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CHAPTER I

INTRODUCTION

The problem of identifying a black box - that is, determining its
input-output relationships by experimentali means - occurs under
different guises in various branches of science. Some writers refer
to it as the characterization problem. Others term it the measurement
or the evaluation problem. Some - borrowing a term from physics - call
it gedanken or thought experiments. In this work, the term "identifica-
tion" is used since it seems to state the crux of the problem with
greater clarity than the more standard terms cited above.

System characterization and system identification are basic prob-
lems in system theory. System characterization is primarily concerned
with the setting up of mathematical models to represent input-output
relationships; whereas system identification deals with the choice of
a specific model from a class of models which is mathematically
equivalent to a given physical system. TFor a specified input, this
equivalience is established by comparing the outputs of both the system
and the model to minimize some functional of the error. If the minimum
of the functional is less than a predetermined value, the model and
the system are considered equivalent.

While numerous methods exist for the identification of a linear
system, there are very few practical techniques or methods aviilaile
for the identification of systems containing nonlinear elements. This
may be attributed partly to the fact that most of the analytic work in

the area of nonlinear identification assumes the input to be a random



signal with prespecified properties, usually with white Gaussian noise.
In practical situations, the identification has to be accomplished on
the basis of existing input-output data, which may not fit the Gaussian
assumption or other presupposed restrictions.

The methods that are presently available for practical identifi-
cation of systems, which contain nonlinear elements, usually employ an
ordinary differential equation as a model to describe the performance
of the system,

Shinbrotl has presented a methcd for the determination of power
series approximations to single-valued nonlinear functions in differ-
ential equations used to describe time-invariant systems. The accuracy
of Shinbrot's method depends on the number of terms used in the power
series as well as on the rapid convergince of the power series. Also,
this method is limited to single-valued nonlinear functiois.

Clymer? has proposed ar implicit computation technique in which
an unknown nonlinear function, f(x), is used to characterize the nonlin-
ear element. This function is then obtained directly for a given
input, x. The computation is carried out by an implicit circuit which
contains a mechanization of a differential equation which is complete
except for the unknown nonlinear characteristic. This unknown charac-
teristic is synthesized by an implicit circuit which continuously com-
pares the values generated for the dependent variable with experimental
time histories of the dependent variable, and which greatly amplifies
the difference between them. This method is of value since a plot of

the nonlinear characteristic may be obtained directly on an oscilloscope



or x-y plotter. But it is somewhat difficult to apply due to the
problems encountered in stabilizing the implicit circuit.

Narendra and Gallman’ proposed an iterative method for the identi-
fication of nonlinear systems from samples of inputs and outputs in
the presence of noise. The model used for identification consists of
a no memory gain (of an assumed polynomial form) followed by a linear
discrete system. The parameters of the pulse transfer function of the
linear system and the coefficients of the polynomial nonlinearity are
alternately adjusted to minimize a mean-square error criterion. This
method is restricted to single-valued nonlinearities and requires a
digital computer for implementation.

R. H. Kohr3 has given a method to obtain a graphical plot of an
unknown nonlinear function versus its argument using analog computer
when the system is time-invariant.

Giese and McGhee“ and Detchmendy and Sridhar® present procedures
which minimize ''mean-squared error criteria" to estimate the unknown
constants in an assumed nonlinear differential equation model. These
procedures make use of a digital computer.,

Hoberock arnd KohrlO have evolved a method for determining an
ordinary differential equation to describe the performance of a given
lumped-parameter, time-invariant, nonlinea. system having a single
input and a single output. This technique utilizes a variation of the
steepest descent method to minimize a model residue or error and the
corresponding coefficients of the differential equation modei which

give zero or minimum error will be the calculated values of the



coefficients in the differential equation. This method may be imple-

mented either on a digital computer or on an analog computer, This

6

technique is based on the studies of Kohr® and Graupe” and incorporates

some of the features of hoth these works. But this method is more
difficult to implement on an analog computer than that of Kohr.

In the method given by Hoberock and Kohr, no definite class of
input signals is specified which will enable complete iientification
of nonlinear systems, In Kohr's method, random inputs as well as
periodic inputs may be used for identification. Both single-valued
and double-valued (memory type) nonlinearities can be identified
using this method. The method requires only an analog computer.

The prime purpose of this thesis project is to investigate and
to implement Kohr's method. Kohr's method of identification was sel-
ected for stddy mainly because of the easy accessibilitv of the an-
alog computer, in addition to the other advantages men:ioned above,

In this thesis the method of Kohr is shown to apply to the
identification of single-valued nonlinearities. However, it is also
shown in the work to follow that the method does not aoply, in gen-
eral, to double-valued nonlinearities. Further, an extension of
this method is developed herein which enables the determination of
svstem nrder. A number of examples illustrating the implementation
of the method, its restriction, and extension are given in the

thesis.



CHAPTER II

KOHR'S METHOD OF IDENTIFYING SIMPLE NONLINEAR SYSTEMS

The basic idea of Kohr3 regardiny the identification of simple
nonlinear systems may be stated as follows:

Suppose that it 1s necessary to form the mathematical model, the
differential equation, to represent a system, S. It is assumed that
the system is composed of time-invariant, lumped parameter elements.
The differential equation for the system may be obtained, if the
following conditions are satisfied.

1. The input-output relationship of the system S may be accurately
represented by an ordinary differential equation.

2. The system S contains a single nonlinear element which may be
represented by a function of a single variable.

3. All coefficients of linear terms in the differential equation
are known,

The problem of identifying multiple non.inear elements and unknown
linear coefficients will be considered in later paragraphs.

Let y be the Input and X be the output of the system S. Also, let
the system be represented by the differential equation,

anpPx + ap_1pR-lx + ceece 4+ apktlx + £ (pkx) +

ak_lpk'lx + eeeee + ajpx t agx =y, (n2kz20) (1)
where
. dix
1 = ——
P ati

constant,

o
"



and the nonlinearity is indicated by the function fk(pkx), meaning

that the system contains an element whose performance may be repre-
sented by a nonlinear function of the kth derivative of the output x.
The nonlinear nature assumed for the function fx(pkx) does not preclude
the possibility that the function may be entirely linear or, otherwise,
that it may be composed of a sum of linear and nonlinear functions of
pKx. For convenience, it is assumed that the function fx (pXx) includes
all functions of pXx, linear or nonlinear, which appear in (1).

This equation may be solved for the nonlinear function by
rearranging the differential equation as

fx(pkx) = y - (appPx + ap_1pP~1lx + eceee + app1pitix +

ak-1pK=1x + «ecee + ajpx + apx) (2)
Thus it is clear frcm equation (2) that if the input y, the output x,
together with its derivatives to the nth order, and the linear coeffi-
cients aj are all available, the function fx(pKx) may be computed
directly. The characteristic curve for the nonlinear element is then
obtained by plotting fk(pkx) versus pkx. The procedure is illustrated
in Fig. 2-1, in which the derivatives of the system output are obtained
by a derivative computer.

For real physical systems, it is difficult to accomplish the
scheme illustrated in Fig. 2-1 based on the calculation indicated by (2).
The primary computational difficulties arise from the assumptions that
an arbitrary number of derivatives of the output are available, that the
coefficients of the linear terms in the differential equation are all

known, and that the system contains only one nonlinear element. These
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three difficulties will be discussed and examined in material to
folluw.,

The method of obtaining higher derivatives of the output from the
output of physical system by direct differentiation, using differentia-
tors, is ruled out since any true differcntiator will greatly amplify
the high frequency =noise that may be present. The noise amplification
problem becomes acute when a seccad or third differentiation is
attempted. ..ence, some ocher method should be thosen for obtaining
the derivatives of the output of the shysical system. This becomes
imperative since no physical system is free from noise.

A method has been suggesited by Mathews and Seifert8 to obtain an
arbitrary number of approximate derivatives from the output of the
physical system. The method comnsists of constructing a linear filter
in suca a manne.~ that there is available firom it not only the filtered
input signal, but aiso derivatives i tho filtered input signal. The
output of the pnysical syst+m Is the input to the linear filter. Thus
the filtered output of the pnysical system and its derivatives can be
obtained using this me .nod.

In order to demon:crate one method of constructing such a filter,
consider that the filter has an input, W, and an output, Z, which are
related Dby

1pRZ + dy_1pP~1lZ + seeee + dipZ + dyZ = G W (3)
For convenience, this equation is normalized with respect to a cutoff

frequercy, Wo, by use of the substitutions

won = (4a)



di .
Qi = ag'wol'“ (4b)
S g ﬁ% (4ec)

Equation (3) then becomes

SNZ + qp-1SP=1Z + «.... +q1SZ + 2 =W (5)
A block diagram of the filter represented by (5) is shown in Fig. 2-2.
No differentiator is used in the mechanization of the filter. The
filter consists only of summing, integrating and coefficient units.

The general availability of various derivatives of the output is indi-
cated in the figure. For example, the first derivative of the output
(SZ) is simply the input to the last integrator to the right in the
figure. Succeedingly higher derivatives are obtained as the inputs to
the preceding integrators.

Returning to the basic problem, let such a linear filter which is
denoted by the operator L(p), replace the derivative computer in Fig. 2-1,
and let the system input y be passed through an identical filter, as
indicated in Fig. 2-3. The filter whose input is x produces an output
which is denoted by xo. Thus,

L(p)x = x¢ (6)
In addition, this filter has available from it the higher derivatives
of X¢, namely pxXc, pzxc, eeeee . DOXo, These derivatives of the filter
output are related to the derivatives of the input as follows:

pxc = pL(p)x = L(p)(px)

(7)

»

" &
pnxc = an(p)X = L(p)(an)
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The equivalence of pPL(p)x and L(p)(p™x) follows from the commutative
property of the linear operators pnh and L(p).

A similar operation on the system input y results in

L(p)y = ve (8)
The application of these two filters results in the computation of a
quantity gk(pXxc) which is plotted against pXxc. The quantity gk(pkxc)
is an approximation to the actual nonlinear function fx(pXx) and

gx(pkxc) = yo - (anpPxc + an-1pP~lxc + «eeve + aks1pM¥lxe +

ak-1pK=1Xc + sesee + alpXc + aoxc) (9)

The right-hand side of this equation may also be obtained by operating
on (2) with L(p). Thus,

gk (pXxe) = L(p)fk(pkx) (10)
This expression gives the relationship between the calculated nonlinear
function gk(pkxc) and the actual nonlinear function fx(pkx). An
accurate determination of fk(pkx) can be made from the function gk(pXxc)
provided that both have the same form, or that

gk (pkxc) = fr(pkxe) (11)
Substituting this relationship into (10) yields

fik (pXxe) = L(p)fk(pkx), (12)
and using

pkxe = L(p)pkx (13)
it follows that

fix[L(p)pkx] = L(p)fx(pkx). (14)
In this last expression the calculated nonlinear quantity is equated

to the actual nonlinear functiom which appears on the right. If fkx is
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regarded as a nonlinear operator which operates on pKx, the result of
(14) is to require that the linear operator L(p) must commute with the
nonlinear operator fx. If this condition is met, the characteristic
curve of the nonlinear element will be obtained by plotting gk (pXxc)
as a function of pkxc as indicated in Fig. 2-3.

As a consequence of (1l4) it is necessary to determine some linear
operator L(p) which commutes with the variety of nonlinear operators
encountered in physical systems. According to Kohr, one such operator
is the dead time or transport lag operator (or filter) Tp(p). A
heuristic argument for the suitzbility of this operator is as follows:
the result of passing a time function through a nonlinear operator and
then passing this result through a transport lag filter is exactly the
same when the nonlinear operator and the transport lag filter are
interchanged. , The commutability of this transport lag filter with
various nonlinear operators nas been verified experimentally.

A sinusoidal input was applied to the linear filter and its output
was fed into the nonlinearity. A plot of the final output versus
sinusoidal input was obtained on the x-y plotter. A similar procedure
was repeated after interchanging the linear filter and the nonlinearity.
If the two plots were identical, then the linear filter selected was
commutable with that nonlinearity.

Three distinct problems occur in the application of differential
equations and operational mathematics to physical systems. These
problems have been named the analysis, instrument, and synthesis
problemsg.

2 5 - _ -
il BOUTH DAKOTA STATE UNIVERSITY LIBRARY
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The analysis problem is to find the output, given the input and
the mathematical description of the system,

The instrument problem is to find the input, given the output and
the mathematical description of the system,

The synthesis problem is to determine the mathematical description
of the system, given the input and the desired output.

It is clear that the synthesis problem is intimately related to
engineering design. Typical inputs are often known and the desired
output may be subject to specification.

Thus our remaining problem of determining a mathematical form for
a linear filter L(p) which will provide the required derivatives of
output as well as output, falls under the synthesis category.

The linear filter will also act as a transport lag device. A
system which produces a transport lag has a frequency response that
exhibits a constant amplitude ratio of unity and a phase shift that
varies linearly with fregquency for all frequencies. No filter composed
of a finite number of lumped parameter elements can produce exactly
this response. Therefore, an approximation to the transport lag must
be accepted and the problem is reduced to selecting the coefficients
of (5) which provide a transport lag approximation.

Hence Kohr investigated the following four sets of coefficients.

1. Minimum attenuation (Butterworth) coefficients.

2. Linear phase (Bessel) coefficients.

3. Padé coefficients.

4, ITAE (Integral of Time-multiplied Absolute value of Error)
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coefficients.
For a given cutoff frequency Wy, as defined in (4), the Butterworth
coefficients provide a maximally-flat amplitude characteristic and a
phase characteristic which is linear only for frequencies w such that
w << Wg. The converse is true for Bessel coefficients. The Padé
coefficient for third-and fourth-order approximations produce undesir-
able resonances in the amplitude response. Padé approximations for
fifth and higher orders also represent unstable systems and are
consequently unusable. The ITAE coefficients provide an amplitude
response which is flatter than that of Bessel coefficients and a phase
response which is more linear than provided by the Butterworth coeffi-
cients. The ITAE coefficients thus represent a reasonable compromise
between the Butterworth and Bessel coefficients. The function
I= f: tleldt is known as the integral of time-multiplied absolute
value of error (ITAE) criterion. Als=z, Grahum and Lathrop9 demonstrated
the clear superiority of the filters with ITAE coefficients over
binomial and Butterworth filters. [ilters with ITAE coc¢fficients have
faster trensient response than binomial filters and are less oscillatory
than those of the Butterworth filters.

According to Graham and Lathropg, the ITAE criterion is selective
and easy to mechanize on an analog computer. If analog corputation is
employed in the study of linear or nonlinear systems for which no
standard forms are available, the ITAE criterion may still be usea as

a unitary figure of merit for the rapid evaluation of a large number of

filter parameters.
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The ITAE coefficients used in this study are those which represent
zero-displacement error systems. Tiese coefficients have been estab-
lished for systems up to eighth-orcer by Granam and Lathrop and are
reproduced in the normalized form of (5) in Table 1. Standard forms
can provide a quick and easy method for the synthesis of optimum
dynamic response in a variety of applications.

The transport lag filter required to mechanize the calculation (9)
may be selected from Table 1. It is necessary only to establish the
cutoff frequency of the filter as defined by (4a) and the order of the
filter. 1In order to provide a substantial attenuation of high fre-
quency noise, it is usually desirablie to select a filter whose order
is greater :haan the order of the system under consideration._

Once the filter is chosen, tae identification system is complete.
The next step is to excite the system with a periodic input of low

vequency. There is usually an upper limit on the input frequency that
should not be exceeded if the nonlinear function is to be accurately
determined. The limit depends upon the character of the nonlinear
element and also the cutoff frequency of the transport lag filter. The
accuracy of the identification of the nonlinearity also depends upon
knowledge of the exact values of the coefficients of all the linear
terms in (9).

Up to now, the identification process has been discussed based on
the assumption that all the linear coefficients, except the nonlinear
coefficient to be identified, are known. While prior knowledge of the

linear coefficients is desirable, since it simplifies the identification
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process, it is not always required. If the linear coefficients are
not known beforehand, they can also be determined.

Assume that the system is of the form of (1) and that the differ-
ential equation assumed to represent the system is of the form

bnpPxc + bn-1p""lxc + o+ + gk(pKxc) + +oo + bIpxc + boxe = ye

(15)
In this situation, (10) is not satisfied and an error equation may be
established as

gk (Pkxc) - L(p)fk(pkx) = (an - bp)pPxc + -+ + (ak+1 - bk+1)pK+lxc +

(ak-1 - bk-1)pk-1lxc + ««+ + (a1 - by)oxc + (ap - bg)xc.
(16)
The right-hand side of this equation may be seen as the difference
between the calculated and actual nonlinear functions. VWhen the right-
hand side approaches zero, the calculated function approaches the
actual nonlinear function.

In linear systems, a mismatch between the actual system coeffi-
cients and the coefficients in the assumed differential equation
results in the plot of gk(pXxc) vs pKxc becoming an ellipse. The plot
will become a straight line for the correct coefficients. A nulling
procedure may be used to determine the unknown coefficients. This
procedure consists of exciting the system with a sinusoidal input of
an arbitrary frequency wj], and then adjusting the by coefficient until
the ellipse is reduced as nearly as possible to a straight line., The
system is then excited at some arbitrarily higher sinusoidal frequency

w2, and then b] is adjusted in this same manner. The procedure is
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continued, increasing the freguency each time, until all the coeffi-
cients have been adjusted. The entire procadure is then repeated from
the beginning and is continued until all the coefficients teéxe on
unchanging values. All the frequencies w1, w2, *ece+, Wn, used in
this procedure should be less than one-tenth of the cutoff frequency
Wo selected for the linear filter.

The same procedure may also be applied to nonlinear systems. In
nonlinear systems, according to Kohr, a mismatch between system coeffi-
cients and those in the assumed equation results in the plot of
gk(pkxc) vs pkxc becoming a closed curve which should enclose the
actual nonlinear function. Kohr also states that the coefficients in
<he assumed equation might be closely approximated to actual coeffi-
cients by adjusting each coefficient so that the area inside the closed
curve is reduced to a minimum.

While the criteria of minimum area inside the closed curve to
determine the unknown linear coefficients applies to systems containing
single-valued nonlinearities, it certainly coes not apply to systems
containing double-valued nonlinearities. This statement will be
subsantiated in the subsequent chapters with experimental results
obtained by the authow.

So far it has been assumed that the system contains only one
nonlinear element. In a system which contains more than a single
nonlinear coefficient, an iteration procedure like that used for
unknown linear coefficients mey be used to determine the nonlinear

elements. For example, assume that the actual system contains two
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nonlinear elements that may be represented by fj(pjx) and fx(pkx). The

system equation may then be written as

anpnx + an_lpn-lx + ecocese + f](ij) + eveces +
f(PKX) 4+ eevee + @ipx + @ox = y . (17)

The two nonlinear functions are determined by the use of two
ecuations. In the first equation the calculated nonlinear function
g5(pixc) is assumed initially to be linear and of tae form ajpixc,
while in the second equation the nonlinear function gk(pKxc) is allowed

to retain its nonlinear form. The two equations are

gk (Pxc) = yo - (anpPic + ap_1pP txe + ceeee + aspixg + eeeee +
ak+1pKtIxe + ak-1pK~lxc + <o+ + alpxc + aoxc)  (18)
and,
gj(pjxc) = yeo - (anpnxc + an_lpn—lxc S 80000 aj+lpj+lxc +

aj-lpj'lxc + eeeee + gk(PFXC) + eeeee + alpXe + AoXe).
(19)
Equation (18) is then solved for gk(pkxc) and (19) is solved for
gj(pjxc). The solution proceeds iteratively as follows:

1) A first value of the function gk(pkxc) is determined from (18)
by adjusting the coefficient aj for the minimum enclosed area
in the plot of gk(p<xc) vs pXxc.

2) The function gx{pkxc) thus obtained is inserted into (19) which
permits a first determination of g3 (pixe).

3) The function gj(pJxc) thus obtained is imsertad into (18) in

place of the quantity &jpixc. A new functional form of



gk(pKkxc) is =h a fouac.

Further iterations are serforned until gx(pKxc) and g5(pixc)
take on unchanging forms. The successive nonlinear functions
obtained for gx{(pkxc) must be simulated for each new approxi-
mation of gj{pJjxc) and vice versa. The time required to make
the calculations is materially increased when two or more
nonlinear functions must be determined, due to the time
required to mechanize the newly discovered nonlinear function

for the next calculations.

20
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CHAPTER III
APPLICATION OF KOHR'S METHOD TO SYSTEMS

CONTAINING SINGLE-VALUED NONLINEARITIES

Kohr's method was applied to first-order systems containing
single-valued nonlinearities and the experimental results obtained
are given in this chapter. Three different first-order systems
containing limiting type, dead zone type, and relay type nonlinearities

respectively, were identified.

A, Limiting element in a first-order system (Fig. 3-1).

The system used in the experiment was of the form,

aijpx + fo(x) = y (20)
where fo(x) is the nonlinear element; in this case saturating or
limiting type of element, and the linear coefficient

ay =1

The simulation scheme given in Appendix A (Fig. A-1) was used in
the identification of the systems. The simulation diagram for the
limiting type nonlinearity is shown in Fig. B-1,

Figures 3-2, 2-3, 3-4, and 3-5 show the calculation of the mnonlinear
function for input frequencies 0.75, 0.5, 0.25 and 0.1 rad/sec, respec-
tively. The correct linear coefficient (1.0) was used in the calculation
to illustrate the error in the identification of the nonlinear function
at higher than one-tenth of the cutoff frequency. The error at higher
frequencies is due to higher harmonic frequencies, generated by the

nonlinear element, which exceed the bandwidth of the linear filter. A
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second-order linear filter with a cutoff frequency of 1 rad/sec was
used. An input frequency of 0.1 rad/sec gave satisfactory results and
hence was used throughout the identification of various nonlinearities.
The unknown linear coefficient aj was found by adjusting the
coefficient a) such that the area enclosed by the plot go(xc) vs X¢
is minimum. The plots corresponding to various values of al (viz.,
1.0, 1.25, 1.5, 0.75 and 0.5) and w = 0.1 rad/sec are shown in Figures
3-5 through 3-9. It is evident from the plots that the area enclosed
is minimum when aj; = 1.0. The area enclosed by the plot is minimum for
the correct coefficient, i.e., 1.0. Also the area enclosed by the plot
increases when the adjusted value of the linear coefficient is higher
or lower thearn the correct value. Hence the calculated value of the
linear coefficient is 1.0. The plot go(x¢) vs x¢, for aj = 1.0, at aﬁ
input frequency of 0.l rad/sec, represents the calculated nonlinear
function (Fig. 3-5). The calculcated nonlinear function closely

approximates the actual nonlinear function (Fig. 3-1).
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B. Dead zone element in a first-order system.

he system was of the form given by (20) with fo(x) denoting the
dead zone element and aj = 1.0. The simulation of the nonlinearity is
shown in Fig. B-2 and the actual nonlinear function is shown in
Fig. 3-10. The go(xe) vs x¢ plots for ai = 1.0, 1.25, 1.5, 0.75, and
0.5 at an input frequency of 0.1l rad/sec are shown in Figures 3-11,
3-12, 3-13, 3-14, and 3-15, respectively. The erea enclosed by the
plot is minimum when aj = 1.0, and nence Fig. 3-1. represents the
calculated nonlinear function and is nearly the same as the actual

nonlinear function.
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C. Relay element in a first-order system.

The system was of the form given by {(20) with fo(x) denoting the
relay element and a)] = 1.0. The simulation of the relay was accomplished
by simulating the coulomb friction type noalinearity and then inverting
the output of it. The simulation diagram for the coulomb friction is
showrn. in Fig. B-3. The simulated nonlinear function is shown in
Fig. 3-16. Fig. 3-17 shows the calculated nonlinear function corre-
sponding to minimum areca of the plot at an input frequency of 0.1
rad/sec. The area enclosed by the plot was minimum when the linear
ccefficient was equal to one.

The identification of this nonlinearity is not as close as the
identification of the two previous nonlincarities. This is due to the
nature of the nonlinearity. The large discontinuity in slope causes
the generation.of more harmonics. The filter eliminates or attenuates
the harmonics that are outside the passband of the filter. Thus the
elimination or attenuation of more Larmonics in the case of relay type
nonlinearity than in the other two cases produces a less accurate
calculation of the noniinear function.

In all these cases of single-valued nonlinearities, Kohr's
criterion of minimum area of the plot identified the nonlinear function

as well as the linear coefficient and was demcastrated to be correct.
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CHAPTER IV
KOHR'S METEOD APPLIED TO SYSTEMS CONTAINING

DOUBLE-VALUED NONLINEARITIES

Kohr3 states that the criterion of minimum area of the plot iden-
tifies systems having double-valued nonlinearities as well. Hence
Kohr's method was applied tc a first-order system containing a memory-
type nonlinearity. The resulting plots, obtained by use of Kohr's
method, are shown in Figures u4-1 through 4-6, and discussed in this
chapter.

The system to be identified was of the form ajpx + fo(x) =y,
where aj = 1.0, fo(x) represents the backlash-type nonlinear element,
and y is the sinusoidal input. Second-order filters were used in the
identification with the corresponding ITAE coefficients. The cutoff
frequency used in the filters was 1.0 rad/sec. The frequency of the
sinusoidal input applied to the system was 0.l rad/sec.

To start with, the linear coefficient aj, to be determined, was
set up arbitrarily as 1.5. The corresponding plot of the nonlinear
function is shown in Fig. 4-3. Then the cnefficient aj; was increased
to 2.0. Fig. 4-2 represents the calculated nonlinear function when
a] = 2.0, From Figures 4-2 and 4-3, it is obvious that the area
enclosed by the plot increases when the coefficient aj is increased
from 1.5 to 2.0. According to Kohr, the minimum area of the ploL iden-
tifies the nonlinear function and determines the linear coefficient or
coefficients, as the case may be. In this case, only one linear coef-

ficient, aj, is to be determined. So the linear coefficient a] was
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reduced gradually and the corresponding plots were taken. The area
enclosed by the plot went on decreasing as the linear coefficient was
decreased. The gg(xc) vs xc plots corresponding to al = 1.0, 0.5, and
0.0 are shown in Figures u4-4, 4-5, and 4-6, respectively. The area
enclosed by the plot was minimum when a) = 0.0 and it can be verified
from the figures shown. Hence, according to Kohr's criterion, the
calculated linear coefficient is zero, and the corresponding go(xc)

vs Xc plot represents the calculated nonlinear function.

By comparing with the actual nonlinear function shown in Fig. 4-1,
it may be observed that the plot corresponding to aj = 1.0, approximates
more closely the nonlinear function than the plot corresponding to
a] = 0.0, Also, the actual linear coefficient is equal to one and not
zero. Thus the criterion of minimum area of the plot, as suggested by
Kohr, neither identifies the nonlinear function nor determines the
linear coefficieat. HLowever, it does reveal the nature of the double-
valued nonlinearity in the system.

Thus it is shown that the criterion of minimum area of the plot
does not apply to systems which contain a memory-type, or double-valued

nonlinearity while the criterion is substantiated for systems containing

single-valued nonlinearities.
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CHAPTER V

DETERMINATION OF THE ORDER OF THE SYSTEM

Kohr3 mentions that the inability to determine the order of the
system to be identified is a major limitation in his method. If the
location of the nonlinearity is known, then the order of the system
may be determined by a procedure suggested in this chapter. The
procedure is an extension of the technique used by Kohr in identifying
nonlinear systems. If the procedure is to be successful, the nonlin-
earity in the system must be single-valued since Kohr's method, as has
been shown, identifies only the systems with single-valued
nonlinearities.

If the system is of the form of equation (1) and the assumed
differential equation is of the form of equation (15), then the error
equation established would be of the form of equation (16), which is
reproduced below.

gk (pKxc) - L(p)fx(pkx) = (an - bn)pPxc + -+« + (ak+] - bk+1)pKtlxc +

(ak-1 - bk-1)pk=1l + «.. + (al - b1)pxc + (ap - bo)xc
If the coefficient of the zeroth derivative of the output is the
nonlinear coefficient then the error equation becomes

go(xc) - L(p)fo(x) = (an - bn)pPxc + (an-1 - bn-1)pP~Ixc + +.o0 +

(ax - bx)pKxe + ««+ + (a3 - b3)p3xe + (ap - b2)p?xe + (al - by)pxe
(16a)
If the system to be identified is of third order, then the coefficients
of the derivatives higher than third are zero; i.e., the coefficients

ay, as, seees, ap are zero. The area of the go(xc) vs xc plot would be
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minimum when

[\J]

|

n
o

dn = bn
Since ay, as, *****, a; are all equal to zero, the area of the gg(xc)

vs Xc plot would be minimum when by, bg, ¢++<ee, by are all equal to

zero, and

aj = bl
ap = by
ag = bg

Thus if the calculated coefficients bi¢t+l, Dk+42, **°°**, bp are all
equal to zero, then the system is determined to be of kth order.

The procedure is explained with an example, and is illustrated
with experimental results. Let the system, whose order is to be
dctermined, be a first-order system of the form ajpx + fo(x) = y, where
ai; = 1.0, foix) 1s the single-valued nonlinear functiion, y is the
sinusoidal iaput, anc x is the output. If the approximate order of the
system is known, then it helps to simplify the procedure. The system
mentioned above 1s assumed to be of second order, and third-order linear
filters witi ITAE coefficients were used in the identification scheme.
Thus the cerivatives of the filterad output up tc third order were
avzilable from the filter. Tae cutoff frequency of the linear filters

used was 1.0 rad/sec. The cdifferenc= between the simulation scheme
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shown in Fig. A-1 and the simulation scheme used in this example is the
order of the filters and the subsequent changes. Let bl, b2, and b3

be the coefficients of the first-, second-, and third-order derivatives
of the filtered output X, respectively. The coefficients bj, bz, and
b3z were controlled by potentiometers individually.

The coefficients by, by, and b3 were adjusted by varying the
potentiometers to give a minimum area of the plot go(xc) vs xc,
according to the procedure given in Chapter II to determine linear
coefficients for higher order systems.

Initially, all the three coefficients were set arbitrarily at 2.0.
The calculated nonlinear function was plotted for those values
(Fig. 5-1). Then the coefficient of the first derivative, b), was
adjusted for minimum area of the plot. Fig. 5-2 (b = 1.0, b = 2,0,
and bz = 2.0) represents the corresponding plot. The coefficient of
the second derivative, by, was next adjusted keeping bj; = 1.0, and
b3z = 2.0. The area was minimum when b, was zero and the plot is shown
in Fig. 5-3. Finally the coefficient of the third derivative, b3, was
varied for minimum area of the plot keeping bj and b2 at 1.0 and O,
respectively. The area was minimum when b3 was zero. Fig. 5-4 shtws
the plot. The procedure was repeated till the coefficients attained
unchanging values. On the vervy second iteration this result was
achieved. The final plot was the same as Fig. 5-4, corresponding to
b; = 1.0, bp = 0.0, and bz = 0.0.

when the calculated values of the linear coefficients are known,

the order of the system may be determined. In this system, for



golxe)

110 v
: - - S N =, S — oo e i
1} ‘' [

0V ~-10 V 0V

= 10 V
. 4

Fig. 5-1. Calculated nonlinear funection for by = 2,0, by = 2.0, and by = 2,0.



Fig.

EO( Xc)

4+ 1w v
7
N P R S s S T
: { ¥
~20 Y <10V ’ 10 v
: [
|
p - =10V

5-2,

Calculated nonlinear function for by =

1.0, bp = 2.0, and by = 2.0,

hS§



Fig,

=

3‘

go( Xc)

= 10V
/
o i Ly =
=10 Vv 0V
- -0V

Calculated norlinear fuiction for by

= 1.0, bp = 0.0, and bz = 2.0,

°1



go<xc)

T 10 V
o
F
P
e e e - Fresaial . : D 1
.30 V <oV 10V 30V
y
Ve
// 4 =10V

Fig., 5-%. Calculated norlinear function for bj = 1.0, bp = 0.0, aad bg = 0.0.



example, the calculated coefficients of tie second- and third-order
derivatives of the filxtered output are zero, indiceting thereby the
system to be of first order. Thus the order of tne system has beci
correctly determined by this procedure. As a further check, a plot
(Fig. 5-5) was t&ken for by = 1.0, by = 1.0, and b3 = 1.0, an arbitrary
set of intermecdiate values. Fig. 5-5 s.ows the plot corresponding to
b; = 0.0, bp = 0.0, and b3 = 0.0. It is evicent from the figures that
the area eanclosed in both these plots is individualily greater than the
area enciosed by the plot shown in Fig. 5-4.

If the estimated or assumed order is lower than the actual order
of the system, then the coefficient of the highest order derivative
of the fiitered output will not be zero for minimum eliclosed area in
the plot. A higher order filter should then be used and th2 procedure
repeated till the coefficient of the higiiest order derivative of the
filtered ougput is obtained as zero corresponding to minimum area of
the plot.

Tne ldentification technique may somatimes give erroneous recsults,
iy the order of the system is not determined. TFor example, if a Fifth-
order system to be ldentifiec is assumed to be of third order, then the
calculated linear ccefficients will be in error since the coefficients

of the fourth an, fifth derivatives are complietely ignored in the

calculation.
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CHAPTER VI

COZIICLUSIONS

L has Leeil verified that Xohr's criteriocn of minimum area of

the plot gives satisfactory results in the identification of nonlinear

svstems containing single~valued nenlinearities, and that it does not
apply to systems containing double-valued anonlinearities. Consequently,
the procedure given by Koar for identifying a system wiaich contain more
thean one nonlinearity will give erroneous results, if one of the
nonlinearities is dcuble-valiued.

According to Kohr, cetermining tae orderr of the system to be

ideniiflied and the location of the nonlinearity within the system are

the two major limitations of his method. In case no previous infor-

mation about the location or the nonlinearity is available, the location

of the nonlineanity must be assumeis If the location of the nonlinearity

is correctly assumed, then the calculation would result in a satisfactory

identification. Otaerwise a satisfactory solution may not result.

A procedure has been suggested ism Chapter V for determining the

The syszem, wnea tiie location of the nonlinearity is known.

suggested for rurtiel work.

It iIs cesirable to have a cutoff frequency of 1.0 rad/sec for the

» sirce the iow cutoff fraguency would help to reduce errors

due o nolse above the cutoff frequency. G course, very low-frequency

noise whii iies in the passband off the filter camiot be reduced. Also,



a cutoff firecuency orf 1.0 rad/sec simplifies the scaling procedure for

<
the filter, Assuning that the loop gain is equally distributed among

- . 3 . - -~ - A 1 . -
the integrators, their outputs will Dbe pkxc/woﬁ. When o iIs equal to

ntegrators will become pKxc. Thus a cutoff

[$)

e
3

1.0, the outputs of the
frequency of 1.0 rad/sec mekes the cdirivatives available directly as

tie outputs of integrators, thereby eliminating the use of additional
ampiifiers.

The calculated nonlinear function may mot be accurate due to the
use of finitz approximation of the transport lag and because of noise
in the system. The quality of the transport lag approximation deterio-
rates with increazing frequency. Wnen the input frequency 1s increased,
the frequencies of the harmonics are also increased correspondingly.
Thus au increase in the iInput friquency causes more harmonics of the

oucput to be filtered ocut. Hence, a satisfactory icdentification will

not result If the input freguency exceeds a certain limit., This limit

GepenJs upon tie mature of the nonliinearity since the harmonics in the

output cre genercr-e. by the nonlinearity in the system. A relay type

Qs o

nonlin, arity generates more h.rmonics than a saturating type

nonlinearity.

£n Inmout Srequency of cne-tenth of The cutoff frequency of Tie

Silter usually results in satisfactory calculation of the nonlinear

e S . A PP
function. Rendom inputs as well as pericwlcC 1nputs waich satisfy thHis

SR Y =y + 3 = 2
reguirement nay be used in ta2 fication of nonlinezr systems.
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Periodic ianvts may be preferred since they can be depended upon to
- P PO e | diad o

Lin a sopecified time. This is especially
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reacn a ceria.n magaituce wit
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true in the case where a large amplitude is required for the noanlinear
function to be completely revealed. Iin this case, random inputs may
require a longer time to complete the calculation, since the magnitude

varies randomly with respect to time,
The ampiitucde of the input sijnia:l should be of sufficient magnitude
to reveal the complete nonlinear fuaction. But it is difficult to

estimate tnt reguired magnitucs. Hence, to start with, the maximum

possible input signal should be appliied without overloading any of the

The resulis may De obtained using Butterworth coefficlents
(Table 2) and compased with the results cobtained using ITAE coefficients
in the filters. Another approxiiation may also be used for the
transport lag by expressing e~ 'S as

e-Ts/Q

+Ts /2
and truncating the correspoading the Infinite series im the numerator
as wcll as in the demominator. T depends on tae cutoff frequency
Tor want of sufficient number of analog computer amplifiers,

chosen.

the implementacion of the above-mentioned transport lag approximaticu
was nctT possible.

it m e t.¢é, from tae Tabl given in ndi T s
T may be not.d, from tae tTables given 1n Appendix C, that for

r filtenrs, butterworth and ITAE coefficients are
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fer for filters higher than the

the sara. The coefficients begin to dl

oo own that “he claim made by Xohr pertaining

I this work, it is shown @
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valued or douwdle-vclued monlinearities is only partially correct. The
criterion given by Xchr nas been verilied to be true for the identifi-
cation of sycstens containing sin jle-valued nonlincarities only. Though
Kohr states that the method lias been used successiully to determine
menory-type nonlinear functions, he has not presented the experimental
results to support his assertici, In this thesis experimental results

cace that Xohr's criterion reveals only the

Fo

aaG

b

are presented which
nacure or tue¢ doublie-valued noilinearity. It is also shown that the
criterion doss not deteriine t 2 linear coafficients or the double-
valyed gonlinear fuiction exactly. A procédure has been suggested in

this work for getermining the order of the system which might obviate

cnie of the mgjor limitations of Kohr's method.
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APPIZUDIX A
SIMULATION SCHEMZ FOR THE IDENTIFICATION

O FIAST-ORDZR NOWLINEZAR SYSTI

4 general simulation diagrar for the identification of first-order
system, ajx + folx) = v, is shown in Fig. A-1; whewe a; = 1, is the
x) 1s the nonlinear coefficient anu y is the
sinusoidas input to kthe system.

The sysiemn, % = y = folx) is simulated using amplifiers 4 and S
as weil as the simulaced nonlinear coefficien:. The input to integra-

le., v - f5(x), and its output is -x, which is inverted by

t
e
2]
i~
’_l
n
e

anpiifier 5 to getr the system ouitpui, x. Output of integrator 2 is
the sijusoicdal input, y, to the system. The filtered output, Xg, and
its cerivative are cbtained vsiny a second-order linear filter

7

, &, «nd 9. Cutput of integrator 8 gives

comprising ampliifiers 6,
the filtcred outpuc, %, and inte rator 7 gives the first derivative,
icﬁ of the Filtered output. Tho inski, vy, also is passed through a
simijar filter, comprisipng emplifiers 11, 12, 13, and lu4; the output of
amplifiew 13 _ives the filtered Imput, -y..

From tne zimulatzon diagram, 1t is evident that the output of

s N - . _
15 is ve - a.xc ic., golxc). Thus the golxg) vs % plot may

[ J]
o
'
}_J
He
3]
He
(&
p

be cbuvained usimg thl
coc’ficients and a cutoff frequency of

. e S D, o= ™ o Y
ne racian per seccnd ave used in the linear filters. The simulation

- nonlinearities are given in Appendix B.

¢
C
Hh
Hy
He
<
)
o
[
Hy
Hh
I
s
(
=]
‘%



K u\ /“”)4‘( i \ J = 4 sin(wt)

9 =

C gyl e mem el = o n f Ao S S8 A - e i
Simul .t.on schomg Jor the Zaentificdtion of first-order non~inear
-
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DPTANTY n
Pt O QUL DU R4 pel

INMULATICON CF VARICOUS NCNLINEARITIES

4+ ia

When e, > ¢j > e, neither diode conducts and the circuit shown

3

Fig. B-1 besaves as a linear amplifier with a gain of - = .

Fie
-
>

)
4]
0
o)
[
(¢]
=

[}
.
g

el
(]
5
0
®

H
o
o
eV
o’
o]
0

=
ol

[\)]
ct

=p

When e¢j > el, diode Dj conducts
is estebliished, reducing the amplifier gain to almost zero. Hence the
cutput remains cssentially a constant at ~&3.

waen ej < en, diode Dp conducts &nd the output is about +e).

iIn Doth tnese cases the output levels are not exactly -ej or +tep,
due to tile drop iIn tae cdiodes. Normally the drop in the diodes is
negligible. ©out for precise simulation, the drop should be taken into

considerati... and compensated.
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Fig. B~1l. Simulation ¢ limiting type nonlinearity.
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2. Lead Zone Type Noailncarity.
Fig. B-2 sWcws the basic circuit usad to uimulate dead zone type
of nonlitiearity. Tie circult operates as follows:

then ej < ej. only diode I, ccanducts and

o =/ mmmmlran o, g L - &1
= Ri # Ry =+ N X: '+ R3 (el €1)
R . R,_;, 6T
= 7 it - e; = T — e (21
Ri + k3 R] + Ry ai + Rz © )

When ej > ez, only dloés Do conducts and

Ry N )
€o = T el t el - ez
R: + Rg io + Rg
1:\)_‘_ R_r :3\'4 22)
= SRy EeSrTR e - T €2 L
AL+ R3 F> + Rj R + Rz
kheu e) & ef S en, neithar ciode Dy nor diode Dy conducts and
ence,
Ry
i ] / -~
TR Rs 4+ Rg “1 (23)
Wigen RHi = <, whiile Ry, Rz, 23, and R4 are finite, it correspcnds

to o circuit simulaviing geed zocne; that i3, zero output when the input

ej remaias betwee: el aad e2. When the input is outside these limits,

the output Is given either by 421) @r by (22).
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Fig., B-2, Simulation of dead zone.
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Wien ep > ey > O, the circult shown in Fig. B-3 behaves as an

operational ampiifier with aa irfinite gain (since the feedback impe-

dance i infinite) and the output ey attemdts to bacome infinitely

become infinitely megative, the output

feedback path turcugh the dioce LDp. Hence, the output level remains

> ep, diode Dy conifucts «id the output remains at -ej.

fhen ey < 0, the cperation mey be ewplainécd similarly. The

Gifferencg being cioge D31 <ccaducts inestecd of dlode D) and the output

ol
‘

ircuit simulates coulomb friction where ej

0

Vnen Eell = 132l, TR

reprgse;ts tne velocliiy of the system and eg the coulomb rriction.,



Fig, B-3.

‘mulation of Coulomb. frictiou.
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L, Simulation of backlash.

Rald

The operation of the circulit shown in Tis. B-4 is as Follows:
- (&)

AssumiBz ti.at he charges ca C) and Cp are zero at time t = 0 and

o

that C1 = Cp, then so long as e} < ei < en, neither D] nor Do will

L 23 1 1
conduct and eg = C.

When e: exceeds ep, then Do will ceonduct and condensers C) and C2

~

-

will charga to the voltage el - €3 hence, g5 = H(ei - ep). nis

™.
+aC

reiation obtains until e roacnes eji,... and reverses direction.

fiaanl voltage across the condapsers is (ej. - ep), giving an output

of eq = Klejpq, = €27,
A5 ei fecregses from 1Ts maxinum value, eg remains constant until
ei reaches the value e] + (€i.. - @2) or &ip., = Lep - e1), because

»

racches tiiis value condensers C1 and Cop have no discharge patn.
Wnen ¢y reaches his vealue, D1 conducts and Cl and C2 are discharged to
the point where the cathode of D3 Is negative with respect to the

ience, the voltage across C) aid C2 is given by ec = ej - e3
znc the outpus by eo = Kleji - e¢jJ. Tais relation holds until ej

ncrecse in e: yields &g - kleigin - <1)

w
',.A
cl
(S0
<
(]
.

réacaes e _... A D
~mMin

) : . PR T —ye T -— 5PN = J
uatil e; reaches e + (ej.-, - el), causing D2 To conduct and the

oultput ey = Khe:i - c€y). A tebie or ep Vs €i 1s given below c&s ej goes

throuzh & complete <yc-e
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Fig. B-4, Simulation of backlash.
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=
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b

’ . < e
22 < ei < eipax

o
L
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€ilmin

ex + (ej i, - e1) S ej Se2
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B
0
K(ej - ep)

K(eipayx - €2)
K(ei - e1)
K(eimin - e1)

K(ej - e2)



5. Simuletion of Relzy wixh
“he onerecion of tiis
follows. Tor ej suffigiently
Then

-e2 and e5 will be +eon.

outpuc of amplificr 1

reacnes -ee2, the

¢i values, output of ampiifier 1 will
Hence ez wilil be -aej;. Increasing ej

equil to +ae; and emplificr 1 switches ©o its

Waen !eg!, the norlinzarivy is symuetri

[
el =

may be ixplained as
of amplifier I wilil be
As ej decreases and

switches.

now causas no changze until e

For more negative

be &t +ey, and eg is at -ej.

is

N
-

negative limit again.

cal.

78

The output, ep, 1s given by the following teble as ej goes through

a compiete cycle:

e5 €o
1. ei >0 Tep
2. ei S -aey -el
3. ae_ > ¢j > -&éep -ei
4. e; 2 aej +ep
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Fig. B-5. Simulation of relay with hystewcsis,
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APPENDIX &

Table 1. The Minimum ITAE Standard Forms, Zero-Displacement Error
Systems.

S2 + 1.48 + 1
s + 2.65% + 2,08 + 1
S + 2.65°% + 3.48% + 2.6S + 1
8% .+ 3.2LS" + 5.24S% + 5,245% + 3.248 + 1

ARE

8% + 3.858% + 7.468"% + 9.135% + 7.465%2 + 3.863 + 1

w

6 . -0.185 + 1%.8S" - 1M.6S% + 10.18% + 4.58 + 1

1165 & 21.84S% + 25.645% + 21.84S% + 13.14S8% + 5,128 + 1

i 5 tsel 5483 o
S¥ 4+ 5,128 # 13.1kS
i U S — =
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