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ABSTRACT 

The non-unique probe selection problem consists of selecting both unique and non­

unique oligonucleotide probes for oligonucleotide microarrays, which are widely used 

tools to identify viruses or bacteria in biological samples. The non-unique probes, 

designed to hybridize to at least one target, are used as alternatives when the design 

of unique probes is particularly difficult for the closely related target genes. The goal 

of the non-unique probe selection problem is to determine a smallest set of probes 

able to identify all targets present in a biological sample. This problem is known to 

be NP-hard. In this thesis, several novel heuristics are presented based on greedy 

strategy, genetic algorithms and evolutionary strategy respectively for the minimiza­

tion problem arisen from the non-unique probe selection using the best-known ILP 

formulation. Experiment results show that our methods are capable of reducing the 

number of probes required over the state-of-the-art methods. 
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CHAPTER I 

INTRODUCTION 

Oligonucleotide microarrays are widely used tools, in molecular biology providing a 

fast and cost-effective method for monitoring the expression of thousands of genes 

simultaneously [32]. In order to measure the expression level of a specific gene in 

a sample, one must design a microarray containing short strands of known DNA 

sequences of 8 to 30 bp, called oligonucleotide probes, which are complementary to 

the gene's segments, called targets. These targets, if present in the sample, should 

bind to their complementary probes by means of hybridization. Typically, the total 

length of a probe used to hybridize a gene is only a small fraction of the length of the 

gene [32]. The success of a microarray experiment depends on how well each probe 

hybridizes to its target. Expression levels can only be accurately measured if each 

. probe hybridizes to its target only, given the target is present in the biological sample 

at any concentration. However, choosing good probes is a difficult task since different 

sequences have different hybridization characteristics. 

A probe is unique, if it is designed to hybridize to a single target. However, due to 

hybridization errors, there is no guarantee that unique probes will hybridize to their 

intended targets only. Many parameters such as secondary structure, salt concentra­

tion, GC content, free energy and melting temperature also affect the hybridization 

quality of probes [32], and their values must be carefully determined to design high 

quality probes. It is particularly difficult to design unique probes for closely related 

genes that are to be identified. Too many targets will be similar and hence hybridiza-

1 



I. INTRODUCTION 

tion errors increase substantially. An alternative approach is to devise a method that 

can make use of non-unique probes, i.e. probes that are designed to hybridize to 

at least one target [32]. The non-unique probe selection problem is to determine a 

smallest set of probes able to identify all targets present in a biological sample. This 

is proven an NP-hard problem [19]. Some fundamental questions will be addressed 

firstly, before stating the non-unique probe selection problem in this section. 

1-1 Functional Genomics 

Functional genomics attempt to describe gene or protein functions and interactions 

by the usage of vast data produced by genomic projects, such as genome sequencing 

projects. Functional genomics includes function-related aspects of the genome such as 

mutation and polymorphism analysis, as well as measurement of molecular activities 

. [47]. 

Functional genomics uses mostly high-throughput techniques to characterize the 

abundance gene products such as DNA microarrays and serial analysis of gene expres­

sion (SAGE) for mRNA; two-dimensional gel electrophoresis and mass spectrometry 

for protein. More detailed descriptions can be found in [30]. 

1-2 Microarray Analysis 

The foundation of microarray technology lies in the Watson-Crick complementarity 

of double-stranded DNA or RNA-DNA-hyrids [30]. DNA forms a double-helix and 

2 
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I. INTRODUCTION 

consists of two antiparallel complementary strands. Each strand is a directional linear 

polymer of four types of nucleotides or bases (adenine A, cytosine C, guanine G, and 

thymine T), held by a sugar-phosphate backbone. RNA occurs as a single-stranded 

molecule with four types of bases (A, C, G, and uracil U). Figure 1 shows the DNA 

and RN A structure. 

H 

,1 .~-r u-{ 
\iiu.mlne (11 

u~'){i CID 
N 

ANA DNA 

~xyflOOtt\}f;~ ~ 
Mltmt1.m1C<Us 

E~ 

Figure 1: DNA and RNA structure. Image cited from [30], p.2 

Microarray technology utilizes nucleic acid hybridization techniques and comput­

ing technology to evaluate the expression profile of thousands of genes within a single 

experiment. It has been proven to be an extremely powerful tool to efficiently uti­

lize the enormous amount of information provided by the completion of numerous 

genome projects. A typical gene expression microarray experiment involves the fol-

3 



I. INTRODUCTION 

lowing steps: 

1. Target preparation 

2. Hybridization 

3. Washing, staining, and scanning of the array 

4. Analysis of the scanned image 

5. Generation of gene expression profiles 

The details of microarray experiments vary according to the specific type of mi­

croarray. [30] describes four main technology platforms of microarrays: 1) Nylon 

membrance arrays or radioactive filters; 2) cDNA arrays or red/ green arrays; 3) 

Polynucleotide arrays; 4) Oligonucleotide arrays. 

Figure 2: DNA microarray 

In Oligonucleotide arrays (also called DNA chips), shown in Figure 2, oligonu­

cleotides, usually 25-mers, are directly synthesized onto a glass wafer by a combination 

4 



I. INTRODUCTION 

of semiconductor-based photolithography and solid phase chemical synthesis technolo­

gies. Each array contains up to 900,000 different oligos and each oligo is present in 

millions of copies. Since oligonucleotide probes are synthesized in known locations 

on the array, the hybridization patterns and signal intensities can be interpreted in 

terms of gene identity and relative expression levels. Diamandis [10] discussed the 

microarray technology as a powerful tool for molecular diagnostics. Couzinet et al. 

[5] evaluated the ability of a high-density DNA probe array based on 16S rDNA 

sequences to identify Staphylococcus species. 

1-3 Unique Probe Selection 

Oligonucleotide probe is a fragment of DNA used to detect the presence of nucleotide 

sequences (targets) in DNA or RNA samples. 

The unique probe selection problem, also called probe design problem, is defined 

as: Given a set of targets T = (t1 , ... , tn) and a parameter m which specifies the 

length of the probes, the probe design problem finds, for every target ti, a length-m 

probe, which satisfies (1) Homogeneity, (2) Sensitivity and (3) Specificity [36]. 

In [30], the unique probe selection problem is formulated as: Given hybridization 

parameters () and a set of target sequences T = (t1 , ... , tn), design a set of unique 

probes for each target for quantitative expression analysis. The hybridization pa­

rameters () take account of temperature, salt concentration, number and density of 

probe molecules on the probe's spot, cRNA fragment length distribution, and other 

conditions specified in experimental protocols [30]. 

5 



I. INTRODUCTION 

A probe is called unique if it hybridizes to its intended target only, under specified 

experimental conditions [32). The high degree of similarity in large families of closely 

related target sequences makes it impossible to find one unique probe for every tar­

get, given the probe length and melting temperature constraints. In some cases on 

robust presence or absence calls, such as in virus subtyping, unique probes are not 

a necessity[32). An alternative approach is to devise a method that can make use of 

non-unique probes. In [30), the criteria for probe set selection is also described. In 

this thesis, we focus on the non-unique probe selection problem, which is a totally 

different optimization problem from the unique probe selection. 

1-4 Non-Unique Probe Selection 

The non-unique probe selection problem is to determine a smallest set of probes able 

.to identify all targets present in a biological sample. This is proved to be an NP-hard 

problem [19). 

Given a target set T = {t1 , ... , tm}, and probe set P = {p1 , ... ,Pn}, an m x n 

target-probe incidence matrix H = [ hij] is such that hij = l, if probe pj hybridizes 

to target ti, and hij = 0 otherwise. Table 1 shows an example of a matrix with 

m = 4 targets and n = 6 probes. A probe pj separates two targets, ti and tk, if it is a 

substring of either ti or tk, that is, if lhij - hkj I = 1. For example, if ti = AGGCAATT 

and tk = CCATATTGG, then probe pj = GCAA separates ti and tk, since it is a 

substring of ti only, whereas probe pz = ATT does not separate ti and tk, since it 

is a substring of both targets (23). Two targets, ti and tk, are s-separated, s ~ l, if 

6 



I. INTRODUCTION 

there exist at least s probes such that each separates ti and tk; in other words, the 

Hamming distance between rows i and k in H is at least s. For example, in Table 1 

targets t 2 and t 4 are 4-separated. A target t is c-covered, c 2:: 1, if there exist at least 

c probes such that each hybridizes to t. In Table 1, target t2 is 3-covered. Due to 

hybridization errors in microarray experiments, it is required that any two targets be 

Smin-separated and any target be Cmin-covered; usually, we have Smin 2:: 2 and Cmin 2:: 2. 

These two requirements are called separation constraints and coverage constraints. 

Table 1: A 4 x 6 target-probe incidence matrix. 

Pi P2 p3 p4 p5 P6 

t1 1 1 0 1 0 1 

t2 1 0 1 0 0 1 

t3 0 1 1 1 1 1 

t4 0 0 1 1 1 0 

Given a matrix H, the aim of the non-unique probe selection problem is to find a 

minimal probe set that determines the presence or absence of specified targets, and 

such that all constraints are satisfied. In Table 1, if Smin = Cmin = 1 and assuming 

that exactly one of t1 , ... , t4 is in the sample, then the goal is to select a minimal set 

of probes that allows us to infer the presence or absence of a single target. In this 

case, a minimal solution is {p1 , p2 , p3 } since for target t 1 , probes p1 and p2 hybridize 

while p3 does not; for target t2 , probes p1 and p3 hybridize while p2 does not; for 

target t3, probes p2 and p3 hybridize while p1 does not; and finally for target t4, only 

7 



I. INTRODUCTION 

probe p3 hybridize. Thus, each single target will be identified by the set {P1,P2,P3}, if 

it is the only target present in the sample; moreover, all constraints are satisfied. For 

Smin = Cmin = 2, a minimal solution that satisfies all constraints is {P2, p3, Ps, P6}. Of 

course, {p1 , ... ,p6 } is a solution but it is not minimal, and hence is not cost-effective. 

Stated formally, given an m x n matrix H with a target set T = { t 1 , ... , tm} and 

a probe set P = {p1 , ... ,Pn}, and a minimum coverage parameter Cmin, a minimum 

separation parameter Smin and a parameter dmax ~ 1, the aim of the non-unique probe 

selection problem is to determine a subset Pmin = {q1 , q2 , · · · , Qs} ~ P such that: 

l. s = IPminl :s; n is minimal. 

2. Each target ti ET is Cmin-covered by some probes in Pmin· 

3. Each target-pair (ti, tk) ET x T is Smin-separated by some probes in Pmin· 

4. Each pair of small groups of targets (:s; dmax) is Smin-separated by some probes 

in Pmin· 

This problem was proved to be NP-hard in [19], by performing a reduction from 

the set covering problem. It is NP-hard even for Cmin = 1 or Smin = 1. The work of 

[18) and [19) formulated the non-unique probe selection problem as an integer linear 

programming (ILP) problem. Let Xj(l :s; j :s; n) be the set of binary variables with 

Xj = l if probe Pj is chosen and O otherwise. We have: 

n 

Minimize: L Xj 

j=l 

(1) 

8 



I. INTRODUCTION 

Subject to: 

Xj E {0,1} 1::;j::;n, (2) 

(3) 

n 

n 

L hij X j 2:: Cmin 

j=l 

L jhij - hkj I Xj 2:: Smin 

j=l 

(4) 

Function ( 1) minimizes the number of probes. The probe selection variables are 

binary-valued in Restriction ( 2). Constraints ( 3) and ( 4) are the coverage and sepa­

ration constraints, respectively. Note that Constraints ( 4) are for single targets only. 

[19] proposed the following ILP formulation that also includes the group separation 

constraints for aggregated targets: 

Subject to: 

n 

Minimize: L Xj 

j=l 

Xj E {0,1} 

~ I ta ta I { '°'J·=n 1 I WJt_; - WJt_t I } f;;t. 
0

w/ - w/ Xj ~ min d, D 

(5) 

1 ::; j ::; n , ( 6) 

\i(t:, t~) E 2T X 2T , (7) 

where Cmin = Smin = d. Here, Constraints (7) are the group separation constraints 

which also contain the single target separation constraints. The coverage constraints 

are also satisfied by Equation 7 with t~ = 0 and t~ = { ti} for 1 ::; i ::; m. 

In this thesis, we proposed several heuristics to solve the ILP formulation (Equa­

tion 1). Note that one can easily check if the probes in the original set of candidate 
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satisfy all the constraints. If not, then there are no feasible solutions. In this case, 

we can insert unique virtual probes in the original probe set only for those targets or 

target-pairs that are not Cmin-covered or Smin-separated. This will ensure the existence 

of feasible solutions. 

1-5 Contribution 

In this thesis, several heuristics will be proposed based on greedy strategy and evolu­

tionary approaches respectively, for the minimization problem arisen from non-unique 

probe selection using the ILP formulation for single target only (Equation 1). The 

Greedy Heuristics presented include: 

1. Dominated Row Covering Heuristic (D RC) 

2. Dominated Probe Selection Heuristic (DPS) 

3. Normalized Dominant Probe Selection Heuristic (DPSn) 

4. Dynamic DRC, DPS and DPSn Heuristics 

5. Sequential Forward Probe Selection Algorithm (SFPS) 

This thesis contributes the first evolutionary approaches for solving this minimiza­

tion problem. Evolutionary Heuristics: 

1. Genetic Algorithm with DRC Heuristic 

2. Evolution Strategy with DDRC and DDPS 

10 



I. INTRODUCTION 

1-6 Thesis Organization 

The thesis is organized in six chapters. Chapter II provides a survey of unique probe 

selection and non-unique probe selection. Chapter III presents the proposed de­

terministic greedy heuristics for non-unique probe selection problem. Chapter IV 

presents the proposed Genetic Algorithm and evolutionary strategy for non-unique 

probe selection problem. Chapter V deals with experiment results and performance 

analysis, where all proposed approaches are analyzed and compared to current pub­

lished methods. Finally, Chapter VI concludes the thesis and identified open research 

problems arising from this work. 

11 
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CHAPTER II 

REVIEW OF LITERATURE 

Unique Probe Selection Problem 

The simple approach for probe selection problem would be to use random oligonu­

cleotides. However, DNA sequences are not really random in nature, so a random 

probe is not likely to occur in a sufficient number of clones to provide adequate dis­

crimination [3). Due to its significance, probe selection attracts a lot of attention. 

Various probe selection approaches have been developed. In [6), Cutichia et al. pro­

vided a methodology for choosing synthetic oligonucleotide probes to be used in contig 

mapping experiments, based on constraints with respect to frequency of occurrence 

within a particular genome and the G + C content. 

Li and Stormo [20) developed a heuristic approach to optimize the selection of 

specific probes for each gene in an entire genome based on the free energy and melting 

temperature criteria. They stated that the optimized probes for each gene provided 

more accurate determinations of true expression levels by minimizing background 

hybridization, and eliminating the need for multiple probes per gene. 

The probe selection had been formulated as an explicit optimization problem in 

[15). Herwig et al. [15) presented an information theoretical probe selection approach, 

which is a greedy heuristic based on clustering and entropy. They stated that their 

approach was superior to the selection of probes according to their frequencies, and 

to randomly chosen probe sets [15]. 

12 



II. REVIEW OF LITERATURE 

Tobler et al. [38] empirically evaluated three standard machine learning algorithms: 

naive Bayes, decision trees and artificial neural networks in the task of predicting good 

probes. As a result, two of the learning algorithms, naive Bayes and neural networks, 

learnt to predict probe quality surprisingly well, but decision tree induction and the 

simple approach of using predicted melting temperature to rank probes performed 

significantly worse than those two learning algorithms [38]. By the way, they also 

stated that the nucleotides in the middle of the probes sequence were more informative 

than those at the ends of the sequence [38]. 

Rahmann [26] presented the first algorithm selecting oligonucleotide probes for 

microarray experiments on a large scale. This algorithm based on a suffix array with 

additional information that is efficient both in terms of memory usage and running 

time to rank all candidate oligos according to their specificity [26]. Later, in [27] 

Rahmann proposed the longest common factor approach for large scale oligonucleotide 

· selection. In [28], Rahmann contributed an approach using the concept of jumps to 

improve the accuracy of the longest common factor approach for probe selection by 

moving from a string-based to an energy-based specificity measure. 

Wang et al. [46] presented a strategy for picking oligos for microarrays that focus 

on a design universe consisting exclusively of protein coding regions. In [46], they 

discussed the oligo picking criteria, such as location in the sequence, Tm uniformity, 

probe accessibility, reduced cross-hybridization, and evasion of non-coding RNA and 

low complexity regions. In their experiments, sequences that had no unique probes 

were represented by non-unique probes. 

Sung et al. [36] presented a fast and accurate probe selection algorithm for large 

13 
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genomes. In [34], Shin et al. proposed a probe design approach using €-multi-objective 

evolutionary algorithms with thermodynamic criteria. Tulpan [39] introduced new 

algorithms for design of DNA strand sets that satisfy any of several combinatorial 

and thermodynamic constraints. 

11-2 Non-Unique Probe Selection Problem 

The first work about non-unique probe selection problem was due to Boreman et al.[3]. 

In [3], Boreman et al. introduce two alternative formulations of probe selection, Mini­

mum Cost Probe Set (MCPS) and Maximum Distinguishing Probe Set (MDPS). The 

Minimum Cost Probe Set problem is a special case of the non-unique probe selection 

problem with both Cmin and Smin set to 1. The Maximum Distinguishing Probe Set 

problem consists of finding a set of k probes that maximizes the number of distin­

.guished pairs of clones. Both MCPS and MDPS problems are variants of Set Cover 

Problem and are NP-hard [3]. Borneman et al. [3] proposed two efficient heuristics for 

minimizing the number of oligonucleotide probes for analyzing populations of ribo­

somal RNA gene (rDNA) clones by hybridization experiments on DNA microarrays, 

based on simulated annealing for MDPS and Lagrangian relaxation for MCPS. 

Rash and Gusfield [31] considered the minimum cost probe set problem using 

suffix trees. The approach starts with a set of known strings (viruses) and builds 

a minimum cardinality set of substrings, which is adequate to identify an unknown 

string using substring tests. In this approach, suffix trees are used to reduce the 

number of variables in an ILP formulation. They state three key technical ideas in 

14 
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their basic implementation: the use of suffix trees to identify the critical substring, 

ILP to express the minimization problem, and reduction in the size of the ILP [31]. 

Rash and Gusfield also extended their basic implementation to deal with mutations 

and sequencing errors by adding minimum separation constraints to the ILP. 

In [32], Schliep et al. proposed a statistical, non-adaptive group testing scheme 

for the microarray setting. In this approach, the target sequences correspond to 

individuals, potential groups are specified by a probe, which hybridizes to a set of 

target sequences, and the goal is to devise a group testing design which covers each 

target with a certain number of probes and allows identification of several targets 

simultaneously [32]. The cross-hybridization and error tolerance were token into 

account explicitly, compared with previous work in [3] and [31]. 

P1' Pi P3' P4' PS' P61 

H 

I Choosing group 
' testing design 

I Testing probes f on chip 

~ . ) . 
spot Intensities 

'Decoding 
Posterior for presence of 
each target in sample 

Figure 3: An overview of the group testing approach in [32] 
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Like in Figure 3, the whole procedure in this approach can be summarized as 

follows: 

1. Collect suitable probe candidates. 

2. From those candidates, find a minimum subset of probes that allows discrimi­

nation between as many target sets as possible. 

3. Decode the presence or absence of target sequences. 

For the step 2 above, Schliep et al. [32] described a simple but fast greedy heuristic 

which computes an approximate solution that guarantees smin-separation for pairs 

of small aggregated targets. Once the hybridization experiment was performed, a 

Markov Chain Monte Carlo approach for the decoding was applied and the result of 

the decoding was a sorted list of the most probable true-positive targets. 

Klau et al. [18] stated the ILP formulation for non-unique probe selection prob­

lem, but for single target only. In [18], they first applied a greedy heuristic to reduce 

the original candidate probe set and then used an ILP solver such as CPLEX software 

to further reduced the result. Their ILP solutions outperformed those of [32] in all 

instances. In subsequent work [19], Klau et al. extended their ILP formula of [18] for 

the non-unique probe selection problem in which multiple targets may be present. 

In [30], Rahmann explained the unique and non-unique probe selection problem in 

detail. Rahmann [29] stated the non-unique probe selection problem as the condition 

optimization problem. In [29], Rahmann proposed a greedy heuristic to select an 

appropriate subset of probes, given many potential probe candidates and the target­

probe incidence matrix. This heuristic started with a full design and iteratively 
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removed a single row to locally minimize the condition. Rahmann claimed that 

although the greedy heuristic did not always find the optimal solution, its performance 

was reasonably close to the optimal design and much better than choosing random 

subsets[29]. In [30], Rahmann described a statistical group testing approach for non­

unique probe selection problem. Within this approach, a fast heuristic to find a good 

group testing design D to select rows of the the full m x n probe-target hybridization 

matrix H, and an optimal design method based on integer linear programming (ILP) 

are presented. 

Gg.5ieniec et al. [12] proposed a new direction to tackle the probe selection for 

DNA microarrays. They focused on the efficient selection of a minimal set of probes, 

and used a limited number of non-unique probes in the context of a large family of 

closely homologous genes. Their approach took a set of known gene sequences as input 

and built a small cardinality set of probes allowing to identify the unknown target 

in the sample. Instead of checking all possible probes, they exploited randomization. 

They randomly pick probes with some minimal criteria checking. Their experimental 

results showed that almost all genes could be uniquely identified by a single probe; 

the others need at most a combination of two probes [12]. 

In previous work [31] [32] [18] [29] [30) [12], only the ability to detect known targets 

has been evaluated, so Schliep et al. [33] extended the group testing approach using 

non-unique probes to targets related by a phylogenetic tree, the first work to address 

detecting the presence of yet unknown targets. 

Moreover, group testing approaches have been discussed by [40][8)[37][9). 

Wang et al. [40] gave an theoretical overview on the group testing methods for the 
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non-unique probe selection problem, and showed that when every probe hybridizes 

to at most two targets, the minimization is still MAX SNP-complete, but has a 

polynomial-time approximation with performance ratio 1 + d!i [40]. 

Deng et al. [8] described the non-adaptive group testing approach for the non­

unique probe selection problem, and gave a mini survey on the computational com­

plexity and approximation algorithms for the minimization problem. They claimed 

that the best known design of non-adaptive group testing was within a factor of 

O(log d) from the lower bound and the best known approximation for the non-unique 

probe selection is within a factor of O(log n) from optimal solution [8]. 

Thai et al. [37] present a novel decoding algorithm identifying all positive clones 

in the presence of inhibitors and experimental errors for the pooling design. The 

pooling design is also called non-adaptive group testing, which is a mathematical tool 

to significantly reduce the number of tests in DNA library screening. In DNA library 

screening, the basic problem of group testing is to identify the set of all positive clones 

in a large population of clones with the minimum number of tests [37]. 

In [8] and [37], the authors did not provide any practical approach, and only 

theoretical results had been discussed. In 2008, Deng et al. [9] extended their re­

search and proposed efficient algorithms based on Integer Linear Programming to 

select a minimum number of non-unique probes using d-disjunct matrices. In [9], 

they constructed ad-disjunct matrix instead of ad-separable matrix considering the 

computational complexity of decoding. Deng et al. improved the decoding complex­

ity compared with the approach in [19]. The decoding complexity of their algorithms 

was claimed to be 0( n) to identify up to d targets with error tolerance [19]. 
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Based on the same ILP formulation (Equation 1), the efficient computation of 

the minimum set of candidate probes with the minimum coverage and separation 

constraints, given a target set T, probe set P, and the target-probe incidence matrix 

H, has been paid more attention by [23] and [25] recently. 

Meneses et al. [23] proposed a greedy non-random heuristic for the non-unique 

probe selection problem, based on ILP formula [18], for single target only. They first 

used local search and sorting to construct a feasible solution to the ILP, and then 

further reduced this set by iteratively removing probes in such a way that the coverage 

and separation constraints were still satisfied. Meneses [23] tested their algorithm on 

the data used in [18]. The algorithm greatly outperformed the ILP method of [18] 

for the largest and only real-world dataset, although the solutions for the smaller, 

artificial datasets contained more probes than those found in [18]. 

Ragle et al. [25] developed anoptimal cutting-plane heuristic based on ILP formula 

{18], for single target only, to find optimal solutions within practical computational 

limits. Their methods is a branch-and-bound approach that relaxes a large constraint 

set in order to find and improve the lower bound on the number of probes required 

in an optimal solution, until an optimal solution is obtained. The same data used 

in [18] [23] were tested in their experiments. They demonstrated that their approach 

consistently found an optimal solution within 10 minutes, and was capable of reducing 

the number of probes required over the state-of-the-art heuristic methods by as much 

as 20%. 
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CHAPTER III 

DETERMINISTIC GREEDY NON-UNIQUE 

PROBE SELECTION 

111-1 Introduction 

In this section we devise heuristics that filter out bad probes as in Meneses et al. [23]. 

In [23], Meneses el al. used no selection function to decide which probes to filter 

out; probes are removed as long as the feasibility of the given candidate solution is 

compromised. Also [23] used no random selection at any time in the algorithm. They 

initially sort the probes in increasing order of the number of targets they hybridize and 

then select probes, in this order, for inclusion in a candidate solution. The authors 

then scan this candidate probe set to test each probe for possible redundancy and 

remove any redundant probe. No additional information is used to direct the search. 

In the data sets, the range of the number of targets to which each probe hybridize is 

very small and many probes hybridize the same number of targets. Thus given two 

candidate probes, it is not easy to identify which probe is better than the other for 

inclusion into a candidate solution. In our methods, we propose some probe selection 

functions to guide the searching for optimal solution, so much more information about 

the probe set is stored in such a way that the algorithm can decide which probes to 

be selected for optimal solution. 

In general, we want to select a minimum number of probes from the initial can­

didate probe set such that each target is Cmin-coverd and each target-pair is smin-
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separated. Given a target probe incidence matrix H, the parameters Cmin and Smin, 

the initial feasible candidate probe set P and the target set T, let Pti be the set of 

probes hybridizing to target ti, and Ptik be the set of probes separating the target-pair 

tik· It is clearly to see that there are m coverage (i.e., number of targets) and m(~-l) 

separation (i.e., number of target-pairs). So we can define P min as Equation 8: 

(8) 

where Pi ~ Pti and Pik ~ Ptik are respectively coverage subsets and separation subsets 

selected for a minimal solution Pmin· 

A Cmin-subset ~ ~ Pti or a Smin-subset ~k ~ Ptik is an essential covering subset or 

separating subset, if and only if Pi = Pti or Pik = Ptik. In other words, if there are only 

Cmin probes that hybridize to ti or only Smin probes that separate tik, then those probes 

are essential probes. Essential probes must be contained in any minimal solution; that 

-is, removing any such probe will make the solution infeasible. A redundant probe is the 

one for which a feasible solution remains feasibility when this probe is removed. Note 

that a probe may be redundant for some solutions but non-redundant for others. Thus 

there is a degree of redundancy between probes, with respect to minimal solutions. In 

this thesis, we assume that the initial candidate probe set is feasible. If not, we insert 

a sufficient number of unique virtual probes into P. For each target ti or target-pair 

tik that a constraint is not satisfied, ( Cmin - I Pti I) or ( Smin - I Ptik I) virtual unique 

probes are added. 
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111-2 Dominated Row Covering Heuristic (DRC) 

111-2-1 Coverage Function 

Given H, the parameter Cmin, the probe set P = {P1, ... ,Pn} and the target set 

T = {t1 , ... , tm}, we defined the function covdrc: P x T 1-----+ [O, 1] in [41] as follows: 

Cmin 
COVdrc(Pj, ti) = hij X IPtJ, Pj E Pti, ti ET (9) 

where, Pti is the set of probes hybridizing to target ti; cov drc (pj, ti) is the amount 

that Pj contributes to satisfy the coverage constraint for target k For target ti, Pj is 

likely to be redundant for a larger value of IPtJ and likely to be non-redundant for 

a smaller value of !PtJ We defined the coverage function Cdrc : P 1-----+ [O, 1] in [41] as 

follows: 

1 ~ j ~ n} (10) 

where TPi is the set of targets covered by Pj. Cdrc (pj) is the maximum amount that 

Pj can contribute to satisfy the minimum coverage constraints. Table 2 shows the 

coverage function table produced from Table 1. Function Cdrc favors the selection 

Table 2: Coverage function table obtained from Table 1 in DRC. 

P1 P2 p3 p4 p5 P6 

t1 Cmin Cmin 0 Cmin 0 Cmin 
4 -4- 4 -4-

t2 Cmin 0 Cmin 0 0 Cmin 
3 -3- 3 

t3 0 £min. £min. £min. £min. £min. 
5 5 5 5 5 

t4 0 0 £min. £min. £min. 0 3 3 3 

Cdrc Cmin Cmin Cmin Cmin Cmin Cmin -3- 4 3 -3- -3- -3-
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of probes that Cmin-cover targets ti that have the smallest subsets Pti; these are the 

essential or near-essential covering probes. In Table 2, for example, target t2 has the 

minimal value IPt2 I = 3, and hence any probe that covers it can be selected first. In 

particular, function Cdrc guarantees the selection of near-essential covering probes that 

Cmin-cover dominated targets; ti dominates tk if Ptk C Pti. In Table 2, for example, t3 

dominates t4 since Pt4 = {p3 , p4, p5} C {p2, p3 , p4, p5 , p6} = Pt3 • Any Cmin -cover of the 

dominated target tk will also Cmin-cover all its dominant targets, and therefore, more 

targets are Cmin-covered. Probes covering the dominated target tk have larger cov drc 

values than probes covering its dominant targets ti, since IPtk I < IPtJ, and hence they 

will be selected first. 

We would also like to favor the selection of dominant probes; p1 dominates pz if 

Tp1 C TPi. In Table 2, for instance, p6 dominates p1 since Tp 1 = { t1, t2} C { t1, t2, t3} = 

Tp6 • Selecting dominant probes instead of dominated probes covers more targets. In 

the example, however, we have Cdrc(P1) = Cdrc(P6), and hence P1 could be selected for 

target coverage rather than p6 , depending on a particular order of the probes. On the 

other hand, P6 dominates P2 and Cdrc(P6) > Cdrc(P2), and hence P6 will be selected 

first. 

111-2-2 Separation Function 

We want to choose the minimum number of probes such that each target-pair is 

Smin-Separated. We defined the function sepdrc : p X T2 
f---+ (0, 1] as follows: 
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( ) I I 
Smin 

sepdrc Pj ' tik = hij - hkj X I Ptik I ' (11) 

where, Ptik is the set of probes separating target-pair tik; sepdrc(Pj , tik) is what Pj 

can contribute to satisfy the separation constraint for target-pair tik· We defined the 

separation function Sdrc : P 1-+ [O, 1] in [41] as follows: 

1::;j::;n} (12) 

where T;j is the set of target-pairs separated by Pj· Sdrc(Pj) is the maximum amount 

that pj can contribute to satisfy the minimum separation constraints. Table 3 shows 

the separation function table produced from Table 1. Function Sdrc also favors the 

Table 3: Separation function table obtained from Table 1 in DRC. 

P1 P2 p3 p4 p5 P6 

t12 0 ~ ~ ~ 0 0 3 3 3 

t13 ~ 0 ~ 0 ~ 0 3 3 3 

t14 
Smin Smin Smin 0 Smin Smin -5- -5- 5 5 5 

t23 
Smin Smin 0 Smin Smin 0 -4- -4- -4- -4-

t24 ~ 0 0 ~ ~ ~ 4 4 4 4 

t34 0 ~ 0 0 0 ~ 2 2 

I Sdrc I ~ ~ ~ ~ ~ ~ 3 2 3 3 3 2 

selection of probes that Smin-separate target-pairs tik which have the smallest subsets 

Ptik and further favors the selection of near-essential separating probes that smin­

separate dominated target pairs. 
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111-2-3 Selection Function 

We want to select the minimum number of probes such that all coverage and separa­

tion constraints are satisfied; that is, we must select a probe according to its ability 

to help satisfy both coverage and separation constraints. We combined functions Cdrc 

and Scire into a single probe selection function, Ddrc : P 1---+ [O, 1] as follows: 

(13) 

Ddrc (pj) is the degree of contribution of pj, that is, the maximum amount required 

for pj to satisfy all constraints. Ddrc ensures that all essential probes pj will be 

selected for inclusion in the subsequent candidate solution, since Cdrc (pj) = 1 or 

Sdrc(Pj) = 1. With our definition of Ddrc, probes p that cover dominated targets or 

separate dominated target-pairs have the highest Ddrc(P) values. 

111-2-4 Algorithm 

Our heuristic consists of three phases: Initialization Phase, Construction Phase, and 

Reduction Phase. In the Initialization Phase, we compute the initial D(p) value for 

each probe p E P given matrix H and create an initial and possibly non-feasible solu­

tion .Rni containing essential probes only. In the Construction Phase, we repeatedly 

insert high-degree probes into .Rni until an initial feasible solution Psol is obtained. In 

the Reduction Phase, we reduce P801 by repeatedly removing low-degree probes such 

as to obtain a final near minimal feasible solution Pmin· 
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ALGORITHM 1 Dominated Row Covering Heuristic (DRC) 

Input: T = {t1, ... ,tm}, P = {P1, ... ,Pn}, and H = [hi1] 

Output: Near-minimal solution Pmin 

1: {Initialization Phase} 
2: Compute Ddrc(P) for all p E P using Equations 9-13 
3: Pini ~ {p E PI D(p) = 1} { essential probes} 
4: { Construction Phase} 
5: Psol ~ Pini 
6: Sort P " Psol in decreasing order of D(p) 
7: for each target ti not Cmin - covered by Psol do 
8: ni ~ # probes needed to complete Cmin - covered of ti 
9: Psol ~ Psol U LJ~i{ next highest degree probe pz E P" Psol that covers ti} 

10: end for 
11: for each target pair tik not Smin-separated by Psol do 
12: nik ~ # probes needed to complete Smin-separation of tik 
13: Psol ~ Psol U LJ~ik { next highest degree probe pz E P " Psol that separates tik 
14: end for 
15: {Reduction Phase} 
16: Pmin ~ Psol 

17: H ~ HIPmin { update H to probes in Pmin} 
18: Compute D(p) for all p E Pmin 
19: Sort Pdel ~ {p E PminlD(p) < 1} in increasing order 
20: if Pmin " {p} is feasible for each p E Pdel then 
21: Pmin ~ Pmin "'- {p} 
22: end if 
23: Return P min 
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111-2-5 Computational Complexity 

In heuristic DRC, the computational complexity for calculation of coverage func­

tion is O(mn); O(m2n) for calculation of separation function, so the computational 

complexity for selection function Ddrc(P) is O(m2n). For the Construction Phase, the 

complexity for sorting P "- Psol is 0( n log n); the complexity for coverage-construction 

is O(mn) for the worst case; O(m2n) for separation-construction in the worst case. 

While for the Reduction Phase, the computational complexity is O(m2n + nlogn). 

So finally, the computational complexity for heuristic DRC is O(m2n + nlogn). 

111-3 Dominated Probe Selection Heuristic (DPS) 

111-3-1 Coverage Function 

T_'o favor the selection of a dominant probe among dominated probes equal in value 

Cdrc, we penalize each probe p by an amount proportional to ITPI, as follows: 

(14) 

and probes that cover fewer targets are penalized more than probes that cover more 

targets. Note: here ITPi I < m is always true, because the probe that hybridizes with 

all targets is useless for the design, and can not be selected in the candidate probe 

pool. Table 4 shows the values of Cdps for each probe. 
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Table 4: Coverage function table obtained from Table 1 in DPS. 

P1 P2 p3 p4 p5 P6 

t1 £min. £min. 0 £min. 0 £min. 
12 12 8 8 

t2 £min. 0 Cmin 0 0 Cmin 
9 -6- -6-

t3 0 Cmin Cmin Cmin Cmin Cmin 
15 10 10 15 10 

t4 0 0 £min. £min. £min. 0 6 6 9 

I Cdps I £min. £min. £min. £min. £min. £min. 
9 12 6 6 9 6 

111-3-2 Separation Function 

To favor the selection of a dominant probe that has the same value, Sdrc, as some of 

its dominated probes, we penalize each probe p by an amount proportional to IT;I, 

as follows: 

1 
Sdps (pj) = Sdrc (pj) X ( l) 

m ~- - IT;J I + 1 
(15) 

and probes that separate fewer target-pairs are penalized more than probes that 

separate more target-pairs. Note: m(~-l) > IT;j I is also always true, when m > 2. 

Ill-3-3 Selection Function 

In this paper, we use the following probe selection function, Ddps : Pr--+ [O, 1]: 

(16) 

to favor the dominant probes among all probes that have equal values in Ddrc; this is 

the secondary greedy selection principle. These two greedy principles together allow 

larger coverage and separation when using Ddps than Ddrc in a greedy search method. 
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III-3-4 Algorithm 

The Dominant Probe Selection (DPS) heuristic, is similar to DRC in Section III-2 

except the definition of D(p) , so the algorithm of DPS is almost same as that in 

Section III-2-4 except the calculation of D(p). 

III-3-5 Computational Complexity 

Heuristic D PS also performs similar with D RC except the calculation of selection 

function Ddps(p). While we use two stacks with length n to store ITPI and IT;I 

respectively, so the computational complexity for the calculation of selection function 

is still O(m2n) in the worst case. Then the computational complexity for heuristic 

DPS is also O(m2n + nlogn). 

111-4 Normalized Dominant Probe Selection Heuris-

tic (DPSn) 

III-4-1 Coverage Function 

Compared with DRC and DPS, The difference of DPSn is that we normalized the 

contribution of each target to Cmin as following: 

(17) 
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where, Pti is the set of probes hybridizing to target ti; cov drc (pj , t i ) is the amount 

that pj contributes to satisfy the coverage constraint for target k As explained in 

Section III-3 , ITPj I < m is always true. The normalization factor 'Yi is given below: 

'Yi = I::j=n h i j 

j=l m-lTPj 1+1 

Cmin (18) 

We defined the coverage function Cdpsn: 

1::;j::;n} (19) 

where TPj is the set of targets covered by Pj· 

111-4-2 Separation Function 

Similarly, we normalized the contribution of each target pair to smin in Equation 20. 

1 
sepdpsn(Pj, tik) = (Jik X lhij - hkjl X -(--)----­

m ~-1 - ITij I + 1 
(20) 

where, Ptik is the set of probes separating target-pair tik· The normalization factors 

CJik are given below: 

(21) 

(22) 

where T;j is the set of target-pairs separated by Pj· 
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111-4-3 Selection Function 

We use similar selection function as in DRC and DPS. 

(23) 

111-4-4 Algorithm 

The algorithm in DPSn is also almost same as that in SectionIII-2-4, except the 

calculation of D (p). 

111-4-5 Computational Complexity 

Although, heuristic DPSn implements more complicate selection function than DRC 

and DPS, the complexity still keep same in the worst case for the calculation of 

selection function. So the the computational complexity for DPSn is still O(m2n + 

nlogn). 

111-5 Dynamic DRC, DPS and DPSn Heuristics 

In DRC and DPS, given the target-probe incidence matrix H, the entries in the cov­

erage matrix (Table 2) and the separation matrix (Table 3) are computed in the 

Initialization Phase and remain un-changed during the Construction Phase until the 

Reduction Phase where we compute a new incidence matrix H = HIPmin. The next 

probe is selected without considering the current set of probes that are already se-
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lected, nor, the current set of rows ( targets and target-pairs) that are already covered 

by the current candidate probe set. 

The Dynamic Dominated Row Covering Heuristic (DDRC), Dynamic Dominant 

Probe Selection Heuristic (DDPS) and Normalized Dynamic Dominant Probe Selec­

tion (DDPSn) make use of knowledge that can help achieve greater reduction: 1) 

which probes are already selected, 2) which rows are covered by already selected 

probes and 3) how many more probes are needed to satisfy the constraints for each 

row. For example, if we remove the already selected probes (that is, if we remove 

from H the columns associated to already selected probes) and update for each row 

the number of remaining probes required to Cmin-cover or Smin-cover that row, then 

some dominant row may become dominated and therefore the algorithm can concen­

trate its efforts to select probes for covering this new dominated row along with the 

current dominated rows. Likewise, once a row is already Cmin-covered or Smin-covered 

the algorithm should concentrate its efforts on selecting probes for the remaining rows 

only. DDRC, DDPS and DDPSn are dynamic in the sense that entries cov(pj, ti) and 

sep(p1 , tik) are updated only for rows ti and tik covered by the newly selected probe 

Pti=J, each time a new probe is selected. In DDRC, we first initialize the solution with 

essential probes. Then let Pt be the newly selected non-essential probe, in DDRC, 

we update the cov and sep values only in those rows ti and tik that are covered by Pt 

as 
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( ) _ I h h I Smin - I Stik I 
sep P#l, tik - ij - kj x IPtik I - IStik I' (25) 

where Cti and Stik are respectively, the set of selected probes (including new 

selected probe pz) that already cover rows ti and tik· Note: here pz and pj are non­

essential probes, so IPtJ > Cmin and IPtik I > Smin are always true. For target or 

target-pair that has not been Cmin covered or Smin separated, I Pti I > Cmin 2 I Cti I and 

I Ptik I > Smin 2 I Stik j. We then update the matrix H as 

(26) 

or simply set hil = 0 for 1 ~ i ~ m. Table 5 shows one example, where if p1 

is selected, given the left coverage matrix, then p1 is removed in the right coverage 
matrix 

Table 5: Coverage matrix for DDRC before and after selectiong p1 . 

P1 P2 p3 p4 p5 P6 P1 P2 p3 p4 p5 P6 

· t1 
Cmin Cmin 0 Cmin 0 Cmin 
-4- -4- -4- -4- t1 

Cmin-1 0 Cmin-1 0 Cmin-1 
-3- -3- -3-

t2 £min. 0 £min. 0 0 £min. 
3 3 3 t2 0 £min..=! 0 0 £min.=.! 

2 2 

t3 0 £min. £min. £min. £min. £min. 
5 5 5 5 5 t3 £min. £mill £min. £min. £min. 

5 5 5 5 5 

t4 0 0 £min. £min. £min. 0 3 3 3 t4 0 £min. £min. £min. 0 3 3 3 

Cdrc 
Cmin Cmin Cmin Cmin Cmin Cmin 
-3- -4- -3- -3- 3 -3-

Cmin -3-

The D D PS is similar to D D RC except that functions C, S and D are defined 

using Equations ( 27) and ( 28) below. 

(27) 
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(28) 

where UPj ~ TPj and U;j ~ T;j are, respectively, the set of targets in TPj and 

target-pairs in T;j that are already Cmin-covered and Smin-separated by the currently 

selected probe set. As explained before, the rows associated with these targets or 

target-pairs will be all-zero, and therefore, they should be discarded from TPj or T;j 

for given probe Pj. 

In DDPSn, we use Equation 29-32 to normalize only those targets and target-pairs 

affected by the selection of pz to Cmin - ICtJ and lsmin - Stik I respectively. 

(29) 

and 

1 
sep(p1·--1-z, tik) = O'ik x lhi1· - hk1· 1 x ---------

r m(~-l) - (IT;j I - IU;j I) (30) 

where UPj ~ TPj and U';j ~ T;j are, respectively, the set of targets in TPj and 

target-pairs in T;j that are already Cmi0 -covered and Smin-separated by the currently 

selected probe set. The normalization factors --Yi and O'ik are given below: 

(31) --Yi = ~ h i j 

L...Jj#l m-(ITp .HUp -1) 
J J 

(32) 
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III-5-1 Algorithms 

The algorithm presented in DDRC is described as Algorithm 2. 

III-5-2 Computational Complexity 

In dynamic heuristics, we update selection function values D(p) once add one non­

essential probe into solution. Because, in DDRC and DDPS, we just update the cov 

and sep values only in those rows ti and tik that are covered by pz, which is the newly 

selected non-essential probe, so the computational complexity for updating is O(tq), 

where t = max{(ITPil, IT;jl) 11:::; j:::; n} and q is the number of current unselected 

candidate probes. But in DDPSn, we have to update normalization factors ~i and 

aik for all unselected probes with computational complexity O(m2q), where q is the 

number of current unselected candidate probes. While, the updating occurs at most 

n - l times in the worst case, when all candidate probes are included in the final 

solution. So we can see that the computational complexity for dynamic heuristics 

DDRC and DDPS is O(m2n + tn2
), where t = max{(ITPil, IT;)) I 1 :::; j ~ n}; 

0( m 2n 2
) is the computational complexity in the worst case for dynamic heuristic 

DDPSn. 
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ALGORITHM 2 Dynamic Dominated Row Covering Heuristic (DDRC) 

Input: T = {t1, ... , tm}, P ={Pi, ... ,Pn}, and H = [hij] 
Output: Near-minimal solution Pmin 

1: {Initialization Phase} 
2: G~H 
3: Pini ~ {p E Pip is essential } 
4: for all ta(l ~a~ m) and tab(l :Sa< b ~ m) covered by each q E Pini do 
5: Compute D(p) for all p E {Pta "Cta} U {Ptab "Stab} 
6: end for 
7: H ~ HIP" ~ni { update H to probes in P" ~ni} 
8: P ~ P " Pini 
9: { Construction Phase} 

10: Psol ~ Pini 

11: for each target ti not Cmin covered by Psol do 
12: ni ~ # probes needed to complete Cmin-coverage of ti 
13: repeat 
14: Psol ~ Psol U { q E P" Psol with highest degree that covers ti} 
15: for all ta(l ~a~ m) and tab(l ~a< b ~ m) covered by q do 
16: Update D(p) for all p E {Pta "Cta} U {Ptab "- Stab} 
17: end for 
18: H ~HIP"- {q} 
19: P ~ P" {q} 
20: until ni probes are inserted 
21: end for 
22: for each target pair tik not Smin separated by Psol do 
23: nik ~ # probes needed to complete Smin separation of tik 
24: repeat 
25: Psol ~ Psol U { probe q E P" Psol with highest degree that separate tik} 
26: for all ta(l ~a~ m) and tab(l ~a< b ~ m) covered by q do 
27: Update D(p) for all p E {Pta "Cta} U {Ptab "- Stab} 
28: end for 
29: H ~HIP"- {q} 
30: P ~ P " { q} 
31: until nik probes are inserted 
32: end for 
33: {Reduction Phase} 
34: Pmin ~ Psol 
35: H ~ GIPmin { we restore initial H and restrict to Pmin} 
36: Compute D(p) = Ddrc(P) for all p E Pmin 
37: Sort Pdel ~ {p E PminlD(p) < 1} in increasing order 
38: if Pmin " {p} is feasible for each p E Pdel then 
39: Pmin ~ Pmin "- {p} 
40: end if 
4L...Betmu final Pm%'R 

36 

.. 

1 ... 

... 



111-6 

III. DETERMINISTIC GREEDY NON-UNIQUE PROBE SELECTION 

Sequential Forward Probe Selection Algorithm 

(SFPS) 

In this section, a sub-optimal technique from pattern recognition is applied for the first 

time, to the non-unique probe selection problem. In particular, the well-known se­

quential forward selection (SFS) algorithm [24], for feature subset selection, is adapted 

to find near-minimal feasible probe sets (45]. Feature selection (FS) constitutes one 

of the two principal phases of pattern recognition system design, the other being the 

design of pattern classification stage which employs the selected features. The main 

goal of FS is to select a subset of d features from the given set of D measurements, 

d < D, without significantly degrading (or, with possibly improving) the performance 

of the recognition system. Given a suitable criterion function for assessing the effec­

tiveness of feature subsets to classify data, FS is reduced to a combinatorial search 

problem that finds an optimal subset based on the selected measure. 

A microarray design experiment is a pattern recognition system where the mea­

surements are provided by a biological sample and a target set (augmented with the 

set of all target-pairs, if non-unique probes are used), and where the classifier system 

is a probe set that classifies each target, or target-pair, as present or absent in the 

sample. However, with microarrays, the problem is to reduce the complexity of the 

classifier system (i.e., the size of the probe set) while still able to correctly classify 

each target and target-pair as present or absent in the biological sample. Here, the 

feature space representing the sample, which includes the targets and the target-pairs, 

is not subject to optimization. 
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We adapt the SFS to find a near minimal probe set as follows: the best probe 

set is constructed by adding, to the current non-feasible probe set, one probe at a 

time until we obtain a feasible probe set with the hope it has the least cardinality u. 

More specifically, to form the best feasible subset of probes, the starting point of the 

search is the empty set, p1...o, which is then successively built up. This is known as 

the bottom up approach. This method is generally sub-optimal since the best probe 

is always added to a working subset of probes, pl...u. 

111-6-1 Subset Selection Criteria 

In this section, we define the criteria required to decide which is the best subset to 

select. Let pl...u = {q1 , ... , qu} ~ P be a probe set to be evaluated, where qi E P, 

1 :s; j :s; u and 1 :s; u :s; n, and p1...o = 0. pl...u Cmin-covers a target ti if at least 

Cmin probes in pl...u cover k pl...u Smin-separates a target-pair tik if at least Smin 

probes in pl...u separate tik. Our aim is to select the subset pl...u which Cmin-covers 

as many target as possible and smin-separates as many target-pairs as possible, or, 

which satisfies all the constraints with the least cardinality u. 

111-6-1-1 Coverage Criterion 

Given a collection P ~ 2P, we want to choose the subset pl...u ~ P such that each 

target is Crnin-covered by p1...u. Given the matrix H, the parameter Cmin, the candidate 

pro be set P = {p1, ... , Pn} and the target set T = { t1, ... , tm}; to evaluate the ability 

of subset p1...u to Cmin-cover T, we generalize the coverage function as follows: 
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Cdps(pl...u) = max {f COVdps(Qj, ti) 
tiETp1...u 

j=l 

(33) 

where Tp1...u = Tq1 U ... U Tqu is the set of targets covered by p1...u. 

2P 1--7 R+ is the maximum amount that p1...u can contribute to satisfy the minimum 

coverage constraints. Table 6 shows an example of a subset coverage table obtained 

from Table 1, given five subsets. In the example, Pab means the subset {qa, Qb}. We 

also show, for P31 , the computation of Equation (33). Clearly, Cdps(pl...u) is maximal 

Table 6: Example of subset coverage obtained from Table 1. 

0 
Cmin 1 
-3-2 
Cmin 1 -5-2 
S:nin. .! 

3 2 

I Cdps II 

u 
+ 
+ 
+ 
+ 

£min..! 
4 3 

Cmin 1 
-3-3 

0 

0 

--

-- Cmin 
10 

£min. 
12 

Cmin 
-6-

Cmin 
-6-

£min. 
6 

£min. 
8 

Cmin 
-6-

Cmin 
-5-

£min. 
3 

0 
Cmin 
-6-

Cmin 
-6-

~ 
18 

£min. 
8 

Cmin 
3 

Cmin 
-5-

S:nin. 
6 

~ Sn.in. Sn.in. ~ Sn.in. 
18 6 3 18 3 

. if Cdps ( qj) is maximal for each qj E p1...u. Thus, for subsets of probes, function Cdps 

favors the selection of those subsets that contain probes having the highest coverage 

values. For example in Table 6, probes p3 , p4 and p6 have the highest coverage values 

(shown in Table 4), and hence, subsets such as ?34 and P36 have the best values. Cdps 

indicates only how much a subset contributes in satisfying the coverage constraints, 

not how well the subset satisfies the coverage constraints. For instance, in the table, 

subsets P31 and P35 produce a tie, but P31 should be preferred since it covers more 

targets. Also, between the two subsets, which attain the same value of Cdps, the one 

that satisfies all coverage constraints (or, closer to satisfying all coverage constraints) 

should be preferred. We define the coverage criterion, F cdps : 2P 1--7 R+, as follows: 
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IT I I U I '°' fea (pl...u) Fi (Pl...u) = C (Pl...u) X pl.. .u - pl...u L .. diET-......U pl...u ti 
Cdps dps j U I X ( j j) ffi - pl...u ffi - Up1 .. . u 'Cmin 

(34) 

where, U p1. .. u is the set of targets already Cmin-covered by pl...u (probes need not be 

selected to cover such targets); P{ .. u is the set of probes in pl...u that cover ti, and 

f ea : 2P 1-4 R+ defined as 

{ 
lpl...ul if lpl...ul < C . 

fea ( Pt:···u) = ti ' ti mm 

Cmin , otherwise 
(35) 

specifies how much the coverage constraint is satisfied on ti; the sum equals ( m - I U pi .. . u I) Cmin 

when all coverage constraints are satisfied. Hence, the second term penalizes subsets 

that cover fewer targets and the third term penalizes subsets that satisfy fewer cov-

erage constraints. Fcdps is maximal when all three terms are maximal. 

111-6-1-2 Separation Criterion 

The derivation of the separation criterion is similar to that of coverage, except that 

we use terms and variables related to separation; such as, target-pair, smin, and so 

on, in the equations below. Given a collection P ~ 2P, we want to choose the subset 

pl...u ~ P such that each target-pair is Smin-separated by p1...u. Consider the matrix 

H, the parameter Smin, the candidate probe set P = {P1, ... ,Pn} and the target set 

T = { t1 , ... , tm}. Following the same reasoning as in Section III-6-1-1, we obtain the 

following equations for separation: 
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Sdps(P1···u) = max {~sepdp.(Qj, t;k) I Qj E pI...u} (36) 
t ·kET2 

i pl...u j=l 

where r:1 ... u = T;
1 
U .. . uT;u is the set of target-pairs separated by p1...u. S<lps(p1...u) : 

2P f---7 ~+ is the maximum amount that pl...u can contribute to satisfy the minimum 

separation constraints. The separation criterion is given by: 

(37) 

where, U;1.. .u is the set of target-pairs already Smin-separated by p1...u (probes need 

not be selected to separate such target-pairs); Pt!;·u is the set of probes in p1...u that 

separate tik, and fea : 2P f---7 ~+ defined as 

{ 
lpl...ul if lpl...ul < S . 

fea ( pt~;·U) = tik l tik mm 

Smin , otherwise 
(38) 

specifies how much the separation constraint is satisfied on tik; the sum equals 

( m(~-l) - I U;1...u I) Smin when all separation constraints are satisfied. Thus, the sec­

ond term penalizes subsets that separate fewer target-pairs and the third term penal­

izes subsets that satisfy fewer separation constraints. Fsdps is maximal when all three 

terms are maximal. 

111-6-1-3 Selection Criterion 

We combine both the coverage criterion and the separation criterion into a single 

subset selection criterion 
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F (Pl...u) = max { Fi (Pl...u) F (Pl...u) } ~~ ~~ ' ~~ (39) 

which specifies the degree to which a subset of probes satisfies all constraints. 

111-6-2 Algorithms 

The sequential forward probe selection (SFPS) method (Algorithm 3) is based on 

the SFS algorithm. SFPS uses the FDdps function as the criterion for selecting the 

best subset among a collection of probe sets. The best probe, q+, to insert in a 

working subset, p1...u, is the one that maximizes the criterion, F Ddps, when it is 

included. SFPS terminates when p1...u is feasible; which is then reduced to a near­

minimal solution, Pmin, in Algorithm 4, by removing the redundant probes. SFPS 

ALGORITHM 3 Sequential Forward Probe Selection (SFPS) 
Input: T = {t1, ... , tm}, P = {P1, ... ,Pn}, and H = [hij] 
Output: Near-minimal solution Pmin 

1: Compute Ddps(P) for all p E P 
2: u f--- number of essential probes 
3: pl...u f--- set of essential probes 
4: repeat 
5: q+ f--- arg maxqEP,pl...u FDdps ( pl...u U { q}) 
6: pl...(u+l) f--- pl...u U { q+} 
7: u f--- u + l 
8: until pl...u is feasible 
9: Return Pmin f-- Reduction(Pl...u, P, T, H) 

locally searches the power set, 2P, of the probe set P. That is, at each subset 

selection step, the neighborhood of the working subset pl...u E 2P is the collection 

1 ::; j :::; n-u. The subset to select is the one in p1...(u+1) that maximizes the criterion 
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ALGORITHM 4 Reduction in SFPS 
Input: p1...u, P, T, H 
Output: Reduced solution Pred 

1: Pred +- pl...u; 

2: H +- HIPred, /* restrict to Pred * /; 
3: Compute Ddps(q) for all q E Fred; 
4: Sort Pdel +- {q E Pred I Ddps(q) < 1} in increasing Ddps(q); 
5: if Pred " {p} is feasible for each q E Pdel then 
6: Fred +- Pred "- { q}; 
7: end if 
8: Return Pred· 

111-6-3 Computational Complexity 

In SFPS, the first step is to calculate covdps and sepdps· As discussed in previ­

ous section, the computational complexity for those calculations is 0( m2n). The 

computational complexity for calculating FDdps(pl...u U { q}) is O(m2
), given covdps 

and sepdps. But this calculation takes n - I p1...u I steps to find out q+, when q+ +­

arg maxqEp,p1...u F Ddps ( p1...u U { q}). In conclusion, the computational complexity for 

SFPS is 0( m2n2 ) in the worst case. 



CHAPTER IV 

EVOLUTIONARY HEURISTICS FOR 

NON-UNIQUE PROBE SELECTION 

Scientific discussion of evolution dates back than 200 years. Darwin suggested that 

slight variation among individuals significantly affects the gradual evolution of the 

population. This differential reproductive process of varying individuals is called 

natural selection. Evolutionary methods, which are inspired by the analogy of evo­

lution and population genetics, are stochastic and optimization techniques. They 

have been demonstrated to be effective and robust in searching huge spaces in a wide 

range of applications. Evolutionary methods generally involve techniques implement­

ing mechanisms such as reproduction, mutation, recombination (crossover), selection 

and survival of the fittest. Evolutionary methods usually are comprised of genetic 

_algorithms (GAs), genetic programming (GP), evolutionary programming (EP) and 

evolution strategy (ES). 

Genetic algorithms (GAs) are population based search algorithms. GAs became 

a widely recognized optimization method as a result of the work of John Holland in 

the early 1970s, and particularly his book in 1975. The individuals of population in a 

GA are usually represented as fixed length binary strings but there are GAs that use 

strings from higher cardinality alphabets and with variable length. Recombination 

(crossover) is the primary operator and mutation is considered as a secondary search 

operator. 

Genetic programming (GP) is a form of evolutionary methods in which the indi-
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viduals in the evolving population are computer programs rather than bit strings. 

Evolutionary programming (EP) was originally conceived by Lawrence J. Fogel 

in 1966. Evolutionary programming is a stochastic optimization strategy similar to 

GAs. EP uses problem oriented representation. Mutation is the primary operator 

and depends on the representation used. It is usually adaptive, and crossover is rarely 

used. 

Evolutionary strategy was invented by Inga Rechenberg in 1960s and 70s. Initially 

ES used selection and mutation on one individual only. Recombination and larger 

populations were introduced later. 

Non-unique probe selection problem is actually the constrained optimization prob­

lem. Some genetic algorithm approaches [1] [2] [22] have been proposed for the set cover 

problem, which is a similar constrained optimization problem. Penalty function meth­

ods have been the most popular approach to solve constrained optimization problems 

using genetic algorithms or evolutionary strategy, however the performance is not al­

ways satisfactory [7]. Another alternative is to design heuristic operators to transform 

infeasible solutions into feasible solutions [2]. The genetic algorithm and evolutionary 

strategy [42][43][44] presented in this thesis apply the heuristic feasibility operator 

based on our greedy heuristic research to solve the non-unique probe selection prob­

lem, and experiment results are comparable to those of the current state-of-the-art 

approaches. 
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IV-1 Genetic Algorithm with DRC Heuristic 

This section discusses the proposed genetic algorithm for the non-unique probe se­

lection problem, including the representation, fitness function, selection operator, 

crossover operator, mutation operator, heuristic feasibility operator, and population 

initialization and replacement strategy. Figure 7 describes the flow chart of the 

genetic algorithm proposed. 

t=O lnitlalizat,on 

Yes I 
'11-_R_e_tu_m _ __, 

----• l.___ ____ se_le __ c_t i_on_, ___ ___. 

" Crossover 

y 

Mutatmn 

~ 
, . ..--- -..__ Yes 

<::fhiJd solutiot is feasible :>----, ---.__ ·-----~ .---·~ 
t No 

Feasibfltty Operator 

Replacernent; t=t +1; 

Figure 4: Flow chart of GA_DRC 
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IV-1-1 Representation and Fitness Function 

The binary representation is an obvious choice for the non-unique probe selection 

problem here. We choose an-bit binary string, shown in Figure 5, as the chromosome 

structure where n is the number of total probes. A value of 1 for the ith bit implies 

that probe Pi is in the solution. 

'2 3 4 5 n-1 u 

hit s I t'i 11\t I ·1 I O I 1 I 1 0 I 1 o I 

Figure 5: Binary representation of chromosome 

With the binary representation, the fitness function used in our genetic algorithm 

coincides with the objective function (Function 1) of the ILP. The fitness function f 

is then defined as: 
n 

1i = Lsij 
j=l 

where sij = Xj is the bit j of solution si, i E {1, · · · , N}. 

IV-1-2 Selection Operator 

(40) 

Because when the population converges, the range of the fitness values in the popu­

lation reduces, so the probability of any individual in the population to be selected 

become almost equal[2]. In order to favor selection of the more optimal individuals, 

we use fitness scaling and tournament selection. Fitness scaling maps an individual's 

raw fitness value onto a new value by subtracting a suitable value from the raw fitness 

as 

ft = Ji - min(Ji, i = 1, · · · , N) (41) 
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where Ji and ft denote the raw fitness and the scaled fitness of individual i respec­

tively, and N is the population size[2]. 

IV-1-3 Crossover Operator 

Fusion operator is a generalized fitness-bas~d crossover operator. Different with other 

crossover operators like one-point or two-point crossover and uniform crossover, the 

fusion operator considers both the structure and the relative fitness of the parent 

solutions, and produces just a single child instead of two children[2]. Let f p
1 

and f p
2 

be the scaled fitness value of the parent solutions Pi and A respectively, and let C 

denotes the child solution, then for all i = 1, · · · , n: 

1. if P1 [i] = A[i], then C[i] = Pi[i] = P2 [i]; 

• C[i] = Pi [i] with probability p = J5 
1!1s 

P1 P2 

• C[i] = P2 [i] with probability 1 - p. 

IV-1-4 Mutation Operator 

Mutation works by inverting each bit in the solution with small probability and 

provides a small amount of random search[2]. The traditional genetic algorithms 

usually imply fixed mutation rate, but it is also suggested that 1/n as an optimal 

fixed mutation rate, where n is the length of the chromosome. A variable mutation 

schedule was considered because it is found that a higher mutation rate is preferred 
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when the GA has converged, and it is beneficial to utilize a variable mutation rate 

rather than a fixed one [2]. The number of bits mutated N ummut can be defined as: 

m1 
Nummut = 1 l 

1 + exp(-4mg(t - me)/m1) 
( 42) 

where t is the number of child solutions that have been generated,m1 specifies the 

final stable mutation rate, me specifies the number of child solutions generated at 

which a mutation rate of mJ/2 is reached and mg specifies the gradient at t = me. 

IV-1-5 Heuristic Feasibility Operator 

The solutions generated by the crossover and mutation operators usually can not sat­

isfy the problem constraints. So we propose a heuristic operator tailored specifically 

for the non-unique probe selection problem to maintain the feasibility of the solutions. 

The heuristic operator consists of two phases: "Construction Phase" and "Reduction 

Phase". In the construction phase, we initially start with a candidate set P80z that is 

the unfeasible solution generated by the crossover and mutation operators. We then 

add probes into P80z from P - Psol to generate the feasible solution. There maybe 

some redundant probes in Psol, but they will be deleted during the reduction phase 

to generate a near minimal solution. 

IV-1-6 Population Initialization and Replacement Strategy 

Generally, the big population size is preferred such that the solution domain associated 

with the population is adequately covered. But sometime big population size is clearly 

too large for the GA to work efficiently, so we use specific initialization strategy 
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ALGORITHM 5 Construction Phase in Feasibility Operator of GA_DRC 
Input: infeasible solution Psol 

Output: feasible solution Psol 

1: for each target t not covered by at least Cmin probes do 
2: repeat 
3: add one probe p from P - Psol into Psol, such that p hybridizes tot and has the 

highest V (p) 
4: until the coverage constraint is satisfied for t. 
5: end for 
6: for each pair of targets not separated by at least hmin probes do 
7: repeat 
8: add one probe p from P - P 80z into P 80z, such that p distinguish this pair of targets 

and has the highest possible value V (p) 
9: until the separation constraint is satisfied for this target pair 

10: end for 

ALGORITHM 6 Reduction Phase in Feasibility Operator of GA_DRC 
Input: P80z with redundant probes 
Output: P80z without redundance 

1: Update the incidence matrix H as hij = 0 for each Pj E P - Psol, 1 :S i :S m, 1 :S j :S n 
2: Re-compute new C, S and V models from H 
3: Set Pdel = { set of probes p E P 80z I v(p) < 1} and sort Pdel in increasing order 
4: repeat 
5: select p from Pdel following the order 
6: if P80z - {p} is feasible then 
7: delete p from Psol 

8: end if 
9: until every probe in Pdel has been tried 

10: Return final Psol · 
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as following in order to work efficiently on relative smaller population size. The 

initialization of each solution si, i E {1, · · · , N} in the population follow 2 steps: 

• For each j from 1 ton, generate a random number r E [O, 1), then 

• If the solution is infeasible, then call heuristic feasibility operator. 

After the initialization, all solutions in the population are feasible and ready for 

other genetic operators. 

Once a new feasible child solution is generated, we apply the incremental replace­

ment or steady-state replacement strategy that the child will replace a randomly 

chosen member which has an above average fitness value in the population. Here the 

above average fitness means less fit. 

IV-1-7 Algorithms 

Generally, the presented genetic algorithm can be summarized to the following steps 

( Algorithm 7). 

IV-2 Evolution Strategy with DDRC and DDPS 

In this section, we describe an Evolution Strategy(ES) that optimizes the solu­

tion obtained by our deterministic greedy methods. In computer science, ES is an 
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ALGORITHM 7 Genetic Algorithm with DRC Heuristic (GA_DRC) 

Input: T = {t1, ... , tm}, P ={Pi, ... ,Pn}, and H = [hij] 
Output: Near-minimal solution P80z 

1: Generate an initial population of N solutions. Set t := 0. 
2: repeat 
3: Select two solutions Pi and P2 from the population using fitness scaling and binary 

tournament selection. 
4: Produce a new solution C using the fusion crossover operator. 
5: Mutate N ummut randomly selected bits in C. 
6: Make C feasible and remove redundant probes in C by using the heuristic feasibility 

operator. 
7: if C is identical to any one of the solutions in the population then 
8: go to step 3; 
9: else 

10: set t := t + 1 and go to step 12; 
11: end if 
12: Replace a randomly selected solution with an above-average fitness in the population 

by c. 
13: until t = M non-duplicate solutions have been generated 

ALGORITHM 8 Evolution Strategy with DDRC Heuristic (DDRC_ES) 

Input: T = {t1, ... , tm}, P = {p1, ... ,Pn}, and H = [hij] 
Output: Near-minimal solution Pmin 

1: Pmin +- DDRC(P, T, H) 
2: repeat 
3: repeat 
4: Pmut +- Mutation(Pmin, P) 
5: Peon +- Construction(Pmut, P, T, H) 
6: Pred +- Reduction(Pcon, P, T, H) 

7: if IPredl < IPminl then 
8: Pmin f-- Pred 
9: end if 

10: until ngen generations are performed 
11: until nite iterations are performed 
12: Return final Pmin 
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IV. EVOLUTIONARY HEURISTICS FOR NON-UNIQUE PROBE SELECTION 

iteration:::0 Initial solution P n,,n 

Return 

I generation=() I iteration++ 

Yes J 

gener t1on -t+ 
Mutation 

Feasibility Operator 

y 

Determine Fitness 

Figure 6: Flow chart of ES 

ALGORITHM 9 Mutation in DDRC ES 
Input: Pmin, P = {P1, .. · ,Pn} 

Output: Pmut 

1: Pmut ~ Pmin 

2: Generate a random number r E [1, !PI] 
3: repeat 
4: Randomly select a probe p E P 
5: if p E Pmut then 
6: Pmut ~ Pmut '-.. {p} with probability 1 - Ddrc(P) 
7: else 
8: Pmut ~ Pmut U {p} with probability Ddrc(P) 
9: end if 

10: until r pro bes are processed 
11: Return final Pmut 
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optimization technique based on ideas of evolution. Usually evolution strategies pri­

marily use mutation and selection as search operators. The ES presented in this thesis 

is more simple than GA stated above, but it is still effective and robust to search a 

smallest set of probes, which satisfy both coverage and separation constraints. Figure 

6 describes the evolution strategy we presented in this work. 

Our ES is shown in Algorithm 8-11. Our ES starts with the initial parent solution 

obtained from DDRC, Pmin, and maintain a singleton population in each generation. 

A child solution, Pred, is obtained after applying mutation, construction and reduction 

on Pmin· Pred replaces Pmin only if it is preferable. After ngen generations, Pmin 

may not be optimized, thus we iterate ES nite times to escape local optima and to 

further optimize Pmin· In Algorithm 8, Pmin keeps the best solution so far. However, 

after mutation, the mutant P mut may be infeasible; hence, feasibility operator will be 

applied in order to generate a feasible near-minimal solution. 

Here we can definitely use the similar heuristic feasibility operator, which consists 

of construction and reduction phases, with different calculation of D (p), compared 

with that in GA_DRC. 
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ALGORITHM 10 Construction in DDRC_ES 
Input: Pmut, P, T, H 
Output: Feasible solution Peon 

1: Peon+- Pmut 
2: for each target ti not Cmin covered by Peon do 
3: ni +- # probes needed to complete Cmin-coverage of ti 
4: repeat 
5: Peon +- Peon U { q E P "- Peon with highest degree that covers ti} 
6: for all ta(l :Sa :Sm) and tab(l :Sa< b :Sm) covered by q do 
7: Update D (p) for all p E { Pta "- Cta} U { Ptab "- Stab} 
8: end for 
9: H +-HIP"- {q} 

10: p +- p" {q} 
11: until ni probes are inserted 
12: end for 
13: for each target pair tik not Smin separated by Peon do 
14: nik +- # probes needed to complete Smin separation of tik 
15: repeat 
16: Peon +- Peon U { probe q E P "- Peon with highest degree that separate tik} 
17: for all ta(l :S a :Sm) and tab(l :S a< b :S m) covered by q do 
18: Update D (p) for all p E { Pta "- Cta} U { Ptab "- Stab} 
19: end for 
20: H +-HIP"- {q} 
21: P+-P"-{q} 
22: until nik probes are inserted 
23: end for 
·24: Return Peon 

ALGORITHM 11 Reduction in DDRC ES 
Input: Peon, P, T, H 
Output: Reduced solution Pred 

1: Pred +- Peon 
2: H +- GIPred { we restore initial H and restrict to Pred} 
3: Compute D(p) = Ddre(P) for all P E Pred 
4: Sort Pdel +- {p E PredlD(p) < 1} in increasing order 
5: if Pred {p} is feasible for each p E Pdel then 
6: Pred +- Pred "- {p} 
7: end if 
8: Return Pred 
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V-1 

CHAPTER V 

COMPUTATIONAL EXPERIMENTS 

Data Description 

Two groups of data have been used in the experiments. In this work, we assume 

that the initial candidate probe set is feasible. If not, we insert a sufficient number 

of unique virtual probes into P. For each target ti or target-pair tik that a constraint 

is not satisfied, (cmin - IPtJ) or (smin - IPtik I) virtual unique probes are added. 

V-1-1 Artificial Data Set 

In order to evaluate the benefits of our methods more systematically, in our experi­

ments, we also use the artificial data sets, which was first described in [18], and have 

already been used in (30] (19] (23] [25]. 

To generate artificial data that closely models homologous sequence families, Klau 

et al. [18] use the REFORM (Random Evolutionary FORests Model) software that 

allows to define arbitrary sets of evolutionary trees. Two different forest models were 

used, and for each model, five independent test sets were generated [18]. A family of 

256 sequences of average length lOOOnt are produced for the first model. In the second 

model, all global parameters are same as in the first model, and the sequences consist 

of a single segment of average length 1000 nt, but the topology differs considerably 

from the the first model. 

Promide software were used to generate probe candidates for each of the 10 fam-
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ilies. Probe candidates are selected to be between 19 and 21 nt long and have a 

stability (Gibbs energy) of -20 to -19.5 kcal/mol at 40°C and 0.075 M [Na+] accord­

ing to the Nearest Neighbor model [18]. More details of those artificial data sets can 

be found in [18]. Table 7 describes the number of targets and probes for artificial 

data sets used in experiments. IAI denotes the virtual unique probes added to make 

each candidate probe set is feasible. 

Table 7: Artificial data set 

Set ITI IPI IAI 
al 256 2786 6 
a2 256 2821 2 
a3 256 2871 16 
a4 256 2954 2 
a5 256 2968 4 
bl 400 6292 0 
b2 400 6283 1 
b3 400 6311 5 
b4 400 6223 0 
b5 400 6285 3 

V-1-2 Real Data Set 

The real data group consists of a set of 28S rDNA sequences from different organisms 

present in the Meiobenthos, HIV-1 data set and HIV-2 data set. 

To reduce the level of redundancy of original 1230 28S rDNA sequences of Meioben­

thos, Schliep et al. [32] used the blastclust software from NCBI to cluster sequences 

in the data set, and selected arbitrary representatives of all sequences. As a result, 

the test set consists of 679 sequences. The HIV-1 and HIV-2 sequences were chosen 
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in particular because of their biological significance and because the sequences were 

very closely related and similar within each set. This made them good candidates for 

the non-unique probe selection problem. Two hundred sequences of each type were 

downloaded from NCBI (the National Center for Biotechnology Information). Candi­

date probes for the sequences were generated using Primer3 with default parameters, 

which included: length between 18 and 27 nucleotides, melting temperature between 

57 and 63 , and CC content between 20 and 80%. 40 probes for each sequence were 

generated for each data set, and duplicate probes were deleted before the target-probe 

incident matrix was constructed. Table 8 details the number of targets and probes 

for M, HIV-1 and HIV-2 data set used in experiments. 

Table 8: Real data set 

Set ITI IPI IAI 
M 679 15139 75 

HIV-1 200 4806 20 
HIV-2 200 4686 35 

V-2 Experiment Parameters and Results 

We performed experiments to show the minimization ability of heuristics presented 

in this thesis. All programs were written in C and all tests ran on two Intel Xeon TM 

CPUs 3.60GHz with 3GB of RAM under Ubuntu 6.06 i386. 

All experiments were done with parameters Cmin = 10 and smin = 5. 
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V-2-1 Experiment Results of Deterministic Greedy Heuris­

tics 

Table 9 shows, for all data sets, the minimum sizes IP min I attained by the greedy 

methods, DRC, DPS, DPSn, DDRC, DDPS, DDPSn and SFPS. Table 10 shows the 

Table 9: Computational results of deterministic greedy heuristics 

Set IPI + IAI DRC DPS DPSn DDRC DDPS DDPSn SFPS 
al 2792 549 547 547 523 519 511 530 
a2 2823 552 537 526 510 502 501 516 
a3 2887 590 577 573 543 544 542 557 
a4 2956 579 578 580 552 548 547 557 
a5 2972 583 571 564 551 543 537 558 
bl 6292 974 921 924 884 880 875 883 
b2 6284 1013 942 970 892 887 880 890 
b3 6316 953 915 923 879 881 868 896 
b4 6223 1019 956 973 919 905 905 920 
b5 6288 1019 969 987 929 918 921 933 
M 15214 2084 2068 2061 1996 2016 1986 2036 

HIV-1 4826 487 472 476 459 461 460 468 
HIV-2 4721 506 501 501 487 488 487 492 

running time of each greedy heuristic for all data sets. 

V-2-2 Experiment Parameters and Results of GA_DRC 

In the approach GA_DRC (Section IV-1), the population size N was set to 100, mf 

was set to 10, me was set to 200 and m 9 was set to 2. 0 for all the datasets ( these 

values were obtained by trial-and-error). We ran GA_DRC ten times on each data set 

with different random seed. Each run terminated when M = 10, OOO non-duplicate 

solutions had been generated. Figure 7 shows the comparison on dataset bl among 
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Table 10: Running time of deterministic greedy heuristics 

Set DRC (s) DPS (s) DPSn (s) DDRC (s) DDPS (s) DDPSn (s) SFPS (s) 
al 2 4 4 7 6 539 347 
a2 3 4 4 7 7 556 341 
a3 3 5 4 7 7 684 372 
a4 3 4 4 7 7 782 401 
a5 3 4 4 7 7 688 382 
bl 16 22 18 37 36 4039 4120 
b2 15 21 18 36 37 4028 4231 
b3 16 21 18 37 36 5074 4006 
b4 14 20 18 36 35 3997 4040 
b5 14 21 19 37 36 4176 4339 
M 78 140 130 277 315 46318 37546 

HIV-1 2 4 4 7 8 635 338 
HIV-2 3 4 3 6 6 620 353 

Table 11: Computational results of genetic algorithm with DRC 

Set IPI + IAI Min Ave Max Time (h) 
al 2792 502 503.9 ± 1.3 506 2.07 ± 0.05 
a2 2823 490 491.4 ± 0.7 492 2.08 ± 0.03 
a3 2887 534 534.8 ± 1.0 537 2.21 ± 0.06 
a4 2956 537 538.2 ± 0.6 539 2.01 ± 0.04 
a5 2972 528 528.2 ± 0.4 529 2.15 ± 0.02 
bl 6292 839 842.2 ± 2.0 845 7.41 ± 0.13 
b2 6284 852 854.8 ± 2.0 859 7.43 ± 0.12 
b3 6316 835 838.7 ± 2.5 842 7.44 ± 0.18 
b4 6223 879 882.5 ± 3.0 889 7.39 ± 0.1 
b5 6288 890 892.8 ± 2.4 897 7.39 ± 0.08 
M 15214 1962 1964.3 ± 2.5 1971 62.29 ± 2.75 

HIV-1 4826 450 450.7 ± 0.5 451 1.38 ± 0.02 
HIV-2 4721 476 477.7 ± 0.8 479 1.32 ± 0.01 
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the genetic algorithm (GA_DRC) presented in Section IV-1 (denoted as GAl) and 

GA2 that use totally random population initialization instead of the initialization 

strategy described in Section IV-1-6. In this figure, we found that before 4170 children 

generated, GA2 performed better than GAl; while with more children generated, GAl 

kept the optimal solutions. 

l 1001 2001 3001 4001 5001 6001 7001 8001 9001 

Figure 7: Comparison of GAs 

· V-2-3 Experiment Parameters and Results of ES 

For evolution strategy, the values for parameters (nite, n9en) were (100, 100) for 

DDRC_ES and (1, 100) for DDPS_ES respectively. DDRC_ES terminated in two 

weeks given all the thirteen data sets altogether. The parameters values for DDPS_ES 

were determined such that it terminates in two weeks. Table 12 shows, for all data 

sets, the minimum sizes IPminl attained by the greedy methods, DDRC and DDPS, 

and the evolution strategy, DDRC_ES and DDPS_ES. It is easy to see that DDRC_ES 

and DDPS_ES substantially outperformed DDRC and DDPS in all instances. 
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Table 12: Computational results of evolution strategy 

Set IPl+IAI DDRC DDPS DDRC_ES DDPS_ES 
al 2792 523 519 506 505 
a2 2823 510 502 494 490 
a3 2887 543 544 535 536 
a4 2956 552 548 539 540 
a5 2972 551 543 531 529 
bl 6292 884 880 857 866 
b2 6284 892 887 865 873 
b3 6316 879 881 854 864 
b4 6223 919 905 888 900 
b5 6288 929 918 905 911 
M 15214 1996 2016 1972 1996 

HIV-1 4826 459 461 452 457 
HIV-2 4721 487 488 478 479 

V-3 Analysis and Discussion 

Table 13 shows, for all data sets, the minimum sizes IPminl and the percentages in 

relation to the number of probe candidates, attained by all approaches proposed in 

this thesis, the greedy heuristics of [32] (GrdS) and [23] (GrdM), the Integer Linear 

·Programming (ILP) [18][19], and the optimal cutting-plane algorithm (OCP) [25]. 

Given two heuristics X and Y, we say that X < Y in terms of their overall perfor-

mances on the data sets, if X produces larger solutions than Yin the majority of the 

data sets. From Table 13, we can see the following order: GrdS < GrdM < D RC < 

DPSn < DPS < SFPS < DDRC < ILP < DDPS < DDPSn < DDPS_ES < 

DDRC_ES < OCP < GA_DRC. 

The GrdM [23] heuristic sorts the probes in decreasing order of the number of 

targets they hybridize, then selects probes in this order to satisfy the constraints, 
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Figure 9: DPS's D(p) distribution in (a) the a5 data set and (b) the b5 data set 

and finally tries to remove redundant probes randomly. This probe sorting process is 

similar to selecting dominant probes, though it is not encoded in a selection function. 

GrdM uses no other information or any selection function, thus it cannot identify 

the quality of probes that hybridize to the same number of targets. Also, selecting 

only dominant probes does not guarantee that dominated targets are covered earlier 

in the selection process, and therefore GrdM yields larger solutions than ours. Our 

heuristics encode useful information about each probe in a selection function, and are 

able to identify good probes. In Figure 8- 10, we show the distribution of the initial 
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D(p) values for the data sets a5 and b5 , respectively for the DRC, DPS and DPSn 

heuristics. In DRC, 37% of the probes in the dataset a5 have degree D(p) < 0.25 

and 65% of probes in the dataset b5 have degree D(p) < 0.25. Also there are more 

high-degree probes in dataset a5 than in dataset b5. In dataset b5, there are not only 

too many probes with low degrees, but also many low-degree probes with almost same 

values D(p). DRC does not encode enough information to select between them, so 

for such datasets , GrdM performs better than DRC by selecting the dominant probes 

among these similar probes. 

Compared with the OCP heuristic, DDRC, DDPS and dDPSn heuristics produced 

results that are within at most 6.5%, 6.5%, and 5.4 % of the results of OCP. This is 

quite good given that these are only simple greedy methods plus being faster than 

OCP. In particular, the mean improvements of DDPS and DDPSn relative to OCP 

are +3.2 and +2.6 respectively, which are very low and hence very good. 

Our evolution strategy approaches also produced near-optimal results that are 

very close to those of OCP, and meanwhile, genetic algorithm with DRC obtained 
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V. COMPUTATIONAL EXPERIMENTS 

the best known optimal solutions for 6 over 13 instances. 
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Vl-1 

CHAPTER VI 

CONCLUSION 

Summary of Contributions 

In this thesis, the sequential forward search algorithm, genetic algorithm and evolu­

tion strategy are applied for the first time to solve the minimization problem arisen 

from the non-unique probe selection, respectively. Currently, we just consider the 

case for single target separations only, not aggregated target set separations. 

Compared with the state-of-the-art heuristics, DDRC, DDPS and DDPSn heuris­

tics produced results close to those of OCP, using the same datasets. This is quite 

good given that these are only simple greedy methods beside being faster than OCP. 

This suggests that more powerful heuristics that make use of selection functions would 

give better overall performance than OCP. 

Meanwhile, the results showed that the first evolution strategy approaches (DDRC_ES 

and DDPS_ES) for the non-unique probe selection problem, presented in this work, 

are able to obtain results that are very close to those of OCP, and the genetic algo­

rithm with DRC obtained a better overall performance than OCP. 

The selection functions presented in this thesis, can be modified to be used in 

well-known problems in bioinformatics and computational biology that are expressed 

as minimal set covering problems, like protein-protein interaction prediction, oligonu­

cleotide primer design and siRNA selection for RNA interference experiments. 
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VI. CONCLUSION 

Vl-2 Future Work 

SFPS outperformed some published greedy algorithms and gave results close to the 

optimal search method of ILP, but SFPS also suffers from the nesting effect of SFS; 

that is, a probe that was selected cannot be discarded later to correct a wrong decision, 

and hence the solution tends to be sub-optimal. The main cause of the nesting effect 

is the use of a monotonic criterion such as our F Ddv.s criterion. Other sequential 

methods, such as the floating search methods [24], will be good choice to reduce the 

nesting effect and cope with non-monotonic criterion functions. 

Experiments showed that evolutionary methods proposed are able to obtain near 

minimal solutions comparable to the best known methods for this problem. But the 

running time of those evolutionary methods shows them not very practical. However, 

since the probe set for microarray is only created once, the time spent to compute 

the minimal probe set is far less crucial than the size and quality of the probe set. 

Further improvements can be applied to speed them up by using parallel computing 

techniques. 

As we currently focus on the computation of the of the minimum set of candidate 

probes with the minimum coverage and separation constraints, given a target set T, 

probe set P, and the target-probe incidence matrix H, based on the ILP formulation 

(Equation 1) without group separation constraints, and provide practical algorithms 

rather than theoretical analysis, the group separation constraints can be considered 

as extension of those algorithms in future. 
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