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ABSTRACT 

In the race for autonomous vehicles and advanced driver assistance systems (ADAS), the 

automotive industry has energetically pursued research in the area of sensor suites to achieve 

such technological feats. Commonly used autonomous and ADAS sensor suites include 

multiples of cameras, radio detection and ranging (RADAR), light detection and ranging 

(LiDAR), and ultrasonic sensors. Great interest has been generated in the use of LiDAR 

sensors and the value added in an automotive application.  LiDAR sensors can be used to 

detect and track vehicles, pedestrians, cyclists, and surrounding objects.   

A LiDAR sensor operates by emitting light amplification by stimulated emission of 

radiation (LASER) beams and receiving the reflected LASER beam to acquire relevant 

distance information. LiDAR reflections are organized in a three-dimensional environment 

known as a point cloud.  A major challenge in modern autonomous automotive research is 

to be able to process the dimensional environmental data in real time. The LiDAR sensor 

used in this research is the Velodyne HDL 32E, which provides nearly 700,000 data points 

per second. The large amount of data produced by a LiDAR sensor must be processed in a 

highly efficient way to be effective.  

This thesis provides an algorithm to process the LiDAR data from the sensors user datagram 

protocol (UDP) packet to output geometric shapes that can be further analyzed in a sensor 

suite or utilized for Bayesian tracking of objects. The algorithm can be divided into three 

stages: Stage One - UDP packet extraction; Stage Two - data clustering; and Stage Three - 

shape extraction. Stage One organizes the LiDAR data from a negative to a positive vertical 

angle during packet extraction so that subsequent steps can fully exploit the programming 

efficiencies.  Stage Two utilizes an adaptive breakpoint detector (ABD) for clustering 

objects based on a Euclidean distance threshold in the point cloud. Stage Three classifies 

each cluster into a shape that is either a point, line, L-shape, or a polygon using principal 

component analysis and shape fitting algorithms that have been modified to take advantage 

of the pre-organized data from Stage One. 

The proposed algorithm was written in the C language and the runtime was tested on a two 

Windows equipped machines where the algorithm completed the processing, on average, 

sparing 30% of the time between UDP data packets sent from the HDL32E. In comparison 

to related research, this algorithm performed over seven hundred and thirty-seven times 

faster. 
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CHAPTER 1 
 

Introduction 

1.1. Motivation 

In recent years, the automotive industry has attracted great attention from the technical community, 

resulting in vast changes to the trade. Over the last decade, automotive start-up companies have 

rapidly emerged, as manufacturers race to develop advanced driver assist systems and autonomous 

vehicles through technological innovation. There has been an unprecedented amount of research in 

machine learning algorithms and artificial intelligence that is focused on object recognition through 

convolutional neural networks. 

The automotive sensor suite presents unique challenges. For example, weather is unpredictable and 

can change from sunny to overcast, which can turn into rain, hail, fog, snow, or even a blizzard, 

sometimes within the same trip. Similarly, vehicle cabin temperatures can fluctuate from a 

maximum of 76 degrees Celsius [1] to the lowest recorded minimum temperature, which according 

to the Guinness World Records is - 67.7 degrees Celsius, in Russia [2].  

Severe weather and temperature changes are not the only challenges for the electronic components 

and designers.  Achieving the necessary speed of the electronics and data processing time are yet 

another great design challenge. Timing of decision-making in a vehicle can be the difference of 

arriving home safe to one’s family or not returning home at all.  For an autonomous vehicle to 

function safely in the public, near instantaneous decision-making is critical.  There has been much 

research into different physical processing platforms to which will deliver the most efficient and 

timely decision-making process.  Different hardware platforms range from multi core processors, 

to Graphics Processing Units (GPU) that exploit parallel processing, to Field Programmable Gate 

Arrays (FPGA), which benefits from both paralleling and pipelining.  In order to exploit the full 

capabilities of these hardware platforms, appropriate algorithm development must take place. 

Not all algorithms are the same.  The University of Berkeley California has focused much research 

on algorithm development through parallel programming models deemed “the 13 dwarves”, where 

each dwarf classifies an algorithm based on patterns of computation and shows which hardware 

platform would optimize the performance of execution [3]. 
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Another challenge to the automotive sensor suite is the influx of motor vehicles in the market and 

the rising costs of maintenance.  At inception, motor vehicles promised humankind liberating 

physical mobility, but now seem to be responsible for mass traffic jams, long commutes, and the 

need for flexible work arrangements.  In 1913, the first Ford Model T rolled off the assembly line, 

igniting a new revolution of affordable mass-produced transportation.  By the 1950’s, almost every 

North American home had one vehicle per household, with homes in most older neighborhoods 

featuring a single driveway with a single car garage.  In North America today, it is commonplace 

to have one vehicle for every person in the household who drives.  Yet, a Business Insider study 

shows that Americans only drive a total of 300 hours per year [4].  This means, on average, each 

vehicle is in use only 3.4% of the time per year.  Considering the expenses associated with motor 

vehicle ownership, including insurance, fuel, maintenance, repairs, and depreciation cost, the cost 

of ownership related to the infrequent amount of time spent in these vehicles is disproportionate. 

Perhaps, a pay per use model could be a more efficient method of spending for the consumer [36]. 

The need for advanced driver assistance systems and autonomous vehicles in the market can be 

appreciated in reviewing the results of a Stanford study, which shows that 90% of all automobile 

accidents are caused by human error [36].  If the human aspect could be removed from controlling 

the vehicle, could road collisions reduce to one tenth of current numbers?  When autonomous 

vehicles come to fruition, a paradigm shift could occur, altering the landscape as we know it.  Will 

modern homes have a garage or even a driveway?  

For a vehicle to become fully autonomous, a sensor suite must be employed.  Common approaches 

use RADAR, LiDAR, Cameras, and Ultrasonic sensors.  Not any one of these sensors has proven 

to be exceptional on their own in a harsh automotive environment; but, working together, this group 

of sensors can function together acceptably, in any environment. 

This thesis research specifically focuses on LiDAR point cloud processing segmentation and shape 

extraction.  

1.2. Related Work 

Research in the area of automotive LiDAR is rapidly expanding, with vehicle manufacturers 

competing to develop autonomous vehicles.  New algorithms and white papers are published 

frequently with findings, improvements and better methods. 
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For this research, several algorithms were implemented in order to achieve the completed process, 

from the unpackaging of the data packet provided from the LiDAR sensor, to the process of shape 

extraction from clusters. 

In [5], L. Zheng and Y. Fan propose an integrated circuit and system design for the Velodyne VLP-

16 to decode the 3D LiDAR information transmitted over UDP. 

In [6], Tobias Nystrom Johansson & Oscar Wellenstam proposed a pre-single line shape extraction, 

which later merges the single lines into clusters and extracts the final shapes. This research was 

conducted using MATLAB. The path Johansson and Wellenstam have taken shows promise to an 

algorithm implementation that needs to be accelerated. 

In [7], Su-Yong An, Jeong-Gwan Kang, Lae-Kyoung Lee, and Se- Young Oh, introduce an ABD 

in two dimensions.  The adaptive breakpoint detector varies the threshold depending on distance 

from the LiDAR sensor. 

In [8], Kim, Beomseong & Choi, Baehoon & Yoo, Minkyun & Kim, Hyunju & Kim, Euntai 

introduce an algorithm for segmentation using a multi-layer LASER scanner.  The algorithm 

utilizes a candidate set for testing LASER points. The study utilized the same ABD method in [7]. 

1.3. Scope and Limitations 

This paper’s research area focuses on the time to unpack the UDP data packet, process segmentation 

clustering and perform shape extraction of LiDAR data.  The LiDAR sensor data selected for this 

research was the Velodyne HDL 32E.  Recorded HDL 32E LiDAR data was obtained from the 

download sections of Velodyne website.  These algorithms were tested with a limited scope of 

prerecorded data from what was readily available from the Velodyne website. If the proposed 

algorithm was operated with a physical hardware LiDAR sensor, additional processing time may 

be required. 

Simultaneous Localization and Mapping (SLAM) of the points was not considered in the scope of 

this research.  The sample of recorded LiDAR data was purposely chosen to be flat to minimize the 

impact of not recalibrating the points for vehicle movements.  As this research will only focus on 

the throughput and processing of the LASER data, only Velodyne HDL 32E UDP data packets 

from port 2368 will be considered in this research.   



4 

The shapes extracted from this research could be furthered processed in the LiDAR sensory chain 

utilizing Bayesian tracking [35]. 

1.3.1. Research Area 

The image below illustrates a typical path for processing LiDAR data in an automotive 

environment.  The red boxes highlight the area of research focus in this thesis.  

LASER Scanner 
Measurement

GNSS, Pitch Yaw, 
Roll, Wheel Speed 

Sensors

+ Simultaneous 
Localization and 
Mapping (SLAM)

Segmentation & 
Outliner Elimination

Segments and shape 
extraction

Classification Class

Tracking Target

Sensory FusionLASER Scanner 
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Figure 1-1-1 An example of a LiDAR processing path in an automotive environment 

1.4. Contribution 

The primary contributions of this thesis are: 

• A method for parsing ethernet UDP LiDAR packets provided by Velodyne HDL 32E 
LiDAR sensor that organizes data by vertical and azimuth angle 

• A modified method for clustering data when organized in a vertical and azimuth angle 
• Adaptation of the two-dimensional adaptive breakpoint detector clustering algorithm to 

incorporate detections in three dimensions 
• A modified Graham scan algorithm that exploits semi-preorganized data 
• Timing analysis comparison of algorithms and methods 

1.5. Thesis Outline 

This thesis is assembled as follows: Chapter 2 introduces the autonomous and ADAS features found 

in automotive vehicles today.  Chapter 2 expands to an overview of the current sensors used in the 

automotive industry to achieve these advanced features.  Chapter 3 provides a system overview of 

the hardware and processes used in this research, as well as methods.  Chapter 4 provides a thorough 

description of the implementation of the LiDAR data obtainment, algorithms used and methods of 

implementation.  Chapter 5 provides manual evaluation of algorithms and the timing analysis 
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results.  Chapter 6 provides a discussion of the tuning parameters needed for the complete algorithm 

and future work.  Chapter 7 presents the conclusion. 
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CHAPTER 2 
Background     

2.1. Automotive ADAS & Autonomous Introduction 

ADAS are features within the vehicle that aids the driver in vehicle navigation, safety, and alerts.  

The level of how much control the feature has on the vehicle is defined by the level of autonomy 

standardized by the Society of Automotive Engineers (SAE) [9].  Figure 2-1 illustrates how the 

SAE has defined six levels of automation, level zero being no automation and level five being a 

fully automated vehicle. 

 

Figure 2-1 The six levels of autonomy standardized by the Society of Automotive Engineers, taken from [9] 

Level two and three automation features can be found in today’s automobiles.  

Common ADAS features utilized in vehicles today include:  

• Adaptive Cruise Control (ACC) – ACC will increase or decrease velocity of the vehicle 
and apply the brake if an obstacle is in front of the vehicle. ACC allows the vehicle to 
maintain a velocity in traffic based on distance.  ACC main hardware components are front 
facing camera and the vehicle front fascia mounted radar module. 

• Autonomous Emergency Braking (AEB) - AEB will automatically apply the brakes on the 
vehicle when an object located in front of the vehicle comes within a critical stopping 
range.  The AEB features rely on the front facing radar module. 

• Park Aid – Park Aid allows the vehicle to park itself, in a parking lot, or parallel park the 
vehicle on the street.  The Park Aid feature relies on ultrasonic sensors.  
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• Lane Centering – The Lane Centering feature allows the vehicle to steer itself, keeping the 
vehicle between the lane markings on the road.  The Lane Centering features utilizes the 
front facing camera for visualization. 

• Road Sign Detection - The Road Sign Detection feature locates roadway speed signs and 
displays them to the driver on a human machine interface, eliminating the question of what 
the speed on a roadway is.  The Road Sign Detection feature utilizes the front facing camera 
for sign detections. 

• Blind Spot Indicator System (BLIS) – The BLIS feature alerts a motorist of approaching 
objects or vehicles in the motorist’s blind spots.  The BLIS feature utilizes RADAR 
modules located in the rear fascia corners of the vehicle.  A yellow light in the side mirrors 
has become common place for a warning to motorist that an object exists in the blind spot.  

• Pedestrian Detection - The Pedestrian Detection feature alerts the driver to a pedestrian 
suddenly walking out in front or behind a vehicle, which is optimal in urban areas.  The 
pedestrian detection systems rely on ultrasonic sensors for detection and cameras for object 
classification. 

2.2. Introduction to Sensor Suite Found in the Automotive Industry  

For a fully automated vehicle to work seamlessly, a network of different sensor technologies is 

employed for the task.  The most common sensors found in the automotive industry today are as 

follows: 

2.2.1. Ultrasonic Sensors 

• Excellent for detecting objects in the immediate vicinity 
• Objects generally detected include; automobiles, pedestrians, curbs, etc. 
• Ultrasonic sensors play an important role in Park Aid and automated parking 
• Effective sensor range is approximately 2 meters  

2.2.2. Image Sensors (Camera) 

• Traffic sign detection 
• Lane departure/ markings 
• Object identification i.e. other vehicles 
• Detection of colours and fonts 
• Sensor range approximately is 120 meters 

2.2.3. RADAR Sensors 

• Different range radars sensors are placed on the exterior of the vehicle 
• Short and medium range radar sensors are used for blind spot vehicle detection 
• Long range radar can be used for ACC & AEB to identify vehicles’ frontal distance 
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• Radar modules can track the speed of other vehicles in real time 
• Sensor Range is approximately 250 meters 

2.2.4. LiDAR Sensors 

• LiDAR sensors can accurately identify objects 
• Usually paralleled with other sensors’ data for confirmations 
• Sensor Range is approximately 200 meters 

2.2.5. Cloud 

• As the previously described sensors cannot reach beyond 250 meters, the autonomous 
vehicle can use information from the cloud to predict maneuvers 

• Receive traffic congestion reports 
• Sensor range is greater than 250 meters 

2.2.6. Comparison of Sensor Technologies 

Figure 2-2 illustrates how not one single sensor is appropriate for every task that an autonomous 
vehicle would need to achieve to be self-sufficient [10].  

 

Figure 2-2 Comparison of performance levels of different automotive sensors, taken from [10] 
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Figure 2-3 Topology of a common sensor suite in today’s ADAS vehicles, taken from [10] 

2.3. Hardware Principle of LiDAR 

LiDAR is an active remote sensor that uses light as its medium that can be used for distance 

measurement, detecting objects, and position reference.  LiDAR sends a LASER beam of light 

from the LiDAR device, which receives said beam.  The time duration between transmission and 

receipt can provide distance information.  The beam that is emitted by the LiDAR device is 

extremely focused and can detect small objects with precision.  Commercial LiDAR devices is a 

relatively new technology made commercially available in 1995 [11]. 

 

Figure 2-4 Example of a LiDAR sensor transmitting and receiving a LASER  

As the LASER must travel to and from the object, the speed of light multiplied by time of flight 

must be divided by two to obtain distance. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

2
 

Equation 1, LiDAR distance to object formula 
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2.4. Components of LiDAR 

2.4.1. Mirror Systems 

There are two well-established types of LiDAR systems manufactured currently - nodding and 

polygonal mirror systems.  The nodding mirror type of sensor features an optical rotary encoder on 

the mirror pivot mount for precise feedback.  The “nodding” of the mirror creates the field of view 

(FOV) for the vertical axis.  

To sweep the LASER sensor through the horizontal axis or azimuth, the nodding mirror system 

base must be mounted to another motor, where another optical encoder is mounted for precise 

feedback.  The LiDAR LASER sensors are rotated at 600 - 1200 revolutions per minute (RPM) 

which creates an accurate point cloud [12].   

This paper will only focus on the nodding mirror type, which is used in the Velodyne HDL 32E. 

 

Figure 2-5 Example of a nodding mirror type LiDAR sensor, taken from [12] 

 

Figure 2-6 Example of a polygonal type LiDAR sensor, taken from [13] 
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2.4.2. Detector 

The photodetectors internal to the sensor use silicon avalanche photodiodes to convert light energy 

(photons) into an electrical signal [14]. 

2.4.3. Timing Electronics 

Critical timing of the LASER pulses is essential to accurate measurement.  Two methods for the 

critical timing capture are either a high-speed analog to digital converter (ADC) or a time-to-digital 

converter (TDC).  Approaches to a TDC include using a dedicated microprocessor or 

microcontroller with a FPGA for logic control.  The TDC application has become so popular that 

dedicated integrated circuits (IC’s) are now manufactured [15]. 

2.4.4. Optical Design 

The minimum sensing distance FOV must overlap the transmitted and the received LASER in the 

lenses, defining the minimum sensing distance.  The optical design will need to focus the energy 

on the photo diodes’ active area in order to maximize the energy received.  Further development of 

the optical system is needed to prevent the LASER from divergence which would drastically reduce 

sensing distance.  The parameter to correct this is the astigmatism of the Light Emitting Diode 

(LED).  A corrected system is referred to as collimated [15]. 

2.5. LiDAR LASER Wavelengths 

LiDAR utilizes different LASER wavelengths depending on the application. The wavelengths seen 

in the industry commercially available today range between 532 nm to 1550 nm.  

LiDAR wavelengths and use cases can be summarized into three different categories. 

1. Bathymetric application - 532 nm wavelength to penetrate the water way and measure the 
seafloor which is blue green in the visible light spectrum  

2. Automotive application - 905 nm wavelength for obstacle detection which is infrared non-
visible  

3. Topography mapping - 1500 nm wavelength for topology mapping of land which is 
infrared non-visible 
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Figure 2-7 Wavelength range of optical radiation, taken from [16] 

Solving for the frequency of LASER emitted for automotive at 905 nm shown below 

𝑓𝑓 =
𝐶𝐶
λ

=
3 ∙ 108𝑚𝑚/𝑠𝑠

905 nm
= 31.58 ∙ 1015 = 31.58 𝑝𝑝𝑝𝑝𝑝𝑝 

Equation 2, LiDAR frequency from wavelength formula 

Water absorption is the main factor for use case and wavelengths.  [17] found that LiDAR sensors 

that use a wavelength of 1550 nm exhibited a water absorption rate more than twice as great as a 

LiDAR sensor that uses 905 nm.  The result of a high-water absorption rate is a degraded point 

cloud in adverse weather conditions such as rain, fog, and snow.  

2.6. LASER Safety 

“All commercially sold LiDAR products must achieve eye-safety certification via compliance with 

the U.S. Food & Drug Administration eye-safety performance standard which conforms with the 

International Electrotechnical Commission (“IEC”) 60825 standard. If sensors are designed to meet 

eye safety standards, both wavelengths can be used safely.” [18]  

2.7. Detection Schemes 

Early model LiDAR sensors could only detect one object per LASER pulse.  Late model LiDAR 

sensors can now detect multiple returns per single LASER pulse.  A LiDAR sensor mounted on an 

airplane scanning overtop of a forest could reflect the LASER off the leaves several times before 

hitting the ground.  Image 2-8 illustrates a LASER pulse which picks up four returns - three 

branches of the tree and the ground.  Recently, topological LiDAR scans have revealed ancient 

hidden cities for archeologists. 
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Figure 2-8 Multiple LASER returns from a single LASER fire, taken from [19] 

2.8. Point Cloud 

A point cloud is the image that the LiDAR sensor creates by scanning the surrounding area.  The 

point cloud is made from a collection of individual LASER pulses. LiDAR data is received as polar 

or spherical coordinates with known angle, beam intensity and return distance.  The LASER pulses 

from a LiDAR sensor can be thought of as a collection of points in Cartesian two dimensional (x, 

y) or three dimensional (x, y, z) coordinates.  Image 2-9 illustrates a point cloud from a rotating 

three-dimensional multilayer LIDAR sensor. 

 

Figure 2-9 A point cloud from a rotating 360-degree LIDAR sensor, taken from [20] 
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2.9. GPS and IMU 

Typical combination in LiDAR sensory fusion applications such as simultaneous localization and 

mapping (SLAM) utilize Global Navigation Satellite System (GNSS) with an inertial navigation 

system (INS).  The INS houses the inertial measurement unit (IMU) system, which can help guide 

and keep track of the vehicle’s pose through any terrain as the vehicle comes in and out of satellite 

communication.  

 

Figure 2-10 Illustration of a global navigation satellite system used in an automotive application, taken from 
[21] 

2.10. Simultaneous Localization and Mapping (SLAM) 

Although SLAM will not be covered in this research, a general perspective will be described, with 

the importance. 

SLAM is a method for mapping the surrounding area while keeping track of the vehicle or robot’s 

position. In a perfect environment, a vehicle would always travel straight, and the road would 

always be perfectly flat.  In the real world, the road curves, hills produce inclines or declines, 

highways bank their curves and roadways are designed with a drainage gradient in mind.  These 

imperfections add greatly to the challenge of determining the vehicle’s location relative to its 

surroundings.  Knowing exactly how the vehicle is situated is known as the robot’s pose.  Figure 
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2-10 illustrates a GNSS system and how the vehicle would operate with its onboard odometry.  

Today, a vehicle has many odometry systems already in place to aid in the robot’s pose, including 

a restraint control module which constantly measures the vehicle pitch, yaw and roll; wheel speed 

sensors which determine actual distance travelled; and, onboard global positioning systems as well 

as GNSS systems. These systems all work together to provide an accurate robot pose estimation.  

To illustrate this concept with Velodyne HDL32-E (the LiDAR Sensor used in this research), 

Figures 2-11 and 2-12 below reveal the potential problems. 

 

Figure 2-11 Both the vehicle and roadway are on level in relation to axis 

Figure 2-11 the above image illustrates how, when everything is level, the conversion from the 

LiDAR sensors spherical coordinates to Cartesian is straightforward and transfers over.  One can 

notice the 0-degree angle provided by the LiDAR sensor is parallel to the compared Cartesian X 

axis. 

However, when the vehicle is driving through banked turns, inclines, declines or over bridges, 

constant compensation of all data points must be considered and compensated to map correctly.  

Sudden movements of the vehicle will result in sudden movements of the onboard sensors.  The 

sudden movements in LiDAR could cause distorted segmentation and reality if the LASER returns 

are not calibrated. 

 

Figure 2-12 Both the vehicle and roadway are unlevel in relation to axis 
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Figure 2-12 the above image illustrates a vehicle driving in a banked turn where one can notice the 

0-degree angle provided by the LiDAR sensor is inaccurate compared to the Cartesian axis. 

The SLAM problem becomes a greater challenge as the robot or vehicle is moving in three 

dimensions dynamically, as LiDAR, Radar, and Ultrasonic Sensors would produce invalid size and 

or distance of objects with respect to the environment. 

Common algorithms used to the SLAM problem include and are not limited to particle 

filter, extended Kalman filter, Covariance intersection, and Graph SLAM [22]. 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Particle_filter
https://en.wikipedia.org/wiki/Particle_filter
https://en.wikipedia.org/wiki/Extended_Kalman_filter
https://en.wikipedia.org/wiki/Covariance_intersection
https://en.wikipedia.org/wiki/GraphSLAM
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CHAPTER 3 
System Overview 

3.1. Hardware Equipment for Processing 

Chapter 3 describes the hardware and equipment used in the development of this research and 

testing.  In addition to the hardware listed in this chapter, an additional Windows machine was used 

for execution run time testing of the final algorithm, as described in Chapter 5. 

3.1.1. Computer for Processing and Development 

• Dell Latitude E5570 
• Intel I7- 6820HQ CPU at 2.7 GHz Processor 
• SSD hard drive model SK Hynix SC311 SATA 512 GB 
• RAM 16 GB 

3.1.2. Computer Operating System 

• Windows 10 Enterprise Edition 64 bit 

3.1.3. Software Compiler 

• Code Blocks 17.12 

3.2. LiDAR Hardware 

3.2.1. Lidar Sensor 

• Velodyne HDL32-E 
 

The LiDAR sensor used in this research is the Velodyne HDL-32E.  The HDL-32E can create a 

three-hundred-and-sixty-degree point cloud image.  The creation of this three-dimensional point 

cloud image is made possible by using thirty-two vertically aligned LASER emitter and detector 

pairs, placed in a rotating nodding mirror designed housing to capture the surrounding environment. 
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Figure 3-1 Velodyne HDL 32E LiDAR sensor, taken from [23] 

3.2.2. Velodyne HDL32E Specifications  

Velodyne HDL 32E [23] 

• Maximum number of scans per second is 700,000 LASER returns 
• 100 MB/s Ethernet Connection, UDP packets 
• Data packet 0.55296 ms or 1808.45 packets/second 
• 32 LASERs, Class 1 Eye Safe 
• 10 Hz Frame Rate 
• Accuracy +/- 2 cm 
• 360° Horizontal Field of View (FOV) 
• 41.3° Vertical Field of View (FOV) 
• Usable returns up to 70 meters 

3.2.3. Azimuth Resolution Calculation 

The Velodyne HDL 32E can fire one independent LASER at a time, as every LASER must be 

transmitted and received before firing the next LASER.  The sequence of LASER fires happens 

while the outside case of the HDL 32E rotates at 10 Hz or 600 rpm.  For accurate recreation of the 

point cloud, the angular rotation of each LASER must be added to the rotational byte which is 

obtained from the start of every 32 LASER firing sequence within the UDP data packet.  
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑟𝑟𝑟𝑟𝑟𝑟
𝑚𝑚𝑚𝑚𝑛𝑛

×
1

60
𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠

× 360
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟𝑟𝑟𝑟𝑟

×
46.08 × 10−6 𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

Equation 3, Velodyne HDL 32E azimuth resolution calculation 

Equation 3 may be simplified as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
0.166 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

Equation 4, Simplified Velodyne HDL 32E azimuth resolution formula 

3.2.4. Rotational Speed and Field of View 

Figure 3-2 illustrates a hypothetical pictorial view of a mounted Velodyne HDL 32E on an 

automotive vehicle.  The rotational speed of the HDL 32E of this research is 10 Hz or 600 

revolutions per minute.  The field of view (FOV) of 41.3 degrees is made possible from the 32 

vertical firing LASERs. 

 

Figure 3-2  Field of view and rotation of the Velodyne HDL 32E 

3.3. Processing Time Benchmark 

The Velodyne HDL 32E LiDAR sensor sends a new UDP data packet every 552.96 μS.  For the 

processing time to be useful in a real-world application, all LiDAR UDP packet data processing 

must be completed before the following UDP data packet arrives.  The time between UDP data 

packets will serve as a benchmark for evaluating the algorithms in this research.  Note that this 

research only covers a portion of all the software processes needed in an actual vehicle LiDAR 
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system.  Additional algorithms such as SLAM would need to be added to the processing time of 

the algorithms in this research.  The processing time in this research will need to be considerably 

less than the time duration between UDP packets in order to accompany the additional algorithms 

needed for a complete LiDAR processing design.  Figure 3-3 is an illustration of the timing 

benchmark of UDP data packets sent from the HDL 32E, showing the LiDAR data must be 

processed before the arrival of the next packet. 

 

Figure 3-3 Velodyne HDL 32E UDP data packet timing delivery benchmark 

3.4. Vehicle Coordinates 

The vehicle coordinate system used throughout this research is shown in Figure 3-4, where the 

positive X axis is in front of the vehicle, the positive Y axis is to the right side of the driver and the 

positive Z axis is straight up. 

 

Figure 3-4 Vehicle coordinates, taken from [24] 
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CHAPTER 4 
Implementation 

4.1. Three Stage Process 

The implementation of the LiDAR data processing can be subdivided into three stages.  The coding 

of this research project contains three function calls from the main program.  These three function 

calls are independent of one another but dependent on the work of the previous function.  The three 

stages of the code are as follows: 

Stage One - Packet Parsing 

• Organizes and parses the LiDAR UDP data packet 
• Removes any erroneous data 
• Completes the ground point removal  
• Conversion of spherical coordinates to Cartesian 
• Stores data in an organized memory array 

 
Stage Two - Data Clustering 

• Computes adaptive breakpoint detection 
• Evaluates LASER returns beyond nearest neighbors for a cluster match  
• Assigns every valid LASER return a cluster number  
• New cluster numbers are assigned if the LASER return does not find a cluster match 

 
Stage Three - Shape Extraction 

• Every Cluster is evaluated and assigned a shape type 
• There can only be 4 outcomes as there are four shapes 

o 1 = Point, 2 = Line, 3 = L Shape, 4 = Convex Hull 
• A Cluster with less than one point is automatically classified as a point (Shape 1) 
• Principal component analysis is performed to find Line shapes (Shape 2) 
• Clusters that have not been assigned a shape number are tested for the L shape (Shape 3) 
• If the L shape test fails, the cluster must be a convex hull (Shape 4) 
• Convex hull processing is performed on the remaining clusters that failed the L-Shape test 
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-Ground Point Removal (GPR)
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to Cartesian (Valid data only)
-Stores Data in Memory Array
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 -Occlusion Avoidance test every 

data point within the memory data 
set comparing with the candidate 

set
- Points in Memory are tested for 
cluster association by method of 
adaptive breakpoint detection
-Every Data point is assigned a 
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-Clusters with only one entry or 
LASER value are automatically 

classified as a point
-Principle Component Analysis 
(PCA) is used for line extraction 
focusing on variance and Eigen 

values
-Clusters not assigned a shape 
type yet are tested for L-Shape

- L Shape cluster fails, are 
classified as Polygons

 

Figure 4-1 Visual representation of the 3 function calls from the main program software 

4.2. Preliminary Work: Obtaining the LiDAR Data 

Velodyne has pre-recorded LiDAR files readily available on their website.  The pre-recorded 

LiDAR files come in .pcap file format.  The data set used in this research was labeled “HDL32-

V2_R into Butterfield into Digital Drive.pcap” link available from the Velodyne website where the 

file is stored at data.kitware.com [25].  

 

Figure 4-2 Velodyne pre-recorded LiDAR .pcap file download 

Velodyne was contacted to request sensor mounting height and vehicle type.  Velodyne confirmed 

that the HDL32-E sensor was mounted on a Ford Fusion vehicle with the sensor mounting height 

being ~1.73 m.  The mounting height of the sensor was crucial for setting up the ground point 

removal process. 
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The data set “Butterfield into Digital Drive” .pcap file contains 89,691 UDP data packets.  There 

are two types of data packets produced by the Velodyne HDL-32E.  The first data packet located 

on port 2368 contains the LASER firing data.  The second packet located on port 8308 contains the 

GPS and positioning data.  This research will only focus on the throughput and processing of the 

LASER data packets from port 2368.   

4.2.1. Pre-Processing the LiDAR data 

The program Wireshark was implemented to open the .pcap file and remove all the 8308 port files. 

The custom data set of the first 200 UDP packets from port 2368 were saved a “.C” Array. By 

having all the LASER data packet information available in the computer memory, a true 

performance speed test of the algorithms can be measured without throttling. 

 

Figure 4-3 Wireshark exporting a C file array 

4.3. Stage One – Packet Parsing 

In the first stage, the objective is to arrange the LASER data returns vertically and horizontally, as 

the human eye would view the environment, while removing any invalid data.  Invalid data is any 

LASER returns beyond the max distance of the LiDAR sensor (70 m) or any return below the 

minimum distance of the LiDAR sensor (1 m).  Any LASERs that face at a negative angle compared 
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to the horizon maximum distance will be reduced, as the negative angle LASERs beam will hit the 

ground before ever reaching their maximum capable distance.  The maximum distance will be 

computed based upon vehicle height for all downward facing LASERs.  If the LASER return is 

deemed to have hit the ground, that LASER data will be considered invalid data.  This step is called 

ground point removal (GPR).  If the LASER return data falls in the range of being greater than the 

minimum distance and less than the maximum distance, Cartesian coordinates will be computed 

and all LASER data will be stored in memory for further processing. 

Start of UDP Packet
Organize Data 
Vertically and 
Horizontally

Does the LASER 
have a negative 

angle?

Compute 
maxDistance 

based on angle 
and LASER 

mounting height

minDistance < 
Distance < 

maxDistance
Store Data

YES

NO

NO

End of UDP PacketYES

Next 
LASER

 

Figure 4-4 Stage 1 algorithm flow chart 

4.3.1. Data Storage 

Data storage for the processing of LiDAR points is stored in a static array, 32 rows high by 960 

columns wide.  The array is 32 rows high to allow a location for every LASER vertically for the 

Velodyne HDL 32E, which has thirty-two LASERS.  Every UDP packet sent from the HDL 32E 

has 12 azimuth sets of 32 vertical LASER fires, meaning that every UDP packet has 384 pieces of 

LASER return data.  With the rotational velocity of the LIDAR sensor being 10 Hz, every data 

packet will cover ~4.87° of azimuth rotation.  A full three-hundred-and-sixty-degree rotation will 

require ~74 UDP Packets in order to complete a scan of the surrounding environment.  With every 

rotating pass, the stored data must be overwritten to update objects and movements of both the 

vehicle and its surroundings.  To provide a slight buffer for overlap, the static memory is expanded 

from 74, to be able to hold 80 UDP packets of data.  Eighty packets multiplied by 12 LASER fires 

per packet results in an array that will hold 960 Columns.  Every location within the array stores 

vital data about the LASER return such as a zero flag, distance, rotational angle, intensity, X, Y, Z 

Cartesian points, and cluster number.  The vertical angle is not stored, as the vertical angle 

corresponds to the row value of the array, where “Row 0” holds the most negative vertical angle 

and “Row 31” holds the most positive vertical angle (Low to High, sequentially).  An 

implementation of the SLAM algorithm would require storing the vertical angle as the movements 

from the vehicle will continuously require the adjustments of points.  In this research, memory 

allocation is aimed at static memory and not dynamic, as the end goal should be to move this 
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research to a FPGA or a GPU. FPGAs deal with static memory more efficiently as the data can be 

stored on board in the block random access memory (BRAM).  

 

Figure 4-5 Visual representation of the memory array, images used from [26] 

4.3.2. HDL 32E Usable Data Range 

Velodyne states that LASER’s returns less than one-meter or returns greater than seventy meters is 

unusable data for the HDL-32E [23].  Any LASER return that falls into the unusable category 

immediately has a zero flag which is set equal to one (1 = no data, 0 = data).  In further processing 

steps, the zero flag is always examined first, and the data is ignored for further processing during 

subsequent steps if the zero flag is equal to one. 

The image below illustrates the Velodyne HDL-32E usable data and non-useable data regions.  

Note that a distance threshold greater than a meter for usable data would likely be used in order to 

clear the vehicles hood and body components, dependent on mounting position.  

 

Figure 4-6 Visual representation of the Velodyne HDL-32E usable data range, images used from [26] 
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4.3.3. Ground Point Removal (GPR) 

The physical mounting height of the LiDAR sensor and the downward firing angle of the LASERs 

are necessary for calculating the distance to the ground.  The ground serves as nonvaluable data 

and it is desirable to eliminate any LASER return data that is associated with the ground, to reduce 

algorithm processing time. Image 4-7 illustrates a hypothetical image of the two lowest firing 

LASERs reflecting off the ground before they would reach the maximum potential distance of 70 

m (the maximum sensing distance for the Velodyne HDL32-E). 

 

Figure 4-7 Visual representation of ground point removal, images used from [26] 

The selected data set “HDL32-V2_R into Butterfield into Digital Drive.pcap” has a known sensor 

mounting height of 1.73 meters. The maximum distance related to angle can be calculated using 

the following formula. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

sin (|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|)
 

Equation 5, GPR LASER max distance formula 

Applying Equation 5, the following chart calculates the maximum distance achievable based upon 

the LASER downward firing angle.  The produced values “LASER Max Distance” is utilized in 

the processing for ground point removal, where, if the LASER return is greater than the computed 

value, it is ignored.  This method will work with extremely flat circumstances; however, this 

method would not be the most robust with hills.  The chart below only shows Laser Firings from 0 

degrees to -30.67°, as positive vertical angles are expected to be able to reach the maximum LASER 

sensing distance (70 m). 
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Velodyne 
Laser Firing 
Order DSR # 

Vertical 
Angle 
(Degrees) 

Radian 
Angle 
(Radians) 

LASER Max 
Distance 
(Meters) 

16 15 0 0 70 
14 13 -1.33 -0.023212879 70 
12 11 -2.67 -0.046600291 37.14 
10 9 -4 -0.06981317 24.80 
8 7 -5.33 -0.093026049 18.62 
6 5 -6.66 -0.116238928 14.92 
4 3 -8 -0.13962634 12.43 
2 1 -9.33 -0.162839219 10.67 
31 30 -10.67 -0.186226631 9.34 
29 28 -12 -0.20943951 8.32 
27 26 -13.33 -0.232652389 7.50 
25 24 -14.67 -0.256039801 6.83 
23 22 -16 -0.27925268 6.28 
21 20 -17.33 -0.302465559 5.81 
19 18 -18.67 -0.325852971 5.40 
17 16 -20 -0.34906585 5.06 
15 14 -21.33 -0.372278729 4.76 
13 12 -22.67 -0.395666141 4.49 
11 10 -24 -0.41887902 4.25 
9 8 -25.33 -0.4420919 4.04 
7 6 -26.66 -0.465304779 3.86 
5 4 -28 -0.488692191 3.68 
3 2 -29.33 -0.51190507 3.53 
1 0 -30.67 -0.535292482 3.39 

Table 4-1 Ground point removal calculations for the lower 22 LASER returns  

4.3.4. HDL 32E UDP Packet Decoding 

The transmission medium from the LiDAR sensor is a 100 MB/s ethernet connection, which sends 

UDP packets containing distance, azimuth rotational angle, vertical angle, LASER return intensity, 

and GPS Time Stamp.  

Figure 4-8 illustrates the HDL 32E port 2368 UDP data packet. Every 2368 UDP Data packet 

consists of a 42-byte ethernet header.  The two-byte LASER block ID on the HDL 32E always 

remains 0xEEFF, as the HDL 32E is equipped with only 32 LASER banks.  The Velodyne HDL 

64 has two 32 banks of LASER and the LASER block ID will alternate between 0xEEFF & 

0xDDFF, depending on LASER bank in use at the time.  The azimuth rotational angle is supplied 

from two-bytes in the form of integer with values between 0-35999 and must be divided by 100 to 

be converted into degrees.  The next three bytes are repeated 32 times (once for every LASER 

onboard of the HDL 32E).  This process is repeated 11 more times (12 in total) for every UDP 
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packet, completing 384 LASERs fires for every UDP data packet.  At the end of every UDP packet, 

the status bytes are sent, containing the GPS time stamp Status Type and Status value.  All data 

bytes of two bytes or more are sent using Little Endian Byte Order data structure (least significant 

byte first).  

 

Figure 4-8 Velodyne HDL 32E UDP data packet, taken from [23] 

4.3.5. LASER Firing Sequence 

A LiDAR packet parsing algorithm was constructed in order to add order to the LASER returns 

from Velodyne HDL 32E.  This step is initialized at the beginning in the first processing stage so 

that all subsequent processes can exploit the organized nature of the data.  The organization of the 

data is an effort to make all further processing of algorithms more efficient and less costly of 

computational processing time.  Processing of further steps can exploit the use of loops in smaller 

regions of the memory array as opposed to having to check all data locations repeated throughout 

the processing stages.  Velodyne purposely designed the firing order of the HDL 32E LiDAR sensor 

to be interleaved to avoid potential ghosting caused by retro-reflectors.  The LASER firing 

sequence of the HDL 32E is not ordered from ascending or descending vertical angle.  Table 4-3 

shows the LASER firing order from the HDL 32E user manual [23].  
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Table 4-2 HDL 32E LASER firing order  
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Table 4-3 in the column vertical angle shows the first LASER to fire is −30.67°; the second is 

-9.33°; the third is -29.33°, and so on.  One can see that these LASER fires are not in vertical 

ascending or descending order.  Algorithm 1 in this research provides the sequence needed to be 

able to order these points.  Figure 4-9 illustrates the resulting memory array after the LASER return 

data is arranged and is packaged as human beings see the world in the memory storage array. 

 

 

Figure 4-9 Visual representation of the vehicle storing LiDAR data arranged vertically, Images used from 
[26] 

4.3.6. Ordering the Row Storage Location  

Table 4-2 is a snippet from the chart developed to reorder the LASER return data sent from the 

HDL 32E.  The pattern becomes revealed when the points are ordered from most negative to most 

positive angle. (The full chart can be found in Appendix A).   

Access Pattern 
Byte Order 

Access Length Firing 
0rder 

DSR 
# 

Vertical 
Angle 

Radian 
Angle 

Laser Block ID 42 2 Bytes *** *** *** *** 
Rotational 44 2 Bytes *** *** *** *** 
Distance 
Information 46 2 Bytes 1 0 -30.67 -

0.535292482 
Intensity 48 1 Byte     
Distance 
Information 52 2 Bytes 3 2 -29.33 -0.51190507 

Intensity 54 1 Byte     
Distance 
Information 58 2 Bytes 5 4 -28 -

0.488692191 
Intensity 60 1 Byte     
Distance 
Information 64 2 Bytes 7 6 -26.66 -

0.465304779 
Intensity 66 1 Byte     

Table 4-3 Organized LIDAR LASER point data by vertical Angle 

https://www.degreesymbol.net/
https://www.degreesymbol.net/
https://www.degreesymbol.net/
https://www.degreesymbol.net/
https://www.degreesymbol.net/
https://www.degreesymbol.net/
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4.3.7. Ordering the Column Storage Location  

As discussed in Section 4.3.1, the memory array has 960 columns which can only hold 80 UDP 

data packets of LiDAR LASER return data.  Equation 6 is derived to order the LASER points in 

the appropriate columns and never overrun the static memory array of 960 columns.  This formula 

allows the overwrite of data every 80 UDP data packets. 

𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (0,1,2, … ,𝑁𝑁) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  80,𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 80 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (0,1,2, … ,11) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 12 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑈𝑈𝑈𝑈𝑈𝑈 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ℎ𝑎𝑎𝑎𝑎 12 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝐻𝐻𝐻𝐻𝐻𝐻 32𝐸𝐸 )) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶# = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶# = ��𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ �
𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
���

∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

Equation 6, Column number for memory allocation formula 

4.3.8. Spherical to Cartesian Conversion 

LiDAR data is retrieved from the sensor in spherical coordinates and must be converted to Cartesian 

in order to implement some of the algorithms, which will be covered in later sections.  The formulas 

to convert to Cartesian coordinates are shown below as per manufacturer data sheet [23]. 
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Figure 4-10 Spherical to Cartesian coordinates, taken from [23] 

Equation 7, Spherical to Cartesian conversion 

4.3.9. Algorithm 1: HDL 32E, LiDAR Packet Parser 

Algorithm 1 converts the UDP LASER packet data from the Velodyne arrangement to order from 

the most negative angle LASER in array row location “0” incrementing up the array, populating 

all incremental LASER angles, finally reaching array row location “31” that houses the most 

positive LASER angle.  The first for loop initiates at byte 42, where a little-endian swap is called 

and the “LASER Id” is organized as bytes 0x42 0x41.  The “Rotation” adds 2 to the “pkt Byte” 

where the little-endian swap is once again called to organizing the rotation angle as bytes 0x44 

0x43. Now that the LASER Id and rotation angle is implemented, 32 LASER returns of data must 

be organized in the memory array.  LASER(i) is always initialized to 0 as for every UDP packet 12 

columns of data will be populated in the array.  The second for loop initializes at byte 46 in the 

LiDAR UDP data packet.  This byte is little-endian swapped with the result of the distance from 

the first LASER return in the packet, becoming 0x46 0x45.  The function call is made to Algorithm 

2, which validates distance for maximum and minimum accepted LASER returns and converts data 

to Cartesian.  When returning from the function call, the LASER(i) is incremented, which controls 

the row in the memory array for storage.  The third for loop is initialized at byte 49 and increments 
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by 6. The process is repeated 16 times before exiting the third for loop.  Once this third for loop 

has completed, all the LASER data of 32 returns is organized in a memory array.  The GPS and 

status bytes are then extracted, utilizing similar methods, with the exception that the GPS value is 

4 bytes in length.  This process is completed 12 times in total for every UDP LASER packet, in 

order to extract all LASER returns. 
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4.3.10. Algorithm 2: Validation, Cartesian, and Storage of Data 

Algorithm 2 works hand in hand with Algorithm 1 as a function call.  To reduce repetitive code in 

Algorithm 1, Algorithm 2 was developed.  The LASER row location is passed to Algorithm 2 from 

Algorithm 1 as LASER(i).  The Max distance variable is always set to the maximum allowable 

distance of the HDL 32E LiDAR sensor (70m).  If the LASER to be examined is a negative angle 

value, such as the lower 23 values of the 32 LASERS, the MaxDistance variable must be changed 

for ground point removal using Equation 5 to calculate the MaxDistance for the downward facing 

angle at test.  Once the MaxDistance is computed for negative angle firing LASERS or left at 70m 

for positive firing LASERS, the data is validated for an acceptable value.  If the LASER distance 

return value does not fit in between minimum and maximum values of acceptance, the row and 

column location of the memory’s zero flag is set to 1.  A zero-flag set to one allows all other 

subsequent processing steps to avoid further processing at this location.  If the data is acceptable 

the Cartesian coordinates are calculated and stored at the memory location. 
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4.3.11. Result of Algorithms 1 and 2 Processing 

After Algorithms 1 and 2 have been executed, a single UDP LiDAR data packet is stored in the 

static memory array, where twelve sets of thirty-two LiDAR LASER returns are stored. Each of 

the twelve sets of thirty-two LASER returns is organized from most negative to positive vertical 

angle.  Every LASER set (1-12 per UDP packet) is a new column in the memory array which 

increments through the static memory array using Equation 6.  The storage of the LiDAR return 

data is best described as a human being would see the environment (Figure 4-10). 

4.4. Stage Two – Data Clustering 

Clustering of the LASER data is imperative to detect objects from the point cloud.  Common 

clustering methods found in LIDAR are Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) method proposed by [27] and ABD originally proposed by [7], which has been 

gaining popularity. [8] had shown great potential of eliminating ghost while using the ABD 

clustering method.  In this section, the clustering of the data will utilize the methods adopted by 

[8], utilizing a candidate set to seek cluster matches.  However, modification of the clustering 

algorithm proposed in [8] exploits the organized data from stage one and employs the use of “FOR” 

loops.  The ABD, a two-dimensional detection scheme, is also adopted to three dimensions.  A 

cluster array is established for keeping data about the cluster, utilizing a struct.  The struct is 

accessed by the cluster number and contains information of number of points in a cluster, cluster 

shape type, left most column, right most column, lowest row value, highest row value, lowest most 

vertex, highest most vertex, left most vertex and right most vertex. In addition to the general 

information about the cluster, the outermost rows and columns are utilized for retrieving the data 

for shape extraction in Stage Three.  The vertex locations are used for when an L-shape needs to 

be fitted.  

4.4.1. Clustering of Objects 

The objective of clustering objects is to be able to identify individual objects in the point cloud. 

The shape of an object can tell the autonomous vehicle system a great deal.  The ABD method is 

employed to cluster points by building a threshold that increases or decreases in size, depending on 

the distance of the LASER return.  If the distance between two points is beyond the threshold, a 

break point is detected, and a new cluster begins. 
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Figure 4-11 LASER scan with clustering of points 

A dynamic threshold depending on distance is imperative in the world of LiDAR, as LASERS are 

fired at angles, where the greater the distance the further separated the beams become.  Figure 4-

12 illustrates how a distance threshold must be dynamic at varying LASER returns distances.  The 

blue circle is an appropriate threshold distance at the reduced distance LASER returns. However, 

this threshold would not function for LASER returns of a greater distance.  Nor would the greater 

distance threshold be appropriate for the reduces LASER returns. 

 

Figure 4-12 Distance thresholds must adapt based on distance from sensor 

4.4.2. Adaptive Breakpoint Detector (ABD) 

The following adaptive breakpoint detector proposed by [25] varies the threshold circle depending 

on the distance of the previous point.  

Where, 
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𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑟𝑟𝑖𝑖−1𝑡𝑡 ∙
sin(∆𝜃𝜃)

sin(𝜆𝜆 − ∆𝜃𝜃)
− 3𝜎𝜎𝑟𝑟 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

𝑟𝑟𝑖𝑖−1𝑡𝑡 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

∆𝜃𝜃 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝜎𝜎𝑟𝑟 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐻𝐻𝐻𝐻𝐻𝐻 32𝐸𝐸 𝜎𝜎𝑟𝑟 = 2𝑐𝑐𝑐𝑐) 

𝜆𝜆 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

Equation 8, ABD max distance calculation 

 

Figure 4-13 ABD threshold diagram, taken from [7] 

 𝜆𝜆 must always be greater than the largest angle between the two points (∆𝜃𝜃) under test to keep the 

ratios positive.  Being that the user can program how many LASER returns to look above, below, 

and left of the point under test, the value of  𝜆𝜆 must be set appropriately. 
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4.4.3. Dealing with Occlusions 

Occlusions occur when a smaller object resides in front of a larger object.  The image below 

illustrates an example of a bird in front of the vehicle. In the case of the vertical scan, the most 

upper and lower points are part of the car and therefore should be a part of the same cluster, whereas 

the two points in the center are the bird and should form a new cluster.  In order to do this, one 

employs the ability to look above and below multiple points to see if the point in question is in fact 

part of another cluster.  The horizontal scan image shows a similar case but with respect to the 

azimuth or horizontal scan where the leftmost LASER should be in the same cluster as the rightmost 

LASER. 

 

Figure 4-14 Horizontal and vertical example views of occlusions 

4.4.4. Clustering of Data 

[6] proposes a layer wise segmentation process which shape extracts each layer, merging multi-

layer clusters to a single cluster later in the process.  [8] argues that layer wise segmentation does 

not work well and requires multi-layer segmentation.  [8] proposes a multi-layer segmentation 

algorithm utilizing a candidate set for test.  [8] cannot utilize nested for loops in clustering as the 

data provided by the LiDAR sensor is unorganized and sometimes is missing data due to an out of 

range LASER or an invalid result.  This research modifies the clustering algorithm of [8] and looks 
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to exploit the fact that in Algorithm 1 of this research, the data points were organized by layer and 

rotation in static memory. 

The candidate test system is implemented in this research in an array of 32 rows by 1 column. 

Rules for clustering: 

- If data is found in a row, the data must be moved to the corresponding row of the candidate 
set 

- The candidate set will be searched below and above the data row value set by the user to 
search for a cluster match (i.e. if row one is looking for a cluster match and does not find a 
match by row five… it is most likely a waste of process to search all 32 rows) 

- Every data point will be assigned a cluster number 
- All candidate set values must be assigned a cluster number  
- All values moved to the candidate set will update the cluster number in the memory 

location also 
- Points are tested sequentially from the bottom to maximum row in the image below 
- Once a column is tested the next column is tested, points are tested sequentially from the 

lowest to the maximum row 
- The distance between the points under test and candidate set must be less than the distance 

threshold to be considered the same cluster 

Figure 4-15 shows a hypothetical data set under test. LASER returns in the memory array are tested 

sequentially from row one to Row 6.  The leftmost image illustrates how the latest inspected point 

is moved into the candidate set row.  The center image illustrates the point under test and the three 

options that would be tested if the user chose to select to test +/-1 row.  The third attempt shows 

the match signaled by a green check mark on Row 3.  The rightmost image shows how the previous 

point under test was updated to the cluster and the candidate set was updated.  Now the row has 

been incremented to the next point under test.  

 

Figure 4-15 Clustering algorithm visualization with candidate set 
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4.4.5. Transitioning Between Data Packets 

Under ideal circumstances, all clusters/objects would remain in one UDP packet.  However, in the 

real world, an object or cluster could span across many UDP data packets sent from the LiDAR 

sensor.  The candidate set allows the new data packet to look at the previous clusters for potential 

matches along the seams of adjoining packets.  Every UDP packet that becomes available is parsed, 

stored in memory, clustered/segmented, then shape extracted.  This creates a dynamic shape 

updating system where one data packet could first conclude a specific cluster number to be one of 

the four shape types proposed in this research, then, when this cluster overlaps to another packet 

and more information is provided (i.e., more LASER returns), the shape could change as more data 

about the object becomes available. 

 

Figure 4-16 Clusters that overlap UDP data packets, Left image illustrates the ideal case where 
objects/clusters are contained to each data packet & the right image shows the actual case where 
objects/clusters overlap between data packets 

4.4.6. Adopting the Adaptive Breakpoint Detector to Three Dimensions 

In Section 4.4.2, the ABD was used to determine the threshold between two LASER points on a 

two-dimensional plane.  Figure 4-17 illustrates a hypothetical diagram, extracting the ABD 

threshold in a single column. The angle (∆𝜃𝜃) between the two points can be calculated by the 

vertical angle (𝜃𝜃), where, in this example, the difference between each row is 5°.  If the case was 

different and the ABD threshold was to be solved between rows 1 and 3, the angle (∆𝜃𝜃) would be 

the difference of 10°.  This is still a case where the ABD detector is operating in two dimensions, 

as the columns have not been considered yet.   
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Figure 4-17 Applying ABD in two dimensions 

However, when dealing with LASER points in three dimensions, the same ABD can be applied to 

any two points if you consider a moveable plane between any two points.  The movement of this 

plane enables the calculation of the distance threshold between any two points, no matter the row 

and column combination.  The row angle (𝜃𝜃) is provided by the LASER firing angle of the 

Velodyne HDL 32E, which is 1.33° between every LASER row.  The column angle is determined 

by the “rotational angle” provided when the packet is parsed from bytes 45 and 46 respectively, 

which is incremented by a 100 (145 &146, 245 & 246, …) for eleven additional times for every 

UDP data packet (12 in total).  Figure 4-18 illustrates a hypothetical image of LIDAR data where 

the vertical LASER increments upward by 5° (𝜃𝜃) and increases the azimuth angle by 2° (∅).  This 

method is shown as a static environment, as slight deviations to the LASER returns are not 

considered.  This method is still applicable to the post-processing of a SLAM algorithm if the 

information of angular difference between the two points under test is known. 
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Figure 4-18 ABD adapted to 3-dimensional coordinates 

The equation below shows how the angle between any two points is calculated. 

∆𝜃𝜃 = ��𝜃𝜃𝑟𝑟𝑖𝑖𝑡𝑡 − 𝜃𝜃𝑟𝑟𝑖𝑖−1𝑡𝑡 �
2

+ �∅𝑟𝑟𝑖𝑖𝑡𝑡 − ∅𝑟𝑟𝑖𝑖−1𝑡𝑡 �
2
 

Equation 9, Angle between any two points formula 

Substituting Equation 9 into Equation 10, the maximum distance that will be accepted to a cluster 

can be solved by multiplying the previous points radius(𝑟𝑟𝑖𝑖−1𝑡𝑡 ) or distance between the LiDAR 

sensor and the previous points. 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑟𝑟𝑖𝑖−1𝑡𝑡 ∙
sin(∆𝜃𝜃)

sin(𝜆𝜆 − ∆𝜃𝜃)
− 3𝜎𝜎𝑟𝑟 

Equation 10, Maximum distance for ABD 

To calculate the Euclidean distance between two points on a polar plane, the following equation is 

utilized.  

‖𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑝𝑝𝐴𝐴,𝑝𝑝𝐵𝐵)‖ = �(𝑟𝑟𝑖𝑖−1𝑡𝑡 )2 + (𝑟𝑟𝑖𝑖𝑡𝑡)2 − 2(𝑟𝑟𝑖𝑖−1𝑡𝑡 )(𝑟𝑟𝑖𝑖𝑡𝑡) ∙ cos (∆𝜃𝜃) 

Equation 11, Formula for calculating the Euclidean distance between two points in a polar plane 
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Testing the points to see if the value falls below the threshold is resolved if Equation 12 is true. 

‖𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑝𝑝𝐴𝐴,𝑝𝑝𝐵𝐵)‖ < 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 

Equation 12, Equation for testing if the distance between two points is less than Dmax 

4.4.7. Algorithm 3: Clustering and Segmenting  

Algorithm 3 performs Stage 2 of the proposed algorithm in this research the clustering stage. This 

algorithm initializes the count at 0 (variable Cnt) and increments to 11 for the 12 columns contained 

in an UDP data packet. A nested for loop of 32 rows to increment through every LASER return 

from the HDL 32E. These FOR loops will increment through a total of 384 LASER returns per 

UDP data packet. Every LASER return goes through the same test, and initially the user determines 

how many rows to search above and below the row at test. The user provides a numeric value for 

the variable “Maxdistance” initialized in the tuning parameters. The “Maxdistance” variable is 

added and subtracted to the row under test to produce “RowMax” and “RowMin” Values which 

are contained between 0-31. The “RowMax” and “RowMin” values are used in the while loop to 

navigate search locations in the candidate set.   Candidate set locations are first tested if data exist 

in the location by use of the zero flag. If no data exist, the “RowMin” value increments up toward 

“RowMax”. If data exist in the candidate set, the distance between the column in the candidate set 

is tested with the memory array. If the distance calculated is greater than the “Maxdistance” set by 

the user, the test on this point is skipped and the   value increments up toward “RowMax”. If the 

Column is less than the “Maxdistance” variable the ABD threshold is computed along with the 

Euclidean distance between the two points under test. If the distance between the two points is 

greater than the threshold, the point in the candidate set is skipped and the value increments up 

toward “RowMax” to test another point. If the Euclidean distance between the two points is less 

than the ABD threshold, the cluster number is assigned to the location in the memory array. The 

leftmost and rightmost column, and the lowest and highest rows are updated if the location exceeds 

previous entries in the cluster array. Lastly the memory array LASER return data is copied to the 

candidate set row of the row location undertest of the memory array. The While loop is then broken 

and the next LASER return value in the UDP data packet which is stored in the memory array, is 

tested.  If no matches were found in the candidate set, a new cluster is assigned where the left and 

right row, low and high column are assigned the row and column location of the first point. The 

memory array LASER return data is copied to the candidate set of the same row of the row location 

undertest in the memory array. 
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4.4.8. Result of Algorithm 3 Processing 

After Algorithm 3 has been applied to the stored data from Algorithms 1 and 2. Every LASER 

return is assigned a cluster value. A cluster array is populated which contains data about the cluster 

such as cluster number, left and right most column, lowest and highest row. This locational data 

will be used later for shape extraction stages.  

4.5. Stage Three - Shape Extraction 

The shape extraction step increments through a series of tests to determine the shape type to be 

assigned to the cluster.  Four different shapes are classified: a point, line, L-Shape, and a convex 

hull (polygon).  The Cartesian z component of the cluster is ignored, and the shape extraction is 

executed on a two-dimensional plane.  Every shape, except for clusters with only one LASER 

return, must be computed with principal component analysis (PCA) to determine if the shape is a 

point with multiple LASERs in the cluster, line, L-Shape, or a convex hull.  Shapes are returned as 

a numeric value contained in the struct under shape identification number.  The LASER return data 

for all shapes is retained in the memory array in order to keep the memory static.  Clusters are 

marked by the lowest row, highest row, left most column, and right most column.  When the cluster 

needs to be accessed for shape extraction, the data is written to the shape evaluation array. 

Shape ID Number Shape 

1 Point 

2 Line 

3 L-Shape 

4 Polygon 

Table 4-4 Shape type in relation to assigned number 
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4.5.1. Shape Extraction from the Memory Array 

The third stage in this algorithm is to perform shape extraction on every cluster produced by the 

data set.  The cluster array is reviewed for all new clusters to be assessed or updated clusters that 

need to be reassessed.  An example of an updated cluster would be a previously found cluster in a 

previous UDP data packet that extended into the latest UDP packet.  The cluster array provides the 

information needed to retrieve the data for shape extraction, including left and right most column 

as well as lowest and highest row.  A nested for loop is performed which increments through the 

data in the memory array, which moves any value found to be a part of the cluster value to the 

shape extraction array.  Not all elements in the search area set by the highest and lowest row as 

well as the leftmost and rightmost column necessarily belong to the cluster; however, this process 

allows for static memory.  Figure 4-19 illustrates how the shape extraction stage sources the cluster 

data from the memory array.  The roadmap set forth by the row and column markers.  Notice cluster 

2 is to be retrieved but data from other clusters and invalid data could still exist in this area. 

 

Figure 4-19 Illustration of a cluster extracted from the memory array 
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4.5.2. Decision Tree 

The flowchart below illustrates the process of decision making for shape extraction. 

Start

Is there 
only one point in 
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?

End

Shape type = Point
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Yes

Yes

No
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Figure 4-20 Decision tree for shape extraction 
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4.5.3. Principal Component Analysis (PCA) 

PCA is a statistical process used for converting a set of data points into a linear transformation of 

two orthogonal magnitudes and vectors (eigenvalues and eigenvectors).  The magnitude of the two 

produced eigenvalues can offer great insight into determining if LiDAR data correlates to a certain 

shape, whereas the vector can lead us to the direction of the shape. PCA is particularly useful when 

the cluster of LiDAR data does not run parallel with either the x or y axis.  In order to solve the 

orthogonal components, a system of linear equations must be solved.  Below the mathematical 

procedures are shown. 

Consider data set A is under test 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴 = �

𝑎𝑎𝑎𝑎11 𝑎𝑎𝑎𝑎12 𝑎𝑎𝑎𝑎13
𝑎𝑎𝑎𝑎21 𝑎𝑎𝑎𝑎22 𝑎𝑎𝑎𝑎23
⋮ ⋮ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛1 𝑎𝑎𝑎𝑎𝑛𝑛1 𝑎𝑎𝑎𝑎𝑛𝑛1

� 

Ignoring the z component and setting all z components equal to zero the data set becomes, 

𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴 =  �

𝑎𝑎𝑎𝑎11 𝑎𝑎𝑎𝑎12
𝑎𝑎𝑎𝑎21 𝑎𝑎𝑎𝑎22
⋮ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛1 𝑎𝑎𝑎𝑎𝑛𝑛1

� 

Traditionally, calculating the deviation matrix “𝑎𝑎“ to normalize the data is performed with Equation 

13, 

𝑎𝑎 = 𝐴𝐴 − [1] ∙ 𝐴𝐴 ∙ �
1
𝑛𝑛
� 

Equation 13, Deviation matrix 

To become, 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑎𝑎 =  �

𝑎𝑎𝑎𝑎11 𝑎𝑎𝑎𝑎12
𝑎𝑎𝑎𝑎21 𝑎𝑎𝑎𝑎22
⋮ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛1 𝑎𝑎𝑎𝑎𝑛𝑛1

� − �

111 112
121 122
⋮ ⋮

1𝑛𝑛1 1𝑛𝑛1

� ∙ �

𝑎𝑎𝑎𝑎11 𝑎𝑎𝑎𝑎12
𝑎𝑎𝑎𝑎21 𝑎𝑎𝑎𝑎22
⋮ ⋮

𝑎𝑎𝑎𝑎𝑛𝑛1 𝑎𝑎𝑎𝑎𝑛𝑛1

� ∙ �
1
𝑛𝑛
� 

Where, 

[1] = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
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𝑛𝑛 = 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 

 

However, in practical application to code efficiently the following steps are implemented. 

First, the mean of the data for both the X and Y values must be calculated.  

𝑋𝑋� =
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 

Equation 14, Mean formula 

The mean is then subtracted from the data set to center the data about the zero-crossing axis 

(normalize).  One could conclude that both methods yield the same results, except that one is easier 

to program. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑎𝑎 =  

⎣
⎢
⎢
⎡𝑎𝑎𝑎𝑎11 − 𝑋𝑋� 𝑎𝑎𝑎𝑎12 − 𝑌𝑌�
𝑎𝑎𝑎𝑎21 − 𝑋𝑋� 𝑎𝑎𝑎𝑎22 − 𝑌𝑌�

⋮ ⋮
𝑎𝑎𝑎𝑎𝑛𝑛1 − 𝑋𝑋� 𝑎𝑎𝑎𝑎𝑛𝑛1 − 𝑌𝑌�⎦

⎥
⎥
⎤
 

Equation 15, Means values are subtracted from the appropriate columns  



50 

Figure 4-17 illustrates an example procedure of removing the z component and normalizing the 

data to zero with a polygon shape. 

 

Figure 4-21 Visualization of data with removed z component and normalized data 

 

The Covariance matrix is than calculated by multiplying matrix "𝑎𝑎" with the transposed version of 

itself "𝑎𝑎𝑇𝑇", 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑎𝑎 ∙ 𝑎𝑎𝑇𝑇 

Equation 16, Covariance matrix  

The covariance matrix equals the deviation matrix multiplied by the transposed deviation matrix.  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑥𝑥) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦)
𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦, 𝑥𝑥) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦,𝑦𝑦)� 

Equation 17, 2 X 2 covariance matrix 

The covariance matrix location (1,1) provides the variance in the x direction (𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑥𝑥))  while 

location (2,2) provides variance in the y direction (𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦,𝑦𝑦)).  
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Solving for eigenvalue and eigenvectors 

𝐴𝐴𝑣̅𝑣 = λ𝑣̅𝑣 

Equation 18, Eigenvector and Eigenvalue formula 

Solving the identity matrix multiplied by lambda, 

λI = λ �1 0
0 1� = �λ 0

0 λ� 

Equation 19, Eigenvalue multiplied by the identity matrix 

Where, 

A − λI = �
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑥𝑥) − λ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦)
𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦, 𝑥𝑥) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦,𝑦𝑦) − λ� 

Equation 20, Covariance matrix subtracted the 𝜆𝜆 identity matrix 

In order to solve for the eigenvalues and eigenvectors, the Jacobi cyclic method was employed [33].  

The Jacobi method is a common algorithm for solving the eigenvalue problem and is accessible in 

almost any numerical methods book.  An advantage of the Jacobi cyclic method over the classic 

Jacobi is that each element is rotated only once (called a sweep) and the convergence is generally 

quadratic, and ordering can be implemented row wise. The Jacobi cyclic method was preferred as 

both eigenvalues are revealed, whereas methods such as Rayleigh and the power method converge 

to only the dominant eigenvalue.  Both eigenvalues are required in this research for the principal 

component analysis stage for shape extraction. 

4.5.4. Point 

Any cluster that contains only one LASER return is automatically classified as a point.  There could 

be a group of points that could still be classified as a point if the variance of the points is less than 

the determined threshold, or 𝜆𝜆1 and 𝜆𝜆2are less than a threshold. 

Points return the x mean and y mean of the cluster that was tested  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝑥̅𝑥
𝑦𝑦��  

Equation 21, Point formula that return x and y mean 
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Example of shapes considered to be points are shown below, 

 

Figure 4-22 Illustrates how a point shape can be considered a densely packed group of LASER points or a 
single LASER point 

4.5.5. Line 

When the decision has been made that the cluster set at test is not a point shape, the algorithm then 

tests for a line.  Figure 4-23 illustrates how the variance (σ𝑥𝑥2  𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑦𝑦2)  can be used to determine a 

line when the data resides parallel with an axis.  However, when the line is diagonal, the variances 

(σ𝑥𝑥2  𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑦𝑦2)  are not a good determinate of the shape.  Eigenvalues are then used on the shape to 

determine if the data set under test can be considered a line.  The eigenvalues help determine if a 

diagonal line can be considered from the data set, if one eigenvector is above the threshold and the 

other eigenvalue is below one third, the threshold a line shape is considered.  Eigenvectors operate 

like a weather vane, where the eigenvector assigned to the largest eigenvalue will point in the main 

direction of the data and the smaller eigenvalue associated to the other eigenvector shows the 

orthogonal magnitude [28].  
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Figure 4-23 Illustration of the relationships between variance and data 

It can be seen from Figure 4-23 that the two lower diagonal lines accessing the variances will not 

provide adequate information to determine the shape type.  Figure 4-24 shown below is the same 

two diagonal lines with eigenvalues applied.  One can conclude the eigenvalues are a good indicator 

for diagonal lines. 
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Figure 4-24 Eigenvalues in comparison with variance of diagonal lines 

When the data is dispersed nearly uniformly, one can see that both eigenvalues become large along 

with the variances. 

 

Figure 4-25 Example data when both Eigenvalues are large 

Once the decision is made that the data set under test is a line shape, further processing is 

implemented to retrieve the line of best fit.  The choice of linear regression is Theil Sen Robust line 

segmentation which is less sensitive to outliers than least square regression.  Shown below is a 

diagram that illustrates how sensitive least squares linear regression is to outliners.  
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Figure 4-26 Thiel Sen compared to least squares linear regression, taken from [29] 

Thiel Sen Robust line segmentation can more accurately predict the line of best fit as the slope 

value is measured between all sets of adjacent points 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖+1 to 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛−1 where 𝑛𝑛 

is the number of samples.  Once all the slopes are calculated, they are arranged in ascending order.  

The median value is selected as the slope [30] [31]. 

𝑚𝑚𝑖𝑖𝑖𝑖 =
�𝑌𝑌𝑗𝑗 − 𝑌𝑌𝑖𝑖�
�𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖�

,𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛 − 1,𝑎𝑎𝑎𝑎𝑎𝑎  𝑗𝑗 = 2 𝑡𝑡𝑡𝑡 𝑛𝑛 

Equation 22, Thiel Sen slope calculation 

𝑛𝑛 =  𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

The denominator of the slope calculation runs the possibility of equating to zero if 𝑋𝑋𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑖𝑖 are 

equal, which would result in an undefined number.  In this case, where the subtraction of 𝑋𝑋𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑖𝑖 

equal zero, the calculation of the slope is avoided, and the number of slope entries is reduced by 

one. 
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4.5.6. L-Shape 

The L-shape is a shape of high value, as vehicles, barriers, and buildings form the L-shape.  During 

the clustering phase, four points were stored as potential vertices for L-shape extraction by saving 

the greatest 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 values, and the minimum 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 values.  Depending on the rotational 

quadrant of the HDL 32E, these saved values become potential candidates for vertices of the L- 

shape. [32] proposes the algorithm for fitting an L-shape.  The L-shape image below illustrates how 

the four most exterior points are labeled (𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡,𝑉𝑉𝑈𝑈𝑈𝑈, & 𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷). The first step is to find the 

two vertices that nearly overlap.  In the image shown below, it is evident that 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑉𝑉𝑢𝑢𝑢𝑢 nearly 

overlap.  These points are labeled Vs1 and Vs2 and the geometric center is found and set as 𝑉𝑉𝐴𝐴.  

Whereas, the two other vertices (𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡 & 𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) are labelled Vr1 and Vr2. 

 

Figure 4-27 L-shape fitting illustration 

 

The angle is then computed by going from 𝑉𝑉𝐴𝐴 to 𝑉𝑉𝑟𝑟2 to 𝑉𝑉𝑟𝑟1, then by going to 𝑉𝑉𝐴𝐴 to 𝑉𝑉𝑟𝑟1  to 𝑉𝑉𝑟𝑟2.  

Whichever pattern exhibits the larger angle, the patterns last term is labeled 𝑉𝑉𝐵𝐵. In the example 

below (Figure 4-28) 𝑉𝑉𝐵𝐵 = 𝑉𝑉𝑟𝑟2. 
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Figure 4-28 Visualization of L-shape maximum angle finding 

[32] provides a second algorithm than can be implemented in order to find the data point that 

produces the closest angle to ninety degrees. 

Once the L-shape vertices are known with the angle, the vertices are used to create a triangle.  The 

triangle is then converted to Barycentric coordinates to see how many points reside inside the 

triangle.  To know if a point resides in the triangle, we must solve for  𝑉𝑉1 and  𝑉𝑉2. Once 𝑉𝑉1 and 

 𝑉𝑉2 are solved, three conditions must be satisfied for a point to reside in a triangle, shown in 

Equation 25. 

 

Figure 4-29, Barycentric coordinates 

𝑉𝑉1 =
𝐴𝐴𝑥𝑥�𝐶𝐶𝑦𝑦 − 𝐴𝐴𝑦𝑦� + �𝑃𝑃𝑦𝑦 − 𝐴𝐴𝑦𝑦�(𝐶𝐶𝑥𝑥 − 𝐴𝐴𝑥𝑥) − 𝑃𝑃𝑥𝑥�𝐶𝐶𝑦𝑦 − 𝐴𝐴𝑦𝑦�

�𝐵𝐵𝑦𝑦 − 𝐴𝐴𝑦𝑦�(𝐶𝐶𝑥𝑥 − 𝐴𝐴𝑥𝑥)− (𝐵𝐵𝑥𝑥 − 𝐴𝐴𝑥𝑥)�𝐶𝐶𝑦𝑦 − 𝐴𝐴𝑦𝑦�
 

Equation 23, Barycentric coordinates for V1 
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𝑉𝑉2 =
𝑃𝑃𝑦𝑦 − 𝐴𝐴𝑦𝑦 − 𝑉𝑉1�𝐵𝐵𝑦𝑦 − 𝐴𝐴𝑦𝑦�

𝐶𝐶𝑦𝑦 − 𝐴𝐴𝑦𝑦
 

Equation 24, Barycentric coordinates for V2 

Conditions for a point to exist inside the triangle must be true 

𝑉𝑉1 ≥ 0 

𝑉𝑉2 ≥ 0 

𝑉𝑉1 + 𝑉𝑉2 < 1 

Equation 25, Barycentric conditions 

For a data set to be accepted as an L-shape, the percentage of points within the triangle must exceed 

the threshold set by the user,  

𝑃𝑃𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  

Equation 26, Triangle percentage test 

4.5.7. Algorithm 4 and 5: Modified Graham Scan, Convex Hull 

A common algorithm for finding the outer edge points in a data set is known as Graham scan. 

Graham scan solves the convex hull which can be interchangeably called the polygon.  Traditional 

applications of Graham scan always start at the lowest “Y” value regardless of the edge position.  

This method is an excellent approach when the data set is scattered, and no information is 

previously known [34].  The implementation in this research attempts to exploit the previous 

arrangement of the LIDAR data completed in Stage One.  The added benefit is that horizontal data 

is already known by column values.  As the memory cluster array provides the leftmost and 

rightmost column, it is known that the outer edges must be in these columns.  The row information 

does not add value, as the Z component is ignored for shape extraction.  The modified version of 

Graham scan always starts at the leftmost column.  Every column is treated as scattered data, 

knowing the point that is closest and furthest from the vehicle must exist in the row, if data from 

the cluster exist in the row.  All rows are sorted finding the smallest “Distance” value (retained 

from the cylindrical coordinates) and placing the closest value on the stack, and the column than 

increments to the right one place sorting for the smallest “Distance” value and placing the second 

value on the stack.  The process is repeated for the third column where this value is not placed on 



59 

the stack until the calculated cross product results in a CCW rotation.  If a CW is detected, the 

previous point is popped off the stack.  And the test proceeds until the rightmost column is 

calculated.  The rightmost column is tested for more than one value if the rightmost column has 

more than one data point, the rows are sorted for the greatest value where the point is than tested 

and accepted if CCW rotation is present.  The rightmost column is then decremented until the value 

equals the leftmost column, sorting for the highest value Y point in each column along the way, 

that satisfies the CCW acceptance test.  At the end a polygon is formed with the outermost points 

following the form of a CCW rotation. 

The cross product is used to determine the angle between the two vectors produced by the three 

points.  

 

Figure 4-30 Cross product calculation 

Where the cross product can be solved by the following, 

𝑃𝑃𝚤𝚤−1𝑃𝑃𝚤𝚤�������� × 𝑃𝑃𝚤𝚤−1𝑃𝑃𝚤𝚤−2����������� = �𝑥𝑥(𝑝𝑝𝑖𝑖−1−𝑝𝑝𝑖𝑖) ∙ 𝑦𝑦(𝑝𝑝𝑖𝑖−1−𝑝𝑝𝑖𝑖−2)� − �𝑥𝑥(𝑝𝑝𝑖𝑖−1−𝑝𝑝𝑖𝑖−2) ∙ 𝑦𝑦(𝑝𝑝𝑖𝑖−1−𝑝𝑝𝑖𝑖)� 

Equation 27, Cross product test for three points in two dimensional cartesian coordinates 

If the result is positive, we can conclude the tested points are making a counterclockwise (CCW) 

turn, if the result is negative a clockwise (CW) turn has been made.  If all results are positive the 

algorithm will move forward through the points creating a stack to store the points.  As soon as a 

clockwise detection is made the last point on the stack is removed and the current point under test 

is reexamined for a CW or CCW rotation with the last two data points placed on the stack.  If the 

rotation returns CW the next point on the stack is removed and retested and checked until a CCW 

rotation is satisfied. 
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4.5.8. Result of Algorithms 4 and 5 Processing 

After Algorithms 4 and 5 have been executed by the modified Graham scan algorithm, the outer 

perimeter LASER return values are made available. These outer perimeter points could be used in 

conjunction with sensory fusion algorithms which is beyond the scope of the research presented 

here. 
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CHAPTER 5 
Results 

5.1. Manual Evaluation of Algorithms 

5.1.1. Dynamic Cluster Update System 

As stated in Section 4.4.5, when a UDP data packet undergoes the three stages of the algorithm 

the cluster and attributes (Top and lowest most row, left and right most row, Vertex locations, and 

shape type) are subject to change based on newly available data. As future UDP data packets are 

extracted, the new data has the potential to become part of a cluster from the previous data 

packet. When this newly arrived data is found, the new cluster information must be updated and 

the whole cluster must be reassessed.  Figure 5-1 provides an example of Cluster #1’s attributes 

(shown left) when only a single data packet is extracted, and when two UDP data packets are 

extracted (shown right).  It is noticeable that multiple attributes have been updated. 

 

Figure 5-1 Dynamic cluster update, cluster #1 is updated between data packets  

5.1.2. Ground Point Removal (GPR) 

GPR is driven specifically by the mounting height of the LiDAR sensor.  The image below 

illustrates two UDP data packets approximately ten degrees of azimuth sensor rotation.  The 

asterisk is used to show where data is present, and a blank space is used where invalid data points 

are present.  The image on the left illustrates where ground points are present whereas the image 

on the right shows the same data packets with the ground point removal activated. The GPR is only 

applied to the 22 negative vertical angle LASERS (0-21). The other 10 LASERS positive angle or 
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0 degrees are evaluated using the max LASER distance of the Velodyne HDL 32E which is 70 

meters.  

 

Figure 5-2 Ground point removal, the left side without GPR and the right side with GPR where “*” = data and 
“ “ = no data 

5.1.3. Segmentation 

Segmentation is the process of grouping LiDAR data together where every group known as a cluster 

pertains to a single object.  As discussed earlier, the determination factor is the distance between 

LASER returns utilizing the ABD [7].  If an object contains more data than just what belongs to 

the object, the cluster is said to be over segmented.  An example of an over segmented object would 

be if a car and a tree were considered part of the same cluster.  If the object is a greater size than a 

single cluster, the cluster is said to be under segmented.  An example of under segmentation would 

be if the vehicle had multiple clusters assigned to it, when the result should be only one cluster.  

Segmentation values can be tuned by adjusting the tunable parameters from the ABD.  Tuning the 

LiDAR for segmentation would require access to a real hardware LiDAR sensor and the ability to 

scan a room or environment with known distance to objects and to evaluate and adjust parameters 

as needed. [6] [8] Use of the methods of adaptive breakpoint detection for clustering has proven to 

be a robust method of segmentation. The image below illustrates the segmentation of two Velodyne 

UDP packets from the HDL 32E.  The data points are arranged in vertical and horizontal order just 

like photograph. 
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Figure 5-3 Two UDP packets segmented, numeric value reveals cluster identification number 

5.1.4. Point Shape 

Any cluster with a single point is considered a point.  Points are possible with multiple entries of 

LASER data if the calculated variance of both X and Y are less than the threshold entered by the 

user, or the calculated Eigenvalues both one and two are less than the specified threshold set up by 

the user. 
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Figure 5-4 Multiplied LASER returns that are classified as a point 

5.1.5. Line Shape 

Line shapes are found by examining the variance in both the X and Y direction as well as examining 

the computed Eigenvalues.  The image below illustrates data points that were classified as a line. 

 

Figure 5-5 Example of data classified as a line 

5.1.6. L Shape 

The image below illustrates LASER return points that were clustered and considered an L shape. 
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Figure 5-6 Data points that were classified as an L-shape 

The following information was computed and calculated for the most left, right, up, and down 

vertex. 

 

Figure 5-7 Vertex points that were calculated for the L-shape test 

The result of the algorithm is illustrated in the image below. 
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Figure 5-8 Manual evaluation of L-shape 

5.1.7. Convex Hull 

The image below is a plotted representation of data points returned from a cluster whose shape was 

considered a polygon. 

 

Figure 5-9 Returned plotted data points for a polygon 

The goal of the polygon or convex hull shape extraction algorithm is to extract the data points that 

form the exterior of the hull.  The red line illustrates the outermost points in the hull and the points 

that should be returned to prove the algorithm is correctly functioning. 

-11400

-11200

-11000

-10800

-10600

-10400

-10200

-10000
-900 -800 -700 -600 -500 -400 -300 -200 -100 0

Y 
Ax

is

X Axis

Polygon Plot



68 

 

Figure 5-10 Convex hull/ polygon perimeter path marked 

The following points are the returned points from the convex hull algorithm. 

 

Figure 5-11 Returned data points to form the convex hull. The plot of the points below proves the algorithm 
is functioning as intended returning the outermost points. 

 

Figure 5-12 Plotted returned data points to form the convex hull 

-11400

-11200

-11000

-10800

-10600

-10400

-10200

-10000
-1000 -800 -600 -400 -200 0

Y 
Ax

is

X AXIS

Polygon Plot Result



69 

5.2. Timing Analysis 

The code execution times were recorded executing 200 UDP packets from the Velodyne HDL 32E 

(~two and a half 360-degree rotations).  The timing executions were completed in three methods.  

Method one is the time taken to complete the UDP packet parsing/organization.  Method two is the 

time taken to complete the UDP packet parsing/organization and clustering of the 200 packets.  

Method three is the total time taken to complete the UDP packet parsing/organization, clustering, 

and shape extraction of 200 packets. 

Start
Organize and 
Parse LiDAR 

UDP Data 

Segmentation 
and Clustering 
of the LiDAR 

points

Shape 
Extraction End

 

Figure 5-13 Process of the software stages that every Velodyne HDL 32E UDP data packet must complete 

5.2.1. Preparing the Windows Machine for Timing Evaluation 

Timing analysis is very difficult on a Windows computer as the microprocessor is not dedicated to 

a single task such as a microcontroller, application specific integrated circuit (ASIC), or FPGA chip 

is.  In order to set priority timing to the execution time of this code the priority was set to “Realtime” 

in the task manager before execution.  By setting the Windows personal computer (PC) to Realtime, 

approximately seven milliseconds were shaved off the total execution time.  In the case of the Intel 

I7 processor this priority setting to Realtime accounted for approximately a nine percent timing 

gain. 

 

Figure 5-14 Setting processor priority on Windows operating system 
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5.3. Performance of the Code on Different Machines 

Code execution was performed on two different Windows computers to provide an example of 

algorithm runtime on different machines.  Both computers executed the same code and examine 

the same 200 Velodyne HDL 32E UDP data packets.  The code was executed on Code blocks 17.12 

on both machines. 

Manufacturer Dell Latitude E5570 Dell Latitude E5570 
Processor Intel I7- 6820HQ 

CPU at 2.7 GHz 
Processor, 4 cores 
 

Intel I5 – 6440HQ 
CPU at 2.6 GHz 
Processor, 4 cores 

RAM 16 GB 8 GB 
Hard Drive SSD hard drive 

model SK Hynix 
SC311 SATA 512 
GB 

Toshiba 
MQ01ACF050 500 
GB SATA-600, 
SATA 6GB/s 7278 
RPM  

Operating System Windows 10 
Enterprise Edition 64 
bit 

Windows 10 
Enterprise Edition 64 
bit 

Differentiator Dell I7 Dell I5 
Table 5-1 Personal computers used for testing 

5.4. Dell I7 Timing Analysis 

5.4.1. Dell I7 Execution Times 

 

Figure 5-15 Dell I7, timing snippets from code execution 

5.4.2. Dell I7 UDP Packets Parsing Data 

Total time to Parse 200 UDP Packets is 26.955 milliseconds 

Mean Values 
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𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 134.957 𝜇𝜇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

5.4.3. Dell I7 Clustering and Segmentation 

Total time to cluster and segment 200 UDP Packets is 48.132 milliseconds 

Mean Values 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 & 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝 𝑈𝑈𝑈𝑈𝑈𝑈 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 240.66 𝜇𝜇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

5.4.4. Dell I7 Shape Extraction 

Total time to perform shape extraction on 200 UDP Packets is 2.776 milliseconds 

Mean Values 

𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝 𝑈𝑈𝑈𝑈𝑈𝑈 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 13.88 𝜇𝜇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

Percentage of time spent by category, 

 

Figure 5-16 Dell I7, bar graph percentage of time by category 
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5.4.5. Dell I7 Average Execution Time per UDP Packet 

Total time to perform all three stages (Parse UDP packets, Cluster, and Shape extraction) on a 

single UDP packet produced from the Velodyne HDL 32E. 

𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 389.497 𝜇𝜇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

5.5. Dell I5 Timing Analysis 

5.5.1. Dell I5 Execution Times 

 

Figure 5-17 Dell I5, timing snippets from code execution 

5.5.2. Dell I5 UDP Packets Parsing Data 

Total time to Parse 200 UDP Packets is 26.104 milliseconds 

Mean Values 

𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 130.52 𝜇𝜇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

5.5.3. Dell I5 Clustering and Segmentation 

Total time to cluster and segment 200 UDP Packets is 50.1 milliseconds 

Mean Values 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 & 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝 𝑈𝑈𝑈𝑈𝑈𝑈 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 250.5 𝜇𝜇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

5.5.4. Dell I5 Shape Extraction 

Total time to perform shape extraction on 200 UDP Packets is 6.015 milliseconds 

Mean Values 
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𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝 𝑈𝑈𝑈𝑈𝑈𝑈 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 30.075 𝜇𝜇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

Percentage of time spent by category, 

 

Figure 5-18 Dell I5, bar graph percentage of time by category 

5.5.5. Dell I5 Average Execution Time per UDP Packet 

Total time to perform all three stages (parse UDP packets, cluster, and shape extraction) on a single 

UDP packet produced from the Velodyne HDL 32E. 

𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 411.095 𝜇𝜇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

5.6. Comparison of Both Windows PC Machines 

The chart below illustrates the timing required for every stage on the two different personal 

computers used in this research.  
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Figure 5-19 Mean processing time of 1 UDP data packet with two different PC's (Dell I7, Dell I5) 

5.7. Timing Comparison to Related Work  

[6] tested 2d+ Lidar data utilizing MATLAB.  The research from [6] did not state the sensor type 

used in their research, only that the sensor produces 100,000 LiDAR data points per second, 

whereas the LiDAR sensor used in this research produces 700,000 points of LiDAR data per second 

(Velodyne HDL 32E).  [6] Delivered an average packet completion time of 287 milliseconds.  The 

completion time included a pre clustering row by row stage, pre shape extraction row by row, a 

row and shape merging stage, and a final shape extraction stage. 
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Figure 5-20 Comparison of related research showing the difference of the average execution time of a single 
LiDAR UDP data packet 

The future comparisons will only consider the time of the I7 computer as the fastest execution time 

was provided from this Windows machine.  

Number of data packets that the algorithm completed in this research compared to a single packet 

in [6]. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅[6] 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇ℎ𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

=
287 𝑚𝑚𝑚𝑚

0.389315 𝜇𝜇𝜇𝜇
= 737.19 

This research proved to execute the complete algorithm on 737.19 UDP data packets for every 

single data packet executed by [6] who utilized MATLAB for the execution of their algorithm. 

If one considered that [6] algorithm processed 100,000 LASER returns per second and that this 

research processed 700,000 LASER returns per second, one could conclude that this research 

performed: 

737.19 × 7 = 5160.33 

Concluding that the algorithm in this research performed 5160.33 times faster than the related work 

of [6]. 

 

0.389315 0.411095

287

0

50

100

150

200

250

300

350

Dell I7 Dell I5 Matlab

This Research Reference [6]

Ti
m

e 
(m

S)

Comparison of Releated Research - Average   
Execution Time of a Single LiDAR Packet

This Research Dell I7

This Research Dell I5

Reference [6] Matlab



76 

5.8. Timing Comparison to Benchmark 

The processing time benchmark discussed in Chapter 3 shows that LiDAR UDP data packets arrive 

every 552.96 μs on the Velodyne HDL 32E.  Comparing the results obtained from the proposed 

algorithms acceleration on the PC’s. 

  

Figure 5-21 Comparison of the PC's tested, average UDP data packet execution time compared to the 
benchmark time of the UDP data packet arrival time 

Time to next packet is 552.96 

 

Figure 5-22 Percentage of the time utilized between UDP data packet 
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CHAPTER 6 
Discussion 

6.1. Tuning Parameters 

The algorithm in this research has several tuning parameters.  The tuning of the parameters could 

greatly improve segmentation of shapes if done correctly.  

A list of tuning parameters: 

Mounting height of the LiDAR Sensor - The height of the LiDAR sensor was provided by 

Velodyne for this research.  However, when performing the ground point removal stage, the 

mounting height of the physical sensor must be considered.   

Adaptive Breakpoint Detector (ABD) -  𝜆𝜆 or the maximum incidence angle must be chosen 

carefully. 𝜆𝜆 must always be greater than the greatest angle between points (∆𝜃𝜃).  Choosing the 

proper 𝜆𝜆 value must go hand in hand with the greatest distance between points that will ever be 

searched.  The selection of 𝜆𝜆 will affect the greatest angle between points while trying to avoid 

occlusions. 

Search Points - The number of LASERs layers and rows to look above, below, and left of for 

occlusion avoidance.  The value of “Search Points” can aid greatly in reducing under segmentation 

of an object when an occlusion is present. The further the distance between points, the greater the 

threshold circle. Selection of the “Search Points” parameter should be consciously adjusted to avoid 

sloppy data that will result in over segmentation. As mentioned above, the adjustment of 𝜆𝜆 must be 

considered when setting the “Search Points” parameter. 

Variance Thresholds – Variance threshold are used to determine line shapes that run parallel to 

the X or Y axis during shape extraction.  The variance threshold must be considered to avoid 

confusing an L-Shape or Polygon with a line. 

Eigenvalue Thresholds – Eigenvalue threshold (𝜆𝜆1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆2)  are used to determine point shapes 

that have more than a single LASER return as well as distinguishing horizontal line shapes.  The 

Eigenvalue threshold must be considered to avoid confusing an L-Shape or Polygon with a line. 
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6.2. Future Work 

Tuning of parameters and validation in different automotive environments is necessary with 

hardware LiDAR sensors.  Tuning should be validated in a known environment so that performance 

could be evaluated for best results.   

Implement the simultaneous localization and mapping (SLAM) algorithm.  The SLAM algorithm 

will continuously remap data points.  The algorithms in this research that exploit the organization 

of the LiDAR return data needs to be proved to operate with SLAM running effectively together. 

Improvements to the ground point removal stage can be implemented.  Traffic lines and street signs 

are generally made from reflective materials.  The intensity of the LiDAR return could be used in 

turn on the GPR stage to extract road lines that could also aid in autonomous vehicle features. 

Clustering.  Expanding the candidate set by more than one dimension could improve on azimuth 

occlusions.  If data was not received for a few columns, the data in the row may become too far 

away for a cluster match.  The validation of a cluster match could still be accomplished by looking 

above and below the current row under test.  [8] expanded the candidate set and was able to improve 

on ghost elimination. 

Barycentric Coordinates. The current test forms a triangle that may not include data points that are 

very close to the triangle or even partially touching the edge of the triangle.  Test making the 

triangle larger to account for points that may be closest to the triangle.  [37] proposes an algorithm 

that considers the thickness of the lines and vertexes in order to reduce error of points close to the 

boundary of the triangle. 

Processing time. This research proved that the data from a LiDAR sensor (Velodyne HDL 32E) 

could be run in Realtime utilizing a Windows 10 operating system with an I7 or I5 processor.  The 

I7 produced a mean resting time of ~30%.  When the SLAM algorithm is added to this research, 

there is the potential that this algorithm may not be able to keep up with the requirements of 

operating in Realtime.  The algorithms in this research should be accelerated on a dedicated 

hardware processor perhaps FPGA or GPU. 
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CHAPTER 7 
Conclusion 

This thesis provided an algorithm that processes data from the LiDAR sensors ethernet output 

stream UDP packet parsing, clustering/segmentation, and shape extraction of LiDAR data.  The 

proposed algorithm exploits an algorithm during the first stage that orders the LiDAR LASER data 

in vertical rows and horizontal columns for subsequent stages to utilize less computationally 

expensive processing.  This algorithm is designed to be able to run in Realtime with a vehicle 

rooftop mounted rotary three-dimensional LiDAR sensor, such as the Velodyne HDL 32E, which 

was used in this research.  This algorithm is designed with the intent to pass shape data onto an 

object tracking algorithm as part of an ADAS or autonomous vehicle sensor suite. 

The manual assessments proved that the algorithms were functioning as designed and provided 

proper data as a result.  Segmentation results and tuning parameters were assumed based on 

previous research with positive results.  Access to actual LiDAR hardware was unobtainable during 

this research, therefore tuning parameters could not be finely adjusted.  

The execution timing analysis proved that a Windows I7 or even I5 machine running the Windows 

10 operating system could process the LiDAR data at a faster rate than the Velodyne HDL 32E 

produced the UDP data packets.  The Velodyne HDL 32E produces UDP data packets at a rate of 

552.96 μS per packet, whereas the I7 Windows machine was able to complete the parsing, 

clustering and shape extraction of UDP data packets at a mean rate of 389.47 μs when a 200 UDP 

data set was tested.  The I5 Windows machine was able to provide a data packet mean at 411.09 μs 

when tested with the 200 UDP data packet set. 
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APPENDIX A.   
 

HDL 32E Firing Order Chart 

The chart below deciphers the byte order access needed to arrange the Velodyne HDL 32E UDP 

data packet from the most negative LASER firing angle to the most Positive LASER firing angle.  

Access Pattern Byte Order 
Access Length Firing 

order 
DSR 

# 

Vertical 
Angle 

(Degrees) 

Radian Angle 
(Rads) 

Laser Block ID 42 2 Bytes *** *** *** *** 
Rotational 44 2 Bytes *** *** *** *** 
Distance 

Information 46 2 Bytes 1 0 -30.67 -0.535292482 

Intensity 48 1 Byte     
Distance 

Information 52 2 Bytes 3 2 -29.33 -0.51190507 

Intensity 54 1 Byte     
Distance 

Information 58 2 Bytes 5 4 -28 -0.488692191 

Intensity 60 1 Byte     
Distance 

Information 64 2 Bytes 7 6 -26.66 -0.465304779 

Intensity 66 1 Byte     
Distance 

Information 70 2 Bytes 9 8 -25.33 -0.4420919 

Intensity 72 1 Byte     
Distance 

Information 76 2 Bytes 11 10 -24 -0.41887902 

Intensity 78 1 Byte     
Distance 

Information 82 2 Bytes 13 12 -22.67 -0.395666141 

Intensity 84 1 Byte     
Distance 

Information 88 2 Bytes 15 14 -21.33 -0.372278729 

Intensity 90 1 Byte     
Distance 

Information 94 2 Bytes 17 16 -20 -0.34906585 

Intensity 96 1 Byte     
Distance 

Information 100 2 Bytes 19 18 -18.67 -0.325852971 

Intensity 102 1 Byte     
Distance 

Information 106 2 Bytes 21 20 -17.33 -0.302465559 

Intensity 108 1 Byte     
Distance 

Information 112 2 Bytes 23 22 -16 -0.27925268 

Intensity 114 1 Byte     
Distance 

Information 118 2 Bytes 25 24 -14.67 -0.256039801 
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Intensity 120 1 Byte     
Distance 

Information 124 2 Bytes 27 26 -13.33 -0.232652389 

Intensity 126 1 Byte     
Distance 

Information 130 2 Bytes 29 28 -12 -0.20943951 

Intensity 132 1 Byte     
Distance 

Information 136 2 Bytes 31 30 -10.67 -0.186226631 

Intensity 138 1 Byte     
Distance 

Information 49 2 Bytes 2 1 -9.33 -0.162839219 

Intensity 51 1 Byte     
Distance 

Information 55 2 Bytes 4 3 -8 -0.13962634 

Intensity 57 1 Byte     
Distance 

Information 61 2 Bytes 6 5 -6.66 -0.116238928 

Intensity 63 1 Byte     
Distance 

Information 67 2 Bytes 8 7 -5.33 -0.093026049 

Intensity 69 1 Byte     
Distance 

Information 73 2 Bytes 10 9 -4 -0.06981317 

Intensity 75 1 Byte     
Distance 

Information 79 2 Bytes 12 11 -2.67 -0.046600291 

Intensity 81 1 Byte     
Distance 

Information 85 2 Bytes 14 13 -1.33 -0.023212879 

Intensity 87 1 Byte     
Distance 

Information 91 2 Bytes 16 15 0 0 

Intensity 93 1 Byte     
Distance 

Information 97 2 Bytes 18 17 1.33 0.023212879 

Intensity 99 1 Byte     
Distance 

Information 103 2 Bytes 20 19 2.67 0.046600291 

Intensity 105 1 Byte     
Distance 

Information 109 2 Bytes 22 21 4 0.06981317 

Intensity 111 1 Byte     
Distance 

Information 115 2 Bytes 24 23 5.33 0.093026049 

Intensity 117 1 Byte     
Distance 

Information 121 2 Bytes 26 25 6.67 0.116413461 

Intensity 123 1 Byte     
Distance 

Information 127 2 Bytes 28 27 8 0.13962634 

Intensity 129 1 Byte     



87 

Distance 
Information 133 2 Bytes 30 29 9.33 0.162839219 

Intensity 135 1 Byte     
Distance 

Information 139 2 Bytes 32 31 10.67 0.186226631 
Intensity 141 1 Byte     
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