
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-20-2020

Emerging & Unconventional Malware Detection Using a Hybrid Emerging & Unconventional Malware Detection Using a Hybrid

Approach Approach

Farhan Mahmood Babar
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Babar, Farhan Mahmood, "Emerging & Unconventional Malware Detection Using a Hybrid Approach"
(2020). Electronic Theses and Dissertations. 8294.
https://scholar.uwindsor.ca/etd/8294

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8294?utm_source=scholar.uwindsor.ca%2Fetd%2F8294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Emerging & Unconventional Malware
Detection Using a Hybrid Approach

By

Farhan Mahmood Babar

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2020

c©2020 Farhan Mahmood Babar

Emerging & Unconventional Malware Detection Using a Hybrid Approach

by

Farhan Mahmood Babar

APPROVED BY:

M. Azzouz

Department of Electrical & Computer Engineering

P. Moradian Zadeh

School of Computer Science

S. Saad, Advisor

School of Computer Science

January 20, 2020

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION

I hereby declare that this thesis incorporates material that is a result of research

conducted under the supervision of Dr. Sherif Saad (Advisor). Section 3.1, 2.1.1 and

5.1.3 of this thesis was co-authored with Sherif saad, William Briguglio and Haytham

Elmiligi. In all cases, the key ideas, primary contributions, experimental designs, data

analysis interpretation, and writing were performed by the author. The contribution

of co-authors was primarily through providing feedback on the refinement of ideas

and editing of the manuscripts.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis,

and have obtained written permission from each of the co-authors to include the

above materials in my thesis.

This thesis includes one original paper that has been previously published, as

follows:

Paper Publication Status

Sherif Saad, Farhan Mahmood, William Briguglio,

Haytham Elmiligi, ”JSLess: A Tale of a Fileless

Javascript Memory-Resident Malware”, in ISPEC 2019 -

Pages 113-131

Published

I certify that I have obtained a written permission from the copyright owners to

include the above published material in my thesis. I certify that the above mate-

rial describes work completed during my registeration as a graduate student at the

University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

III

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

IV

ABSTRACT

Advancement in computing technologies made malware development easier for

malware authors. Unconventional computing paradigms such as cloud computing,

the internet of things, In-memory computing, etc. introduced new ways to develop

more complex and effective malware. To demonstrate this, we designed and im-

plemented a fileless malware that could infect any device that supports JavaScript

and HTML5. In addition, another proof-of-concept is implemented that signifies the

security threat of in-memory malware for in-memory data storage and computing

platforms. Furthermore, a detailed analysis of unconventional malware has been per-

formed using current state-of-the-art malware analysis and detection techniques. Our

analysis shows that, by utilizing the unique characteristics of emerging technologies,

malware attacks could easily deceive the anti-malware tools and evade themselves

from detection. This clearly demonstrates the need for an innovative and effective

detection mechanism. Because of the limitations of existing techniques, we propose a

hybrid approach using specification-based and behavioral analysis techniques together

as an effective solution against unconventional and emerging malware instances. Our

approach begins with the specification development where we present the way of

writing it in a succinct manner to describe the expected behavior of the application.

Moreover, the behavior monitoring component of our approach makes the detection

mechanism effective enough by matching the actual behavior with pre-defined specifi-

cations at run-time and alarms the system if any action violates the expected behav-

ior. We demonstrate the effectiveness of the proposed approach by applying it for the

detection of in-memory malware that threatens the HazelCast in-memory data grid

platform. In our experiments, we evaluated the performance and effectiveness of the

approach by considering the possible use cases where in-memory malware could affect

the data present in the storage space of HazelCast In Memory Data Grid (IMDG).

V

DEDICATION

I dedicate this thesis to my family for their constant love and support. Especially

to my parents for teaching me the importance of hard work and higher education.

To my brothers & sister for all the trust they have in me, and their belief that I

can reach my dreams.

VI

ACKNOWLEDGEMENTS

I would like to sincerely express my most profound gratitude towards my super-

visor Dr. Sherif Saad, whose input helped me immensely. With his input, I was able

to look at my research with a different perspective and a more critical eye.

Also, I would like to thank my fellow lab mates for the stimulating discussions

during the development of this work. Last but not the least, my deepest gratitude to

my family for their unconditional love, support, and belief.

VII

TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICA-
TION III

ABSTRACT V

DEDICATION VI

ACKNOWLEDGEMENTS VII

LIST OF TABLES XI

LIST OF FIGURES XII

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Problem Statement . 3
1.4 Thesis Contribution . 4
1.5 Thesis Organization . 4

2 Related Works 6
2.1 Unconventional Malware Types . 9

2.1.1 Fileless Malware . 9
2.1.2 In-Memory Malware . 11
2.1.3 Malware in IoT Devices . 12

2.2 Malware Analysis Techniques . 12
2.2.1 Static Analysis . 13

2.2.1.1 Determining the file type 13
2.2.1.2 Fingerprinting the malware 14
2.2.1.3 Multiple Anti-virus Scanning 14
2.2.1.4 Determining File Obfuscation 14

2.2.2 Dynamic Analysis . 15
2.2.2.1 Process Monitoring 15
2.2.2.2 File System Monitoring 16
2.2.2.3 Network Monitoring 16

2.2.3 Memory Based Analysis . 16
2.3 Malware Detection Techniques . 17

2.3.1 Signature-based Technique . 18
2.3.2 Anomaly Detection Technique 18
2.3.3 Specification-based Technique 20

VIII

3 Unconventional Malware Development 22
3.1 JSLess: Fileless JavaScript Memory-resident Malware 22

3.1.1 Benign Features with Malicious Potentials 23
3.1.1.1 Web Sockets . 23
3.1.1.2 Web Worker . 24
3.1.1.3 Service Workers . 26

3.1.2 JavaScript Fileless Malware 26
3.1.2.1 Infection Scenarios 27
3.1.2.2 JSLess Operational Scenario 27

3.2 In-Memory Malware . 33
3.2.1 HazelCast . 34

3.2.1.1 Member Discovery Mechanism 34
3.2.2 Design & Implementation . 35
3.2.3 Infection Scenarios . 37

3.3 Attack Vectors . 39
3.3.1 Data Stealing . 40
3.3.2 In-Memory Ransomware . 40
3.3.3 DDoS . 40
3.3.4 Resource Consumption Attack 40

4 Hybrid Approach For Unconventional Malware Detection 42
4.1 Overview . 42
4.2 Architecture . 44

4.2.1 Behavior Specifications . 44
4.2.2 Behavior Monitoring Module 45
4.2.3 Specification Matching Module 46

4.3 Design & Implementation . 46
4.3.1 Specification Development . 48

4.3.1.1 Finite State Machine (FSM) 48
4.3.1.2 Designing of FSM Model 49
4.3.1.3 Specifications Extraction from FSM Model 51

5 Experiments and Results 55
5.1 Unconventional Malware Analysis . 55

5.1.1 Lab Environment & Tools For Analysis 56
5.1.2 JSLess: Fileless JavaScript Malware Analysis 56

5.1.2.1 Memory Analysis with Volatility 57
5.1.2.2 Capturing Network Traffic with Wireshark 57

5.1.3 JSLess Analysis using Tools 58
5.1.3.1 ReScan.Pro . 59
5.1.3.2 Web Inspector . 60
5.1.3.3 Sucuri . 62
5.1.3.4 Quttera . 63
5.1.3.5 VirusTotal . 64
5.1.3.6 AI-BOLIT . 64

IX

5.2 Unconventional Malware Detection 65
5.2.1 Experiment Setup . 65
5.2.2 Implementation . 66
5.2.3 Evaluation . 67

5.2.3.1 Effectiveness . 68
5.2.3.2 Performance . 70

5.3 Approach Benefits . 74
5.4 Limitations . 74

6 Conclusion & Future Work 76
6.1 Conclusion . 76
6.2 Future Work . 77

REFERENCES 78

APPENDICES 86

VITA AUCTORIS 91

X

LIST OF TABLES

5.1.1 JavaScript and Web App Malware Detection Tools 59

5.2.1 Experimental System Specifications 65

5.2.2 Experimental System Software and Dependencies 66

5.2.3 Effectiveness Results of Implemented Approach 69

5.2.4 Performance time overhead calculated against each event 73

5.2.5 Performance Results of Implemented Approach 73

XI

LIST OF FIGURES

1.2.1 Malware trends reported by AV-TEST Security Report [65] 3

3.1.1 JavaScript Fileless Malware First Infection Scenario 28

3.1.2 JavaScript Fileless Malware Second Infection Scenario 29

3.1.3 Obfuscated JavaScript code injection 31

3.2.1 HazelCast IMDG Embedded Topology [22] 35

3.2.2 HazelCast IMDG Client-Server deployment [22] 36

3.2.3 In-Memory Malware First Attack Scenario 38

3.2.4 In-Memory Malware Second Attack Scenario 39

4.2.1 Architecture of the proposed approach 45

4.3.1 FSM Model for HazelCast Member 49

5.1.1 Processes list after fileless malware execution on web app 57

5.1.2 Network Traffic monitored during the execution of JSLess 58

5.1.3 Rescan.Pro scanning report . 60

5.1.4 JSLess detection report by Web Inspector Tool 61

5.1.5 Sucuri Online Scanner Report . 62

5.1.6 Quttera Scanning Report on JSLess detection 63

5.1.7 VirusTotal Report . 64

5.2.1 Clients connected with HazelCast Cloud Cluster 70

5.2.2 HazelCast Map Entry Count & Used Memory 71

5.2.3 HazelCast Map Average Latency & throughput 71

5.2.4 HazelCast Cluster Map Metrics after running implemented approach 72

XII

CHAPTER 1

Introduction

1.1 Overview

A program, or a software which is executed on a computer system to fulfil the harm-

ful intention of an attacker is usually known as malicious software or malware [43].

The malware attacks are continuously growing and becoming more sophisticated and

stealthy with time [18]. In the era of edge computing, even though advancement

in computing technology is making our life easier, it simultaneously introducing new

ways for malware authors to develop more complex and sophisticated malware. These

emerging malware presents fastest growing problems for all types of users from small

households to large corporations and government bodies. The constantly expanding

use of high level programming languages and software libraries provide advanced ca-

pabilities to not only develop modern applications but also enables cybercriminals

to implement software that can be used to perform malicious operations. Variety

of sophisticated malware such as botnet, fileless, ransomware, In-Memory and IoT

malware became easier to be developed with the new feature-rich programming lan-

guages and off-the-shelf software libraries. Attackers who use unconventional tactics,

they use trusted off-the-shelf and pre-installed system tools to carry out their work

which makes it often difficult for the investigators to determine who is behind the

malicious activity. According to a report by Malwarebytes, attackers got more cre-

ative at avoiding detection by injecting malicious code into online payment platforms

and stealing information out with plugins that did more harm than good [39].

The state of the art malware detection systems use signature or dynamic/behavior

1

1. INTRODUCTION

based detection techniques to decide if a software is malicious or not. Signature-based

detection technique detects attacks on the basis of signatures and not suitable to

detect unknown and unconventional malware attacks. Behavior based overcomes the

limitations of signature based by focusing on system behavior. Its been seen from the

research that behavior based detection with the use of machine learning is an effective

solution for malware detection. However, continuous growth of malware attacks are

managed to bypass malware detection systems powered by machine learning. It gives

high false positive rate and its accuracy also differs in development and production

environment. Another malware detection technique which is most commonly used

in Intrusion Detection System (IDS) [48] is specification-based technique which is

instead of relying on machine learning, based on manually developed specifications

that capture legitimate system behaviors. Specification-based approach overcomes

the limitations of machine learning based detection approach by avoiding the high

false alarms. By realizing the complementary nature of the strengths and weaknesses

of behavior-based and specification-based malware detection techniques, we present

an approach which is utilizing the strengths of both of them in a way that could

mitigate the unconventional malware attacks.

1.2 Motivation

The increasing volume and variety of new malware is posing a serious security threat.

According to AV-Test Security Report, 470.01 million new malware attacks were

reported in the year 2015 and this number had increased to 903.14 million till the mid

of year 2019 [65]. These new malware are evolving, becoming more sophisticated, and

using new ways to target computer systems. Exponential growth in the development

of non traditional malware which uses advance evasion techniques is one of the main

concern of the security community for the last few years. Moreover, the current

state-of-the-art malware analysis and detection tools are way behind the threat level

of unconventional malware. In order to deal with such issues, the need for emerging

and unconventional malware detection became a high priority.

2

1. INTRODUCTION

Fig. 1.2.1: Malware trends reported by AV-TEST Security Report [65]

1.3 Problem Statement

With the constant development in the computing technology, hiding malware attacks

from detection is becoming more easy and compact each day for malware authors. It

is not clear that how severe is unconventional malware with respect to the available

tools and techniques of analysis and detection. There is a need to evaluate the

current state-of-the art detection and protection techniques and also to investigate

the methods for malware analysis and reverse engineering. In this aspect, an effective

and efficient detection mechanism is required for the mitigation and detection of

3

1. INTRODUCTION

emerging and unconventional malware threats.

1.4 Thesis Contribution

In summary, we make the following contributions:

• We offer a detailed study of emerging malware threats, as well as extracting

the characteristics of unconventional malware by performing in-depth analysis

using existing state-of-the-art malware analysis and reverse engineering tech-

niques. The shortcomings of the existing malware analysis approaches against

unconventional malware are also discussed to indicate their limitations

• To know the severity of unconventional malware threats, we develop prototypes

to introduce serious security threats present in modern JavaScript/HTML5 and

in-memory data storage platforms

• We propose specification-based behavior analysis technique to detect the un-

usual activities performed by using unconventional techniques. To the best

of our knowledge, this research is the first effort to apply specification-based

detection technique to detect unconventional malware attacks

1.5 Thesis Organization

The rest of the thesis is organized as follows:

• In Chapter 2, we discuss different examples of emerging malware that uses ad-

vance techniques in their development. In addition, study of traditional malware

analysis and detection techniques is highlighted

• In Chapter 3, we demonstrate how unconventional and next-generation malware

threats take advantage of new computing technologies

• In Chapter 4, we show the design and implementation of our approach to miti-

gate the risk of unconventional and emerging malware

4

1. INTRODUCTION

• In Chapter 5, analysis of unconventional malware is performed using different

malware analysis tools to indicate the effectiveness of existing techniques. In

addition, experimental results of our implemented detection approach are illus-

trated by applying it on HazelCast IMDG to detect in-memory malware attack

• Finally, Chapter 6 draws the conclusion of this thesis and discusses the potential

future work

5

CHAPTER 2

Related Works

Emerging and unconventional malware attacks have been studied from different per-

spectives in the literature. Recently, security researchers from industry and academia

demonstrated several examples of next-generation malware threats. These malware

threats represent an emerging unconventional generation of malware families that

take advantages of artificial intelligence, new technologies and computing paradigms.

Also, the research in this area tried to detect malicious behavior including both static

and dynamic analysis techniques.

A research team from IBM demonstrated the use of artificial intelligence to engi-

neering malware attacks [34]. In their study, the authors proposed DeepLocker as a

proof of concept to show how next-generation malware could leverage artificial intel-

ligence. DeepLocker is a malware generation engine that malware author could use to

empower traditional malware samples such as WannaCry with artificial intelligence.

A deep Convolutional Neural Network (CNN) was used to customize a malware at-

tack by combining a benign application and a malware sample to generate a hybrid

malware that bypasses detection by exposing (mimicking) benign behaviors. Besides

that, the malware is engineered to unlock its malicious payload when it reaches a tar-

get (endpoint) with a loose predefined set of attributes. In the study, those attributes

were the biometrics feature of the target such as facial and voice features. The mal-

ware uses CNN to detect and confirm target identity, and upon target confirmation,

an encryption key is generated and used by the WannCry malware to encrypt the

files on the target endpoint device. The encryption key is only generated by match-

ing the voice and the facial features of the target. This means reverse engineering the

6

2. RELATED WORKS

malware using static analysis is not useful to recover the encryption key.

Another malware threat that take advantages of Deep Learnig was proposed by

Rigaki and Garcia. In this work they used deep learning techniques to create ma-

licious malware samples that evade detection by mimicking the behaviors of benign

applications [57]. They developed a proof of concept to demonstrate how malware

authors could cover the malware C&C traffic. The authors use a Generative Ad-

versarial Network (GANs) to enable malware (e.g., botnet) to mimic the traffic of

a legitimate application and avoid detection. The study showed that it is possible

to modify the source code of malware to receive parameters from a GAN to change

the behaviors of its C&C traffic to mimic the behaviors of other legitimate network

applications, such as Facebook traffic. The enhanced malware samples were tested

against the Stratosphere Linux IPS (slips) system, which uses machine learning to

detect malicious traffic. The experiment showed that 63.42% of the malicious traffic

was able to bypass the detection.

In 2015, Karam (INTERPOL) and Kamluk (Kaspersky lab) introduced a proof

of concept distributed malware that also takes advantage of blockchain technology

[29]. In 2018, Moubarak and et al. provided design and implementation of a K-ary

malware (distributed malware) that takes advantages of the blockchain networks such

as Etherum and Hyperledger [44]. The proposed malware is stored and executed

inside blockchain networks and acts as a malicious keylogger. While detecting a

K-ary malware is an NP-hard problem[14], it is also complicated to implement a

K-ary malware. However, Mubarak’s works demonstrated the simplicity of K-ary

malware development by taking advantage of blockchain technology as distributed

and decentralized network.

In [74], Zhang-Kennedy et al. discussed the ransomware threat in IoT and how

a self-spreading ransomware could infect an IoT ecosystem. The authors pointed

out that the ransomware will mainly lock down IoT devices and disable the essential

functions of these devices. The study focused on identifying the attack vectors in IoT,

the techniques for ransomware self-spreading in IoT, and predicting the most likely

class of IoT applications to be a target for ransomware attacks. Finally, the authors

7

2. RELATED WORKS

identified the techniques the ransomware could apply to lock down IoT devices. In this

study, a proof of concept IoT ransomware was developed to infect an IoT prototype

system built using Raspberry. One interesting aspect in this study is the need for

collaboration or swarming behavior in IoT ransomware, where the IoT ransomware

will spread as much as possible and then lock down the devices, or lock down the

devices and then spread.

Some researchers from FORTH in Greece developed a framework (MarioNet) as

a proof of concept that presents an unconventional method to hijack browser with-

out the userś knowledge [52]. Their work introduced the threat of HTML5 APIś

to remotely control the visitor’s browsers to abuse its resources for unwanted activ-

ities. The authors analyzed the security aspects, access policies, permissions and

threat vectors that are open in HTML5 features and utilized them in their proposed

framework. They explained that, by maintaining an open connection to a command

& control server, the malicious actor can instruct the infected browsers to launch

a powerful Distributed Denial of Service (DDoS) attack by connecting to a specific

internet host. Some other attack vectors such as Cryptocurrency Mining, Distributed

Password Cracking, Malicious or Illegal Data Hosting etc. are also mentioned.

Miller and Valasek developed a proof-of-concept for malicious code that infects

connected cars and lockdown key functions [41]. For instance, the authors demon-

strated the ability for the malicious code to control the steering wheel of a vehicle,

disable the break, lock doors, and shut down the engine while in motion. Behaving as

ransomware, this real example of malware that locks and disables key features in IoT

systems (e.g. connected cars) could have life threatening consequences if the ransom

is not paid. The study explained a design flow in the Controller Area Network (CAN)

protocol that allows malicious and crafted CAN message to be injected into the ve-

hicle CAN channel by a compromised mobile phone that is connected to the vehicle

entertainment unit. It was reported that for some vehicles only the dealership could

restore and patch the vehicle to prevent this attack.

8

2. RELATED WORKS

2.1 Unconventional Malware Types

To develop more complex and sophisticated malware, attackers started utilizing the

new computing paradigms and technologies such as cloud computing, the internet of

things, big data, in-memory computing, and blockchain [61]. These advance com-

puting paradigms introduced new ways that could be misused by malware authors to

perform malicious activities having the ability to evade themselves from anti-malware

tools. Because of using advance evasion techniques, these attacks are able to infect

and compromise a target system without leaving a trace, and reverse engineering

is nearly impossible for such malware attacks. Some of the advance unconventional

malware types are discussed below.

2.1.1 Fileless Malware

Fileless malware is a new class of the memory-resident malware family that success-

fully infects and compromises a target system without leaving a trace on the target

filesystem or second memory (e.g., hard drive). Fileless malware infects the target’s

main-memory (RAM) and executes its malicious payload. Fileless malware is not

just another memory-resident malware. To our knowledge, Fred Cohen developed

the first memory-resident malware (Lehigh Virus) in the early 80s. This usually leads

some researchers to believe that fileless malware is not a new malware threat but

only a new name for an old threat. However, this is not true, fileless malware has

some distinguishing properties. First, malware attacks require some file infection or

writing to the hard drive, this includes traditional memory resident malware. Fileless

malware infection and propagation does not require writing any data to the target

device filesystem. However, it is possible that the malicious payload (e.g., the end

goal) of the fileless malware writes data to the hard drive, for example, a fileless

ransomware, but again the ransomware propagation and infection are fileless. The

second key property of fileless malware is that it depends heavily on using benign

software utilities and libraries already installed on the target device to execute the

malicious payload. For instance, a fileless ransomware will use cryptographic library

9

2. RELATED WORKS

and APIs already installed on the target to complete its attack rather than installing

a new cryptographic libraries or implement its own.

There are other unique properties of fileless malware, but the most important

ones are the fileless infection approach and the use of benign utilities and libraries

of the compromised machine to execute the malicious payload. Those two properties

of fileless malware make it an effective threat in evading and bypassing sophisticated

anti-malware detection systems. This is because most anti-malware relies on scan-

ning the compromised filesystem to detect malware infections. Also, because fileless

malware use legitimate software utilities and programs to attack computer systems,

it is challenging for anti-malware systems that use dynamic analysis to detect fileless

malware. Moreover, being fileless is an anti-forensics technique, since it does not leave

any trace after the attack is complete, it is tough for forensics investigator to reverse

engineer the malware.

Fileless malware attacks and incidents are already observed in the wild compromis-

ing large enterprises. According to KASPERSKY lab, 140 enterprises were attacked

in 2017 using fileless malwares [19]. Ponemon Institute reported that 77% of the

attacks against companies use fileless techniques [9]. Also, CYREN recently reported

that during 2017 there was over 300% increase in the use of fileless attacks. Moreover,

they expected that the new generation of Ransomware would be fileless [38]. This

expectation proved to be correct when TrendMicro reported the analysis of SORE-

BRECT Ransomware, the first fileless ransomware attack in the wild [66]. However,

we think that it is inaccurate to describe SOREBRECT Ransomware as fileless mal-

ware, since it places an executable file on the compromised machine which injects

the malicious payload into a running system process. Then, it deletes the file and

any trace on the system logs using a self-destruct routine. Because the infection and

the injection of SOREBRECT Ransomware requires placing files on the compromised

host, we do not think it is a true fileless malware. Moreover, deleting the files is not

enough to hide the trace, file carving techniques could be used to recover the deleted

files.

Another common trend in developing fileless malware is the use of Microsoft Pow-

10

2. RELATED WORKS

erShell. PowerShell is a command-line shell and scripting language that allows system

administrators to manage and automate tasks related to running process, the operat-

ing system, and networks. It is pre-installed by default on new Windows versions and

it can be installed on Linux and MacOS systems. PowerShell is a good example of

a benign and powerful system utility that could be used by fileless malware. Several

reports by anti-malware vendors discussed how malware authors take advantages of

PowerShell to develop sophisticated fileless malware [40].

2.1.2 In-Memory Malware

In-memory computing and in-memory data stores is on the rise because of the growing

demand for faster processing and analytics on big data. Storing the data in memory

provides super-fast access to data. In recent years, many organizations started relay-

ing on in-memory computing to build scalable and responsive real-time applications.

Many in-memory data computing platforms such as HazelCast, Redis, Apache Spark

etc. gives the ability to store the data in memory. Even though the new data storage

and computing technology gives better results, at the same time, the critical informa-

tion of the users is at risk. Attackers are continue to seek new ways to compromise

data stored in the memory because valuable information stays in the memory for

a long time before persistent storage. As advance malware are emerging and vul-

nerabilities are exploited, in-memory computing technology can be threatened. A

fileless malware can present severe and aggressive attack by running an in-memory

ransomware that can encrypt the data present in the memory [61]. In addition, the

in-memory computing environments allows to run computing tasks by running cus-

tom code and scripts that make these platforms vulnerable to malicious code injection

attacks.

In 2018, an attack was reported on Redis server which contained malicious code

that downloaded a cryptominer executable file and ran it with a basic evasion tech-

nique to infect publicly available Redis servers [27]. This malware was named as

RedisWannaMine, it demonstrates a worm-like behavior combined with advanced ex-

ploits to increase the attackers infection rate. This malware uses a script to find a

11

2. RELATED WORKS

vulnerable server and launches the infection process. MongoDb Ransomware is an-

other example of in-memory malware attacks where different group of hackers taken

control of over 10,000 database instances by taking advantage of the databases that

have been mis-configured and left open [31]. Attackers steal or encrypt the data after

logging into the open database and demands for Bitcoin ransom payment.

2.1.3 Malware in IoT Devices

The Internet of Things (IoT) is an environment of intelligently connected devices and

systems that have the ability to communicate over a network without requiring human

interaction [53]. The IoT environment is advantageous and provide convenience to

the users. However, because most of the IoT devices are connected with internet,

it is an appealing platform for modern and sophisticated malware. In a report, HP

mentioned that 70% of Internet of Things devices vulnerable to attack because of

password security and encryption issues [24]. Ransomware is one of the most serious

security threats present in IoT devices. IoT Ransomware can mainly lock down the

IoT devices and disable the essential functions. IoT Ransomware can mainly lock

down the IoT devices and disable the essential functions.

Zhang-Kennedy et al. [8] discussed the ransomware threat in IoT and how a

self spreading ransomware could infect an IoT ecosystem. The authors pointed out

that the ransomware will mainly lock down IoT devices and disable the essential

functions of these devices. The study focused on identifying the attack vectors in IoT,

the techniques for ransomware self spreading in IoT, and predicting the most likely

class of IoT applications to be a target for ransomware attacks. Finally, the authors

identified the techniques the ransomware could apply to lock down IoT devices.

2.2 Malware Analysis Techniques

The threat of emerging and unconventional malware attacks is continuously growing

which has prompted the focus of researchers towards analysing and mitigating these

new malware variants. Malware analysis is required to develop an effective solution

12

2. RELATED WORKS

for malware detection. Analysis of malware gives the ability to understand how a

specific piece of malware behaves so a proper defense mechanism can be built to

protect against that kind of malware. Malware analysts use a wide range of malware

analysis and forensics techniques to see the comprehensive view of malware. Typically,

these techniques mainly classified as static and dynamic [11].

2.2.1 Static Analysis

Static analysis approach provides associated metadata by analyzing the malware bi-

nary without executing it. This analysis approach might not reveal all the required

information, but it can provide interesting information that helps in determining

where to focus the subsequent analysis efforts. It is performed by examining the ma-

licious code and provides interesting facts about the malware such as fingerprinting,

header information, packer detection, strings and import functions etc.

The drawback of this approach is that it is unable to detect obfuscated and poly-

morphic malware specimens. In addition, it is rather difficult to perform because

the malicious source code is not usually available especially in the case of unconven-

tional malware such as Fileless or in-memory malware it is hard to get access to the

code. Furthermore, static analysis can be extremely cumbersome because malware

authors often use code obfuscation techniques such as compression, encryption, self-

modification to evade analysis and de-compilation [71].

Static analysis usually covers the following steps during the analysis of a malware

specimen:

2.2.1.1 Determining the file type

During the analysis, it is important to identify the file type of the suspect binary

to extract the malware’s target operating system. File type can be identified either

by manual way or by using the tools. On Windows operating system, CFF Explorer

[50] is a useful tool for inspecting the executable files and extracts the information

13

2. RELATED WORKS

about file type, internal structure, and resources. Other than this tool, python-magic

module can be used to determine the file type in Python language.

2.2.1.2 Fingerprinting the malware

Fingerprinting also known as signature of a malware that involves generating a cryp-

tographic hash value for the suspect binary. It helps in uniquely identifying a malware

specimen during the analysis and it also uses as an indicator of malware type. Dif-

ferent tools can be used to generate file hashes such as hashMyFiles [49] is a hash

generator tool for Windows that generates hash values for single or multiple files. It

is also possible to generate file hashes using the hashlib [2] module in Python.

2.2.1.3 Multiple Anti-virus Scanning

To determine whether malicious code signature is already generated for the suspect

file or not, multiple anti-virus scanning can be helpful. File signature can provide

addition information about the file that can help in investigation and can reduce the

analysis time [42]. VirusTotal is a well-known web-based malware scanning tool that

allows to scan a file or a website [5]. It provides detailed scan report after scanning

it by a number of anti-virus engines.

2.2.1.4 Determining File Obfuscation

Malware authors uses obfuscation or encryption techniques to hide the inner working

of the malware from malware analysts and security researchers. This technique makes

the reverse engineering and analysis process difficult but some tools might be helpful

during the static analysis process to decode the obfuscated file. Exeinfo PE [6] is a

tool for Windows operating system that helps to know how to unpack the obfuscated

malware code.

14

2. RELATED WORKS

2.2.2 Dynamic Analysis

Dynamic analysis gives the ability to monitor the malware binaries characteristics by

executing them in an isolated environment such as Virtual Machine (VM), emulator

or simulator. This approach has resolved the problems faced during static analysis

by performing the dynamic analysis which includes executing it in a controlled en-

vironment and monitoring various run-time activities like registry changes, network

activities, file system changes etc [71]. Furthermore, it is difficult to evade detection

for obfuscated and polymorphic malware from dynamic analysis.

This technique has some limitations as well such as dynamic analysis is time in-

tensive and resource consuming task [72]. Another drawback is that only a single

malware can be executed at a time for analysis. Furthermore, advance malware be-

haves differently if they detect they are being monitored in a virtual machine and do

not show any malicious activity [63].

Following are some of the monitoring activities that can be carried out during the

dynamic analysis when the malware specimen is executed:

2.2.2.1 Process Monitoring

Process monitoring helps in examining the processes running on the system during the

malware execution. Various tools are used to investigate the processes, Process Hacker

[20] is an open source tool that provides detailed information about newly created

processes and their attributes. It is also helpful in exploring the services, network

connections, disk activities etc. Another well-known tool for Windows operating

system is Process Monitor [4] that also shows real-time processes interaction with

file system, registry, and thread activity [42]. Processes can also be monitored with

Python, Noriben is a Python Script that comes with various functions to collect,

analyze and report run-time indicators of the malware.

15

2. RELATED WORKS

2.2.2.2 File System Monitoring

It involves monitoring the real-time file system activity to determine if any file created,

deleted or updated during the malware execution. It also consider the interception of

System API calls with file system. Correlate file system activity with process activity

and digital trace evidence such as dropped executable, driver modules, hidden files,

and anomalous text or binary files [1].

2.2.2.3 Network Monitoring

To determine the network based indicators, it is required to capture the network

traffic generated during the malware execution that helps in understanding the com-

munication channel used by malware [42]. Wireshark [3] is a packet sniffer tool that

helps in monitoring the network traffic. It has a rich feature set including deep proto-

cols inspection, multi-platform support, decryption support for many protocols and

many more [51].

Lim et al. [36] proposed a malware detection technique by analyzing network

traffic generated when the malware communicates with a malicious C&C server such

as in the case of botnet or ransomware. The proposed technique extracts a set of

features from network flows to present a flows sequence. The authors used different

sequence alignment algorithms to classify malware traffic. They reported an accuracy

above 60% when analyzing malware traffic in a real network environment.

2.2.3 Memory Based Analysis

Alternatively, memory-based analysis is another approach that captures the full sys-

tem behavior and allows to reconstruct the system states from memory. This approach

is getting popularity in malware detection as it provides useful information present in

the dumped memory. Memory based analysis is important when we do not have ac-

cess to the malware sample or malicious code, such as, fileless and in-memory malware

executes their malicious operations in Volatile memory, So, capturing and analysing

the memory image of the infected system can provide some useful information about

16

2. RELATED WORKS

the behavior of the malware post-infection. Both free and commercial tools can be

used that allows to acquire the memory dump to perform analysis. FTK Imager and

Belksoft RAM Capture are well-known tools that allows to perform memory dump

acquisition and analysis, and works with both 32 and 64 bit machines. Volatility is

another famous open source memory analysis framework in Python and supports var-

ious operating systems (Windows, macOS, Linux). With memory analysis, different

information can be extracted such as active/running processes, network connections,

services, loaded libraries or dll’s, and registry entries etc.

Where memory based analysis gives the ability to extract the useful artifacts

present in the memory, some limitations and issues are also there. Data present in

the main memory is not permanent and could be lost if the critical data is not acquired

before the target system restarts or turns off. Acquiring the accurate memory dump

is a biggest challenge as sometimes memory acquisition can results into a damaged

or corrupted memory dump and cannot be analysed because of the either damaged

or missing data structure. This problem is due to issues with the acquisition software

or sometimes may be the fault of the operator. Another issues with this analysis

technique is unsupported memory structures across operating systems. For example,

the memory dump captured from Windows operating system cannot give all the

artifacts while analyzing on Linux or Mac operating system.

2.3 Malware Detection Techniques

Malware authors always try to use advance techniques to deceive the anti-malware

tools. The effectiveness and efficiency of anti-malware tools depends on the techniques

used by them. With the rapid progression of malware development techniques, mal-

ware detection tools also use various techniques to avoid the catastrophic effects of

malware attacks. Most commonly used malware detection techniques are described

below:

17

2. RELATED WORKS

2.3.1 Signature-based Technique

Signature based detection approach is useful in the detection of known malware be-

cause this technique depends on the unique signature of the malware to identify which

family this malware belongs to. This approach is most widely used in many malware

detectors but it is unable to detect unknown malware. Advance malware attacks

apply polymorphic techniques which can change their signatures. New malware can

not be detected with this method because their signatures are not developed at this

stage. The other disadvantage of this approach is that, it is susceptible to evasion

as it can be easily evaded by the hackers using simple encryption, compression or

obfuscation techniques.

S. Yoon et al. proposed a method to generate unique signatures for malicious

Javascripts [73]. The authors used content-based signature generation techniques

and utilized the Term Frequency - Inverse Document Frequency (TF-IDF) and Bal-

anced Iterative Reducing and Clustering with Hierarchies methods to generate the

conjunction signatures for Javascripts [73]. Although, signature-based analysis can

help in detecting several malicious behaviours, the work in [73] is based on the as-

sumption that the attack type of the input Javascripts is known, which is not always

a practical assumption in real-life environments.

Naeem et al. proposed a static analysis technique to detect IoT malware [46]. The

proposed technique converts a malware file to a grayscale image and extracts a set of

visual features from the malware image to train an Suuport Vector Machine (SVM)

classifier that could distinguish between malware families using visual features. Using

a dataset of 9342 samples that belong to 25 malware families, they reported 97.4%

accuracy.

2.3.2 Anomaly Detection Technique

This technique is not susceptible to the shortcomings of signature-based detection

and monitors what a program does while running rather than just considering the

static characteristics. A behavior-based detector determines whether a program is

18

2. RELATED WORKS

malicious by inspecting its activities at run time. The main goal of behavior-based

techniques is to predict the future behaviour of the system in order to deny any

unexpected behaviors. This technique contains two phases where first phase involves

monitoring the events and behavior to generate profiles by learned behavior and the

second phase is the detection phase where the generated profile is compared against

the running behavior and differences are flagged as potential attacks. The technique

focuses on the actual dynamics of the malware execution by monitoring the dynamic

behaviour of malicious activity rather than its static characteristics.

Where this technique comes with a solution to detect unknown or zero day mal-

ware attacks, at the same time, it also have some disadvantages. It needs to keep

updating the data describing the behavior of the system, it needs more resources such

as CPU time, memory and disk space etc. In Addition, non-availability of promis-

ing False Positive Ratio (FPR) and also high amount of scanning time are the main

disadvantages of these behavior based malware detection methods [16].

Some dynamic/behavior analysis approaches has been studied for malware detec-

tion. Omind and Nathan proposed a behavioral-based malware detection method

using a deep belief network [13]. The proposed method collected data about malware

behaviors from a sandbox environment. The collected data are API calls, registry

entries, visited websites, accessed ports, and IP addresses. Then using a deep neural

network of eight layers, it generates malware signatures. These signatures could be

used to train malware detectors. In their experiments, they reported up to 95.3%

detection accuracy with a malware detector utilizing the SVM algorithm.

Kilgallon et al. applied machine learning and dynamic malware analysis [33]. The

proposed technique gathers register value information and API calls made by the

monitored malware binaries. The collected information is stored in vector structures

and analyzed using a value set analysis method. Then, they used a linear similarity

metric to compare unseen malware to known malware binaries. Their experiment

showed that the proposed technique could detect malware with an accuracy up to

98.0%.

19

2. RELATED WORKS

2.3.3 Specification-based Technique

It is the derivative of behavior-based detection that tries to overcome the typical

high false alarm rate associated with it [58]. This technique monitors the program

execution and detects if there is any deviation of their behavior from the defined

specifications, rather than detecting the occurrence of specific attack patterns. This

technique is almost similar to behavior based detection which uses the machine learn-

ing approaches to train the model with intended behavior of the application but the

difference is that instead of relying on machine learning techniques, it is based on

manually developed specifications that capture legitimate system behavior [58]. The

advantage of this technique is that it can detect both known and unknown malware

instances and the level of false positive is low with this detection approach.

Tseng et al.[67] proposed a specification-based Intrusion Detection System (IDS)

to detect attacks on Ad hoc On-Demand Distance Vector (AODV). In their approach,

they extracted the correct AODV routing behavior and described the specifications

using finite state machines. In their specifications, they specify the rules to restrict

the way the messages are exchanged by the network nodes. Distributed network has

been monitored in their experiments to detect run-time violation of the specifications.

The work described in [30] introduced a specification-based methodology to detect

the exploitation of SQL injection vulnerabilities. They defined the syntactic struc-

ture of SQL queries in their specifications and monitors the application to detect the

queries that are in the violation of the specifications. They evaluated their approach

by executing 2,450 queries, 420 of which were poisoned with SQL injection attacks.

Their experiments illustrates that specification-based approach is efficient in prac-

tice and effective with 0% False positive and negative rate in case of detecting SQL

injections.

Another research shows that the combination of specification-based technique with

anomaly-based detection approach gives more effective results against network intru-

sion detection [62]. Their specifications are based on extended finite state automate

(EFSA) to derive the gateway’s behavior at the IP protocol layer. With the use of

20

2. RELATED WORKS

specification-based techniques, they simplifies the problem of feature selection. Then

statistical machine learning is applied over the derived specifications to detect the

anomalies on the network. In their experiments, they detected all of the probing and

denial-of-service attacks with lower false alarm rate.

21

CHAPTER 3

Unconventional Malware

Development

In this chapter, we demonstrate that how unconventional and next-generation mal-

ware can take advantage of advance computing paradigms. We show that malware

authors can develop complex and sophisticated malware with less effort. In our work,

we explore different kinds of vulnerabilities in modern web browsers and in-memory

data computing and storage platforms. In addition, we show the design and imple-

mentation of a fileless malware which is taking advantage of powerful capabilities of

JavaScript & HTML5 APIs to misuse them for controlling a visitor’s browser and

abusing its resources for malicious purposes without leaving a file on the target sys-

tem. Furthermore, a proof-of-concept of an in-memory malware is presented that

exploits the vulnerabilities in an in-memory data computing platform to infect the

valuable data stored in the memory. Various in-memory infection scenarios are il-

lustrated in our proof-of-concept to show how it can launch wide variety of stealthy

attacks on in-memory data grids.

3.1 JSLess: Fileless JavaScript Memory-resident

Malware

To highlight the significance of the threats posed by fileless malware, we present a

practical design and implementation of a fileless malware as a proof-of-concept. We

investigate the possibility of developing a fileless malware using modern JavaScript

22

3. UNCONVENTIONAL MALWARE DEVELOPMENT

features that were introduced with HTML5. In our assessment of the potential threats

of fileless malware attacks, we explore the use of benign JavaScript and HTML5

features to develop fileless malware. Based on our analysis we implemented JSLess as

a proof-of-concept fileless Javascript malware that successfully infects a web browser

and executes several malicious payloads. To the best of our knowledge, this is the first

fileless malware introduced in web browsers and exhibits that fileless malware attacks

are not just limited to PowerShells and Windows environment. Next, we identify the

malicious potential of new benign features in web technology and how they could be

used to develop fileless malware.

3.1.1 Benign Features with Malicious Potentials

With the introduction of HTML5, a new generation of modern web applications

become a reality. This is mainly because HTML5 introduced a rich-set of powerful

APIs and features that can be used by JavaScript. Some of the new features and APIs

in HTML focus on enabling the development of web apps with high connectivity and

performance. Further, HTML5 provides a set of APIs that allow web applications

written in JavaScript to access information about the host running the web app

and also other peripheral devices connected to the host. For instance, a web app

developed with HTML5 and JavaScript could have access to the user geo-location,

device orientation, mic, and camera.

While these new powerful features were proposed to improve web application

development, we found in our analysis of these features that hackers and malware

authors could misuse them. Many of these benign features have serious malicious

potential. In this section, we will mainly focus on HTML5 features that were proposed

to boost web application performance, scalability, and connectivity.

3.1.1.1 Web Sockets

WebSocket is a new communication protocol that enables a web-client and a web-

server to establish a two-way (full-duplex) interactive communication channel over

23

3. UNCONVENTIONAL MALWARE DEVELOPMENT

a single TCP connection [47]. It provides bi-directional real-time communication

which is an urgent requirement for modern interactive web applications. With Web-

Socket, the communication method between the web-client and the web-server is

not limited to pull-communication [Peter Lubbers & Frank Greco]. Instead, push-

communication and even an interactive communication become possible. For this

reason, WebSocket becomes the dominated technology in developing instant messag-

ing apps, gaming applications, streaming services, or any web app which requires

data exchange between the client and the server in real-time.

WebSocket is currently supported by all major web browsers such as Chrome,

Firefox, Safari, Edge, and IE. Moreover, the WebSocket protocol is supported by

common programming languages such as Java, Python, C#, and others. This enables

the development of desktop, mobile apps, or even microservices that communicate

using WebSocket as a modern and convenient communication protocol.

It is clear that using WebSocket the connectivity of web apps moves to a new level

of high quality and reliability. However, WebSocket is considered by web security

researchers a security risk [28]. WebSocket enables a new attack vector for malicious

actors. Common web attacks such as cross-site scripting (XSS) and man in the middle

(MitM) are possible over WebSockets. WebSocket by design does not obey the same-

origin policy; this means the web browser will allow a WebSocket script to connect to

different web pages even if they do not share the same origin (same URI scheme, host

and port number). Again WebSocket by design is not bound by cross-origin resource

sharing (CORS). This means a web app running inside the client web browser could

request resources that have a different origin from the web app. This flexibility could

be easily abused by malicious actors as we will demonstrate in the next section.

3.1.1.2 Web Worker

Originally JavaScript is a single-threaded language which means in any web app there

is only a single line of code or statement that can be executed at any given time. As

a result, JavaScript cannot perform multiple tasks simultaneously. WebWorker is a

new JavaScript feature that was introduced with HTML5 to improve the performance

24

3. UNCONVENTIONAL MALWARE DEVELOPMENT

of the JavaScript application [7]. WebWorker enables JavaScript code to run in

a background thread separate from the main execution thread of a web app. In

other words WebWorker allows web applications to execute tasks in the background

without impacting the user interface as it works completely separate from the UI

thread. For this reason, WebWorkers are typically used to run long and expensive

operations without blocking the UI. For instance, the code in Listing 3.1 initialize

a new web worker object and runs the code in worker.js asynchronously in a new

thread. WebWorker should be used to do computationally intensive tasks to avoid

blocking the UI or any other code executed in the main thread. If a computationally

intensive task executes in the main JavaScript thread, the web app will freeze and

become unresponsive to the user. WebWorker is currently supported by all major

web browsers such as Chrome, Firefox, Safari, Edge, and IE.

1 if (typeof(worker) == "undefined") {

2 worker = new Worker("worker.js");

3 }

Listing 3.1: WebWorker Initialization Example

As we can see WebWorker is an essential feature for developing a modern and

responsive web application. However, the devil is in the details. While WebWorker

seems like a harmless feature, it opens the door for several malicious scenarios and

security issues. For example, it allows DOM-based cross-site scripting (XSS) [64].

CORS does not bind it, and hence a web worker could share and access resources from

different origins. But in our opinion, the most critical security issue with WebWorker

is its ability to insert silent running JavaScript code. This could enable a malicious

payload to run in a background thread created by malicious or compromised web

apps. One possible example is using WebWorker with a malicious web app to preform

cryptocurrency mining without the users’ consent. The WebWorker will terminate if

the worker completed the execution of the script or if the user closes the web browser

or the web app that created the web worker object.

25

3. UNCONVENTIONAL MALWARE DEVELOPMENT

3.1.1.3 Service Workers

ServiceWorker is another new appealing JavaScript feature. We could consider Ser-

viceWorker as a special type of WebWoker. ServiceWorker allows running JavaScript

code in a separate background thread. This is very similar to WebWorker but unlike

WebWorker, the lifetime of the ServiceWorker is not tied to a specific webpage or even

the web browser [15]. This means even if the user navigates away from the web app

that created the ServiceWorker or terminated the web browser, the ServiceWorker

will continue to run in the background. The ServiceWorker will normally terminate

when it’s complete (e.g., execute all the computation tasks) or received a termination

signal from the web server, or terminate abnormally as a result of a crash, system

reboot or shutdown.

ServiceWorker was introduced to enable rich offline experience to the users and

improve the performance of modern web apps. The code in Listing 3.2 shows an

example that creates a ServiceWorker from the file sw demo.js. ServiceWorkers

share the same security issues and risks that exist in WebWorkers but the lifetime of

the security risks are persistent.

1 window.addEventListener(’load’, () => {

2 navigator.serviceWorker.register(’/sw_demo.js’)

3 .then((registration) => {

4 // ServiceWorker registered successfully

5 }, (err) => {

6 // ServiceWorker registration failed

7 });

8 });

Listing 3.2: ServiceWorker Registration Example

3.1.2 JavaScript Fileless Malware

The benign JavaScript features we introduced in the above sections could be used

to implement a fileless JavaScript malware. To demonstrate this threat, we design

26

3. UNCONVENTIONAL MALWARE DEVELOPMENT

and implement JSLess as a PoC fileless malware. We design JSLess as a fileless

polymorphic malware, with a dynamic malicious payload, that applies both timing

and event-based evasion.

3.1.2.1 Infection Scenarios

In our investigation, we define two main infection scenarios. The first scenario is

when the victim (web user) visits a malicious web server or application as illustrated

in Figure 3.1.1. In this case, the malicious web server will not show any malicious

behaviors until a specific event triggers the malicious behavior. In our demo, the

attack posts specific text messages on a common chat room. The message act as an

activation command to the malware. When the message is received the malware is

injected dynamically into the victim’s browser and starts running as part of the script

belonging to the public chat room.

The second infection scenario is when the malware compromise a legitimate web

application or server to infect the web browsers of the users who are currently visiting

the compromised website as illustrated in Figure 3.1.2. In this case, both the website

and the website visitors are victims of the malware attack. The malware will open

a connection with the malicious server (e.g., C&C server) that hosts the malware to

download the malicious payload or receive a command from the malware authors to

execute on the victim browser.

Note that in both scenarios the malicious code infection/injection happens on the

client side, not the server side.

3.1.2.2 JSLess Operational Scenario

JSLess delivered to the victim web browser through a WebSocket connection. When

the victim visits a malicious web server, the WebSocket connection will be part of the

web app on the malicious server. However, if the malware authors prefer to deliver

JSLess by compromising a legitimate web app/server to increase in the infection rate,

then the WebSocket delivery code could be added into a third-party JavaScript library

(e.g. JQuery). Almost all modern web application relies on integrating third-party

27

3. UNCONVENTIONAL MALWARE DEVELOPMENT

Fig. 3.1.1: JavaScript Fileless Malware First Infection Scenario

28

3. UNCONVENTIONAL MALWARE DEVELOPMENT

Fig. 3.1.2: JavaScript Fileless Malware Second Infection Scenario

29

3. UNCONVENTIONAL MALWARE DEVELOPMENT

JavaScript files. The WebSocket delivery code is relatively (see the code in Listing 3.3)

and could easily be hidden in a malicious third-party script library that is disguised

as legitimate. Alternatively, the code could be inserted via an HTML injection attack

on a vulnerable site that does not correctly sanitize the user input. The WebSocket

API is used to deliver the malware source code in JavaScript to the victim browser.

Once the connection is opened, it downloads the JavaScript code and uses it to create

a new script element which is appended as a child to the HTML file’s body element.

This causes the downloaded script to be executed by the client’s web browser.

1 MalWS = new WebSocket(’{{WSSurl}}/KeyCookieLog.js’);

2 MalWS.onmessage = function(e) {

3 sc = document.createElement(’script’);

4 sc.type = ’text/javascript’;

5 sc.id = ’MalSocket’;

6 sc.appendChild(document.createTextNode(e.data));

7 B = document.getElementsByTagName("body");

8 B[0].appendChild(sc);

9 };

Listing 3.3: malicious payload delivered with websocket

Delivering the malware payload over WebSocket and dynamically inject it into

the client’s web browser provide several advantages to malware authors. The fact

that the malware code is only observable when the web browser is executing the code

and mainly as a result of a trigger event provides one important fileless behavior

for the malware. The malicious code is never written to the victim’s file system.

Using WebSocket to deliver the malware payload does not raise any red flags by anti-

malware systems since it is a popular and common benign feature. Using benign

APIs is another essential characteristic of fileless malware.

The fact that JSLess can send any malicious payload for many attack vectors and

inject arbitrary JavaScript code with the option to obfuscate the injected malicious

code enables the design of polymorphic malware. All of these attributes make JSLess

a powerful malware threat that can easily evade detection by anti-malware systems.

30

3. UNCONVENTIONAL MALWARE DEVELOPMENT

For instance, a pure JavaScript logger could be quickly injected in the user’s browser

to captures user’s keystroke events and send them to the malware C&C server over

WebSocket. Note that benign and native JavaScript keystroke capturing APIs are

used which again will not raise any red flags. Figure 3.1.3 shows an exmaple of

an injected JavaScript key logger that captures keystroke events and send it to the

malware C&C server over WebSockect.

Fig. 3.1.3: Obfuscated JavaScript code injection

Obfuscated JavaScript code is injected in the body of the web page which opens a
secure WebSocket connection with Remote C&C Server to send the User’s keystroke
information to the attacker

To utilize the victim system’s computation power or run the malicious scripts in a

separate thread from the main UI thread, JSless takes advantage of WebWorkers. This

allows JSless to run malicious activities that are computationally intensive, such as

cryptocurrency mining. The WebWorker script is downloaded from the C&C server.

The JavaScript code in Listing 3.4 shows how the malicious WebWorker code could be

obtained as a blob object and initiated on the victim’s browser. In conjunction with

the importScripts and createObjectURL functions, we were able to load a script from

a different domain hosted on the different server and executed it in the background

of the benign web app.

31

3. UNCONVENTIONAL MALWARE DEVELOPMENT

1 blob = new Blob(["self.importScripts(’{{HTTPSurl}}/foo.js’);"],

2 {type: ’application/Javascript’});

3

4 w = new Worker(URL.createObjectURL(blob));

Listing 3.4: Breaking Same-origin Policy with ImportScripts()

Until this point one limitation of JSless malware-framework is that fact that the

malware will terminate as soon as the user closes his web browser or navigates away

from the compromised/malicious web server. This limitation is not specific to JSless,

it is the common behaviors of any fileless malware. In fact, many malware authors

sacrifice the persistence of their malware infection by using fileless malware to avoid

detection and bypass anti-malware systems. However, that does not mean fileless

malware authors are not trying to come up with new methods and techniques to

make their fileless malware persistent. In our investigation to provide persistence for

JSless even if the user navigates away from the compromised/malicious web page or

closes the web browser, we took advantage of the ServiceWorker API to implement a

malware persistence technique with minimal footprint.

To achieve malware persistence, we used the WebSocket API to download a script

from the malicious server. After downloading the ServiceWorker registration code

from the malicious server as shown in Listing 3.2, it registers a sync event as shown

in Listing 3.5, cause the downloaded code to execute and stay alive even if the user

has navigated away from the original page or closed the web browser.

The malicious code will continue to run and terminate normally when it is com-

pleted or abnormally as result of exception, crash or if the user restarts his machine.

Note that when we use ServiceWorker, a file is created and temporarily stored on the

client machine while the ServiceWorker is running. This is the only case where JSless

will place a file on the victim machine, and it is only needed for malware persistence.

32

3. UNCONVENTIONAL MALWARE DEVELOPMENT

1 self.addEventListener(’sync’, function (event) {

2 if (event.tag === ’mal-service-worker’) {

3 event.waitUntil(malServiceWorker()

4 .then((response) => {

5 // Service Worker task is done

6 }));

7 }

8 });

9

10 function malServiceWorker() {

11 // Malicious activity can be performed here

12 }

Listing 3.5: ServiceWorker Implementation for malicious purpose

In the proof-of-concept implementation for the malware persistence with Service-

Worker, we implemented a MapReduce system. In this malicious MapReduce system,

all the current infected web browsers receive the map function and a chunk of the

data via WebSocket. The map function executes as a ServiceWorker and operates

over the data chunks sent by the malicious server. When the ServiceWorker finishes

executing the map function, it returns the result to the malicious server via Web-

Socket. When the malicious server receives the results from the ServiceWorker, it

performs the reduce phase and returns the final result to the malware author.

3.2 In-Memory Malware

Nowadays, in-memory data storage and computing platforms getting popularity in

many organizations. To reduce the query loads on databases and to improve the appli-

cations performance, in-memory data storage gives the ability to store the data within

memory in a highly distributed manner. Loading the data into memory increases the

performance of applications hundred times faster with low-latency transaction pro-

cessing offered by in-memory technology. Where this new technology getting into rise,

at the same time, valuable information of individuals and organizations is at greater

33

3. UNCONVENTIONAL MALWARE DEVELOPMENT

risk of compromise. As more organizations move to adopt in-memory technology,

attackers are continue to strive for finding new ways to compromise the information

stored in the memory.

3.2.1 HazelCast

To demonstrate the unconventional malware threat for in-memory computing and

storage platforms, we have developed a Proof of Concept (PoC) for in-memory mal-

ware in Java programming language. In our PoC, we targeted HazelCast [23] which is

fastest in-memory data grid, combined with high-speed event processing. Hazelcast

is a distributed In-Memory Data storage and computing platform that supports high

scalability and data distribution in a clustered environment. HazelCast cluster con-

sists of multiple members (also called nodes) and data is evenly distributed among all

the nodes within a cluster, allowing for horizontal scaling of processing and available

storage [22].

3.2.1.1 Member Discovery Mechanism

Hazelcast supports auto-discovery of nodes and intelligent synchronization to update

the data on all the nodes. Cluster members automatically join together that takes

place with various discovery mechanisms which is used by cluster members to find

each other [22].

Hazelcast uses the following discovery mechanisms:

• TCP: It discover members by TCP/IP, need to list the hostnames or IP

addresses of all or a subset of the members that can be a part of the cluster.

It does not require to list all of the members, but at least one of the listed

members has to be active in the cluster when a new member joins

• Multicast: In this discovery mechanism, the cluster members do not need to

know the concrete addresses of the other members, as it allows cluster members

to find each other using multicast communication. It allows multiple members

to join together which are activated on the same network

34

3. UNCONVENTIONAL MALWARE DEVELOPMENT

• Cloud Discovery: It is useful when to discover members without providing

the list of possible IP addresses. This mechanism allows applications to be

deployed in various cloud infrastructure such as AWS, GCP, Azure, etc. and

enables Hazelcast members to dynamically discover each other basis on the

cloud configuration

3.2.2 Design & Implementation

We have implemented a PoC of in-memory malware on HazelCast IMDG Application

developed using Java Maven. Hazelcast IMDG supports two modes of operations in

the architecture deployment: embedded and client-server.

Embedded Topology: In an embedded deployment, each member (JVM) includes

both the application and Hazelcast IMDG services and data [22]. Embedded deploy-

ment architecture can be seen in Figure 3.2.1.

Fig. 3.2.1: HazelCast IMDG Embedded Topology [22]

Client-Server Topology: As it is illustrated in Figure 3.2.2, in a client-server de-

ployment, Hazelcast IMDG services and data are centralized on one or more members

35

3. UNCONVENTIONAL MALWARE DEVELOPMENT

and are accessed by the application through clients [22].

Fig. 3.2.2: HazelCast IMDG Client-Server deployment [22]

In our work, we have implemented HazelCast IMDG application using client-server

topology because it gives greater flexibility to manage the cluster. In addition, we are

showing in our PoC that this architecture is vulnerable to serious security threats.

As it is mentioned above that HazelCast supports various Cluster members discovery

mechanism. We have considered Multicast and TCP cluster discovery protocols to

perform some malicious infection scenarios in our PoC. In Multicast discovery mech-

anism, cluster members do not need to know each other’s specific IP addresses. As

soon as a new member is initiated on the same network, it will become the part of

the cluster without any extra configuration. It means one common network can only

have one cluster at a time. Lines of code showing in Listing 3.6 is used to create new

HazelCast Cluster members with some network configurations.

36

3. UNCONVENTIONAL MALWARE DEVELOPMENT

1 Config config = new Config();

2 NetworkConfig network = config.getNetworkConfig();

3 network.setPort(5701).setPortCount(20);

4 network.setPortAutoIncrement(true);

5 HazelcastInstance hazelcast_member = Hazelcast.newHazelcastInstance(config);

Listing 3.6: Create HazelCast Cluster Members

We have also implemented the TCP for cluster discovery where we need to specify

IP address of at least one cluster member. When a new member is discovered with

the specified IP address, it becomes the part of that cluster and get access to data

present in the memory as well as can perform operations on that data. In our case,

IP address of the leader member is 137.207.235.122 and we initiated an other member

on the local network with the IP address 137.207.235.124.

After setting up the cluster with different members, HazelCast distributed data

structure is considered for storing the data in the main memory of the machines.

HazelCast Map is distributed implementation of Java map that can store the entries

and even distribute them on all the cluster members. We have used HazelCast Map

and stored some random entries in the map from one Cluster member. Because of the

distributed nature of HazelCast Map, same data will be available for all the members

present in the cluster.

3.2.3 Infection Scenarios

Our in-memory malware PoC demonstrates how attackers can launch an attack to

steal the valuable information stored in the memory of HazelCast Cluster members.

Our research shows that TCP and Multicast are two of the discovery mechanisms

offered by HazelCast to locate the members within a cluster which are not secure

enough and can be exploited by the attackers. By leveraging TCP and Multicast

discovery mechanisms offered by HazelCast, we initiated an attack scenario where a

member/node with malicious intention becomes the part of the cluster and perform

unusual activities.

37

3. UNCONVENTIONAL MALWARE DEVELOPMENT

Fig. 3.2.3: In-Memory Malware First Attack Scenario

As Figure 3.2.3 is illustrating an attack scenario where a malicious node/member

is being inserted in the HazelCast cluster. By this member, a connection with HTTP

request is being opened to a malicious command & control server which is associated

with the attacker. As the same copy of data is distributed among all the members

present in the same cluster, so, the member inserted with malicious intention can

steal the valuable information and send it to the attacker. After getting access to the

data present in the cluster, attackers can also execute the operations to encrypt the

data and ask for ransom. In our PoC, after opening the connection with C&C server,

we have downloaded an encryption key to encrypt the data.

Another attack scenario can be seen in Figure 3.2.4, where a client is connect-

ing with HazelCast cluster. There are three different ways to connect to a running

HazelCast clusters through Clients [22].

• Native Client: Native Client enables to perform HazelCast operations by

connecting to one of the cluster members and delegates all cluster wide opera-

tions to it. Client will transparently switches to another live member when the

relied cluster member dies

• Memcache Client: A Memcache client written in any language can talk

directly to Hazelcast cluster. No additional configuration is required. An entry

38

3. UNCONVENTIONAL MALWARE DEVELOPMENT

Fig. 3.2.4: In-Memory Malware Second Attack Scenario

written with a memcache client can be read by another memcache client written

in another language

• REST Client: Hazelcast provides a REST interface that provides an HTTP

service in each cluster member, so, data can be accessed and modified using

HTTP protocols

To connect with cluster by any of the above mentioned ways, just the IP address

and port of the cluster member is required. After connection, clients can access and

modify the data in the HazelCast cluster. To utilize the cluster members’ computa-

tional power, in our PoC, we are connecting to HazelCast cluster using Native Client

and delegate the tasks to cluster members to consume the resources. In addition, we

modify the data by applying encryption on it.

3.3 Attack Vectors

Unconventional malware attacks have the ability to execute malicious behavior that

supports a wide variety of malicious attacks. Here are the most common attack

39

3. UNCONVENTIONAL MALWARE DEVELOPMENT

vectors that JSLess and in-memory malware could execute:

3.3.1 Data Stealing

On infection, JSLess can easily collect keystrokes, cookie and web storage data, as

demonstrated in our PoC. Also, it could control multimedia devices and capture data

from a connected mic or webcam using native browser WebRTC APIs. In case of in-

memory malware, after inserting a member with malicious intention in the HazelCast

cluster, it can get access to the data stored in the cluster memory. This valuable

information can be stolen and send it to the malicious command & control server

which is associated with the malware attacker.

3.3.2 In-Memory Ransomware

In-Memory malware can act as a ransomware by encrypting the data stored in the

memory such as recent transaction, financial information, etc. After getting access

to the data, the valuable information can be encrypted and ask for ransom to get the

original data back.

3.3.3 DDoS

JSless malicious C&C server could orchestrate all the currently infected web browsers

to connect to a specific URL or web server to perform a DDoS attack. In this case,

JSless constructs a botnet of infected browsers to execute the DDoS attack.

3.3.4 Resource Consumption Attack

In this case, JSless could use the infected users’ browser to run computationally inten-

sive tasks such as cryptocurrency mining, password cracking, etc. The MapReduce

system we implement as part of JSless is an example of managing and running compu-

tationally intensive tasks. Also, beside the attacks which we have implemented in our

JSless it is possible to perform other attacks like Click Fraud, RAT-in-the-Browser

(RitB) Attacks, and many other web-based attacks.

40

3. UNCONVENTIONAL MALWARE DEVELOPMENT

In-memory malware can also execute this attack because HazelCast provides dis-

tributed computing facility to make the platform more scalable. In this case, tasks

can be assigned to other members within a cluster and malicious member can utilize

the computing resources of the other machines by assigning them computationally

expensive tasks.

41

CHAPTER 4

Hybrid Approach For

Unconventional Malware

Detection

4.1 Overview

This chapter presents the design and implementation of a malware detection technique

to mitigate the emerging and unconventional malware threats. Continuous behavior

monitoring and identifying the correctness of those behaviors at run time is one of

the possible solutions to overcome the limitations of current state-of-the art malware

detection techniques against unconventional malware threats. Due to the limitation

of the existing malware detection techniques, the specification-based approach is used

with existing detection methods to add the efficiency in the detection process. In this

context, we propose a solution based on continuous behavior analysis validating with

application specifications or policies to detect emerging threats which uses advance

evasion techniques to hide them from traditional anti-malware tools. This detection

technique is based on the fact that advance malware use fileless attack methods and

take advantage of legitimate tools for malicious purposes which makes it difficult

for the existing malware detection approaches to find such attacks. The proposed

approach consists of of two different malware detection techniques which are namely

specification-based and behavior-based. The first step in our approach is to develop

the specifications for the application that can be expressed in a document to describe

42

4. HYBRID APPROACH FOR UNCONVENTIONAL MALWARE DETECTION

the expected behavior of that particular application. This new approach utilizes

the specifications that describes the intended behavior produced by the application.

These pre-defined specifications are then matched with the actual behavior of the

application during the run-time. If any of the action event do not conform, the

action is considered as behavior violations and inform the system about malicious

activity.

Specification-based monitoring compares the behavior of the application func-

tionalities or activities with their associated behavior specifications that captures the

correct behavior of the actions. The specifications are usually manually crafted based

on the security policy, functionalities of the objects, and expected usage [68]. There-

fore, if the intended behavior of the application has been explicitly pre-determined, it

is possible to detect malicious modification that can alter the behavior of the appli-

cation at run-time. The new methodology consists of a set of phases that should be

followed, important events need to be analyzed and checked in order to make sure it

has not been poisoned with the malicious intention. The proposed malware detection

methodology benefits by performing the detection process at run-time and monitors

the activities while application is running.

Anomaly based detection techniques also perform operations by making profiles

of normal behavior of the application which is usually established through automated

training and then it is compared with the actual activity of the system to indicate

any significant modifications in the running behavior. Anomaly detection can detect

unknown attacks, but often with the high false alarm rate [21]. This approach is also

not a good option in case of unconventional malware attacks because of the unique

properties of such attacks where they can leverages the already present non-malicious

system tools and might be marked as normal operations by anti-malware tools that

uses anomaly-based detection techniques. On the other hand, in specification-based

detection [35], the correct behaviors of critical objects are manually abstracted and

crafted as behavior specifications, which are compared with the actual behavior of

the objects. Specification-based monitoring is the most useful anti-malware approach

which gives optimal protection. It has some advantages over anomaly-based detection

43

4. HYBRID APPROACH FOR UNCONVENTIONAL MALWARE DETECTION

method as it gives the flexibility in policy construction and it can result in a very low

false positives [45].

4.2 Architecture

In order to perform unconventional malware detection, we have used two malware de-

tection techniques in a way that they could be considered as an efficient and effective

detection mechanism. Figure 4.2.1 depicts the architecture of the proposed technique,

which consists of a behavior monitoring module and a specification machining mod-

ule. Behavior monitoring module analyze the activities performed by the application

and specification matching module matches those actions with pre-defined expected

behavior.

The components and modules of the proposed system are described in a greater

detail below.

4.2.1 Behavior Specifications

Specifications are the most important component of the proposed technique. Spec-

ifications are the rules which are documented for describing the desired behavior of

the application. It does not include how the application function should be imple-

mented, instead, it focuses on how those functions should behave. In our approach,

we define specifications to express the expected behavior of the application that will

be monitored during the run time in order to make sure the correctness of the appli-

cation’s behavior. Specifications express the correct behavior and any other behavior

will be classified as anomalous if it deviates from the specified behavior. For each

action that needs to be monitored, the proposed methodology defines a specification

that defines the rules or policies that should be followed by the application to be

considered as a valid action. To get accurate results against unconventional malware

detection, specification needs to be designed through a careful and deliberate process.

The length of the specifications depend on the number of critical entities that needs

44

4. HYBRID APPROACH FOR UNCONVENTIONAL MALWARE DETECTION

Fig. 4.2.1: Architecture of the proposed approach

Illustrate the architecture of Hybrid approach which consists of two main components
that interact with each other to detect malicious activities against emerging and
unconventional malware attacks

to be monitored in the application.

4.2.2 Behavior Monitoring Module

When functionality of a software application is analyzed and observed by executing

it is known as dynamic or behavioral analysis [17]. Each activity occurs during the

program execution passes through a validation process that checks it for the potential

existence of any malicious intention. In our system, behavior monitoring module

captures the events at particular states performed by an entity to determine the

validity of that behavior. It deals with the occurrence of the application events where

45

4. HYBRID APPROACH FOR UNCONVENTIONAL MALWARE DETECTION

each event that is intercepted confirms its correctness with respect to the specifications

that have already been documented. To decide, which activities should be monitored

depends on the targeted application platform, the critical components which could

be victimized by the attacker and the means of attack. This module in our approach

helps to keep a constant monitoring of the events and activities happening in the

application to validate the behavior and detecting the unwanted actions that might

be initiated by attackers using unconventional means of attack.

4.2.3 Specification Matching Module

This module triggers a comparison of the subsequent behavior with the pre-defined

rules or specifications and alerts the application if any deviation in the running be-

havior is found. If the action is matched with the specified behavior and it certifies

that the functionality of the application on the occurrence of this particular event

does match to the specifications, it means application is running as per the expected

behavior. In the opposite case, if it is recognized that the event violates the spec-

ifications, the action is marked as malicious activity and generates an alarm. This

module implement a specification parser to extract the rules and match them with

the activities happening in the events. This parser is based on the language used for

defining the specifications of the application. Specification matching module loads

the rules written for particular events at a state and validates the correctness of that

event in order to take the decision. If the behavior is confirmed to the specification,

then it is considered to be valid. If the event behavior does not match with a rule of

the specification, it concludes that an attack has modified it.

4.3 Design & Implementation

In our work, few steps has taken into consideration for implementing the proposed

methodology. First, outline the entities which needs to be monitored in the targeted

application. Second, find out the possible states that an entity can have during the

execution. Finally, the events that can be generated by the selected entities at a

46

4. HYBRID APPROACH FOR UNCONVENTIONAL MALWARE DETECTION

particular state. These steps help in describing the specifications of the application

and observing the unusual activities during the run-time.

In general, there can be many entities and their relevant states in an application

at run-time. In this context, the system can be explained with a set E of entities

(representing the entities of interest), a set S of states (possible state that Entity E

can take) and a set of A actions (representing the events that can be occurred with

an Entity E). Specifically, the following declarations specify E, S and A.

• E is the set of entities {e1, e2,, en}

• The finite set of possible states that an entity can have, may be declared as S :

{s1, s2,, sn}

• A is the set of actions {a1, a2,, an} that can be occurred by an entity at a

particular state

By considering the above declarations, we can represent the normal behavior of

the components of any application. This normal behavior can be used to specify the

rules to detect the abnormal activities. To document the expected behavior of an

application, first, we can list down the entities, then the possible states and actions

of those entities can be extracted. If we take the example of HazelCast in-memory

cluster, the possible entities can be the members and clients that can perform various

actions at different states. In our approach, whenever an action will be performed

by an entity, the associated behavior monitoring events will also be triggered to

determine the correctness of that action. Before monitoring the actions, we need to

specify the rules of what an entity can do and what can not do at a particular state.

We are considering the Finite State Machine (FSM) [12] for making the specifications

extraction process more simpler and reliable. We choose state machines because it

can model the execution flow of an application and gives the ability to validate the

actions at given states. Representing the normal behavior of an application with FSM

and extracting the specifications is described in a greater in the next sections.

47

4. HYBRID APPROACH FOR UNCONVENTIONAL MALWARE DETECTION

4.3.1 Specification Development

The specifications are captured in a standard document that specifies the expected

behavior of the application. For describing the specifications, we observe the normal

behavior of the application with the help of finite state machine because it gives the

ability to model the execution flow of actions for an entity to see how it can behave at

a particular state. State machine helps us identifying the possible attack states and

behavior rules can be derived against them to detect the abnormalities. Below we

exemplify how a state machine can be designed to express the normal behavior and

how behavior rules can be extracted from it for generating the specification document.

4.3.1.1 Finite State Machine (FSM)

Finite state machines (FSM) or finite state automata (FSA) is a mathematical model

of computation and commonly used to represent and control execution flow [12].

It can be used to model problems in many fields including mathematics, artificial

intelligence, games etc. Finite state machines provide a powerful way to describe

the dynamic behavior of system components and widely used in specification-based

testing [32]. A state machine consists of set of known states and can be in one of the

finite set of states at any given time. Changing from one state to another is executed

by an event or condition. This state change is called transition. Following are the

main components of Finite State Machine:

• Finite Set of States: there must be a finite amount of states and only one

state can be active at a time

• Initial State: the starting point of the system. Initial states are usually drawn

with an arrow being pointed to them

• Accepting States: a subset of known states that indicates whether the input

we processed is valid or not

• Transitions: events or conditions that describe how the process moves from

one state to another

48

4. HYBRID APPROACH FOR UNCONVENTIONAL MALWARE DETECTION

4.3.1.2 Designing of FSM Model

FSM model can be designed by mapping the behavior of the application to states

where events and conditions allow the transition from one possible state to another.

This FSM model can help in defining the rules to capture the suspicious activity on

the execution of events in states transition. To illustrate the FSM model, we take

an example of HazelCast IMDG application where a node or member can join the

cluster and perform simple CRUD operations on HazelCast Map. HazelCast Map is

a data structure for storing the data in the memory by mapping a key to value. We

are considering this example because data can be stolen or destroyed present in the

Map by a malicious HazelCast member as it is described in our in-memory PoC in

the section 3.2. With this example, we show the normal behavior of the Map opera-

tions and extract the specifications that defines the rules to identify the abnormal or

suspicious activities at a particular state during run-time.

Fig. 4.3.1: FSM Model for HazelCast Member

Finite State Diagram to express the specifications for a Member in HazelCast in-
memory data grid

49

4. HYBRID APPROACH FOR UNCONVENTIONAL MALWARE DETECTION

Figure 4.3.1 depicts an example of a finite state machine with the possible states

and actions that can be performed on a HazelCast Map by a cluster member. At

the initial state, an instance of a HazelCast member is instantiated that can create a

request for joining into the cluster. On successful connection to the cluster, a member

will be at the joining state where it can perform further actions on next states.

In the designed FSM model, we have the following properties:

• States: HazelCast member for executing data operations on Map can have:

Member Initializing, Joining, Reading, Adding, Deleting and Updating Entry

states

• Initial State: As the HazelCast member can not join the cluster until its

instance is created. So, initial state in this case is Member Initializing

• Transitions: Each transition dependent on the event performed by the Hazel-

Cast member. If an event is triggered by the member for accessing the data

from the Map, it will be transit from Joining state to the Reading state. In the

same way, events will dictate what could be the next state to move on

• Final State: Leaving the cluster is the final state here and HazelCast member

can not get back to the other states after reaching that state

The illustration of FSM model shows that operations are performed on a Hazel-

Cast map in a sequence to behave as normal action. The activity might be considered

suspicious if the sequence of the actions is not followed. In case of unconventional

malware attack, it is difficult to differentiate between the normal and abnormal be-

haviors by just considering the sequence of actions. Because these malware usually

take advantage of normal actions but having malicious intention in it. For example,

in-memory malware in HazelCast cluster could get access to the data and apply en-

cryption on it as explained in 3.2. Reading the data and updating it after applying

encryption on it follows the same sequence of actions as normal data read and update

operation takes. But continuous reading and updating the entries in a short time

can make it suspicious. Another example of such behaviors can be seen from Fileless

50

4. HYBRID APPROACH FOR UNCONVENTIONAL MALWARE DETECTION

JavaScript malware described in the section 3.1 that through webSocket connections

malicious code can be downloaded and injected in the visitor‘s browser to perform

malicious activities. In this case, using webSocket in the web applications is a normal

action and identifying the intention of its usage is a challenge. To capture such mali-

cious activities, rules or policies could be specified to identify the suspicious nature of

actions. We extract the specifications by observing the transitions in FSM model by

considering if any possible attack scenario can be occurred while transiting from one

state to another. In the Section 4.3.1.3, we show how rules can be generated from

FSM model to capture the abnormal activities.

4.3.1.3 Specifications Extraction from FSM Model

After designing the FSM model for the entities of the targeted application, we can

extract the specifications on the basis of that model. The specifications vary from one

application to another and depends on the possible normal and abnormal behavior

of the application. We can consider the above mentioned FSM model to see how

specifications can be extracted to define the rules. For writing the specifications, we

have used XSD (XML Schema Definition) [59] that formally describe the elements

in an XML (Extensible Markup Language) document. The reason for choosing XSD

is because it helps in writing the schema for entities with rules for data content and

semantics. It follows formalized standards to describe what a XML document can

contain. A well defined specifications can save from generating the errors and false

rates. An example of some rules is demonstrated in the listing 4.1 that shows the

XSD document based on the FSM model described in Figure 4.3.1. This XML schema

illustrates the rules that should be followed by a HazelCast member to perform data

operations on HazelCast Map.

Rules are specified by considering the transitions from one state to another in the

designed FSM model. Specification should be generated according to the applica-

tion’s requirements by the developer or admin. For example, a rule can be specified

on HazelCast cluster to restrict the number of machines that could join the cluster

because it is an admin level or network administrator level task to know if any new

51

4. HYBRID APPROACH FOR UNCONVENTIONAL MALWARE DETECTION

machine needs to be added in the cluster or not. To specify this rule in the docu-

ment, considering the transition between Member Initializing and Joining state from

Figure 4.3.1 and generating an element ‘max-members‘ under the ‘hz-member‘ ele-

ment in the XSD document as shown in the listing 4.1. Another example of a rule

is ‘time-to-leave‘ element which has been extracted between the Joining and Member

Leaving state that says a HazelCast member can not leave the cluster before a spe-

cific time. This rule is specified as an example based on the reason that in-memory

malware can behave as a non-persistent attack on HazelCast IMDG and leave soon

after completing the infection scenario. In the same way, other rules can also be

specified against other transitions in the FSM model to restrict the abnormal actions

based on the application‘s need. The rules are defined through XSD which is further

used to extract a simple XML document where the rules will be initialized with the

values according to the application requirement. This XML document will be used

to Listing 4.2 shows the XML document generated from the XSD schema.

52

4. HYBRID APPROACH FOR UNCONVENTIONAL MALWARE DETECTION

1 <xs:schema version="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="hz-specification">

3 <xs:complexType>

4 <xs:sequence>

5 <xs:element name="hz-member" type="memberType"/>,

6 </xs:sequence>

7 </xs:complexType>

8 </xs:element>

9

10 <xs:complexType name="memberType">

11 <xs:sequence>

12 <xs:element name="max-members" type="xs:int"/>

13 <xs:element name="time-to-leave" type="xs:int">

14 <xs:attribute name="time-unit" type="timeUnits"\>

15 </xs:element>

16 <xs:complexType name="read-update-latency">

17 <xs:element name="no-of-entries" type="xs:int"/>

18 <xs:element name="time-interval" type="xs:int">

19 <xs:attribute name="time-unit" type="timeUnits"\>

20 </xs:element>

21 </xs:complexType>

22 </xs:sequence>

23 </xs:complexType>

24

25 <xs:simpleType name="timeUnits">

26 <xs:restriction base="xs:string">

27 <xs:enumeration value="ms"/>

28 <xs:enumeration value="sec"/>

29 <xs:enumeration value="min"/>

30 <xs:enumeration value="hr"/>

31 </xs:restriction>

32 </xs:simpleType>

33 </xs:schema>

Listing 4.1: Example of XSD document for HazelCast IMDG Cluster

53

4. HYBRID APPROACH FOR UNCONVENTIONAL MALWARE DETECTION

1 <hz-specification

2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:noNamespaceSchemaLocation="hz-schema.xsd">

4 <hz-member>

5 <max-members>3</max-members>

6 <time-to-leave time-unit="ms">60000</time-to-leave>

7 <read-update-latency>

8 <no-of-entries>500</no-of-entries>

9 <time-interval time-unit="ms">1000<time-interval>

10 </read-update-latency>

11 </hz-member>

12 </hz-specification>

Listing 4.2: XML specifications document based on XSD

54

CHAPTER 5

Experiments and Results

In this chapter, we perform unconventional malware analysis to know how these mal-

ware behave and deceive the malware analysis tools. This analysis will give us an idea

about how effective and efficient are the existing state-of-the art malware analysis and

reverse engineering tools against emerging and unconventional malware. In addition,

we show the implementation and evaluate the performance and efficiency of our pro-

posed approach. To demonstrate that, how effective and efficient our approach is for

the mitigation of malware threats that uses advance evasion techniques to attack on

unconventional computing platforms, we have considered HazleCast IMDG.

5.1 Unconventional Malware Analysis

The rapidly emerging consequences of unconventional malware and rising sophistica-

tion of advance evasion techniques has motivated advancement in tools and techniques

for performing concentrated analysis on such malware attacks. Malware authors keep

on finding better ways to determine analysis techniques to bypass them. Analysis

of unconventional malware is comparatively different from traditional malware be-

cause of advance evasion techniques used in such malware which can easily deceive

existing malware analysis tools. To understand how severe unconventional malware

is with respect to the available tools and techniques for analysis and detection, we

are presenting our findings based on static, dynamic and memory based analysis of

such malware with both manual and automated malware analysis systems.

55

5. EXPERIMENTS AND RESULTS

5.1.1 Lab Environment & Tools For Analysis

For performing the analysis, a safe and secure environment is required to prevent the

system from being infected. We have Ubuntu Linux operating system installed on

the physical machine and setup a VM (virtual machine) using Virtual Box software

and installed Ubuntu 18.04.3 LTS, Linux operating system on it. The Linux VM is

used to execute the malware sample during the analysis and following tools are used

to monitor the activities:

• FTK Imager: Installed the command line version of FTK Imager on Ubuntu

for acquiring the memory dump while malware specimen is executing on the

system

• Volatility: It is Python based script that helps in performing the memory

analysis on the captured memory dump

• Wireshark: To capture and monitor the network traffic during the malware

execution

5.1.2 JSLess: Fileless JavaScript Malware Analysis

In order to analyse unconventional malware, we obtained Fileless JavaScript malware

for analysis. We considered analysis on web platform for JSLess (Fileless JavaScript

Malware) mentioned in 3.1. The main objective here is to extract the malicious

behavior of malware that uses unconventional attack techniques and to identify if the

existing analysis techniques are capable enough to trace them. To perform the analysis

after setting up the Lab environment, we have deployed the JSLess PoC on Amazon

Web Services (AWS) server and mapped with a test domain ’https://dev.wasplabs.ca’.

The compromised web application is opened in the Google Chrome browser where

JSLess disperse the infection and the following different types of monitoring carried

out during analysis using various analysis and reverse engineering tools.

56

5. EXPERIMENTS AND RESULTS

5.1.2.1 Memory Analysis with Volatility

Memory analysis is one of the main components of live investigation to know the

behavior of a malware while malware specimen is executing on the system. Mem-

ory analysis is important for extracting the artifacts relevant to the malicious pro-

gram where infected system executing the malware sample. Memory Acquisition and

Memory analysis are two major steps in the process of memory analysis. Memory

Acquisition involves acquiring or dumping the memory of the target system. In our

case, target system is the virtual machine that we have setup in the lab environment

where we are executing the malware sample. In memory acquisition step, we have

captured the memory image and generated dumped files with FTK Imager tool while

malware executing in the Google Chrome browser on virtual machine. After dump-

ing the memory of the system to disk, for extracting the information from captured

memory dumped file, Volatility tool has been used. With volatility commands, we

listed the processes running on the system at the time of memory acquisition as it is

illustrated in 5.1.1. A process with PID 1332 is listed with name chrome.exe which is

not indicating itself that it is a malicious process because malware is being executed

within a sub process which is hard to determine with process monitoring in memory

analysis.

Fig. 5.1.1: Processes list after fileless malware execution on web app

5.1.2.2 Capturing Network Traffic with Wireshark

When the malware is executed, we captured the network traffic generated as a result

of running the malware. Wireshark is a packet sniffing tool which is used to capture

and monitor the network traffic behavior which allows to generate insights into what

57

5. EXPERIMENTS AND RESULTS

processes are running within packets in real-time. After capturing the network traffic,

observed the JSLess components tries to connect to a remote server. During our

experiments, connection attempts were observed with Wireshark, when the infected

machine sent packets to a an other server, as shown in Fig. 5.1.2. But there was

not any malicious connection found in memory after the execution of fileless malware

on web. But some network calls were observed, where a handshake was being done

between client and server. But we were not able to get the details of packet as the

communication was being done through a secure channel over HTTPS.

Fig. 5.1.2: Network Traffic monitored during the execution of JSLess

5.1.3 JSLess Analysis using Tools

To examine the website affected with JSLess, we performed the analysis with Multiple

Anti-Virus scanners. We identified seven tools that we considered promising based

on the techniques and the technology they use for detection. Most of the tools apply

both static and dynamic analysis approaches. Some of those tools are commercial,

but they provide a free trial period that includes all the commercial feature for a

limited time. Table 5.1.1 shows the list of tools we used in our study.

By reviewing the results from the detection tools and how those tools work, it is

58

5. EXPERIMENTS AND RESULTS

Tool Name Detection Technique License Website Detect JSLess

ReScan.pro static & dynamic commercial https://rescan.pro/ 7

VirusTotal static & dynamic free & commerical https://www.virustotal.com/ 7

SUCURI static commercial https://sucuri.net/ 7

SiteGuarding static commercial https://www.siteguarding.com/ 7

Web Inspector static & dynamic free https://app.webinspector.com/ 7

Quttera static & dynamic free & commercial https://quttera.com/ 7

AI-Bolit static & dynamic free & commercial https://revisium.com/aibo/ 7

Table 5.1.1: JavaScript and Web App Malware Detection Tools

obvious that detecting JSLess is not possible. The use of WebSocket to inject and

run obfuscated malicious code, make it almost impossible for any static analysis tool

to detect JSLess, since the malicious payload does not exist at the time of static

analysis. The use of benign JavaScript/HTML5 APIs and features, in addition to

the dynamic injection behaviors also make it very difficult for the current dynamic

analysis tools to detect JSLess. Blocking or preventing new JavaScript/HTML5 APIs

is not the solution and it is not an option.

5.1.3.1 ReScan.Pro

It is a cloud-based web application scanner which takes URL of the website and gen-

erates a scan report after filtering the website for web-based malware and other web

security issues. It explores the website URLs and checks for infections, suspicious con-

tents, obfuscated malware injections, hidden redirects and other web security threats

present. In-depth and comprehensive analysis of ReScan.Pro [55] based on three main

features.

1. Static Page Scanning: combination generic signature detection technique

and heuristic detection. It uses signature and pattern-based analysis to identify

malicious code snippets and malware injections. It also looks for malicious and

blacklisted URLs in a proprietary database.

2. Behavioral Analysis: imitates the website user’s behavior to evaluate the

intended action of implemented functionality.

59

5. EXPERIMENTS AND RESULTS

3. Dynamic Page Analysis: performs dynamic web page loading analysis

which includes deobfuscation techniques to decode the encoded JavaScript in

order to identify the run-time code injects and it also checks for malware in

external JavaScript files.

We ran the experiment with the ReScan.Pro to test if it will detect the malicious

activities of JSless malware. It generated a well defined report after analyzing the

website with its static and dynamic features. The produced result shows that the

website is clean and no malicious activity has been found. ReScan.Pro could not

detect our JavaScript fileless malware.

Fig. 5.1.3: Rescan.Pro scanning report

5.1.3.2 Web Inspector

This tool runs a website security scan and provides a malware report which has more

information than most other tools. Its security scanner is bit different from others

60

5. EXPERIMENTS AND RESULTS

because it performs both malware and vulnerabilities scans together. For scanning

a website, it just requires a user to provide the website URL and click on the ‘Start

the Scan’ button. It starts scanning the website and generates the report within

minutes. This tool provides five different detection technologies such as (1) Honeypot

Engine, (2) Antivirus Detection, (3) BlackList Checking, (4) SSL Checking, and (5)

Analyst Research. The Honeypot Engine has special algorithms for Exploit Packs

and multi-redirect malware detection and it gives full web content scan using a real

browser clone with popular plugins. [10]

Web inspector shows a threat report which includes Blacklists, Phishing, Malware

Downloads, Suspicious code, Heuristic Viruses, Suspicious connections, and worms.

Fig. 5.1.4: JSLess detection report by Web Inspector Tool

As described above, Web Inspector provides a report on full web content scanning

61

5. EXPERIMENTS AND RESULTS

by applying various techniques to detect malware. However, we noticed that our

JavaScript fileless malware was able to successfully deceive this malware detection

tool as well.

5.1.3.3 Sucuri

Sucuri [26] is yet another tool that offers a website monitoring solution to evaluate any

website’s security with a free online scanner. This scanning tool searches for various

indicators of compromise, which includes malware, drive-by downloads, defacement,

hidden redirects, conditional malware, etc. To match more signatures and generate

fewer false positives, it uses static techniques with intelligent signatures which are

based on code anomalies and heuristic detection. Server side monitoring is another

service provided by them which can be hosted on the compromised server to look

for backdoors, phishing attack vulnerabilities, and other security issues by scanning

the files present on the server. Moreover, Sucuri provides a scanning API as a paid

feature to scan any site and get a result similar to what is provided on its internal

malware scanners.

Fig. 5.1.5: Sucuri Online Scanner Report

The Scan report can be seen in Figure 5.1.5. Testing with Sucuri online scanner,

we see it displays that there is ”No Malware Found” as well as a seek bar indicating

a medium security risk. However, this is due to Insecure SSL certificates, not from

the detection of our fileless malware.

62

5. EXPERIMENTS AND RESULTS

5.1.3.4 Quttera

Quttera[37] is a popular website scanner that attempts to identify malware and suspi-

cious activities in the web applications. Its malware detector contains non-signature

based technology which attempts to uncover traffic re-directs, generic malware, and

security weakness exploits. It can be accessed from any computer or mobile device

through a web browser. It also provides real-time detection of shell-codes, obfuscated

JavaScript, malicious iframes, traffic re-direct and other online threats. We have

tested the infected web application with this tool by providing the URL and the ob-

tained report can be seen in the Figure 5.1.6. Quttera failed to detect our JavaScript

fileless malware as indicated in Figure 5.1.6.

Fig. 5.1.6: Quttera Scanning Report on JSLess detection

63

5. EXPERIMENTS AND RESULTS

5.1.3.5 VirusTotal

VirusTotal is a free malware inspection tool which offers a number of services to scan

websites and files leveraging a large set of antivirus engines and website scanners

[5]. This aggregation of different tools covers wide variety of techniques, such as

heuristic, signature based analysis, domain blacklisting services, etc. A detailed report

is provided after completing the scan which not only indicates the malicious content

present in a file or website but also exhibits the detection label by each engine.

We scan our compromised web app with VirusTools using 66 different malware

detection engine, and none of those 66 engines was able to detect that the web app

is compromised.

Fig. 5.1.7: VirusTotal Report

5.1.3.6 AI-BOLIT

AI-BOLIT [56] is an anti-malware scanner for websites and hosting. It uses heuristic

analysis and other patented AI algorithms to find malware from any kind of scripts

and templates. We used it to scan our JSLess malware scripts by executing it on the

64

5. EXPERIMENTS AND RESULTS

server where JSLess scripts were hosted along with the web application files. However,

it failed to detect JSLess and it generated false positive when it considered some of

the core modules of NodeJS as malicious JavaScripts.

5.2 Unconventional Malware Detection

To demonstrate that the proposed approach is an effective solution against uncon-

ventional malware attacks, we have implemented the modules of our technique first.

After the implementation, the malware detection technique has been evaluated by

executing various experiments. In the following, the implementation of the proposed

approach and the results obtained from the experimental evaluation are presented

and discussed.

5.2.1 Experiment Setup

For the implementation of the proposed approach and to perform the experiments,

we setup the environment first by installing the required dependencies and tools

on the Machine. To examine the run-time impact of our implemented system, the

experiments are executed and observed on both Local Network and cloud server en-

vironment.

The machine we used for the implementation and experiments for local network has

the following specifications:

Processor Intel R© CoreTM i7-6600U CPU @ 2.81GHz

RAM 8 GB

Operating System Windows 10 Pro (64-bit)

Table 5.2.1: Experimental System Specifications

65

5. EXPERIMENTS AND RESULTS

Below are the software installed on the Machine for the implementation and eval-

uation:

NetBeans IDE 8.2

Java Development Kit (JDK) 11

Java Maven

Table 5.2.2: Experimental System Software and Dependencies

5.2.2 Implementation

In applying the proposed approach on HazelCast IMDG, our implementation is based

on the modules described in the section 4.2. We considered the points which might be

vulnerable to in-memory malware in HazelCast IMDG application. We have extracted

the normal behavior of the application and specified it in the XML language. XML

declaration of the specifications can be seen in the listing 5.1 which are based on XML

Schema Design (XSD) described in the listing 4.1.

1 <hz-specification

2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:noNamespaceSchemaLocation="hz-schema.xsd">

4 <hz-member>

5 <max-members>3</max-members>

6 <time-to-leave time-unit="ms">60000</time-to-leave>

7 <read-update-latency>

8 <no-of-entries>500</no-of-entries>

9 <time-interval time-unit="ms">1000<time-interval>

10 </read-update-latency>

11 </hz-member>

12 </hz-specification>

Listing 5.1: XML specifications document based on XSD

66

5. EXPERIMENTS AND RESULTS

To detect the in-memory malware threat, we have implemented our proposed

approach along with the HazelCast events which are being monitored and matched

with the specified behavior that can catch such unconventional means of attack.

Various events have been monitored for the implementation of behavior monitoring

module such as, Listing 5.2 shows events declaration for Membership listeners where

a MembershipListener interface is implemented and every time whenever a member

joins, or leaves the cluster, these events will be triggered to observe the execution. In

the same way, ‘EntryListener‘ interface is implemented to observe the data operations

on HazelCast Map.

1 public class ClusterMembershipListener implements MembershipListener {

2

3 public void memberAdded(MembershipEvent membershipEvent) {}

4

5 public void memberRemoved(MembershipEvent membershipEvent) {}

6 }

Listing 5.2: HazelCast Cluster Membership Listeners

5.2.3 Evaluation

To demonstrate that our approach is effective and efficient in the detection of un-

conventional malware infections, we analyze the effectiveness and performance of the

detection system by applying it on HazelCast IMDG application. We used our devel-

oped in-memory malware PoC to perform the malicious activities in the HazelCast

cluster and performed the evaluation of detection technique. Results are observed

by deploying and executing it on both Local Network and cloud server environment.

Different malware infection scenarios has been considered on the implemented system

in our experiments. In the effectiveness, we have evaluated how good are our devel-

oped specifications and how effective is our approach in the detection of in-memory

threat on HazelCast IMDG cluster. In the performance, we have measured the time

overhead during the execution of behavior monitoring module that might increase the

67

5. EXPERIMENTS AND RESULTS

execution cost by applying the new detection technique on it.

5.2.3.1 Effectiveness

It is very important for any malware detection system to measure the level of effec-

tiveness by knowing the number of false positive and false negative. The effectiveness

of our approach is mainly dependent on the specifications. Good specifications can

give better results and bad specifications can generate more false alarms. As it is

mentioned in the section 3.2 that HazelCast in-memory cluster is vulnerable to two

major threats, where first threat can be from the malicious cluster members which

might become the part of the cluster to perform malicious activities. Second is Hazel-

Cast clients that can connect to the cluster having malicious intention. Both of the

entities can spread different infection scenarios, the common attack vector in both of

the cases is accessing the data present in the memory and modifying it with encryp-

tion. In our experiments, we have considered this attack scenario and developed the

specifications to detect the abnormal activity.

Updating the data by applying encryption on it is done through the normal read

and update operations, we are trying to observe the malicious intention in doing this

operation. In the specifications, we have described a rule for read and update time

latency. In this rule, the ratio of read and update operations with the number of

entries by time interval is defined. This rule is generated by analyzing the behavior of

reading and updating during in-memory malware encryption attack. The records are

fetched and updated consecutively in a short span of time that indicates the abnormal

behavior of data operations during the attack. In XML document, we defined that

500 entries are allowed in every 1000 ms. If any data operation violate this rule,

it will be considered as abnormal or suspicious behavior. We have performed the

experiments to identify the abnormal behavior of data operations performed by both

HazelCast member and client.

For evaluating the developed specifications against the infection scenario per-

formed by HazelCast member, we have initiated a member from one machine on the

local network having malicious intention. Multicast discovery mechanism has been

68

5. EXPERIMENTS AND RESULTS

used to discover the members to join within the cluster. This new member accessed

the entries saved in the HazelCast distributed map and started encrypting the data.

Behavior monitoring events triggered when a new member inserted in the cluster and

started tracking the activities being performed in the cluster. A malicious client also

connected to the cluster and captured the results of data operation against it. The

read, write and update operations on HazelCast Map is monitored by HazelCast ‘En-

tryListener‘ interface. Whenever an entry is accessed or updated, we are tracking the

activity and storing the time which is then compared with the specified rules, on each

Map read and update operation. With both Hazel member and client we accessed

and encrypted the data by considering different no of entries and observed that how

specified rules worked. Results of the effectiveness measurement are summarized in

Table 5.2.3.

Infection Scenario no of Entries Time
Interval

Attack
Detected

Encryption with malicious member 5000 1501 ms

Encryption with malicious member 500 157 ms 7

Encryption with malicious client 5000 2137 ms

Encryption with malicious client 500 314 ms 7

Table 5.2.3: Effectiveness Results of Implemented Approach

In specification-based technique, accuracy depends on specified rules. It is possible

that bad specifications can result into more false alarms or not alarm at all. Achieving

100% accuracy is not possible in all the cases such as in above mentioned scenario if

more than one malicious clients or members divide the data operations, it might be

possible that rule breaks and does not catch by the detector. False alarms may also

be generated if a normal operation without any malicious intention read and update

operations consecutively in a short time. Considering these facts, we can not say that

this technique can gives 100% effectiveness but it is one of the possible solution that

can help in decreasing the threat level by generating an alarm.

69

5. EXPERIMENTS AND RESULTS

5.2.3.2 Performance

In the experiments, we measured the performance of the events executing to monitor

the behavior of the application. In each event, it loads the specifications required

for that event and match with the running behavior. HazelCast members and clients

related events have been monitored while applying some infection scenarios. To calcu-

late the performance, we have recorded some activities before executing the malware

scenarios and compared with after facts of behavior monitoring events execution. A

cluster has been configured on HazelCast Cloud and it can be seen in the Figure

5.2.1 that 26 Java client connections are opened with the cluster before executing the

infection scenarios. We have also calculated the performance overhead by connecting

different number of clients to see whether overhead time increases by increasing the

number of clients are not.

Fig. 5.2.1: Clients connected with HazelCast Cloud Cluster

Every time when a client connects to the cluster, our behavior monitoring module

captures the details of that connection to monitor the client activities in other events.

We have total of 8 events present in the behavior monitoring module to handle various

scenarios and keep a constant eye on the activities being performed in the HazelCast

70

5. EXPERIMENTS AND RESULTS

cluster.

Fig. 5.2.2: HazelCast Map Entry Count & Used Memory

In each event, execution start time and end time has been recorded to calculate the

performance overhead. To analyze the performance in more realistic environment, a

HazelCast Map is filled with more than 100,000 entries inserted by multiple HazelCast

clients which has taken 13 MB of total cluster memory as it is shown in the Figure

5.2.2. The execution time of behavior monitoring events is recorded while other

cluster operations were also being executed normally.

Fig. 5.2.3: HazelCast Map Average Latency & throughput

Figure 5.2.3 shows the average latency and throughput of HazelCast Map which

is recorded and compared it after the execution of detection technique to see whether

the performance of other operations has been effected by the implemented detection

71

5. EXPERIMENTS AND RESULTS

approach. For the measurement of performance after recording the mentioned activ-

ities, one client joins the cluster to infect the map entries stored in the memory of

the cluster. After starting the infection scenario, start and end time of the events is

recorded to calculate the average time overhead.

The time is calculated for the behavior monitoring events that ranges between 0

and 8 milliseconds for each event during the normal and abnormal behavior of the

HazelCast operations. Figure 5.2.4 depicts the average latency of data read/write

operations and throughput which is recorded while the events were executing. It

is discovered that the performance is not affected by applying the implemented ap-

proach on the application as the average time calculated is 4.6 ms which is not having

a significant impact on the performance of the application.

Fig. 5.2.4: HazelCast Cluster Map Metrics after running implemented approach

Time is calculated in total of 5 cycles of time monitoring for each event and

recorded the minimum and maximum time overhead in each event. Average time

overhead is calculated on the basis of min and max time overhead by total number of

test cycles. The same process of time monitoring is performed by connecting various

number of clients to see how performance is affected by joining more clients. The

results of time calculation against each event is presented in Table 5.2.4 which is

recorded by connecting 26 clients. We observed that time depends on functionality

implemented in the event monitoring methods.

72

5. EXPERIMENTS AND RESULTS

Event Name min time
overhead

max time
overhead

average
time overhead

Member Added 6 ms 7 ms 6.4 ms

Member Removed 4 ms 6 ms 5 ms

Client Connected 5 ms 6 ms 5.2 ms

Client Disconnected 3 ms 3 ms 3 ms

Map Entry Added 4 ms 5 ms 4.6 ms

Map Entry Updated 6 ms 8 ms 7.2 ms

Map Entry Loaded 3 ms 4 ms 3.4 ms

Map Entry Removed 2 ms 3 ms 2 ms

Total Average 4.6 ms

Table 5.2.4: Performance time overhead calculated against each event

The performance measurement results are summarized in Table 5.2.5 where it

shows average time overhead by connecting 10, 18 and 26 number of clients to see

the time difference.

Cluster
Clients

no of Events
Monitored

no of
Test Cycles

average
time overhead

10 8 5 4.3 ms

18 8 5 4.6 ms

26 8 5 4.6 ms

Table 5.2.5: Performance Results of Implemented Approach

73

5. EXPERIMENTS AND RESULTS

5.3 Approach Benefits

Due to the limitations of existing state-of-the art malware detection tools and tech-

niques, specification based method with continuous behavior monitoring is one of

the possible solutions to mitigate emerging and unconventional malware attacks. It

can provide efficient results for not only unconventional attack techniques but it is

also capable of detecting both known and unknown malware which is impossible with

the help of static or signature based malware detectors. The other benefit of this

methodology is providing low level of false positive results. The main reason of the

failure of traditional malware detectors against unconventional attacks is because this

malware family use legitimate or benign features of the targeted application. Con-

tinuous behavior monitoring with proposed approach can give better understanding

of how actions are behaving and specification based technique can help in finding the

abnormality of those actions. Moreover, our approach is cost and time efficient in the

comparison of manual analysis. In the manual analysis, it requires enough time to

carefully analyze the behavior of the malware to find the suspicious activity where it

also increases the cost of hiring security engineers and experts. But automating this

manual analysis can save the time of performing the analysis of events and saves the

cost as well. It is one time cost of writing the specifications and implementing the

system to monitor the behavior of the application at the run time but it can save the

time and cost after that and provides better results.

5.4 Limitations

The proposed approach is one of the possible solutions to mitigate the emerging and

unconventional malware attacks. But along with having advantages over other tra-

ditional malware detection techniques, this approach has some limitations as well.

Major challenge with this approach is developing the specifications of legitimate pro-

gram behavior. More detailed or strict specifications can be a bad approach because

of few reasons. First, developing more detailed specifications would require more

74

5. EXPERIMENTS AND RESULTS

effort than describing more abstract form of specifications. Second, more detailed

and strict specifications may create the possibility that could classify some events as

invalid due to minor difference in the interpretation and it could cause of high false

alarms. Large specifications might also result in scalability problem. The accuracy

of this technique is dependent on the specifications, well defined rules can give better

results. It is very important to define the rules for all the possible attack scenario

according to the targeted applications need.

75

CHAPTER 6

Conclusion & Future Work

6.1 Conclusion

A detailed and comprehensive study of emerging and unconventional malware attacks

has been discussed in this thesis and presents a methodology for the mitigating these

attacks. Modern malware that take advantage of trending technologies to evade

detection are explored in our research. We introduced the design and implementation

of some unconventional attack proof-of-concepts that targets web applications and

in-memory computing platforms. Further, to know the severity of unconventional

malware with respect to available tools and techniques for analysis and detection,

the current state-of-the art malware analysis and protection techniques has been

evaluated. In the result of our analysis process, we could not find enough artifacts

with existing analysis and reverse engineering techniques that we have used in our

experiments. The main reason of failure for existing malware analysis tools is the

use of advance evasion techniques used by attackers in the creation of unconventional

malware attack which leaves almost no trace for forensics and reverse engineering.

This thesis implements a new approach for the detection of unconventional at-

tacks. Although there are several malware detection techniques which are effective

against traditional malware detection, they are not perfect for unconventional attacks.

These techniques could be executed together in a hybrid approach to have better per-

formance. To overcome the shortcomings of existing malware detection techniques, a

new approach is introduced by combining the strengths of two different detection tech-

niques which makes it an effective solution against unconventional malware attacks

76

6. CONCLUSION & FUTURE WORK

detection. First approach specification-based that describes the expected behavior of

the application and the second technique is behavior-based analysis that matches the

running behavior of the application with the written specifications. An event is con-

sidered a security violation if it does not conform to the pre-defined specification rules

and generate an alarm. To the best of our knowledge, this research is the first effort

to apply specification-based detection techniques to detect unconventional malware

attacks.

We evaluated our proposed methodology by applying it on HazelCast in-memory

data grid to detect the exploitation of in-memory malware infection. Our experi-

mental results indicate that the new, automated protection solution is effective and

efficient in detecting unconventional attack for unconventional attacks if specifications

are written in a good way.

6.2 Future Work

As emerging and unconventional attacks are keep growing, this research is an impor-

tant contribution towards the mitigation of such advance threats. In the future, we

plan to carry on investigating the possibilities of more advanced malware threats in

other unconventional computing environments such as Internet of things, in-memory

computing environments (e.g., Redis, Spark etc). We also aim to verify the effective-

ness of proposed method on Fileless JavaScript malware attack in web applications

and to confirm that the expected behavior of this new method does not affect by the

application scenario and characteristics. The accuracy of the proposed approach is

dependent on the developed specifications, for this reason there is need to introduce

a language or more compact way to write meaningful specifications. This would also

be important to showcase more kinds of specification properties to cover almost all

the possible attack scenarios.

77

REFERENCES

[1] (2012). Copyright. In Malin, C. H., Casey, E., and Aquilina, J. M., editors,

Malware Forensics Field Guide for Windows Systems, page iv. Syngress, Boston.

[2] (accessed December 03, 2019). hashlib — secure hashes and message digests.

https://docs.python.org/3/library/hashlib.html.

[3] (accessed November 13, 2019)). Wireshark. go deep. https://www.wireshark.org/.

[4] (accessed November 3, 2019). Process monitor. https://technet.microsoft.com/en-

us/sysinternals/processmonitor.aspx.

[5] (accessed September 09, 2019). Virustotal. https://support.virustotal.com/hc/en-

us/articles/115002126889-How-it-works.

[6] (accessed September 10, 2019). Exeinfo pe by a.s.l - data detector.

http://www.exeinfo.byethost18.com/?i=1.

[7] Arias, D. (2018). Speedy introduction to web workers.

https://auth0.com/blog/speedy-introduction-to-web-workers/.

[8] Assal, H., Chiasson, S., Zhang-Kennedy, L., Rocheleau, J., Mohamed, R., and

Baig, K. (2018). The aftermath of a crypto-ransomware attack at a large academic

institution.

[9] Barkly (2017). The 2017 state of endpoint security risk.

https://www.barkly.com/ponemon-2018-endpoint-security-risk.

78

REFERENCES

[10] Comodo Security Solutions, Inc. (2019). Web inspector.

https://app.webinspector.com/.

[11] Damodaran, A., Troia, F. D., Visaggio, C. A., Austin, T. H., and Stamp, M.

(2017). A comparison of static, dynamic, and hybrid analysis for malware detection.

Journal of Computer Virology and Hacking Techniques, 13(1):1–12.

[12] Daviaud, L., Jecker, I., Reynier, P.-A., and Villevalois, D. (2017). Degree of

sequentiality of weighted automata. In Foundations of software science and com-

putation structures. 20th international conference, FOSSACS 2017, held as part of

the European joint conferences on theory and practice of software, ETAPS 2017,

Uppsala, Sweden, April 22–29, 2017. Proceedings, pages 215–230. Berlin: Springer.

[13] David, O. E. and Netanyahu, N. S. (2015). Deepsign: Deep learning for auto-

matic malware signature generation and classification. In 2015 International Joint

Conference on Neural Networks (IJCNN), pages 1–8.

[14] de Drézigué, D., Fizaine, J.-P., and Hansma, N. (2006). In-depth analysis of

the viral threats with openoffice.org documents. Journal in Computer Virology,

2(3):187–210.

[15] Developers, G. (2019). Introduction to service worker — web.

https://developers.google.com/web/ilt/pwa/introduction-to-service-worker.

[16] Elhadi, A., Maarof, M., and Hamza Osman, A. (2012a). Malware detection

based on hybrid signature behaviour application programming interface call graph.

American Journal of Applied Sciences, 9:283–288.

[17] Elhadi, A., Maarof, M., and Hamza Osman, A. (2012b). Malware detection

based on hybrid signature behaviour application programming interface call graph.

American Journal of Applied Sciences, 9:283–288.

[18] Gandotra, E., Bansal, D., and Sofat, S. (2014). Malware analysis and classifica-

tion: A survey. volume 5. SciRes. http://www.scirp.org/journal/jis.

79

REFERENCES

[19] Global Research and Analysis Team, KASPERSKY Lab (2017). Fileless attack

against enterprise network. White Paper.

[20] Hacker, P. (accessed December 2, 2019). Process hacker.

https://processhacker.sourceforge.io/.

[21] Hansen, J. P., Tan, K. M. C., and Maxion, R. A. (2006). Anomaly detec-

tor performance evaluation using a parameterized environment. In Zamboni, D.

and Kruegel, C., editors, Recent Advances in Intrusion Detection, pages 106–126,

Berlin, Heidelberg. Springer Berlin Heidelberg.

[22] Hazelcast, I. (2019a). Hazelcast imdg 3.12.2 reference manual.

https://docs.hazelcast.org/docs/3.12.2/manual/html-single/index.htmlsetting-

up-clusters.

[23] Hazelcast, I. (2019b). Hazelcast: In-memory computing platform.

https://hazelcast.com/.

[24] Hopping, C. (2014). Hp: 70% of internet of things devices vulnerable to at-

tack. https://www.itpro.co.uk/security/22804/hp-70-of-internet-of-things-devices-

vulnerable-to-attack.

[25] (ICS-CERT), I. C. S. E. R. T. (2016). Malware Trends. National Cybersecurity

and Communications Integration Center (NCCIC).

[26] Inc., S. (2019). Sucuri. https://sucuri.net/.

[27] info Security Group (2018). Rediswannamine uses nsa exploit to up the crypto-

jacking game. https://www.infosecurity-magazine.com/news/rediswannamine-

uses-nsa-exploit/.

[28] INFOSEC (2014). Websocket security issues.

https://resources.infosecinstitute.com/websocket-security-issues/.

[29] Karam, C. and Kamluk, V. (2015). Blockchainware - decentralized malware on

the blockchain. In Black Hat ASIA.

80

REFERENCES

[30] Kemalis, K. and Tzouramanis, T. (2008). Sql-ids: A specification-based ap-

proach for sql-injection detection. In Proceedings of the 2008 ACM Symposium on

Applied Computing, SAC ’08, page 2153–2158, New York, NY, USA. Association

for Computing Machinery.

[31] Kerner, S. M. (2017). Mongodb ransomware impacts over 10,000

databases. https://www.eweek.com/security/mongodb-ransomware-impacts-over-

10-000-databases.

[32] Khalid, S. and Nadeem, A. (2010). Automated generation of finite state machine

from object-oriented formal specifications. In 2010 6th International Conference

on Emerging Technologies (ICET), pages 304–309.

[33] Kilgallon, S., Rosa, L., and Cavazos, J. (2017). Improving the effectiveness and

efficiency of dynamic malware analysis with machine learning. pages 30–36.

[34] Kirat, Jiyong, and Stoecklin (2018). Deeplocker concealing targeted attacks with

ai locksmithing.

[35] Ko, C., Brutch, P., Rowe, J., Tsafnat, G., and Levitt, K. (2001). System health

and intrusion monitoring using a hierarchy of constraints. volume 2212, pages

190–204.

[36] Lim., H., Yamaguchi., Y., Shimada., H., and Takakura., H. (2015). Malware

classification method based on sequence of traffic flow. In Proceedings of the 1st

International Conference on Information Systems Security and Privacy - Volume

1: ICISSP,, pages 230–237. INSTICC, SciTePress.

[37] Ltd., Q. (2019). Quttera. https://quttera.com/.

[38] Magnusardottir, A. (2018). Fileless ransomware: How it works & how

to stop it? https://www.infosecurityeurope.com/en/Sessions/58302/Fileless-

Ransomware-How-It-Works-How-To-Stop-It.

81

REFERENCES

[39] Malwarebytes Labs (2019). 2019 state of malware.

https://resources.malwarebytes.com/files/2019/01/Malwarebytes-Labs-2019-

State-of-Malware-Report-2.pdf.

[40] McAfee (2017). Fileless malware execution with powershell is easier than you

may realize. https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-

fileless-malware-execution.pdf.

[41] Miller, C. and Valasek, C. (2015). Remote exploitation of an unaltered passenger

vehicle. White Paper.

[42] Monnappa, K. (2018). Learning Malware Analysis: Explore the concepts, tools,

and techniques to analyze and investigate Windows malware.

[43] Moser, A., Kruegel, C., and Kirda, E. (2007). Exploring multiple execution paths

for malware analysis. pages 231–245.

[44] Moubarak, J., Chamoun, M., and Filiol, E. (2018). Developing a k-ary malware

using blockchain. In NOMS 2018 - 2018 IEEE/IFIP Network Operations and

Management Symposium, pages 1–4.

[45] Mujumdar, A., Masiwal, G., and Meshram, D. B. B. (2013). Analysis of

signature-based and behavior-based anti-malware approaches. volume 2.

[46] Naeem, H., Guo, B., and Naeem, M. R. (2018). A light-weight malware static

visual analysis for iot infrastructure. pages 240–244.

[47] Network, M. D. (2015). Glossary:websockets. https://developer.mozilla.org/en-

US/docs/Glossary/WebSockets.

[48] Networks, P. A. (2019 (accessed November 2, 2019)). What is an intrusion

detection system? https://www.paloaltonetworks.com/cyberpedia/what-is-an-

intrusion-detection-system-ids.

[49] NirSoft (accessed November 13, 2019). Hash my files.

https://www.nirsoft.net/utils/hashmyf iles.html.

82

REFERENCES

[50] NTCore (accessed December 1, 2019). Explorer suite.

https://ntcore.com/exsuite.php.

[51] Orebaugh, A., Ramirez, G., Beale, J., and Wright, J. (2007). Wireshark & Ethereal

Network Protocol Analyzer Toolkit. Syngress Publishing.

[52] Papadopoulos, P., Ilia, P., Polychronakis, M., Markatos, E., Ioannidis, S., and

Vasiliadis, G. (2018). Master of web puppets: Abusing web browsers for persistent

and stealthy computation.

[53] Park Mookyu, Oh Haengrok, L. K. (2020). Security risk measurement for informa-

tion leakage in iot-based smart homes from a situational awareness perspective. In

Sensors (Basel, Switzerland), volume 19, page 2148.

[Peter Lubbers & Frank Greco] Peter Lubbers & Frank Greco, K. C. Html5 websocket:

A quantum leap in scalability for the web. www.websocket.org/quantum.html.

[55] Revisium (2016 - 2019b). Rescan.pro. https://rescan.pro/.

[56] Revisium (2019a). Ai-bolit. https://revisium.com/aibo/.

[57] Rigaki, M. and Garcia, S. (2018). Bringing a gan to a knife-fight: Adapting malware

communication to avoid detection. In 2018 IEEE Security and Privacy Workshops

(SPW), pages 70–75.

[58] Robiah, Y., Rahayu, S. S., Zaki, M. M., Shahrin, S., Faizal, M. A., and Marliza,

R. (2009). A new generic taxonomy on hybrid malware detection technique. CoRR,

abs/0909.4860.

[59] Rouse, M. (accessed September 30, 2019). Xsd (xml schema definition).

https://whatis.techtarget.com/definition/XSD-XML-Schema-Definition.

[60] Rurik (accessed October 23, 2019). Noriben - portable, simple, malware analysis

sandbox. https://github.com/Rurik/Noriben.

[61] Saad, S., Briguglio, W., and Elmiligi, H. (2019). The curious case of machine

learning in malware detection.

83

REFERENCES

[62] Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., and Zhou,

S. (2002). Specification-based anomaly detection: A new approach for detecting

network intrusions. In Proceedings of the 9th ACM Conference on Computer and

Communications Security, CCS ’02, page 265–274, New York, NY, USA. Association

for Computing Machinery.

[63] Sihwail, R., Omar, K., and Zainol Ariffin, K. A. (2018). A survey on malware

analysis techniques: Static, dynamic, hybrid and memory analysis. 8:1662–1671.

[64] Team, N. S. (2019). Dom based cross-site scripting vulnerability.

https://www.netsparker.com/blog/web-security/dom-based-cross-site-scripting-

vulnerability/.

[65] Test, A. (accessed July 10, 2019). Security report 2018/19. https://www.av-

test.org/fileadmin/pdf/securityreport/AV − TESTSecurityReport2018− 2019.pdf.

[66] TrendMicro (2017). Analyzing the fileless, code-injecting sorebrect ran-

somware. https://blog.trendmicro.com/trendlabs-security-intelligence/analyzing-

fileless-code-injecting-sorebrect-ransomware/.

[67] Tseng, C.-Y., Balasubramanyam, P., Ko, C., Limprasittiporn, R., Rowe, J., and

Levitt, K. (2003a). A specification-based intrusion detection system for aodv. pages

125–134.

[68] Tseng, C.-Y., Balasubramanyam, P., Ko, C., Limprasittiporn, R., Rowe, J., and

Levitt, K. (2003b). A specification-based intrusion detection system for aodv. In

Proceedings of the 1st ACM Workshop on Security of Ad Hoc and Sensor Networks,

SASN ’03, pages 125–134, New York, NY, USA. ACM.

[69] VirusTotal (2019). Virustotal. https://support.virustotal.com/hc/en-

us/articles/115002126889-How-it-works.

[70] Wikipedia (accessed October 02, 2019). Xml schema (w3c).

https://en.wikipedia.org/wiki/XMLSchema(W3C)citenote− 1.

84

REFERENCES

[71] Willems, C., Holz, T., and Freiling, F. (2007). Toward automated dynamic malware

analysis using cwsandbox. IEEE Security Privacy, 5(2):32–39.

[72] Ye, Y., Li, T., Adjeroh, D., and Iyengar, S. (2017). A survey on malware detection

using data mining techniques. ACM Computing Surveys, 50:1–40.

[73] Yoon, S., Jung, J., Noh, M., Chung, K., and Im, C. (2014). Automatic attack

signature generation technology for malicious javascript. In Proceedings of 2014 In-

ternational Conference on Modelling, Identification Control, pages 351–354.

[74] Zhang-Kennedy, L., Assal, H., Rocheleau, J., Mohamed, R., Baig, K., and Chias-

son, S. (2018). The aftermath of a crypto-ransomware attack at a large academic

institution. In Proceedings of the 27th USENIX Conference on Security Symposium,

SEC’18, pages 1061–1078, Berkeley, CA, USA. USENIX Association.

85

APPENDICES

List of Abbreviations

IoT Internet of Things

HTML Hypertext Markup Language

IBM International Business Machines

CNN Convolutional Neural Network

GANs Generative Adversarial Network

DDoS Distributed Denial of Service

CAN Controller Area Network

RAM Random Access Memory

APIs Application Programming Interface

VM Virtual Machine

TF-IDF Term Frequency - Inverse Document Frequency

SVM Suuport Vector Machine

CPU Control Processing Unit

FPR False Positive Ratio

IP Internet Protocol

PoC Proof of Concept

TCP Transmission Control Protocol

IE Internet Explorer

XSS Cross-Site Scripting

86

REFERENCES

XSD XML Schema Design

XML Extensible Markup Language

W3C World Wide Web Consortium

AWS Amazon Web Services

ISPEC International Conference on Information Security Practice and Experience

IMDG In Memory Data Grid

JDK Java Development Kit

IDS Intrusion Detection System

FSM Finite State Machine

87

REFERENCES

What is XML Schema Design (XSD)?

XSD, a recommendation of the World Wide Web Consortium (W3C), specifies how to

formally describe the elements in an Extensible Markup Language (XML) document.

It can be used by programmers to verify each piece of item content in a document.

They can check if it adheres to the description of the element it is placed in [59].

XSD Schema Components

The main components of a schema are [70]:

Element declarations

It define properties of elements. These include the element name and target names-

pace. Here is an example of a XML Schema element [70].

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="xsd_element">

3 </xs:element>

4 </xs:schema>

Listing 1: XSD Element

Attribute declarations

It define properties of attributes. Again the properties include the attribute name

and target namespace. An attribute declaration may also include a default value or

a fixed value [70].

1 <xs:attribute name="xxx" type="yyy"/>

2 <xs:attribute name="lang" type="xs:string" default="EN"/>

3 <xs:attribute name="lang" type="xs:string" fixed="EN"/>

Listing 2: XSD Attribute

88

REFERENCES

Simple and complex types

Simple types (also called data types) constrain the textual values that may appear in

an element or attribute. Complex types describe the permitted content of an element,

including its element and text children and its attributes.

1 <xs:element name="car">

2 <xs:simpleType>

3 <xs:restriction base="xs:string">

4 </xs:restriction>

5 </xs:simpleType>

6 </xs:element>

Listing 3: Simple Type Example

1 <xs:element name="employee" type="personinfo"/>

2 <xs:complexType name="personinfo">

3 <xs:sequence>

4 <xs:element name="firstname" type="xs:string"/>

5 </xs:sequence>

6 </xs:complexType>

Listing 4: Complex Type Example

Comments in XML & XSD

The syntax for writing comments in XML is similar to that of HTML:

1 <!-- This is a comment -->

Listing 5: Complex Type Example

89

REFERENCES

Source Code

The source code for the fileless JavaScript malware and the target web app is available

on the following GitHub repository: https://github.com/f-babar/JSLess

HazelCast in-memory malware source code is available on the following GitHub repos-

itory: https://github.com/f-babar/in-memory-malware-poc

And the source code for unconventional malware detection can be found on GitHub

repository on the following URL:

https://github.com/f-babar/unconventional-malware-detector

90

https://github.com/f-babar/JSLess
https://github.com/f-babar/in-memory-malware-poc
https://github.com/f-babar/unconventional-malware-detector

VITA AUCTORIS

NAME: Farhan Mahmood Babar

PLACE OF BIRTH: Toba Tek Singh, Pakistan

YEAR OF BIRTH: 1993

EDUCATION: The University of Lahore, Bachelor of Science in Com-
puter Science, Lahore, Pakistan, 2015

University of Windsor, M.Sc in Computer Science,
Windsor, Ontario, Canada 2019

91

	Emerging & Unconventional Malware Detection Using a Hybrid Approach
	Recommended Citation

	DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Overview
	Motivation
	Problem Statement
	Thesis Contribution
	Thesis Organization

	Related Works
	Unconventional Malware Types
	Fileless Malware
	In-Memory Malware
	Malware in IoT Devices

	Malware Analysis Techniques
	Static Analysis
	Determining the file type
	Fingerprinting the malware
	Multiple Anti-virus Scanning
	Determining File Obfuscation

	Dynamic Analysis
	Process Monitoring
	File System Monitoring
	Network Monitoring

	Memory Based Analysis

	Malware Detection Techniques
	Signature-based Technique
	Anomaly Detection Technique
	Specification-based Technique

	Unconventional Malware Development
	JSLess: Fileless JavaScript Memory-resident Malware
	Benign Features with Malicious Potentials
	Web Sockets
	Web Worker
	Service Workers

	JavaScript Fileless Malware
	Infection Scenarios
	JSLess Operational Scenario

	In-Memory Malware
	HazelCast
	Member Discovery Mechanism

	Design & Implementation
	Infection Scenarios

	Attack Vectors
	Data Stealing
	In-Memory Ransomware
	DDoS
	Resource Consumption Attack

	Hybrid Approach For Unconventional Malware Detection
	Overview
	Architecture
	Behavior Specifications
	Behavior Monitoring Module
	Specification Matching Module

	Design & Implementation
	Specification Development
	Finite State Machine (FSM)
	Designing of FSM Model
	Specifications Extraction from FSM Model

	Experiments and Results
	Unconventional Malware Analysis
	Lab Environment & Tools For Analysis
	JSLess: Fileless JavaScript Malware Analysis
	Memory Analysis with Volatility
	Capturing Network Traffic with Wireshark

	JSLess Analysis using Tools
	ReScan.Pro
	Web Inspector
	Sucuri
	Quttera
	VirusTotal
	AI-BOLIT

	Unconventional Malware Detection
	Experiment Setup
	Implementation
	Evaluation
	Effectiveness
	Performance

	Approach Benefits
	Limitations

	Conclusion & Future Work
	Conclusion
	Future Work

	REFERENCES
	APPENDICES
	VITA AUCTORIS

