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INTRODUCTION 

The subject of th1s paper is to derive generalized 

analytical expressions to predict fracture in viscoelastic 

polymer materials. To aid in understanding behavioral 

characteristics of viscoelastic materials, a basic back­

ground of viscoelastic models and their responses are 

presented and briefly discussed. 

Fracture from two types of cracks are considered; the 

first 1s a penny-shaped crack in a three-dimensional solid 

and the second is a crack the thickness of the material in 

a two-dimensional solid. Except for the constants, the same 

equations describe fracture in•both 2-D and J-D solids. The 

fracture equations were developed using expressions from 

Sneddon, Wnuk, Griffith and the theory of elasticity. By 

experimental observation /1/, fracture in viscoelastic 

materials occurs in three stages: latent, slow propagation, 

and rapid propagation. The normalized expression describing 

strain during the latent stage of fracture resulting from 

any type of loading for the J-D polymer solid is 

€. == N '"' + lt 'f (t - tr )<;6(-t)d,Z:l 

cp<o> L o J 
The hypothesized expression describing 3-D polymer solid 

crack length during the slow stage of fracture propagation 



resulting from any type of loading is 

And for the rapid propagation, no expression-was deve'ioped 

since at this point in time of fracture, the useful life 

of the material 1s already exhausted. 



CHAPTER 1 

VISCOELASTIC MODELS 

This chapter presents four physical models (see 

Figure (1-1)) for the purpose of analytically representing 

the behavior of real viscoelastic materials. The model 

behavior patterns are first described 1n constitutive 

equations which are then used to derive creep and relaxation 

tests . Creep and relaxation tests for different models are 

mathematically and graphically compared. Viscoelastic 

operators for determining viscoelastic stresses and strains, 

creep compliance and relaxation moduli, are derived for use 

in subsequent chapters. Now.that the viscoelastic models' 

responses are known, the relative ease of mathematical 

computation and response similarities are pointed out. 

Finally, ideal generalized models are discussed along with 

stating the simpler·models• adequacy and simplicity. 

1-1 Constitutive Equations 

Constitutive equations relate stress, strain, stress rate 

and strain rate and include terms characterizing the material 

properties. One can synthesize the constitutive equations for 

viscoelastic models by first summing the stress or strains 

- or·- their rates for each section of the model and then 

substituting the constitutive equations for the springs 



and dampers, which are respectively 

(1-1) 

(1-2) 

Consider the Maxwell Model where the total strain of the 

.model 1s the sum of the strain .. for the spring and the damper. 

(1-J) 

The stress or stress rates for the model, spring and damper 

.. .are identical, which gives 

• • • 
�

=
<,s =

O-d 

(1-4) 

-Before one can substitute the damper constitutive equation 

into the equation (1-J} of total strain, the total strain 

rates must be determined. Obtain these strain rates by 

.. . taking the time derivative of equation (1-J) • 

• • • 
(1-5) 



The time derivative of equation (1-1) is 

• • 
(f' = Ee. 

s s 
(1-6) 

Now put equations (1-6) and (1-2) into equation (1-5)which 

yields 

• • 
€ = Os  + CJd 

E � 
(1-?) 

Since the stresses and stress rates in the spring and 

damper sections are the same as expressed by equation (1-4); 

equation (1-7) be�omes 

(1-8) 

the constitutive equation for the Maxwell Model. 

The Voigt-Kelvin constitutive equation is derived by 

summing the stresses of the spring and damper. 

(1-9) 

This model's equal strains and strain rates of the spring 

and damper are expressed by 

€.=e =e 

(1-10) 
• • 
6=e:. =€ 

d 

5 



By substituting equations (1-1), (1-2) and (1-10) into 

equation (1-9), the Voigt-Kelvin constitutive equation is 

(1-11) 

The Model 2 constitutive equation is obtained by 

summing the strains of the spring and Voigt�Kelvin Model 

sections which are respectively denoted by subscripts 1 and 2. 

€= €. + e 
1 2 

(1-12) 

Also, the stresses and stress rates in the two sections are 

identical. 

• • • 
a'= <r- = <!' 

1 2 

(1-13) 

First, determine the strain of section 2. From the 

Voigt-Kelvin constitutive equation (1-11) and equation 

(1-13), the strain of section 2 is 

• 
(1-14) 



·prom equation (1-12), the strain rate of section 2 1s 

(1-15) 

and from equations (1-6) and (1-13),the strain rate of 

section 1 is 

(1-16) 

( 

Now by substituting equations (1-15) and (l-16) into equation 

(1-14), the strain of section 2 is 

(1-11) 

and from equations (1-1) and (1-13), the strain of section 1 

1s 

€ = a-
1 � 

(1-18) 

Finally, the sum of the strains from sections 1 and 2, 

expressed by equations (1-�7) and (1-18), gives the consti­

tutive equation for Mod.el 2. 

• • 
€+ e =O' + n(l"' (1-19) 

'C2 � El "l 2 



Derive the Model 3 constitutive equation by summing 

the stresses of the spring and Maxwell Model sections which 

are respectively denoted by subscripts 1 and 2. 

(1-20) 

Also the strains and strain rates for the two sections are 

identical. 

€. =€ = € . 1 2 

• • • 
. €= g = € _ 1 2 , 

(1-21) 

From equations (1-5) and (1-21), the strain rate of the 

Maxwell section is 

(1-22) 

Solve for the strain rates of the spring and damper in 

section 2. The spring strain rate from equation (1-6) is 

(1-23) 

where the stress rate of this spring is evaluated �Y taking 

the time derivative of equation (1-20) and by applying 

8 



·equation (1-4) to section 2. 

(1-24) 

Evaluate section r stress rate by applying equations (1-6) 

and (1-21) to equation (1-24). 

(1-25) 

9 

Substitute equation ( 1-25) tnto equation (1:-23) and the strain 

rate for spring of section 2 takes the form 

(1-26) 

From equation (1-2), the strain rate of the damper in 

section 2 is 

e = 6a2 
d2 -

'l 2 

(1-2?) 

where the stress of the damper in the Maxwell section is 

determined from equation (l-20)_us ing equation (1-4). 

(1-28) 

Evaluate section 1 stress by applying equations (1-1) and 

(1-21) to equation (1-28). 



(1-29) 

Substitute equation (1�29) into equation (1-27) and the 

strain rate for the damper of section 2 takes the form 

• li'�e E d2 = _c::r-_-_J. __ 
??2 

(1-)0) 

Finally, by substituting equations (1-26) a�d (1-JO) 1nto 

10 

(1-22) and simplifying, the Model 3 const1tut1ve equation is 

• • 
e +!!!.§.. =er+ 

1-2 Creep 

n n 
(1-)1) 

Viscoelastic models are subject�d to standardized tests 

·.--. -�::.: to determine and compare model behavor1al characteristics. 
_ :-_;.:�· _·:·,r·>· 

A standard creep test shows a model's elastic extension 

responses as a function of time due to a known applied 

static load. 

Before exploring the creep of viscoelastic models, it 

1s important that two types of elastic moduli be understood, 

glassy and rubbery. A single elastic spring will extend 

instantaneously upon sudden application or a load. Thus 

the stresses and strains are related by an instantaneous 

elastic modulus -- this is called a glassy modulus . When 

- dealing with viscoelastic models, the glassy modulus is the 

acting elastic modulus for only a short time after the load 

has been applied. A single spring or a complex arrangement 



of springs and· dampers may have a glassy modulus . The 

--elastic extensions during-the short lifetime of the glassy 

modulus does not include any extensions due to dampers. 

11 

The rubbery modulus relates stresses and strains during 

a long time period and includes those extensions allowed 

after some time by dampers. 

Creep Eg ua ti ons 

The equation expressing creep for a viscoelastic model 

.. 1s determined by subs ti tu ting a constant stress into its 

.constitutive equation.and solving for the resulting strain . 

While solving the creep equation, a constant of integration 

arises. Initial conditions are applied to both the model 

and the general solution of creep and the two are then 

equated to solve for the integration constant • 

. Substitution of a constant stress into the Maxwell. Model 

constitutive equation (1-8) yields 

€, = (1-J2) 

Separate variables and integrate to obtain the general 

solution .  

€. = �t + C (1-JJ) 

-Establish the initial conditions . At time zero, a constant 
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load was applied and the only instantaneous extension allowed 

by the glassy modulus is from the s�r1ng, thus 

t = 0 

E = E g 

(1-J4) 

A�plying the initial conditions to the general solution 

equation (1-JJ) gives 

€,(o) = C (1-J5) 

Now consider the initial response of a model. The model's 

immediate stresses and strains-must be related by the glassy 

modulus of elasticity as follows: 

(J= E €. 
g 

(1-J6) 

From equation (1-36) and the initial conditions equation 

(1-34), the Maxwell Model instantaneous strain is 

€(0) = 0-o ,- (1-J?) 

Equate equations (1-)5) and (1-)7) to solve for the constant. 

C = oo (1-JB) 

B7 substituting the constant equation (1-J8) into equation 

(1-JJ), the final creep equation for the Maxwell Model 



becomes 

(1-39) 

For the Voigt-Kelvin Model, substitute a constant 

stress into its constitutive equation (1-11) to obtain 

(1-40) 

Since equation (1-40) is a linear first-order differential 

equation, the general solution is 

E = <f'o + Ce 
E 

-t 
,c 

(1-41) 

13 

The initial conditions are a constant stress and no extension 

which are related by an infinite glassy modulus. 

t = 0 

O'= � 
E =00 

g 
c(o) = 0 

(1-42) 

Applying the initial conditions to the general solution for 

.. creep, equation (1-41) gives 

E (o) = C + <Jo 
E 

261074 

OUTH D KOTA STATE -u IVERSlTY LLRA.RY 

(1-43) 



The initial elastic behavior of the model follows equation 

(1-36) . By applying the 1nit1al conditions, equation (1-42), 

to equation (1-36) , the initial model strain is 

c(o) = 0 (1-44) 

Equate .equations (1-43) and (1-44) to solve for the 

integration constant. 

C = -<f"'o (1-45) 

Substitute equation (1-45) into the general solution equation 

(1-41) to obtai� the creep equation of the Voigt-Kelvin Model. 

(1-46) 

For Models 2 and 3, follow a procedure similar to the 

previous two models. Substitute a constant stress into 

Models 2 and 3 constitutive equations (1-19) and (1-31) and 

solve the resulting first-order linear differential equations 

for their general solutions. The two models initial con­

ditions are the constant stress and glassy moduli that permit 

1nstantQneous strains. For Models 2 and 3 the initial 

conditions are respectively 

t = 0 

CJ= a-
0 

E c: E 
g 1 

(1-4?) 
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and 

t = 0 

(1-48) 

Apply the corresponding initial conditions to the general 

s olutions and Models 2 and J, then equate the two applications 

· o� initial conditions for each model to solve tor the general _ 

.s olut1ons• constants C which yield 

(1-49)' 

and 

(1-50) 

respectively as the equations of creep for Models 2 and J. 

Creep Compliance 

The creep compliance of a viscoelastic model is the 

resulting strain per unit or applied stress. It is a simple 

matter to obtain the creep compliance for each of the models 

discussed in this chapter by d1v1d1ng the creep equations 

(1-39), ( 1-46 ), (1-49) and (1-50) by a unit or constant stress. 
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The creep compliances are: 

Maxwell Model 

(1-51) 

Voigt-Kelvin Model 

- e =tJ (1-52) 

(1-53) 

Model 3 

J = 

[ .=!!! tJ 

1 - :2e

n 

(1-54) 

Creep compliance to viscoelastic models serves the same 

purpose as the modulus of elasticity does with elastic solids. 

Creep compliance, if known, allows one to determine the 

resulting strain of a model upon application of any type or 

stress. Creep compliances of viscoelastic models permit 

quick mathematical comparisons of the d ifferent behavio�al 

characteristics. 

Creep Curves 

Creep curves are used for quick visual comparisons of 



viscoelastic model responses . Graph (1-1) shows the creep 

curves for the models discussed in this chapter. The 

curves are plots of the creep equations; but the curves may 

also be explained by observing model behavior. 

As one can see by observing the curves, the Maxwell 

Model represents a linear viscoelastic fluid. Immediately 

after loading, the model extends via the spring only and then 

.after some time, the damper flows with·a constant velocity, 

. .  linearly increasing the strain • 

. The Voigt-Kelvin Model represents a viscoelastic solid 

. with.no immediate response . When the stress 1s applied, 

.. . ·the strain that would occur ins_tantly if no damper was 

present is approached exponentially. 

Models 2 and J represent viscoelastic material known 

as the standard linear solid . Both models have identically 

.shaped creep curves and permit the instantaneous strain of 

the Maxwell Model and then increase the strain exponentially 

. like the Voigt-Kelvin Model. 

1-3 Stress Relaxation 

Stress relaxation is another test used to characterize 

·· a viscoelastic model. The relaxation test shows how a 

model's stress decays as a function of time after a known 

constant strain has been applied . 

Relaxation Equations 

Viscoelastic model stress relaxation is derived in a 
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fashion similar to.creep, except now a constant strain is 

imposed and the resulting stress is determined using the 

.model constitutive equation. As with creep, constants of 

integration are solved for by applying the initial . conditions 

to both the general solution of relaxation and the model and 

then equating the two. 

The Maxwell Model is derived by substituting a constant 

strain into the constitutive equation (1-8) .  

(1-55) 

Separate variables, and integrate; this gives the general 

solution to equation (1-55) . 

(j' = Ce 

-t 
� 

(1-56) 

. ,  
Similar to equation (1-J4), the initial conditions are 

t = 0 

€ = € 
E = E g 

0 
(1-57) 

which, when applied to the general solution equation (1-56) ,  

Yields 

O'(o) = C (1-58) 

and when applied to the initial. model behavior equation 



(1-36) yields 

<f'(o) = E eo 

Equate equations (1-58) and (i-59) to obtain 

19 

(1-59) 

(1-60) 

Substitute·equation (1-60) into the general solution equation 

(1-56) for the relaxation equation of the Maxwell Model. 

-t 

(J' = Re e 
0 

(1-61) 

Voigt-Kelvin models do not experience any stress 

relaxation because of the physical arrangement of the spring 

and. damper connected in parallel. A strain relaxation does 

occur, however, if the model is given an initial strain and 

then allowed to relax under zero stress. To obtain the 

stratn relaxation equation, substitute zero stress into the 

constitutive equation (1-11) and solve for the strain • 

€.+..§:_ = O (1-62) 

The general solution for the strain is 

-t 

€=Ce (1-6J) 

The initial conditions are 

(1-64) 
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and when applied to the general solution equation (1-6)), the 

value ot the integration constant is 

C • € 
0 

(1-65) 

Substituting the constant equation (1-65) into equation (1-6)) 

gives the strain relaxation t�r the Voigt-Kelvin Model. 

e - e. e 
' 0 

(1-66) 

Model 2 and J relaxation equations are derived by a 

procedure similar to the Maxwell Model. A constant strain 

1s substituted into both models' constitutive equations 

(1-19) and (1-)1) and the resulting t1rst-order linear 

d1tterent1al equations are solved for their general solutions. 

Except tor the constant strain here, instead of stress in the 

case ot creep equations, the initial conditions tor Models 

2 and) are the same as equations (1-47) and (1-48). They 

are respectively 

t - 0 

e •€ 
0 

(1-6?) 

E - Ei g 

and 

ta 0 

€•€ ( 1-68) 
0 

E • n 
g 



Apply the corresponding initial conditions to the general 

solutions and Models 2 and J ,  then equate the two applica­

· tions of initial conditions for each model to solve for the 

general solutions ' constants C which yield 

. (j' = El Eo [
E2 + E1 e 

-
,:] 

n 
(1-69) 

and 

E o  [E1 + 

- t] 
(f' = E2e 1'

2 
( 1-70 ) 
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. respectively as the relaxation equations for Models 2 and J .  

Relaxation Moduli 

Viscoelastic model stress relaxation modulus .is the 

.· resulting stress per unit of applied strain . Relaxation 

moduli are obtained by dividing the relaxation equations 

. (1-61) , (1-66) , (1-69 ) and (1-70) by a unit of strain . Note 

that the Voigt-Kelvin Model does not have any stress relaxa­

tion, just strain relaxation under zero stress . The relaxa­

tion moduli are as follows s 

Maxwell Model 

-t 

W = Ee ( 1 -71 ) 



Voigt-Kelvin Model  

-t 

W = e 

Model 2 

Model 3 

B!!].axation Curves 
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(1-72) 

(1-73) 

(1-74) 

The relaxation curves shown in Graphs (1-2) and (1-)) are 

used for quick visual comparisons of different viscoelastic 

model responses. The curves are plots of the relaxation 

equations ; but they may also be graphed by observing model 

behavior. 

After being strained, the Maxwell Mod.el has a high 

initial stress that is allowed to relax exponent ially to 

zero as the damper flows. 

The /oigt-Kelvin Model strain is relaxed as the stress 

of the spring returns the model to its neutral position at 

an exponential rate controlled by the damper. 

After be ing strained, Models 2 and J have a high init ial 

stress. The stress exponent ially decreases as the dampers 
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flow to a level maintained by the two springs 1n series for 

Model 2 and to that maintained by the section spring for 

Model 3 • 

. 1-4 Model Equivalence and Comnarison 

Any viscoelastic material described by Model 2 can also 

be described by Model J ;  they are equivalent. A comparison 

of creep and relaxation curves and equations for the two 

models reveals identical responses and forms. The models 

differ only in the magnitude and arrangement.s of their 

parameters. 

However, the creep comput�tions assoc iated with Model 2 

are �impler. This is logical since Model 2 is composed of 

two series connected sections and the strains of each 

individual section need only to be added to obtain the 

model creep. In fact this may be shown by adding the strain 

responses of the spring and series connected Voigt-Kelvin 

Model to an applied constant. stress. The result is the 

same creep equation (1-49 ) previously and independently 

obtained for Mode 1 2. Cre_ep of any generalized model 

composed of sections connected in series is the ·sum of their 

individual section responses. Such a simple addition of 

strains for each section is not possible with Mode1 3 where 

the sections are connected in parallel. 

Similarly, relaxation is easier to compute when models 

have their sections connected in parallel by an argument 
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similar to that used in creep. The Model 3 relaxation 

equation (1-70) may be derived independently by summing the 

stress responses of the spring and the Maxwell Model sections 

to an applied constant stress. The relaxation of any 

generalized model composed of sections connected in parallel 

1s the sum of their 1ndividua1 section responses. The 

computational advantages pointed out here may be used when 

deriving the material function equation (2-15) for some 

example. 

1 -5 Re1axation Times 

It is important to understand relaxation times when 

de� ling with generalized models or applications of visco­

elastic materials. The relaxation time for viscoelastic 

models is defined as the ratio of a viscosity coefficient 

to a modulus of elasticity. This time is the quickness of 

a viscoelastic response to reach static equ111briwn after 

an imposed stress or strain. During a relaxation test, 

for example, the stress in a Maxwell Model relaxes to ¼ 

or its initial value after a time period equal to the 

model's relaxation time. This is shown by the ratio of the 

Maxwell relaxation equation (1-61) evaluated at the relaxation 

time to 1t evaluated at time zero. 

ocn = 1 
� e 

(1-75) 

I .  



�1m1lar .stress ratios exist for the other models after a 

relaxation time passes. 

Of the models discussed so far, the· relaxation time 
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span may be a few seconds or several weeks depending on the 

.magnitudes of the model's modulus or elasticity and viscosity 

coefficient. But for each model there exists only one dis-

. crete relaxation time. Real materials and the models of the 

next section possess a continuous distribution of relaxation 

times that may range widely • 

. 1-6 Generali zed Models 

Since polymer type materials respond in a .manner 

represented by a continuous distribution of relaxation times, 

. . 1t does not appear that Model 2 would accurately represent 

real polymer materials. A model with a spring and n 

number of Voigt-Kelvin sections connected in series would 

.represent polymer creep response, for example, more accu-

- . -rately than Model 2. This model is the generalized Voigt­

Kelvin solid shown in Figure (1-2) and has the following creep 

equation obtained by summing the creep of each section s 

- e q;-i 
-L] 

(1-76 ) 

If some mechanism possessed a continuous distribution of 

retardation times, it would simulate real material perfectly. 



The creep equation for such a mechanism 1s given by the 

integral of Voigt-Kelvin elements from zero to infinity. 

(1-?7) 
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The Voigt-Kelvin moduli in equation (1-76) is replaced by a 

continuous weighting function in the integral of equation 

(1-77) .  This weighting function not only replaces the 

moduli, but may be used to emphasize any retardation times 

desired. 

The perfect simulation equation (1-77) , the creep of 

real materials, may be closely approximated by the Model 2 

creep equation (1-49) . Consider the amount of some real 

material's creep in one day. The spring and those Voigt­

Kelvin elements in equation (1-77) with short relaxation 

times, relative to the one day experiment, will all respond 

in a manner that approaches the spring in section 1 of 

Model 2. The small creep of those elements in the perfect 

model with relatively long relaxation times may �e neglected. 

And the average response of the elements whose relaxation 

times are near the same magnitude as the time of the exper­

iment is approximated by section 2 of Model 2. The disadvan-

tage of the Model 2 approximations of the perfect model may 

be offset by the easier mathematical treatment 

by Model 2. 

permitted 
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Similarly the generalized Maxwell solid shown in 

Figure ( 1-2) with n parallel connected Maxwell sections 

represents the stress relaxation ot real materials better · 

than Model J .  The Maxwell solid relaxation equations tor n 

.· and a continuous distribution ot relaxation times . are 

. . respect! vely 

( 1 -78 ) 

1=2 

and 

( 1 -79 ) 



CHAPTER 2 

J-D POLYMER FRACTURE IN LATENT STAGE 

The main objectives of this chapter are a one , to 

develop a general relationship of stress and strain at 

the edge of a penny shaped stationary crack in polymers ; 

_ and two , to predict when the crack will grow. The penny 

shaped crack shown in Figure (2-1) has a cross-sectional 

2 8  

. shape similar to that of  a cigar. Initially, Sneddon's 

tensile stress equations are the basis for deriving elastic 

strain expressions in the region of the crack tip for any 

arbitrary loading. However , at the crack tip , the strain is 

. undefined; this problem is solved by averaging the strain over 

. a small area in front of the crack using Wnuk ' s  relationship 

.of crack length to a small distance preceding the crack. Then 

the Elastic-Viscoelastic Correspondence Principle employs a 

viscoelastic operator and converts the strain from elastic 

to viscoelastic. The maximum strain any material permits is 

determined by applying a Griffith stress and 1 s  used to 

normalize the viscoelastic strain . The latent stage ends 

when the normalized strain becomes unity , the ma terial sepa­

rates and the crack propagates. Finally , examples of strains 

are · computed for two types of viscoelastic materials subjected 

- .to three types of stress loading patterns . 
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2-1 Averaged Maximum Elastic Strain 

The starting point for developing strain relations is 

Sneddon• s /2/ elastic stress equations in the plane z = 0 ot 

· the penny-shaped crack .  

2 0"'  [✓�� a'z = 

- 1 

(Jr = 

?;ffe [1f
2 

1 

1 

ere = 2 (J' [· 2v' 
�2 - 1' 

tCrz = ,ere = ,z;ez 

sin 
� 

-1 

] 

- hi + ½ ) ·sin-1 

� 

= 

hi + ½) sin-1 1] 
. � 

0 

(2-1) 

Since the Sneddon equations do not include the inertia 

effects,  the analysis of this paper must be restricted to a 

slowly propagating crack. The applied load tr will be 

expressed only in units of time t by substituting 

(2-2) 

Because this paper deals only with expressions at the crack 

tip, equation _(2 -1 )  may be simplified. At the crack tip, 

� = 1 which is an isolated singularity point . Expand · 

1 and sin-1 1 of equation (2-1) in a Taylors series 

about the point � = 1 .  



-1 r:::, ½ _r;::, s1n l = 1J: - -v 2 ( ). - 1 ) + 5-v2 · ( � - 1 ) + 
(? 2 l J !  

JO 

• • • 

In the vicini ty of the crack tip, all terms in equation (2-J) 

may be neglected except -½ 1 therefore 
( � - 1 )  

-½ 
1 = ( � - 1 )  

/ 2 1 V2 V � - 1 

-1 sin 1 = O 

ft 

(2 -4) 

at the. crack tip. Hence equations ( 2-1 ) applied near the 

crack tip simplifies, upon substitution of equation (2-4) 

to 

� = "'21 (f' 
� .J� - 1· 

er: = fi1 (J" 

� �  

<le =  2/2'v6' 
-n--,/� - 1, 

(2-5 )  



Now e lastic strain may be evaluated from the three d1men­

_s1onal stre s s -strain relations -- Hooke ' s Law yields 

6 z = � [ (f'z - -v' ( O"'r + <fa 
� 

€ r  = 1. [ CJ'r - -V ( � + 
E 

� � 

E.e 
-- � [ a; 

� = 'Crz 0 rz G 

- -v  ( a-- + a-: ) ] 
z r 

Ore = tCre 
G Osz = <'C e z  

G 

( 2-6) 
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The strain at the crack tip is given by combining equations 

( 2 -2 ) , { 2 -5 )  and ( 2 -6) 

E z = b <f> 
✓-�-----1 

€ r  = _b ___ <p __ 
4e - 1 

E8 = o 
rrz = o're = 

(2-? )  

Oe z = 0 

Det ermine the principal strains by substituting equation s 

(2 -? ) into the following determinant from the theory of 



elasticity: 

e - e r 

J2 . 

= 0 

expanding the determinant into a cubic equation and solving 

for the roots. The maximum root or principal strain is 

(2-8) 

which still has the singularity point at the crack tip. 

Eliminate the singularity point by averaging E 1  over 

a small area on the plane z = 0 in front of the crack tip ; 

see . Figure (2-1). The averaging area is a narrow strip of 

width f::l. wrap�ed around the crack edge. The small 

magnitude of 6. is related to the crack tip displacement 

by Wnuk /3/ (see Figure (2-1)  and equation (2-21)) and 

because of � •s small size, the averaging area may be 

approximated by 

Averaging Area � 2,n-- L � (2-9) 

Because the relationship of averaging distance to crack tip 

dis�lacement is used, this paper assumes the penny-shaped 

crack looks like Wnuk' s  cigar-shaped crack in Figure (2-1) . 



33 

Using the law of the mean for double integrals from calculus 

and equation ( 2 -9) , the averaged strain , d enoted  by <
0e�, 

becomes 

1 ( 2-10) 

After substituting equation (2-8) into (2-1 0) and integrating , 

the results are 

( 2-11 ) 

Since � 1 s  small,  

A /L is negligible c ompared to L/.6 and equation ( 2-11) 

simplifies to 

( 2-1 2) 

which 1s  the averaged maximum elastic strain. Equation ( 2-12 )  

may be expres s ed in dimens ionles s terms by multiplying by 

which yields 

(2-13) 



the average maximum elastic strain. Let the pre-superscript 

. o on the strain denote elastic as opposed to viscoelastic 

relations in the next section. 

2 -2 Averaged Maximum Viscoelastic Strain 

Introducing the elastic-viscoelastic correspondence 

principle taken from Wnuk /4/ converts elastic strain 

relations into viscoelastic relations. 

<e) = <
0

e1) + 1 'f ( t  - rr >(6
1 
< rr � 4 ,r;  

(2-14 ) 

where f is a material function characterizing a viscoelastic 

sample. For viscoelastic polymers, '(I 

litl 
J{oT 

s1mpli:fies to 

(2-15) 

tor polymer type materials. The examples or strain from 

Viscoelastic models shown later in this chapter use the 

creep compliances derived in Chapter 1 with arbitrary values 

tor the elastic and viscosity coet:r1c1ents. For the creep 

compliances or real materials, one may first decide what 

.aodel represents the material and then determine the proper 

magn1 tudes of the coefficients through experimentation •. 

By substituting equation (2-13) into equation (2 -14) one 

.obtains the general expression tor viscoelastic strain at 
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the crack tip 

This chapter deals with strains during the latent stage, 

1 . e. at times before material separation. For time t <  t*, 

the crack length is constant and equal to the initial length 

L0 and therefore X = 1. Equation (2-16 ) simplifies to 

( 2-17) 

2-3 Normali zed Viscoelastic S.train 

The strain equation ( 2-17) for the latent stage may be 

normalized by dividing by the maximum or limiting strain 

at the crack tip which is experienced as the material begins 

to separate. The limiting strain will be determined by 

applying a Griffith stress /5/. 

0 'Tl'EYu (tip) 
2 o 

2 ( 1  - V )L 

(2-18) 

Griffith stress is known for different materials and 1s that 

stress just required to produce material separation. By 

applying an instantaneous Griffith stress at time t = 0 to 

equation ( 2-1 7 ) ,  the limiting strain is obtained 

( 2-19) 



J6 

The Griffith stress must be included within c <p  (o ) of 

equation ( 2-18) and may be identified. To - do this expand s0
• 

0 
S = l!_ (2-20) 

Lo 

Wnuk /3/ relates delta to the displacement 1n the z- direction 

at the crack tip and the crack tip displacement with the 

Griffith stress 

6 = o£. u0 (tip) 

u o
 
(tip) = 2 ( 1 - --v2) 6"'"o 

2 
Lo 

,w E Y  
(2-21) 

Using these expressions and equation (2-20), the limiting 

strain equation (2-1 9) takes the form 

Finally, the limiting strain with the Griffith stress iden­

tif ied is obtained after multiplying and dividing equation 

( 2-22) by _ �  and simplifying, using equations 

1' �  
(2-18) and (2-21), to 

€
L 

= cp  (o) 

N,/? 

(2-23) 

Now if equation (2-17) is divided by equation (2-2J), the 
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normalized viscoelastic strain for the latent stage is 

€ =  N [¢ + ft � ( t - q; ) 'f ( ,c )d ,r;;] ,t, (o ) Jo ( 2-24 ) 

This equation is the ratio of existing strain as a function 

of time to the maximum strain at material separation and 1s 

always less than or equal to unity during the latent stage. 

When the normalized strain becomes larger than unity the 

latent stage is ended and the material at the crack tip 

separates, increasing the crack length. Remember that the 

strain in equation ( 2 -24 ) 1s valid only at the tip of a 

constant length crack • 

. 2 -4 Examples 

To demonstrate the theoretical derivation ' s  effec­

tiveness , the strains for two types of viscoelastic materials 

. under various loading patterns will be calculated and 

graphed. Then the validity of the theoretical results may 

be determined by comparison with experimental results. 

_ The Maxwell Model and Model 2 of Chapter 1 with the 

following arbitrary history of loading patterns will serve 

as examples for graphing equation ( 2 -24 ) 1 

¢ = 

</> = 

'P = 

H { t )  

s + 

s + 

at 

k s1nwt 

(2-25) 

( 2 -2 6 ) 

(2 -2?) 



The magnitude _of the first loading pattern, the Heaviside 

unit function, is taken as unity at time zero and may be 

. thought of as time t = o+ .  This defines cp ,  and therefore 

allows equation ( 2-24) to take on a finite magnitude, at 

. time t = O for H { t) as 

· <p ( o) = 1 ( 2 �28) 

.Now examples of normalized viscoelastic strain will be 

calculated and graphed • 

. _- -Maxwell Model with ¢, = H(t) 

First evaluate the material function using equation 

( 2 -1 5 ) . The time derivative of the creep compliance 

equation ( 1 -51) is 

J = _L 'l 0 

The creep compliance evaluated at time t = O 1s 

J ( o) = 1 
E 

( 2 -29) 

( 2-30) 

Now the material function ls evaluated by substituting 

equations ( 2-29 ) and ( 2-30) into ·equation ( 2-15) 

( 2 -31 ) 

By substituting equations ( 2-28) , ( 2-25) and (2-31) into 



equation ( 2-24) , the normalized. strain takes the form 

(2-32) 

The solution to equation ( 2-32) is 

(2-33) 

Maxwell Model with ef> = s + at 

For the linear loading pattern, substitute equations 

(2-26) and ( 2-31) into the normalized strain equation 

{ 2-24) and solve ; the solutiQn is 

(2-34) 

and is graphed for different magnitudes of loadings in 

Gra�hs ( 2-2A & -2B). 

Maxwell Model with ¢, = s + k sin v.r t 

Similarly for the sinusoid al loading, substitute 

equations (2-27 } and (2-31) into equation (2-24) and solve. 

The solution is 

E. = N [1 + 81 + D t in B 01 + � - � cos B 01] 
· (2-35) 

and 1s graphed. for different ma.gni tudes of loading in 

Graphs ( 2-JA , -JB & -JC). 
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Model 2 with ¢ = H(t) 

The solution to the normalized strain is calculated 

by following a procedure similar to that :for the Maxwell 

Mod el. Evaluate the material function equation ( 2-15) by 

taking the derivative of the creep compliance equation 

(1-53) and dividing by the creep compliance evaluated at 

time t = o .  

-t 

= El e q:;2 ( 2-36) 
'l 2 
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Substitute equations ( 2-36) , . (2-25) and ( 2-28) into equation 

(2-24) and the normalized strain takes the form 

E. = N IH ( t )  + E1 
L 'l 2 

The solution to equation (2-37) is 

E. .. N [1 + v ( 1  - e - e 2 � 

( 2-J7) 

(2-38) 

Equation ( 2-J8) is graphed for different loadings in 

Graphs (2-4A & -4B) . 

Model 2 with q> = s + at 

Substitute equations ( 2-26) and ( 2-36) into equation 

( 2-24) to evaluate the normalized strain. The result is 



€ •{N 1 + K(l + v) 92 + v(l - K)(l  

which 1s  graphed tor d1tferent magnitudes ot loading in 

Graphs (2-5A & -SB) . 

Model 2 w1 th q, = s + k s1n"t1Tt 

And for the last example of v1scoelast1c fracture 

during the latent stage, substitute equations (2-27 ) and 

(2-)6) into equation (2-24) and solve. The solution is 

e. = N [l + D sin u 0 2 

cos U 9
2 

+ 1 sin 
u ( 2 -40 ) 

Which is graphed for different loading magnitudes in 

Graphs (2-6A ,  -6B , -6C & -6D) . 

Graphs 
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Graphs ot each previous example show the model responses 

to different loadings and how each response alters with 

changes in magnitudes of relaxation times and other 

constants . In general, the normalized strain curve 

asymptotes and mean values in the case of sinusoidal loading, 

are monotone increasing with time for the Maxwell Model, 

due to the series connected damper, and are constant for 

Model 2. Ignoring fatigue effects, · the useful life ot 

those materials whose normalized strain never reaches unity 
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is infinite. The penny-shaped cracks will grow for those 

examples where normalized strain curves become unity and 

larger. The latent stage graphs are not a valid analysis 

for magnitudes larger _than unity, beyond which the fracture 

propagation analysis must be used to determine the useful 

life of the sam�le. 
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CHAPTER J 

3-D POLYMER FRACTURE IN SLOW PROPAGATION 

During the slow growth stage of fracture, the crack 

propagation is assumed to be a function of the strain rate. 

The general equation of motiQn expressing crack length is 

· derived by taking the time derivative of the viscoelastic 

strain expression of Chapter 2. Examples of crack growth 

are computed for two types of viscoelastic materials 

. . - subjected to a constant stress • 

. . . .  J-1 Strain Rate Hypothesis 

To solve for the equation of motion during the slow 

fracture propagation stage, hypothesize that the- crack tip 

movement is a function of the strain rate. The time 

.der1vat1ve of equation (2 -16 ) ,  using Leibniz' rule for 

differentiating the integral, is 

(t - � )  

(J-1) 

This is the general equation of motion for viscoelastic 

polymer materials. Notice the principal strain was 

replaced by the limiting strain since du�ing crack growth 

the strain at the crack tip is at its maximum and the 
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material is separating. 

3-2 Examples 

The same models used in Section 2-4 will be used 

here with the Heaviside unit loading to demonstrate fracture 

propagation through a viscoelastic sample during the slow 

stage . 

Maxwell Model w1 th ef> = H ( t) 

Upon substitution of equations (2-31 ) and ( 2-25 )  into 

equation (J-1 ) the equation o� motion becomes 

(J-2) 

The solution to the equation of motion is obtained by 

separating variables and integrating from 

X = 1 to t = t and X = X 

t = t * and 

-8 
X = q + (1 - q)e J (J-J ) 

which is graphed 1n Graph (J-1). With the application of a 

constant load, the strain rate is assumed to be constant for 

a given material. 

Model 2 wl th ¢ = H ( t)  

By substituting equations (2-J6) and (2-25) into 

equation ( J-1) and taking the partial derivative of the 
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integrand, the equation of motion becomes 

()-4) 

The integral equation ( J-4) solution is derived by substitut­

ing equations ( 2-J6 ) and ( 2 -25 ) into ( 2-16 ) ,  remembering the 

crack tip strain during fracture propagation is the limiting 

strain, and solving for the integral. 

Now if equations (J-5) and ( J-4) are combined and simplified , 

the resulting differential equation is 

i: + gs_ X - 2P i = 0 

,c2 IC2 
(J-6) 

Equation ( J-6 ) is solved by separating variables and 

integrating from t = t and X = 1 * 
and X = x.  The solution 1s 

X = Z + ( 1  - Z)e 

-Q e 4 

to the present t = t 

( 3-7 ) 



which is plotted in Graphs ( J-2A & -2B) for different 

- -values of P and Q. 

Graphs 

Graphs of both examples above show how the crack 

length increases with time for constant loadings and how 

the crack growth is altered with changes 1n magnitudes of 

the relaxation times and other constants. 

As long as the constant q in the Maxwell Model (or 
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Z in Model 2 )  ls unity or greater, the crack will grow at a 

predictable rate. When q ( or Z) is less than unity, the 

crack length decreases with increasing time. It may be 

verified that for stresses equal to or greater than the 

...... . Gr1ffi th stress the crack is unstable and thus the range of 

negative slopes dX ) 
d94 

is interpreted here as the 

instability or rapid propagation range , cf . Cherepanov /6/. 



CHAPTER 4 

2-D POLYMER FRACTURE 

The 2-D case of viscoelastic fracture 1s, as one 

might expect, similar to the 3-D case except for some 

constants. The procedure followed here is like that in · 

Chapters 2 and J a  only now, start with Sneddon ' s  stress 

. equations tor the 2-D case. The elastic strain 1s averaged 

over a small distance, instead of area, using the same 

Wnuk expression for the small distance prec.ed1ng the crack. 

The same Elastic�Viscoelastic Correspondence Princ1p1e is 

. used, but to normalize the viscoelastic strain, the. 2 -D 

Griffith stress expression replaces the J-D counterpart. 

No examples were computed since the reaults would be ident1-

- - cal to the J-D case except for the assumed values or the 

. constants and should be interpreted 1n the same fashion as 

· before. 

4-1 Averaged Maximum Elastic Strain 

Sneddon ' s  /2/ elastic stress equations along the crack 

line are 

<S"x = <S' 

� 

er; = a- (4-1) 

rcxy = 0 



which has an isolated singularity at the crack tip point 

� = 0 i.e. when r = o .  To obtain the strains at the 

crack tip, use the two-dimensional Hooke's Law. 

E x  = � [cr-x Y1 
€y 

= 
� [ � - v'(Jx] 

(xy = rrxy 
G 

(4-2) 

By substituting the stress equations ( 4-1) at the crack tip 

into equations ( 4-2) the strains at the crack tip are 

Ex 
= f <p 

E y  = f cl> (4-J) 

fxy = 0 / 

From the theory of elasticity, the principal strains are 

determined by substituting equations (4-J) into the 

following determinant : 

€ - € y 

= 0 

48 
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expanding the determinant into a quadratic equation and 

solving for the roots. The maximum root or principal strain 

is· 

E = f c/> 1 � 
(4-4) 

Now eliminate the singularity point r = 0 by averaging the 

maximum principal strain over a small interval distance � ,  

f:::::. is taken from Wnuk /3/ ahead of the crack tip. 

(4-5) 

Substitute equation (4-4 )  into the averaging equ�t1on (4-5) 

and integrate to obtain the mean value of strain as 

( 4-6 )  

And as expected, equation ( 4-6)  is identical to equation 

(2-12) except the loading constant g replaces c. And 

because of the similarity between the averaged principal 

elastic strain equations (4-6)  and (2-12), the viscoelastic 

strain �alations for the two-dimensional case may be 

obtained from the three-dimensional case by replacing the 

loading constant c by g. Thus the viscoelastic strain 



equation (2-16) becomes 

4-2 Latent Stage Normalized Strain and Slow Propagating 

Stage Equation 

so 

The procedure used to derive the normalized strain for 

the 2-D case 1s identical to that of Section 2-J. Math­

ematical terms applicable to the 2-D materials are 

displacement at the crack tip from Wnuk /7/ 

and the Griffith stress from Griffith /5/ 

2EY u0 (t1p)  
"fr( 1 - -V2 )Lo 

(4-8) 

(4-9) 

which correspond respectively to 3-D equations (2-21) and 

(2-18). The resulting normalized strain for the 2-D 

latent stage is 

(4-10) 
'\ 

The 2-D equation of fracture propagation is found by 



taking the time derivative or equation ( 4-7 ) as 1n 

Section J-1. 

All examples and graphs tor 2-D materials are the 

same as those ot Chapters 2 and 3 except the constants c 

and N are replaced by g and M respectively. 
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FIGURE 1-2 
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FIGURE 2 - 1  
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GRAPH 1-1 
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GRAPH 1-2 
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GRAPH 1- 3 
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GRAPH 2-2B LATENT STAGE 
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GRAPH 2-3A LATENT STAGE 
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GRAPH 2 - 3B LATENT STAGE 
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GRAPH 2-JC LATENT STAGE 
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GRAPH 2- 4A LATENT STAGE 
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GRAPH 2-SA LATENT STAGE 
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GRAPH 2-5B LATENT STAGE 

MODEL 2 NORMALI ZED STRAIN WITH <p = s + at AND VARIOUS K 

€ = N [l + K ( 1 + V )  0 
2 

+ V ( 1 - K )  ( 1 - e -
8 

2 � 

1 . 0 ---------------------_,_ __________ ....,.. ________ _ 

. 9  

• 8 

. 7  

. 6  

. s  

• 4 

r . 2  

. 1  
N = . 1  & v = 2 throughout this graph 

2 3 
82 

0\ 
...J 



GRAPH 2-6A LATENT STAGE 
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GRAPH 2-6B LATENT STAGE 
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GRAPH 2-6C LATENT STAGE 
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GRAPH 2-6D LATENT STAGE 
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GRAPH 3- 1 FRACTURE PROPAGATION 
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GRAPH 3-2A FRACTURE PROPAGATION 
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GRAPH 3-2B FRACTURE PROPAGATION 
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?S 

CONCLUSIONS 

The synthesized strain equations have been developed to 

predict fracture initiation 1n viscoelastic solids. 

Delayed fracture is inevitable in loaded materials whose 

behavior is represented by the Maxwell Model. According to 

the theory developed , a Maxwell material will fracture under 

an arbitrarily small load if sufficient time to failure is 

allowed. 

Contrary to this behavior, the linear viscoelastic solid 

. represented by a standard ;-parameter model exhibits a distinct 

range of loading magnitudes for which delayed fracture may 

occur. Below a certain stress level the delay time becomes 

infinite and this sets the lower limit on the applied stress 

(endurance limit). The upper limit .is the Griffith load at 

which fracture occurs instantaneously . Within these bounds 

the delay time is finite and a certain amount of subcritical 

propagation will take place before the terminal instability 

(equivalent to catastrophic fracture) is attained. 

The time for fracture initiation and the rate of slow 

growth under various ranges of loading are predicted 

theoretically . 
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