A relay type 

nonlin ar�ty gene rates more h �monies th cill a saturating type 

nonlinearity. 

An i. put frequen cy of o:: - - 1:cn·.:h of  t. e cutoff frequency o f  t� e 

�ilter us ually results in s at is factory calculation of the nonlinear 

function . R&n dorn inputs as well as pe io ic inputs whi ch s atis fy is 

:.."equirerr.-2:1.t uay be  use d  i:1 t:i e  i de !ti fi cation of nonline r systems . 

Periodic i :1:,1..:t mo.y bC:::  p ref2l"rcd since they can be depen de d upon to  

re  · · - r,·.a "  •. i· t uu,..1 e  wi thir: a spe cifie d tir.:e .  Th::.s is  espe cially acn CJ. c2 -1.. c •• " o - -



true in the case where a large amplitude is required for the nonlinear 

flli� cti on to be comp letely reveale d.  In this case, random inputs may 

require a longe r time to complete the calculation, since the magnitude 

varies randomly with respe ct o time . 
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The a�p litude of he inp ut si . al shou:d be of s ufficient magnitude 

to reve al th e complete nonlinear fUL'1ction. But it is diffi cult to 

estimate th required  magnituG . Hen ce �  to start with , the maximum 

poss ib le input s ignal should be applied without overloading any of the 

amplifiers . 

The results may be obtaine d us ing Butterworth coeffi cients 

Table 2 )  an� compa e w i th the res ults obtained using ITAE coefficients 

in the fi� e rs .  Another approxi . ation may also be used for the 

·transport lag by express ing e-Ts as 

e-Ts /2 

8 +-rs/2 

a..'1 t run c  ti� e  the corr spo. ding t' .e  in�ini te series i the nume rator 

as well a i :  the de o in a � or . T depe�cs on t. e cutoff  f requency 

c�osen . ror w t of s ufficien n�rrbe� of analog computer ampli fiers ,  

the imple:mer.ta·.: i o:1 of the above-mentioned trcmsport lag approximatica 

was n t nos s ib �e v 

It  may be not d j  from t�e �ables given in Appendix C ,  that for 

fi rs t- ai d s econ d- o:i."d - r f.i 2.. te:.."s , E- - tterworth and ITAE coefficients are 

h T'.: e  coe fficients �ec:�in to  d�ffer for filters high er th an the t e s ar..2. 

secon ord. :.,... . 

In ttis wo:::'k , it  is sr.own that "'-.: ,. °" claim made by Kohr pe ... taining 

0 ..... l. • • • - ·  ..,. _• on of syst ms containir.g ei �her s ing .... e-
c; succe s s ful l G.8�1-c1. .:z-1 ca. � �  • 
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v - lue d o r  double-v.:.lue d  onlineari .:. es is only p artially c orre ct. The 

criterion give� y Kohr h as b een verified  to be true for the identifi­

c;-ti on o f  syste : .1s co ;taining s i;: _� le-valued non lin arities only. Though 

Koh r states ti ett r. 2  meti1od  . as been 1.:s ed s uccess fully to determine 

memory- type nonl�uear functio is , he has not p re ented the e xperimental 

res �lts to S U:;?port his ass e rtic,.!. In th is th s is e xperimental res ults 

are pres ente whi ch indica .::e th at /ot: r' s cri terion re veals only the 

na u e of  t: e doub .:i..e- valued no. line ... i ty. It is  als o shown that the 

c terion o- � r .. ot deter .. ine t. e linear coeffi cients or the double-

val ed on ine ar fu.-ict:.on e �<a-:tly ..  A proc dure has been s uggested in 

t. is w rk for 'ete�mi 4 :.ng the or e of �he sys tem whi ch mi ght obviate 

one of the m j or lim�t ations o f  Koh � : s  me t�od. 
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APPEI-rnrx A 

S I�UL 7ION SCHEl E FOR � HE I D  NTIFIC TION 

Or FI ST-ORDiR ,:C TLINEAR SYST:M 

6 7  

gtne�al s iwul�tion diag am fo. the identi fication of first-order 

syste1 5 a1� � f0 x)  = Y � is shown in Fi g. A- 1 ;  whe e a1 = l, is the 

linear ·oe ffi cie 4t , f0 / x ) is the nonline&r coefficient a� y is the 

sinusoida� i�pu to -he sys tem. 

The sys �e� , x = y - f
0

( x ) is simulated using amplifiers 4 and 5 

as well as t ;c  simula·;:ed no� 1  · n  ar coe fficien.... . The input to integra­

tor 4 is x · e .  , y - f0 ( ::-: ) , an d i ts output is  -x ,  wh ich is inverted by 

a p:i f:er 5 to ge� t ,e ystern output , x. Ou�p t of in egrator 2 is 

�h8 s i  usoica- i�put , y ,  �o the system. The filtered output, Xe, a..�d 

its e ivdti v0 are 0btaine r in � a second-order linear filter 

compris ir. � a�plifiers 6 ,  7 ,  9 w"'ld -9 . Output of integrator 8 gives 

he fi ltered outpu ... , xc , an d inte --rator 7 gives the first derivative, 

c , of The filte r d o· tp� . T inp , y ,  also is p assed through a 

simi ar fi ::.te :c :,  co;Tipris i g amplifiers 11 , 12 , 13 :, and 14 ; the output of 

amp�ifie. _ 3  0 ives he fi- tcred iJp · t ,  -Y e •  

From t�c imulat� on di agram � it is evident that the output of 

ampli fi2r 15 is J c - a_:Xc J..e . , g0C<c ) . Thus the g0 ( Xe ) vs Xe plot may 

e ob� �ne d  us i .g t�is s imulation scheme an d the system may be 

i dent i fie d. IT E secon d- order coe ificien s and a cutoff frequen cy of 

o�e radiar. per s c cc� d  are us ed  i� �he l�ne&r fi�ters . The simulation 

given in Appendix B.  
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S I MULATION OF VARIOGS 1 ·GNLil�EARIT IES 

l. Limitin g '1'yp2 :fonlinea:.. i ty . 

Wt n ei > C i  > e 2 , neithe r diode conducts and the circuit shown 

in Fi g. B- � be. ave R2 as a lin ar amplifier w Lh a gain of - Ri . 
�nen e i  > e1 � dioce Di con ducts a.� d  a low-impe dance feedb ack path 

is es tablis hed , re d 1 cir. g t:·1 e a;nplifier gciin to almost zero. Hence the 

outp ut remains csse  ia-ly a const -nt at - l • 

1'.'i1en e i < e 2 , di o de D2 co 1ducts c:nd the output is about +e2. 

In both tnese cas s the ou�?ut levels are n ot e xactly -e1 or +e2, 

due to t} e d�op in tje di odes. Normally the drop in the diodes is 

ne gligib le 0 :6u-c for precis e s imulation , the drop should be taken into 

considerati . .  a:..1d compe;:is ated. 
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2. D2 - d  Zone �ype N o��inearity. 

Fig. B- 2 s' ows t .e b as i c circui-� us d t o  imulate dead zone type 

of n onli e ari ty . T: e cL--cui t ope atl:!S as follows : 

r·Then ei < el :; o:ily iode D:._ conducts and 

R . R4 
e o = e :  i (ei - ) . i R3 ..L l R3 

R ·  R4 
= + e ·  - e1 ( 21 ) '<-i + 1'3 �l + R3 l + R3 

When e · l > e2 , 0 ly dio D2 conducts ar.d 

Ri. Rl� 
eo = ei + ( ei - e2 ) Ri + R3 2 + R ... .:, 

J.; R ,  R 4  •'-4 _,_ ei - e2 2 2 ) + 0 2 -!- R3 R2 + R 

•, . e1 ' €.i  < e2 , n it  ::,r  c.iode D ..L nor diode D2 conducts a:ud . . 
1 .en c I) 

( 2 3 )  

\{ n i = 00 w. i _  - .  R1 ., R2 9 .) 3 ,  anci R are finite , it corresp onds 

to c.. circ�i t si 1. --:lat:ir. 6 -.:.ec:.. zone ; t . .  t i->  s zero output when the input 

the outpat is given e:�her by 21 ) r by ( 22 ). 
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3. Coulomb F... i ction Type No:1line ri. ty . 

'\-:. E:.n e2  > ei > 0 ) the circ:1.:.. t shown in Fig . B-3 behaves as an 

operational a�plifie� with an i fi�it2 gain ( s ince the fee dback impe­

dan c\:_"; i · infin ite ) and. th output e0 at" .. pts to b come infinitely 

neg - ti ve . � :hile tternptin g .,co b<3come infinitely uegati ve , th e output 

e 0 c us �s dioG D2 to  conduct a:: d  th reby est ab lishes a low impedan ce 

fee - ack p ath t� ough the dio e D2 . H nee , the output level remains 

cl a •. pe d a ... - - 2 • 

ifae e.:, > e2 � diode D2 cor-. --.icts 2... - the outp ut rem· ins at -e2. 

lhen ei < 0 �  tte O? eratioJ may be e x?lain d si�i larly . The 

dif.... e :.....,en c being 0.io ·e :C1 conducts in teud  of diode D2 and the output 

remains at +e1 in tead of  -e2. 

i·: er. l e i l  = l e 2 l , t' e circuit  s imulates coulomb fri ct ion where ei 

repr - ve ts the veloci · y of the sys te .11 and e 0 the coulomb friction. 
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4 . Sirnul - tio� of B�ck la.s • •  

._-}-. _ _.._ ._ •• a. L  

Th2 operation of  tr..e c.:.rcui t shown in Fi g . B-4 i s  as fol... .. ows : 

Ass umi g t:-� t ·che chc:.rges o� C 1 an d  C2 are zero at tirr.e t = O a..-rid 

con due a.7 d e
0 

= 0 . 

Whe:1 ei  e xceeds e2 , then D2 i · .:...1.1 cOl""lduc and con de;.1se .2s C 1 and C2 

wi ll ch arg to  the voltage e� - e 2 ; he n ce , 0 = ' ( e i  - e2 ) .  This 

r ..1.ation obtai1:s unti l e i· r ac.L es ei· a-�- d revers es dire ction . The max •• 

fL vol-tage cross t e cond  . se ..., is ( ei
:na.x - e2 ) , giving  an output 

- e� I • 

As e i  ,.:ie cre �c: es from i 1..s  rr:ax.i:--.-.t:. . value " e 0 rem ..:.ns constant U.7.til  

the value e 1 , r • 
) c ir,1ax - e2 or - .::. max 
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til rc c:..c:-.es  av no dis charge path . 

- ,�-:c:i i r c::.chE-s · ... t i:::; value , D1 con G.ucts d C 1 ar. j C2 are dis charged to 

the poi�t whe�� the c thode of D1 is ne gative with 1---espe ct to the 

p c::.tc . 

r ach s 

O' " p ·:: by e 0 = • ( ei - e ) • T;1is  relation holds un 1.il  e i 

A pos itive incre c::.s e in ei yields e0 - ' ( eimin - c 1 )  

u1 til e 1.· reaches e 2  + ( e; • - e ) 9 caus ing D2 to con duct an d the .... m:_n 

� � K ' e · o 2 ) A t ��:e of e0 vs e
i
· is given be low &s e1· goes ot� 1..pu 1.. e0 = • :::. - � • O,J..,J _  

comple cy c_e : 
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5 . Simulat::.on of ?-e l -y w ,  ch Hys --eres is. 

'i'he o::,e 2.·.: ion of this  circui -c ( Fi g .  B- 5 )  may be xp l uined as 

follows . For ei ..::uffi . ' '  
p 03 l  --_::i_ i,• ,:: :e> of ampli fier 1 will be 

re a�hes -&e 2 , the output of ahlpli f�er  l swit ches . For more negative 

i valu�s , output of aiTiplifier l will be t J,e1, and e o is at -e1. 

Hence c 3  wi ll be -ae1 . Incre as i�g ei now causes no ch ange until ei is 

eq� l to +ae 1  and amplifi0r l sw�tches o its negative limit again. 

I e1 j = I e2 I ,  the nonli:-12 &rh:7 is sy . �::etr.:..cal. 

7 8  

:he outp�t � eo s is giv�n by the fo:lowing tab le as ei goes through 

a complete  cycle : 

e ·  l eo 

€ i  > 0 +e2 

2 .  ei < - ae2 -e1 

3 .  ae� > C i 
> - ae2 - e1 

4 . e ;  > ae 1 +e2 
..L 
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Tab le l .  ':'h2 M : n1.mu:n ITAE St an dard Forms si Zero- Disp lacement Error 
Sy terns . 

S + 1 

S 2 + l .  S + l 

s 3 + 1 . 1 s 2 + 2 . 1ss + 1 

S 4 + 2 • S 3 + 3 • ;. S 2 + 2 • 7 S + l 

s
5 

❖ 2. as 4 + s. o s 3 + s . ss 2 + 3. 4S + 1 

S 7 + : .. 4 7S 6 + 10 . !..t 2S 5 + l.5 . 0 8S ,.._ -, 15 . 54S 3 + 10 . 6 4S 2 + 4 . 5 6 S  + 1 

S + 5 . 2 S 7 + _2 . 8S 6 + 2 1 . 6 S 5 + 2 5 . 7 5 S 4 + 2 2. 2 S 3 + 1 3 . 3S2 + 5 . 15 S  + 1 

Tabl ·· 2 . The Bu -�erworth S a.."1 d&:2d Fo "'IDS . 

s 

s + 

s 3 + 2 . 0 s 2 + 2 . 0s + 1 

S �  + 2 . 6 S 3 + 3 . 4S2 + 2 . 6 S + 1 

s 5 -;- 3 . 2 4 S i+ + 5 . 24S 3 + 5 . 24S 2 + 3 . 24S + l 

5 G + 3 . 80S + 7 o 4� S 4 + 9 . l 3S 3 + 7 . 46 S2 + 3 . 86 S + l 

S 7 + 4 • 5 S 6 + i O • l S 5 + 1 : " 6 S '+ -;- - • 6 S 3 + l O • 1 S 2 + 4 • 5 S + l 
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