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Resumo

A agricultura de precisão se beneficiou muito das novas tecnologias ao longo dos anos.
O uso de sensores multiespectrais e hiperespectrais acoplados aos Veículos Aéreos Não
Tripulados (VANT) permitiu que as fazendas monitorassem as lavouras, melhorassem o
uso de recursos e reduzissem os custos. Apesar de amplamente utilizadas, as imagens
multiespectrais apresentam um desalinhamento natural entre os vários espectros devido
ao uso de diferentes sensores. A variação do espectro analisado também leva à perda de
características entre as bandas, o que dificulta o processo de detecção de atributos entre
as bandas, o que torna complexo o processo de alinhamento. Neste trabalho, propomos
um novo framework para o processo de alinhamento entre as bandas com base em duas
premissas: i) o desalinhamento natural é um atributo da câmera, e por esse motivo
ele não é alterado durante o processo de aquisição; ii) a velocidade de deslocamento
do VANT, quando comparada à velocidade entre a aquisição da primeira e a última
banda, não é suficiente para criar distorções significativas. Os resultados obtidos foram
comparados com o padrão ouro gerado por um especialista e com outros métodos presentes
na literatura. O framework proposto teve um back-projection error (BP) de 0, 425 pixels,
sendo este resultado 335% melhor aos frameworks avaliados.

Palavras-chave: UAV, MULTISPECTRAL REGISTRATION, BAND-TO-BAND REG-
ISTRATION, BAND CO-REGISTRATION, REGISTRATION FRAMEWORK.
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Abstract

Precision farming has greatly benefited from new technologies over the years. The use
of multispectral and hyperspectral sensors coupled to Unmanned Aerial Vehicles (UAV)
has enabled farms to monitor crops, improve the use of resources and reduce costs. Despite
being widely used, multispectral images present a natural misalignment among the various
spectra due to the use of different sensors. The variation of the analyzed spectrum also
leads to a loss of characteristics among the bands which hinders the feature detection
process among the bands, which makes the alignment process complex. In this work,
we propose a new framework for the band co-registration process based on two premises:
i) the natural misalignment is an attribute of the camera, so it does not change during
the acquisition process; ii) the speed of displacement of the UAV when compared to the
speed between the acquisition of the first to the last band, is not sufficient to create
significant distortions. We compared our results with the ground-truth generated by a
specialist and with other methods present in the literature. The proposed framework had
an average back-projection (BP) error of 0.425 pixels, this result being 335% better than
the evaluated frameworks.

Keywords: UAV, MULTISPECTRAL REGISTRATION, BAND-TO-BAND REGIS-
TRATION, BAND CO-REGISTRATION, REGISTRATION FRAMEWORK.
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Chapter 1
Introduction

Historically agribusiness has contributed about a fifth of Brazil’s Gross Domestic Prod-
uct (GDP). In 2018, according to data from the Ministry of Agriculture, Livestock and
Supply, this sector represents 21.6% of GDP, representing in financial values R$ 570.31
billion reais. Of this amount, agriculture was responsible for R$ 383.97 billion reais
(AGRICULTURA, 2019). With this information, it is clear that agribusiness is of great
importance for the development of the country, being responsible for one in three jobs.
Considering the global market, Brazil is also a leader in the production and export of
several products, as seen in Table 1.

Table 1 – Brazil’s position in the world agricultural market in 2017, adapted from (AGRI-
CULTURA, 2019).

Main products Brazil - World Ranking
Production Exports

Sugar 1𝑠𝑡 1𝑠𝑡

Coffee 1𝑠𝑡 1𝑠𝑡

Orange juice 1𝑠𝑡 1𝑠𝑡

Beef 2𝑛𝑑 1𝑠𝑡

Chicken 2𝑛𝑑 1𝑠𝑡

Corn 3𝑟𝑑 3𝑟𝑑

Soybeans 2𝑛𝑑 1𝑠𝑡

Soybean meal 4𝑡ℎ 2𝑛𝑑

Soy oil 4𝑡ℎ 2𝑛𝑑

Cotton 4𝑡ℎ 2𝑛𝑑

Pork 4𝑡ℎ 4𝑡ℎ

Despite the optimistic scenario, the continued expansion of agricultural development
comes up against social and ecological aspects, since the growing demand for land has
caused social conflicts and degradation of the environment. Agriculture can be seen as an
economy of scarce resources. Note in Table 2, that there are only 6.7% of the area available
for agricultural expansion (56.6 million hectares) in the Brazilian territory. Therefore, we
can see the need to increase productivity in the same planted area. According to (FILHO,
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2016), an increase of 100% in the gross income of agriculture can be explained by the
following factors: technology (68%); work (23%) and land (9%).

Table 2 – Land use in millions of hectares and availability in Brazil, adapted from (AGRI-
CULTURA, 2019).

Territorial Distribution (2018) Hectares Percentage
Agriculture in production 244.5 28.7%
Grains 62.5 7.3%
Livestock (Pastures) 158.6 18.6%
Forests Planted with Forest Essences 8.5 1.0%
Sugarcane 8.6 1.0%
Banana, Coffee, Cassava, Cocoa, Citrus, other permanent 6.3 0.7%
Areas Protected by legislation 5480 64.4%
Conservation Units - UC 133.0 15.6%
Indigenous Lands - TI 121.0 14.2%
Legal Reserve and Permanent Preservation Areas 268.0 31.5%
Cities, Roads, Hydroelectric, other 26.0 3.1%
Areas Available for Agriculture 56.6 6.7%
Others 1.9 0.2%
Brazilian territorial area 851 100%

In this context, of demand for growth in production and pressure to minimize social
and environmental impacts, Precision Agriculture (PA) proved to be the solution for the
sustainable development of agribusiness. With the basic premise of producing more using
fewer resources (water, land and agricultural inputs), PA has become necessary at all
scales of production (from family farming to large landowners) (SCHRIJVER; POPPE;
DAHEIM, 2016).

Among all PA technologies, Variable Rate Application (VRA) (tillage, seeding, fer-
tilizing, irrigation, and pesticide application), soil mapping, automatic guidance, yield
monitoring mapping, and autonomous vehicles (LIN et al., 2019) stand out. Remote
sensing techniques, mainly with the use of UAV for the acquisition process, have become
increasingly present for PA activities. To use VRA technology, most of the time, it is nec-
essary to calculate indexes, such as the Normalized Difference Vegetation Index (NDVI)
and the Normalized Difference Red Edge Index (NDRE). To calculate these indexes,
multispectral images of the area are required, which in most applications are obtained by
UAVs.

Using UAVs for image acquisition in PA requires hundreds and in some cases thousands
of overlapping images to cover an area. After acquiring aerial images, it is recommended
to carry out the registration process for better extraction of agronomic characteristics. In
RGB images the registration process presents some difficulties that are easily identified
and solved, such as changes in lighting, rotations, and changes in scale from unforeseen
events along the UAV path. However, in addition to the previously mentioned problems
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for RGB images, most multispectral cameras use different physical sensors to obtain
different spectra, which causes a spatial misalignment among the spectra due to their
physical displacement. The variation of the analyzed spectrum also leads to a loss of
features among the bands which hinders the process of detection of common features
between bands.

1.1 Problem Description

A multispectral or hyperspectral image to be useful for agricultural applications must
first have its bands aligned. This process is known as band co-registration and it presents
a series of difficulties to be carried out.

The first major difficulty in performing the band co-registration is the fact that each
element present in the image is represented differently in each spectrum due to its chemical
and physical characteristics, and the processes of emission, absorption, reflection, and
transmission will occur with varying intensity for each region of the spectrum. This fact
hampers the alignment process because, among the spectra, there is a loss of information
(features) (BANERJEE; RAVAL; CULLEN, 2018).

The vast majority of multispectral cameras use different sensors to obtain the spectra.
If these cameras are placed on a fixed platform, only the physical displacement among
the sensors are responsible for causing misalignment among the bands. However, when
coupled in a UAV, this problem is intensified. During a flight, a UAV has three basic
control axes: yaw, pitch, and roll (see Figure 1). During an image acquisition process,
several factors influence the direction of an aircraft (eg UAV speed, wind speed, wind
direction) leading to distortions of translation, scale, and rotation among the sensors
(BANERJEE; RAVAL; CULLEN, 2018).

Figure 1 – Aircraft principal axes.

For PA’s success, the band co-registration process is required to correct all-natural
misalignment (originating from the sensor architecture) and those created during the ac-
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quisition process. Therefore, the objective of this work is the development of a framework
for the band co-registration process in multispectral images obtained by UAVs.

1.2 Hypothesis

Most of the works published on band co-registration in images obtained by UAVs start
from the principle that it is necessary to obtain a different transformation in each image
to correct the misalignment between the sensors. Going in opposition to this current, this
work is based in two hypotheses:

1. Natural misalignment is an attribute of the camera, so it does not change during
the acquisition process.

2. The speed of displacement of the UAV when compared to the speed between the
acquisition of the first to the last band, is not sufficient to create significant distor-
tions.

1.3 Contributions

The main contributions that this work presents are:

1. Creation of two databases with 1910 images for the band-to-band registration pro-
cess. Each image was manually marked with 12 points in each band by an expert.

2. Development of a framework for the band co-registration in multispectral images
obtained by UAVs.

1.4 Thesis Organization

This dissertation is structured in six chapters and a brief description of each chapter
is presented below:

o Chapter 02 - Fundamentals: presents the concepts of precision agriculture, remote
sensing and the concepts of image registration which are important to understand
this work;

o Chapter 03 - Related Works: presents the state of the art for the band co-registration
process. This chapter consists of works that are focused on the alignment of bands
obtained by multispectral or hyperspectral cameras coupled in UAVs;

o Chapter 04 - Methodology: presents the datasets used in this work, describes the
proposed framework and also presents the metrics used for the work evaluation;
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o Chapter 05 - Experimental Results: the results obtained in each dataset, when
compared to the ground-truth and the other analyzed frameworks, are presented.
Discussions and comparisons between the proposed framework and the others are
presented;

o Chapter 06 - Conclusion: presents the conclusions of the work, its results, its limi-
tations, and future work.
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Chapter 2
Fundamentals

2.1 Precision Agriculture

The main discussion of the future of agriculture shows that food production must in-
crease dramatically - probably doubling by 2050 - while using only 5% more land to sustain
the growth of the world’s population (HUNTER et al., 2017). Projections shows that by
2050 the world’s population is expected to be close to 10 billions of people (HUNTER et
al., 2017) (Figure 2). However, with environmental changes, this increase in food produc-
tion must be made most smartly, that is without depleting natural resources or leveraging
climate change, this is the main challenging in modern agriculture.

Figure 2 – Comparison between the population growth and the needed growth in crop
productions to feed population at 2050.

For this reason, a new movement called PA emerged in United States in the early 1980s
with the purpose to increase the quality and quantity of agricultural output while using
less input (energy, fertilizers, pesticides, water, etc), i.e., to produce more and better food
while reducing environmental impact and saving costs (SCHRIJVER; POPPE; DAHEIM,
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2016). The PA methods rely mainly upon a combination of remote sensing, automation,
robotics, big data, artificial intelligence, and the internet of things technologies.

Different from the traditional agriculture that treats the fields homogeneously, the PA
divides the fields into management zones which are treated individually, thus receiving
the inputs as needed for each zone. As stated before, this results in an increasing financial
return to farmers, as the number of inputs is applied to a lesser extent while productivity
remained or increased (MAES; STEPPE, 2019).

According to (TARABELLA; TRIVELLI; APICELLA, 2019), the implementation of
PA can increase, in average, total profitability from $55 to $110 per acre (1 acre = 4046.87
𝑚2). However, in Italy, only 1% of the cultivated agricultural area uses the means and
technologies of PA (TARABELLA; TRIVELLI; APICELLA, 2019).

PA is widely recognized as the third revolution of modern agriculture. The first
revolution of modern agriculture was the introduction of mechanization (1900 to 1930),
the second one was the genetic modification (1990 to 2005) (GLOBAL, 2017). Figure 3
illustrate the average of how many people a single United States farmer fed, in the same
acreage, along a certain period in time.

Figure 3 – Average of how many people a single United States farmer fed in the three
main agricultural revolutions.

2.1.1 Unmanned Aerial Vehicles

The use of UAVs in agriculture started in the early 21st century. In the 2000s, the
satellites provided images with bad spatial and temporal resolutions which causes incorrect
analyzes that leads to waste of agricultural inputs and delay on the data acquisition
process (MILICS, 2019). These images are mostly used to obtain an overview of the field.
The next method for obtaining images used has airplanes and balloons, which provided
better temporal and spatial resolutions. However, the cost of the acquisition process was
too expensive for agricultural applications (MILICS, 2019). Nowadays, the use of UAVs
became accessible to the majority of the farmers, which led to a growth of the studies in
PA that uses UAVs. According to (MAES; STEPPE, 2019), the number of studies using
UAVs in precision agriculture has exponentially increased in the last 8 years.

The unmanned aerial vehicles can be divided into two main classes, multi-rotor, and
fixed-wing aircraft. Each of these classes has vantages and disadvantages, especially con-
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cerning area coverage, flight time, accessibility, payload capacity, price and take-off, and
landing requirements (DRONEDEPLOY, 2017).

Multi-rotor is the most common type of UAV for making models and maps for the
PA. Normally, this type of aircraft has a central body and multiples rotors that power
propellers to maneuver the aircraft and take flight. Generally, the multi-rotor are quad-
copters but they can have six or eight rotors (hexacopter and octocopter, respectively).
The multi-rotor UAV controls the vehicle motion by changing the relative speed of each
rotor, this allows this kind of UAV to make a unique range of movements (DRONEDE-
PLOY, 2017). Figure 4 shows examples of multi-rotor aircraft.

Figure 4 – Example of DJI multi-rotor UAV, from (DRONEDEPLOY, 2017).

Fixed-wing is more similar to an airplane, they have a central body that has two
wings and normally one propeller. However, this kind of aircraft is more atypical outside
agriculture applications (DRONEDEPLOY, 2017). Figure 5 shows an example of a fixed-
wing aircraft.

Both of these types of UAVs has some advantages and disadvantages. The main
advantages of multi-rotor drones are greater maneuverability, more compact, ease-of-use,
higher payload capacity and normally they have lower prices than fixed wings. The
fixed wings present a significant range, safer recovery of a motor power loss, linear flight
advantage and greater stability (DRONEDEPLOY, 2017). Figure 6 shows the comparison
of the multi-rotor and fixed wings in some aspects.
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Figure 5 – Fixed wing UAV SX2 by Sensix Innovations.

Figure 6 – Summary comparison between Multi-rotor and Fixed-wing aircrafts, from
(DRONEDEPLOY, 2017).

2.1.2 Remote sensing in Precision Agriculture

Remote sensing can be defined as the acquisition of information about an object
without making physical contact, i.e., by using land platforms, satellites, and/or aircraft
(ZARCO-TEJADA et al., 2016). In PA, it can be defined as the process of capture
field-level data.

At the beginning of PA, the remotely sensed images were only obtained by satellites,
airplanes or helicopters. These processes, besides being expensive, did not provide the
data fast enough for the optimal use of PA methods. However, in the last decade, the
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development of UAVs initialized a new era in the PA, since this equipment provides data
of an unprecedented spatial, spectral, and temporal resolution (MAES; STEPPE, 2019).

Remote sensed imagery has several uses in PA, e.g., classification of crop species (DYR-
MANN; KARSTOFT; MIDTIBY, 2016), monitoring of crop diseases and weeds (PICON
et al., 2019), detection of crop water stress (IHUOMA; MADRAMOOTOO, 2017) and
mapping soil properties. However, some issues must be evaluated before using the re-
motely sensed images for the process of decision-making in PA, since several parameters
are affected by the type of platform (satellite, air or ground) and the sensor chosen for the
data acquisition: (i) geometric precision of the images; (ii) radiometric; (iii) spectral; (iv)
spatial; (v) temporal resolution; (vi) the width and number of spectral bands obtained
by the sensor; (vii) the quality of spectral information represented in the images. These
parameters influence the quality of remote sensed images and future analysis (see Figure
7) (KHANAL, 2017).

Figure 7 – Quality factors in remote sensing, from (KHANAL, 2017).

2.1.2.1 Quality in Remote Sensing

As stated earlier, the quality of information extracted from remotely sensed imagery
depends on four types of resolution, i.e., temporal, spatial, spectral and radiometric. In
this section, we will explain each one and its influence on the image.

One important resolution that leads farmers to choose UAVs instead of satellite images
is the temporal resolution and it can be defined as the quantity of time needed to reacquire
images from the same location (e.g. field) (THÉAU, 2008). A higher temporal resolution
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(a) Lower Spatial Resolution. (b) Higher Spatial Resolution.

Figure 8 – Comparison of vigor map in (a) has a ground sampled distance of 10 meters
and (b) has a ground sampled distance of 0.25 meters, from (KHANAL, 2017)

means a lower delay between one acquisition from another in the same location and vice-
versa.

The UAV remote sensed imagery has higher temporal resolution than satellites. This
is because, generally, the satellites have a resolution varying in days (e.g., the Landsat-8
and MODIS that have, respectively, 16 and 1 days of temporal resolution (HAZAYMEH;
HASSAN, 2015)) while to obtain new data with the use of UAVs it is only necessary to
perform a new flight over the desired area, which, in most cases, will take only a few hours
to be performed. The temporal resolution is very important for precision agriculture since
most methods require immediate analysis of the fields for the decision making process.

When referring to pixel size, the spatial resolution specifies the smallest detectable
feature in the image. In other words, it can be defined as the ability to distinguish the
smallest details. In images with a high spatial resolution, even the smallest object can
be recognized, and this will lead to better feature extraction of the image. However, in
images with lower spatial resolution, a single-pixel will represent multiples features, and
this will make the process of distinguishing a feature from another difficult (KHANAL,
2017).

Generally, the UAV remote sensed imagery has a higher spatial resolution than the
satellite imagery. This is mainly caused by the lower altitudes that the UAV acquired the
image. Figure 8 shows the difference between the generated map of the vigor of a crop
with higher and lower resolution.

Spectral resolution can be defined as the length of the continuous wavelength that
can be detected by a sensor in the electromagnetic spectrum. In other words, it means
the range of electromagnetic spectrum and the number of spectral bands that can be
measured by a sensor (Khan et al., 2018). Figure 9 shows the LANDSAT TM and
TERRA Aster firsts bands and their spectral resolution. Figure 9 demonstrate an example
of the difference in spectral resolution between two satellites, channel 3 of TERRA Aster
corresponds to a narrower range that is centered on a different value than the near-infrared
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of LANDSAT TM channel 4. For channel 4 of TERRA Aster and 5 of LANDSAT TM, the
bandwidth is also narrower. Between 2.05 and 2.35 µm, the sensors have different designs:
Terra Aster achieves four channels (5 to 8) and LANDSAT TM integrates the wavelengths
in one single spectral measure (channel 7) (OSE; CORPETTI; DEMAGISTRI, 2016).

Figure 9 – LANDSAT TM and TERRA Aster firsts bands and their spectral resolution,
from (OSE; CORPETTI; DEMAGISTRI, 2016)

Remote sensing imagery with a higher spectral resolution is better for the PA methods
because a large number of spectral bands with a lesser range of wavelength lead to bet-
ter features for several applications, e.g., crop disease detection and biomass estimation
(KHANAL, 2017).

Radiometric resolution is the sensitivity of the sensor, i.e., its ability to measure and
to distinguish slight variations in the electromagnetic energy emitted or reflected by the
elementary ground surfaces. In remotely sensed imagery, data is recorded as a positive
digital number (DN) which range of 0 to 2𝑛 − 1, where 𝑛 depends on the number of
bits that the sensor uses to represents spectral data (OSE; CORPETTI; DEMAGISTRI,
2016)(KHANAL, 2017). Figure 10 shows the difference between an image with low and
high radiometric resolution.

Figure 10 – Example of the difference in the level of details in two radiometric resolutions
(a) represents the red band with 2 bits and (b) represents the red band with
16 bits, from (KHANAL, 2017)
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The higher the radiometric resolution is, more strong are the differences between
the information represented in images. It leads to a higher sensitivity to detect minor
differences in images.

In addition to the four resolutions explained, two factors are also of great impor-
tance for remote sensing quality, namely: geometric correction and radiometric calibra-
tion/correction. Remotely sensed images obtained by satellites, UAVs or aircraft, are
generally geometrically distorted due to the movements of the platform and the acqui-
sition process. Many factors influence geometric distortion in remotely sensed images
(e.g. earth rotation, position and dynamic state of the platform and topographic relief)
(TAWFEIK; HAMZA; SHAWKY, 2016). Specifically, in images obtained by UAVs, this
geometric distortion is accentuated due to factors such as low UAV stability, wind speed,
wind direction, and flight plan problems.

The process of rectification of the geometrically distorted image is commonly called
ortho-rectification and it is the first and main step before images can be used in any
application (KHANAL, 2017). The traditional method for ortho-rectifying images consists
of complex photogrammetric equations that make mathematical relations between the
target, the image, and the sensor. These equations normally need parameters like focal
length, lens distortion, the altitude of the sensor and terrain elevation.

To validate the quality of ortho-rectified images Ground Control Points (GCP) are
commonly used. GCP are points on the earth’s surface with known locations and easily
distinguishable. If the location does not have natural GCP, white metal sheets can
be placed into several locations and their coordinates storage to establish a relationship
between the coordinates of the image and the coordinates of the terrain (KHANAL, 2017).

Some studies try to automate the ortho-rectification process in images obtained by
UAVs. These methods rely on sensor’s parameters (sensor size, pixel resolution, and focal
length), UAV coordinates and the high overlap between the images (approximately 80%).

Radiometric calibration can be defined as the process of converting pixel intensities
(i.e. DN) into physical parameters (i.e., spectral reflectance). The radiometric calibration
in images obtained by UAVs is generally made with a reflectance panel with known
reflectance values. Images of the reflectance panel are taken before the flight over the
fields using the same sensor mounted on the UAV. The images of the reflectance panel
are lately used to improve accuracy (KHANAL, 2017).

2.1.3 Sensors

The main reason for applying UAVs in precision agriculture is to obtain high-quality
images. Therefore, sensors represent a fundamental part of the majority of precision
agriculture applications. Choosing the sensor depends on several factors, for example,
spatial resolution, spectral resolution, optical quality, the sensor’s weight, and the price
(MILICS, 2019).
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The first kind of sensor used in precision agriculture were regular commercial RGB
(red-green-blue) cameras and/or in regions near the infrared (HUNT et al., 2010). The
newly developed sensors bring to the UAV the possibility of obtaining multispectral and
hyperspectral images (BERNI et al., 2009).

2.1.3.1 Visible Light Sensors

Visible light sensors capture the red, green and blue (RGB) channels of the visible
light. The commercial RGB sensors although they are cheap and have a high spatial reso-
lution, have a poor spectral resolution. Usually, these cameras are used to calculate some
Vegetation Index (VI) and to generate high-resolution Digital Elevation Model (DEM)
(MAES; STEPPE, 2019). Figure 11 shows an example of Visible Light Sensor.

Figure 11 – MAPIR Survey2 Camera - Visible Light RGB by MAPIR.

2.1.3.2 Near Infrared Sensors

Currently, RGB cameras have been modified to replace the green filter with an in-
frared filter (RGN), making these modified cameras sensitive to the near-infrared spectrum
(NIR) (MAES; STEPPE, 2019). For the precision agriculture methods, the wavelength
of the electromagnetic spectrum between 720 and 1, 000nm is very important to calculate
various indices that demonstrate the state of the vegetation (MAES; STEPPE, 2019). It
is also important to note that the red-edge band (around 680–730nm) is also used in these
indices. Figure 12 shows an example of RGN filter.

2.1.3.3 Multispectral Sensors

Multispectral and hyperspectral sensors have multiple channels and they collect data
in different ranges or specific wavelengths of the electromagnetic spectrum. The main
difference between the multispectral cameras when it’s compared to the RGB cameras
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Figure 12 – MAPIR Survey3W Camera - red+green+nir (RGN, NDVI) by MAPIR.

is the fact that the multispectral sensors use a different sensor for each channel (MAES;
STEPPE, 2019). The main multispectral cameras are a combination of sensors responsible
for obtaining red, green, blue and other spectra such as near-infrared (nir) and red-edge
(rededge). Figure 13 shows an example of multispectral camera.

Figure 13 – MicaSense Red-Edge camera by MicaSense.

The main difference between multispectral and hyperspectral imagery is the spectral
resolution. When compared to the multispectral images, which deal with fewer bands, the
hyperspectral images combine thousands of fine wavelength intervals to provide detailed
information.

2.2 Image Registration

The Image Registration process can be defined as the task of aligning two or more
images. This process requires the definition of an image to be used as a reference and the
application of geometric transformations (e.g. translations, rotations, and scale) in the
other images to align with respect to the reference image. Misalignment between images
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can be caused by different reasons, such as distortions among the sensors used to obtain
them and changes in camera pose.

According to (HONG; ZHANG, 2008), image registration is the process of geometri-
cally aligning an image on another image of the same scene taken from different points
of view or by different sensors. It is one of the main image processing techniques and
is important for several applications (e.g. integrating information obtained by differ-
ent sensors, finding differences in images obtained in different periods, three-dimensional
reconstruction, among others).

2.2.1 Image Registration process

According to (HONG; ZHANG, 2008), the feature-based image registration process
can be divided into four steps (see Figure 14):

I Extraction of Features, which identifies relevant control points between the two
images;

II Feature matching, which establishes the correspondence between the control points
of the images;

III Construction of the mapping function;

IV Image Transformation

Figure 14 – Example of the steps required to register images using control points. I)
Extraction of features from the images. II) Feature matching. III) Con-
struction of the mapping function and image transformation. (Adapted from
(UCHIDA, 2013))
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2.2.1.1 Features Extraction

Features can be defined as a pattern that occurs at one location in the image and differs
from its closest neighbors. Usually, this pattern is associated with a sudden change in one
or more properties of an image (e.g. texture, color or intensity) (KUMAR; SREEKUMAR,
2014) (TUYTELAARS; MIKOLAJCZYK et al., 2008). Algorithms for image registration
based on keypoints find these points by analyzing the magnitude and direction of the
intensity changes in the local neighbors of the image to detect regions, corners, and borders
(LOWE, 2004). Figure 15 shows the control points detected by the KAZE Features
technique in an image. The points are shown with a circle centered on them. The radius
of each circle represents the scale of each control point and the line in the center of each
circle represents the orientation of the control point.

Figure 15 – Example of control points in an image.

2.2.1.2 Feature matching

After extracting the control points, it is necessary to create a correspondence between
the points obtained in each of the images. Exhaustive (e.g. brute force) and approximate
(e.g. Nearest Neighbor Search (NNS) (MUJA; LOWE, 2009)) methods can be applied to
obtain matches.

In the brute force method, for each control point obtained in the first image, a distance
measurement (Hamming for binary features and Euclidean for others) is calculated for all
points obtained in the second image. This method seeks to find the closest correspondence
for each point analyzed. Despite obtaining good results, this method is computationally
expensive due to the excessive number of comparisons.
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As described in the work of (MUJA; LOWE, 2009), depending on the application and
the required accuracy, approximate methods can be used to obtain the correspondences
between the points. The authors also prove that the approximate methods proposed by
them reduce the execution time by several orders of magnitude when compared to linear
searches.

Algorithms for obtaining control points can extract thousands of points in images
obtained by UAVs. For this reason, it may also be necessary, in addition to the feature
matching step, to apply techniques for removing outliers, which in the context of control
points, can be defined as the inaccurate match of a pair of control points, such as the
D’Lowe (LOWE, 2004) test. The D’lowe test, or Nearest Neighbor Distance Ratio, is a
metric used to determine the best match for a feature and thus remove outliers. Basically,
it consists of, given a feature 𝑓𝑎 take two close candidates for match 𝑓𝑏 and 𝑓𝑐, it is
calculated: 𝑑(𝑓𝑎, 𝑓𝑏)/𝑑(𝑓𝑎, 𝑓𝑐), where 𝑑 is a distance metric. If the result is a small value
𝑓𝑏 is a good match, otherwise 𝑓𝑏 is ambiguous or incorrect. D’lowe proposes in his work
that the value to be used as a threshold for this metric is 0.8.

2.2.1.3 Construction of the mapping function

Mathematically a mapping function, or warping, can be defined as a 2D function that
maps the 𝑥 − 𝑦 coordinates from image 𝐴 into the 𝑥 − 𝑦 coordinates in image B (WOL-
BERG, 1994). There are two main types of mapping function (Linear and Non-Linear)
that are characterized by the type of deformation in the image. Figure 16 exemplifies the
transformations.

Figure 16 – Example of linear and non-linear transformations. Figure adapted from
(UCHIDA, 2013).
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One of the main 2𝐷 linear geometric transformations is the affine transformation.
Related transformations include changes in scale, shear, rotations, translations, and their
combinations. One of its main properties is that parallel lines remain parallel after the
transformation. Linear transformations can be represented as,
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where (𝑥, 𝑦) are the 𝑥-𝑦 coordinates of image 𝐴 and (𝑋, 𝑌 ) are the coordinates of image
𝐵 (reference or target). Parameters 𝑒 and 𝑓 represent translations on the 𝑥 and 𝑦 axes
respectively. For rotation, 𝑎 = 𝑑 = 𝑐𝑜𝑠 𝜃, 𝑏 = 𝑠𝑖𝑛 𝜃 and 𝑐 = −𝑠𝑖𝑛 𝜃. As related
transformations deal with all cases, the parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 are arbitrary
(UCHIDA, 2013).

One of the methods available in the literature for estimating geometric transforma-
tions is the Random Sample Consensus (RANSAC). RANSAC is a robust method for
estimating geometric transformations, and it works as follows: first, three or more matches
are selected randomly from a 𝑁 amount of matches, and the parameters are defined fol-
lowing these selected matches. Subsequently, it is evaluated how much the remaining
correspondences are in agreement with the estimated parameters. If the current param-
eters contain a sufficient amount of agreement between the unevaluated matches, the
parameters are selected. As it does not use all correspondences to find the parameters,
the RANSAC method is robust to false correspondences (FISCHLER; BOLLES, 1981)
(UCHIDA, 2013).

2.2.1.4 Image Transformation

Finally, the last step to perform the registration process is to transform the image
according to the transformation function obtained in Section 2.2.1.3. To transform the
images according to the target image (b), the other images (a) are mapped according to
the transformation obtained in Section 2.2.1.3, as shown in Figure 17.

2.2.1.5 Evaluation metrics

Several techniques have been proposed to measure the quality of the registration pro-
cess. Several studies have already emphasized the importance of evaluation metrics in
the registration process (LEITE et al., 2011) (RAZLIGHI; KEHTARNAVAZ; YOUSEFI,
2013) (MELBOURNE; RIDGWAY; HAWKES, 2010).

One of the techniques used to assess alignment is the Root Mean Squared Error
(RMSE) obtained according to the Equation 2.

RMSE =

√︃∑︀𝑁
𝑖=1

∑︀𝑀
𝑗=1(𝑃 (𝑖, 𝑗) − 𝑃 ′(𝑖, 𝑗))2

𝑁𝑀
(2)
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Figure 17 – Example of transforming an image (a) to the target image (b). The result
of the overlay after the transformation is shown in the image (c) (MATH-
WORKS, 2018).

where 𝑀 and 𝑁 represent, respectively, the number of lines and columns of the image,
𝑃 (𝑖, 𝑗) represents the pixel in the line 𝑖 and column 𝑗 of the aligned image and 𝑃 ′(𝑖, 𝑗)
represents the pixel in the 𝑖 row and the 𝑗 column of the registered image.

Smaller RMSE values indicate better alignment between the two images. One of the
limitations of this technique is the need for a base previously aligned by a specialist to
obtain a realistic assessment of performance.

Another technique used in several works is Back Projection Error (BPE). This tech-
nique represents how well the location of the target image’s control points aligns with the
registered image’s control points. Given 𝑋𝑖 and 𝑋𝑗 as the same control points defined by
the specialist on the, respectively, target image (𝑖) and moving image (𝑗), 𝑇 the affine
transformation matrix estimated by a method and 𝑑 the euclidean distance function, the
BPE can be defined as shown in Equation 3. Smaller BPE indicates better image regis-
tration performance. This technique also has the same limitation as the RMSE, to obtain
real results it is necessary to use a previously aligned database.

BPE(𝐼, 𝐽) =
∑︁

𝑥𝑖,𝑥𝑗

𝑑2(𝑋𝑖, 𝑇𝑋𝑗) (3)

2.2.2 Control Points for Image Registration

A great deal of work in the area of image registration has been developed recently.
As analyzed by (YASIR, 2018), the main focus of recent algorithms for image regis-
tration was focused on increasing the number of control points obtained in different
scenes, sensors, and situations. When restricted to the multispectral registration area
of images obtained by UAVs, the main algorithms are: Scale Invariant Feature Trans-
form (SIFT), Speeded-Up Robust Features (SURF), Binary Robust Invariant Scalable
Keypoints (BRISK), Min Eigen Features (MEF), Kaze Features (KAZE), Oriented FAST
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and rotated BRIEF (ORB), Maximally Stable Extremal Regions (MSER) and Features
from Accelerated Segment Test (FAST). A brief description of each method is presented
below.

2.2.2.1 Scale Invariant Feature Transform

The SIFT algorithm was proposed by (LOWE, 2004) and it is used to detect and
extract control points that are described as local features in the image. According to
(ISIK, 2014) we can describe the SIFT in four stages:

1. Detection of maximum value points in the scale space;

2. Location of Control Points;

3. Guidance Assignment;

4. Control Point Descriptor.

In the first stage, the image is checked in different regions and scales to find points of
interest that are invariant in the scale and orientations. These points are defined as local
scale-space maxima obtained from the Difference of Gaussian (DoG), which is calculated
by subtracting different Gaussian scales (ISIK, 2014).

When locating control points, insignificant points are rejected and the edge response is
eliminated. While points with low contrast are rejected according to a previously defined
threshold, points that are not part of the border are eliminated. To eliminate these points,
SIFT uses a Hessian matrix to find the main curvatures (ISIK, 2014).

To obtain descriptors that are invariant to rotations, SIFT creates an orientation
histogram from the gradient orientations at each maximum location of the DoG function
in a region around the control point, usually a region of size 16 × 16.

The last stage is the construction of the features vector. This vector is constructed
considering the direction of the control point where the gradient force is maximum. Typ-
ically the feature vector obtained by SIFT has a size of 128 elements.

Many variants of SIFT have been proposed for the most different problems. It is worth
mentioning the PSO-SIFT proposed by (MA et al., 2017), which increases the amount of
feature matching when used in multispectral/hyperspectral images.

In (MA et al., 2017), a new gradient definition was proposed to address the differences
between the intensities of the images obtained by different sensors. Subsequently, an im-
proved method for performing feature matching by combining the position, scale, and ori-
entation of each control point is presented to increase the number of correct matches. The
authors also performed experimental tests on multispectral and multisensory datasets.
According to the authors, the proposed method presented better results when it comes
to the amount of correspondence and the alignment accuracy than several other methods
considered state of the art.
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2.2.2.2 Speeded-Up Robust Features

SURF (BAY; TUYTELAARS; GOOL, 2006) is a scale and rotation invariant key-
points detector and descriptor. In comparison with traditional methods, the SURF algo-
rithm approximates or, in some cases, outperforms these methods in robustness, distinc-
tiveness, and repeatability. Moreover, the SURF can be computed and compared faster
than other methods (BAY; TUYTELAARS; GOOL, 2006).

The SURF technique has gained a lot of space in several study areas for the selection
of features because, in addition to presenting scale and rotation invariance, the computa-
tional time of the SURF method is lower when compared to other methods of extracting
features in cases of detection and correspondence between control points. SURF detects
points of interest with the aid of pre-computed integral images to approximate the deter-
minant of the Hessian matrix.

For the detection of control points, the SURF technique uses the sum of Haar’s 2D
wavelet around a point of interest. Haar’s 2D wavelet is obtained by an approximation
of the determinant of the Hessian matrix which, in turn, extracts structures in the form
of regions at the location where the determinant is maximum. Subsequently, the great
improvement in the performance of the SURF technique can be attributed to the non-
maximal suppression of the determinants of the Hessian matrices (ISIK, 2014).

To describe the control points, the SURF algorithm first divides the region around
each control point into square regions of size 4 × 4. Subsequently, Haar’s 2-D wavelet is
calculated for each sub-region, this step can be calculated with the aid of integral images.
Therefore, each control point is described as a 64-dimension vector (ISIK, 2014).

2.2.2.3 Binary Robust Invariant Scalable Keypoints

Although techniques such as SURF and SIFT obtain good results and they are invari-
ant to various types of transformations (e.g. scale, rotations and changes in the point of
view) when analyzing the performance we see that these techniques are extremely com-
putationally expensive. In this context, the BRISK was proposed by (LEUTENEGGER;
CHLI; SIEGWART, 2011) to be an algorithm with high performance, however, with a
drastic reduction of the computational cost when compared to algorithms like SIFT or
SURF.

As (ISIK, 2014), the BRISK technique proposed by (LEUTENEGGER; CHLI; SIEG-
WART, 2011) uses the AGAST Corner Detector (MAIR et al., 2010) technique, which
holds a performance improvement over the FAST algorithm. This method can be divided
into three main parts:

1. Sample Pattern;

2. Orientation Compensation;
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3. Sample Pairs.

The sampling pattern around the control points in the BRISK algorithm represents
some points spread over several concentric circles, which are used to define whether a
point is a corner or not. To determine if a point is a corner, the FAST (ROSTEN;
DRUMMOND, 2006) detector is used. The points are then separated into two sets: short
distance points and long-distance points (ISIK, 2014).

To obtain the rotation invariance, the direction of each control point is determined
by obtaining the sum of the local gradient between the even points of long-distance and
those of short distance. Subsequently, all points are rotated according to the guidelines
obtained (ISIK, 2014).

In the end, the intensity of the first point and the second point in the pair is compared.
If the intensity of the first point is greater than that of the second, the algorithm returns
1; otherwise, it returns 0. So, after comparing all the 512 points, the descriptor will be
determined by a 512 bit array. To perform the comparison between the descriptors, the
Hamming distance is used instead of the Euclidean distance, as the Hamming distance
uses only the sum of the 𝑋𝑂𝑅 operation between the bits of two vectors, which improves
the performance considerably (ISIK, 2014).

2.2.2.4 Harris Corner Detector

The Harris corner detector (HARRIS; STEPHENS, 1988) is a technique for locating
keypoints in images. It is widely used in several practical applications such as camera
calibration, tracking, image matching, and video stabilization. This method is based
on the Moravec’s detector, which is based on the auto-correlation function of the image
for measuring the intensity differences between a patch and windows shifted in several
directions (SÁNCHEZ; MONZÓN; NUEZ, 2018). Its success is due to its efficiency and
its simplicity of implementation. Your method can be summarized in the following steps:

o Consider 𝐼 the image, compute 𝑥 and 𝑦 derivatives of image (with Sobel operator):
𝐼𝑥 = 𝐺𝑥

𝜃 * 𝐼

𝐼𝑦 = 𝐺𝑦
𝜃 * 𝐼

o Compute products of derivatives at every pixel:
𝐼2

𝑥 = 𝐼𝑥 * 𝐼𝑥

𝐼2
𝑦 = 𝐼𝑦 * 𝐼𝑦

𝐼𝑥𝑦 = 𝐼𝑥 * 𝐼𝑦

o Compute the sums of the products of derivatives at each pixel:
𝑆2

𝑥 = 𝐺𝜃′ * 𝐼2
𝑥

𝑆2
𝑦 = 𝐺𝜃′ * 𝐼2

𝑦

𝑆𝑥𝑦 = 𝐺𝜃′ * 𝐼𝑥𝑦
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o Define at each pixel (𝑥, 𝑦) the matrix:

𝐻(𝑥, 𝑦) =
⎡⎣ 𝑆2

𝑥 𝑆𝑥𝑦

𝑆𝑥𝑦 𝑆2
𝑦

⎤⎦
o Compute the response of the detector at each pixel:

𝑅 = 𝐷𝑒𝑡(𝐻) − 𝑘(𝑇𝑟𝑎𝑐𝑒(𝐻))2 where
𝐷𝑒𝑡(𝐻) = 𝜆1 * 𝜆2

𝑇𝑟𝑎𝑐𝑒(𝐻) = 𝜆1 + 𝜆2

𝜆1 and 𝜆2 are the eigenvalues of 𝐻.

The 𝑅 score is analyzed for each window to determine whether this window is flat,
edge or a corner. The classification rule is as follows:

o When |𝑅| is small, the region is flat.

o When 𝑅 < 0, the region is an edge.

o When 𝑅 is large, the region is a corner.

At the end of the process, the Harris Corner Detector will have a grayscale image with
the 𝑅 scores. Thresholding the 𝑅 scores will return the corners of the image.

2.2.2.5 Shi-Tomasi Corner Detector (Min Eigen Features)

MEF are obtained by using the Shi-Tomasi Corner Detector algorithm. This algorithm
was proposed by (SHI; TOMASI, 1994) and it is based on the Harris Corner Detector
(HARRIS; STEPHENS, 1988) algorithm with a small change in the selection criteria.

As shown in Section 2.2.2.4, the formula for determining whether or not a corner exists
in the Harris corner detector can be expressed by: 𝑅 = 𝜆1 * 𝜆2 − 𝑘(𝜆1 + 𝜆2)2. Instead,
Shi-Tomasi proposed the following change to this formula: 𝑅 = 𝑚𝑖𝑛(𝜆1, 𝜆2), that is, he
is only evaluating eigenvalues.

As analyzed in (SHI; TOMASI, 1994), this change proved to be experimentally su-
perior to the selection criterion proposed in the Harris Corner Detector algorithm. In
addition to having a better selection method, this algorithm is also invariant to changes
in lighting, scale, and speed.

2.2.2.6 Kaze Features

The KAZE algorithm was proposed by (ALCANTARILLA; BARTOLI; DAVISON,
2012) to detect 2D characteristics in non-linear scale-space to obtain greater accuracy of
location and distinctiveness.

The Gaussian blurring method that is used to generate the scale space in other algo-
rithms does not maintain the natural edges of the analyzed image and the noise is also
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smoothed at all levels of scale. To solve this problem, the KAZE algorithm uses non-linear
diffusion filtering together with the AOS (Additive Operator Splitting) (ANDERSSON;
MARQUEZ, 2016) method. The KAZE algorithm presents illumination, scale and rota-
tion invariance.

2.2.2.7 Oriented FAST and rotated BRIEF

ORB was proposed by (RUBLEE et al., 2011) and it was developed to be a very fast
binary descriptor based on BRIEF with rotation invariance and noise resistance.

This method consists of detecting control points using FAST for this purpose. FAST
does not present a quality measure for the corners detected. For this reason, the Harris
corner measure (HARRIS; STEPHENS, 1988) (HCM) was used to sort the keypoints
obtained by FAST. A threshold is applied to select only the 𝑁 best keypoints. FAST
also does not produce multi-scale features, so a scale pyramid of the image and features
(filtered by Harris) is generated at each level of the pyramid. By default, FAST also
does not have an orientation component in its points. For this reason, the ORB uses the
centroid intensity as a measure to determine the orientation of the corner (RUBLEE et
al., 2011).

For its descriptors, the ORB uses the BRIEF method, which is a binary descriptor.
However, originally the BRIEF method is not invariant for rotations, for this reason,
the Rotation-aware BRIEF (rBRIEF) was developed, making it invariant to rotations.
According to tests demonstrated in (RUBLEE et al., 2011), the ORB obtained a perfor-
mance in two orders of magnitude greater than the SIFT. In addition, it obtained good
results in several situations in the real world.

2.2.2.8 Maximally Stable Extremal Regions

MSER is a method proposed by (MATAS et al., 2004) for blob detection in images.
Similar to SIFT, MSER extracts from an image some co-variant regions, which are called
MSERs. MSER regions can be defined as connected areas that are characterized by
an almost uniform intensity and surrounded by a constructive background. They are
constructed through a process of trying multiple thresholds (from white to black). Sub-
sequently, the connected components of the image are extracted after the threshold. The
area of each connected component is extracted and stored. At the end of the process,
each of the probable regions is analyzed to determine those that remain at various values
of the threshold applied previously. About the regions obtained in the previous step, you
can optionally approach them with an ellipse and then keep each descriptor of the regions
obtained as features.
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2.2.2.9 Features from Accelerated Segment Test

The FAST algorithm was proposed by (ROSTEN; DRUMMOND, 2006) to be an
algorithm to find points of interest in real-time applications.FAST is faster than the algo-
rithms that use DoG to extract features, for example, SIFT and Harris Corner Detector
because, with the use of machine learning techniques, superior performance in the use of
resources and computational time is achieved.

The FAST algorithm uses a 16 pixel circle to classify whether a 𝑃 point is a corner. If
a 𝑁 number (normally used as 12) of points inside the circle is lighter than the intensity
of the point 𝑃 added to a threshold or darker than the intensity of point 𝑃 minus a
threshold then 𝑃 is classified as a corner.

To optimize the step described above, a test called “High-speed Test” was developed to
reject points that are not corners analyzing only 4 pixels. Subsequently, machine learning
techniques (such as decision trees) are applied to optimize the process and ensure the
effectiveness of the algorithm.
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Chapter 3
Related works

This chapter describes the main works in multispectral registration of images obtained
by UAVs, in addition to the main studies related to the proposed work.

3.1 Alignment of UAV-hyperspectral bands using key-
point descriptors in a spectrally complex envi-
ronment

In this work (BANERJEE; RAVAL; CULLEN, 2018), several techniques were evalu-
ated using descriptors of local characteristics to perform the hyperspectral registration of
images in spectral complex environments, more specifically in swamps and wetlands. The
authors used images of this type of environment because, according to them, performing
the hyperspectral registration of this type of environment is quite complicated as it houses
a wide variety of species, which leads to a wide variety of reflectance between the spec-
tra. In this work, the authors worked with bands 515.14, 531.50, 550.14, 570.18, 610.10,
670.31, 700.08, 710.12, 720.27, 740.40, 750.19, 762.02, 780.33, 800.35 and 850.35nm.

Harris-Stephens Features (HSF), MEF, SIFT, SURF, BRISK and FAST were used to
register the images. Two metrics were used to evaluate the results: RMSE and Pearson’s
Correlation Coefficient (PCC).

An evaluation was also carried out in this work of the best choice of target to perform
the registration. The authors evaluated performing the registration in spectral order
(wavelength) and in the order in which the spectra were obtained.

In the results, the authors concluded that the best order, among those evaluated, for
the registration process was the spectral order. One of the main reasons that led to this
result is that the spectral order minimizes the spectral difference between the images and
this leads to a greater correspondence between the control points. The temporal order was
unable to register and, therefore, it was considered insufficient. Among the techniques
evaluated, SURF presented the best PCC and RMSE.
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The authors emphasize that the results can be improved using descriptors that are
spectrally invariant instead of being spatially invariant (BANERJEE; RAVAL; CULLEN,
2018).

3.2 Data-driven Multispectral Image Registration

In this work (YASIR, 2018), the authors proposed the creation of an automatic frame-
work for the registration of multispectral images. However, unlike other related works,
this framework allowed intermediate targets for registration. The basic premise of the
framework is the need for a minimum amount of correspondence between the control
points between two channels to guarantee a low alignment error and that the greater the
number of corresponding control points between the channels, the better the registration.

To obtain the control points, the authors used SIFT, BRISK, SURF and ORB tech-
niques. The framework was evaluated by the number of control points obtained, by the
computational time and by the BPE. The authors evaluated the robustness of their frame-
work in three datasets, two with images obtained by UAVs and one obtained through a
fixed platform. These datasets were chosen because they have a wide variety of different
deformations.

The framework proposed by (YASIR, 2018) consists of the construction of a complete
graph, where the graph nodes are the channels to be registered and the weights of the
quantity control points obtained by the algorithms between these channels. Then, using
the Kruskal (KRUSKAL, 1956) algorithm, a Maximum Spanning Tree (MST) is obtained.
To find the channel to be used as a target for the other alignments, the MST is transformed
again into a graph and the Floyd-Warshall algorithm is applied to obtain the shortest
paths between all vertices (FLOYD, 1962). To accomplish that, they considered each
edge with weight equals to 1. The node with the least sum of distances from itself to all
other nodes is selected as the destination channel for the registration scheme. Note that
there may be intermediate nodes in this process, which is one of the main advantages of
this framework. A general scheme of this framework can be seen in Figure 18.

The authors compared their framework with the direct registration approach for each
channel individually. In the results, it is clear the superiority of the application of this
framework in obtaining control points when compared to the direct approach. However,
the authors did not evaluate the registration in other orders, such as those proposed
by (BANERJEE; RAVAL; CULLEN, 2018) (Temporal and Spectral), thus making their
evaluation incomplete. The quality of the resulting images was also not evaluated, being
analyzed only the average BPE between the channels. The authors discuss the difficulty of
registering the near-IR (NIR) channel with the others, requiring intermediate registration
of the NIR channel on the red-edge channel. Among the evaluated algorithms, SIFT
obtained the best results, both in the number of corresponding control points and in the
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Figure 18 – Framework proposed by (YASIR, 2018).

lowest BPE (YASIR, 2018).

3.3 A Normalized SURF for Multispectral Image Match-
ing and Band Co-Registration

The authors proposed in (JHAN; RAU, 2019) a change in the SURF method to in-
crease its performance in registering the channels of the same image (multispectral co-
registration). The authors also describe that an image obtained by a multi-lens multi-
spectral camera has significant alignment errors and that the process of registering images
between the bands is necessary. According to them, due to the non-linear intensity of
spectral response, using feature-based methods for the image matching process (such as
SURF) will obtain few features between the bands of the multispectral image. The images
evaluated in the work were obtained from a Helicopter (MiniMCA-12) at 100 meters high
and a Multi-Rotor (RedEdge Altum) at 50 meters high.

To solve this problem, a standardized version of SURF (N-SURF) was proposed, which
extracts the features in only one scale, calculates the cumulative distribution function
(CDF) of features, and obtains consistent features from the CDF. This method is sum-
marized in Figure 19.

To evaluate the results, the authors used 4 metrics: 3 to measure performance when
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Figure 19 – Method proposed by (JHAN; RAU, 2019).

analyzing the extraction and matching of features and 1 to analyze the alignment perfor-
mance at the pixel level. The metrics to assess the extraction and matching of features
were: MR, that represents how many points can be matched over total features on refer-
ence and target images; DR, which computes the ratio of duplicates in matches; and CR
is to calculate the percentage of correct points in none duplicate matches after rigorous
image registration is conducted. To assess the alignment performance, the RMSE was
used. The authors compared the SURF algorithm with its modified N-SURF proposal.
The results indicated that the N-SURF was superior to the SURF in up to 3 times besides
having obtained good performance in all the tested images.

The authors also proposed a change in the projective transform to correct lens and
point of view distortions just once. In the evaluation between the types of transformation,
it was found that among the three transformations evaluated (Affine, Projective and
Extended Projective), Extended Projective obtained the best result. When combined
with N-SURF, results were obtained that varied between 0.3 and 0.6 pixels of error in all
the evaluated images.

3.4 Automated Coregistration of Multisensor Orthopho-
tos Generated from Unmanned Aerial Vehicle
Platforms

The authors proposed in (HAN et al., 2019) a way to perform band-by-band alignment
(band co-registration) in orthophotos and not in the raw set of images obtained in flight.
The authors point out that to obtain good results in the alignment process it is necessary
to use GCP for georeferencing and georectification of the orthophoto. However, the cost
and time limitation to assemble this apparatus on each flight causes a major inconvenience
to producers.
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To perform the band-to-band alignment of the orthophotos the authors propose two
steps. The first step combines the coordinates between the orthophotos using the GNSS
navigation data acquired during the flight for this purpose. Then, the band to be reg-
istered has its scale adjusted and is traded based on the data obtained by the GNSS
to superimpose the reference image. In the second step, the phase correlation method
is applied to find similarity peaks and perform another translation to obtain maximum
precision. The process is summarized in Figure 20.

Figure 20 – Registration process proposed by (HAN et al., 2019).

To evaluate the results, the authors used two datasets (RGB-TIR and RGB-MS)
obtained at an average height of 40 meters and with a spatial resolution of 1.04 cm for
RGB images and 1.96 for multispectral images. The metrics used were RMSE, Correlation
Coefficient (CC) and Normalized Mutual Information (NMI).

For the RGB-MS dataset, the authors obtained an average RMSE of 0.111 meters.
In the RGB-TIR, the accuracy was evaluated based on the CC and the NMI, obtaining
growth in the CC from 0.39 before registration to 0.41 afterward and an increase in NMI
from 0.06 before registration to 0.47 afterward.
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3.5 Automated Co-Registration of Multi-Temporal
Series of Multi-Spectral UAV Images for Crop
Monitoring

The authors in (OCHIENG’MC’OKEYO, 2018) proposed an evaluation of the regis-
tration of multispectral images obtained in the same period (intra-epoch) and in different
periods (inter-epoch). The authors also conducted a discussion regarding the choice of a
band to receive the alignment of the others (master-slave bands).

SURF, BRISK, MSER and KAZE methods were used for the image registration pro-
cess. Tests were carried out varying the parameters of each method to optimize the
methods as much as possible. The band "red-edge" was considered as the master for the
alignment process. Although this band is not sensitive to vegetation, the authors justified
that it is the band where most features can be obtained.

To evaluate the results obtained, the RMSE was used, and the analysis of the results
showed that the SURF and KAZE methods are better for both intra-epoch and inter-
epoch alignment, with SURF being the algorithm with better performance between the
two.

When evaluating the standard parameters of the algorithms against the modifications
proposed by the authors, it was verified that this change caused a significant improvement
in the number of detected keypoints and in the amount of matching between the keypoints.

3.6 A Rigid Image Registration Based on the Non-
subsampled Contourlet Transform and Genetic
Algorithms

In this work (MESKINE; MILOUD; TALEB, 2010), the authors presented an al-
gorithm for registering images using Genetic Algorithms (GA) combined with a multi-
resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). The
genetic algorithm was adapted to minimize the search space. The approach proposed
by (MESKINE; MILOUD; TALEB, 2010) uses a hybrid scheme applying the techniques
of fitness sharing and elitism. Although they do not use images obtained by UAVs but
by satellites, this work is very relevant to our proposal, as this work demonstrates the
efficiency of bio-inspired computing techniques when applied to image registration.

Normally, a GA consists of two main components, which are dependent on the prob-
lems: chromosome coding and the evaluation function. For the problem of image regis-
tration, (MESKINE; MILOUD; TALEB, 2010) represented the chromosomes in binary
form, represented by 20 bits with three genes. The 𝑅 gene represents the rotation, the 𝑋
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gene represents the translation on the 𝑥 axis and the 𝑌 gene represents the translation
on the 𝑦 axis. The chromosome proposed by (MESKINE; MILOUD; TALEB, 2010) can
be seen in the Figure 21. GA’s search space was limited as follows: rotation was limited
to ±128 degrees and translation (on the 𝑥 and 𝑦 axes) limited to ±32 pixels. The objec-
tive function of the GA was the correlation coefficient between the target image and the
registered image.

Figure 21 – Chromosome encoding proposed by (MESKINE; MILOUD; TALEB, 2010).

The basic parameters of GA were defined as follows: the population size in each
generation was restricted to 80 individuals with a crossover probability of 85% and a
mutation probability of 2%, and the algorithm is finalized after 100 generations. To
assess the performance of the hybrid approach proposed by the authors, a first evaluation
was carried out comparing hybrid GA and traditional GA. In this assessment, it was
quite clear that GA with the hybrid approach considerably outperforms traditional GA.

The authors also evaluated the combination of GA and the framework based on the
NSCT. To assess the quality of the registration, the RMSE was used, and according to
the author’s conclusion, the results were quite promising with low values of RMSE for
high-resolution images obtained by satellites and radar images (MESKINE; MILOUD;
TALEB, 2010).

3.7 Final considerations

Several works are proposed for the band-to-band alignment. Approaches like (BANER-
JEE; RAVAL; CULLEN, 2018) and (YASIR, 2018) try to create frameworks to obtain
the best order of alignment between the bands, testing for this, several methods of de-
tection and description of features. Approaches such as (JHAN; RAU, 2019), seek to
improve existing alignment methods, in this case, SURF, to make them spectrally invari-
ant. Works like the one proposed by (HAN et al., 2019) and (OCHIENG’MC’OKEYO,
2018), perform the alignment between the mosaics obtained by each band, instead of the
traditional approach of aligning image by image. Also, several works like the one proposed
by (MESKINE; MILOUD; TALEB, 2010) were developed to evaluate the performance of
bio-inspired methods, in this case, GA, for the alignment of multispectral images.
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Unlike all the works previously proposed, which find a set of transformations to align
the bands in each image, this work examines the entire dataset to find the best set
of transformations to align all the images in the dataset. The risk of not aligning an
image is reduced and alignment is done with as many keypoints as possible. These works
are described in Table 3, where the information about the alignment order, evaluated
methods, evaluated metrics and the best method obtained is detailed.



3.7.
Finalconsiderations

51

Table 3 – Summary of works in the literature for the band-to-band alignment of multispectral and hyperspectral images.

Reference Alignment Order Evaluated methods Evaluation Metrics Best
Method

(BANERJEE; RAVAL; CULLEN, 2018) Spectral and Temporal HSF, MEF, SIFT,
SURF, BRISK and FAST RMSE and PCC SURF

(YASIR, 2018) Variable according to dataset SIFT, BRISK, SURF
and ORB BPE SIFT

(JHAN; RAU, 2019) Blue as Reference SURF and N-SURF MR, DR, CR
and RMSE N-SURF

(HAN et al., 2019) RedEdge as Reference SURF, BRISK, MSER
and KAZE RMSE SURF

(MESKINE; MILOUD; TALEB, 2010) - GA RMSE GA



52 Chapter 3. Related works



53

Chapter 4
Methodology

4.1 Datasets

In our experiments we used two datasets to evaluate the proposal performance, both
containing images with 1280 × 960 pixels size and an average of 80% overlap between im-
ages. The spectra present in the images are, blue (475nm center, 20nm bandwidth), green
(560nm center, 20nm bandwidth), red (668nm center, 10nm bandwidth), red edge (red-
edge) (717nm center, 10nm bandwidth), near-IR (nir) (840nm center, 40nm bandwidth).
Images were obtained on a single flight without any kind of pre-processing and using a
MicaSense Red-Edge camera (MicaSense Inc. Seattle, WA, USA) coupled to a Micro
UAV SX2 (see Figure 22) (Sensix Innovations in Drone Ltda, Uberlândia, MG, Brazil)
at an average height of 100 meters and an average speed of 20 m/s. At this altitude, the
ground sample distance (GSD) is 6.8 cm/pixel.

Figure 22 – Micro UAV SX2 by Sensix.

The first dataset was obtained from a soybean plantation located at the following
decimal coordinate (−17.877308292165985, −51.08216452139867). This dataset contains
1080 images (216 scenes and 5 channels), as shown in Figure 23.
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The second dataset was obtained from a cotton plantation at the following decimal
coordinate (−17.820275501545474, −50.32411830846922) and it contains 830 images (166
scenes and 5 channels), as shown in Figure 24.

Figure 23 – Example of an image scene containing all channels (Blue, Green, Red, near-
IR, red-edge respectively) of the soybean plantation dataset.

Figure 24 – Example of an image scene containing all channels (Blue, Green, Red, near-
IR, red-edge respectively) of the cotton plantation dataset.

To measure the performance of the alignment process between the bands present in the
datasets, each dataset was sent to a specialist so that he performed the manual marking
of 12 points on the green band and subsequently scored the equivalent points on the other
bands (red, blue, near-IR and red-edge).

4.2 UAV-Multispectral sensed data band co-registration
framework

The proposed UAV-Multispectral sensed data band co-registration framework aims to
align the bands of multispectral images obtained by UAVs using feature-based methods
for this purpose. Unlike the various band co-registration approaches that perform a
different alignment process for each scene (i.e., set of bands), our method seeks the best
transformation set among all the dataset images to later align all the scenes using the
same transformation set.

This approach receives as input a multispectral image dataset and, as output, it returns
a schema, i.e., order in which bands should be aligned and which transformation should be
used in each alignment. Note that, unlike the frameworks proposed in the chapter 3, which
try to perform an alignment in each scene, the chance of failure of our method is drastically
reduced because it will always search the dataset for the best set of transformations to
align the bands. Each step of the proposed framework will be explained in the following
sections.
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4.2.1 Keypoint extraction and graph construction

For each multispectral scene, we combine the bands two at time. For each combination,
the number of keypoints, after the elimination of outliers, is extracted by each method
given as input into the framework. The number of keypoints, the image identifier, the
feature extraction method that generated these keypoints, and the band combination, is
stored in a tuple.

Given the set of tuples extracted previously, for each band combination, the tuple
that returns the largest number of keypoints is obtained. Note that for a dataset that
contains 5 bands (𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒, 𝑛𝑖𝑟, 𝑟𝑒𝑑𝑒𝑑𝑔𝑒) in each scene, at the end of this step
10 maximum tuples will be obtained: 𝑟𝑒𝑑 − 𝑔𝑟𝑒𝑒𝑛, 𝑟𝑒𝑑 − 𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑 − 𝑛𝑖𝑟, 𝑟𝑒𝑑 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒,
𝑔𝑟𝑒𝑒𝑛 − 𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛 − 𝑛𝑖𝑟, 𝑔𝑟𝑒𝑒𝑛 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒, 𝑏𝑙𝑢𝑒 − 𝑛𝑖𝑟, 𝑏𝑙𝑢𝑒 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒, 𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒. -
At the end of this step, a complete undirected weighted graph 𝐺 is constructed, with the
bands as nodes and the maximum tuples, i.e., tuples that obtained the most keypoints,
as edges. Each edge is labeled with the image, technique that generated that edge and
the number of keypoints. The edge weights are represented by the number of keypoints
obtained. Figure 25 demonstrates the output of this step.

4.2.2 Schema construction

With the graph 𝐺 obtained in the previous step, some graph algorithms are applied
to transform the complete graph into a schema that will represent the best order to
perform the multispectral alignment. Starting from the graph 𝐺, we applied the Kruskal
(KRUSKAL, 1956) algorithm to construct a Maximum Spanning Tree (MST). To find
the channel to target for alignments, the weights between the nodes are replaced by 1
and the Floyd-Warshall all-pairs-shortest-path (FLOYD, 1962) algorithm is used. The
node with the smallest sum of distances from itself to all the other nodes is selected as
the target channel for the registration schema. Subsequently, each undirected edge (𝑎, 𝑏)
is converted to a directed edge (𝑎, 𝑏) if 𝑏 is closer to the target channel, otherwise (𝑏, 𝑎).
Figure 26 shows the output for this step, this figure represents the order in which the
bands should be aligned. First, align the blue and nir with the green and then align the
red with the blue and the rededge with the nir.

4.2.3 Construction of transformations and dataset alignment

At the end of the previous process, we have a directed 𝐺𝑠𝑐ℎ𝑒𝑚𝑎 graph that represents
the best order to perform the alignment process. Note that through this method it is
possible to have intermediate alignments, to guarantee a better alignment among the
channels. As can be seen in Figure 26, each edge of this graph belongs to a method
and an image present in the dataset whose combination presents the largest number of
keypoints for two bands (which, in this case, it will be the nodes that this edge connects).
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Figure 25 – Complete undirected weighted graph 𝐺. The edges is labeled, respectively,
with image id, method and the number of keypoints.

For each of the edge present in 𝐺𝑠𝑐ℎ𝑒𝑚𝑎, the transformation function is extracted to align
one node with the other.

Note that when extracting all the transformations, we can perform the alignment
process among the bands in an optimal way, that is, with the best transformation, con-
sidering the number of keypoints obtained, that could be estimated in the dataset. With
the transformations obtained, all the scenes present in the dataset are aligned using this
same set of transformations.

4.3 Evaluation methodology

As inputs to the framework we used the following keypoints extraction methods:
BRISK, FAST, MSER, HARRIS, SURF and KAZE. The choice of these methods was
based on the bibliographic review presented in the chapter 3, all of them were used in
several works obtaining satisfactory results in the process of multispectral alignment of
images obtained by UAVs.
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Figure 26 – Final registration Schema

To evaluate the performance of our approach, we compared it with the frameworks pre-
sented in Sections 3.1 and 3.2, as these have demonstrated good results for automatically
aligning multispectral images obtained by UAVs.

The metric used to validate the approach proposed by this work was the BPE. BPE
has been widely used to determine the quality of image alignment in general, and this
metric is used in several works presented in Chapter 3.
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Chapter 5
Experimental Results

5.1 Natural Misalignment

As explained in section 2.1.3.3, multispectral cameras usually use different sensors for
the acquisition of each channel. This physical displacement between the sensors causes a
misalignment between the resulting images. Figure 27 exemplifies this misalignment.

Figure 27 – Natural misalignment among sensors, from (HASSANPOUR; JAVAN; AZIZI,
2019).

Tables 4 and 5 show the average misalignment between the ground-truth and the im-
ages present in each dataset. We can observe that, for the cotton dataset, the misalign-
ment is slightly higher than that presented in soybean. This difference in misalignment
between the datasets can be explained by variations between the sensors of the cameras
used during the acquisition and also by variations in the acquisition altitude.

It is also important to note that the capture process between the bands is done in a
synchronized way for most multispectral cameras on the market. In a worse case, i.e.,
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Table 4 – Average of misalignment, in pixels, between the sensors present in the soybean
dataset.

Blue Green Red Nir Rededge
Blue - 5.18 15.75 15.07 12.14

Green 5.18 - 15.09 12.33 4.02
Red 15.75 15.09 - 29.25 14.79
Nir 15.07 12.33 29.25 - 16.17

Rededge 12.14 4.02 14.79 16.17 -

Table 5 – Average of misalignment, in pixels, between the sensors present in the cotton
dataset.

Blue Green Red Nir Rededge
Blue - 28.30 12.11 33.28 8.48

Green 28.30 - 21.44 24.01 35.66
Red 12.11 21.44 - 14.94 21.30
Nir 33.28 24.01 14.94 - 39.37

Rededge 8.48 35.66 21.30 39.37 -

where the acquisition process between the sensors was sequential, we could estimate the
misalignment between the first and the last capture.

Basically, for a common multispectral camera, the maximum recommended exposure
time is 2.5 ms and the recommended speed of a UAV, for the acquisition process, varies
between 5 and 25𝑚/𝑠. Analyzing the worst case, we have that the time between the
first and the last acquisition is 10𝑚𝑠, which at 25𝑚/𝑠, will generate a displacement
of 25𝑐𝑚. Result that for the camera used in this work at 100 meters high, it would
be a displacement of 3.67 pixels. However, the scenario above is unreal since, for the
vast majority of multispectral cameras that are used in PA, the acquisition process is
synchronized between all sensors.

5.2 Registration Schema

Each framework analyzed in this work is based on the construction of a schema, i.e.,
a band order for the band co-registration process. It is observed that the spectral schema
proposed by (BANERJEE; RAVAL; CULLEN, 2018) is independent of the dataset, while
the framework proposed by (YASIR, 2018) and our approach are oriented by dataset.
Figure 28 the schema proposed by (BANERJEE; RAVAL; CULLEN, 2018).

5.3 Soybean dataset

As described in Section 4.1, the soybean dataset presents a total of 1080 images
(216 scenes and 5 bands). We used each feature extraction method as an input for
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Figure 28 – Band-to-band registration schema proposed by (BANERJEE; RAVAL;
CULLEN, 2018). The arrows represent the order of alignment, in this case,
rededge on nir, red on rededge, green on red and finally blue on green.

the frameworks. Figures 29 and 30 show the result, respectively, of our approach and the
approach proposed by (YASIR, 2018).

Figure 29 – Scheme generated by our approach for the soybean dataset. The caption for
each edge consists of: Image ID - Method - Number of Keypoints.

Note that, despite generating the same schemes, our approach obtained a greater
number of keypoints per band than the framework proposed by (YASIR, 2018). It is also
important to note that each alignment will be made using a different image, obeying the
premise of maximizing the number of keypoints for the best band-to-band alignment.

Table 6 shows the accuracy of each method, i.e., the number of alignments the method
was able to perform. Note that, since the soybean dataset has 1080 images, each method
should have performed a total of 864 alignments (for 5 bands, 4 alignments are required).
It is also important to note that the framework proposed by (BANERJEE; RAVAL;
CULLEN, 2018) deals individually with each feature extraction method.

As can be seen in Table 6, by using a global transformation in all images, our approach
was able to perform all alignments. The framework proposed by (YASIR, 2018) and the
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Figure 30 – Scheme generated by the approach proposed in (YASIR, 2018) for the soy-
bean dataset. The caption for each edge consists of: Method - Number of
Keypoints.

Table 6 – The accuracy obtained by the frameworks in the alignment of the soybean
dataset.

Method Failures Accuracy
Our approach 0 100.00%
(YASIR, 2018) 183 78.82%
(BANERJEE; RAVAL; CULLEN, 2018) KAZE 352 59.26%
(BANERJEE; RAVAL; CULLEN, 2018) HARRIS 673 22.11%
(BANERJEE; RAVAL; CULLEN, 2018) SURF 677 21.64%
(BANERJEE; RAVAL; CULLEN, 2018) MSER 802 7.18%
(BANERJEE; RAVAL; CULLEN, 2018) BRISK 830 3.94%
(BANERJEE; RAVAL; CULLEN, 2018) FAST 842 2.55%

approach proposed by (BANERJEE; RAVAL; CULLEN, 2018) with the KAZE method
were the only ones that managed to achieve more than 50% of accuracy in the alignment.
All methods that failed to achieve a minimum of 50% alignment were considered inept
and discarded from comparing alignment quality.

Table 7 shows the BPE obtained by each framework. Note that our approach obtained
an average BPE close to 0 (0.146 pixels). The approach proposed by (YASIR, 2018) also
obtained a good result when compared to the framework proposed by (BANERJEE;
RAVAL; CULLEN, 2018) in conjunction with the KAZE method.

Regardless of the framework used for the soybean dataset, the best method for extract-
ing control points for band-to-band alignment in aerial images was the KAZE features
proposed by (ALCANTARILLA; BARTOLI; DAVISON, 2012).
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Table 7 – Registration performance evaluation on Soybean dataset.

Method BPE
Our approach 0.14
(YASIR, 2018) 1.33
(BANERJEE; RAVAL; CULLEN, 2018) KAZE 40.50

Figures 31, 32 and 33 show the worst alignment obtained by our approach in the
soybean dataset. It is possible to observe in the figures that the performance, even in the
worst case, was extremely satisfactory, generating no visible anomaly in the figures.

Figure 31 – Worst alignment achieved by our approach in the Soybean dataset. (a) It is
the original RGB image; (b) It is the aligned RGB image.

Figure 32 – Worst alignment achieved by our approach in the Soybean dataset. (a) It is
the RGB image (with the red (R) channel replaced by the rededge and the
blue (B) channel replaced by the nir); (b) It is the aligned RGB image (with
the red channel (R) replaced by rededge and the blue channel (B) replaced
by nir).
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Figure 33 – Worst alignment achieved by our approach in the Soybean dataset. (a) It is
the checkerboard between original blue and red bands; (b) It is the checker-
board between aligned blue and red bands.

5.4 Cotton dataset

As described in Section 4.1, the cotton dataset presents a total of 830 images (166
scenes and 5 bands). The methodology for evaluation was the same used in the soybean
dataset, i.e., we used each feature extraction method as an input for the frameworks.
Figures 34 and 35 show the result schema, respectively, of our approach and the approach
proposed by (YASIR, 2018).

Figure 34 – Scheme generated by our approach for the cotton dataset. The caption for
each edge consists of: Image ID - Method - Number of Keypoints.

As in the soybean dataset, we can see that the number of keypoints obtained by
our approach to align the bands is higher when compared to the approach proposed by
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Figure 35 – Scheme generated by the approach proposed in (YASIR, 2018) for the cot-
ton dataset. The caption for each edge consists of: Method - Number of
Keypoints.

(YASIR, 2018). Again, we can see that the feature extraction method that managed to
obtain more control points was KAZE.

Subsequently, the accuracy of each method was assessed for the dataset and the results
are shown in Table 8. Note that, unlike the soybean dataset, for the cotton dataset
the methods obtained greater accuracy. Our approach, using a global transformation,
managed to align all the images. The approach proposed by (YASIR, 2018) also achieved
good results with only 1 alignment out of the 664 possible. The framework proposed by
(BANERJEE; RAVAL; CULLEN, 2018) was also able to achieve accuracy greater than
50% in three feature extraction method: MSER, SURF and KAZE.

Table 8 – The accuracy obtained by the frameworks in the alignment of the cotton
dataset.

Method Failures Accuracy
Our approach 0 100.00%
(YASIR, 2018) 1 99.85%
(BANERJEE; RAVAL; CULLEN, 2018) KAZE 165 75.15%
(BANERJEE; RAVAL; CULLEN, 2018) SURF 200 69.88%
(BANERJEE; RAVAL; CULLEN, 2018) MSER 240 63.86%
(BANERJEE; RAVAL; CULLEN, 2018) HARRIS 382 42.47%
(BANERJEE; RAVAL; CULLEN, 2018) FAST 390 41.27%
(BANERJEE; RAVAL; CULLEN, 2018) BRISK 431 35.09%

Table 9 shows the BPE obtained by each framework. Our approach obtained an
average BPE of 0.71 pixels. Despite being a result inferior to that obtained in the soybean
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dataset, our approach still obtained the best result when compared to the proposed by
(YASIR, 2018) and (BANERJEE; RAVAL; CULLEN, 2018). The framework proposed
by (BANERJEE; RAVAL; CULLEN, 2018) obtained a low performance, regardless of the
method for extracting features.

Table 9 – Registration performance evaluation on Cotton dataset.

Method BPE
Our approach 0.71
(YASIR, 2018) 1.54
(BANERJEE; RAVAL; CULLEN, 2018) KAZE 31.19
(BANERJEE; RAVAL; CULLEN, 2018) SURF 84.97
(BANERJEE; RAVAL; CULLEN, 2018) MSER 132.60

As with the soybean dataset, the best method for extracting control points for band-to-
band alignment in aerial images was the KAZE features proposed by (ALCANTARILLA;
BARTOLI; DAVISON, 2012).

Figures 36, 37 and 38, show the worst alignment obtained by our approach in the
cotton dataset. We can see that the cotton dataset has noise throughout the image.
However, even with the noise, the alignment result was also satisfactory for the worst
case, with no anomalies or misaligned stretches.

Figure 36 – Worst alignment achieved by our approach in the Cotton dataset. (a) It is
the original RGB image; (b) It is the aligned RGB image.

5.5 Execution Time of the Framework

Subsequently, we compare the execution time of our approach with the other evaluated
frameworks. To accomplish that, each framework was executed twice in a single thread
and the average execution time was computed. As previously stated, our framework
computes the best multispectral band co-registration schema for each dataset. Table 10
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Figure 37 – Worst alignment achieved by our approach in the Cotton dataset. (a) It is
the RGB image (with the red (R) channel replaced by the rededge and the
blue (B) channel replaced by the nir); (b) It is the aligned RGB image (with
the red channel (R) replaced by rededge and the blue channel (B) replaced
by nir).

Figure 38 – Worst alignment achieved by our approach in the Cotton dataset. (a) It is the
checkerboard between original blue and red bands; (b) It is the checkerboard
between aligned blue and red bands.

presents the average running time of the frameworks, in seconds, for both Soybean and
Cotton datasets.

Table 10 – Average execution time obtained by frameworks in the datasets.

Dataset Framework Execution Time (s)

Soybean
(BANERJEE; RAVAL; CULLEN, 2018) KAZE 1235
Our Approach 8808
(YASIR, 2018) 10162

Cotton
(BANERJEE; RAVAL; CULLEN, 2018) KAZE 2145
Our Approach 16339
(YASIR, 2018) 18550

It is possible to notice that the execution time is extremely dependent on the data
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that is being processed, for example, the soybean dataset, despite having more images,
has a lower execution time. This fact is mainly due to the number of features that each
method extracted from the images, the greater the number of features, the longer the
time for feature matching and the transformation estimation.

The approach proposed by (BANERJEE; RAVAL; CULLEN, 2018) obtained a lower
execution time because, in addition to evaluating only one technique (KAZE), it does not
perform any type of analysis of the best way to perform the alignment. The approach
proposed by (YASIR, 2018) had a worse result than the one proposed in this work because,
after evaluating the dataset for the schema construction, it still estimates for each image
the transformation function, which results in the worst execution time evaluated.

Despite the considerable execution time, our method can be parallelized in as many
threads as needed, which will dramatically decrease the execution time.

5.6 KAZE superiority

As seen in the results for the soybean and cotton datasets, the best method for feature
extraction, independent of the evaluated framework, was KAZE. As already explained
in Section 2.2.2.6, KAZE, unlike methods such as SIFT and SURF, detect and describes
features in a non-linear scale-space using non-linear diffusion filtering. For this reason,
the blurring process is locally adaptable in the image, which reduces noise while main-
taining the natural boundaries of objects, thus achieving superior accuracy and location
distinction. In the work (ANDERSSON; MARQUEZ, 2016), a comparative study was
carried out with several methods of resource extraction and detection, and, as described
by the authors, KAZE performed well when analyzing a change in lighting.

It is important to note that aerial images of plantations obtained by UAVs usually
present few details useful for the alignment process. Most of these details are borders,
i.e., transitions from soil to plant and vice-versa, due to the difference in reflection from
soil to a plant, as we can see in Figure 39.

Given these facts, KAZE is an extremely useful detector and descriptor for dealing
with edges. Its proposal to create a non-linear scale space, makes the edges of the reflection
transitions more detectable and distinguishable, thus obtaining a superior result among
other techniques.

5.7 Framework and experiments limitations

The main limitation of this framework is the fact that it is camera oriented. This
implies that to be executed, the dataset informed must have been obtained by the same
camera and, preferably, on the same flight. This limitation comes from the basic premise
of this framework, which is to align the sensors of the same camera, not being possible to
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Figure 39 – The reflectance curve of a typical plant, from (FASTIE; JOGNSON; MC-
COLLAM, 2018).

use them to align bands obtained for different cameras. Note that the alignment between
the scenes is not being addressed in this work, i.e., this framework was developed to
perform the band co-registration.

Another major limitation in our work is the fact that, due to the high cost of acquisition
of multispectral cameras, we do not test other cameras to check if the framework is robust
to the main multispectral cameras on the market. Another important point is that all
the datasets evaluated were obtained by a fixed-wing. Therefore, we cannot say whether
the framework is also robust to multi-rotors.
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Chapter 6
Conclusion

This work presented a new method to perform the band co-registration of multispectral
images obtained by UAV. Unlike the other methods, which seek to perform an alignment
for each scene, our approach assumes that the speed of the UAV, when compared to the
speed of image acquisition between sensors, is not sufficient to cause distortions beyond the
natural ones caused by the distance between the sensors. For this reason, our approach
searches among the whole dataset, the best group of images to align each band and
then build an alignment schema, i.e., the order in which the bands will be aligned. Our
approach was compared to two other frameworks for band co-registration in the literature.

As presented in Section 5, our approach was, on average, 335% better than the second-
best framework, obtaining for the soybean dataset an alignment with a BPE close to zero
(0.14 pixels) and for the cotton dataset a BPE of 0.71 pixels. The BPE of the cotton
dataset was caused mainly by images with a lot of noise, as shown in section 5.4. This
fact shows that a study on noise smoothing methods is necessary to obtain better results.

In Tables 6 and 8 the main problem of methods that try to carry out a different
alignment for each band was demonstrated. Most of the time, for some images, it is not
possible to find enough keypoints to estimate a transformation function, which makes it
impossible to align the image. Our approach uses a global transformation and, for this
reason, manages to carry out all the alignments.

The results obtained were relevant and show that the framework presented in this
work can be used to align the bands of multispectral images obtained by UAV.

6.1 Main contributions

The main contribution of this work is the proposed framework for the process of band
co-registration in images obtained by UAV. This method presents a new approach for the
band-to-band alignment and obtained a superior result to the evaluated frameworks.

The second contribution is the creation of two multispectral image datasets obtained
by UAVs properly aligned by an expert to measure the performance of methods for the
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band co-registration process.

6.2 Future Work

The results obtained by this work demonstrate the good performance obtained by
the proposed framework and motivate new lines of investigation, such as: Evaluation
of datasets obtained by different multispectral cameras; Evaluation of datasets obtained
by multi-rotors aircraft; Evaluation of methods to be included in the framework as pre-
processing (e.g., enhancement and smoothing).
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