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ABSTRACT 
 

American eels are frequently captured in saltmarsh habitats yet little is known about eel 

use of these systems. Coastal systems such as salt marshes are vulnerable to habitat impacts due 

to high rates of coastal development, including impacts from undersized culverts that result in 

tidally restricted systems upstream. Given the decline in the American eel population, a need 

exists for a clearer understanding of the functional difference of hydrologically restricted and 

unrestricted salt marshes in the support of eels. To address data gaps and inform saltmarsh 

management to support eels, laboratory and field experiments were employed that assessed the 

value of saltmarsh habitats to the life history of the American eel. Eels held in the laboratory 

were subject to a diet switch to determine the rates at which eel mucus, fin, muscle, and liver 

tissue assimilate the carbon and nitrogen isotope values of the diet (turnover rate) and the level of 

discrimination in each tissue relative to the diet (trophic discrimination factors). These data were 

used to inform the interpretation of data collected from hydrologically restricted and unrestricted 

creeks in three New England estuaries. Isotope data indicated strong evidence of salt marsh 

primary producers contributing to the basal diet of eels as well as consumption of marsh resident 

secondary consumers. Eel gut contents also contained abundant saltmarsh secondary consumers, 

confirming that eels serve as top predators and are residents in salt marshes. Greater eel trophic 

position measured upstream of reference creeks indicates that tidal restrictions may result in an 

altered food web in the tidally restricted marsh. Models were developed for predicting muscle 

and liver δ15N and δ13C from mucus and fin to provide a non-lethal alternative for sampling 

yellow eels for stable isotope analysis. Trends in data from a telemetry study suggest that eels 

released upstream of an undersized culvert with a self-regulating tide gate travelled shorter 

distances than eels in the reference creeks and had delayed movements to downstream areas of 



 xvii 

the marsh relative to eels in the reference creek. This study addresses a critical data need for the 

management of salt marshes to support eels. It provides evidence of eel use of salt marshes as 

important foraging resources, negative impacts of tidal restriction on trophic support and 

movement of eels, as well as important data to support future stable isotope analysis of eels. The 

cumulative impact of marsh loss and degradation, such as through tidal restriction, may be a 

contributing factor in the decline of eel populations. Conservation and restoration of salt marshes 

as habitat and management of marshes to maintain ecological integrity will provide critical 

trophic support and access to essential resources for the American eel population. 

  



 1 

INTRODUCTION 
 

The American eel, Anguilla rostrata, ranges throughout the western North Atlantic, from 

Greenland to northern South America, and is one of approximately eighteen Anguillid species 

worldwide. American eels are a panmictic species (Avise 2003) due to the fact that sexually 

mature “silver” eels migrate to the Sargasso Sea to form a single breeding population and then 

die (Schmidt 1925). Once eggs hatch into the larval “leptocephali” stage they are distributed by 

ocean currents throughout the western Atlantic, Gulf of Mexico, and Caribbean Sea (Tesch 

2003). Upon reaching coastal waters as transparent “glass eels” or pigmented “elvers,” eels 

remain in inshore habitats for up to 40 years in the juvenile “yellow” life stage (Jessop 1987; 

Tesch 2003). After reaching sexual maturity, they begin the spawning migration back to the 

Sargasso Sea. 

 Historically, American eels were abundant in the Gulf of Maine (Goode 2006) and served 

as an important source of income and sustenance throughout New England and Canada (Bolster 

2002, SRSF 2002). However, eels are in decline over the entirety of their range (Haro et al. 

2000) and as a result, were proposed for listing under the US Endangered Species Act (ESA). 

After review in 2007 and again in 2015, it was determined that protection under the ESA was not 

warranted given the robust genetic pool as a result of American eels constituting a single 

breeding population as well as more recent data that eels can complete their life cycle in marine 

and estuarine waters (50 CFR Part 17 2015). Potential causes of eel decline include migration 

barriers, hydro turbine mortality, overfishing, and habitat loss (Haro et al. 2000). Due to the lack 

of knowledge and potential severity of habitat loss impacts on eels, the Atlantic States 
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Marine Fisheries Commission (ASMFC) Fishery Management Plan for the American eel lists 

use of inshore habitat and impacts of habitat loss as high priority research needs (ASMFC 2006). 

 Due to the similarities among the frequently studied eel species, Anguilla japonica, 

Anguilla anguilla, and A. rostrata, findings on habitat use are typically applied across all three 

species (Tesch 2003). The conventional understanding of Anguillids’ inshore habitat use has 

been obligate catadromy; in fact, eel reliance on freshwater habitats is so well accepted that its 

common name is the “freshwater eel.” A commonly held paradigm was that eels exhibited a 

period of residency in estuarine habitats prior to migration upstream to freshwater habitats in 

which they remained for many years until the onset of sexual maturation and subsequent 

outmigration (Moriarty 1978; Helfman et al. 1987). However, in recent decades research 

examining the life history of Anguillids has supported alternative hypotheses. Brackish and 

marine habitats are emerging as more important in eel life history than originally thought. 

Tsukamoto et al. (1998) collected eels in freshwater habitats in Japan and Germany and marine 

habitats in the North and East China Seas. Through analysis of the strontium (Sr) to calcium (Ca) 

ratios in otoliths, Tsukamoto et al. (1998) found a high degree of eel residency in both fresh and 

marine/brackish environments. Eels captured in freshwater had moved into freshwater habitats 

and remained; similarly, they also found marine eels that never used freshwater and remained in 

marine habitats (Tsukamoto et al. 1998). Subsequent research has observed similar use of 

exclusively brackish and marine habitats by eels, providing further evidence of facultative, rather 

than obligate catadromy (Tsukamoto and Arai 2001; Jessop et al. 2002; Tsukamoto et al. 2002; 

Jessop et al. 2004). Based largely on otolith Sr:Ca research, three general life history strategies 

for yellow eels have emerged: 1. residency in freshwater (true catadromy) with no use of 

brackish or marine habitats; 2. residency in brackish or marine habitats and no use of freshwater 
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habitats; and 3. movement between estuarine and freshwater habitats (Tsukamoto and Arai 2001; 

Morrison and Secor 2003; Tzeng et al. 2003).  

The diversity of life history strategies displayed by Anguillids may be explained in part 

by the hypothesis that eels at high latitudes rely more heavily on estuarine habitats (Tsuakamoto 

and Arai 2001; Tsukamoto et al. 2002). In support of this, Tzeng et al. (2002; 2003) observed A. 

japonica captured in China, Japan and Taiwan utilizing marine, fresh and estuarine habitats; 

however, the majority of eels used estuarine habitats. Tsukamoto and Arai (2001) speculate that 

the greater use of estuarine habitats may be due to more abundant food in estuaries relative to 

freshwater habitats in northern regions (Gross 1987). Furthermore, evidence exists for faster 

growth in estuarine habitats than in freshwater in northern latitudes for A. rostrata (Oliveira 

1999, Jessop et al. 2004; Morrison and Secor 2003), A. anguilla (Fernandez-Delgado et al. 1989; 

Harrod et al. 2005), and A. japonica (Tzeng et al. 2003) supporting the hypothesis that some eels 

remain in estuarine habitats due to the more favorable habitat conditions. Based on the observed 

preference of A. japonica for estuarine habitats, Tsukamoto et al. (1998) and Tsukamoto and 

Arai (2001) concluded that eels from these habitats may provide the greatest contribution to 

coastal productivity and eel recruitment. Accordingly, there is a need for greater understanding 

of estuarine habitat use by eels. 

Within estuaries, Anguillids are frequently captured in saltmarsh habitats (Laffaille et al. 

2000; Kimball and Able 2007; Eberhardt et al. 2011) and in some systems comprise the majority 

of fish biomass (Dionne et al. 1999). Despite the abundance of eels in salt marshes, little is 

known about Anguillid use of these habitats. Evidence exists for a limited home range of 

approximately 1 kilometer (km) in salt marsh creeks (Ford and Mercer 1979, Helfman et al. 

1983; Bozeman et al. 1985) suggesting that salt marshes provide sufficient trophic support for 
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eels so as to preclude the need for movement over large areas to forage (Bozeman et al. 1985). 

However, this hypothesis remains largely untested. Particularly in light of the potential for the 

yellow life stage to remain resident in estuarine habitats such as salt marshes for many years 

(Jessop 1987; Tsukamoto and Arai 2001), a need exists for greater understanding of eel use of 

salt marshes in terms of movements and trophic support. 

Coastal habitats such as salt marshes are particularly vulnerable to habitat impacts due to 

high rates of coastal development and use of salt marshes as transportation corridors. Structures 

such as culverts are frequently installed to allow the tide to continue underneath roads and 

highways where they intersect salt marsh creeks. Historically, engineers designed these 

structures to allow water to drain under the road and little consideration was given to factors such 

as fish passage or tidal support of the upstream ecosystem. As a result, many culverts do not 

accommodate the full tidal regime, resulting in a tidally restricted system upstream. In 

hydrologically restricted salt marshes of New England, halophytic vegetation is often replaced 

by exotic species such as common reed, Phragmites australis, upstream of the restriction 

(Roman et al. 1984; Burdick et al. 1997). Colonization by invasive species as well as changes to 

the infaunal communities (Fell et al. 1991) can shift the food base of restricted salt marshes 

resulting in an altered food web. Furthermore, reduced flooding in hydrologically restricted 

marshes can limit fish access to food resources (Weisberg and Lotrich 1982). Decreased eel 

movement and their use of hydrologically restricted salt marshes may result in some marsh areas 

or habitats contributing disproportionately to fish populations (Gillanders 2005). Furthermore, 

for the conservation of Anguillids, it is important to understand the functional differences of 

hydrologically restricted and unrestricted salt marshes in the trophic support of eels. 
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Project goals 
 

Given the decline in the American eel population, as well as recent understanding that 

some eels depend on estuarine systems, a need exists for a clearer understanding of eel reliance 

on estuarine habitats such as salt marshes. To address data gaps and inform salt marsh 

management to support eels, the overalls goals of this project were: 

1. To improve understanding of the value of salt marsh habitats to the life history of the 

American eel, Anguilla rostrata, with respect to trophic support and movement 

2. To evaluate the functional equivalency of both hydrologically restricted and 

unrestricted salt marshes in the support of A. rostrata 

Overview of experiments 
 

The following four chapters describe the results of experiments devised to address these 

goals. Chapter I, in preparation to submit to a peer reviewed journal, details a laboratory 

experiment designed to provide stable isotope data to inform field investigations. The nitrogen 

and carbon stable isotope values (d15N and d13C) of eel tissues were evaluated before and after a 

diet switch in a controlled laboratory experiment. Tissue turnover (time to assimilate the isotope 

values of the new diet) and trophic discrimination factors (difference in isotope values between 

the diet and eel) for several types of tissues were calculated. These data were used to interpret 

stable isotope data from eels collected in salt marshes for a more accurate understanding of eel 

resource use. 

Chapter II is a field experiment designed to evaluate trophic support of American eels in 

salt marshes. Eels and their potential food sources were collected in three New England estuaries 

(the Webhannet Estuary, ME, the Hampton-Seabrook Estuary, NH, and the Parker River 

Estuary, MA) dominated by salt marsh. Within each estuary eels were collected from upstream 
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and downstream areas of two creeks – a creek with a tidal restriction and a reference creek with 

unaltered hydrology. Eels and potential food sources were analyzed for d15N and d13C to 

determine eel trophic use of saltmarsh habitats over time and to evaluate the functional 

equivalency of hydrologically restricted and unrestricted salt marshes in terms of eel trophic 

support. Eel gut contents were also analyzed to evaluate recent use of salt marshes as a foraging 

resource. Chapter II was published in 2015 in Estuaries and Coasts (Eberhardt et al. 2015). 

Chapter III develops the foundational support to establish a nonlethal method of eel  

sample collection for d15N and d13C stable isotope analysis. Predictive models were developed 

from field collected data to evaluate the potential for eel mucus and fin tissue to serve as 

nonlethal surrogates for liver and muscle tissue. Models were subsequently validated with 

laboratory collected data. Chapter III is in preparation for submission to a peer-reviewed journal. 

Chapter IV examines the small-scale movements of eels in saltmarsh creeks with acoustic 

telemetry. Nine acoustic receivers were positioned in the Webhannet Estuary, Wells, ME. 

Receivers were installed along a creek that contains a self-regulating tide gate (SRT) with an 

undersized culvert, a reference creek, and the area downstream of the two creeks. Nine eels were 

captured, implanted with acoustic transmitters, and released upstream of the reference creek or 

above the SRT. Telemetry data were downloaded after a month to examine eel movements in 

saltmarsh creeks and the influence of the SRT on eel movement. Chapter IV is formatted as a 

dissertation chapter due to the low sample size.  

The final section provides a summary of the findings of Chapters I-IV and discusses how 

these findings address the overall goals of the project. Finally, based on the data presented, 

recommendations are provided for future research and for natural resource managers on how best 

to manage salt marshes in support of American eels.



 7 

CHAPTER I 
 

Stable isotope discrimination and turnover in multiple tissues of the American eel, Anguilla 

rostrata 

ABSTRACT 

  
 Stable isotopes of carbon and nitrogen are frequently used to gain insight into organism 

feeding and movement patterns. Interpretation of isotope data is improved with species and 

tissue specific data on the rate and magnitude of isotope assimilation into tissues, particularly 

when the target species is a slow-growing omnivore. Stable carbon and nitrogen isotopes were 

evaluated in multiple tissues (fin, muscle, liver, and mucus) of yellow stage American eels 

(Anguilla rostrata) subject to a diet-switch experiment to determine isotopic turnover rates and 

discrimination. Trophic discrimination factors (D15N and D13C; differences in isotope values 

between the diet and tissue) varied significantly among tissues for 
15

N but not for 
13

C. The D15N 

values were greatest for liver, while fin and mucus were intermediate and equal, and muscle was 

lowest. Turnover of 
15

N was fastest in mucus (half-life = 67 days) followed by fin (90 days), 

liver (97 days), and muscle tissue (191 days). Carbon half-lives for all tissues were longer than 

could be determined from the 35-day experimental period. The faster turnover of nitrogen in eel 

mucus renders it a useful indicator of short-term diet while muscle tissue can indicate long-term 

diets in yellow eels. Mucus also provides a non-invasive option for stable isotope analysis that is 

of particular importance for species in decline such as the American eel. By providing species 

and tissue specific trophic discrimination factors for carbon and nitrogen, as well as nitrogen 
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turnover estimates, this study addresses a critical data need for increasing the accuracy of 

estimates of trophic position, movement, and basal food sources for the American eel.  

INTRODUCTION 
 

American eels are a highly migratory species that move from their birthplace in the 

Sargasso Sea to inshore waters throughout the western North Atlantic where they remain for as 

many as 40 years before migrating back to the Sargasso Sea to spawn (Helfman et al. 1987; 

Jessop 1987; Tesch 2003). After eggs hatch, eels drift along ocean currents as leptocephali, and 

then metamorphose to transparent “glass eels” and then pigmented “elvers” as they enter coastal 

waters. Eels continue to gain pigment and grow as they move into the “yellow” life stage (Jessop 

1987; Tesch 2003) followed by a final metamorphosis to “silver eel” prior to migrating back to 

the Sargasso Sea. Eels spend the majority of their lives in the yellow life stage and exhibit great 

plasticity in habitat use, moving among freshwater, estuarine, and marine habitats (Jessop et al. 

2008). The large migrations as leptocephali and silver eels as well as the potential use of many 

inshore habitats as elvers and yellow eels results in exposure to many anthropogenic impacts 

and, as a result, the eel population is considered to be in decline (Haro et al. 2011). American 

eels were proposed for listing under the US Endangered Species Act (ESA) and after review in 

2007 and again in 2015 it was determined that protection under the ESA was not warranted. 

The use of many habitats and omnivorous diet of eels results in the potential for 

consuming a wide variety of prey (Tesch 2003). As a result, understanding the relative value of 

eel habitats can be difficult with traditional approaches such as gut content analysis that provide 

information on only the most recent meal. Stable isotopes hold great promise for understanding 

resource use over different time scales and at different life stages.  
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Carbon and nitrogen stable isotopes are commonly used in trophic ecology investigations 

to discern trends in feeding (e.g., Gaye-Siessegger et al. 2007; Andvik et al. 2010; McMahon et 

al. 2013; O’Brien 2015; Willis et al. 2017). Isotope values of a consumer can vary according to 

the proportion of heavy to light isotopes in food sources at the base of the food web, changes in 

isotope ratios as prey is assimilated into consumer tissues (i.e., discrimination) and variation in 

the rate at which the diet is assimilated (i.e., turnover; Fry 2006). With an understanding of both 

isotopic discrimination and turnover rates, the food sources and trophic position of a consumer 

can be more clearly estimated (Gannes et al. 1997; Post 2002). 

Many food web investigations using stable isotopes have relied on trophic discrimination 

factors (TDFs) documented in the literature. The most commonly used TDFs are 3.4‰ for δ
15

N 

(DeNiro and Epstein 1981; Minigawa and Wada 1984; Peterson and Fry 1987; Post 2002) and 0-

1‰ for δ
13

C (DeNiro and Epstein 1978; Fry and Sherr 1984). However, the magnitude of isotope 

enrichment between consumer and prey can vary widely (Vander Zanden and Rasmussen 2001; 

Bosley et al. 2002; Logan et al. 2006). Discrimination estimates may vary among species 

(Hobson and Clark 1992a; Vander Zanden and Rasmusssen 2001) as well as among tissue types 

within an individual consumer (Pinnegar and Polunin 1999). Various tissues are made up of 

different compounds, each of which fractionates carbon and nitrogen isotopes differently.  

Additionally, the biochemical makeup of the diet and the pathways by which it is assimilated, 

plays a role in determining the isotopic composition of consumer tissues (McMahon et al. 2010; 

Bloomfield et al. 2011). For example, dietary proteins can be routed to animal proteins with 

minimal isotopic fractionation while animal proteins synthesized from a carbohydrate rich diet 

will undergo fractionation because the carbohydrates must be catabolized and synthesized into 

amino acids. This process is known as nutrient or isotopic routing (Schwarcz 1991). 
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Turnover rate can vary by tissue (Sweeting et al. 2004); as such, by determining the δ
13

C 

and δ
15

N turnover times of various tissues, a change in diet of an organism can be inferred over 

different time periods. Tissues with a fast metabolic rate or high lipid content (e.g., liver) 

typically have faster turnover than tissues with lower lipid content or that are less metabolically 

active (e.g., muscle; Tieszen et al. 1983; Hobson and Clark 1992b; MacNeil et al. 2006). 

Turnover rates can vary by both species and life stage in fishes (Weidel et al. 2011). Quickly 

growing organisms tend to have faster turnover rates than organisms growing more slowly (Fry 

and Arnold 1982; Bosley et al. 2002). Evaluation of tissues with varying turnover rates allows 

greater insight into consumer diets, allowing for the understanding of more recent diet (rapid 

turnover) and long-term diet (slow turnover tissues). For example, fish muscle in slow growing 

species can have a turnover rate of many months (e.g., Miller 2006) to a year whereas the higher 

metabolic activity of the liver results in more rapid turnover of isotope values that can serve as 

an indicator of short-term diet such as weeks to months (Tieszen et al. 1983; Hobson and Clark 

1992b). 

Fish diets vary according to ontogeny, amount and quality of food available, and 

movement among habitats characterized by different food sources (Helfman et al. 1997; 

McMahon et al. 2016). If the diet of a consumer changes over time, such as with opportunistic 

feeders like the American eel, it is important to know the time it takes for the isotope values of 

the eel tissues to equilibrate to the isotope values of its food sources (i.e., turnover rate; Carter et 

al. 2019). For accurate interpretation of field collected data, more information on the timing of 

isotope turnover patterns and timing in eel tissues is needed. 

To determine TDFs and the rates of isotopic turnover between eels and their diet, eels 

were held in a controlled laboratory experiment and fed two diets, each distinct in carbon and 
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nitrogen stable isotope values.  Eel tissues were sampled for δ
13

C and δ
15

N before and then 

periodically after a change in diet, to estimate the rate at which each tissue assimilates the 

isotope values of the new diet. Specifically, the objective of this research was to determine the 

rates at which eel mucus, fin, muscle, and liver assimilate the carbon and nitrogen isotope values 

of its diet (turnover rate) and the level of enrichment in individual tissues relative to the diet 

(trophic discrimination factor) to provide critical information to inform field study of eel trophic 

ecology. 

METHODS 
 

Fish feeding experiment 
 

Eels were obtained from an aquaculture facility where fish were fed a standard pelletized 

diet ensuring homogeneity of baseline stable isotope values. Yellow eels of a similar size (30-45 

cm) were selected to standardize growth rates. Fifty-three eels were measured, weighed, and 

marked via subcutaneous injection of acrylic paint to allow for identification of individuals for 

growth measurements. Eels were held in an aquarium (1115 Liter capacity) equipped with a flow 

through seawater system to provide sufficient aeration and water exchange. Tanks and plumbing 

output and intake pipes were covered with mesh to prevent eel escape.  

Eels were fed the same pellet food they received at the aquaculture facility (“control 

diet”) for two weeks to aid in acclimation. Nine eels were sacrificed prior to the diet switch (Day 

0) to serve as a baseline; the remaining 43 eels were switched to a treatment diet of labeled 

earthworms. Eels were fed 2% of their combined body weight each day (Arai 1987). The δ
13

C 

and δ
15

N isotopic compositions of the control diet were identified and based on the results, a 

second diet (“treatment diet”) was cultured to be isotopically distinct. Earthworms (Eisenia 

foetida) were fed corn husks enriched with 99.9% 
15

N ammonium chloride (based on the 
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methods of MacNeil et al. 2006) to provide a food source enriched in both 
13

C and 
15

N relative to 

the control diet. Corn was selected for culture of the treatment diet to create a food source more 

enriched in 
13

C than the control. Corn utilizes a C4 photosynthetic pathway resulting in δ
13

C 

values more enriched than primary producers utilizing C3 photosynthesis (Bender 1968; Smith 

and Epstein 1971). The dietary components of the control and treatment diets were similar where 

the control diet was comprised of 11% carbohydrate, 48% protein, and 28% lipid (Biomar for 

DAN-EX 2848) and the treatment diet was comprised of approximately 15% carbohydrate, 59% 

protein, and 9% lipid (Tacon et al. 1983). 

Five grams of 
15

N ammonium chloride were added to a 1 Liter mixture of corn slurry and 

deionized water. The solution was mixed daily to ensure equal distribution of the label. The corn 

slurry was incubated for eight days to allow for bacteria within the slurry to take up the 
15

N 

enriched ammonium and then was added to 108 grams of shredded, dampened corn husks. Four 

kilograms of earthworms were added to the corn slurry-husk mixture. After three weeks, nine 

earthworms were sampled to determine δ
13

C and δ
15

N and ensure that isotopically enriched 

bacteria were assimilated (Appendix A). Once treatment and control diets were confirmed to be 

isotopically distinct (Table 1), the remaining earthworms were harvested and frozen.  

 
Table 1. Carbon and nitrogen stable isotope means (± standard error) for the control (eel feed) 
and treatment (earthworm) diets and results of unequal variances t-test (δ15N) and ANOVA (δ13C) 
for differences between the dietary composition of each diet. 

   
  

  
eel feed 
(control) 

earthworm 
(treatment) 

t/F p 

δ15N (‰) 9.95 ± 0.13 108.09 ± 28.77 3.41 0.0052 

δ13C (‰) -23.94 ± 0.07 -16.57 ± 0.13 652.51 0.0001 
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Fish were sacrificed for analysis 0, 1, 4, 7, 11, 14, 17, 21, 28, and 35 days relative to the 

diet switch. Five fish were sacrificed at each time with the exception of day 0 (n=9). Prior to 

culling, fish were immediately placed in water containing carbon dioxide for anesthetization. 

Carbon dioxide was selected due to the decreased potential for chemical alteration of fish tissues 

for isotope analysis relative to other commonly used fish anesthetics (e.g., MS-222, clove oil). 

Fish were identified by their mark, measured for length and mass and then sacrificed by way of 

decapitation in accordance with the American Veterinary Medical Association Panel on 

Euthanasia (2001) and following a protocol approved by the University of New Hampshire 

Institutional Animal Care and Use Committee (IACUC # 070702; Appendix B). 

Sample collection and isotope analysis 
 

Although mucus is not a tissue, and fin clips are comprised of multiple tissues (e.g., skin, 

bone, and muscle if clipped close to the body), for the simplicity of referring to all sample types 

in aggregate, mucus and fin will each be referred to as a tissue. Eels were rinsed with distilled 

water to remove surface debris and mucus samples were collected from the skin surface by 

gently scraping with the blunt edge of a scalpel. Each mucus sample was placed on a tin tray for 

drying. Fish were frozen prior to dissection of muscle, liver and fin tissue for stable isotope 

analysis. All samples were held in a drying oven at 60oC to achieve constant weight, ground with 

a mortar and pestle, weighed to the nearest microgram into a tin capsule, and then compacted 

into a small cube. Tools and work surfaces were cleaned with 99.5% ethanol and Kimwipes® 

between processing each sample to prevent cross-contamination. Samples were analyzed for 

carbon (δ
13

C) and nitrogen (δ
15

N) stable isotopes at the University of New Hampshire Stable 

Isotope Laboratory with a Costech ECS4010 Elemental Analyzer coupled to a Delta Plus XP 

mass spectrometer (Thermo Finnigan). Stable isotope ratios are reported in delta (δ) notation per 
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mil units (‰) as follows:  

δX = (Rsample/Rstandard−1) x 1000 

where X is 
13

C or 
15

N and R is 
13

C /
12

C or 
15

N /
14

N, respectively. Stable isotope ratios 

were determined using Vienna Pee Dee Belemnite (VPDB) as the reference material for carbon 

and atmospheric N2 (air) for nitrogen. Repeated analyses of laboratory standards (tuna muscle) 

varied less than 0.15 per mil for both δ
15

N and δ
13

C. 

Data analysis  
 

To address unequal variances in diet data for δ
15

N, values for control and treatment diets 

were tested with an unequal variances t-test. Differences between δ
13

C values for control and 

treatment diets were tested with a one-way analysis of variance (ANOVA). Tropic 

discrimination factors (∆
15

N and ∆
13

C) were calculated for each tissue as the difference between 

the δ
15

N and δ
13

C values of the control diet and the baseline eels sacrificed at day 0 (i.e., ∆=δtissue-

δdiet).  

Turnover data were modeled as a function of time since the diet switch. Data fit a logistic 

curve: y=a/(1+(a-no/no)*e(-rt)) where y=δ
15

N of the tissue at a given time since the diet switch 

and a=the asymptote, defined as the maximum δ
15

N value for the treatment diet plus the tissue 

specific trophic discrimination factor, no=the expected δ
15

N value of y at time 0, r=the turnover 

rate, and t=time. To determine half-lives δ
15

N data were logit transformed where logit δ
15

N = 

ln((y/a)/(1-y/a)). Logit transformed data have a linear relationship with predictor values; 

therefore, logit δ
15

N data were modeled against time with linear regression where logit δ
15

N = 

a+bt. Half-life was calculated as -a/b.  Non-transformed data are presented in figures. Because 
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data for δ
13

C did not fit a logistic model, data were analyzed with a two-way ANOVA with time, 

tissue type, and their interaction as factors. 

RESULTS 
 

Fish feeding and growth 
 

Earthworm culture in the laboratory was successful in creating a treatment diet with a 

significantly different isotopic composition from that of the control for both δ
13

C and δ
15

N (Table 

1). Mean δ
13

C and δ
15

N values for the control diet were -23.94±0.07‰ and 9.95±0.13‰ (mean ± 

standard error), respectively. Cultured earthworm δ
15

N values were high and variable (108.09 

±28.77) as has been observed with other efforts to culture diets using isotope labeling (e.g., 

MacNeil et al. 2006). However, the variability within the treatment diet was negligible relative to 

the overall difference between control and treatment diet means. Earthworm δ
13

C values were 

also sufficiently distinct with a difference of more than 7‰ from the control diet achieved 

through a natural abundance diet (i.e., without isotopic labeling; Table 1). 

Eels held in the laboratory maintained high feeding vigor with both control and treatment 

diets. Eels appeared healthy and active; no signs of distress were present, and no mortality was 

observed for the length of the experiment. Worms remained in the tank for over 24 hours 

immediately following the diet switch, presumably as eels adjusted from a pellet-based diet to 

worms. After that all food was consumed within 24 hours of being fed. Although feed amounts 

were calculated to promote maintenance and growth, eels lost mass over the course of the 

experiment; mean eel mass decreased from 91.2 ± 23.6 grams (g) to 82.1 ± 21.9 g and was 

variable among individuals ranging from 0 to 24 g. Mean eel length did not change from 37.5 ± 

3.7 centimeters (cm).  
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Trophic discrimination 
 

Trophic discrimination factors were calculated for each tissue from eels sacrificed at day 

0 (i.e., prior to the diet switch). Note that mucus will be referred to as a tissue for ease of 

discussing all samples collectively. TDFs ranged among tissues from 1.18‰ to 2.46‰ for ∆
15

N 

and 1.99‰ to 3.11‰ for ∆
13

C (Table 2).  Discrimination for 
15

N was significantly different 

among tissues (ANOVA; F=16.9; p<0.001) indicating that 
15

N enrichment varies with tissue type 

for eels. A post-hoc test (Tukey-Kramer HSD) revealed that all tissue comparisons had 

significantly different ∆
15

N values except for fin and mucus. TDFs for 
15

N were significantly 

different from 3.4‰ for each tissue (t-test; muscle, t=-16.0, p<0.0001; fin, t=-11.0, p<0.0001; 

liver, t=-7.52, p<0.0001; mucus, t=-27.7, p<0.0001) suggesting that this commonly used 

discrimination value is not appropriate for eels. All eel tissue was more enriched (i.e., less 

negative) in 
13

C than the diet (mean D
13

C = 2.41‰) and differences did not differ significantly 

among tissues (F=1.70; p<0.182; Table 2). Carbon discrimination for all tissues was significantly 

different from 0‰ (t-test; t=11.4, p<0.0001) and 1‰ (t=6.7, p<0.0001), indicating that carbon 

TDFs vary significantly from those commonly used in the literature (DeNiro and Epstein 1978; 

Fry and Sherr 1984). 

Isotope turnover 
 
The lack of eel growth during the course of the experiment was expected given the generally 

slow growth rate of eels and the variability in growth rates of cultured eels (Wickins 1987; Tesch 

2003); therefore, growth-based models (e.g., Fry and Arnold 1982; Hesslein et al. 1993; MacNeil 
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Table 2. Trophic discrimination factors for American eel tissues (calculated as the difference 
between the δ13C and δ

15
N values of the control diet and the baseline eels sacrificed at day 0). 

Different letters indicate significant differences in discrimination of ∆
15

N between tissues. 
Carbon discrimination values (Δ13C) for all tissues were not significantly different. The mean of 
Δ13C for all tissues was 2.41‰. 

 
     

Tissue N D15N (SE) D13C (SE) C:N 

fin 10 1.86 ± 0.14b 2.64 ± 0.63 5.23 ± 0.14 

liver 10 2.46 ± 0.12a 2.00 ± 0.17 5.90 ± 0.22 

mucus 10 1.86 ± 0.06b 3.11 ± 0.39 3.68 ± 0.03 

muscle 10 1.18 ± 0.14c 1.99 ± 0.38 4.67 ± 0.12 

     
 

et al. 2006) were not appropriate for this dataset and isotope data were modeled against time. For 

all tissues, δ
15

N values remained relatively constant for 11 days before increasing; as a result, 

data best fit a logistic model (Figure 1a-d). Liver tissue showed the greatest increase over the 

course of the experiment reaching a mean δ
15

N value of 202.7‰ by day 35 (Fig. 1b); the half-life 

of liver tissue was calculated as 97 days (Table 3). Mucus tissue had the fastest turnover rate 

(half-life=67 days; Table 3) and reached a mean δ
15

N value of 107.3‰ by the end of the 

experiment (Figure 1d) followed by fin (mean δ15N of 69.6‰; half-life=90 days; Figure 1a; 

Table 3). Muscle had the slowest nitrogen turnover rate of the tissues measured with a mean δ
15

N 

of 28.4‰ and half-life of 191 days (Figure 1c; Table 3).  

No significant increase in δ
13

C values was measured after the diet switch in each eel 

tissue throughout the 35 day project (Figs. 2a-d); thus, neither growth-based nor logistic models 

could be used for analysis of δ
13

C data for turnover rates. It is possible that carbon turnover for 
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Figure 1. Nitrogen isotope values of eel a.) fin, b.) liver, c.) muscle, and d.) mucus after a 

diet switch. The horizontal dashed line represents the maximum δ
15

N observed in the 
experiment + the tissue specific trophic discrimination factor (∆

15
N; Table 2). 
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Figure 2. Carbon isotope values in eel a.) fin, b.) liver, c.) muscle, and d.) mucus after a diet 

switch. The horizontal line represents the equilibrium δ
13

C value calculated as the mean δ
13

C for 

the experimental diet (δ
13

C=-16.58‰) + the mean trophic discrimination factor (∆
13

C=2.41‰). 
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Table 3. Half-lives of nitrogen turnover in eel tissues 

Tissue Regression equation n r2 Half-life (days) 

fin logit 15N=-3.40+0.0377x 53 0.4 90.2 

liver logit 15N=-3.47+0.0736x 53 0.43 97.1 

mucus logit 15N=-3.46+0.0518x 53 0.47 66.8 

muscle logit 15N=-3.43+0.0179x 54 0.38 191.1 

     
 
all tissues exceeds 35 days and as a result tissue-specific turnover rates could not be quantified 

for δ
13

C in this experiment. Alternatively, direct nutrient routing could explain the lack of δ
13

C 

increase as similar dietary components in both the baseline (pellet) and experimental 

(earthworms) feeds could result in little discrimination between diet and consumer if routed 

directly to eel tissues.   

DISCUSSION 

Tissue specific trophic discrimination factors 

TDFs of 
15

N for all eel tissues were within the range previously reported in the literature 

for other species of fish. However, nitrogen enrichment was significantly lower than 3.4‰, a 

frequently used discrimination value for estimating trophic position (Minigawa and Wada 1984). 

Minigawa and Wada (1984) calculated their ∆
15

N estimate of 3.4‰ as the mean from many 

animals representing different classes from both terrestrial and aquatic environments. In a review 

of factors affecting 
15

N discrimination by Vanderklift and Ponsard (2003), the biochemical form 

of nitrogen excretion emerged as important. Organisms that secrete primarily ammonia 

(ammonotelic organisms) such as eels and most other teleost fish, exhibited significantly lower 

∆
15

N than organisms that secrete nitrogenous waste as primarily urea or uric acid (ureotelic and 

uricotelic organisms, respectively; Vanderklift and Ponsard 2003). The findings of this study are 
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similar to those in prior investigations that also identified low 
15

N discrimination in ammonotelic 

fish species (McCutchan et al. 2003; Logan et al. 2006; Caut et al. 2009). Vanderklift and 

Ponsard (2003) speculate that lower ∆
15

N in ammonotelic organisms is due to the fewer 

biochemical reactions required for ammonia production. As a result, the inclusion of ureotelic 

and uricotelic organisms in Minigawa and Wada’s (1984) estimate may have resulted in an 

artificially high measure of ∆
15

N and as such, is not appropriate for eels and likely other 

ammonotelic organisms as well.  

Isotope discrimination between diet and eels for 
15

N was variable among tissues (Table 

2). Eel liver was more enriched in 
15

N than muscle, as has been observed in some studies of fish 

species including ocellate stingrays (Potamotrygon motoro; MacNeil et al. 2006) and 

mummichogs (Fundulus heteroclitus; Logan et al. 2006), but not others such as rainbow trout 

(Onchorhynchus mykiss, Pinnegar and Polunin 1999). Fin was more enriched in 
15

N than muscle 

in this study, as was found in other studies comparing muscle and fin (Kelly et al. 2006; 

Sanderson et al. 2009; Andvik et al. 2010; Jardine et al. 2011). Mucus and fin were the only two 

tissues sampled that did not have statistically different levels of discrimination for nitrogen 

(Table 2). The similar TDFs observed here suggest that eel mucus may be as reliable as fin for 

15
N dietary determinations.  

Differences in TDFs among eel tissues (Table 1) can be attributed to nutrient routing as 

the biochemical components of the diet are differentially routed to each tissue. For instance, 

muscle tissue had the lowest TDF of the tissues measured, suggesting that more direct routing of 

dietary biochemical components (e.g., dietary protein routed to consumer muscle) occurred with 

muscle tissue than with liver, fin, or mucus, resulting in lower isotope discrimination in muscle 
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(Schwarcz 1991). The growing body of research in compound specific isotope analysis (CSIA; 

McMahon et al. 2019, Whiteman et al. 2019) suggests that the fate of specific monomers within 

the biochemical fractions (i.e., amino acids in proteins, fatty acids in lipids) is a determinant of 

the amount of isotope discrimination between diet and consumer. For instance, amino acids are 

identified as those that are directly routed to consumer tissue proteins (i.e., “source” amino acids) 

resulting in little to no nitrogen discrimination, or as those that are biochemically transformed as 

they are assimilated into consumer tissues (i.e., “trophic” amino acids) resulting in greater 

nitrogen isotope discrimination (O’Connell 2017). Because muscle tissue had a lower nitrogen 

discrimination value than the other eel tissues sampled, it may be that more source amino acids 

are being directly routed to muscle proteins than to liver, fin, or mucus. In addition to the 

potential effects of differential routing of source and trophic amino acids, the observed variation 

in TDFs among eel tissues may also be attributed to the metabolic activity of each tissue, where 

more metabolically active tissues, such as liver, exhibit higher levels of 
15

N discrimination 

(Nuche-Pascual et al. 2018).  

Eels are considered a “fatty” fish (Gallagher et al 1984). As a result, it is to be expected 

that eel tissues would generally be depleted in 
13

C as lipid synthesis discriminates against 
13

C 

(DeNiro and Epstein 1977). However, this was not the case. Within the range of values reported 

in the literature, the ∆
13

C values measured for eels (1.99-3.11‰  across tissues; mean of 2.41‰) 

were generally higher than those observed in many other studies. Elsdon et al. (2010) found F. 

heteroclitus to be significantly more enriched in carbon relative to diet with ∆
13

C ranging as high 

as 3.9‰. They attributed the variability observed in ∆
13

C values to the plant-based diet resulting 

in higher ∆
13

C values than animal-based diets (McCutchan et al. 2003). Building on this idea, 

Busst and Britton (2016) observed high variability in both carbon and nitrogen discrimination 
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across three tissue types in two omnivorous cyprinid species and generalized that higher TDFs 

occur with diets with large proportions of plant material. This may be driven by the fact that the 

δ
13

C of complex compounds in plants that are difficult to break down can differ greatly from 

bulk carbon isotope values (Benner et al. 1987; Teece and Fogel 2007). Eels from which TDFs 

were determined in the present study were fed a protein rich diet developed from both fish and 

plant-based sources (Biomar DAN-EX fact sheet 2848). Differential routing of the biochemical 

factions to each tissue, in particular the non-essential amino acids (McMahon et al. 2010) 

associated with the plant-based components of the diet, may have resulted in the higher than 

expected ∆
13

C measured for eels generally, and in particular for mucus. 

 The TDFs calculated for eels generally fell within the range reported in the literature; 

however, estimates among species and tissues are quite variable (Elsdon et al 2010; Busst and 

Britton 2016).  The observed differences in TDFs among eel tissues, and between other species’ 

estimates in the literature, may be attributed to the variation in composition and isotope values of 

the biochemical components of the diets and the varying efficiencies with which they are 

assimilated by each tissue (Martinez Del Rio et al. 2009; McMahon et al. 2015; Whiteman et al. 

2019). This has great relevance to field-based studies of omnivorous species, particularly those 

that can exhibit amphidromous life history strategies, such as American eels, where differences 

in diet composition can result in variable discrimination and thus, errors in the interpretation of 

field collected tissue isotope values. For instance, an eel feeding in a brackish habitat on a 

protein rich diet will have tissues that reflect the isotope values of the diet as well as generally 

low TDFs as protein is routed directly to tissues with little discrimination. If the eel moves 

upstream to freshwater to a diet of primarily crustaceans and detritus, then over time tissues will 

reflect the isotope values of the new diet. Given the lower protein content of the new diet, it is 
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likely that some protein components are not directly routed and must be synthesized from 

carbohydrate fractions resulting in relatively larger TDFs. If a small TDF is applied to the 

freshwater dietary data it can result in artificially depleted isotope values and errors in estimates 

of dietary sources. Laboratory experiments designed to understand the efficiencies with which 

the tissues of omnivores take up diets of varying biochemical compositions will help identify 

variation in TDFs by macromolecule composition to improve modeling of field-based diets 

(McMahon et al. 2015; Busst and Britton 2016). 

Estimates of isotopic turnover 
 

Many studies of isotope turnover in fishes attempt to discern the proportion of turnover 

due to growth and/or metabolism; the lack of growth in the experimental period precludes these 

calculations in the present study. Previous studies of isotope turnover in fishes have identified 

dilution from growth rather than metabolism as the primary driver of isotope turnover in 

ectothermic fishes such as eels (Fry and Arnold 1982; Hesslein et al. 1993; Jardine et al. 2004). 

However, Martinez del Rio et al. (2009) suggest that the developmental stage of the organism, 

and thus, the rate at which they are growing is more important than the method of 

thermoregulation (i.e., ectotherm or endotherm) in determining the mechanism underlying 

isotopic turnover. Although the yellow life stage is the primary growth stage of the eel, growth 

occurs over many years so annual growth is slow (Jessop 1987; Poole and Reynolds 1996; 

Oliveira 1997; Oliveira and McCleave 2002). As a result, maintenance metabolism, rather than 

growth, is likely the primary mechanism governing isotope turnover in yellow eels.  

The half-life values modeled for eels (Table 3) represent the slow turnover that is 

characteristic of sub-adult and adult fishes (Wiedel et al. 2011). Furthermore, the maximum δ
15

N 

value, rather than the mean, was used as the asymptote in the logistic model to calculate turnover 
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rate due to δ
15

N tissue values that exceeded the mean (Figure 1). As such, the half-lives 

presented here represent conservative estimates of eel tissue turnover. Eel mucus 
15

N had a faster 

turnover rate than fin, liver, or muscle suggesting relatively faster rates of protein synthesis in 

mucus. Protein synthesis and catabolism rates are faster in liver tissue than in muscle tissue of 

eels (de la Higuera et al. 1999). De la Higuera et al. (1999) attributed the shorter half-life 

observed in eel liver protein relative to muscle protein to the continuous protein turnover in liver 

tissue (de la Higuera et al. 1999). Of the few studies evaluating nitrogen turnover of mucus, all 

have found faster turnover of mucus than muscle (Church et al. 2009; Heady and Moore 2012; 

Maruyama et al. 2015; Winter et al. 2019). Mucus δ
15

N half-life in this experiment (67 days) was 

slower than the 36 days observed by Church et al. (2009) and the 17 days observed by Winter et 

al. (2019) for juvenile carp (Cyprinus carpio) fed a plant-based diet. Given that the rate of 

isotope incorporation can vary with body mass (Martinez del Rio et al. 2009), discrepancies 

between turnover time measured here and by Church et al. (2009) and Winter et al. (2019) may 

be due to the small size (mean mass at start of experiment was 18.4g and 8.0g, respectively) and 

faster growth rate of the young fishes used in their experiments relative to the larger size and 

slow growth of yellow eels used in this study (mean mass 91.4g). Smaller and relatively faster 

growing life stages of eels (i.e., leptocephali, glass eels, or elvers) should exhibit faster tissue 

turnover than the yellow eels measured here. Winter et al. (2019) examined 
15

N turnover in carp 

fed either a plant or a fish-based diet and found slower nitrogen turnover in carp fed a protein-

rich diet relative to a plant-based diet. The turnover estimate for carp fed the fish-based diet 

aligns closely with our mucus half-life estimate for eels despite large discrepancies in fish size. 

Both the carp (Winter et al. 2019) and eels were fed protein rich diets suggesting that diet 

composition may also influence tissue turnover rates. If diet is a primary driver of turnover rate, 
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than we would expect the turnover rates of Church et al. (2009)’s trout (that were fed a fish-

based, and presumably protein-rich diet) to have similar turnover rates to the mucus estimates of 

other fish fed protein rich diets (Winter et al. 2019 and present study), but that was not the case. 

Future research to determine the relative importance of various factors (e.g., organism size, diet 

composition) to turnover rates will improve our understanding of nutrient assimilation in 

consumer tissues. 

Carbon isotope values did not vary over time for any tissues measured (Figure 2) 

suggesting that the half-life of carbon in each of the tissues examined exceeds the 35-day 

experiment length and therefore, carbon turnover is slower than nitrogen for eels. Evidence 

exists for varying rates of turnover between carbon and nitrogen with data supporting faster rates 

in nitrogen in some studies (e.g., Jardine et al. 2004, Winter et al. 2019) and carbon in others 

(e.g., Johannsson et al. 2011) and varying relationships dependent on the tissues examined (e.g., 

Church et al. 2009). As was previously discussed with nitrogen, variability in carbon turnover 

rates may be attributed to nutrient routing, as the relative quantities of the biochemical fractions 

of the diet undergo different pathways of assimilation into consumer tissues (i.e., direct isotope 

routing or de novo synthesis; Gannes et al. 1998; Pinnegar and Polunin 1999; McMahon et al. 

2010). High rates of carbon discrimination were observed between the baseline diet and eel 

tissues (Table 2). Non-essential amino acids require more biosynthetic steps to assimilate than 

essential amino acids which may also result in slower rates of assimilation (Whiteman et al. 

2019). If eels relied on non-essential amino acids from the experimental diet throughout the 

course of the experiment, then the increased metabolic processing required could explain the 

slow rates of carbon turnover observed in all eel tissues.  
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However, an alternative explanation for the lack of carbon turnover exists. If the 

experimental diet closely met eel metabolic requirements, then the dietary components may have 

been directly routed to consumer tissues resulting in the observed lack of change in carbon 

isotopes among tissues (McMahon et al. 2015; Whiteman et al. 2019).   

Potential for nutritional stress  

Loss of mass observed in eels after the diet switch suggests that the earthworm diet 

provided was inadequate to promote growth. Although eels have been successfully sustained on 

worm diets in previous studies (Aston et al. 1982), a similar loss of mass in captive eels fed an 

earthworm diet ad libitum was observed by Lovern (1939). Evidence exists for low feeding rates 

of a subset of eels held in captivity due to inferior competitive ability (Peters et al. 1980). The 

lack of growth in many animals may be due to competition for food as evidenced by the 

variation in loss of mass among eels. Furthermore, liver tissue for one eel showed significant 15N 

enrichment after 11 days of the diet switch while others exhibited minimal enrichment by day 28. 

However, all eels showed substantial enrichment by day 35. 

Eels are biochemically well suited to periods of starvation (Dave et al. 1975). Under 

natural conditions yellow eels in temperate climates undergo seasonal starvation as food 

resources decrease in winter (Hopkirk et al. 1975) as well as ontogenetic starvation as they 

sexually mature to the silver stage and begin their spawning migration (Pankhurst and Sorensen 

1984). Unlike many fishes that catabolize lipids first (Love 1970), eels in the initial stages of 

fasting deplete protein reserves more quickly than lipids (Lewis and Epple 1984; Boetius and 

Boetius 1985). Lovern (1939) observed that European eels lost weight due to loss of proteins 

only, so that the relative lipid content increased over time. Eels in the current experiment that lost 

the most mass had the highest C:N values in liver tissue (Figure 3) likely due to the reduction in 
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nitrogen as nonessential amino acids are lost (Saglio and Faunconneau 1988), particularly those 

with low C:N. Therefore, evidence exists for nutritional stress in eels fed the treatment diet.  

 

Figure 3. Relationship between liver C:N and change in eel mass; y=4.86-0.11x, p<0.01, r=0.35 

 
Previous studies have documented changes to stable isotope values in fishes due to 

nutritional stress and have observed enrichment in the range of 1-2.5‰ for δ
13

C and ≤1 for δ
15

N 

(Doucett et al. 1999; Gaye-Seissegger et al. 2004). Furthermore, multiple experiments have 

documented no enrichment in carbon or nitrogen in fishes due to fasting (e.g., Herzka and Holt 

2000; Jardine et al. 2004; Gaye-Siessegger et al. 2007). Due to the high level of enrichment in 

δ
15

N in the experimental diet, the uncertainty of enrichment effects due to starvation, and the 

small degree of potential enrichment due to fasting relative to enrichment due to the ammonium 

chloride label, it is unlikely that the loss of eel mass had any magnifying effect on the nitrogen 

turnover data. If enrichment due to nutritional stress did occur, progressive 
13

C enrichment may 
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have been observed in the diet switch data (Oelbermann and Sheu 2002; Gay-Seissegger et al. 

2007) and artificially fast turnover rates may have been recorded. Because no statistically 

discernible change in δ
13

C isotope values was observed in any tissues measured, isotope 

enrichment due to stress is likely not skewing the data. 

Applications to Future Research 
 

This study provides the first tissue specific TDFs (∆
15

N and ∆
13

C) for the American eel, a 

critical step for increasing the accuracy of eel isotope data interpretation. The use of carbon and 

nitrogen isotopes as a tool for understanding diet has increased over the last few decades, and so 

has our understanding of the data needs for diet reconstruction. Mixing models have become a 

powerful tool for estimating prey contribution to consumer diet (e.g., Phillips and Gregg 2001; 

Moore and Semmens 2008) but they are limited by a lack of taxon-specific discrimination data 

for the tissues being studied (Johnson et al. 1998; Bond and Diamond 2011). Results from this 

study provide a critical data need for increasing the accuracy of estimates of trophic position, 

movement, and basal food sources for the American eel by providing TDFs for liver, muscle, fin, 

and mucus. 

In addition, we provide estimates of δ
15

N turnover rates in four eel tissues. Although 

muscle is commonly used in stable isotope examinations of fish trophic ecology, our data suggest 

that it may not be the most informative indicator of diet for slow-growing, omnivorous species 

that rely on varied food sources such as eels. Due to the slow turnover rate measured for yellow 

eels, muscle tissue of eels in the wild is likely not at equilibrium with the diet unless yellow eel 

diet is generally consistent over the course of many months to a year. Thus, the slow isotopic 

turnover renders isotope analysis of eel muscle a better indicator of longer-term trophic 
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interactions and integrated dietary habits rather than short-term dietary shifts or movements 

among habitats.  

Mucus had a shorter half-life than all other tissues measured and is collected with a non-

invasive method, allowing for collection of repeated samples over time. Mucus is particularly 

valuable for understanding short term changes in slow growing fishes where muscle tissue 

turnover can be quite slow such as with the eel. While some tissues measured in the literature 

may exhibit faster turnover (e.g., blood plasma, Vander Zanden et al. 2015), mucus presents a 

relatively short-term indicator that is easily sampled from living fishes by applying the methods 

used by Church et al (2009) and in this study. A non-invasive sampling method for stable isotope 

analysis is of particular importance for species with populations in decline such as the American 

eel (ASMFC 2012). As such, this contribution strengthens a growing body of literature that 

proposes mucus as a viable method for evaluating short term δ
15

N changes in fishes (e.g., 67 

days for yellow eels in the present study; 26 days for juvenile steelhead trout (Church et al. 

2009), 95 days for stone moroko (Shigeta et al. 2017); 144 days for Amur minnow (Shigeta et al. 

2017)). 

Understanding tissue specific isotopic turnover is important for answering ecological 

questions for species with complex life histories such as the American eel. Eels exploit a wide 

range of habitats and are unique in that their movements are not strictly aligned with seasonal or 

reproductive changes such as with many other migratory species (Arai and Chino 2012). Rather, 

eels move among freshwater, marine, and estuarine habitats over varying temporal scales (Jessop 

et al. 2008) and can exhibit catadromous, amphidromous, or marine/estuarine life history 

patterns. The lack of predictability can make eel movements among habitats difficult to trace. 

Comparison of tissues with different turnover times can be used to detect dietary shifts that can 
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indicate habitat use trends. Our results suggest that eel mucus can serve as a short-term indicator 

representative of seasonal change (approximately 3 months to reach equilibrium with diet), liver 

and fin as a midterm indicator (approximately 6 months), and muscle as a long-term indicator 

(approximately 1 year). Therefore, the present study provides important information for 

reconstructing eel resource use and migration patterns. 

The eels in the present study exhibited faster turnover and lower discrimination for 

nitrogen than for carbon. Compound specific isotope analysis could provide more insight into the 

mechanisms driving these differences. For instance, eels may have been relying heavily on 

dietary glycine or serine. These two amino acids are non-essential, resulting in carbon 

fractionation between diet and consumer, and despite undergoing transamination, exhibit patterns 

similar to source amino acids resulting in little to no nitrogen fractionation (Whiteman et al. 

2019). To truly understand the mechanisms driving isotopic shifts between diet and eel tissue, 

further research is needed to examine the composition, isotope values, and fate of specific 

biochemical fractions (e.g., carbohydrates, lipids and proteins) and their monomers (i.e., 

monossacharrides, fatty acids, and amino acids) between diet and consumer (Schwarcz 1991; 

Ambrose and Norr 1993; McMahon et al. 2010; Whiteman et al. 2019).  
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CHAPTER II 
 

 
Rethinking the freshwater eel: Saltmarsh trophic support of the American eel, Anguilla rostrata 
 
Note: This chapter was published in the journal Estuaries and Coasts. The original publication 
is available at https://link.springer.com/article/10.1007/s12237-015-9960-4. Differences in text 
citations and use of scientific rather than common names throughout the manuscript reflect the 
journal requirements.  
 

ABSTRACT 
 

Despite the fact that American eel (Anguilla rostrata) are frequently captured in salt 

marshes, their role in saltmarsh food webs and the influence of human impacts, such as tidal 

restrictions, on this role remains unclear. To better understand saltmarsh trophic support of A. 

rostrata, eels were collected from tidally restricted and unrestricted saltmarsh creeks within three 

New England estuaries. Gut contents were examined, and eel muscle tissue was analyzed for 

carbon and nitrogen stable isotope values and entered into MixSir mixing models to understand 

if saltmarsh food sources are important contributors to eel diet. Data suggest that eel prey rely 

heavily on saltmarsh organic matter and eels utilize saltmarsh secondary production as an 

energetic resource over time, and thus, can be considered saltmarsh residents. Gut contents 

indicate that A. rostrata function as top predators, feeding primarily on secondary consumers 

including other fish species, crustaceans and polychaetes. Higher A. rostrata trophic position 

measured upstream of reference creeks suggests that severe tidal restrictions may result in altered 

food webs, but it is not clear how this impacts the overall fitness of A. rostrata populations in 

New England salt marshes. 
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INTRODUCTION 
 

The American eel, Anguilla rostrata, ranges throughout the western North Atlantic and 

has a unique life history where juvenile eels remain inshore in estuaries and freshwater habitats 

in the “yellow” life stage before undergoing a spawning migration to the Sargasso Sea up to 20 

years later (Jessop 1987; Tesch 2003). Historically, A. rostrata was abundant in the Gulf of 

Maine (Goode 2006) and served as an important source of income and sustenance throughout 

northern New England and Canada (Bolster 2002; SRSF 2002). While eels are not highly valued 

in the United States as a food source, increasing demand for American eels for overseas 

aquaculture operations has resulted in an increase in both fishing pressure and the economic 

value of the commercial fishery (Haro et al. 2000; Jessop 1997). However, A. rostrata is in 

decline over the entirety of its range (Haro et al. 2000). Potential causes include migration 

barriers, hydroelectric turbine mortality, overfishing, and habitat loss (Haro et al. 2000). Due to 

the lack of knowledge on eel ecology in estuaries and potential severity of habitat loss impacts 

on A. rostrata, the Atlantic States Marine Fisheries Commission Interstate Fishery Management 

Plan for the American eel lists use of inshore habitat and impacts of habitat loss as high priority 

research needs (ASMFC 2000). 

The conventional understanding of Anguillids’ inshore habitat use has been obligate 

catadromy; however, a high degree of residency (Jessop et al. 2002; Jessop et al. 2004; 

Tsukamoto and Arai 2001; Tsukamoto et al. 1998; Tsukamoto et al. 2002) and faster growth in 

estuaries at higher latitudes (Jessop et al. 2004; Morrison et al. 2003; Oliveira 1999) suggests 

that northern estuarine habitats may be favored more than freshwater habitats. For example, A. 

rostrata are frequently captured in New England saltmarsh habitats (e.g., Dionne et al. 1999; 

Eberhardt et al. 2011; Nixon and Oviatt 1973) and in some studies were found to comprise the 
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majority of fish biomass (Dionne et al. 1999). Despite the abundance of A. rostrata in northeast 

salt marshes, little is known about their use of these habitats. Evidence exists for a limited home 

range of approximately 1 kilometer in saltmarsh creeks (Bozeman et al. 1985; Ford and Mercer 

1986; Helfman et al. 1983) suggesting that salt marshes provide sufficient trophic support for A. 

rostrata. However, with few exceptions (e.g., Wenner and Musick 1975), the majority of 

knowledge of yellow eel foraging ecology comes from freshwater habitats (Aoyama and Miller 

2003; Tesch 2003). In light of the potential for the yellow life stage to remain resident in 

estuaries for many years (Jessop 1987; Tsukamoto and Arai 2001) and the habitat value that 

intact salt marshes provide, a need exists for greater understanding of A. rostrata use of salt 

marshes in terms of trophic support. 

Coastal habitats such as salt marshes are particularly vulnerable to habitat impacts due to 

high rates of coastal development and their use as transportation corridors. Structures such as 

culverts are frequently installed to provide varying degrees of tidal connectivity where roadways 

intersect saltmarsh creeks but often have negative impacts on intact marsh ecosystems and the 

many ecological values that they provide (Roman and Burdick 2012). Many culverts do not 

accommodate the full tidal regime, resulting in a tidally restricted system upstream where 

halophytic vegetation is replaced by invasive species such as Phragmites australis (common 

reed; Burdick et al. 1997; Chambers et al. 2012; Roman et al. 1984). Colonization by invasive 

species as well as changes to the infaunal communities (Fell et al. 1991) may shift the food-base 

of tidally restricted salt marshes resulting in an altered food web. Furthermore, decreased 

flooding and accelerated water velocity through undersized culverts can limit fish movement and 

access to food resources (Eberhardt et al. 2011; Weisberg and Lotrich 1982). Such barriers may 

result in changes to A. rostrata or prey movement as well as habitat degradation upstream and as 
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a result, some marsh areas may contribute disproportionately to fish populations within larger 

estuaries (Gillanders 2005). In turn, this may limit the export of marsh production to open water 

habitats via fish migration (Kneib 1997). Examining the functional differences of tidally 

restricted and unrestricted salt marshes in the trophic support of A. rostrata will improve our 

understanding of how eels use tidal marshes and how human influence alters the habitat value 

salt marshes provide for eels. 

Stable isotope and gut content analyses were used to evaluate the functional equivalency 

of both tidally restricted and unrestricted salt marshes in the trophic support of A. rostrata in 

three New England (USA) estuaries. A. rostrata and their potential food resources were collected 

from three estuaries to test the hypotheses that 1. Saltmarsh primary and secondary production 

serve as important energetic resources for A. rostrata and its prey; 2. Trophic position of A. 

rostrata is altered in tidally restricted salt marshes relative to unrestricted systems; and 3. A. 

rostrata nutritional sources continue to be represented by saltmarsh sources over time suggesting 

that eels are resident in salt marshes. 

METHODS 
 

To evaluate the foraging ecology of A. rostrata in saltmarsh habitats, three estuaries 

containing extensive marsh complexes were selected: the Webhannet Estuary, Maine (WEB); the 

Hampton-Seabrook Estuary, New Hampshire (HSE); and the Parker River Estuary, 

Massachusetts (PRE; Figure 4; Table 4). Within each marsh, one tidally restricted and one 

reference creek were sampled for a total of six creeks (n=3 for each hydrology treatment). Creeks 

were selected to represent similar characteristics such as size and availability of intertidal and 

subtidal habitats. Samples were collected from locations upstream and downstream of the culvert 

in tidally restricted creeks, and in comparable upstream and downstream sections of reference 
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creeks to examine foraging patterns; only upstream data were analyzed to test for effects of tidal 

restriction. A. rostrata were collected from each creek using eel pots and were measured for 

length to the nearest millimeter (mm). Captured eels were anesthetized, sacrificed, and frozen 

according to a protocol approved by the Institutional Animal Care and Use Committee of the 

University of New Hampshire (IACUC permit 070702). In the laboratory, fish muscle tissue was 

dissected and dried for 48 hours at 60oC to achieve constant weight. Primary consumers 

representing potential prey species were also collected from the marsh to provide baseline data 

for the calculation of A. rostrata trophic position. Gastropods were removed from the shell, 

rinsed with distilled water and analyzed whole. The adductor muscle was dissected out for 

analysis of stable isotope values of bivalve species. 

To determine the relative contribution of saltmarsh primary production to A. rostrata diet, 

organic matter was collected from restricted and references creeks from within each estuary. 

Samples of the most abundant species were collected including the C3 plants P. australis and the 

cattail species Typha latifolia and Typha angustifolia (hereafter collectively referred to as 

“Typha”), and the C4 plants Spartina alterniflora (cordgrass) and Spartina patens (salt hay). 

Leaves from plants of each species were rinsed with distilled water, scraped for removal of 

epiphytes, and dried for 48 hours at 60oC to achieve constant weight. Nekton and vegetation 

samples were ground using a coffee grinder and weighed into aluminum tins in preparation for 

stable isotope analysis. 
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Figure 4. Location of sampling sites for stable isotope and gut content sampling collection. A 
tidally restricted and unrestricted creek were each sampled within the Webhannet Estuary 
(Maine), the Hampton-Seabrook Estuary (New Hampshire) and the Parker River Estuary 
(Massachusetts).
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Table 4. Sampling site characteristics for restricted and reference creeks in each estuary. Sources 
of data for salinity and tide height are: Webhannet Estuary (Adamowicz and O'Brien 2012 for 
the restricted creek tide height data; Burdick et al. 1999 for the reference creek tide heights and 
well salinity data); Hampton-Seabrook Estuary (Burdick et al. 2010 for well salinity and 
restricted tide range; predicted tide range in estuary from NOAA for same collection days): 
Parker River Estuary (Burdick, unpublished data). 

 
  

Benthic microalgae were collected on a 210 micron (μm) mesh screen according to the 

protocol outlined by Levin and Currin (2012). At the start of the ebb tide, ashed silica was 

sprinkled on the sediment. The mesh screen was sprayed with filtered seawater, placed over the 

silica layer, and air bubbles were removed with a plastic spatula. An additional layer of silica 

was sprinkled on top of the mesh screen and then a layer of fiberglass screen elevated off the 

substrate with a foam ring was installed to provide shade and prevent desiccation. After several 

hours, the screen was removed, rinsed with distilled water and stored on ice. In the laboratory 

samples were decanted and filtered onto precombusted (450oC for 4 hours) 47 mm glass fiber 

filters (GF/F) using a low-pressure vacuum pump filtration system. Filters were examined under 

a microscope to remove debris and then dried at 60oC until a constant weight was reached.  

Particulate organic matter (POM) was collected from the restricted and reference creeks 

in each estuary by filtering 4 liters of water through a 64 μm mesh. Samples were filtered 

through ashed GF/F at low pressure in the laboratory and dried at 60oC until a constant weight 

was reached. Filters for both benthic microalgae and POM were stored in a desiccator prior to 

analysis. Material was removed from each filter using forceps and placed into tin capsules for 

analysis of stable isotopes. Stable isotope values for primary producers in adjacent habitats (i.e., 

  Webhannet Estuary Hampton-Seabrook Estuary Parker River Estuary 

Variables Restricted Reference Restricted Reference Restricted Reference 

Salinity (ppt; pore water) 22.8 27.3 15 29 31.4 28.5 

Tide Range (cm) 64 210 30 294 145 166 
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terrestrial and marine) were taken from the literature to serve as end members in mixing models. 

Data were obtained from projects that occurred in the same estuaries (i.e., WEB and PRE) to 

represent marine (marine POM values; Deegan 2004) and terrestrial (Quercus rubra, Deegan 

2004; Vincent, unpublished data) sources of primary production.  

All primary producer, invertebrate, and nekton samples were analyzed for carbon (δ13C) 

and nitrogen (δ15N) stable isotopes at the University of New Hampshire Stable Isotope 

Laboratory with a Costech ECS4010 Elemental Analyzer coupled to a Delta Plus XP mass 

spectrometer (Thermo Finnigan). Stable isotope ratios are reported in delta notation per mil units 

(‰) as: 

δX = [(Rsample/Rstandard) – 1] x 1000‰ 

Where X is 13C or 15N and R is 13C/12C or 15N/14N, respectively. Stable isotope ratios were 

determined using Vienna Pee Dee Belemnite (VPDB) as the reference material for carbon and 

atmospheric N2 (air) for nitrogen. Delta 15N values are reported on the VPDB scale using 

International Atomic Energy Agency-N1 (IAEA; 0.4 per mil) and IAEA-N2 (20.3 per mil). 

Repeated analyses of laboratory standards (tuna for eels and invertebrates, and apple leaves for 

plants) varied less than 0.15‰ for both δ15N and δ13C.  

Carbon and nitrogen stable isotope values of A. rostrata captured in upstream regions 

were evaluated for differences between hydrologic regimes with an analysis of covariance 

(ANCOVA) using JMP statistical software (JMP 11.0; SAS Institute, Cary, North Carolina, 

USA). The hydrology of the creek (restricted or restored) served as the main factor with eel 

length as the covariate to account for ontogenetic change in diet (Ogden 1970; Facey and Labar 

1981). The estuary was included as a block to remove the variability in A. rostrata diet 

associated with latitudinal differences among estuaries (as in Tesch 2003). Residuals were 
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examined for normality and homogeneity of variance; all data met the assumptions of the general 

linear model. 

Mixing models were developed from stable isotope data with MixSir software (Moore 

and Semmens 2008) to examine the relative contributions of saltmarsh primary producers to A. 

rostrata diets in each marsh treatment (i.e., upstream restricted, downstream reference, etc.). The 

input parameters for MixSir include δ15N and δ13C data for individual A. rostrata, means and 

standard deviations for potential primary producer sources specific to each estuary, and tissue-

diet discrimination factors and associated standard deviations. All mixing models met the 

diagnostic requirements of MixSir (i.e., posterior draws, duplicate draws and the ratio between 

the posterior at the best draw and the posterior density; Moore and Semmens 2008). However, it 

should be noted that low sample sizes for some treatment combinations (e.g., 

Webhannet/downstream/restricted and Webhannet/downstream/reference) decrease confidence 

in those results for inference to eel populations in general. 

Estimates of contributions of prey items to consumer diets as well as consumer trophic 

position are subject to multiple sources of uncertainty (Moore and Semmens 2008; Vander 

Zanden and Rasmussen 2001), including changes in isotope ratios as prey are assimilated into 

consumer tissues (discrimination) and variation in the rate at which the diet is assimilated 

(turnover; Fry 2006). Many food web investigations using stable isotopes rely upon 

discrimination factors documented in the literature; however, evidence exists for species and 

tissue specific variability in both discrimination and turnover estimates (Hobson and Clark 

1992a; Hobson and Clark 1992b; Logan et al. 2006; Pinnegar and Polunin 1999; Tieszen et al. 

1983; Vander Zanden and Rasmussen 2001). To address these potential sources of uncertainty, 

A. rostrata discrimination factors and turnover rates were determined in a laboratory diet switch 
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experiment. A. rostrata were fed a cultured earthworm diet of known carbon and nitrogen 

isotope values and tissues were sampled over time to calculate discrimination and turnover. A. 

rostrata muscle turnover rate was estimated to be 191 days (Eberhardt, unpublished data). The 

discrimination factor was calculated as Δ15N=1.18 (±0.14) and Δ13C=1.99 (±0.38) for A. rostrata 

muscle (Eberhardt, unpublished data). Trophic position was calculated for A. rostrata (Vander 

Zanden and Rasmussen 1999) and estimated to be 4.0. Similarly, Persic et al. (2004) estimated 

yellow stage Anguilla anguilla to feed at a trophic level of 4.1.  As such, discrimination 

estimates were adjusted to reflect eels feeding at the 4th trophic level in order to increase model 

robustness.  

To evaluate impacts of restricted hydrology on A. rostrata diet, the trophic position of A. 

rostrata captured from upstream regions was calculated from δ15N data for eels measuring 

between 20 and 40 cm. Trophic position was calculated as TPeel = (δ15Neel - δ15N PC/Δ15Neel)/2 

(Vander Zanden and Rasmussen 1999) where TPeel is the trophic position of the eel, δ15Neel is the 

eel nitrogen isotope value, δ15NPC is the nitrogen isotope value of primary consumers, and 

Δ15Neel is the A. rostrata nitrogen isotope discrimination value for one trophic level. The model 

uses primary consumers as the baseline trophic level to account for variation in δ15N values of 

basal resources. Stable isotope data for Geukensia demissus (ribbed mussel), Mytilus edulis (blue 

mussel), and Littorina littorea (common periwinkle) were collected and analyzed specific to 

each estuary and hydrology treatment for the calculation of trophic position (Appendix C). Data 

for trophic position were tested for effects of site, hydrology, and the interaction with a two-way 

ANOVA. Significant results for the interaction term were further evaluated with a Tukey-

Kramer post hoc test. 
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Gut contents were analyzed from all captured eels to evaluate the importance of 

saltmarsh secondary production to eel diet. Guts were removed from eels and the relative 

fullness was estimated visually and assigned to one of three general categories: <50% full, 50-

75% full or 75-100% full. Gut contents were examined with a dissecting microscope and 

identified to major taxon. To identify the contribution of each food type to the diet, the relative 

volume of each food type for each gut was calculated as the wet weight of each item as a 

proportion of the total gut contents (Hyslop 1980). Gut contents of A. rostrata with guts ≥50% 

full were compared among tidally restricted and reference saltmarsh creeks with a one-factor 

analysis of similarity (ANOSIM), a nonparametric equivalent to multivariate ANOVA, with 

PRIMER statistical software (Clarke and Green 1988).  

Gut contents indicate intra-day diet. Using 2 half lives to define the period of integration 

for the isotope data, muscle data indicate A. rostrata diet integrated over approximately one year. 

While gut content data indicate what an animal has ingested hours before capture, stable isotope 

data provide information on what prey items an organism has assimilated over the past year. As 

such, proportions of prey items from gut contents were considered with isotope data to provide a 

time series of resource use by A. rostrata. 

RESULTS 
 

The stable isotope values of A. rostrata muscle tissue ranged from 6.5 to 12.8 for δ15N 

and from -22.3 to -13.0 for δ13C (Figure 5). Both δ15N and δ13C values of A. rostrata muscle 

tissue were significantly different among estuaries but did not differ between restricted and 

reference creeks, by eel length, or the interaction term between hydrology and eel length 

(ANCOVA; Table 5). Potential sources of primary production included red oak, benthic 

microalgae, estuarine POM, saltmarsh grasses, brackish species and marine POM. Mean δ15N  
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 Figure 5. Biplots for carbon and nitrogen stable isotope values used in mixing models, including 
data for individual eels and the means (± standard deviation) of potential prey items. Data are 
presented for each of the three estuaries sampled: (a) Webhannet Estuary, Maine (WEB), (b) 
Hampton-Seabrook Estuary, NH (HSE) and (c) Parker River Estuary, Massachusetts (PRE) 
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Table 5. Results of analysis of covariance on δ15N and δ13C data for eel muscle tissue collected 
in upstream regions of tidally restricted and unrestricted creeks.  Hydrology (tidally restricted or 
unrestricted) was analyzed as the main treatment with eel length as a covariate; site was included 
as a blocking factor. Site include the Parker River Estuary (MA), Hampton-Seabrook Estuary 
(NH) and the Webhannet Estuary (ME).  
 

  df F Ratio p 
δ15N    

Site 2 4.6 0.027* 
Length 1 1 0.338 

Hydrology 1 3.8 0.069 
Hydrology:length 1 0.6 0.444 
    
    
δ13C    

Site 2 8.2 0.003* 
Length 1 1.9 0.182 

Hydrology 1 0.2 0.703 
Hydrology:length 1 0 0.935 

*statistically significant at α=0.05 
 
 

values for primary producers ranged from 1.2 to 7.0‰ and mean δ13C ranged from -28.4 to -

13.7‰ (Table 6). 

Mixing model outputs are more robust when the number of sources is limited; similarly, 

source items with similar isotope ratios can confound modeled diet distributions (Moore and 

Semmens 2008). As a result, data were pooled where isotope values were statistically similar; 

data for the saltmarsh halophytes S. alterniflora and S. patens were not significantly different 

(one-way ANOVA) nor were the brackish/freshwater species P. australis and Typha, so they 

were pooled into “marsh grasses” and “brackish species” categories, respectively. Primary 

producer values specific to each estuary were used in mixing models. 
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Mixing model outputs suggest that multiple sources of primary production support the 

diet of A. rostrata (Table 7). POM represented a common source of primary production to the 

prey of A. rostrata; evidence of trophic pathways based on POM from marine and/or estuarine 

sources was found at all sites. The contribution of saltmarsh macrophytes to eel basal diet was 

modeled in downstream regions of all estuaries (9-23% of diet) regardless of hydrology (with the 

exception of PRE/restricted/downstream); whereas, saltmarsh macrophtyes were not a primary 

contributor to eels captured in upstream locations. Model results suggest important differences in 

basal source contributions among estuaries. Marine POM was the dominant basal resource for A. 

rostrata captured from PRE (47 – 95% of diet). The northern two estuaries (WEB and HSE) 

were less saline (Table 4), with dietary contributions from primarily estuarine POM and 

saltmarsh grasses in addition to POM marine. In one case (HSE/restricted/upstream) the 

dominant basal source was modeled as brackish species (80% of diet) where the tide was 

restricted and brackish species dominate. 

Comparison of mixing model outputs for upstream data between tidally restricted and 

reference creeks provides insight into the impact of tidal restriction on the trophic ecology of 

eels. Evidence for an effect of tidal restriction varied by estuary, perhaps due to the magnitude of 

the restriction. A. rostrata basal resource use in PRE and WEB did not differ between reference 

and restricted creeks within each estuary. However, the organic matter sources supporting A. 

rostrata captured upstream were different between restricted and reference creeks in HSE, the 

site with the greatest degree of restriction (Table 7). A. rostrata from the reference creek of HSE 

were supported by primarily marine POM, while A. rostrata from the restricted creek were 

supported by brackish/invasive plant production as the primary carbon source.  
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Gut content data were analyzed for A. rostrata that had guts at least 50% full (n=31). The 

guts were comprised primarily of species resident to saltmarsh and other estuarine habitats. The 

common saltmarsh resident fish F. heteroclitus and polychaete worms (Nereid species and 

Polynoidae) were the most abundant items in A. rostrata guts occupying 39% and 33% of guts, 

respectively (Fig. 6). Other species present included shrimp (Crangon septemspinosa and 

Palaemonetes species), Gammarid amphipods, fish species not resident to salt marshes 

(classified as such due to the size of scales, opercula, and pharyngeal jaws), as well as plant 

material (Fig. 6). The gut of one small eel (15.9 cm) contained 57 mosquito larvae. Gut content 

composition of A. rostrata collected upstream of tidal restrictions did not differ from those 

captured upstream in reference creeks (one-way ANOSIM, R= -0.06, p=0.89). 

Trophic position was calculated for A. rostrata ranging from 20 to 40 cm using eel 

muscle δ15N data (Table 8). The 20 to 40 cm size range was selected to analyze eels within the 

same feeding guild (Ogden 1970; Facey and Labar 1981; Tesch 2003) while maintaining an 

adequate sample size. The mean trophic position of A. rostrata varied between hydrology, 

sampling region and their interaction (two way ANOVA, df=2, F=4.0, p<0.032). A posterior test 

(Tukey’s HSD) revealed that the trophic position of A. rostrata collected in upstream reference 

creeks was significantly greater than A. rostrata collected in upstream restricted creeks in two of 

the three sites sampled (WEB and HSE). 
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Figure 6. Summary of prey items found in the stomachs of Anguilla rostrata (n=31). Data are 
included for stomachs that were over 50% full and are expressed as the mean relative volume 
(calculated as the mean wet weight of each item as a proportion of the total gut contents). 

 
 
Table 8. Mean trophic position (mean ±1 standard deviation) for Anguilla rostrata 

 
      n Trophic position  

Webhannet Estuary 
(WEB) Restricted Upstream 2 2.2 ± 0.5 

Downstream 6 3.1 ± 0.4 

Reference Upstream 1 4.0   
Downstream 3 4.8 ± 1.9 

Hampton-Seabrook 
Estuary (HSE) Restricted Upstream 3 3.3 ± 1.3 

Downstream 6 3.6 ± 0.6 

Reference Upstream 2 4.0 ± 0.6 
Downstream 3 5.5 ± 0.2 

Parker River Estuary 
(PRE) Restricted Upstream 8 3.8 ± 0.5 

Downstream 4 5.0 ± 0.6 

Reference Upstream 6 4.1 ± 1.1 
Downstream 6 5.0 ± 0.9 

Nereidae
24%

Fundulus 
heteroclitus

39%

Transient fishes
4%

Gammaridae
6%

Mosquito larvae
1%

Detritus
1%

Crangon 
septemspinosa

3%
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9%
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DISCUSSION 
 

Mixing models indicate that A. rostrata foods webs are supported by a diversity of 

organic matter sources that vary across estuaries. While it is clear from the data that A. rostrata 

basal diet stems from many available sources (e.g., estuarine, marine, brackish/invasive species), 

strong evidence exists for A. rostrata support from saltmarsh primary production in the form of 

saltmarsh grasses and/or POM. The relative contribution of saltmarsh macrophyte detritus to 

POM can be quite variable depending on the coastal geomorphology of the system, recent 

meteorological events and the size and proximity of vegetated marsh habitat (Odum et al. 1979; 

Roman and Daiber 1989; Sullivan and Moncreiff 1990; McClelland and Valiela 1998). Due to 

considerable evidence for S. alterniflora detritus across saltmarsh dominated estuaries of the 

eastern United States (Teal 1962; Odum & de la Cruz 1967; Roman & Daiber 1989), it is 

reasonable to assume that assimilation of POM by A. rostrata and its prey represents, in part, use 

of saltmarsh production. It should be noted that A. rostrata are likely not grazing directly on 

saltmarsh macrophytes since direct herbivory is considered uncommon (Tesch 2003). Rather, A. 

rostrata may directly ingest small amounts of saltmarsh macrophytes as detritus while foraging 

for prey. More likely, the majority of the carbon and nitrogen fixed by vegetation is assimilated 

into A. rostrata diets indirectly as their prey digest vegetation tissue or bacteria and fungus 

growing on the vegetation (i.e., detrital food web).  

A. rostrata are considered opportunistic omnivores (Tesch 2003) and the abundance of 

prey items identified in A. rostrata guts supports this. Secondary consumers were common in 

guts of A. rostrata and it is clear that A. rostrata are functioning as a top predator in saltmarsh 

food webs. The abundance of saltmarsh resident (F. heteroclitus) and dependent (e.g., C. 

maenus, Palaemonetes spp., C. septemspinosa) species in gut contents confirms that A. rostrata 
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diet relies heavily on saltmarsh secondary production. POM has been found to be an important 

energetic resource to saltmarsh infauna, shrimp and F. heteroclitus in New England salt marshes 

(Dibble and Meyerson 2013). Therefore, it is likely that the dominance of POM as a basal 

resource at most sites is due to eel foraging on suspension feeding primary consumers such as 

polychaetes resulting in trophic transfer of POM to A. rostrata.  

Estuaries appeared to function differently in terms of the basal support of eels. 

Furthermore, evidence exists for impacts of tidal restriction in some systems, but not others. In 

the upstream area of the HSE restricted marsh, mixing model results indicate that trophic 

pathways were driven by Typha and P. australis, species common to tidally restricted systems 

(Chambers et al. 2012; Roman et al. 1984) whereas the reference creek in HSE was driven by 

marine POM. Additionally, eels from the restricted area of HSE fed at one trophic level lower 

than those captured in the reference creek of the same estuary. Of all estuaries sampled, the tidal 

restriction at HSE results in the greatest reduction in tidal amplitude (Table 4) and as a result, the 

upstream area is colonized by primarily invasive and brackish vegetation. Eels captured from 

WEB, the estuary with the intermediate degree of restriction of the estuaries sampled, were 

supported by primarily estuarine basal sources in the upstream regions of both the restricted and 

reference creeks; however, the reduced trophic position in eels captured from the restricted 

system (Table 8) suggest that, like in HSE, the structure of the restricted creek food web is 

altered relative to the reference creek. Finally, eels captured from PRE, the site with the most 

tidal flushing and smallest restriction, had a basal diet driven by marine organic matter sources in 

both reference and restricted creeks.  Although the experiment was not designed to explicitly test 

for the degree of restriction, it appears that in creeks with severe tidal restrictions, more food is 

eaten locally and at a lower trophic level. 



 53 

PRE is a well-mixed estuary and the undersized culvert in the restricted creek reduced the 

tidal regime only slightly (Table 4). As such, it is possible that A. rostrata captured in PRE had 

isotope signatures reflecting basal marine sources because either prey were relying on marine 

carbon sources or eels had recently moved from marine to estuarine habitats.  

 Evidence for A. rostrata feeding at a lower trophic level in the restricted creeks of two of 

the three estuaries sampled suggests that the trophic structure of highly restricted systems is 

altered. Although the food web structure of middle trophic levels in estuarine systems is highly 

complex and poorly understood (Douglass et al. 2011), changes to the infaunal community 

composition have been documented as a result of tidal restriction (Fell et al. 1991). Decreased 

prey diversity, and subsequently the loss of trophic levels have been documented in tidally 

restricted mangrove systems (Layman et al. 2007). Furthermore, decreased movement of 

important prey species (e.g., F. heteroclitus, C. septemspinosa) between upstream and 

downstream regions of tidally restricted marshes (Eberhardt et al. 2011) may result in a loss of 

prey resources for A. rostrata in some marsh areas. As a result, the observed lower trophic 

position of eels in highly restricted systems may indicate an altered trophic structure in marshes 

subject to reduced tidal flushing.  

Little data exist regarding A. rostrata use of saltmarsh habitats as a food source (e.g., 

Wenner and Musik 1975) so our results provide important new information regarding the trophic 

support of A. rostrata in New England salt marshes. Data indicate that A. rostrata rely on 

saltmarsh primary production (isotope data) as a basal resource and secondary production (gut 

contents) to meet energetic demands. The spatial variation observed in basal food resources 

among estuaries supports previous research in New England marshes suggesting that upper 

trophic levels derive organic matter from local sources (Deegan and Garritt 1997) and also 
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suggests that A. rostrata are resident in these systems. Microchemical analysis of A. rostrata 

otoliths has documented use of estuarine habitats by eels (e.g., Tsukamoto and Arai 2001; Jessop 

et al. 2002), and our results provide compelling evidence that salt marshes serve as critical 

habitats in the life history of A. rostrata as a sustained foraging area over time. Prior to this 

study, little evidence existed for sustained use of New England salt marshes over time by A. 

rostrata. Most assessments of saltmarsh food webs go no higher on the trophic spectrum than F. 

heteroclitus, likely because higher trophic levels in northern New England salt marshes are 

thought to be primarily transient (Ayvazian et al. 1992). Our data indicate that A. rostrata can 

function as resident top predators in New England salt marshes. 

Human impacts including habitat loss have resulted in a decline in A. rostrata 

populations (Haro et al. 2000). Given the clear importance of saltmarsh primary and secondary 

production to A. rostrata diet (observed through mixing models and gut contents) as well as the 

altered trophic support (as measured by trophic position) upstream of tidal restrictions, habitat 

functional impacts through tidal restrictions and other mechanisms have resulted in an alteration 

of trophic resources for eels. As 37% of New England salt marshes have been lost over the last 

200 years (Bromberg and Bertness 2005), the cumulative impact of marsh loss is likely a 

contributing factor in the decline of A. rostrata populations.  

Fish can play an important role in exporting energy and nutrients out of estuarine habitats 

to downstream open water (Kneib 1997). Considering A. rostrata are residents that exploit a 

diversity of food resources in the salt marsh, and that A. rostrata undergo a spawning migration 

of thousands of miles, the potential exists for saltmarsh derived production to support marine 

food webs as eels are preyed upon along their migratory paths (Beguer-Pon et al. 2012). 

Furthermore, as semelparous organisms, eels that complete the spawning migration will enter the 
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detrital food web of the Sargasso Sea. This potential mechanism represents a large-scale 

movement of nutrients and energy from the highly productive salt marshes of New England to 

distant open ocean habitats. Given the decline in A. rostrata populations and the important role 

that salt marshes play as a foraging resource, as well as the potential role of A. rostrata as a 

vector of trophic transfer of marsh production to open ocean habitats, it is critical to maintain the 

ecological integrity of salt marshes (e.g., through tidal restoration) in support of A. rostrata 

populations.
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CHAPTER III 
 
 

Evaluation of nonlethal sampling methods of Anguilla rostrata for stable isotope analysis 

 

ABSTRACT 
 
Stable isotope analysis is a valuable method for examining nutrient flow in ecosystems and the 

dynamics of trophic relationships. In most cases, animal tissue collection (typically muscle or 

liver) requires that the animal be sacrificed. The evidence that exists for non-lethal alternatives to 

sampling for stable isotope analysis suggests that species-specific data are required. A 

nondestructive method for collecting samples for stable isotope analysis is most critical for 

species with populations in decline, such as the American eel Anguilla rostrata. To evaluate the 

viability of non-lethal sampling methods as a replacement for methods that require animal 

sacrifices, liver and muscle tissues, fin clips, and mucus were sampled from American eels. All 

tissue pair models were significant suggesting eel fin and mucus have the potential to serve as 

nonlethal surrogates for muscle and liver for both δ15N and δ13C; however, the longer turnover 

time of eel muscle must be accounted for when designing an experiment and interpreting data. 

Mucus, in particular, can have great utility as a source of isotope data given the potential for 

repeat sampling due to noninvasive methods and abundant source material. The predictive 

models developed here provide nonlethal alternatives for sampling yellow eel tissues for stable 

isotope analysis that will allow for the large-scale data collection efforts needed to improve our 

understanding of eel habitat use, movement, and trophic relationships. 
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INTRODUCTION 
 

Stable isotope analysis (SIA) is an increasingly relied upon method for examining 

nutrient flow in ecosystems and the dynamics of trophic relationships. SIA has proven a valuable 

tool in fisheries research to examine questions focused on the impacts of non-native species 

(Cucherousset et al. 2012), dietary trends (MacAvoy et al. 2001; Willis et al. 2017), trophic 

relationships among organisms (Vander Zanden and Rasmussen 1999), and habitat use (Fantle et 

al. 1999; Vincent et al. 2015; Eberhardt et al. 2015) among others. SIA provides longer-term 

information (i.e., over a period of weeks, months, or years) on organism diet as opposed to 

traditional gut content analyses that provide information on what an organism has consumed in 

recent days (Gannes et al. 1997). Furthermore, SIA provides information on the components of 

the diet that are assimilated by the organism, whether catabolized for energy or synthesized into 

tissues, rather than simply what was ingested (Fry 2006).  

Carbon and nitrogen are two commonly analyzed isotopes for understanding trophic 

dynamics and structure. Nitrogen isotopes are useful for understanding the trophic level at which 

an organism is feeding (Minagawa and Wada 1984; Peterson and Fry 1987) while carbon 

isotopes can be used to differentiate among organic matter sources at the base of the food web 

(Peterson et al. 1985; Deegan and Garritt 1997). In addition to dietary trends, carbon and 

nitrogen isotopes can be used to understand origins and migrations as organisms move among 

habitats with spatially distinct isotope values (Cunjak et al. 2005; Willis et al. 2013; McMahon 

and Newsome 2019).  

Dietary stable isotope studies typically involve collecting samples of potential food 

sources as well as tissue from the target organism. Because stable isotopes are thought to move 

through food webs with predictable or little change in their values (Smith and Epstein 1970; 
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Minagawa and Wada 1984), food source values can be used to develop inferences about 

organism diet, trophic level, and movement. Muscle and liver are frequently sampled tissues for 

SIA of fishes to infer dietary trends. Muscle is the most commonly used tissue due to the 

abundance of material and the fact that it is easy to homogenize (Jardine and Cunjak 2005). 

Furthermore, the relatively low lipid and inorganic carbonate content of muscle tissue serves to 

limit the variability of isotope measurements (Pinnegar and Polunin 1999). Due to the higher 

metabolic rate of liver relative to muscle, liver isotope values can provide additional information 

about more recent dietary trends than muscle and so is also frequently sampled (Tieszen et al. 

1983; Miller 2006).  

In most cases, sampling muscle and liver tissue for SIA requires that the animal be 

sacrificed. Some evidence exists for the use of non-lethal alternatives to sampling fish for dietary 

stable isotope analysis, particularly the use of fin clips (Jardine et al. 2005; Kennedy et al. 2005; 

Kelly et al. 2006). Analysis of fish epidermal mucus is emerging as a promising indicator of 

muscle isotope values given significant relationships identified in multiple species (Church et al. 

2009; Shigeta et al. 2017; Maruyama et al. 2017; Winter et al. 2019). Fish scales have also 

recorded similar isotope values to muscle tissue and present an additional non-lethal method that 

can be easy to sample (Kelly et al. 2006; Sanderson et al. 2009). Although each of these potential 

non-lethal sources has demonstrated significant relationships to muscle and/or liver (Fincel et al. 

2012; McCloskey et al. 2018; Winter et al. 2019), the tissue pair relationships have not been 

consistent across species suggesting that species-specific data are required for developing non-

lethal approaches for SIA (Galvan et al. 2015). 

A nondestructive method for collecting samples for stable isotope analysis is most critical 

for species at risk, such as the American eel, Anguilla rostrata. The American eel is in decline 
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throughout its range (Castonguay et al. 1994; Haro et al. 2000). Potential causes include a variety 

of anthropogenic impacts including migration barriers and nearshore habitat degradation and loss 

(Haro et al. 2000). To inform management practices in support of the American eel population, 

the Atlantic States Marine Fisheries Commission (ASMFC) Fishery Management Plan for the 

American eel lists understanding the food habits of American eel in various habitats, movements 

of eels in the yellow life stage among habitats, habitat preferences and needs, and predator-prey 

relationships as high priority research needs (ASMFC 2000).  

Stable isotopes provide an important mechanism for addressing the data needs identified 

by the ASMFC for management of the American eel, particularly with respect to eel reliance on 

foraging habitats, habitat preferences and movements among them, and predator-prey 

interactions. American eels range from Greenland to northern South America and constitute a 

single breeding population (Pujolar 2013). The wide geographic range and complex life history 

of the American eel requires trophic investigations that examine the potential for variation in 

resource use across habitats, latitudes, and life stages. Developing a body of research that 

accounts for these effects will require the collection of large numbers of samples. Thus, to 

address the data needs required to understand and sustainably manage the American eel 

population, it is critical that a non-lethal method for obtaining stable isotope data be established 

for the American eel. 

Liver, and muscle tissues, fin clips, and mucus were sampled from American eels to 

evaluate the viability of non-lethal sampling methods as a replacement for methods that require 

animal sacrifice. Scale samples were not evaluated due to the potential difficulty of removing 

scales given the high level of embeddedness of eel scales (Tesch 2003). Fin and mucus samples 

were evaluated for significant isotopic relationships with liver and muscle tissue. Where 
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significant relationships were identified among tissue pairs, predictive models were tested with 

data from eels held in a laboratory to evaluate the transferability of the models to other data sets. 

METHODS 
 

To evaluate non-lethal stable isotope sampling methods, 54 American eels were collected 

from three estuaries: the Parker River Estuary, Massachusetts, the Hampton-Seabrook Estuary, 

New Hampshire, and the Webhannet Estuary, Maine, USA (Figure 7). Eels were collected from 

saltmarsh creeks using eel pots and measured for total length to the nearest millimeter (mm). 

Captured fish were anesthetized, sacrificed, and frozen according to a protocol approved by the 

Institutional Animal Care and Use Committee of the University of New Hampshire (IACUC 

permit 070702).  

Eels were rinsed with distilled water and mucus samples were collected from the skin 

surface by scraping with the blunt edge of a scalpel. Each mucus sample was placed on a tin tray 

for drying. Muscle tissue was collected from the posterior section of each fish between the dorsal 

fin and the lateral line and livers were dissected while. Fin clips were collected to include 

primarily membrane portions of the fin. Tissue samples were held in a drying oven at 60oC until 

they achieved constant weight. Each sample was then dried, ground with a mortar and pestle, 

weighed to the nearest microgram into a tin capsule, and then compacted into a small cube. Tools 

and work surfaces were cleaned with 99.5% ethanol and Kimwipes® between processing each 

sample to prevent cross-contamination. All samples were analyzed for carbon (δ13C) and 

nitrogen (δ15N) stable isotopes at the University of New Hampshire Stable Isotope Laboratory 

with a Costech ECS4010 Elemental Analyzer coupled to a Delta Plus XP mass spectrometer 

(Thermo Finnigan). Stable isotope ratios are reported in delta notation per mil units (‰) as 

follows:  
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δX = [(Rsample/Rstandard)−1)] x 1000 

where X is 13C or 15N and R is 13C/12C or 15N/14N, respectively. Stable isotope ratios were 

determined using Vienna Pee Dee Belemnite (VPDB) as the reference material for carbon and 

atmospheric N2 (air) for nitrogen. Delta15N values are reported on the VPDB scale using 

International Atomic Energy Agency-N1 (IAEA; 0.4 ‰) and IAEA-N2 (20.3 ‰). Repeated 

analyses of laboratory standards varied less than 0.15 per mil for both δ15N and δ13C. 

Although mucus is not a tissue, and fin clips are comprised of multiple tissues (e.g., 

connective tissue, bone, and muscle if clipped close to the body), for the simplicity of referring 

to all sample types in aggregate, mucus and fin will each be referred to as a tissue throughout. 

Paired t-tests were used to test the null hypothesis that differences between nonlethal tissues 

(mucus or fin) and destructive tissues (muscle or liver) were zero. All combinations of nonlethal 

and destructive tissue results were evaluated for differences for both δ13C and δ15N. When 

differences were significant at p<0.05, “tissue pair models” were developed with simple linear 

regression. Regression data are displayed with 95% confidence intervals to examine tissue pair 

relationships against a line with a slope of 1.  

 To evaluate the reliability of model predictions, linear regression models were applied to 

δ15N and δ13C data for fin and mucus samples from 9 eels held in the laboratory (hereinafter 

referred to as “raised eels”). These eels were held on a consistent diet of manufactured eel feed 

for over a year so presumably have stable isotope values in equilibrium across all tissues 

measured. Muscle and liver δ13C and δ15N values predicted with tissue pair models were tested 

against observed muscle and liver values for significant differences using paired t-tests.  
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Figure 7. Sampling site locations 



 63 

Table 9. Sample size, mean carbon and nitrogen isotope values and carbon:nitrogen for each eel 
tissue type sampled. 

 
  Tissue N δ15N ‰ ± SE δ13C ‰ ± SE C:N ± SE 
Non-lethal                     
  fin 54 10.17 ± 0.19 -17.13 ± 0.32 4.16 ± 0.06 
  mucus 53 9.80 ± 0.17 -16.76 ± 0.30 3.68 ± 0.02 
Lethal                     
  liver 54 10.30 ± 0.17 -17.50 ± 0.32 4.41 ± 0.08 
  muscle 50 9.80 ± 0.19 -17.35 ± 0.32 3.73 ± 0.11 
            

 
Given that eels were collected from three estuaries, linear regressions of isotope 

relationships were tested for an influence of sampling site with site as a blocking factor. To test 

for an effect of eel size on tissue pair relationships, eel size was regressed against the difference 

in isotope values (δ13C or δ15N) between each tissue pair combination. Residuals of statistical 

model outputs were examined for normality and homogeneity of variances; all data met the 

assumptions of the general linear model. 

 

RESULTS 

Tissues from 54 eels with a mean size of 26.4 ± 10.2 cm were analyzed for δ15N and δ13C 

to evaluate the potential for mucus or fin to serve as non-lethal alternatives to muscle or liver. 

When compared to the standard of muscle tissue, mucus δ15N values were quite similar while fin 

tissue was only somewhat enriched in 15N (Table 9). When compared to liver, both mucus and 

fin were slightly depleted in 15N. Mucus and fin were more enriched in 13C than both muscle and 

liver tissue. No statistical difference was detected between mucus and muscle samples for δ15N 

(Table 10). All remaining tissue pairs tested were significantly different for both δ15N and δ13C 
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(Table 10) so the null hypothesis that the mean differences between the tissue pairs was zero was 

rejected for all but the δ15N mucus and muscle comparison.  

 

Table 10. Paired t-test results for each non-lethal (fin or mucus) and lethal (muscle or liver) 
tissue pair combination for δ15N and δ13C. Asterisks (*) indicate significant results at an alpha of 
p<0.05. 

δ15N 
Tissues Mean difference (±SE) df Prob>|t| t ratio 
fin x liver 0.14 ± 0.07 53 0.05 2.01 
mucus x liver -0.49 ± 0.06 52 0.0001 -8.51 
fin x muscle -0.38 ± 0.05 49 0.0001 -7.11 
mucus x muscle -0.02 ± 0.05 48 0.74 -0.33 

       
 δ13C 

Tissues Mean difference (±SE) df Prob>|t| t ratio 
fin x liver -0.37 ± 0.11 53 0.001 -3.43 
mucus x liver -0.66 ± 0.09 52 0.0001 -7.74 
fin x muscle -0.37 ± 0.11 49 0.002 -3.28 
mucus x muscle 0.70 ± 0.11 48 0.0001 6.53 
  

 The relationship between tissue pairs was determined with simple linear regression. 

Regression models identified significant relationships (p<0.05) for all tissue pair combinations 

analyzed (Figures 8 and 9), with models explaining between 88% and 93% of the variance 

between tissues. All models included at least a portion of the 1:1 line within the 95% confidence 

interval of the best fit line. 

To evaluate the reliability of the 1:1 relationship observed between mucus and muscle 

δ15N data for field collected eels, mucus and muscle δ15N data from raised eels were evaluated 

with a paired t-test and were found to be significantly different (Table 11). The regression 

models developed for the remaining tissue pairs were validated with raised eels to evaluate the 

reliability of the models for predicting muscle and liver isotope values from nonlethal surrogates 
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(fin and mucus). A significant difference was detected between fin and liver for δ15N model, but 

not for the remaining tissue pairs (Table 11;  

 

 
 

Figure 8. δ15N values of nonlethal tissues (mucus and fin) regressed against lethal tissues (muscle 
and liver) for a. δ15N fin x muscle, b. δ15N mucus x muscle, c. δ15N fin x liver, and d. δ15N mucus 
x liver. The solid line indicates the best fit line, shading represents the 95% confidence interval 

of the best fit line, and the dashed line is the 1:1 line for reference. 
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Figure 9. δ13C values of nonlethal tissues (mucus and fin) regressed against destructive tissues 
(muscle and liver) for a. δ13C fin x muscle, b. δ13C mucus x muscle, c. δ13C fin x liver, and d. 

δ13C mucus x liver. The solid line indicates the best fit line, shading represents the 95% 
confidence interval of the best fit line, and the dashed line is the 1:1 line for reference. 
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Table 11. Results for validation of paired tissue models for predicting δ15N and δ13C values of 
lethal tissues (muscle or liver) from non-lethal tissues (mucus or fin). The first three models for 
δ15N were tested by comparing predicted versus actual data for raised eels with paired t-tests. 
Because the paired tissue model for mucus x muscle δ15N was a 1:1 relationship, t-test results for 
mucus x muscle δ15N represent the comparison of actual mucus and muscle data for raised eels. 
Asterisks (*) indicate significant results at an alpha of p<0.05. 

 
δ15N 

Tissues Mean difference (±SE) df Prob>|t| t ratio 
fin x liver 0.49 ± 0.15 7 0.0127* 3.32 
mucus x liver -0.01 ± 0.14 7 0.9244 -0.10 
fin x muscle -0.22 ± 0.15 8 0.1788 -1.47 
mucus x muscle 0.41 ± 0.11 8 0.0084* 3.47272 
       

δ13C 
Tissues Mean difference (±SE) df Prob>|t| t ratio 
fin x liver 0.76 ± 0.51 7 0.1758 1.51 
mucus x liver 0.18 ± 0.27 7 0.5391 0.65 
fin x muscle 0.35 ± 0.24 8 0.1771 1.48 
mucus x muscle 0.11 ± 0.18 8 0.5743 0.59 

 

i.e., mucus x liver and fin x muscle). No significant differences were found between predicted 

and observed values for all tissue pair combinations for δ13C (Table 11) suggesting that these 

models are robust for predicting eel muscle and liver values from fin and mucus. 

Eel body length explained little variation in tissue pair relationships. The difference 

between fin and muscle tissue δ15N values had the most variation explained by size of all the 

tissue pair combinations (r2= 0.22; p<0.0006). When size was added as a factor in the regression 

model for fin and muscle δ15N, it added only 1% to the simple explanatory model (r2
simple linear 

regression (SLR) = 0.93 versus r2
SLR with size = 0.94). Because eel size did not explain a large amount of 

the variability in isotope values between tissues, length was not included as a factor in regression 
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models. Out of four comparisons each for δ15N and δ13C, a site effect was significant for two out 

of the eight models (Table 12). When site was added as a factor in the regression model for each 

of the two models with significant site effects, it added only 1% to each simple explanatory 

model (r2
SLR = 0.93 versus r2

SLR with site= 0.94 for δ15N mucus x muscle, and r2
SLR = 0.93 versus 

r2
SLR with site= 0.94 for δ13C mucus x liver).  Therefore, site was not considered an important 

variable in this dataset and was omitted from the models.   

 

Table 12. Results of tests for an effect of sampling site on tissue pair relationships for δ15N and 
δ13C. Asterisks (*) indicate significant results at an alpha of p<0.05. 

   δ15N  δ13C 
      F p   F p 
Fin x liver         

 Site  0.1474  0.8633  1.8726  0.1644 
  Fin   209.5703   <.0001*   432.0122   <.0001* 
Fin x muscle         

 Site   0.9242  0.4041  2.3464  0.1071 
  Fin   396.7804   <.0001*   338.2231   <.0001* 
Mucus x liver         

 Site  1.4497  0.2445  4.0776  0.0230* 
  Mucus   242.7527   <.0001*   722.1815   <.0001* 
Mucus x muscle        

 Site   3.6578  0.0337*  1.2888  0.2856 
  Mucus   395.4553   <.0001*   303.1995   <.0001* 

 

DISCUSSION 
 

Analysis of carbon and nitrogen isotopes of four American eel tissues suggests that the 

nonlethal tissues of fin and mucus are suitable predictors for muscle and liver and by extension, 
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useful indicators of diet and habitat. Significant relationships were identified for all tissue pairs 

for both δ13C and δ15N in the American eel.  

Turnover rate 
 

When evaluating the suitability of nonlethal proxies, the turnover rate of each tissue must 

be considered. Turnover rate identifies the amount of time it takes for a tissue’s isotope values to 

reflect the diet. Based on the isotope values presented here, both mucus and fin can serve as 

nonlethal surrogates for muscle and liver sampling for eels; however, if the turnover rates for eel 

tissues vary greatly it may limit the potential uses of mucus and fin as non-lethal proxies. Mucus 

as a surrogate for eel muscle and liver tissue δ15N shows great promise due to statistically 

significant relationships, the copious amounts of available sample material, and the potential for 

repeated sampling of mucus with minimal damage to the eel. However, in a laboratory 

experiment evaluating the isotopic turnover of eel tissues, mucus exhibited the quickest 15N 

turnover with a half-life of 67 days while muscle exhibited the slowest 15N turnover with a half-

life of 191 days (Eberhardt, in preparation). Eel fin and liver tissue 15N turned over at similar 

rates with 90- and 97-day half-lives, respectively (Eberhardt, in preparation). Because eel muscle 

has a much slower 15N turnover rate than the other tissues, fin and mucus will represent more 

recent dietary sources than muscle.  

Eels exploit many habitats and can forage on a variety of prey resources over both short 

and long temporal scales (Wenner and Musick 1975; Jessop et al. 2002; Harrod et al. 2005). The 

agreement between mucus and muscle δ15N values in the current dataset may be due to the fact 

that the individual eels had been feeding on diets of similar isotopic composition over a period of 

3-9 months or longer (Eberhardt, unpublished data). If eels were to undergo a shift in diet, fin or 
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mucus δ15N values could no longer reflect muscle δ15N; however, they would continue to reflect 

liver δ15N isotope values given the similar turnover rates of the three tissues. As such, based on 

turnover rates alone, fin and mucus emerge as promising proxies for liver δ15N values as 

nonlethal surrogates. Data for turnover of 13C in eel tissues could not be found at the time of this 

experiment but would help guide the appropriate use of nonlethal surrogates for eel carbon 

isotope analysis. 

Fin tissue 
 
 Fin tissue predictive models were significant for both muscle and liver for δ15N and δ13C. 

The similar turnover rates of 15N between fin and liver tissue in eels render fin a suitable non-

lethal proxy for liver tissue with regard to the temporal scale of the diet that the tissue reflects. 

However, while the δ15N fin-liver model developed from field-collected data was significant, 

data from raised eels did not fit the model indicating the need for more data to test the 

transferability of the δ15N fin-liver model. The predictive models for all other tissue pairs for 

δ15N and δ13C measured in this study were robust when tested with data from raised eels. Fin 

tissue has emerged as a suitable non-lethal surrogate for muscle in this and other evaluations of 

other fish species (Jardine et al. 2005; Sanderson et al. 2009; Tronquart et al. 2012). Most studies 

have evaluated fin as a surrogate for muscle rather than liver tissue and, as in this study, 

measured slopes slightly above or below 1, necessitating predictive models that account for the 

offset between fin and muscle tissue isotope values (Willis et al. 2013). Few studies have 

evaluated fin tissue as a surrogate for both muscle and liver δ13C and δ15N and the results vary, 

with stronger correlations between fin and liver identified for yellow perch, Perca flavescent,s 
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(McCloskey et al. 2018) and fin and muscle for seahorses, Hippocampus guttulatus (Valladares 

and Planas 2012). 

Nutrient routing may have played a role in the lack of agreement between the predictive 

model and test data for δ15N for fin and liver. Nutrient routing occurs as the macronutrients (i.e., 

lipids, carbohydrates, proteins) that constitute an organism’s diet are assimilated into tissues at 

varying rates and efficiencies (Schwarcz 1991) and as a result, consumer tissue isotope values 

represent the nutrient components of the diet rather than the bulk diet (Gannes et al. 1997). The 

diets of the field and raised eels may have varied in biochemical composition, resulting in 

differential routing of dietary components to tissues and variation in tissue pair relationships for 

δ15N. More information is needed to understand the effect of nutrient routing on the utility of 

non-lethal proxies as the relationships between tissue isotope values calculated for one diet may 

not hold for a diet with a differing biochemical composition. 

Mucus 
 

Mucus emerged as a statistically significant surrogate for both muscle and liver δ15N, but 

the use of each requires important considerations. The slower turnover rate of eel muscle δ15N 

relative to the other tissues measured can limit the utility of mucus as a nonlethal proxy for 

muscle δ15N. Given that the disparity between eel muscle 15N turnover and mucus 15N turnover 

was many months, the goals of an experiment will determine whether eel mucus should be used 

as a surrogate or a compliment to eel muscle samples. For instance, in field-based studies where 

the goal is to evaluate eel resource use at differing time intervals or movement amongst habitats 

sampling both mucus and muscle will be beneficial to capture isotope data representing different 

temporal scales. However, where repeat sampling of the same organism can occur over time, 



 72 

such as in laboratory experiments or field-based mark-recapture experiments, then sampling only 

mucus can be effective.  

Mucus can also serve as an appropriate proxy for liver given the similar turnover times. 

The significant validation of the δ15N mucus-liver model suggests confidence in the 

transferability of this model to other datasets focused on the yellow life stage of the eel. Mucus 

has a more homogenized makeup than fin tissue (Shephard 1994; Willis et al. 2013) and likely 

allows for more frequent sampling with minimal impact to the fish than repeat sampling of fin 

tissue, although data explicitly testing this are lacking. Therefore, mucus presents a robust option 

for nonlethal collection of eel δ15N data.  

Influence of eel size 
 
 Previous studies evaluating non-lethal methods of stable isotope analysis have identified 

size-based effects on tissue relationships likely due to variations in habitat use, food sources, and 

mechanisms of nutrient assimilation with size (Overman and Parrish 2001; Kelly et al 2006). In 

general, eel body length did not influence isotope values in the present study given that only one 

out of eight tissue pair models had a significant size effect. Whereas many other species of fish 

exhibit rapid growth at juvenile life stages and slow growth at adult life stages, the subadult 

yellow life stage of the American eel is represented by a wide range of sizes and variable growth 

rates (Helfman and Clark. 1986; Morrison and Secor 2003; Jessop et al. 2004; Lamson et al. 

2006). Eel size and growth rate are hypothesized to vary by life stage, habitat, population 

density, and sex ratio (Krueger and Oliveira 1999; Oliveira 1999). Eels analyzed in the present 

study were all in the yellow life stage and were captured in the same habitat type (saltmarsh 

creeks). Little evidence for a site effect was found in this dataset. This may be due to the fact that 

all sites were comprised of the same habitat types at the same latitude (±0.3o) and as a result, 
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size-based effects, or the correlated factors that influence eel size, are uniform in the present 

study. Given the many factors that can potentially influence eel size and growth rates, it is 

recommended that future eel isotope studies evaluate each of the factors that can affect eel size 

and growth (i.e., latitude, habitat, population density), rather than eel size itself for potential 

influences on tissue isotope relationships.  

In summary, our results provide strong evidence for the use of fin and mucus as nonlethal 

alternatives to carbon and nitrogen stable isotope analysis of eel muscle and liver tissue. All 

models were significant suggesting both eel fin and mucus have the potential to serve as 

nonlethal surrogates for both δ15N and δ13C. Use of the models developed here for predicting 

yellow eel δ15N and δ13C muscle and liver values from fin and mucus is encouraged with the 

caution that the relative turnover rates of each tissue must be considered. Models for predicting 

muscle δ15N from both mucus and fin were significant; however, the longer turnover time of eel 

muscle must be accounted for when designing an experiment and interpreting data. Mucus, in 

particular, can have great utility as a source of isotope data given the potential for repeat 

sampling due to noninvasive methods and abundant source material. The differing turnover times 

also create an opportunity to evaluate mucus as a complement to muscle to evaluate dietary shifts 

over time. If using mucus as a surrogate for muscle, the design of the project must align with and 

account for the different turnover times between the two tissues. The significant relationship and 

similar turnover rates of mucus and liver δ15N create great potential for the use of mucus as a 

proxy for liver δ15N. Based on our results and similar turnover times, we encourage the use of 

yellow eel mucus as a surrogate for liver δ15N. Turnover data for 13C in eel tissues are needed to 
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better evaluate the predictive models developed for predicting δ13C of eel muscle and liver 

tissues.  

Fin is also a promising surrogate for estimating liver δ15N due to similar turnover rates; 

however, when evaluated with test data this model was not validated. More data is needed to 

evaluate the relationship between fin and liver δ15N in yellow eels before this model can be used 

with confidence. Differential routing of food sources to each tissue may play a role in the lack of 

agreement between predictive models and test data for δ15N fin-liver and δ15N mucus-muscle 

models. The use of nonlethal surrogates will be improved with greater understanding of the 

effects of nutrient routing on tissue isotope values and turnover rates.  

The data presented here contribute to a growing body of literature exploring species-

specific relationships of isotope values among tissues, with a focus on identifying the potential 

for nonlethal sampling methods (e.g., Kelly et al. 2006; Willis et al. 2013). American eels are a 

population in decline (Castonguay et al. 1994; Haro et al. 2000). By developing predicative 

models that allow for nonlethal sampling of yellow eels for stable isotope analysis, our data 

provide an important non-lethal approach for investigating the research priorities outlined by the 

ASMFC as important for sustaining the American eel population (ASMFC 2000). In particular, 

the use of the predictive models developed here can help inform our understanding of eel habitat 

use, movement, and trophic relationships. Given the broad geographic area occupied by 

American eels, the development of tools to collect data on eel diet and resource use without 

having to sacrifice the animal will allow for the large-scale data collection efforts needed to 

inform the management of American eels.
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CHAPTER IV 
 

Small scale movements of yellow phase American eels, Anguilla rostrata, within saltmarsh 
creeks 

 

ABSTRACT 
 

 Estuarine habitats such as salt marshes are emerging as important for American eels, yet 

little is known about eel use of these systems. Instream structures such as culverts and self-

regulating tide gates are often found where roadways intersect salt marshes creeks. Instream 

structures have been found to restrict or delay eel movements in freshwater but data are lacking 

in estuarine systems. A telemetry study was conducted to examine eel movements in two 

saltmarsh creeks, one of which contained an undersized culvert with a self-regulating tide gate 

(SRT). Eels moved predominantly under dark conditions and at low tide, presumably moving 

onto the vegetated marsh at high tide. Eel movement data suggest eels released upstream of the 

SRT travelled shorter distances than eels in the reference creek, accessing less habitat. The SRT 

is not a total barrier to eel movement; however, the SRT may delay movement of eels to 

downstream areas, whether due to the presence of subtidal habitat upstream, altered 

environmental conditions obscuring cues for movement, or the intermittent periods of a physical 

barrier. The low sample size precluded conclusions on eel movement; however, trends in the data 

provide compelling information for future research.
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  INTRODUCTION 
 

American eels (Anguilla rostrata) exhibit a complex life history that includes migrations 

across a variety of habitat types (Tesch 2003). In addition to two long distance migrations across 

the Atlantic Ocean to the Sargasso Sea, eels commonly make interhabitat migrations after 

moving inshore (Jessop et al. 2008). However, little is known about American eel use of specific 

inshore habitats (ASMFC 2006) and most research on eel habitat use stems from freshwater 

systems (Glova et al. 1998; Haro et al. 2000.) Estuarine systems including salt marshes have 

emerged as important habitat for eels (Harrod et al. 2005). In fact, eels have been found to 

complete their lifecycle in marine or estuarine habitats without ever entering freshwater 

(Tsukamoto et al. 1998; Lamson et al. 2006) resulting in redefining their life history from 

obligate to facultative catadromy (Tsukamoto and Arai 2001). Faster eel growth rates have been 

observed in marine and brackish water than freshwater (e.g., Oliveira 1999; Morrison et al. 2003; 

Jessop et al. 2006) suggesting that marine and estuarine systems are important for supporting eel 

production.  

Migratory barriers occur where infrastructure such as dams, berms, and culverts are built 

across waterways to create transportation corridors, regulate water flow, or harness power and 

are common across freshwater and estuarine portions of eel habitat. In fact, 84% of potential 

stream habitat for eels from Maine to Connecticut has been obstructed by dams or other 

migratory barriers (Busch et al. 1998). A review of eel habitat use of unfragmented systems 

found that 69% of eels moved among habitats (Lamson et al. 2006) while analysis of eels in a 

Canadian coastal stream obstructed by a dam found that eels did not move between freshwater 

and estuarine habitats (Cairns et al. 2004). Furthermore, dams have been found to reduce and 

delay silver eel downstream migration through rivers (Behrmann-Godel and Eckmann 2003; 
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Besson et al. 2016). Tide gates do not create complete barriers as with dams because the gate is 

open periodically, yet tide gates have been found to delay silver eel downstream migration 

potentially increasing energetic demands and the risk of predation (Wright et al. 2015). 

In addition to impeding eel movement through systems, structures such as dams, gates, 

and culverts can fundamentally change habitat conditions by impounding water, degrading water 

quality, modifying water flow, and altering prey availability (Williams and Wolman 1984; Mor 

et al. 2018). Eel movements have been associated with specific environmental conditions such as 

light (Hedger et al. 2010), water level and flow direction (Helfman et al. 1983; Dutil et al. 1998), 

and water temperature (Vollestad 1986; Dutil et al. 1998). It follows that in addition to 

physically blocking eel migration, instream structures can disrupt eel migration by altering 

environmental conditions and cues for eel movement (Crook et al. 2014). Furthermore, 

decreased connectivity between upstream and downstream habitats can result in eels remaining 

in suboptimal habitats and suffering decreased access to food and refuge resources (Weisberg 

and Lotrich 1982). Understanding the impacts of instream structures on eel use of freshwater and 

estuarine corridors is important as American eel stocks have declined in recent decades and are 

thought to be at or near historically low levels (ASMFC 2012). Understanding the local habitat 

movements of eels was listed as a priority to inform the effective management of this species 

(ASMFC 2006). 

 Given the demonstrated negative impacts of instream structures on eel movement through 

freshwater corridors, as well as the emerging data on eel reliance on estuarine systems, a need 

exists for a clearer understanding of eel movement through estuarine systems such as saltmarsh 

creeks that contain instream barriers. Understanding eel movement and site use patterns in salt 

marshes is important to inform salt marsh management to support eels. Therefore, the objectives 
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of the proposed research are to examine small-scale spatial and temporal variation of eel 

movements and to examine American eel response to salt marshes impacted by an instream 

barrier. Nine eels were tagged with transmitters and a telemetry study was conducted in the 

Webhannet estuary, Wells, ME to evaluate the hypotheses that: 1. Eel movements in saltmarsh 

creeks differ by temperature, tidal stage, diel period, or light intensity; and 2. The presence of an 

undersized culvert with a tide gate impacts eel movement in saltmarsh creeks. 

METHODS 
 

Sampling site and telemetry array 
 

The Webhannet Estuary is a salt water dominated estuary with a small watershed (3549 

hectares) located in Wells, ME. The Webhannet Estuary has a semi-diurnal tidal cycle with a 

mean tidal range of 2.7 meters (m) at the inlet and is characterized by salt marsh, sand and mud 

flats, and meandering tidal creeks (Dionne et al. 2006). The Drake’s Island Road causeway cuts 

across the northern section of the estuary and includes a bridge over the western tidal creek 

(herein referred to as the “reference creek”) and a culvert with a self-regulating tide gate (SRT) 

in the eastern creek (herein referred to as the “SRT creek”; Figure 10). The SRT closes at high 

tides to limit flooding to upstream residences adjacent to the marsh resulting in reduced tidal 

exchange to upstream areas (Adamowicz and O’Brien 2012). After each flood event the SRT 

opens once the downstream tide recedes. Neither the reference nor the SRT creek have major 

freshwater inputs entering from upstream. The upstream area of the reference creek is intertidal 

and completely drains at low tidal stages while the area upstream of the SRT creek retains water 

at all tidal stages due to an undersized culvert and the intermittent gate closures (Adamowicz and 

O’Brien 2012).  

In November 2009, 8 Vemco VR2 or VR2W receivers (Vemco Ltd., Nova Scotia) were 
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installed in the intertidal creeks in the northern section of the Webhannet estuary. Receivers were 

set within the creek channel of the reference and SRT creeks, and downstream along the 

confluence of the two creeks to the estuary inlet (Figure 10). A Hobo pendant data logger 

(model: UA-002-64, ONSET) was installed adjacent to each receiver to collect data on light 

intensity (lux) and temperature (degrees Celsius) at 6-minute intervals for the length of the 

project period.  

Laboratory experiment 
 

A laboratory experiment was conducted prior to the field study to ensure no adverse 

effects of tag implantation on eels and to quantify the exposure time needed for anesthetization. 

Ten eels were held in a tank equipped with a flow-through seawater system at the Jackson 

Estuarine Laboratory, University of New Hampshire, from 13 October – 3 November 2009. Five 

eels were tagged with nonfunctioning transmitters of the same weight and size of the Vemco V7-

1 and five eels were left without tags to serve as controls.  

Eel capture and tag implantation 
 
Eel pots (Gee’s, model G-40EP, Filmore, New York) were set in the Webhannet Estuary to 

capture eels for the telemetry study. All eels captured in the Webhannet Estuary did not have 

enough mass to support V7 tags so eels were captured from other salt marsh systems in southern 

Maine. As such, all eels observed in this study were transplanted into the Webhannet estuary. 

Captured yellows eels were placed in aerated ambient seawater and brought to the Michele 

Dionne Research Laboratory at the Wells National Estuarine Research Reserve for tag 

implantation and monitoring.  

Vemco acoustic V7-1 transmitters were used to track eel movements. Transmitters were 
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Figure 10. Locations of receivers in the Webhannet Estuary, Wells, Maine.  The size of the 

receiver marker is scaled relative to the number of detections of eel movement at that 

receiver from 1 to 17.  



 81 

20 millimeters (mm) long, 7 mm in diameter, weighed 0.7 grams (g) in water, and operated on a 

frequency of 69 kHz. Each transmitter had a unique identification code that was transmitted 

randomly every 50 to 130 seconds; at this rate transmitters were estimated to have a battery life 

of 60 days. A range test at receiver R8 detected transmitters at a distance of over 150 m. Given 

the small size and sinuosity of the creek system, it is assumed that detection limits at most 

receivers were defined by the morphology of the creek channels.  

Tag implementation methods followed a protocol approved by the University of New 

Hampshire’s Institutional Animal Care and Use Committee (IACUC# 070702). Eels were placed 

one at a time in a bucket of ambient seawater containing 100 mg/L eugenol. When fish reached 

stage 2 induction (defined as total loss of equilibrium, very slow opercular rate, and no reaction 

to stimuli), eels were measured for total length (centimeters) and mass (g). A small incision was 

made and the transmitter was inserted into the anterior portion of the peritoneal cavity. A small 

piece of tissue was cut from the dorsal or caudal fin and applied to the incision site with adhesive 

to serve as a biological bandage (Baras and Jeandrain 1998). Eels were placed in an aerated 

bucket containing seawater for observation. When stage 2 recovery had been reached (defined as 

recovery of equilibrium, increased opercular rate, response to stimuli, and normal swimming 

actions), the incision site was checked to ensure proper closure. If the incision site was deemed 

to be clean and fully closed, the eel was released in one of 2 locations - upstream of receiver R9 

in the reference creek (n=5) or upstream of R6 in the SRT creek (n=4; Figure 10).  

Data analysis 
 

Mixed model analysis of variance (ANOVA) was used to test temperature and light data 

for differences across receiver stations. Data were analyzed for one hour before and after high 

tide to ensure that data loggers were submerged, and data represent temperature and light values 
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in the water rather than air. Data for station R7 were removed from analyses as the data 

variability suggest that the light and temperature logger was out of the water for periods of time 

that could not be predicted with confidence. Each high tide was numbered sequentially and 

coded as occurring during the day or night. Mean temperature for each tide was analyzed with a 

main plot that included the station number and day/night as fixed factors, as well as the station 

by day/night interaction term. The random factor of tide and the tide by day/night interaction 

served as the repeated measure subplot. Light data were analyzed for the five daytime high tides 

within the project period. Individual data points were coded sequentially for “time” to allow for 

direct comparisons. Light data fit a nonlinear model so were log transformed. Individual light 

data were analyzed with a main plot that included the station number and the tide as fixed factors 

and the station by tide interaction term. The random factor of time and the time by tide 

interaction served as the repeated measure subplot. Data did not meet the normal distribution 

assumption of ANOVA. Although ANOVA is robust to this violation (Blanca et al. 2017), alpha 

values for mixed models were set at the 0.0001 level to account for the non-normal distributions. 

A limited dataset precludes statistical analysis of movement data to explicitly test 

hypotheses. Eel movement was defined as subsequent detections of an eel at two different 

receivers. The small sample size did not allow for examining all potential covariables with one 

statistical model; therefore, Chi Square Goodness of Fit and Fisher’s Exact tests were used to 

examine potential individual effects of tidal stage, light intensity, temperature, and diel effects on 

eel movement data comparing eels released in the reference versus SRT creeks. Because the 

number of movements varied by fish, movement data were used as replicates. Light intensity 

data were coded as light (equal to or greater than 10 lux) or dark (less than 10 lux) for analysis of 

light effects on movement (Engineering ToolBox 2004). Temperature effects on movement data 
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were analyzed with a logistic regression with light as a continuous independent variable and 

release location as the bivariate dependent variable. The total space used and maximum dispersal 

was calculated for each eel to understand eel space use in salt marsh creeks.  

RESULTS 

Laboratory experiment 

Ten eels were held in a laboratory experiment to evaluate potential tag effects. Tagged 

eels (n=5) had a mean length of 34.2 ± 1.7 centimeters (cm) and mean mass of 80.0 ± 9.1 g and 

control eels (n=5) had a mean length of 32.8 ± 1.9 cm and mean mass of 56.8 ± 2.3 g. Mean 

induction and recovery times were 5.6 ± 0.5 minutes and 5.4 ± 1.4 minutes, respectively. After 3 

weeks of observation, no signs of infection were present in any eels and there was no mortality. 

After 4 weeks, one tagged eel died. This did not result in a significant difference in mortality 

between tagged and untagged eels (chi square; χ2=(1, 10) 1.11; p>0.29).  

Field experiment 
 

Nine eels were implanted with acoustic transmitters for field study in November 2009. 

Eels had a mean length of 32.1 (±1.1) cm and mass of 46.35 (± 4.9) g (Table 13). Time to induce 

eels ranged from 4 to 10 minutes and eel recovery ranged from 10 to 15 min. All incisions were 

confirmed to be clean and fully closed prior to release and fish were released in good condition.  

Receivers were deployed from 3 November 2009 to 10 December 2009. During the 38 

days of receiver deployment, 25,753 detections were recorded. The number of detections per fish 

varied widely among the 9 eels (Table 13). Five fish were released in an upstream section of the 

reference creek (Fish 1, 2, 3, 8, and 9) and four were released upstream of the SRT (Fish 4, 5, 6, 

and 7). Three eels had zero (Fish 1 and 3) or few detections (Fish 2) at one receiver suggesting 

movement of the eel to areas outside of the detection range, loss of the transmitter outside of the 
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detection range, or a malfunctioning transmitter. Fish 7 had a high frequency of detections at one 

location over time suggesting loss of the transmitter or mortality of the eel. Fish 6 had nine days 

of data indicating movement in the SRT creek prior to a pattern of detections suggesting 

mortality or loss of the transmitter data. Therefore, data recorded after day nine for Fish 6 and all 

data for Fish 7 were removed prior to analysis. The remaining four fish had detection data 

indicating movement of eels through the creeks. From the five fish for which movement data 

were recorded (Fish 4, 5, 6, 8, and 9) there were a total of 56 movements for analysis. More 

detections were recorded at the two stations upstream of the SRT than in the upstream area of the 

reference creek (Figure 10). 

Water quality data 
 

The tidal range as measured by the tide gauge at Wells Harbor (National Oceanic and 

Atmospheric Administration station ID 8419317) is 3.5 m with water levels varying from -0.24 

to 3.32 m during the project period (Figure 11). Mean high tide water temperature, as measured 

at each receiver by day and night, varied from 8.9 to 10.3oC (Figure 12). The main effect of 

receiver (F(6, 126)=8.52; p<0.0001) and the interaction of receiver and day/night (F(6, 113)=16.9; 

p<0.0001) were significant, but not the main effect of day/night (F(1, 113)=10.4; p=0.0053). Post 

hoc comparisons (Tukey-Kramer HSD) of the interaction term indicated that the mean water 

temperature did not vary among stations during the day with the exception of R5. The upstream 

stations R6 and R9 were significantly colder than all other stations at night; R8 was slightly 

warmer than R6 and R9 and was significantly different from all other sites. 
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Figure 11. Fish movement and tide data for the duration of the project as measured by the 
tide gauge at Wells Harbor (National Oceanic and Atmospheric Administration station ID 
8419317). The reference line at 2.95 m indicates the mean threshold for SRT closing. 
Open circles indicate movements of eels released in reference creeks. Triangles are 
movements of eels released above the SRT with closed triangles indicating movements of 
eels through the SRT. Shaded areas indicate night while unshaded areas indicate day. 
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Figure 12. Mean water temperature (oC) one hour before and after high tide recorded at each 
receiver over the course of the project. 
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 Mean light intensity data for daytime high tides ranged from 2568 lux to 5582 lux across 

all receivers (Figure 13). The main effects of receiver (F(6, 668)=161.9; p<0.0001), tide (F(4, 

668)=289.6; p<0.0001), and the receiver by tide interaction (F(4, 668)=5.36; p<0.0001) were 

significant. Light intensity downstream of the SRT (R5) and at the entrance to the estuary (R2) 

recorded significantly higher light intensity than all other stations. The station upstream of the 

SRT (R6) and one of the upstream locations in the reference creek (R8) had significantly lower 

light levels from each other and all other stations. 
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Figure 13. Mean light intensity (lux) recorded at each receiver one hour before and after 
the day daytime high tides that occurred over the course of the project. Untransformed data 
are presented. Means that share a letter are not significantly different. 
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Eel movement and space use 
 

Onset of movement and use of space varied among eels (Table 13). Both eels that were 

released in the reference creek for which movement was detected moved downstream with the 

first low tide after release. Fish 8 moved a cumulative distance of 4.9 km with a maximum 

dispersal of 1.7 km. Fish 9 moved a cumulative distance of 15.4 km with a maximum dispersal 

also of 1.7 km. Of the three eels released upstream of the SRT for which movement data were 

detected, one (Fish 5) initiated movement within hours of release while the first movement for 

the remaining two fish occurred 6-7 days after release. Two of the fish moved through the SRT 

to downstream regions (Fish 4 and 5). Fish 6 remained site faithful to R6 for 7 days after release 

prior to making repeated movements between R6 and R7. From then on, the pattern of detections 

suggest that Fish 6 lost its transmitter or died shortly thereafter. The three fish released in the 

SRT creek moved a cumulative distance ranging from 1.1 - 1.6 km. with a maximum dispersal 

ranging from 0.3-0.8 km. 

 Ninety-three percent of eel movements (52 of 56) occurred at mid tide or below (tidal 

height of 1.73 m or less as measured at the Wells Harbor tide gauge; Figure 14). Fisher’s Exact 

test showed that the eels released upstream in the SRT creek were more likely to move at high 

tide than eels released in the reference creek (Fisher’s Exact test, p<0.0106). The direction of eel 

movement (i.e., upstream or downstream) did not vary significantly with the direction of the tide 

(i.e., ebb or flood). 

 To examine potential diel effects, the proportion of eel movements occurring in day 

versus night were compared to the proportion of day to night hours during the project period. 

Fish movement was not equally distributed, and significantly more eel movement occurred at 

night (X2
(1, n=56) = 17.44, p < .0001). Diel effects were further explored with light intensity data. 
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Eighty-six percent of eel movements occurred at a light intensity of 0 lux including 1 of the 9 

movements that occurred during the day. A Chi Square was used to examine the proportion of 

fish movements under light and dark conditions. Eels preferentially moved around the salt marsh 

under dark conditions (X2
(1, n=56) = 15.43, p < .0001); however, the eels released upstream of the 

SRT were more likely to move under light conditions than those released in the reference creek 

(Fisher’s exact test; p < 0.0001). 

DISCUSSION 
 

Nine eels were tagged with acoustic transmitters to evaluate the impact of environmental 

factors and the presence of an instream structure on eel movement in intertidal saltmarsh creeks. 

Eels were translocated from a nearby salt marsh; due to potential translocation effects on fish 

behavior (LaMothe et al. 2000) as well as small sample sizes, we cannot make conclusions based 

on the present limited dataset. Despite these limitations, patterns emerged regarding eel 

movement and space use that may guide future studies of eel movement in salt marshes, 

particularly those impacted by instream structures. 

 A general pattern exists in the literature of decreased eel activity with declining 

temperatures, although the reported temperature threshold at which eel activity decreases is 

varied (Vollestad 1986; Jellyman 1997; Baras et al. 1998). Walsh et al. (1983) found that eel 

oxygen consumption rate decreases below 10oC as eels move toward a state of metabolic torpor. 

Therefore, eels in the present study may have exhibited reduced instream movements due to the 

relatively low water temperatures (range of 9.4-10.9 
o
C) for the October-December project.  
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Light intensity/diel effects 
 

Eels in the present study moved preferentially under low light conditions and often at 

night. Strong evidence exists in the literature for eels being negatively phototaxic across life 

stages (Vollestad 1986; Helfman et al. 1983; Jellyman and Sykes 2003). For instance, eels in the 

glass eel life stage have been found to move vertically in the water column to avoid light 

(Bardonnet et al 2005). Furthermore, the tendency of eels to avoid light is relied upon to guide 

yellow eels through hydroelectric structures to minimize eel injury and mortality (Elvidge et al 

2018). The nocturnal movements of eels may be due to the fact that eel foraging relies on 

olfaction rather than vision (Barbin 2011; Hedger et al 2010) as well as the reduced risk of 

predation at low light levels (Jellyman and Tsukamoto 2005).  

Low light levels had a pronounced effect on eel movement in the present study with 86% 

of eel movements occurring in darkness of 10 lux or less. The 14% of eel movements under light 

conditions were all in the SRT creek and all movements but one were associated with movement 

through the SRT, presumably as eels sought opportunities to pass through the structure (Figure 

13). The mean light levels recorded immediately upstream and downstream of the SRT represent 

the lowest and highest mean light levels recorded in this study, respectively, where an eel 

encounters a large increase in light as it moves downstream through the SRT (Figure 13). Altered 

light conditions in the SRT creek as well as reduced opportunities to move through the SRT may 

have resulted in eel movement under suboptimal conditions, possibly rendering eels more 

vulnerable to predation (Jellyman and Tsukamoto 2005). 



 92 

Tidal effects 
 

Evidence exists for eels in tidal systems to be more active at high tide (Dutil et al. 1988); 

however, eel movements in the present study were recorded under low tide conditions (93% of 

movements). Helfman et al. (1983) frequently captured eels at the mouths of small tributary 

creeks at low tide and speculated that these eels were poised to move onto the vegetated marsh 

when flooded. Although not explicitly tested, we suggest that the preponderance of low tide 

movements in the present study may be due to the fact that at higher tidal stages the vegetated 

marsh was flooded and eels moved onto the vegetated marsh and out of detection range. The 

high marsh provides abundant foraging and refuge opportunities but is limiting to most fish 

species due to the intermittent flooding, the shallow water depths, high density of vegetation and 

the risk of stranding (Kneib 1997). Eels may be well suited to exploit the resources of the 

vegetated marsh given that the undulatory swimming motion and narrow elongate body shape of 

eels affords them the ability to maneuver through the dense vegetation at any tidal stage. 

Furthermore, the use of primarily olfaction rather than visual cues to locate prey diminishes the 

negative effects of dense vegetation on foraging efforts, and the ability to breathe and move out 

of water minimizes the risk of stranding (Tesch 2003). 

 High tide movements, although uncommon, were more likely to occur with eels that were 

released in the SRT creek than the reference creek. Furthermore, all recorded high tide 

movements were associated with eels moving from upstream to downstream through the SRT or 

were the movements upstream of the SRT just prior to moving through it. The muted tidal 

influence and altered environmental conditions upstream of the SRT creek may have reduced 

tidal cues for movement or alternatively, higher tidal stages (as measured downstream) may 

present suitable conditions for eel passage through the SRT.  
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Eel movement and space use 
 

Eel use of estuarine creeks, often reported as home range, is variable in the literature 

ranging from 0.1 to 5 km (Helfman et al 1983; Ford and Mercer 1986; Dutil et al. 1988; Crook et 

al 2014; Walker et al. 2014). If the maximum dispersal distance measured is used as a proxy for 

the home range of each eel (Walker et al. 2014), then the home ranges measured in the present 

study fall within the range measured in the literature. Although a small sample size precluded 

statistical analysis, the trend in the data was that the fish that were released above the SRT (Fish 

4, 5, and 6) travelled shorter cumulative distances and had shorter maximum dispersal than those 

released in the reference creek.  

 In addition, the first movement after release was detected within 7-9 hours for two fish in 

the reference system and within 6-7 days after release for 2 of the 3 eels released upstream of the 

SRT. Although the data are insufficient to support statistical analysis, they suggest that the SRT 

may cause delays in eel movement downstream. Similarly, an SRT in a river in England did not 

prevent European silver eels from migrating downstream but did delay their movement (Wright 

et al 2015). High velocity water associated with the SRT may act as a physical or behavioral 

impediment to fish movement (Enders et al. 2009; Eberhardt et al. 2011). In addition, the high 

velocity water moving through the undersized culvert associated with the SRT scours out the 

area immediately upstream of the SRT (Eberhardt et al. 2011) creating a deep pool, conditions 

similar to downstream subtidal habitats.  

Avenues for future research 
 
 The lack of replication and short time scale of active eel tracks precludes conclusions on 

eel use of these systems; however, trends in the data are interesting and may provide the 

foundations for future research. During the day when light intensity was high, eels were largely 
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inactive. At night during low tide eels were active in the marsh creeks given the high proportion 

of low tide movements. It is unclear what eels in the present study were doing during night high 

tides, but we hypothesize that eels were on the vegetated marsh feeding or seeking refuge. Future 

research should examine the use and value of the vegetated marsh and associated pools as 

foraging and refuge resources for eels. 

It is clear that the SRT influences instream conditions such as light intensity, water 

temperature, and tidal height, and in turn, it is possible that the SRT is influencing eel use of the 

system. The SRT is not a total barrier to eel movement; however, the SRT may delay movement 

of eels to downstream areas, whether due to the presence of subtidal habitat upstream or the 

intermittent periods of a physical barrier. Migratory delays of silver eels due to hydropower 

dams in freshwater systems are well-documented (Behrmann-Godel and Eckmann 2003; Besson 

et al. 2016); however, the impacts of intertidal barriers such as undersized culverts and SRTs on 

eel movement and access to resources are unknown. The SRTs may have a negative effect on eel 

home range by retaining eels upstream and decreasing access to downstream areas. Furthermore, 

the productivity of the impounded upstream habitat for eels may be compromised due to lower 

quality trophic resources found there (Eberhardt et al. 2015). We suggest that future studies 

should evaluate the impacts of instream structures on the timing and extent of eel movements in 

intertidal systems. 

 This study provides a rudimentary understanding of eel movement in salt marsh habitats, 

but more importantly, provides a foundation for further study of eel movement and the possible 

effects of tidal barriers such as undersized culverts and SRTs on eel use of these habitats. Based 

on the preliminary data presented here, we recommend future evaluation of eel use of the 

vegetated salt marsh for foraging and refuge, and the potential impacts of temporary barriers on 
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upstream environmental conditions, the timing of eel movements, and the spatial extent of 

resources they access. Determining the factors that govern eel movement and access to resources 

in saltmarsh systems, as well as factors that may inhibit movement and access, will inform the 

management of these important landscapes to support conservation of both saltmarsh habitats 

and the eel population. 
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CONCLUSION 
 

Summary 
 

Laboratory and field experiments were employed to increase our understanding of 

American eel use of New England salt marshes. A laboratory experiment determined trophic 

discrimination factors and turnover rates for nitrogen and carbon isotopes (d15N and d13C) of eel 

tissues (Chapter I). The data derived from Chapter I informed the interpretation of isotope data 

from eels collected in salt marshes of three different estuaries. Field data were collected from 

three salt marshes in the Gulf of Maine and analyzed to compare eel food sources and trophic 

position in tidally restricted and unrestricted salt marshes (Chapter II). Stable isotope data 

collected in both the laboratory and the field were analyzed to develop a nonlethal method of 

sampling eels for stable isotope analysis. Eel mucus and fin tissue d15N and d13C values were 

compared to muscle and liver tissue to explore the potential for mucus and fin to serve as 

nonlethal surrogates (Chapter III). To improve our understanding of eel movements within salt 

marsh creeks, and the potential impacts of a self-regulating tide gate on eel movement, a 

telemetry study was conducted in the Webhannet Estuary, ME (Chapter IV). Below are 

summaries of the key findings of each of the four chapters, followed by a synthesis of the 

findings to address the primary goals of the project, recommendations for future research, and 

recommendations to natural resource managers for the conservation of eels. 

In Chapter I, eels were held in the laboratory and subject to a diet switch to determine the 

rates at which eel mucus, fin, muscle, and liver tissue assimilate the carbon and nitrogen isotope 

values of the diet (turnover rate) and the level of discrimination in each tissue relative to the diet 

(trophic discrimination factors (TDFs)). TDFs for both d15N and d13C were found to vary from 
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those commonly used in the literature suggesting that species and tissue specific TDFs are 

needed for stable isotope analysis of eels. Nitrogen turnover varied among tissues with mucus 

the fastest (half-life = 67 days) followed by fin (90 days), liver (97 days), and muscle tissue (191 

days). Carbon turnover was slower for all tissues and exceeded the length of the experiment so 

turnover rates could not be calculated. 

In Chapter II, eels were captured in hydrologically restricted and unrestricted creeks in 

three New England estuaries (Webhannet Estuary, ME, Hampton-Seabrook Estuary, NH, and 

Parker River Estuary, MA). Potential eel food sources as well as eel muscle and liver tissue were 

analyzed for δ15N and δ13C to determine if salt marsh derived production serves as an important 

energetic resource for eels and if trophic support is altered in tidally restricted creeks relative to 

unrestricted systems. Mixing models of isotope data indicated strong evidence of saltmarsh 

primary producers contributing to the basal diet of eels as well as consumption of marsh resident 

secondary consumers. Eel gut contents contained abundant saltmarsh secondary consumers, 

confirming the isotope data finding of reliance on salt marshes for trophic support, and that eels 

serve as top predators in salt marshes. Given that saltmarsh dietary sources were identified as 

important at different times scales, eels can be considered saltmarsh residents. Greater eel trophic 

position measured upstream of reference creeks indicates that tidal restrictions may result in an 

altered food web in the tidally restricted marsh. Although the experiment was not designed to 

explicitly test for the degree of restriction, the eels in creeks with more severe tidal restrictions 

(i.e., Webhannet and Hampton Seabrook estuaries) relied on more local food sources and fed at a 

lower trophic level. 

Chapter III evaluated δ15N and δ13C of eel tissues to determine if eel fin or mucus 

samples can serve as non-lethal substitutes for liver or muscle tissue. All tissue-pair models were 
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significant suggesting that eel fin and mucus can serve as nonlethal surrogates for muscle and 

liver δ15N and δ13C values. Drawing on the turnover data from Chapter I, the best use of 

nonlethal methods will account for the relative turnover rates of each tissue. The significant 

relationship and similar turnover rates of mucus and liver δ15N create great potential for the use 

of mucus as a proxy for liver δ15N. 

Chapter IV examined eel movements in two saltmarsh creeks, one of which contained an 

undersized culvert with a self-regulating tide gate. Of the nine fish tagged, usable data was 

obtained for only five eels. The low sample size precluded the use of comprehensive statistical 

models on movement data; however, trends in the data provide compelling information for future 

research. Eel movement data suggest eels released upstream of the SRT travelled shorter 

distances than eels in the reference creek. Furthermore, the downstream movements of eels 

released upstream of the SRT delayed movements to downstream areas of the marsh relative to 

eels in the reference creek.  

 

How data address the primary project goals 
 
 The first goal of this project was to improve understanding of the value of salt marsh to 

the life history of the American eel with respect to trophic interactions and movement. Based 

simply on the frequent capture of eels throughout the project in each of the three estuaries, we 

can first conclude that American eels are commonly found in New England salt marshes 

affirming earlier work (Dionne et al. 1999; Eberhardt et al. 2011). The data from Chapter II 

provide strong evidence of salt marsh trophic support of eels, including saltmarsh primary 

production as part of the basal diet as well as direct eel predation on salt marsh consumers. 

Because stable isotopes are indicators of the diet assimilated by the organism rather than just 
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what is consumed, the data provide compelling evidence that salt marshes provide important 

foraging resources to sustain eels. Furthermore, indicators of assimilation of saltmarsh food 

sources at differing time scales suggest that salt marshes serve as important habitats for eels over 

long time periods and eels can remain resident in these systems. Evidence in the literature points 

to eel capture in estuarine systems (Dionne et al. 1999; Eberhardt et al. 2011), and faster growth 

in brackish and marine waters (Oliveira 1999; Jessop et al. 2004; Morrison and Secor 2003), but 

little data existed regarding eel use of saltmarsh habitats as a food source (but see Wenner and 

Musik 1975). The data presented here provide new information on the saltmarsh trophic 

resources that are assimilated into eel tissues, indicating salt marshes can serve as critical 

habitats in the life history of eels. 

The eel movements observed in Chapter IV also provide information on eel use of salt 

marshes. Eel movements occurred predominantly at night and at low tide. Evidence in the 

literature strongly supports the finding of movements under dark conditions (Jellyman and Sykes 

2003; Bardonnet et al. 2005; Elvidge et al. 2018). However, another study in a tidal system found 

eel movements to occur more at high tide than low tide, although the system was a large tributary 

of the Gulf of St. Lawrence (Quebec, Canada) rather than a small estuary dominated by salt 

marsh (Dutil et al. 1988). The lack of high tide detections in this project may be due to the fact 

that eels moved onto the vegetated marsh with the flooding tide where they could not be 

detected. This hypothesis is supported by the capture of eels in marsh pools in Chapter IV. New 

England marsh pools and the vegetated marsh are an important foraging resource for 

mummichogs, Fundulus heteroclitus, likely due to the high abundance of grass shrimp, 

Palaemonetes pugio and the benthic microalgae on the sediment (MacKenzie and Dionne 2008). 

It is also possible that eels use high marsh pools as a winter refuge, as has been observed with the 
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resident mummichog (Smith and Able 1994). The high marsh provides abundant foraging and 

refuge opportunities but is limiting to most species due to the intermittent flooding, shallow 

water depths, high density of vegetation, and risk of stranding (Kneib 1997). American eels may 

be uniquely adapted to take advantage of the resources of the vegetated marsh and pools. An 

assessment of fish use of vegetated tidal freshwater marshes found that American eels were the 

12th most abundant species using the vegetated marsh out of the 24 species captured (McIvor and 

Odum 1988). The sinusoidal swimming form of eels is well adapted for moving among 

structured components such as vegetation and may be well suited for the pursuit of prey in a 

habitat with a high degree of structure such as the vegetated marsh. Eels may also be efficient 

predators on the vegetated marsh. They may be less affected by visual obstruction of high stem 

density since they use olfaction as the primary method of prey detection (Barbin 2011). 

Therefore, creeks, vegetated marsh, and pools may serve as important foraging resources for eels 

in salt marshes. 

The second goal of this project was to evaluate the functional equivalency of both 

hydrologically restricted and unrestricted salt marshes in the support of eels. Trophic position 

data from Chapter II indicated that eels in upstream reference regions are feeding one trophic 

level higher than eels in upstream restricted regions. Undersized culverts result in a lack of tidal 

flushing that leads to changes in vegetation as typical saltmarsh plants are replaced by invasive 

species such as common reed Phragmites australis (Roman et al. 1984; Burdick et al. 1997). The 

colonization of tidally restricted systems by non-native species may lead to a cascade of changes 

that translate to reduced trophic support for eels including changes to infaunal communities (Fell 

et al. 1998) and reduced densities of mummichogs (Weis and Weis 2003), a species that was 

identified as important prey for eels in this study. Furthermore, hydrodynamic changes 
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associated with restricted tidal flow (i.e., less flooding) impact sedimentation rates and types 

(e.g., organics, Anisfeld 1999), which in turn alters the benthic community that inhabits a site 

(Stocks and Grassle et al. 2003). As eels are benthic foragers, such changes can have profound 

effects on eel diet.  

In addition to evidence of decreased trophic support upstream, tidal restrictions may also 

limit the movements of eels through salt marshes. The cumulative distance and maximum 

dispersal data measured in Chapter IV suggest that eels released above the SRT may have 

accessed less marsh habitat than eels in the reference system. This may be due to the muted tides 

decreasing the frequency and extent of marsh inundation at high tide, or to the SRT and culvert 

serving as a barrier between eel movement between upstream and downstream. The SRT serves 

as a complete barrier when the gate closes at higher high tides. However, the inhibitory effects of 

the SRT on eel movement may occur via mechanisms in addition to gate closures due to the 

presence of an undersized culvert. First, periods of high water velocity moving through 

undersized culverts may exceed the burst swimming capacity of eels and limit their movement 

between upstream and downstream areas. In addition, increased water velocity may create 

behavioral barriers to entering the culvert (Binder and Stevens 2004). Although windows of 

opportunity exist for eel passage as evidenced by the eels in Chapter IV that moved through the 

SRT, the SRT coupled with an undersized culvert may limit the times when eels can pass, 

resulting in decreased distances traveled in the marsh.  

By accelerating flow through the structure, undersized culverts result in decreased fish 

access to upstream areas (Eberhardt et al. 2011) and due to depressed tidal regimes upstream, 

decreased access to the vegetated marsh. Because the vegetated marsh is hypothesized to serve 

as a primary foraging habitat for eels at high tidal stages, undersized culverts may restrict eel 
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foraging opportunities and decrease growth (Weisberg and Lotrich 1982). Therefore, upstream 

areas of salt marshes with culverts that restrict tides are not likely to provide the same trophic 

support as unrestricted marshes, as found in Chapter II. Due to the altered trophic support 

upstream and decreased access to resources associated with the altered tidal regime, this may 

lead to lower eel condition in estuaries with structures such as undersized culverts. 

Another mechanism by which eel movement may be limited in tidally restricted systems 

is by the presence of subtidal habitat upstream. High velocity water moving through undersized 

culverts creates scour pools, and the muted tidal range results in standing water upstream of the 

culvert at all tidal stages (Adamowicz and O’Brien 2012). The presence of subtidal creek habitat 

upstream of the culvert and SRT at all tidal stages may limit eel movement between upstream 

and downstream by providing suitable foraging and refuge resources for eels at all tidal stages. In 

addition, the reduced tidal influence and altered environmental conditions upstream (i.e., lower 

light during the day and lower temperatures at night) may alter tidal cues for eel movement 

(Parker and McCleave 1997; Euston et al. 1998). In summary, undersized culverts may delay or 

inhibit eel movement to downstream areas in intertidal systems.   

Recommendations for future research 
 
 An additional outcome of this project was the identification of knowledge gaps in the 

scientific literature, as well as the development of new hypotheses. Below is a short list of ideas 

for future research identified through this project.  

1. Eels were frequently captured in pannes and pools, and movements in the tidal creeks 

during the telemetry study were not detected at high tide. The vegetated marsh provides 

abundant food resources and refuge, and eels are well adapted to navigate and survive the 
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dynamic conditions of the vegetated marsh. Future research should explore the 

contribution of vegetated marsh resources to eel productivity. 

2. Nonlethal methods of sample collection for stable isotope analysis were developed in 

Chapter III and present a promising method for the noninvasive collection of large 

numbers of samples. Interpretation of isotope data is subject to variability due to tissue 

specific turnover time, discrimination, and nutrient routing. Although additional factors 

may affect these sources of variability, the macronutrient composition of prey is likely an 

important factor. To establish nonlethal stable isotope collection methods developed here, 

future studies should identify turnover rates and trophic discrimination factors for eel 

tissues across diets of varying macronutrient compositions. Furthermore, compound 

specific isotope analysis (CSIA), that is, the analysis of the incorporation of specific 

amino acids or fatty acids from diet to tissue, presents a promising method to identify 

dietary sources with less potential variability than bulk tissue analysis. Bulk tissue or 

CSIA projects should be planned for multiple months to account for the slow growth rate 

of yellow eels so that turnover estimates for both "15N and "13C can be calculated. If 

resources are limited, projects should focus on developing these data for mucus given that 

source material is very abundant in eels, mucus allows for repeated sampling of the same 

individual over time, mucus has a fast turnover rate, and it is a low impact method that 

presents minimal risk to the eel, an important consideration for species at risk such as 

eels.  

3. Given that intermittent barriers in salt marshes such as undersized culverts and SRTs 

result in altered trophic support and may inhibit movement of eels, future research should 

confirm if these instream structures alter environmental cues or create barriers to eel 
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movement. In particular, the impact of these intermittent barriers on glass eel, elver, and 

silver eel life stages should be evaluated.  

4. Based on the data presented here, eels relied heavily on salt marsh derived production 

over time. Eels are panmictic and all migrate to the Sargasso Sea, a nutrient poor area of 

the open ocean, to spawn. Future research should examine the contribution of salt marsh 

production to Sargasso Sea food webs.  

 

Management Implications 
 

American eels can live in tidal systems throughout their residence in inshore habitats 

(Tsuakamoto and Arai 2001; Tsukamoto et al. 2002). Estuarine habitats may support enhanced 

eel productivity relative to freshwater systems (Tsukamoto and Arai 2001) due to the favorable 

growth conditions (Oliveira 1999, Jessop et al. 2004; Morrison and Secor 2003) and trophic 

support (this study) found there. Given the clear importance of saltmarsh primary and secondary 

production to diets of eels inhabiting salt marshes, habitat functional loss through filling, 

dredging, and tidal restrictions has resulted in a loss of trophic resources for eels. In New 

England, 37% of salt marshes have been lost over the last 200 years and 20% of the remaining 

acreage is tidally restricted (Bromberg and Bertness 2005). The cumulative impact of marsh loss 

may be a contributing factor in the decline of eel populations. As a result, conservation of 

saltmarsh habitat and maintenance of saltmarsh ecological functions is important for eels.   

Removal of instream barriers, including undersized culverts will allow for uninterrupted 

movement of eels and other nekton. Where full restoration of the tidal prism is not feasible, such 

as with the SRT in the Webhannet Estuary, saltmarsh trophic resources may not be functionally 

equivalent to reference systems, but as much tidal flushing as is possible should be restored. 
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Further, options to provide upstream and downstream passage for eels and other nekton should 

be explored to allow for unrestricted movement through the system. The increasing frequency of 

storms and rising seas as a result of climate change (Kossin et al. 2017) results in more water 

moving through these systems. When developing projects to restore tidal hydrology to salt 

marshes, projects should design structures to accommodate future scenarios of larger volumes of 

water in the system. In addition, vegetated buffers should be maintained around salt marshes to 

allow for saltmarsh migration with rising seas to support the persistence of marsh habitat and 

American eels. Vegetated buffers upland of salt marshes, as opposed to hardened shorelines, will 

also maintain present habitat quality to support high densities of eels (Itakura et al 2015) and 

their prey (Balouskus and Targett 2012). Conservation and restoration of salt marsh as habitat 

and management of marshes to maintain ecological integrity will provide critical trophic support 

and access to resources for the American eel population. 
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Appendix A 
 
Bulk carbon and nitrogen isotope measurements of muscle, liver, fin, and mucus samples from 
American eels held in the laboratory (Chapters 1 and 3). 
 

Identifier 
Days since 
diet switch Tissue 

Initial 
mass (g) 

Final 
mass (g) 

Length 
(cm) δ15N N% δ13C C% C/N 

0154L 0 liver 90.7 83.0 38.3 12.3 9.6 -22.3 46.0 4.8 

0156L 0 liver 107.7 101.0 41.2 12.5 10.3 -20.6 44.8 4.3 

0159L 0 liver 121.2 113.6 38.1 12.6 9.5 -21.7 47.1 5.0 

0169L 0 liver 74.7 74.7 35.0 12.5 7.8 -22.0 45.2 5.8 

0170L 0 liver 92.5 92.5 38.6 12.4 9.3 -23.2 46.9 5.1 

0171L 0 liver 129.0 129.0 43.1 12.1 11.0 -22.5 47.6 4.3 

0172L 0 liver 64.2 64.2 33.9 13.6 9.5 -21.8 42.1 4.5 

0173L 0 liver 86.8 86.8 37.9 12.2 10.1 -21.7 46.5 4.6 

0146L 1 liver 59.6 55.5 34.1 12.5 7.8 -23.9 48.6 6.2 

0147L 1 liver 59.8 52.7 29.6 12.6 8.4 -22.3 47.0 5.6 

0157L 1 liver 73.3 67.9 34.4 15.7 7.9 -22.1 44.6 5.7 

0158L 1 liver 128.8 112.9 40.9 12.6 9.6 -22.2 48.1 5.0 

0160L 1 liver 130.7 119.0 40.8 12.7 10.6 -21.4 46.2 4.4 

0149L 4 liver 66.4 58.5 34.4 13.2 11.0 -21.0 41.6 3.8 

0150L 4 liver 83.5 75.5 37.4 32.4 10.8 -21.1 47.1 4.4 

0151L 4 liver 98.6 85.3 36.1 12.1 10.0 -22.6 45.8 4.6 

0152L 4 liver 95.1 85.1 41.4 13.8 8.7 -21.5 48.4 5.6 

0153L 4 liver 127.7 115.9 38.5 11.9 10.6 -21.3 45.7 4.3 

0133L 7 liver 79.8 71.8 36.5 12.9 8.2 -22.0 39.7 4.8 

0134L 7 liver 98.4 90.2 34.8 12.8 9.5 -21.8 43.4 4.6 

0135L 7 liver 60.9 54.8 32.4 23.8 10.2 -23.3 52.1 5.1 

0144L 7 liver 96.2 86.9 39.2 12.8 11.4 -20.2 45.1 4.0 

0145L 7 liver 65.7 57.8 34.3 31.8 5.8 -23.4 50.1 8.7 

0132L 11 liver 82.4 72.8 36.1 23.8 9.7 -22.2 45.1 4.6 

0136L 11 liver 51.6 42.7 34.3 13.1 10.4 -20.5 44.1 4.3 

0137L 11 liver 82.8 72.7 37.2 12.8 8.7 -21.6 47.0 5.4 

0143L 11 liver 137.5 122.7 41.3 12.8 8.2 -22.4 48.6 6.0 

0148L 11 liver 66.5 60.2 35.6 148.3 7.5 -19.9 41.3 5.5 

0120L 14 liver 79.4 73.6 34.4 58.6 7.5 -22.1 43.8 5.8 

0122L 14 liver 112.6 100.9 42.0 14.2 5.4 -23.4 47.2 8.7 

0128L 14 liver 59.2 50.8 31.5 13.2 7.5 -23.2 51.7 6.9 
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0167L 14 liver 121.4 111.3 41.5 13.9 6.2 -23.7 56.9 9.2 

0168L 14 liver 122.6 105.8 40.5 13.1 5.9 -23.4 55.4 9.4 

0138L 17 liver 111.1 91.8 42.2 13.5 8.0 -21.7 46.6 5.8 

0139L 17 liver 101.4 99.0 46.3 13.1 9.1 -22.2 48.1 5.3 

0140L 17 liver 89.9 78.0 37.3 43.0 7.5 -22.4 48.5 6.5 

0141L 17 liver 51.0 42.1 29.4 26.6 6.5 -22.8 44.4 6.8 

0142L 17 liver 72.0 64.6 34.7 147.3 5.7 -22.9 49.6 8.7 

0124L 21 liver 80.4 70.3 36.7 22.4 6.3 -22.8 54.8 8.7 

0125L 21 liver 73.2 59.2 36.1 12.7 8.3 -22.1 48.1 5.8 

0126L 21 liver 121.6 106.6 41.3 21.8 7.4 -22.7 45.1 6.1 

0130L 21 liver 80.0 68.6 36.4 21.3 9.5 -22.9 47.1 5.0 

0164L 21 liver 63.5 52.8 33.1 13.6 6.5 -22.9 53.8 8.3 

0121L 28 liver 105.2 92.7 37.0 12.6 8.8 -21.7 45.0 5.1 

0123L 28 liver 113.5 88.7 40.6 14.9 8.0 -22.3 48.6 6.1 

0127L 28 liver 96.7 82.1 36.8 53.3 7.4 -22.3 50.6 6.9 

0129L 28 liver 125.4 113.2 45.5 13.4 8.8 -21.0 45.0 5.1 

0131L 28 liver 81.6 75.1 36.1 158.1 9.3 -20.5 46.7 5.0 

0161L 35 liver 110.2 93.0 39.5 279.9 5.3 -23.0 55.3 10.4 

0162L 35 liver 78.9 68.2 34.8 184.6 7.3 -22.0 49.2 6.8 

0163L 35 liver 115.1 99.0 43.7 248.4 6.0 -22.1 54.2 9.0 

0165L 35 liver 74.6 66.1 37.0 76.0 8.8 -21.0 47.4 5.4 

0166L 35 liver 80.8 68.5 36.0 224.6 8.9 -20.0 46.0 5.2 

0154S 0 mucus 90.7 83.0 38.3 12.1 11.9 -21.1 43.5 3.7 

0155S 0 mucus 102.2 102.7 41.0 12.5 12.1 -20.9 42.7 3.5 

0156S 0 mucus 107.7 101.0 41.2 11.7 11.9 -19.3 43.6 3.7 

0159S 0 mucus 121.2 113.6 38.1 12.1 12.2 -20.3 44.7 3.7 

0169S 0 mucus 74.7 74.7 35.0 11.6 11.2 -20.3 43.6 3.9 

0170S 0 mucus 92.5 92.5 38.6 11.9 11.6 -23.4 42.1 3.6 

0171S 0 mucus 129.0 129.0 43.1 11.8 12.5 -22.2 45.1 3.6 

0172S 0 mucus 64.2 64.2 33.9 12.1 12.4 -20.7 44.9 3.6 

0173S 0 mucus 86.8 86.8 37.9 11.8 10.6 -20.6 38.3 3.6 

0146S 1 mucus 59.6 55.5 34.1 11.9 10.6 -22.2 37.9 3.6 

0147S 1 mucus 59.8 52.7 29.6 12.0 11.2 -20.7 39.6 3.5 

0157S 1 mucus 73.3 67.9 34.4 13.3 11.4 -20.7 42.5 3.7 

0158S 1 mucus 128.8 112.9 40.9 11.9 12.0 -20.8 43.6 3.6 

0160S 1 mucus 130.7 119.0 40.8 12.4 10.1 -21.3 49.5 4.9 

0149S 4 mucus 66.4 58.5 34.4 12.1 11.7 -20.7 42.4 3.6 

0150S 4 mucus 83.5 75.5 37.4 18.9 11.6 -20.0 41.4 3.6 

0151S 4 mucus 98.6 85.3 36.1 11.8 11.6 -21.6 42.1 3.6 

0152S 4 mucus 95.1 85.1 41.4 12.7 11.2 -19.5 42.0 3.8 
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0153S 4 mucus 127.7 115.9 38.5 12.0 11.6 -19.8 43.2 3.7 

0133S 7 mucus 79.8 71.8 36.5 12.2 11.9 -20.4 44.7 3.8 

0134S 7 mucus 98.4 90.2 34.8 12.2 12.3 -20.0 42.7 3.5 

0135S 7 mucus 60.9 54.8 32.4 22.0 11.1 -21.8 40.5 3.6 

0144S 7 mucus 96.2 86.9 39.2 12.8 12.3 -19.1 43.9 3.6 

0145S 7 mucus 65.7 57.8 34.3 22.4 10.2 -20.3 36.9 3.6 

0132S 11 mucus 82.4 72.8 36.1 18.9 11.3 -20.9 39.7 3.5 

0136S 11 mucus 51.6 42.7 34.3 12.5 12.2 -19.6 44.5 3.6 

0137S 11 mucus 82.8 72.7 37.2 12.4 12.2 -19.9 44.3 3.6 

0143S 11 mucus 137.5 122.7 41.3 12.8 10.7 -20.3 39.4 3.7 

0120S 14 mucus 79.4 73.6 34.4 55.2 12.0 -20.1 41.9 3.5 

0122S 14 mucus 112.6 100.9 42.0 13.2 9.4 -20.2 32.1 3.4 

0128S 14 mucus 59.2 50.8 31.5 12.5 12.2 -20.3 44.2 3.6 

0167S 14 mucus 121.4 111.3 41.5 12.6 11.0 -20.5 41.5 3.8 

0168S 14 mucus 122.6 105.8 40.5 12.7 11.8 -19.9 43.5 3.7 

0138S 17 mucus 111.1 91.8 42.2 13.0 12.3 -19.5 45.2 3.7 

0139S 17 mucus 101.4 99.0 46.3 12.7 12.0 -20.4 45.3 3.8 

0140S 17 mucus 89.9 78.0 37.3 39.1 11.5 -20.0 40.8 3.6 

0141S 17 mucus 51.0 42.1 29.4 27.0 11.3 -20.4 41.5 3.7 

0142S 17 mucus 72.0 64.6 34.7 88.1 11.4 -20.7 43.4 3.8 

0124S 21 mucus 80.4 70.3 36.7 18.4 11.4 -19.6 43.4 3.8 

0125S 21 mucus 73.2 59.2 36.1 12.4 12.0 -20.0 43.8 3.7 

0126S 21 mucus 121.6 106.6 41.3 19.2 11.2 -20.6 39.6 3.6 

0130S 21 mucus 80.0 68.6 36.4 18.6 15.3 -21.6 55.0 3.6 

0164S 21 mucus 63.5 52.8 33.1 13.0 11.3 -20.3 43.0 3.8 

0121S 28 mucus 105.2 92.7 37.0 12.2 11.3 -20.0 40.1 3.6 

0123S 28 mucus 80.4 70.3 36.7 13.4 11.6 -20.1 41.7 3.6 

0127S 28 mucus 96.7 82.1 36.8 38.6 12.2 -19.8 43.9 3.6 

0129S 28 mucus 125.4 113.2 45.5 12.5 12.0 -19.6 42.5 3.6 

0131S 28 mucus 81.6 75.1 36.1 110.4 11.9 -19.9 43.1 3.6 

0161S 35 mucus 110.2 93.0 39.5 130.8 11.5 -19.9 43.7 3.8 

0162S 35 mucus 78.9 68.2 34.8 121.3 10.5 -20.2 39.7 3.8 

0163S 35 mucus 115.1 99.0 43.7 127.7 10.7 -19.5 43.2 4.1 

0165S 35 mucus 74.6 66.1 37.0 35.6 10.6 -19.9 40.9 3.9 

0166S 35 mucus 80.8 68.5 36.0 121.2 11.9 -19.2 44.1 3.7 

0154M 0 muscle 90.7 83.0 38.3 11.8 10.6 -23.0 49.8 4.7 

0155M 0 muscle 102.2 102.7 41.0 12.4 10.9 -21.7 44.8 4.1 

0156M 0 muscle 107.7 101.0 41.2 11.0 11.1 -20.1 48.2 4.3 

0159M 0 muscle 121.2 113.6 38.1 11.8 9.0 -22.2 53.8 6.0 

0169M 0 muscle 74.7 74.7 35.0 11.4 12.0 -20.5 47.3 4.0 
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0170M 0 muscle 92.5 92.5 38.6 11.2 11.5 -24.5 48.1 4.2 

0171M 0 muscle 129.0 129.0 43.1 10.7 11.6 -23.5 46.2 4.0 

0172M 0 muscle 64.2 64.2 33.9 11.6 12.1 -21.7 50.5 4.2 

0173M 0 muscle 86.8 86.8 37.9 11.7 11.2 -21.2 46.8 4.2 

0146M 1 muscle 59.6 55.5 34.1 10.9 11.2 -24.1 46.6 4.2 

0147M 1 muscle 59.8 52.7 29.6 11.9 9.6 -21.9 42.6 4.4 

0157M 1 muscle 73.3 67.9 34.4 12.2 9.0 -22.6 49.8 5.6 

0158M 1 muscle 128.8 112.9 40.9 11.9 11.0 -21.9 48.8 4.5 

0160M 1 muscle 130.7 119.0 40.8 11.6 9.3 -21.6 44.6 4.8 

0149M 4 muscle 66.4 58.5 34.4 11.6 10.6 -22.2 46.5 4.4 

0150M 4 muscle 83.5 75.5 37.4 11.8 9.5 -21.7 46.5 4.9 

0151M 4 muscle 98.6 85.3 36.1 10.2 11.5 -23.5 46.7 4.1 

0152M 4 muscle 95.1 85.1 41.4 11.9 12.1 -19.8 46.1 3.8 

0153M 4 muscle 127.7 115.9 38.5 11.4 9.7 -21.3 51.4 5.3 

0133M 7 muscle 79.8 71.8 36.5 11.5 5.7 -22.3 28.6 5.0 

0134M 7 muscle 98.4 90.2 34.8 11.7 6.8 -23.3 53.3 7.8 

0135M 7 muscle 60.9 54.8 32.4 10.9 10.1 -24.5 52.9 5.2 

0144M 7 muscle 96.2 86.9 39.2 12.3 11.6 -20.1 47.9 4.1 

0145M 7 muscle 65.7 57.8 34.3 11.9 11.1 -22.0 41.0 3.7 

0132M 11 muscle 82.4 72.8 36.1 12.8 9.2 -22.9 44.7 4.9 

0136M 11 muscle 51.6 42.7 34.3 10.9 11.8 -20.0 44.3 3.7 

0137M 11 muscle 82.8 72.7 37.2 10.9 10.7 -21.3 44.8 4.2 

0143M 11 muscle 137.5 122.7 41.3 11.6 9.3 -22.0 49.8 5.4 

0148M 11 muscle 66.5 60.2 35.6 23.9 10.4 -21.1 48.3 4.7 

0120M 14 muscle 79.4 73.6 34.4 15.7 10.2 -21.4 43.0 4.2 

0122M 14 muscle 112.6 100.9 42.0 12.0 8.9 -22.0 44.3 5.0 

0128M 14 muscle 59.2 50.8 31.5 11.9 11.3 -22.1 45.9 4.1 

0167M 14 muscle 121.4 111.3 41.5 11.4 10.0 -22.0 47.0 4.7 

0168M 14 muscle 122.6 105.8 40.5 11.9 7.8 -22.7 53.2 6.9 

0138M 17 muscle 111.1 91.8 42.2 11.1 11.0 -20.0 43.6 4.0 

0139M 17 muscle 101.4 99.0 46.3 11.5 12.3 -20.8 45.4 3.7 

0140M 17 muscle 89.9 78.0 37.3 12.7 7.5 -22.7 46.7 6.2 

0141M 17 muscle 51.0 42.1 29.4 12.5 9.2 -22.2 39.2 4.2 

0142M 17 muscle 72.0 64.6 34.7 22.9 8.8 -22.7 43.1 4.9 

0124M 21 muscle 80.4 70.3 36.7 11.1 11.1 -20.0 46.2 4.2 

0125M 21 muscle 73.2 59.2 36.1 11.8 10.8 -21.6 50.3 4.7 

0126M 21 muscle 121.6 106.6 41.3 12.4 10.5 -22.5 48.6 4.6 

0130M 21 muscle 80.0 68.6 36.4 11.2 11.6 -23.4 46.9 4.1 

0164M 21 muscle 63.5 52.8 33.1 11.8 10.1 -21.8 44.2 4.4 

0121M 28 muscle 105.2 92.7 37.0 11.5 9.6 -21.0 43.5 4.5 
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0123M 28 muscle 113.5 88.7 40.6 11.6 8.3 -21.6 35.2 4.2 

0127M 28 muscle 96.7 82.1 36.8 15.2 8.8 -22.2 49.6 5.6 

0129M 28 muscle 125.4 113.2 45.5 11.6 11.0 -20.6 45.5 4.1 

0131M 28 muscle 81.6 75.1 36.1 27.0 10.4 -21.7 46.4 4.5 

0161M 35 muscle 110.2 93.0 39.5 39.9 10.1 -21.4 44.1 4.4 

0162M 35 muscle 78.9 68.2 34.8 28.5 9.6 -22.7 49.9 5.2 

0163M 35 muscle 115.1 99.0 43.7 31.4 11.7 -20.7 49.5 4.2 

0165M 35 muscle 74.6 66.1 37.0 14.6 7.1 -22.3 50.3 7.3 

0166M 35 muscle 80.8 68.5 36.0 27.3 10.8 -20.7 48.1 4.5 

0154F 0 fin 90.7 83.0 38.3 12.5 10.0 -21.4 37.9 3.8 

0155F 0 fin 102.2 102.7 41.0 14.2 9.7 -21.6 39.8 4.1 

0156F 0 fin 107.7 101.0 41.2 11.5 7.6 -20.2 45.6 6.0 

0159F 0 fin 121.2 113.6 38.1 12.1 6.6 -22.5 54.0 8.2 

0169F 0 fin 74.7 74.7 35.0 12.0 9.9 -20.2 40.9 4.1 

0170F 0 fin 92.5 92.5 38.6 11.7 8.0 -25.0 43.7 5.5 

0171F 0 fin 129.0 129.0 43.1 11.0 7.3 -24.2 47.1 6.5 

0172F 0 fin 64.2 64.2 33.9 12.6 8.9 -21.4 42.2 4.8 

0173F 0 fin 86.8 86.8 37.9 12.0 9.5 -20.9 43.6 4.6 

0146F 1 fin 59.6 55.5 34.1 11.5 7.2 -24.4 36.9 5.4 

0147F 1 fin 59.8 52.7 29.6 12.4 8.2 -21.8 43.5 5.3 

0157F 1 fin 73.3 67.9 34.4 13.4 10.1 -21.3 39.2 3.9 

0158F 1 fin 128.8 112.9 40.9 12.4 7.7 -22.4 49.0 6.4 

0160F 1 fin 130.7 119.0 40.8 12.4 10.3 -20.7 45.0 4.4 

0149F 4 fin 66.4 58.5 34.4 12.2 9.1 -21.6 37.0 4.1 

0150F 4 fin 83.5 75.5 37.4 17.8 8.3 -20.6 39.1 4.7 

0151F 4 fin 98.6 85.3 36.1 10.9 9.0 -23.2 49.0 5.4 

0152F 4 fin 95.1 85.1 41.4 13.3 10.2 -18.0 38.1 3.7 

0153F 4 fin 127.7 115.9 38.5 11.8 9.2 -20.5 43.9 4.8 

0133F 7 fin 79.8 71.8 36.5 12.3 7.4 -21.9 42.0 5.7 

0134F 7 fin 98.4 90.2 34.8 12.4 6.8 -22.8 49.4 7.3 

0135F 7 fin 60.9 54.8 32.4 17.2 7.9 -24.3 44.9 5.7 

0144F 7 fin 96.2 86.9 39.2 13.0 9.8 -19.6 39.1 4.0 

0145F 7 fin 65.7 57.8 34.3 15.6 7.9 -22.2 42.0 5.3 

0136F 11 fin 51.6 42.7 34.3 11.7 9.0 -18.6 34.8 3.9 

0137F 11 fin 82.8 72.7 37.2 11.5 7.7 -21.8 47.4 6.2 

0143F 11 fin 137.5 122.7 41.3 12.7 10.1 -20.1 41.1 4.1 

0148F 11 fin 66.5 60.2 35.6 45.4 5.4 -21.0 28.4 5.3 

0120F 14 fin 79.4 73.6 34.4 38.8 8.9 -20.7 40.8 4.6 

0122F 14 fin 112.6 100.9 42.0 13.3 6.2 -21.5 36.7 5.9 

0128F 14 fin 59.2 50.8 31.5 12.7 8.0 -22.8 45.6 5.7 



 130 

0167F 14 fin 121.4 111.3 41.5 12.5 7.4 -22.4 47.2 7.8 

0168F 14 fin 122.6 105.8 40.5 12.6 9.6 -20.7 44.9 4.7 

0138F 17 fin 111.1 91.8 42.2 11.0 8.7 -17.7 37.2 4.3 

0139F 17 fin 101.4 99.0 46.3 12.8 8.8 -21.3 45.3 5.2 

0140F 17 fin 89.9 78.0 37.3 27.6 11.7 -19.7 41.8 3.6 

0141F 17 fin 51.0 42.1 29.4 24.0 8.8 -21.7 44.0 5.0 

0142F 17 fin 72.0 64.6 34.7 40.8 6.8 -23.0 43.6 6.4 

0124F 21 fin 80.4 70.3 36.7 16.3 8.4 -20.5 46.3 5.5 

0125F 21 fin 73.2 59.2 36.1 12.2 9.4 -20.6 44.7 4.8 

0126F 21 fin 121.6 106.6 41.3 15.5 7.1 -22.8 50.3 7.1 

0130F 21 fin 80.0 68.6 36.4 13.0 7.9 -24.7 48.4 6.1 

0164F 21 fin 63.5 52.8 33.1 12.8 8.4 -21.6 45.1 5.6 

0121F 28 fin 105.2 92.7 37.0 12.1 8.5 -20.7 41.5 4.9 

0123F 28 fin 113.5 88.7 40.6 13.2 8.9 -21.3 48.5 5.4 

0127F 28 fin 96.7 82.1 36.8 23.8 8.6 -21.0 43.0 5.0 

0129F 28 fin 125.4 113.2 45.5 12.3 7.1 -21.2 45.2 6.4 

0131F 28 fin 81.6 75.1 36.1 84.1 9.7 -19.2 35.7 3.7 

0161F 35 fin 110.2 93.0 39.5 94.7 9.3 -20.5 41.4 4.5 

0162F 35 fin 78.9 68.2 34.8 98.1 7.5 -22.4 45.0 6.0 

0163F 35 fin 115.1 99.0 43.7 84.0 9.0 -20.1 43.2 4.8 

0165F 35 fin 74.6 66.1 37.0 24.4 7.7 -21.0 43.5 6.1 

0166F 35 fin 80.8 68.5 36.0 46.7 8.0 -20.8 44.0 5.5 
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Appendix C 
 
Bulk carbon and nitrogen isotope measurements of muscle, liver, fin, and mucus samples from 
American eels collected from salt marshes in three New England estuaries: the Webhannet 
Estuary, ME (WEB), the Hampton-Seabrook Estuary, NH (HSE), and the Parker River Estuary, 
MA (PRE; Chapters 2 and 3). 
 
 

Fish 
ID 

Size 
(mm) Site Location Hydrology 

Tissue 
type %N δ15N %C δ13C C/N 

1000F 26.3 WEB upstream reference fin 9.4 11.4 42.1 -17.0 4.5 

1000L 26.3 WEB upstream reference liver 10.7 11.3 44.8 -16.5 4.2 

1000M 26.3 WEB upstream reference muscle 11.6 11.0 41.4 -16.8 3.6 

1000S 26.3 WEB upstream reference mucus 10.0 11.0 38.6 -15.9 3.9 

1001F 27.2 WEB upstream restricted fin 10.3 8.3 41.5 -13.4 4.0 

1001L 27.2 WEB upstream restricted liver 11.6 8.3 48.1 -14.1 4.2 

1001M 27.2 WEB upstream restricted muscle 12.6 8.0 45.3 -14.2 3.6 

1001S 27.2 WEB upstream restricted mucus 10.7 7.9 40.2 -13.3 3.7 

1002F 17.9 WEB upstream restricted fin 9.9 9.5 48.0 -15.3 4.9 

1002L 17.9 WEB upstream restricted liver 10.2 10.0 52.2 -16.0 5.1 

1002M 17.9 WEB upstream restricted muscle 12.1 9.3 51.5 -15.8 4.3 

1002S 17.9 WEB upstream restricted mucus 13.9 9.5 50.7 -14.3 3.6 

1003F 15.7 WEB upstream reference fin 9.8 10.8 44.8 -21.3 4.6 

1003L 15.7 WEB upstream reference liver 10.4 11.2 47.1 -21.6 4.5 

1003M 15.7 WEB upstream reference muscle 12.4 11.2 47.5 -21.0 3.8 

1003S 15.7 WEB upstream reference mucus 11.5 10.5 43.5 -20.5 3.8 

1004F 22.0 WEB upstream reference fin 10.9 8.0 48.3 -14.4 4.4 

1004L 22.0 WEB upstream reference liver 8.0 8.9 47.2 -14.6 5.9 

1004M 22.0 WEB upstream reference muscle 12.5 7.3 45.7 -13.9 3.7 

1004S 22.0 WEB upstream reference mucus 9.0 7.9 34.3 -13.6 3.8 

1005F 19.4 WEB downstream restricted fin 11.0 6.5 43.4 -15.4 3.9 

1005L 19.4 WEB downstream restricted liver 11.8 6.8 50.0 -15.5 4.3 

1005M 19.4 WEB downstream restricted muscle 13.6 6.5 45.9 -15.6 3.4 

1005S 19.4 WEB downstream restricted mucus 12.3 6.7 45.0 -15.6 3.7 

1006F 15.9 WEB downstream restricted fin 11.1 6.8 43.0 -15.2 3.9 

1006L 15.9 WEB downstream restricted liver 9.7 6.4 44.9 -15.7 4.6 

1006M 15.9 WEB downstream restricted muscle 13.4 7.3 44.4 -15.6 3.3 

1006S 15.9 WEB downstream restricted mucus 12.1 7.5 43.2 -15.3 3.6 

1007F 17 WEB downstream reference fin 10.3 8.8 41.9 -16.3 4.1 
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1007L 17 WEB downstream reference liver 9.2 10.2 42.1 -17.4 4.6 

1007M 17 WEB downstream reference muscle 14.5 8.8 51.8 -16.2 3.6 

1007S 17 WEB downstream reference mucus 11.8 9.7 44.5 -16.0 3.8 

1008F 16.8 WEB upstream restricted fin 10.5 10.2 42.0 -14.9 4.0 

1008L 16.8 WEB upstream restricted liver 11.0 8.7 43.4 -15.2 3.9 

1008M 16.8 WEB upstream restricted muscle 8.1 8.6 27.2 -14.6 3.4 

1008S 16.8 WEB upstream restricted mucus 11.5 8.5 42.7 -14.7 3.7 

1009F 18.8 WEB upstream restricted fin 9.0 9.2 40.1 -20.0 4.5 

1009L 18.8 WEB upstream restricted liver 9.6 9.7 42.5 -20.3 4.4 

1009M 18.8 WEB upstream restricted muscle 12.2 9.1 43.5 -18.5 3.6 

1009S 18.8 WEB upstream restricted mucus 11.7 9.3 42.0 -19.0 3.6 

1010F 17.1 WEB upstream restricted fin 10.6 8.9 42.9 -16.0 4.1 

1010L 17.1 WEB upstream restricted liver 10.7 9.5 42.3 -16.5 4.0 

1010M 17.1 WEB upstream restricted muscle 12.7 8.7 44.0 -17.4 3.5 

1010S 17.1 WEB upstream restricted mucus 12.8 8.7 45.8 -16.1 3.6 

1011F 18.1 WEB upstream restricted fin 9.7 8.6 40.5 -15.2 4.2 

1011L 18.1 WEB upstream restricted liver 10.9 9.2 44.3 -15.4 4.1 

1011M 18.1 WEB upstream restricted muscle 12.3 8.9 45.5 -15.5 3.7 

1011S 18.1 WEB upstream restricted mucus 11.7 8.4 42.7 -15.0 3.7 

1012F 10.3 WEB downstream restricted fin 10.9 8.5 50.3 -20.1 4.6 

1012L 10.3 WEB downstream restricted liver 7.8 8.8 55.2 -22.2 7.0 

1012S 10.3 WEB downstream restricted mucus 11.2 8.2 45.5 -19.6 4.1 

1013F 18.1 HSE downstream restricted fin 11.3 8.0 45.6 -15.2 4.0 

1013L 18.1 HSE downstream restricted liver 10.3 8.1 47.5 -15.4 4.6 

1013M 18.1 HSE downstream restricted muscle 12.4 7.6 43.7 -15.3 3.5 

1013S 18.1 HSE downstream restricted mucus 10.9 7.9 41.0 -15.0 3.8 

1014F 53.5 HSE downstream restricted fin 10.4 11.3 39.1 -15.6 3.7 

1014L 53.5 HSE downstream restricted liver 11.4 11.2 46.2 -16.2 4.0 

1014M 53.5 HSE downstream restricted muscle 12.1 10.3 44.5 -15.9 3.7 

1014S 53.5 HSE downstream restricted mucus 11.8 10.9 44.5 -16.3 3.8 

1015F 51.6 HSE downstream restricted fin 11.1 11.2 43.1 -13.3 3.9 

1015L 51.6 HSE downstream restricted liver 9.6 10.5 41.0 -13.9 4.3 

1015M 51.6 HSE downstream restricted muscle 10.5 10.2 39.8 -14.8 3.8 

1015S 51.6 HSE downstream restricted mucus 10.2 10.3 41.3 -14.4 4.0 

1016F 27.7 HSE upstream restricted fin 7.3 9.5 30.7 -20.1 4.2 

1016L 27.7 HSE upstream restricted liver 12.2 9.4 50.3 -19.2 4.1 

1016M 27.7 HSE upstream restricted muscle 12.0 9.2 40.7 -20.1 3.4 

1016S 27.7 HSE upstream restricted mucus 10.5 8.9 38.5 -19.4 3.7 
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1017F 30.7 HSE upstream restricted fin 8.6 10.5 47.4 -19.2 5.5 

1017L 30.7 HSE upstream restricted liver 9.7 10.4 39.7 -18.0 4.1 

1017M 30.7 HSE upstream restricted muscle 11.5 10.2 50.0 -19.4 4.4 

1017S 30.7 HSE upstream restricted mucus 11.9 10.3 44.2 -17.5 3.7 

1018F 30.7 HSE upstream restricted fin 8.2 10.3 47.9 -19.5 5.9 

1018L 30.7 HSE upstream restricted liver 10.0 9.9 42.0 -18.0 4.2 

1018M 30.7 HSE upstream restricted muscle 11.3 9.6 45.1 -19.5 4.0 

1018S 30.7 HSE upstream restricted mucus 11.1 9.7 43.1 -18.0 3.9 

1019F 20.3 HSE upstream restricted fin 10.9 8.7 41.7 -21.9 3.8 

1019L 20.3 HSE upstream restricted liver 10.9 9.2 49.8 -22.7 4.6 

1019M 20.3 HSE upstream restricted muscle 13.0 8.6 45.1 -22.3 3.5 

1019S 20.3 HSE upstream restricted mucus 12.5 8.3 45.5 -21.6 3.7 

1020F 18.3 HSE upstream restricted fin 11.6 8.6 43.5 -20.5 3.8 

1020L 18.3 HSE upstream restricted liver 11.8 9.1 50.8 -21.1 4.3 

1020M 18.3 HSE upstream restricted muscle 12.3 8.7 41.5 -21.0 3.4 

1020S 18.3 HSE upstream restricted mucus 12.9 8.2 45.5 -20.7 3.5 

1021F 29.2 HSE upstream restricted fin 9.3 10.3 41.5 -19.0 4.5 

1021L 29.2 HSE upstream restricted liver 9.3 10.4 44.2 -18.1 4.8 

1021S 29.2 HSE upstream restricted mucus 11.6 10.0 41.4 -18.4 3.6 

1022F 30.5 HSE upstream restricted fin 11.9 10.1 45.0 -17.9 3.8 

1022L 30.5 HSE upstream restricted liver 10.8 10.7 47.4 -18.4 4.4 

1022M 30.5 HSE upstream restricted muscle 9.5 9.9 52.9 -20.3 5.5 

1022S 30.5 HSE upstream restricted mucus 10.1 9.7 37.1 -17.9 3.7 

1023F 24.5 HSE downstream reference fin 8.4 8.5 35.7 -14.9 4.2 

1023L 24.5 HSE downstream reference liver 8.1 9.0 37.0 -14.6 4.6 

1023M 24.5 HSE downstream reference muscle 12.7 7.9 42.8 -14.7 3.4 

1023S 24.5 HSE downstream reference mucus 11.6 8.4 40.6 -14.0 3.5 

1024F 29.2 HSE downstream reference fin 11.2 9.2 43.9 -17.8 3.9 

1024L 29.2 HSE downstream reference liver 10.2 9.6 42.0 -18.3 4.1 

1024M 29.2 HSE downstream reference muscle 12.4 8.9 39.4 -17.6 3.2 

1024S 29.2 HSE downstream reference mucus 11.4 9.2 41.2 -17.3 3.6 

1025F 19.9 HSE upstream reference fin 10.8 9.5 41.7 -20.1 3.8 

1025L 19.9 HSE upstream reference liver 11.2 10.7 46.1 -22.1 4.1 

1025S 19.9 HSE upstream reference mucus 12.0 10.0 42.6 -21.2 3.6 

1026F 28.1 HSE upstream reference fin 10.5 10.5 46.2 -19.6 4.4 

1026L 28.1 HSE upstream reference liver 9.3 10.7 43.3 -18.7 4.6 

1026M 28.1 HSE upstream reference muscle 11.8 10.3 42.3 -19.8 3.6 

1026S 28.1 HSE upstream reference mucus 10.0 10.6 35.6 -18.9 3.6 
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1027F 16.3 HSE upstream reference fin 8.9 10.5 41.5 -17.2 4.7 

1027L 16.3 HSE upstream reference liver 11.3 11.0 46.8 -16.7 4.1 

1027M 16.3 HSE upstream reference muscle 11.2 10.0 38.5 -16.5 3.4 

1027S 16.3 HSE upstream reference mucus 11.3 10.1 39.7 -15.8 3.5 

1028F 43.8 HSE upstream reference fin 9.1 11.2 42.4 -16.1 4.6 

1028L 43.8 HSE upstream reference liver 8.5 11.7 46.8 -17.3 5.5 

1028M 43.8 HSE upstream reference muscle 7.8 10.4 57.2 -17.9 7.3 

1028S 43.8 HSE upstream reference mucus 11.2 11.2 44.4 -15.9 4.0 

1029F 21.7 PRE downstream reference fin 11.0 9.7 43.5 -16.7 3.9 

1029L 21.7 PRE downstream reference liver 11.6 9.4 45.7 -17.1 3.9 

1029M 21.7 PRE downstream reference muscle 13.2 9.6 44.1 -16.9 3.3 

1029S 21.7 PRE downstream reference mucus 12.7 9.3 44.4 -16.1 3.5 

1030F 28.2 PRE downstream reference fin 10.6 10.3 39.7 -15.7 3.7 

1030L 28.2 PRE downstream reference liver 10.7 10.4 47.2 -16.6 4.4 

1030M 28.2 PRE downstream reference muscle 14.0 9.4 46.1 -16.1 3.3 

1030S 28.2 PRE downstream reference mucus 11.6 9.9 41.9 -15.8 3.6 

1031F 27.2 PRE downstream reference fin 10.2 8.2 38.1 -12.7 3.7 

1031L 27.2 PRE downstream reference liver 10.4 9.1 46.6 -14.2 4.5 

1031M 27.2 PRE downstream reference muscle 12.9 7.9 42.6 -13.0 3.3 

1031S 27.2 PRE downstream reference mucus 10.4 8.1 38.2 -13.2 3.7 

1032F 51.7 PRE downstream reference fin 11.0 11.8 50.5 -14.9 4.6 

1032L 51.7 PRE downstream reference liver 8.9 11.7 47.5 -14.9 5.4 

1032M 51.7 PRE downstream reference muscle 11.7 11.3 47.8 -15.3 4.1 

1032S 51.7 PRE downstream reference mucus 11.0 11.5 42.7 -14.2 3.9 

1033F 29.9 PRE downstream reference fin 8.4 10.8 41.3 -14.0 4.9 

1033L 29.9 PRE downstream reference liver 10.1 10.3 37.3 -13.4 3.7 

1033M 29.9 PRE downstream reference muscle 10.6 10.3 53.8 -15.5 5.1 

1033S 29.9 PRE downstream reference mucus 13.2 10.6 56.6 -13.8 4.3 

1034F 50.3 PRE downstream reference fin 9.3 11.4 34.7 -13.4 3.7 

1034L 50.3 PRE downstream reference liver 9.1 11.0 41.3 -14.0 4.5 

1034M 50.3 PRE downstream reference muscle 10.6 11.0 43.2 -15.5 4.1 

1034S 50.3 PRE downstream reference mucus 11.1 11.2 41.8 -14.0 3.8 

1035F 24.1 PRE downstream restricted fin 9.6 10.4 40.9 -16.4 4.2 

1035L 24.1 PRE downstream restricted liver 11.0 10.6 44.1 -16.6 4.0 

1035M 24.1 PRE downstream restricted muscle 14.7 9.7 47.9 -15.9 3.3 

1035S 24.1 PRE downstream restricted mucus 7.9 9.6 28.6 -16.3 3.6 

1036F 22.1 PRE downstream restricted fin 10.7 11.0 42.2 -15.7 3.9 

1036L 22.1 PRE downstream restricted liver 11.6 10.9 44.2 -16.0 3.8 
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1036M 22.1 PRE downstream restricted muscle 14.9 10.7 48.4 -15.9 3.2 

1036S 22.1 PRE downstream restricted mucus 11.6 10.3 41.3 -15.5 3.6 

1037F 23.6 PRE downstream restricted fin 8.9 11.3 33.3 -15.8 3.7 

1037L 23.6 PRE downstream restricted liver 11.7 11.1 50.4 -17.1 4.3 

1037M 23.6 PRE downstream restricted muscle 10.4 10.5 33.0 -16.2 3.2 

1037S 23.6 PRE downstream restricted mucus 12.3 10.4 43.0 -15.5 3.5 

1038F 25.5 PRE downstream restricted fin 10.6 10.7 39.9 -16.9 3.8 

1038L 25.5 PRE downstream restricted liver 12.0 10.7 47.4 -17.4 4.0 

1038M 25.5 PRE downstream restricted muscle 11.6 10.2 38.4 -16.6 3.3 

1038S 25.5 PRE downstream restricted mucus 11.8 10.0 42.7 -17.2 3.6 

1039F 46.2 PRE downstream restricted fin 11.0 11.5 44.0 -14.9 4.0 

1039L 46.2 PRE downstream restricted liver 9.2 11.0 43.2 -15.1 4.7 

1039M 46.2 PRE downstream restricted muscle 13.6 11.0 45.7 -15.0 3.4 

1039S 46.2 PRE downstream restricted mucus 11.5 11.0 44.1 -14.9 3.8 

1040F 17.4 PRE upstream restricted fin 10.7 10.9 46.1 -20.5 4.3 

1040L 17.4 PRE upstream restricted liver 11.3 11.1 43.4 -20.3 3.8 

1040M 17.4 PRE upstream restricted muscle 13.0 11.0 43.4 -19.8 3.3 

1040S 17.4 PRE upstream restricted mucus 12.2 10.6 42.3 -19.4 3.5 

1041F 21.1 PRE upstream restricted fin 10.9 11.2 45.6 -19.4 4.2 

1041L 21.1 PRE upstream restricted liver 11.5 11.2 44.2 -19.9 3.8 

1041M 21.1 PRE upstream restricted muscle 11.6 11.1 43.4 -19.8 3.7 

1041S 21.1 PRE upstream restricted mucus 10.9 10.5 38.5 -18.9 3.5 

1042F 19.2 PRE upstream restricted fin 11.0 10.0 41.4 -19.4 3.8 

1042L 19.2 PRE upstream restricted liver 10.1 10.5 41.9 -20.9 4.2 

1042M 19.2 PRE upstream restricted muscle 12.8 9.6 45.1 -19.8 3.5 

1042S 19.2 PRE upstream restricted mucus 12.6 9.7 44.7 -19.9 3.5 

1043F 18.3 PRE upstream restricted fin 10.4 10.2 47.1 -21.4 4.5 

1043L 18.3 PRE upstream restricted liver 10.5 10.5 48.2 -22.4 4.6 

1043M 18.3 PRE upstream restricted muscle 12.4 10.1 41.5 -20.9 3.3 

1043S 18.3 PRE upstream restricted mucus 12.6 10.0 44.3 -20.9 3.5 

1044F 23.3 PRE upstream restricted fin 12.0 11.2 46.9 -19.1 3.9 

1044L 23.3 PRE upstream restricted liver 11.7 11.1 46.5 -19.5 4.0 

1044M 23.3 PRE upstream restricted muscle 11.8 10.8 40.1 -20.0 3.4 

1044S 23.3 PRE upstream restricted mucus 14.8 10.5 51.0 -18.6 3.5 

1045F 26.7 PRE upstream restricted fin 11.8 11.5 47.0 -19.1 4.0 

1045L 26.7 PRE upstream restricted liver 11.0 11.1 51.4 -18.8 4.7 

1045M 26.7 PRE upstream restricted muscle 13.0 11.4 45.1 -20.1 3.5 

1045S 26.7 PRE upstream restricted mucus 12.1 10.7 43.9 -18.4 3.6 
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1046F 24.1 PRE upstream restricted fin 11.3 11.7 41.9 -17.2 3.7 

1046L 24.1 PRE upstream restricted liver 10.9 11.2 42.5 -17.0 3.9 

1046S 24.1 PRE upstream restricted mucus 13.3 11.6 46.9 -16.7 3.5 

1047F 47.0 PRE upstream restricted fin 10.2 12.5 44.5 -17.2 4.4 

1047L 47.0 PRE upstream restricted liver 9.0 12.5 42.9 -16.4 4.8 

1047M 47.0 PRE upstream restricted muscle 12.3 11.8 53.9 -18.4 4.4 

1047S 47.0 PRE upstream restricted mucus 11.4 12.0 42.2 -16.5 3.7 

1048F 22.7 PRE upstream reference fin 12.1 10.0 49.2 -17.5 4.1 

1048L 22.7 PRE upstream reference liver 9.6 10.7 41.3 -18.6 4.3 

1048M 22.7 PRE upstream reference muscle 12.4 9.7 41.4 -17.4 3.3 

1048S 22.7 PRE upstream reference mucus 12.0 9.6 41.9 -17.1 3.5 

1049F 21.8 PRE upstream reference fin 11.0 11.2 42.3 -18.9 3.9 

1049L 21.8 PRE upstream reference liver 5.1 11.2 20.0 -18.9 3.9 

1049M 21.8 PRE upstream reference muscle 14.4 10.7 48.1 -19.3 3.3 

1049S 21.8 PRE upstream reference mucus 11.1 10.7 41.2 -18.5 3.7 

1050F 27.0 PRE upstream reference fin 11.1 11.5 40.9 -16.8 3.7 

1050L 27.0 PRE upstream reference liver 10.8 11.6 40.1 -17.2 3.7 

1050M 27.0 PRE upstream reference muscle 16.0 10.9 54.1 -17.4 3.4 

1050S 27.0 PRE upstream reference mucus 8.8 10.6 31.1 -16.9 3.5 

1051F 26.4 PRE upstream reference fin 11.5 11.2 44.1 -17.3 3.8 

1051L 26.4 PRE upstream reference liver 11.1 11.7 47.6 -18.0 4.3 

1051M 26.4 PRE upstream reference muscle 15.3 10.4 51.1 -17.5 3.3 

1051S 26.4 PRE upstream reference mucus 10.6 10.5 38.3 -17.1 3.6 

1052F 30.0 PRE upstream reference fin 12.6 13.0 48.2 -16.3 3.8 

1052L 30.0 PRE upstream reference liver 9.9 12.6 50.4 -17.4 5.1 

1052M 30.0 PRE upstream reference muscle 9.4 12.8 54.8 -19.1 5.8 

1052S 30.0 PRE upstream reference mucus 12.4 12.2 48.3 -16.7 3.9 

1053F 34.6 PRE upstream reference fin 11.8 12.3 42.5 -15.6 3.6 

1053L 34.6 PRE upstream reference liver 11.7 12.5 52.2 -17.8 4.5 

1053M 34.6 PRE upstream reference muscle 13.4 11.5 44.7 -16.3 3.3 

1053S 34.6 PRE upstream reference mucus 11.9 11.3 43.6 -15.8 3.7 

1000F 26.3 WEB upstream reference fin 9.4 11.4 42.1 -15.6 4.5 

1000L 26.3 WEB upstream reference liver 10.7 11.3 44.8 -15.2 4.2 

1000M 26.3 WEB upstream reference muscle 11.6 11.0 41.4 -15.9 3.6 

1000S 26.3 WEB upstream reference mucus 10.0 11.0 38.6 -14.9 3.9 

1001F 27.2 WEB upstream restricted fin 10.3 8.3 41.5 -12.3 4.0 

1001L 27.2 WEB upstream restricted liver 11.6 8.3 48.1 -12.9 4.2 

1001M 27.2 WEB upstream restricted muscle 12.6 8.0 45.3 -13.4 3.6 
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1001S 27.2 WEB upstream restricted mucus 10.7 7.9 40.2 -12.3 3.7 

1002F 17.9 WEB upstream restricted fin 9.9 9.5 48.0 -13.7 4.9 

1002L 17.9 WEB upstream restricted liver 10.2 10.0 52.2 -14.2 5.1 

1002M 17.9 WEB upstream restricted muscle 12.1 9.3 51.5 -14.5 4.3 

1002S 17.9 WEB upstream restricted mucus 13.9 9.5 50.7 -13.4 3.6 

1003F 15.7 WEB upstream reference fin 9.8 10.8 44.8 -19.8 4.6 

1003L 15.7 WEB upstream reference liver 10.4 11.2 47.1 -20.2 4.5 

1003M 15.7 WEB upstream reference muscle 12.4 11.2 47.5 -20.0 3.8 

1003S 15.7 WEB upstream reference mucus 11.5 10.5 43.5 -19.6 3.8 

1004F 22.0 WEB upstream reference fin 10.9 8.0 48.3 -13.0 4.4 

1004L 22.0 WEB upstream reference liver 8.0 8.9 47.2 -12.3 5.9 

1004M 22.0 WEB upstream reference muscle 12.5 7.3 45.7 -13.0 3.7 

1004S 22.0 WEB upstream reference mucus 9.0 7.9 34.3 -12.6 3.8 

1005F 19.4 WEB downstream restricted fin 11.0 6.5 43.4 -14.3 3.9 

1005L 19.4 WEB downstream restricted liver 11.8 6.8 50.0 -14.2 4.3 

1005M 19.4 WEB downstream restricted muscle 13.6 6.5 45.9 -14.9 3.4 

1005S 19.4 WEB downstream restricted mucus 12.3 6.7 45.0 -14.8 3.7 

1006F 15.9 WEB downstream restricted fin 11.1 6.8 43.0 -14.2 3.9 

1006L 15.9 WEB downstream restricted liver 9.7 6.4 44.9 -14.2 4.6 

1006M 15.9 WEB downstream restricted muscle 13.4 7.3 44.4 -14.9 3.3 

1006S 15.9 WEB downstream restricted mucus 12.1 7.5 43.2 -14.5 3.6 

1007F 17 WEB downstream reference fin 10.3 8.8 41.9 -15.1 4.1 

1007L 17 WEB downstream reference liver 9.2 10.2 42.1 -16.0 4.6 

1007M 17 WEB downstream reference muscle 14.5 8.8 51.8 -15.3 3.6 

1007S 17 WEB downstream reference mucus 11.8 9.7 44.5 -15.0 3.8 

1008F 16.8 WEB upstream restricted fin 10.5 10.2 42.0 -13.7 4.0 

1008L 16.8 WEB upstream restricted liver 11.0 8.7 43.4 -14.1 3.9 

1008M 16.8 WEB upstream restricted muscle 8.1 8.6 27.2 -13.9 3.4 

1008S 16.8 WEB upstream restricted mucus 11.5 8.5 42.7 -13.8 3.7 

1009F 18.8 WEB upstream restricted fin 9.0 9.2 40.1 -18.5 4.5 

1009L 18.8 WEB upstream restricted liver 9.6 9.7 42.5 -18.9 4.4 

1009M 18.8 WEB upstream restricted muscle 12.2 9.1 43.5 -17.6 3.6 

1009S 18.8 WEB upstream restricted mucus 11.7 9.3 42.0 -18.1 3.6 

1010F 17.1 WEB upstream restricted fin 10.6 8.9 42.9 -14.9 4.1 

1010L 17.1 WEB upstream restricted liver 10.7 9.5 42.3 -15.4 4.0 

1010M 17.1 WEB upstream restricted muscle 12.7 8.7 44.0 -16.6 3.5 

1010S 17.1 WEB upstream restricted mucus 12.8 8.7 45.8 -15.3 3.6 

1011F 18.1 WEB upstream restricted fin 9.7 8.6 40.5 -14.0 4.2 
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1011L 18.1 WEB upstream restricted liver 10.9 9.2 44.3 -14.2 4.1 

1011M 18.1 WEB upstream restricted muscle 12.3 8.9 45.5 -14.5 3.7 

1011S 18.1 WEB upstream restricted mucus 11.7 8.4 42.7 -14.1 3.7 

1012F 10.3 WEB downstream restricted fin 10.9 8.5 50.3 -18.6 4.6 

1012L 10.3 WEB downstream restricted liver 7.8 8.8 55.2 -19.2 7.0 

1012S 10.3 WEB downstream restricted mucus 11.2 8.2 45.5 -18.5 4.1 

1013F 18.1 HSE downstream restricted fin 11.3 8.0 45.6 -14.1 4.0 

1013L 18.1 HSE downstream restricted liver 10.3 8.1 47.5 -13.9 4.6 

1013M 18.1 HSE downstream restricted muscle 12.4 7.6 43.7 -14.5 3.5 

1013S 18.1 HSE downstream restricted mucus 10.9 7.9 41.0 -14.0 3.8 

1014F 53.5 HSE downstream restricted fin 10.4 11.3 39.1 -14.7 3.7 

1014L 53.5 HSE downstream restricted liver 11.4 11.2 46.2 -15.0 4.0 

1014M 53.5 HSE downstream restricted muscle 12.1 10.3 44.5 -15.0 3.7 

1014S 53.5 HSE downstream restricted mucus 11.8 10.9 44.5 -15.3 3.8 

1015F 51.6 HSE downstream restricted fin 11.1 11.2 43.1 -12.3 3.9 

1015L 51.6 HSE downstream restricted liver 9.6 10.5 41.0 -12.6 4.3 

1015M 51.6 HSE downstream restricted muscle 10.5 10.2 39.8 -13.9 3.8 

1015S 51.6 HSE downstream restricted mucus 10.2 10.3 41.3 -13.2 4.0 

1016F 27.7 HSE upstream restricted fin 7.3 9.5 30.7 -18.9 4.2 

1016L 27.7 HSE upstream restricted liver 12.2 9.4 50.3 -18.0 4.1 

1016M 27.7 HSE upstream restricted muscle 12.0 9.2 40.7 -19.4 3.4 

1016S 27.7 HSE upstream restricted mucus 10.5 8.9 38.5 -18.6 3.7 

1017F 30.7 HSE upstream restricted fin 8.6 10.5 47.4 -17.1 5.5 

1017L 30.7 HSE upstream restricted liver 9.7 10.4 39.7 -16.8 4.1 

1017M 30.7 HSE upstream restricted muscle 11.5 10.2 50.0 -18.1 4.4 

1017S 30.7 HSE upstream restricted mucus 11.9 10.3 44.2 -16.6 3.7 

1018F 30.7 HSE upstream restricted fin 8.2 10.3 47.9 -17.2 5.9 

1018L 30.7 HSE upstream restricted liver 10.0 9.9 42.0 -16.7 4.2 

1018M 30.7 HSE upstream restricted muscle 11.3 9.6 45.1 -18.3 4.0 

1018S 30.7 HSE upstream restricted mucus 11.1 9.7 43.1 -17.0 3.9 

1019F 20.3 HSE upstream restricted fin 10.9 8.7 41.7 -20.9 3.8 

1019L 20.3 HSE upstream restricted liver 10.9 9.2 49.8 -21.2 4.6 

1019M 20.3 HSE upstream restricted muscle 13.0 8.6 45.1 -21.5 3.5 

1019S 20.3 HSE upstream restricted mucus 12.5 8.3 45.5 -20.7 3.7 

1020F 18.3 HSE upstream restricted fin 11.6 8.6 43.5 -19.6 3.8 

1020L 18.3 HSE upstream restricted liver 11.8 9.1 50.8 -19.7 4.3 

1020M 18.3 HSE upstream restricted muscle 12.3 8.7 41.5 -20.3 3.4 

1020S 18.3 HSE upstream restricted mucus 12.9 8.2 45.5 -19.9 3.5 
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1021F 29.2 HSE upstream restricted fin 9.3 10.3 41.5 -17.6 4.5 

1021L 29.2 HSE upstream restricted liver 9.3 10.4 44.2 -16.5 4.8 

1021S 29.2 HSE upstream restricted mucus 11.6 10.0 41.4 -17.6 3.6 

1022F 30.5 HSE upstream restricted fin 11.9 10.1 45.0 -17.0 3.8 

1022L 30.5 HSE upstream restricted liver 10.8 10.7 47.4 -17.1 4.4 

1022M 30.5 HSE upstream restricted muscle 9.5 9.9 52.9 -18.2 5.5 

1022S 30.5 HSE upstream restricted mucus 10.1 9.7 37.1 -17.0 3.7 

1023F 24.5 HSE downstream reference fin 8.4 8.5 35.7 -13.7 4.2 

1023L 24.5 HSE downstream reference liver 8.1 9.0 37.0 -13.1 4.6 

1023M 24.5 HSE downstream reference muscle 12.7 7.9 42.8 -14.0 3.4 

1023S 24.5 HSE downstream reference mucus 11.6 8.4 40.6 -13.2 3.5 

1024F 29.2 HSE downstream reference fin 11.2 9.2 43.9 -16.8 3.9 

1024L 29.2 HSE downstream reference liver 10.2 9.6 42.0 -17.1 4.1 

1024M 29.2 HSE downstream reference muscle 12.4 8.9 39.4 -17.0 3.2 

1024S 29.2 HSE downstream reference mucus 11.4 9.2 41.2 -16.5 3.6 

1025F 19.9 HSE upstream reference fin 10.8 9.5 41.7 -19.1 3.8 

1025L 19.9 HSE upstream reference liver 11.2 10.7 46.1 -20.9 4.1 

1025S 19.9 HSE upstream reference mucus 12.0 10.0 42.6 -20.3 3.6 

1026F 28.1 HSE upstream reference fin 10.5 10.5 46.2 -18.2 4.4 

1026L 28.1 HSE upstream reference liver 9.3 10.7 43.3 -17.1 4.6 

1026M 28.1 HSE upstream reference muscle 11.8 10.3 42.3 -18.9 3.6 

1026S 28.1 HSE upstream reference mucus 10.0 10.6 35.6 -18.1 3.6 

1027F 16.3 HSE upstream reference fin 8.9 10.5 41.5 -15.6 4.7 

1027L 16.3 HSE upstream reference liver 11.3 11.0 46.8 -15.5 4.1 

1027M 16.3 HSE upstream reference muscle 11.2 10.0 38.5 -15.7 3.4 

1027S 16.3 HSE upstream reference mucus 11.3 10.1 39.7 -15.0 3.5 

1028F 43.8 HSE upstream reference fin 9.1 11.2 42.4 -14.6 4.6 

1028L 43.8 HSE upstream reference liver 8.5 11.7 46.8 -15.2 5.5 

1028M 43.8 HSE upstream reference muscle 7.8 10.4 57.2 -14.8 7.3 

1028S 43.8 HSE upstream reference mucus 11.2 11.2 44.4 -14.8 4.0 

1029F 21.7 PRE downstream reference fin 11.0 9.7 43.5 -15.6 3.9 

1029L 21.7 PRE downstream reference liver 11.6 9.4 45.7 -16.0 3.9 

1029M 21.7 PRE downstream reference muscle 13.2 9.6 44.1 -16.2 3.3 

1029S 21.7 PRE downstream reference mucus 12.7 9.3 44.4 -15.3 3.5 

1030F 28.2 PRE downstream reference fin 10.6 10.3 39.7 -14.7 3.7 

1030L 28.2 PRE downstream reference liver 10.7 10.4 47.2 -15.2 4.4 

1030M 28.2 PRE downstream reference muscle 14.0 9.4 46.1 -15.4 3.3 

1030S 28.2 PRE downstream reference mucus 11.6 9.9 41.9 -15.0 3.6 
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1031F 27.2 PRE downstream reference fin 10.2 8.2 38.1 -11.8 3.7 

1031L 27.2 PRE downstream reference liver 10.4 9.1 46.6 -12.8 4.5 

1031M 27.2 PRE downstream reference muscle 12.9 7.9 42.6 -12.4 3.3 

1031S 27.2 PRE downstream reference mucus 10.4 8.1 38.2 -12.3 3.7 

1032F 51.7 PRE downstream reference fin 11.0 11.8 50.5 -13.4 4.6 

1032L 51.7 PRE downstream reference liver 8.9 11.7 47.5 -12.9 5.4 

1032M 51.7 PRE downstream reference muscle 11.7 11.3 47.8 -14.1 4.1 

1032S 51.7 PRE downstream reference mucus 11.0 11.5 42.7 -13.1 3.9 

1033F 29.9 PRE downstream reference fin 8.4 10.8 41.3 -12.2 4.9 

1033L 29.9 PRE downstream reference liver 10.1 10.3 37.3 -12.5 3.7 

1033M 29.9 PRE downstream reference muscle 10.6 10.3 53.8 -13.7 5.1 

1033S 29.9 PRE downstream reference mucus 13.2 10.6 56.6 -12.5 4.3 

1034F 50.3 PRE downstream reference fin 9.3 11.4 34.7 -12.4 3.7 

1034L 50.3 PRE downstream reference liver 9.1 11.0 41.3 -12.6 4.5 

1034M 50.3 PRE downstream reference muscle 10.6 11.0 43.2 -14.3 4.1 

1034S 50.3 PRE downstream reference mucus 11.1 11.2 41.8 -13.0 3.8 

1035F 24.1 PRE downstream restricted fin 9.6 10.4 40.9 -15.1 4.2 

1035L 24.1 PRE downstream restricted liver 11.0 10.6 44.1 -15.5 4.0 

1035M 24.1 PRE downstream restricted muscle 14.7 9.7 47.9 -15.3 3.3 

1035S 24.1 PRE downstream restricted mucus 7.9 9.6 28.6 -15.4 3.6 

1036F 22.1 PRE downstream restricted fin 10.7 11.0 42.2 -14.6 3.9 

1036L 22.1 PRE downstream restricted liver 11.6 10.9 44.2 -15.1 3.8 

1036M 22.1 PRE downstream restricted muscle 14.9 10.7 48.4 -15.3 3.2 

1036S 22.1 PRE downstream restricted mucus 11.6 10.3 41.3 -14.7 3.6 

1037F 23.6 PRE downstream restricted fin 8.9 11.3 33.3 -14.8 3.7 

1037L 23.6 PRE downstream restricted liver 11.7 11.1 50.4 -15.8 4.3 

1037M 23.6 PRE downstream restricted muscle 10.4 10.5 33.0 -15.6 3.2 

1037S 23.6 PRE downstream restricted mucus 12.3 10.4 43.0 -14.7 3.5 

1038F 25.5 PRE downstream restricted fin 10.6 10.7 39.9 -15.9 3.8 

1038L 25.5 PRE downstream restricted liver 12.0 10.7 47.4 -16.3 4.0 

1038M 25.5 PRE downstream restricted muscle 11.6 10.2 38.4 -15.9 3.3 

1038S 25.5 PRE downstream restricted mucus 11.8 10.0 42.7 -16.3 3.6 

1039F 46.2 PRE downstream restricted fin 11.0 11.5 44.0 -13.8 4.0 

1039L 46.2 PRE downstream restricted liver 9.2 11.0 43.2 -13.6 4.7 

1039M 46.2 PRE downstream restricted muscle 13.6 11.0 45.7 -14.3 3.4 

1039S 46.2 PRE downstream restricted mucus 11.5 11.0 44.1 -13.9 3.8 

1040F 17.4 PRE upstream restricted fin 10.7 10.9 46.1 -19.2 4.3 

1040L 17.4 PRE upstream restricted liver 11.3 11.1 43.4 -19.3 3.8 
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1040M 17.4 PRE upstream restricted muscle 13.0 11.0 43.4 -19.2 3.3 

1040S 17.4 PRE upstream restricted mucus 12.2 10.6 42.3 -18.6 3.5 

1041F 21.1 PRE upstream restricted fin 10.9 11.2 45.6 -18.1 4.2 

1041L 21.1 PRE upstream restricted liver 11.5 11.2 44.2 -18.9 3.8 

1041M 21.1 PRE upstream restricted muscle 11.6 11.1 43.4 -18.9 3.7 

1041S 21.1 PRE upstream restricted mucus 10.9 10.5 38.5 -18.1 3.5 

1042F 19.2 PRE upstream restricted fin 11.0 10.0 41.4 -18.4 3.8 

1042L 19.2 PRE upstream restricted liver 10.1 10.5 41.9 -19.6 4.2 

1042M 19.2 PRE upstream restricted muscle 12.8 9.6 45.1 -19.0 3.5 

1042S 19.2 PRE upstream restricted mucus 12.6 9.7 44.7 -19.1 3.5 

1043F 18.3 PRE upstream restricted fin 10.4 10.2 47.1 -20.0 4.5 

1043L 18.3 PRE upstream restricted liver 10.5 10.5 48.2 -20.9 4.6 

1043M 18.3 PRE upstream restricted muscle 12.4 10.1 41.5 -20.2 3.3 

1043S 18.3 PRE upstream restricted mucus 12.6 10.0 44.3 -20.1 3.5 

1044F 23.3 PRE upstream restricted fin 12.0 11.2 46.9 -18.0 3.9 

1044L 23.3 PRE upstream restricted liver 11.7 11.1 46.5 -18.4 4.0 

1044M 23.3 PRE upstream restricted muscle 11.8 10.8 40.1 -19.2 3.4 

1044S 23.3 PRE upstream restricted mucus 14.8 10.5 51.0 -17.9 3.5 

1045F 26.7 PRE upstream restricted fin 11.8 11.5 47.0 -18.0 4.0 

1045L 26.7 PRE upstream restricted liver 11.0 11.1 51.4 -17.3 4.7 

1045M 26.7 PRE upstream restricted muscle 13.0 11.4 45.1 -19.4 3.5 

1045S 26.7 PRE upstream restricted mucus 12.1 10.7 43.9 -17.5 3.6 

1046F 24.1 PRE upstream restricted fin 11.3 11.7 41.9 -16.3 3.7 

1046L 24.1 PRE upstream restricted liver 10.9 11.2 42.5 -15.9 3.9 

1046S 24.1 PRE upstream restricted mucus 13.3 11.6 46.9 -15.9 3.5 

1047F 47.0 PRE upstream restricted fin 10.2 12.5 44.5 -15.8 4.4 

1047L 47.0 PRE upstream restricted liver 9.0 12.5 42.9 -14.7 4.8 

1047M 47.0 PRE upstream restricted muscle 12.3 11.8 53.9 -17.0 4.4 

1047S 47.0 PRE upstream restricted mucus 11.4 12.0 42.2 -15.6 3.7 

1048F 22.7 PRE upstream reference fin 12.1 10.0 49.2 -16.4 4.1 

1048L 22.7 PRE upstream reference liver 9.6 10.7 41.3 -17.3 4.3 

1048M 22.7 PRE upstream reference muscle 12.4 9.7 41.4 -16.7 3.3 

1048S 22.7 PRE upstream reference mucus 12.0 9.6 41.9 -16.3 3.5 

1049F 21.8 PRE upstream reference fin 11.0 11.2 42.3 -17.9 3.9 

1049L 21.8 PRE upstream reference liver 5.1 11.2 20.0 -17.8 3.9 

1049M 21.8 PRE upstream reference muscle 14.4 10.7 48.1 -18.6 3.3 

1049S 21.8 PRE upstream reference mucus 11.1 10.7 41.2 -17.5 3.7 

1050F 27.0 PRE upstream reference fin 11.1 11.5 40.9 -15.9 3.7 
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1050L 27.0 PRE upstream reference liver 10.8 11.6 40.1 -16.3 3.7 

1050M 27.0 PRE upstream reference muscle 16.0 10.9 54.1 -16.7 3.4 

1050S 27.0 PRE upstream reference mucus 8.8 10.6 31.1 -16.1 3.5 

1051F 26.4 PRE upstream reference fin 11.5 11.2 44.1 -16.3 3.8 

1051L 26.4 PRE upstream reference liver 11.1 11.7 47.6 -16.7 4.3 

1051M 26.4 PRE upstream reference muscle 15.3 10.4 51.1 -16.8 3.3 

1051S 26.4 PRE upstream reference mucus 10.6 10.5 38.3 -16.3 3.6 

1052F 30.0 PRE upstream reference fin 12.6 13.0 48.2 -15.3 3.8 

1052L 30.0 PRE upstream reference liver 9.9 12.6 50.4 -15.6 5.1 

1052M 30.0 PRE upstream reference muscle 9.4 12.8 54.8 -16.8 5.8 

1052S 30.0 PRE upstream reference mucus 12.4 12.2 48.3 -15.6 3.9 

1053F 34.6 PRE upstream reference fin 11.8 12.3 42.5 -14.8 3.6 

1053L 34.6 PRE upstream reference liver 11.7 12.5 52.2 -16.4 4.5 

1053M 34.6 PRE upstream reference muscle 13.4 11.5 44.7 -15.6 3.3 

1053S 34.6 PRE upstream reference mucus 11.9 11.3 43.6 -14.9 3.7 
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Appendix D 
 
Bulk carbon and nitrogen isotope measurements of Geukensia demissus (ribbed mussel), Mytilus 
edulis (blue mussel), Melampus, bidentatus (coffee bean snail), and Littorina littorea (common 
periwinkle) collected from New England salt marshes and used to estimate trophic position 
(Chapter 2). 
 

Site Hydrology Location Species N δ15N  
HSE reference downstream L. littorea 1 6.1 

  upstream M. bidentatus, G. demissa 2 6.1 

 restricted downstream M. edulis, L. littorea 2 7.8 

  upstream L. littorea 1 7.5 
PRE reference downstream G. demissa 1 7.5 

  upstream M. bidentatus  1 7.5 

 restricted downstream L. littorea, G. demissa 2 8.4 

  upstream G. demissa 1 7.5 
WEB reference downstream L. littorea 1 6.5 

  upstream L. littorea 1 6.5 

 restricted downstream L. littorea 1 6.7 

  upstream L. littorea 1 7.5 
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