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INTRODUCTION

The subject of this paper is to derive generalized
analytical expressions to predict fracture in viscoelastic
polymer materials. To aid in understanding behavioral
characteristics of viscoelastic materials, a basic back-
ground of viscoelastic models and their responses are
presented and briefly discussed.

Fracture from two types of cracks are considered; the
first 1s a penny-shaped crack in a three-dimensional solid
and the second 1s a crack the thickness of the material in
a two=dimensional solid. Except for the constants, the same
equations describe fracture in both 2=-D and 3-D solids. The
fracture equations were developed using expressions from
Sneddon, Wnuk, Griffith and the theory of elasticity. By
experimental observation /1/, fracture in viscoelastic
materials occurs in three stages: 1latent, slow propagation,
and rapid propagation. The normalized expression describing
strain during the latent stage of fracture resulting from

any type of loading for the 3-D polymer solid 1is

€ = ¢>No' ¢ + _/:y?(t - T)H(T)dT

The hypothesized expression describing 3-D polymer solid

crack length during the slow stage of fracture propagation



resulting from any type of loading is

[ 1. t b
6L= c 4»x% +{x%x + f féqﬂ(t -q:)4>(rc)x;"(rc)drc +
s o °t

=
P orpe®

And for the rapid propagation, no expression was developed
since at this point in time of fracture, the useful 1life

of the material 1s already exhausted.



CHAPTER 1
VISCOELASTIC MODELS

This chapter presents four physical models (see
Figure (1-1)) for the purpose of analytically representing
the behavior of real viscoelastic materials. The model
behavior patterns are first described in constitutive
equations which are then used to derive creep and relaxation
tests. Creep and relaxation tests for different models are
mathematically and graphically compared. Viscoelastic
operators for determining viscoelastic stresses and strains,
creep compliance and relaxation modull, are derived for use
in subsequent chapters. Now.that the viscoelastic models®
responses are known, the relative ease of mathematical
computation and response similarities are pointed out.
Finally, ideal generalized models are discussed along with

stating the simpler models' adequacy and simplicity.

1-1 Constitutive Equations

Constitutive equations relate stress, strain, stress rate
and strain rate and include terms characterizing the material
properties. One can synthesize the constitutive equations for
viscoelastic models by first summing the stress or stralns
or thelr rates for each section of the model and then

substituting the constitutive equations for the springs



and dampers, which are respectively

g = E€g (1-1)
=M€, (1-2)

Consider the Maxwell Model where the total strailn of the

-model 1s the sum of the strain for the spring and the damper.
€=¢€,+€, (1-3)

The stress or stress rates for the model, spring and damper

are ldentical, which gives

= 0¢_,= J.
8 d (1_4)

g s d

]
9
"
9

Before one can substitute the damper constitutive equation
into the equation (1-3) of total strain, the total strain
rates must be determined. Obtain these straln rates by

taking the time derivative of equation (1-3).

e='e_ * ed (1-5)



The time derivative of equation (1-1) 1is
o> = EE (1-6)
s

Now put equations (1-6) and (1-2) into equation (1-5)which

yields
€ = 08 + 04 (1-7)

Since the stresses and stress rates in the spring and
damper sections are the same as expressed by equation (1-4);

equation (1-7) becomes

E=C+0 (1-8)
E

!

the constitutive equation for the Maxwell Model.
The Voilgt-Kelvin constitutive equation is derived by

summing the stresses of the spring and damper.

= +¢o (1-9)
s d

This model’s equal strains and strain rates of the spring

and damper are expressed by

e:e =ed
B
(1-10)
- -e

B da



By substituting equations (1-1), (1-2) and (1-10) into
equation (1-9), the Voilgt-Kelvin constitutive equation is
d= EE+ ME (1-11)

The Model 2 constitutive equation is obtained by
summing the stralns of the spring and Voigt-Kelvin Model

sections which are respectively denoted by subscripts 1 and 2.

E=€ +€ : (1-12)
1 2

Also, the stresses and stress rates in the two sectlions are

identical.
¢=G‘ =0'\
1 2
(1-13)
S=6 =
1 2

First, determine the strain of section 2. From the
Voigt-Kelvin constitutive equation (1-11) and equation

(1-13), the strailn of section 2 1is

o (1-14)



From equation (1-12), the strailn rate of section 2 1is

Mm
]
mo

- €, (1-15)

and from equations (1-6) and (1-13), the strain rate of

section 1 1is
€ = (1-16)
Ey

Now by substituting equations (1-15) and (1-16) into equation

(1-14), the strailn of section 2 is

&

€ = 55, <= =
2 %_Z_G"" 712(%“1_ € (1-17)

and from equations (1-1) and (1-13), the strain of section 1

is

(S (1-18)

1

=719

Finally, the sum of the strains from sections 1 and 2,
expressed by equations (1-17) and (1-18), gives the consti-

tutive equation for Model 2.

€+ € =0 + n& (1-19)
By



Derive the Model 3 constitutive equation by summing
the stresses of the spring and Maxwell Model sections which

are respectively denoted by subscripts 1 and 2.
G"=o; + S (1-20)

Also the strains and strain rates for the two sections are

identical.
€=€1 =€2
(1-21)
€=-€1=€2‘

From equations (1-5) and (1-21), the strain rate of the
Maxwell section is

+€d (1-22)

€5==€% 2

2

Solve for the strain rates of the spring and damper in

section 2. The spring strailn rate from equation (1-6) is

(1-23)

a3
14V

s2

where the stress rate of this spring 1s evaluated by taking

the time derivative of equation (1-20) and by applying



‘equation (1-4) to section 2,

(Y;z il G; (1-24)

Evaluate section 1 stress rate by applylng equations (1-6)

and (1-21) to equation (1-24).

g, =3-E€ (1-25)

Substitute equation (1-25) into equation (1-23) and the strain

rate for spring of sectlon 2 takes the form

-

s =qa-Ee (1-26)
s2 -_i;;——-

From equation (1-2), the straln rate of the damper in

section 2 1is

€ =0a 1-27

d2 jT- ( )
2

where the stress of the damper in the Maxwell sectlon is

determined from equation (1-20) using equation (1-4).

G;z = 6‘—6*1 (1-28)

Evaluate section 1 stress by applylng equations (1-1) and
(1-21) to equation (1-28).



N

10

%a

Substitute equation (1-29) into equation (1-27) and the

strain rate for the damper of section 2 takes the form

édz = 9.“—7:16_ (1-30)
2

Finally, by substituting equations (1-26) and (1-30) into
(1-22) and simplifying, the Model 3 constitutive equation is

€ + me€ =°§+J“_ (1-31)
n :

L
n n 2

1-2 Creep

-

Viscoelastic models are subjected to standardized tests
~to determine and compare model behavorlal characterlstics.
’A standard creep test shows a model's elastic extension
responses as a function of time due to a known applied
static load.

Before exploring the creep of viscoelastic models, it
is important that two types of elastic modull be understood:
glassy and rubbery. A single elastic spring will extend
instantaneously upon sudden application of a load. Thus
the stresses and strains are related by an instantaneous
elastic modulus -- this i1s called a glassy modulus. When
dealing with viscoelastic models, the glassy modulus is the
acting elastic modulus for only a short time after the load

has been applied. A single spring or a complex arrangement



of springs and dampers may have a glassy modulus. The
-elastic extensions during the short lifetime of the glassy
modulus does not include any extensions due to dampers.

The rubbery modulus relates stresses and strains during
a long time period and includes those extensions allowed

after some time by dampers.

Creep Eguations

The equation expressing creep for a viscoelastic model
i1s determined by substituting a constant stress into its
.constitutive equation.and solving for the resulting strain.
While solving the creep equation, a constant of integration
arises, Initial conditions are applied to both the model
and the general solution of creep and the two are then
equated to solve for the integration constant.

Substitution of a constant stress into the Maxwell Model

constitutive equation (1-8) yields

L]
e = 0o (1-32)
Separate variables and integrate to obtain the general

solution,.

€ = GBt+C (1-33)
m

-Establish the initial conditions. At time zero, a constant
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load was appllied and the only instantaneous extension allowed

by the glassy modulus 1s from the spring, thus

o

= a0, (1-34)
E

mmc)cr

Applying the initial conditions to the general solution

equation (1-33) gives
€(o) = ¢C ' (1-35)

Now consider the initial response of a model. The model's
immediate stresses and strailns must be related by the glassy
modulus of elasticity as follows:
d=E € (1-36)
g
From equation (1-36) and the initial conditions equation

(1-34), the Maxwell Model instantaneous strain 1is
€(o) = 0o (1-37)
BE
Equate equations (1-35) and (1-37) to solve for the constant.

c =00 (1-38)
E

By substituting the constant equation (1-38) into equation

(1-33), the final creep equation for the Maxwell Model
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becomes

- c;l:,t + C_YEB (1-39)

For the Voigt-Kelvin Model, substitute a constant

stress into its constitutive equation (1-11) to obtain
e o4 g = GB (1”40)

Since equation (1-40) is a linear first-order differential
equation, the general solution is
-t

T
€= Jo + Ce (1-41)
E

The initial conditions are a constant stress and no extension

which are related by an infinite glassy modulus,

t o
O\=0\° (1-42)
E =00

Applying the initial conditions to the general solution for

creep, equation (1-41) gives

€(o) = Cc + Jo (1-43)
E

261074
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The initial elastic behavior of the model follows equation
(1-36). By applying the initial conditions, equation (1-42), !

to equation (1-36), the initial model strain 1is
€(o) =0 (1-44)

Equate equations (1-43) and (1-44) to solve for the
integration constant.

c = -G¢ 1-4
_..E,Q (1-45)

Substitute equation (1-45) into the general solution equation
(1-41) to obtain the creep equation of the Voigt-Kelvin Model.
-t
€=20o 1-e‘1: (1-46)
E

For Models 2 and 3, follow a procedure similar to the
previous two models. Substitute a constant stress into
Models 2 and 3 constitutive equations (1-19) and (1-31) and
solve the resulting first-order linear differential equations
for their general solutions. The two models initial con-
ditions are the constant stress and glassy modulil that permit

instantaneous strains. For Models 2 and 3 the initial

conditions are respectively

=0
G (1-47)
(o)
E

mtﬂ?ﬂ

1
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and

o
(1-48)

t =
T=%
E8 n
Apply the corresponding initial conditions to the general

solutions and Models 2 and 3, then equate the two applications
of initial conditions for each model to solve for the general

solutions® constants C which yleld

=t_

2
€ = ﬁ:;b 1 - gl = (1-49)
L
-mt
and : n
E
€=0o0[1-2° (1-50)
E1 n

respectively as the equations of creep for Models 2 and 3.

Creep Compliance

The creep compliance of a viscoelastic model is the
resulting strain per unit of applied stress. It 1s a simple
matter tu obtaln the creep compliance for each of the models
discussed in this chapter by dividing the creep equations

(1-39), (1-46), (1-49) and (1-50) by a unit of constant stress,



The creep compliances are:

Maxwell Model

J o T (1-51)

Volgt-Kelvin Model

i
T
J=1]1-e (1-52)
E
Model 2
=t
E ‘CZ
J=_n_[1-21° (1-53)
E1E2 . n
Model 3
=0 ¢
n
E.e
=1 [1-"2 (1-54)
Jog(r- 2

Creep compliance to viscoelastic models serves the same
purpose as the modulus of elasticlty does with elastic solids.
Creep compliance, if known, allows one to determine the
resulting strain of a model upon application of any type of
stress., Creep compliances of viscoelastic models permit

quick mathematical comparisons of the different behavioral

characteristics.,

Creep Curves

Creep curves are used for quick visual comparisons of




viscoelastic model responses. Graph (1-1) shows the creep
curves for the models discussed in this chapter. The
curves are plots of the creep equations; but the curves may
also be explained by observing model behavior.

As one can see by observing the curves, the Maxwell
Model represents a linear viscoelastic fluld. Immediately
after loading, the model extends via the spring only and then
after some time, the damper flows with a constant velocity,
linearly increasing the strain.

.The Volgt-Kelvin Model represents a viscoelastic solid
- Wlth no 1mmediate response. When the stress is applied,
the strain that would occur instantly if no damper was

present 1s approached exponentially.

Models 2 and 3 represent viscoelastic material known
as the standard linear solid. Both models have identically
.shaped creep curves and permit the instantaneous strain of
the Maxwell Model and then increase the straln exponentially

like the Voigt-Kelvin Model.

1-3 Stress Relaxation

Stress relaxation 1s another test used to characterize
a viscoelastic model. The relaxation test shows how a

model®s stress decays as a function of time after a known

constant strain has been applied.

Relaxation Equations

Viscoelastic model stress relaxation 1s derived in a



18

fashion similar to creep, except now a constant strain is
imposed and the resulting stress 1s determined using the
model constitutive equation. As with creep, constants of
integration are solved for by applying the initial conditions
to both the general solution of relaxation and the model and

then equating the two.
The Maxwell Model is derived by substituting a constant

strain into the constitutive equation (1-8).

ga+T=0 (1-55)
T

Separate variables, and integrate; this gives the general

solution to equation (1-55).
-t
T
G = Ce (1-56)

Similar to equation (1-34). the initial conditions are

0
= €, - (1-57)
E

m M o

g
which, when applied to the general solution equation (1-56),

Yields

O (o) = C (1-58)

and when applied to the initial model behavior equation
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(1-36) ylelds

0 (o) = E€p (1-59)
Equate equations (1-58) and (1-59) to obtailn

E
c=E% (1-60)
Substitute equation (1-60) into the general solution equation

(1-56) for the relaxation equation of the Maxwell Model.

-t
T
g = EE e ) (1-61)

Voigt-Kelvin models do not experience any stress
relaxation becaﬁse of the physical arrangement of the spring
and damper connected 1n parallel. A straln relaxation does
occur, however, 1f the model 1s given an initilal strain and
then allowed to relax under zero stress. To obtaln the

strain relaxation equation, substitute zero stress into the

constitutive equation (1-11) and solve for the strain.

é+ € =0 (1-62)

T

The general solutlion for the straln 1s

-t
T
€ = Ce (1-63)

The initial conditions are
t=0
E(o) = €,

(1-64)



and when applied to the general solution equation (1-63), the

value of the integration constant 1is
c=€, (1-65)

Substituting the constant equation (1-65) into equation (1-63)
gives the straln relaxation for the Volgt-Kelvin Model.

=%
T
E= €, e (1-66)
Model 2 and 3 relaxation equations are derived by a
procedure similar tc the Maxwell Model. A constant strain
18 substituted into beth models® constitutive equations
(1-19) and (1-31) and the resulting first-order linear
differentlial equations are solved for thelr general solutions.
Except for the constant strailn here, instead of stress in the
case of creep equations, the initial conditions for Models

2 and 3 are the same as equations (1-47) and (1-48). They

are respectively

=Cc (1-67)

€E=¢€ (1-68)
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Apply the corresponding initial conditions to the general
solutions and Models 2 and 3, then equate the two applica-
tions of initial conditions for each model to solve for the

general solutions' constants C which yield

=nt
g = E €, E, + E,e T (1-69)
n
and -t
T2
G‘ = eo El <+ Eze (1-70)

. respectively as the relaxation equations for Models 2 and 3.

Relaxation Modulil

Viscoelastic model stress relaxation modulus 1is the
-resulting stress per unit of applied strain. Relaxation
modull are obtained by dividing the relaxation equations
(1-61), (1-66), (1-69) and (1-70) by a unit of strain. Note
that the Voigt-Kelvin Model does not have any stress relaxa-
tion, just strain relaxation under zero stress. The relaxa-

tion modull are as follows:

Maxwell Model
-t

—

T
W = Ee (1-71)
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Voigt-Kelvin Model

-t
T
Ww=e (1-72)
Model 2
-nt
_E, |& 1
W=_1|E, +Ee 2 (1-73)
n
Model 3
-t
- T
W= E1 * E2e (1-74)

Belaxatlon.Cgrges

The relaxation curves shown in Graphs (1-2) and (1-3) are
used for quick visual comparisons of different viscoelastic
model responses. The curves are plots of the relaxation
equations; but they may also be graphed by observing model
behavior.

After being strained, the Maxwell Model has a high
initial stress that 1s allowed to relax exponentially to
zero as the damper flows,

The Jolgt-Kelvin Model strain is relaxed as the stress
of the spring returns the model to its neutral position at
an exponential rate controlled by the damper.

After being strained, Models 2 and 3 have a high initial

s8tress. The stress exponentially decreases as the dampers
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flow to a level maintained by the two springs 1in series for

Model 2 and to that mailntained by the section spring for

Model 3.

1-4 Model Equivalence and Comparison

Any viscoelastic materlal described by Model 2 can also
be described by Model 3; they are equivalent. A comparison
of creep and relaxation curves and equations for the two
models reveals identical responses and forms. The models
differ only in the magnitude and arrangemeﬁts of thelr

parameters.

-

However, the creep computations associated with Model 2
are simpler. This 1s logical since Model 2 is composed of
two serles connected sections and the strains of each
individual section need only to be added to obtain the
model creep. In fact this may be shown by adding the strain
responses of the spring and series connected Volgt-Kelvin
Model to an apolied constant stress. The result 1is the
same creep equation (1-49) previously and independently
obtained for Model 2. Creep of any generalized model
composed of sections connected in series i1s the sum of their
individual section responses. Such a simple addition of
strains for each section is not possible with Model 3 where
the sectlons are connected in parallel.

Similarly, relaxation 1s easier to compute when models

have thelr sections connected in parallel by an argument
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similar to that used in creep. The Model 3 relaxation
equation (1-70) may be derived independently by summing the
stress responses of the spring and the Maxwell Model sections
to an applied constant stress. The relaxation of any
generalized model composed of sections connected in parallel
is the sum of their individual section responses. The
computational advantages pointed out here may be used when

deriving the material function equation (2-15) for some

example,

1-5 Relaxation Times

It 1is 1mporéant to understand relaxation times when
decling with generalized models or applications of visco-
elastic materials. The relaxation time for viscoelastic
models 1s defined as the ratio of a viscosity coefficient
to a modulus of elasticity. This time is the quickness of
a viscoelastic response to reach static equilibrium after
an imposed stress or strain. During a relaxation test,

1

for example, the stress in a Maxwell Model relaxes to 7

of its initial value after a time period equal to the
model'’s relaxation time. This 1s shown by the ratio of the

Maxwell relaxation equation (1-61) evaluated at the relaxation

time to it evaluated at time zero.

?ét?;' ry



Similar stress ratios exist for the other models after a

relaxation time passes.,

Of the models discussed so far, the relaxation time
span may be a few seconds or several weeks depending on the
magnitudes of the model's modulus of elasticity and viscosity
coefficient. But for each model there exists only one dis-
crete relaxation time. Real materials and the models of the

next section possess a continuous distribution of relaxation

times that may range widely.

1-6 Generalized Models

Since polymer type materials respond in a manner
represented by a continuous distribution of relaxation times,
1t does not appear that Model 2 would accurately represent
real polymer materials. A model with a spring and n
number of Voigt-Kelvin sections connected in series would
represent polymer creep response, for example, more accu-
-rately than Model 2. This model i1s the generalized Voigt-
Kelvin solid shown in Figure (1-2) and has the following creep

equation obtained by summing the creep of each section:

n -t
) K 16
€E=0o0 + 1 |1-e 1-76)
B So E
1 =2 =

If some mechanism possessed a continuous distribution of

retardation times, 1t would simulate real material perfectly.
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The creep equation for such a mechanism is given by the

integral of Voigt-Kelvin elements from zero to infinity.

- =
€=go+6y, J F(T)|1-¢ |ac (1-77)

El o

The Voigt-Kelvin modull in equation (1-76) is replaced by a
continuous weighting function in the integral of equation
(1-77). This weighting function not only replaces the
moduli, but may be used to emphasize any retardation times

desired.

-

The perfect simulation equation (1-77), the creep of
real materials, may be closely approximated by the Model 2
creep equation (1-49). Consider the amount of some real
material®s creep in one day. The spring and those Voigt-
Kelvin elements in equation (1-77) with short relaxation
times, relative to the one day experiment, will all respond
in a manner that approaches the spring in section 1 of
Model 2. The small creep of those elements in the perfect
model with relatively long relaxation times may be neglected.
And the average response of the elements whose relaxation
times are near the same magnitude as the time of the exper-
iment 1s approximated by section 2 of Model 2. The disadvan-
tage of the Model 2 approximations of the perfect model may

be offset by the easier mathematical treatment  permitted

by Model 2.



Similarly the generalized Maxwell solid shown in
Pigure (1-2) with n parallel connected Maxwell sections
represents the stress relaxation of real materials better
than Model 3., The Maxwell so0lid relaxation equations for

and a continuous distribution of relaxation times are

respectively
n -t
E : Ty
1=2
and #

-
o=EE€ + € /G('C)e A (1-79)
o ° Jo

27

n
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CHAPTER 2
3-D POLYMER FRACTURE IN LATENT STAGE

The main objectives of this chapter are: one, to
develop a general relationship of stress and strain at
the edge of a penny shaped stationary crack in polymers;
.and two, to predict when the crack will grow. The penny
shaped crack shown in Figure (2-1) has a cross-sectional
shape similar to that of a cigar. Initially, Sneddon's
tensile stress equations are the basis for deriving elastic
strain expressions in the region of the crack tip for any
arbitrary loading. However, at the crack tip, the strain is
undefined; this problem is solved by averaging the strain over
a small area in front of the crack using Wnuk's relationship
of crack length to a small distance preceding the crack. Then
the Elastic-Viscoelastic Correspondence Principle employs a
viscoelastic operator and converts the strain from elastic
to viscoelastic. The maximum strain any material permits 1is
determined by applying a Griffith stress and is used to
normalize the viscoelastic strain. The latent stage ends
when the normalized strain becomes unity, the material sepa-
rates and the crack propagates. Finally, examples of strains

are computed for two types of viscoelastic materials subjected

to three types of stress loading patterns.,
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2-1 Averaged Maximum Elastic Strain

The starting point for developing straln relations 1is
Sneddon'’s /2/ elastic stress equations in the plane Z = 0 of

the penny-shaped crack.

-1
=20 = sin 1
=20 [ 1 - (/+3%) sin7l g
M e, e
ve: -1 I (2-1)
03:2;;‘-. 21/1 = («/+ %) sin-l_
ar .
V® -1 o
Try = Tre = (Cez =0

Since the Sneddon equations do not include the inertia
effects, the analysis of this paper must be restricted to a
slowly propagating crack. The applied load O will be

expressed only in units of time t by substituting

°4> (2-2)

Because this paper deals only with expressions at the crack
tip, equation (2-1) may be simplified. At the crack tip,

@ =1 which is an isolated singularity point. Expand

o . and sin-1 1 of equation (2-1) in a Taylors series

ve® -1 ¢

about the point Q = 1.
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% % %
l:( Q - 1)- - S_g_, hors ,1__1 + 3( = 1) - 4 OQQJ
2

L
(2-3)

e 2 BT 3!

In the vicinity of the crack tip, all terms in equation (2-3)

may be neglected except -2 3 therefore
1

(Y
I
4o
'
Y
N~
]

V& - ) (2-4)

at the crack tip. Hence equations (2-1) applied near the
crack tip simplifies, upon substitution of equation (2-4)
to

01=«/E"<r‘

)
mye -1

G'E. =v2' o™ (2-5)

™R - T




Now elsstic straln may be evaluated from the three dimen-

sional stress-strain relations -- Hooke's Law yields

€z=%o\z-‘\/(c\r+6‘e)

- hn
er=% O\r"\/(o\z"’Gg)

L - (2-6)
e =1 (}j‘ -v (g + )—
6 o} e z Cr

=(C =(C = (C

Frz =22 Fre = 52 For = —22

The strain at the crack tip 1s given by combining equations

(2-2), (2-5) and (2-6)

€ =v ¢
Al (2-7)
€ =b ¢

0
ﬁ\rz = 6\1‘9 - Fez =0

Determine the principal stralns by substituting equations

(2-7) into the following determinant from the theory of
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elasticity:
SR R
fre €o~€ K‘ez =

K‘I‘Z K;Z eZ -€

expanding the determinant into a cublic equation and solving

for the roots., The maximum root or principal strain is

€

1 (2-8)

- blT
49—.?«/_‘

which still has the singularity point at the crack tip.
Eliminate the singularity point by averaging 651 over

a small area on the plane Z = 0 1in front of the crack tip;
see Figure (2-1). The averaging area 1s a narrow strip of
width A wrapped around the crack edge. The small
magnitude of A 1is related to the crack tip displacement
by Wnuk /3/ (see Figure (2-1) and equation (2-21)) and
because of Al!s small size, the averaging area may be

approximated by

Averaging Area =~ 2w LA (2-9)

Because the relationship of averaging distance to crack tip
displacement 1s used, this paper assumes the penny-shaped

crack looks like Wnuk's cigar-shaped crack 1n Figure (2-1).
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Using the law of the mean for double integrals from calculus
and equation (2-9), the averaged strain, denoted by<°€>,

becomes

é€> /L+A/2ne drdé (2-10)
= 1 rdr -
1 2.vLA L o 1

After substituting equation (2-8) into (2-10) and integrating,

the results are

- |F-Af)] - ew

Since A 1is small,

A 1
A/L is negligible compared to L/A and equation (2-11)

simplifies to
<’€1> = e/ (2-12)
va'

which is the averaged maximum elastlc strailn. Equation (2-12)

may be expressed in dimensionless terms by multiplying by

o
L

L°
which yields

<°61> = od/T (2-13)

V5"
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the average maximum elastic strain. Let the pre-superscript
0 on the strain denote elastic as opposed to viscoelastic

relations in the next section.

2-2 Averaged Maximum Viscoelastic Strain

Introducing the elastic-viscoelastic correspondence
principle taken from Wnuk /4/ converts elastic strain

relations into viscoelastic relations.

(o) tc 06- (C
<e1> =<ei>+ ¢ (t-n:)< 1 )>d’C
(2-14)
where (? is a material functlion characterizing a viscoelastic

®

sample. For viscoelastic polymers, *P simplifies to

g = J‘H‘ (2-15)
J(o

for polymer type materials. The examples of strain from

viscoelastic models shown later in this chapter use the

creep compliances derived in Chapter 1 with arbitrary values

for the elastic and viscosity coefficients. For the creep

compliances of real materials, one may first decide what

. model represents the material and then determine the proper

magnitudes of the coefficients through experimentation.

By substituting equation (2-13) into equation (2-14) one

. obtalns the general expression for viscoelastic strain at
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the crack tip

@1> ¢J—'+f¢(t-’f)¢(‘tmd¢J

(2-16)
This chapter deals with strains during the latent stage,
i.e. at times before material separation. For time t< ter
the crack length is constant and equal to the initial length

L° and therefore X = 1. Equation (2-16) simplifies to

<€> = c f}l/(t-fC)qS(q:)dq: (2-17)

2-3 Normalized Viscoelastic Strain

The strain equation (2-17) for the latent stage may be
normalized by dividing by the maximum or limiting strain
at the crack tip which is experienced as the material begins
to separate. The limiting strain will be determined by

applying a Griffith stress /5/.

1

oy = EYu® (t1p) (2-18)

2..0
2(1 -v )L
Griffith stress is known for different materials and is that

stress Jjust required to produce material separation. By
applying an instantaneous Griffith stress at time t = 0 to

equation (2-17), the limiting strain is obtained

€L =c® (o) (2-19)
/80
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The Griffith stress must be included within cgégo!r of

e

equation (2-18) and may be identified. To do this expand §

$°=a (2-20)

I‘O

Wnuk /3/ relates delta to the displacement in the 2z- direction
at the crack tip and the crack tip displacement with the

Griffith stress

A =oc¢u(tip)

2

uo(tip) = 2(1 - 4/2) 6o° 1L° (2-21)

ATt EY

Using these expressions and equation (2-20), the limiting

strain equation (2-19) takes the form

€ =cé go)\j ™ EY ' (2-22)
0o VN2(1 -v?)et

Finally, the limiting strain with the Griffith stress iden-

tified is obtailned after multiplying and dividing equation

(2-22) ® u° (t and simplifying, using equations
i? 1.9

(2-18) and (2-21), to

(2-23)

EEL = ¢9 (o)
Ny/8%

Now 1f equation (2-17) is divided by equation (2-23), the
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normalized viscoelastic strain for the latent stage 1s

t.
€=;5_1(%y 7 +[;0 (t - T)g(x)az (2-24)

This equation 1s the ratio of existing strailn as a function
of time to the maximum strain at material separation and is
always less than or equal to unity during the latent stage.
When the normalized strain becomes larger than unity the
latent stage is ended and the material at the crack tip
separates, increasing the crack length. Remember that the

strain in equation (2-24) is valid only at the tip of a

constant length crack.

2-4 Examples

To demonstrate the theoretical derivation's effec-
tiveness, the strains for two types of viscoelastic materials
under various loading patterns will be calculated and
graphed. Then the validity of the theoretical results may
be determined by comparison with experimental results.

. The Maxwell Model and Model 2 of Chapter 1 with the
following arbitrary history of loading patterns willl serve

as examples for graphing equation (2-24);

¢ = H(t) (2-25)
¢ = s + at (2-26)

¢ = s + k sinwt (2-27)



The magnitude of the first loading pattern, the Heaviside
unit function, i1s taken as unity at time zero and may be
thought of as time t = O+. Thils defines ‘¢ » and therefore
allows equation (2-24) to take on a finite magnitude, at

~time t =0 for H(t) as
Po) = 1 (2-28)

Now examples of normalized viscoelastic straln will be

calculated and graphed.

Maxwell Model with é = H(t)

First evaluate the material function using equation
(2-15). The time derivative of the creep compliance

equation (1-51) is

J=_1 (2-29)
Mo
The creep compliance evaluated at time t = 0 1s
J(o) = 1_ (2-30)
Eu

Now the material function 1s evaluated by substituting

equations (2-29) and (2-30) into equation (2-15)

‘{; = 1 (2-31)

o .

A

(o]

By substituting equations (2-28), (2-25) and (2-31) into
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equation (2-24), the normalized straln takes the form

t
€ =N|H(t) + _1_ f H(T )ac (2-32)
(o]

To

The solution to equation (2-32) 1is

E=N|1+ 61 (2-33)

Maxwell Model with gé = s + at
For the linear loading pattern, substitute equations

(2-26) and (2-31) into the normalized strain equation

(2-24) and solvé; the solution 1is

E=N]|1+ 61 1+A(1+_6_1_)} (2-34)
2

and is graphed for different magnitudes of loadings in

Graphs (2-2A & -2B).

Maxwell Model with & = s + k sinwrt
Similarly for the sinusoidal loading, substitute

equations (2-27) and (2-31) into equation (2-24) and solve.

The solution is

€e=N|[1+ 6 +D(sinBH, +1 -1 cos BEO
1 1 B B 1

(2-35)
and is graphed for different magnitudes of loading 1in

Graphs (2-3a, -3B & -3C).
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Model 2 with & = H(t)

The solution to the normalized strain 1s calculated
by following a procedure similar to that for the Maxwell
Model. Evaluate the material function equation (2-15) by
taking the derivative of the creep compliance equation

(1-53) and dividing by the creep compliance evaluated at

time t = O,

- “(E_ -
g =F1 e 2 (2-36)
P
Substitute equations (2-36), (2-25) and (2-28) into equation

(2-24) and the normalized strain takes the form

-t ¢+ T

t T
€=NH(t)+E1 J;e . H(T )d< (2-37)

2

The solution to equation (2-37) 1is

€E=N|1 + v(1 - 6-62) (2-38)

Equation (2-38) is graphed for different loadings in

Graphs (2-LA & -4B).

Model 2 with & = s + at
Substitute equations (2-26) and (2-36) into equation

(2-24) to evaluate the normalized straln. The result 1s
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-6
€ =|N1+K1+v)6,+v(l-K)(1.-e¢e 2) (2-39)

which 1s graphed for different magnitudes of loading in

Graphs (2-5A & -5B).

Model 2 with ¢ = s + k sinwt

And for the last example of viscoelastic fracture
during the latent stage, substitute equations (2-27) and

(2-36) into equation (2-24) and solve. The solution is

-92 2 _e
€ =N|1+Dsin UG, + vl -ce + DU g A
. 1+ U5 :
cos UP, +1 sin U Q (2-40)
2 T 2
which 1s graphed for different loading magnitudes in

Graphs (2-6A, -6B, -6C & -6D).

Graphs

Graphs of each previous example show the model responses
to different loadings and how each response alters with
changes in magnitudes of relaxation times and other
constants. In general, the normalized strain curve
asymptotes and mean values in the case of sinusoidal loading,
are monotone increasing with time for the Maxwell Model,
due to the series connected damper, and are constant for
Model 2, Ignoring fatigue effects, the useful 1life of

those materlals whose normalized strain never reaches unity
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is infinite. The penny-shaped cracks will grow for those
examples where normalized strain curves become unity and
larger. The latent stage graphs are not a valid analysis
for magnitudes larger than unity, beyond which the fracture

propagation analysis must be used to determine the useful

life of the sample.



43

CHAPTER 3
3-D POLYMER FRACTURE IN SLOW PROPAGATION

During the slow growth stage of fracture, the crack
propagation is assumed to be a function of the strain rate.
The general equation of motion expressing crack length 1is
derived by taking the time derivative of the viscoelastic
strailn expression of Chapter 2., Examples of crack growth
are computed for two types of viscoelastic materials

subjected to a constant stress.

- 3-1 Strain Rate Hypothesis

To solve for the equation of motion during the slow
fracture propagation stage, hypothesize that the crack tip
movement is a function of the straln rate. The time
derivative of equation (2-16), using Leibniz®' rule for

differentiating the integral, 1s

'€L=_c_ ¢x5+§x‘%i+_[c%¢(t-¢)
/&

. 3
¢(rc)x%("c)d't +{¢ (0)px (3-1)

This 1s the general equation of motion for viscoelastic
pPolymer materials. Notice the principal strain was
replaced by the limiting strain since during crack growth

the strain at the crack tip is at its maximum and the



material 1s separating.

3-2 Examples

The same models used in Section 2-4 will be used
here with the Heaviside unit loading to demonstrate fracture

propagation through a viscoelastic sample during the slow

stage.

Maxwell Model with ¢ = H(t)

Upon substitution of equations (2-31) and (2-25) into

equation (3-1) the equation of motion becomes

. LB %

& =cH(t) XX +X_ _ (3-2)

veol® T

The solution to the equation of motion 1s obtalned by

separating variables and integrating from t = t, and

X=1 to t=t and X=X

_63
X=q+ (1 -q)e (3-3)

which is graphed in Graph (3-1). With the application of a
constant load, the straln rate is assumed to be constant for
a given material.

Model 2 with @ = H(t)

By substituting equations (2-36) and (2-25) into

equation (3-1) and taking the partial derivative of the
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integrand, the equation of motion becomes

-t T
" e T2 [t T,
eL=_g_H—thzx*x'—E»1(e'—rc2 fe 2 5o 3 (Traz +
= 2 T o
E m(e)x? (3-4)
(P

The integral equation (3-4) solution is derived by substitut-
ing equations (2-36) and (2-25) into (2-16), remembering the
crack tip strain durlng fracture propagation is the limiting

strain, and solving for the integral.

T £
t T ' T A/ &°
fe ZH(‘C)X%('C)df:_’lge 2[€L S -H(t)xé
o E

(o
% (3-5)

Now if equations (3-5) and (3-4) are combined and simplified,

the resulting differential equation 1is

X+20 x-20_ % =0 (3-6)
T, ,

Equation (3-6) 1s solved by separating varlables and

integrating from t = t_ and X =1 to the present t =t

and X = X. The solution 1is
'Q‘9u
X=2+ (1 - 2)e (3-7)
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which i1s plotted in Graphs (3-2A & -2B) for different

values of P and Q.

Graphs
Graphs of both examples above show how the crack

length increases with time for constant loadings and how
the crack growth i1s altered with changes in magnitudes of
the relaxation times and other constants,

As long as the constant q 1in the Maxwell Model (or
Z 1in Model 2) is unity or greater, the crack will grow at a
predictable rate. When q (or 2Z) is less than unity, the
crack length decreases with increasing time. It may be
verified that for stresses equal to or greater than the
..Griffith stress the crack 1s unstable and thus the range of
negative slopes dX_ (or gg_) is interpreted here as the
de3 ( d i
instability or rapid propasgation range, cf. Cherepanov /6/.
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CBAPTER 4
2-D POLYMER FRACTURE

The 2-D case of viscoelastic fracture 1s, as one
might expect, simllar to the 3-D case except for some
constants., The procedure followed here 1s like that in-
Chapters 2 and 3; only now, start with Sneddon's stress
.equations for the 2-D case., The elastic strain 1s averaged
over a small distance, instead of area, using the same
Wnuk expression for the small distance preceding the crack,
The same Elastic-Viscoelastic Correspondence Principle 1is
used, but to normalize the viscoelastic strain, the 2-D
Griffith stress expression replaces the 3-D counterpart.

No examples were computed since the results would be identi-
cal to the 3-D case except for the assumed values of the

. constants and should be interpreted in the same fashion as

before.

4-1 Averaged Maximum Elastic Strain

Sneddon's /2/ elastic stress equations along the crack

line are

o =S

x /20

N
-0

(4-1)

q
9

»
o
R
3

a
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which has an isolated singularity at the crack tip point
Q =0 1.e. when r = 0. To obtaln the strains at the

crack tip, use the two-dimensional Hooke's Law,

€, =% ¢y -~ V33
c i ) (4-2)
y - %- G} < vV Jdx

By substituting the stress equations (4-1) at the crack tip

into equations (4-2) the strains at the crack tip are

€, - L2
Ve
e, % (4-3)

From the theory of elasticity, the principal strains are
determined by substituting equations (L-3) into the

following determinant:
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expanding the determinant into a quadratic equation and

solving for the roots. The maximum root or principal strain

is

€, = rd = rhpy1) (4=b)
W' 5
Now eliminate the singularity point r = 0 by averaging the

maximum principal strain over a small interval distance Z& ’

ZCS is taken from Wnuk /3/ ahead of the crack tip.

<€1> - ,_[:Ae1 = (4-5)

Substitute equation (4-4) into the averaging equation (4-5)

and integrate to obtain the mean value of strailn as
<€ > = gé-\/f' (4-6)
1 7N

And as expected, equation (4-6) is 1dentical to equation

(2-12) except the loading constant g replaces c¢. And

because of the similarity between the averaged principal
elastic strain equations (4-6) and (2-12), the viscoelastic
straln :rclations for the two-dimensional case may be

obtained from the three-dimensional case by replacing the

loading constant ¢ by g. Thus the viscoelastic strain
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equation (2-16) becomes

45> _g_;ix +f¢ (t-ft)si(rc)x(fc)drc}

(4-7)

4-2 Latent Stage Normalized Strain and Slow Propagating

Stage Equation

The procedure used to derive the normalized strain for

the 2-D case is identical to that of Section 2-3, Math-
ematical terms applicable to the 2-D materials are
displacement at the crack tip from Wnuk /7/

uw’(tip) = (1 - VZZ) So®ar1® (4-8)
EY

and the Griffith stress from Griffith /5/

0y =+ [ 2EX u®(tip) (4=9)
Ar(1 - 4/°)L°

which correspond respectively to 3-D equations (2-21) and

(2-18)., The resulting normalized strain for the 2-D

latent stage 1s

t .
= M [ +'/ﬁb (t - fC)¢(¢)d¢] (4-10)
‘g (0) o \

The 2-D equation of fracture propagation 1s found by
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taking the time derivative of equation (4-7) as in

Section 3-1.

L) ° [ ] t o

€ = X2+ ¢ x-3x +f 5] t -T
" _;c; @ %__ A _a_tq(/( )

¢(fz:')x%(’5)d‘r -HP (0)95)(% (4-11)

All examples and graphs for 2-D materials are the
same as those of Chapters 2 and 3 except the constants ¢

and N are replaced by g and M respectively,
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FIGURE 1-2
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FIGURE 2-1

WNUK'S "CUT ENDS CIGAR" MODEL OF A CRACK

ey — L ] AN — —

~
4’, S
<Z ! e
SN /”
~

SECTION A-A




GRAPH 1-1
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GRAPH 1-2

STRESS RELAXATION CURVES OF VISCOELASTIC MODELS
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GRAPH 1-3

STRAIN RELAXATION CURVE OF VISCOELASTIC MODEL

t
" No Applied Stress During Relaxation

Voigt - Kelvin

57



GRAPH 2-1 LATENT STAGE
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GRAPH 2-2A LATENT STAGE
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GRAPH 2-2B LATENT STAGE
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GRAPH 2-3A LATENT STAGE
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GRAPH 2-3B LATENT STAGE
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GRAPH 2-3C LATENT STAGE
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GRAPH 2-4A LATENT STAGE
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GRAPH 2-4B LATENT STAGE
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GRAPH 2-5A LATENT STAGE
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GRAPH 2-5B
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GRAPH 2-6A
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GRAPH 2-6B LATENT STAGE
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GRAPH 2-6C LATENT STAGE
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GRAPH 2-6D LATENT STAGE
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GRAPH 3-1 FRACTURE PROPAGATION

MAXWELL MODEL CRACK LENGTH WITH ¢ = H(t) AND VARIOUS q
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GRAPH 3-2A
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FRACTURE PROPAGATION
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GRAPH 3-2B FRACTURE PROPAGATION

MODEL 2 CRACK LENGTH WITH ¢ = H(t) AND VARIOUS Q
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CONCLUSIONS

The synthesized strain equations have been developed to
predict fracture initiation in viscoelastic solids.

Delayed fracture is inevitable in loaded materials whose
behavior 1s represented by the Maxwell Model. According to
the theory developed, a Maxwell material will fracture under
an arbitrarily small load if sufficient time to failure is
allowed.

Contrary to this behavior, the linear viscoelastic solid
.represented by a standard 3-parameter model exhibits a distinct
range of loading magnitudes for which delayed fracture may
occur., Below a certain stress level the delay time becomes
infinite and this sets the lower 1limit on the applied stress
(endurance 1imit). The upper 1limit is the Griffith load at
which fracture occurs instantaneously. Within these bounds
the delay time is finite and a certain amount of subcritical
propagation will take place before the terminal instability
(equivalent to catastrophic fracture) is attained.

The time for fracture initiation and the rate of slow

growth under various ranges of loading are predicted

theoretically.
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