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Abstract 

The objective of this thesis was to explore the use of 

ultrasonic frequencies as a mechanism for refining. Through 

cooperation with the Intex Corporation, an ultrasonic clean­

ing apparatus, that was easily adaptable to.use as a refiner, 

was borrowed. The experimental procedure indicated that ultra­

sonic refining coupled with mechanical ·refining produced a 

sheet with improved tear, tensil, fold and opacity characteristics. 

The burst, however, was slightly lower. An interesting phenom­

enon that occurred was the plateauing effect that is observed, 

most distinctly on the graphs of burst and tensil vs. freeness. 

this plateau seems to be a phenomenon where the maximum value 

of a test is held relatively constant over a wide freeness 

range. The peaking, and quick fall off that occurs with mech­

anical refining is not present with ultrasonic refining. One 

problem that exists is that the ultrasonic power requirements 

appear to be relatively high. 
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Introduction 

Ultrasonic waves are elastic waves that require a medium 

for nropagation. Mechanical waves ranging between sixteen 

and twenty thousand hertz are audible to the human ear. Those 

frequencies that are above twenty thousand hertz are inaudible 

and are termed ultrasonic frequencies. The features of ultra­

sound that make them applicable to industrial applications are 

classified as first order or second order.
1 

The first order 

effects are particle displacement, velocity and acceleration. 

The secondary effects are acoustic streaming, radiation pressure, 

interfacial instability and cavitation. When considering a 

fiber suspension, it is the secondary effects that have the 

greatest influence on the properties of the suspension. 

When ultrasonic waves pass through a medium, a flow of 

matter occurs which is termed acoustic streaming. The liquid 

medium has inherent properties which inhibit the ability of the 

medium to modify itself to the advancing motion of the ultra­

sonic waves. Specifically, these properties are viscosity and 

the ability to absorb acoustic energy. 

At the nhase boundaries an interfacial instability is 

created, due to the back and forth motion of the particles in 

sus�ension. The actual displacement of the particles in suspension 

results in a secondary nressure termed radiation pressure. 

One fact that nroduces a nroblem in this area of research, is 

the tendency of a heterogeneous suspension, such as a pulp 

slurry, to separate into distinct groups in the presence of 

high frequencie�.
1 

Particles in suspension will oscillate 
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with frequencies dependent on the mass of the particle. lighter 

particles will be able to follow the acoustic streaming earlier 

and to a higher frequency than the heavier particles. Particles 

of similar mass will coalesce and begin to travel as a group. 

This results in a distinct separation of the particles by mass. 

By maintaining a turbulent flow or through agitation this occur­

ence can be avoided. 

The property of cavitation is the most important to the 

anplication of ultrasound to refining. Cavitation is char­

acterized by the formation of small bubbles flowing through 

the medium. These bubbles (often referred to as cavities) 

are not empty, and are described by the nature of their contents, 

vaporous or gaseous. Gaseous cavities occur mainly at the low 

frequencies and moderate intensities in the early stages of 

cavitation. �he contents of these cavities consist of only 

the types of gasses that are dissolved in the medium. Vanorous 

cavities occur in the advanced stages of cavitation, and consist 

of the vaporized medium. These cavities quickly collapse upon 

formation, and the contents are compressed to very high nressures. 

�he collapsing of these cavities nroduce shock waves in the 

medium. fhe shock waves not only �roduce more of these cavities 

but also contain a high level of mechanical energy. The 

amnlitude of the shock waves denend on the contents of the 

cavities. Vanorous cavitation produces waves of greater amplitude 

that the corresponding gaseous cavities. Jue to the greater 

amplitude a higher level of mechanical energy to the system. 

( 2 ) 



The development of cavitation denends greatly on the 

intensity of the ultrasonic energy ap9lied to the system. As 

shown in fig. 1 there exists a threshold intensity (usually 

about .2-.4 watts/cm2 ) 1 which is relatively constant at the

lower frequencies, but markedly increases at about t�n�thousand 

hertz. This threshold must be exceeded before the phenomenon 

of cavitation can occur. When a medium contains dissolved gasses 

the threshold energy required is lower that a deaerated sample. 

The formation of gaseous cavities iG more easily accomplished 

than the vaporous cavities and therefore �he aerated sa�ple 

requires a lower threshold for formation. 

The �echanical energy released by the cavities create 

shear waves in the medium. Among other things the shear forces 

initiates a fiber to fiber rubbing action which contributes 

to the mechanism'of ultras��ic refining. The degree of this 

refining is governed by the amplitude of the shock waves. 

Eistor..L.Q_f Ultrasonics 

In 18JJ Galton laid the groundwork for future research 

and develonment of ultrasound when he produced oscillation 

frequencies up to twenty five thousanQ hertz by exciting a 

pipe to hish frequencies through the use of an air flow. 2

In lG05 Koenig found that frequencies in the supersonic region, 

up to ninety thousand hertz, could be produced by means of a 

small tuning fork tyne of device. 3 In 1919 Hartman further 

imnroved the attainable frequency level with a supersonic pipe 

operated with hydrogen that produced frequencies up to five 
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hundred thousand hertz. Cne draw back of these devices used 

to produce ultrasound, was that the power delivered ty tlese 

units was very low.2 In work between 1934 through 1948 Takeuchi 

and Sato used a rotary siren which chopped compressed air currents 

at high frequencies and resulted in a supplied power of nearly 

thirty five killowatts.2 All of these devices are classified

as mechanical as they rely on the nroduction of the ultrasound 

through non-electric methods.4 The majority of investigative

work with the mechanical generators was in the navigation and 

military fields, in the area of di�tance measurement.4 In

1914 Langevin develoued the piezo-electric crystal oscillator.2

t 

r·:uch of his work was drawn from work done in the 1880 s by the 

Curie brothers, who reported on their discovery of the piezo­

electric effect. langevin' s oscillator along with a piezo­

electric crystal was able to create frequencies of un to five 

hundred mega hertz, when excited with a high frequency a.c. 

current.2 This means of electrical high frequency generation

has served as the primary means for research in the paper industry. 

v!ork in the Paper Indust.n 

The first work in the paper industry involving the effects 

of sound waves on a nulp slurry was by Buckingham in 1936.1 

He utilized a high intensity sound to produce a beating effect 

on the fiber susnension. �hough he used a relatively low 

frequency a definite effect was seen on the characteristics 

of the fiber suspension. This experiment laid down the frame­

work for future investigation. Frey-Wissling in 1947, Simpson 
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and Mason in 1950 and Algar and Giertz in 1951 expanded on 

the work of Buckingham by maintaining a high intensity signal 

at the ultrasonic frequency. This resulted in significant 

effects produced on individual fibers (Algar & Giertz) as well 

as on the fiber suspension (Simpson & Mason and Frey-Wissling.) 

Kore in de?th work was then carried out by Iwasaki in 2962, 

labosky & Martin in 1969, and Laine & Garing in 1977 and 1979. 

Effect of Ultrasound on Cellulose Fibers 

As mentioned earlier the shock waves produced through cav­

itation create a shearing action in the medium. The shear-

ing action in turn has a beating effect on the fibers, The 

frequencies introcuced to the system also result in the 

resonance of the individual fibers or building units of the 

fibers. Since the frequencies used correspond to wave lengths 

much greater than needed to bring a whole fiber into resonance, 

it can be concluded that the cavitation effect is the major 

factor influencing the beating action. Thepulsating shock 

waves produced through cavitation, work on the fiber struc­

tures weak points.5 The ultrasonic beating breaks the lateral 
� � secondary valence bonds between the longitudinal structural 

units of the fiber, such as between fibrils and micellar 

strings. 6 However the work also occurs along the faults of a 

fiber that are the result of a non-uniform attack of the 

pulping chemicals. 6 The photographs show that fibers with 

a high hemi-cellulose content swell more when treated ultra 

sonically than mechanically. 6 This is because the hemi-cell 
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ulose fraction is relatively amorphous when compared to the 

cellulose fraction, and therefore will swell greatly. How­

ever the hemi fraction is situated in the fiber in such a 

way that the swelling is restricted by the fiber structure 

itself.7 The ultrasonic treatment of pulp weakens the fiber 

structure by breaking the lateral forces holding the fiber 

together. This allows the hemi s to swell freely and, dep-

ending on the amount of swelling, leads to the dispersion of 

the structure into fibrils and finally to micellar strings.5 

The progression of the action on cellulose fibers can be put 

into four categories; 1) cell wall deformation, 2) removal of 

S1, 3) swelling, and 4) fibrillation.6

In the cell wall deformation stage it can be seen that 

(see �hotographs) some dislocations exist in untreated fibers. 

As the treatment progresses the dislocations become more dis­

tinct and new dislocations occur at remarkable regular inter­

vals. When observed under polarized light, at 800x, the 

deformations become quite obvious. The deformations are 

classified into three catagories, types I, II, III (see diagram). 

Types I and II are mainly produced through the beating process. 

Type III appeared frequently before beating, but was apparently 

not produced through the beating process. 

In the earlJ stages of beating the restricting outer 

layers of the fiber, primary and S1, are disrupted and in 

part re�oved. �he mechanical energy rel�Psed to the system 

through cavitation, work at the disruptions in the S1 to 

begin the peeling of the layer. Also this action forms dis-
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locations in the s2• The dislocations are primarily formed

by rearrangement of the microfibrils on the S2,6 These dis­

locations allow for water penetration into the S2, however 

the S1 is still present as a barrier to the swelling of the 

s 2, and the dislocation swelling is limited. The swelling 

that does occur is very important in making the fiber more 

flexible, and also in the rupture of the S1 wall. 

The second stage of the process is termed s
1 

wall removal. 

The combined effects of the cavitation energy and the pressure 

due to swelling of the S2 lay�r act on the fiber in such a 

way that the s1 layer begins to peel off, Because of the 

crossed fibrillar structure of the s
1 

layer, the layer 

peels off in flakes rather than fibrillating. Since only 

very limited swelling is present prior to the S1 removal,

the major effect of the first stage is to increase the flex­

ibility of the fiber. Once the removal of the s1 has occurred,

the s2 layer becomes saturated with water to cause swelling 

to the greatest possible degree. The deformations of the s 2

now serve as weak points for the structure and the internal 

swelling results in an external fibrillation of the structure. 

Effect of Slurry Parameters 

Other than the type of pulp used, which was discussed 

somewhat earlier, the major factors influencing the behavior 

of the slurry to ultrasonic irradiation are consistency, 

temperature, and to some extent the nature of the fiber.8

By the nature of the ultrasonic refining, a fiber that is 

as inelastic as possible is desired. Just as a branch will 

break more easily than a blade of grass when a force is app-

(?) 



lied at both ends, so will a stiff fiber as opposed to a 

flexible fiber when a wave propagates through the structure. 

The stiffer fiber will then be more likely to s�stain the 

dislocations of the walls. In this respect a stiffer, shorter 

hardwood fiber would be desired, Another factor that is very 

important to the fiber stiffness is the temperature of the 

fiber suspension. At lower temperatures the system will be 

more resistant to the wave motion and will more easily form 

the dislocations than at the higher temperatures. This is why 

ultrasonic refining has been reccomended to take place at 

approximately 80 degrees F,9 

Consistency is a complicated variable when considered in 

ultraso�ic refining. Theoretically, since the ultrasound 

propagates through the refining chamber as waves filling the 

entire chamber, a sample of stock �hould be treated equally 

at any point in the chamber.2 However, some significant inter­

actions are taking place within the slurry. At high consistencies 

a flocculation of the fibers occur. This results in fibers 

that move together as agglomerates, which in turn cuts down 

on the relative motion of the fibers to each other, which decreases 

the effect of the fiber rubbing as a contribution to refining. 

Also these agglomerates hinder the shock waves from creating 

the dislocations as completely as possible. The major dis� 

advantage of high consistency refining is the drop in the intensit�' 

of the ultrasonic energy due to the fibers absorbing and scattering 

of the ultrasonic energy.8 The onset of cavitation is determined

by the amount of dissolved gasses in a substance as well as 

the actural intensity of the applied ultrasound. Due to the 
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decrease in intensity at higher consistencies, it is obvious 

that the refining effects become less at the higher consistencies. 

Other factors such as filler content have a relatively small 

effect on the ultrasonic refining of pulp.2

Results of Ultrasonic Refining on the Sheet 

The major difference in an ultrasonically and mechanically 

refined sheet is the fact that the Ultrasonically refined 

sheet contains a very low fines content.10 Because of the

fibrillation, as a result of fiber to fiber action and inter 

fiber swelling, the fiber is almost completely fibrillated 

with very little fines production. The small amount of fines 

that are present are a result of the rubbing off of small 

fibrils on the s2 layer.5 This can be shown through the use

of a fiber classification. Labosky and Martin used a Bauer­

KcNett classifier to compare the two types of refining (see 

table I) at 700,�95,440, and 250 C.S.F. The table shows that 

at each freeness level (excent 700, where a very small amount 
- � 

of fines is present) the ultrasonic refining produced significantly 

lower fines content, an average of 45% lower.10 The greater

fines formation in the mechanical refining is due mainly to the 

cutting action on the fiber by the tackle used in mechanical 

refining.11 Ultrasonics tend to work gently from the outside

inward. The primary and S1 layers that remain after pulping 

are peeled away by the ultrasound after which fibrillation 

occurs. The remaining primary and S1 layers are removed 

mechanically by the abrasive action of the beaters. In addition 

the microfibrils existing on the surface of the S2 layer tend

to be torn off which also contributes to a greater fines production. 
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The fiber length distribution difference between the two 

pulp. provides a justification for comparison of the two pulps. 

Bulk- The ultrasonically refined pulp has been found to 

have a higher bulk than the mechanically refined pulp. This 

is because the fines present from the mechanical method serve 

as small particles to fill the small voids in the sheet structure. 

The ultrasonic refining does not have the same fines production, 

therefore a smaller amount of fines are present to serve as the 

filling for the voids, which results in a higher bulk (lower 

density.) Another factor is the stiffness of the ultrasonically 

refined sheet. Since the action starts from the outside and 

gradually progresses inward, at any given C.S.F. value the mean 

wall thickness for the ultrasound sheet is greater than for the 

mechanical refining. This is because the ultrasonic beating 

has not progressed to the inner cell wall layers as greatly 

as the mechanical refining has at any given C.S.F. level. 

The flexibility is dependent on the thickness of the cell wall 

present. The lower flexibility of the ultrasound sheet results 

in fibers that do not conform as well to the hills and valleys, 

therefore more of the small voids are present. 

Tear- Both types of beating result in a sheet that follows 

some form of the theoretical graph of tear versus beating 

time. The two major differences are that the ultrasonic sheet 

reached the maximum point later in the beating process (about 

600 C.S.F.) than the mechanical refining which peaked about 

700 C.S.F. Secondly the slope of the curve after the maximum 
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has been reached is much less steep for the ultrasound sheet 

(see graph for tear versus freeness), which results in tear 

values that are higher at nearly all freenesses for the ultra­

sonic sheet. Theoretically the tear varies directly with fiber 

length and indirectly with fiber to fiber bonding, only after 

a mimimum level of bonding has occurred. Since it has been 

shown that the fiber length reduction is negligible, there­

fore the decreasing values for the tear are strictly due to 

the development of fiber to fiber bonding. 

Tensil & Burst- Much discrepancy is involved in the discussion 

of the effect of ultrasound on sheet tensil and burst. Work 

previously done has indicated a nearly even split on the sheet 

properties. As an example, Carter in his thesis reported a 

28-39% increase in the tensil. Martin and Labosky reported

a substantially lower tensil when using the same methods. 

Theoretically it would be expected that the tensil and burst 

would be lower ultrasonically. The fines generation in mech­

anical refining adds a substantially greater surface area avail­

able for bonding. Although the fibrillation occurring in the 

ultrasonic refining does increase the available surface area, 

it does not increase the area to the same extent that the fines 

do, and the fiber to fiber bonding is promoted more slowly. 

Economics 

The major factor regarding the economics of a system 

such as this is the power consumption. Previous work has 

indicated that the power requirements are higher for the ultra­

sonic refining. However, most of this work as done 15-20 

years ago, since then many advancements have been made in 
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efficiencies of these systems. The most recent work indicated 

that highly efficient mechanical systems (upwards of 75% eff­

icient) and improved electrical systems make the use of ultra­

sound more economically feasible. Other factors that must also 

be considered are the effect of reduced load on the recirculating 

system. The longer fiber, due to the lower level of fines, in 

the ultrasonic system results in better retention, which in 

turn relates to a lower fiber requirement. 

Experimental Design 

All previous work done in this area has utilized exclus­

ively ultrasonic refining. The objective of this thesis is to 

combine the use of ultrasonic and mechanical refining to achieve 

a sheet of superior quality. By incorporating an ultrasonic 

refining method into the conventional mechanical refining, the 

resulting pulp should consist of well fibrillated fiber, along 

with a level of fines that should help to develop the burst and 

tensil properties. 

Stock- Ideally, a pulp consisting of 100 % softwood in the un­

bleached form should be used, to eliminate the effects of deg­

radation due to bleaching. However, because I could not obtain 

an unbleached sample, bleached softwood was substituted. 

Equipment- The conventional mechanical refining was done using 

the Claflin refiner at a 40 Kw. setting. 

An ultrasonic device used as a cleaning system was borr­

owed from the Intex Corporation. This unit is easily adapt­

able to use as a refining apparatus. It consists of a fre­

quency generator, a power supply, a signal filter and a trans­

ducer (diagram #6.) The unit delivers 1000 watts of power at 

a frequency of approximately 20000 hertz. The transducer con-
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verts the electrical input signal from the power supply, to a 

mechanical sound wave through the use of a magneto restrictive 

core. This core consists of ferro-magnetic material which 

changes dimension in a varying magnetic field. The purpose 

of the filtering unit is simply to prevent the signal from 

transferring back into the public utility power lines and 

causing radio interference problems. The unit is well suited 

to serve as a flow through refining unit. 

Procedure- The first step in the process was to determine the 

optimum consistencY. for the ultrasonic refining. This was done 

through batch trials. A 400 ml. sample of pulp was placed in 

the chamber, and exposed to the ultrasound for varying time 

intervals to develope a "beater curve". This was done for pulps 

at 1,1.5,2,3.4, and·1.4 percent consistencies. Once the opt­

imum consistency was determined the next step was to carry out 

the combined refining of the pulp. 

Due to the low power supplied by the ultrasonic equipment, 

the pulp would have to be exposed to the ultrasound for a rel­

atively long period of time. To do this two alternatives were 

available, either the pulp could be passed many times through 

the refining chamber, at short exposure times. The second op­

tion would be to retain the pulp in the chamber for longer per­

iods of time, thereby requiring fewer passes. The term passes 

refers to the number of times the pulp that is being passed 

through the chamber, though this does not mean that each fiber 

is necessarily being passed through that number of times since 

the pulp is recirculated back to a mixing chest and is kept 

constantly agitated. I reasoned that the longer exposure time 

would actually transfer more of the energy to the fiber system, 
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wheras many passes at short exposures would result in a large 

amount of the energy being di sipated in the energy transfer 

through the water, therefore a method using long exposure times 

was developed. 

To obtain long exposure times in the refining chamber, a 

very low flow rate must be maintained. To do this the ultra­

sonic device was mounted, with a gate valve to control the flow 

rate, on an electromagnetic flowmeter. The flowmeter served, 

basically as a bypass element, to relieve the back pressure on 

the valve, allowing the valve to control low flow ra�es pre­

cisely. The lowest flow rates that could be maintained was 

3-4 gal per minute. This flow results in a pulp exposure time

of approximately 8.7 seconds. 

Stock samples were then passed through the system with 

varying degrees of initial mechanical refining. The procedure 

consisted of four trials, the first was soley ultrasonic refining, 

the second was mechanical refining to 458 freeness followed by 

three passes of the pulp volume through the ultrasonic refiner. 

The third sample consisted of mechanical refining to 512 C.S.F. 

followed by the volume of pulp passed through ultrasonic sys-

tem three times. The fourth sample was used as a control and 

consisted of mechanical refining to 628,484,444,399,and 338 C.S.F. 

Testing- Handsheets were made from each of the freeness samples 

and tested for tear, burst, tensil, opacity, and fold. In add­

ition, a fiber classification using the Bauer-McNett apparatus 

was done on each of the freeness levels. This was done to det­

ermine the degree of fiber shortening that has occurred. A com­

parison of the resulting strength properties was used as a meas­

ure of the effectivness of the ultrasonic refining method when 
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compared to that of mechanical refining. 

Discussion of Results 

Consistency- As stated earlier, the first step in this exper­

iment was to determine the optimum consistency for refining 

pulp ultrasonically. As seen in graph #1, the consistency prod­

ucing the greatest freeness drop with time was at about 1.4% 

consistency. Samples at 1,2,3.4% all produced significantly 

lower curves. To verify this result a sample at 1.5% was tested. 

The resulting curve was much higher than the other three, con­

firming that the optimum consistency for ultrasonic refining 

is apparently 1.5 %. 

Fiber Classification- The results of the fiber classification 

studies presented some differences from the literature data. 

Whereas the literature indicated that ultrasound produced lower 

fines content than mechanical over a freeness range from 700 

to 250 C.S.F., the experimental data indicated that the combined 

mechanical and ultrasonic refining resulted in a lower fines 

content until a freeness value of about 360 C.S.F. The graph 

of fines vs. freeness is interesting to analyze (see graph #2.) 

While the mechanical refining of pulp resulted in a relatively 

smooth curve, with increasing fines content at lower freenesses, 

the combined refining resulted in very low fines production 

from 512 to 370 C.S.F. At this point t�e production of fines 

increased dramatically. This can be explained by examining the 

mechanism of ultrasonic refining. As explained earlier, the 

ultrasound causes a great degree of fibrillation on the fiber, 

the longer the exposure to the ultrasound, the greater the fib­

rillation becomes, to a point where the lateral secondary valence 

bonds between longitudinal elements of the fiber disrupt and 
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fibrillation occurs. Eventually the swelling becomes so great 

that the fibers dispers into smaller fibers. This action pro­

ceeds, until it is happening on such small fibers that the 

dissolution causes fines to be formed. At about 370 C.S.F. 

there is a great amount of very small fiber present, and any 

further work on the fiber results in its' dissolution into 

particles known as fines. 

Tear- As stated in the literature the ultrasonic refining of 

pulp results in higher tear values for a given sheet of paper. 

Graph #3 is a-plot of tear factor (tear/grammage) vs. freeness. 

It is clear that the ultrasound method of refining has resulted 

in significantly higher tear values at a given freeness. Since 

the tear test is affected directly by fiber length, and in­

directly by fiber to fiber bonding (aft�r a small amount of 

initial bonding), the longer fiber present, at a given free­

ness level, results in higher tear value 

Tensil- The graph of tensil vs. freeness (graph #4) illustrates 

a phenomenon that will be observed throughout·much of the 

testing. This phenomenon will be reffered to as the plateauing 

effect. 

Theoretically, the tensil test is dependant on fiber to 

fiber bonding, and to a lesser degree the individua� fiber 

strength. Therefore, with increased bonding the tensil value 

should increase, to a point where the fines production is such 

that the individual fiber strength deteriorates to such a degree 

that the tensil test decreases, The curve for mechanical ref­

ining follows this theory, as there appears to be a distinct 

peak, followed by a rapid strength drop ff. The combined 
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mechanical and ultrasonic refining indicates a very broad 

plateau at a strength value approximately equal to the maxim-

um value of the strength. From earlier discussion, the fines 

level produced is very small, therefore the increase and holding 

of the value over a wide plateau must be attributed to the 

bondin area available through fibrillation. Evidently the 

increased fibrillation at lower freenesses must be offsetting 

any decrease in fiber strength that might be occurring. 

Burst- The graph of burst vs. freeness (graph #5) again ill­

ustrates this plateauing effect produced by ultrasonic refining. 

The bursting strength of a sheet is dependant, not only on 

fiber bonding, but also on the extensibility of the fibers. 

The combined refining results in values that are slightly higher 

while reaching the plateau. While this plateau maintains a 

relatively constant value, the mechanical refining exceeded 

the combined in the areas of the peak that occurs with mech­

anical refining. The reason that mechanical refining values 

exceed the combined is that the dependance of the burst test 

on the extensibilty allows the more extensible mechanically 

refined fibers (as literature indicated) to hold or withstand the 

bursting pressure to a greater degree, therefore higher burst 

values were observed for the mechanically refined pulp in the 

peak area. Outside the peak, the combined refining was sig­

nificantly higher. This is mainly due to the plateauing effect 

that is occurring. 

Fold- The graph of fold vs. freeness (graph #6) resulted in 

curves that were, again, higher for the combined refining than 

with mechanical refining. Once again the plateauing effect 

seems to be present, though it appears to be plateauing at a 

later point then with the tensil and burst. This could poss-
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ibly be due to the interrelationship of tensil and fold. 

The fold test is heavily dependant on the fiber length, 

and to a lesser degree the fiber bonding. Because of the greater 

amount of long fiber present in the combined refining of pulp, 

the likelyhood of fibers spanning the f-0lding zone is increased, 

and therefore the fold test is more likely to be higher. At 

a given freeness the fibers of the ultrasonic method are gen­

erally longer than the mechanically refined pulp, and therefore 

the individual fiber strength is greater, and therefore the 

folding strength is greater. One caution, the fold test is 

greatly dependant on many factors including the tensil. 

These interrelationships, and the nature of the fold test res­

ult in a test that is greatly variable, and the data should 

be judged accordingly. 

Opacity- A graph opacity vs. freeness (graph #7) indicates 

that the combined refining produced a sheet that is slightly 

more opaque than a refined mechanically pulp. This again, is 

due to the fines production of the two refining methods. In­

itially, the well fibrillated fibers of an ultrasonic refining 

method will fill in more of the voids in the fiber structure, 

refracting the light, and allowing less to pass through. At 

a corresponding freeness the mechanically refined pulp is less 

fibrillated, and more light passes through. As refining in-

. creases, the large fines generation in the mechanical method 

also fill in the voids, however the eventual fiber bonding 

that takes place results in less refration and more light passing. 

The freeness drop with ultrasonic refining correspond to a greater 

fibrillation of the fibers, which refrect the light to a greater 

degree when bonding begins to occur, resulting in·a higher op-

ackty. This creates a plateauing effect, which has the effect 
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of maintaining the opacity of the ultrasonic pulp at a higher 

level, up to the point of about J80 C.S.F. At this point the 

fines production is increased greatly and the fines increase 

the bonding. This increased bonding then decreases the opacity. 

Though the curves are similar in shape, the major difference 

is due to the plateauing effect, which creates a flatter curve 

in the middle freeness range. 

Economic Considerations 

As the literature indicated, I found that the use of ultra­

sonic refining resulted in a relatively high power consumption. 

It appears that the ultrasonic method requires approximately 

two times the amount of power reqired in mechanical refining 

at a 100 ml. freeness drop. However there are three factors 

which must be considered. First, the equipment was not designed 

for this type of work, low power supply and low frequencies 

coupled with an inefficient design for refining, result in a 

greater power consumption. Secondly, referring to table #2, 

it can be seen that the dissolved· gasses in the pulp produce 

cavitation of a lower intensity, namely gaseous cavitation. 

If the medium could be degassed the formation of vaporous 

cavities would create a more violent release of energy to the 

system, and therefore a greater refining effect. Third, the 

tradeoffs that exist must be taken into consideration. For 

example, the improved sheet quality would have some increased 

value. Also, the ability to run a given sheet quality at a 

higher freeness would result in the ability to run the mach-

ine much faster, and also a fiber savings would be realized 

through increased retention due to longer fiber at that free-
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ness, and therefore a lower load on the recirculation system. 

Concusion 

The use of ultrasonic frequencies combined with mechanical 

refining has been shown to have many desirable effects on a 

resulting sheet of paper. The most attreactive of these seems 

to be the ability of the ultrasound to create a low, almost 

constant fines level over a wide freeness range. In turn, the 

tensil, fold, tear, and opacity are not only improved over this 

freeness range, but also a plateauing effect seems to occur 

regularly. This plateauing effect refers to the extended 
.' 

length of the maximum values of the curve over a wide free­

ness range. There are no distinct peaks and dropoffs as is 

the case with mechanical refining. This effect is very desirable 

in that by maintaining the overall strength of the sheet over 

a wide range, the papermaker has great flexibility in machine 

operating speed (due to drainage through the wire) without 

losing much of the sheet strength. 

A comparison of sheet properties at a given strength was 

also considered to be of interest. In evaluating the overall 

sheet quality, the graphs of tensil, burst, fold, and opacity 

vs. tear (graphs 8-11) give a good indication of the quality 

of the sheet. The graphs indicate that at a given tear strength, 

the ultrasonically refined sheet resulted in better tensil, 

fold, and opacity. While the mechanically refined sheet was 

slightly better in the bursting strength. This is again pro­

bably due to the difference in fiber extensibility. Although 

the power requirements appear to be higher for the ultrasonic 

method, the increased strength and opacity of the sheet just­

ify the need for further work in this area. 
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Suggestions for Further Study 

An interesting related area of study would be to compare 

the effects of ultrasound on differing fiber fractions. A 

classification could be used to establish the different frac­

tions which could then be used for a strength study. to det­

ermine if the increased strength properties found here are act­

ually do to the fibrillation of longer fibers as assumed. In 

addition, some sort of microscopy would be interesting, to 

observe the effects on a microscopic basis. The effect of 

varying frequecies on pulp refining would also be a good area 

to look into, for this is possibly one way to cut down on the 

power requirements as the refining action may be significantly 

different at different frequencies. 
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Trends of Ultrasonic Beating v�rsus Mechanical 

-Figure #5

-1i1e 1. - PULP CLASSIFICATION ON BAUER-McNETT CLASSIFIER. THE VALUES REPRESENT PERCENT
'ENTION OF THE PULP ON VARIOUS. SIZE SCREENS AFTER BEATING TO A GIVEN FREENESS LEVEL.

Ultrasonic 
Beaten 

Pulp 

Mechanical 
Beaten 

Pulp 
Unbeaten 

Pulp 

f 
• 

Canadian Standard Freeness (ml) 670 696 
________________ 

7
_
3

_
1 

____ ·J 
:� 

Screen size 20 63.4 

38 12.1 

65 8.3 

200 8.2 

Fines 8.0 

Canadian Standard Freeness (ml) 583 

Screen size 20 58.0 

38 13.8 I 
65 8.6 i 

200 9.1 

Fines 10.5 

Canadian Standard Freeness (ml) 443 

Screen size 20 57.6 

38 11.7 

65 7.5 

-- 200 7.9 

Fines 15.3 

Canadian Standard Freeness (ml) 243 

Screen size 20 55.6 

38 11.7 

65 8.9 

200 8.9 

Fines 14.9 

6 

1.85 

5 
MECHANICAL 

1.75 

1.65 

% Retention 

53.0 

--------=ii 

��I ;'.I 
14.3 

11.2 

12.4 

9.1 

586 

34.6 

8.3 

11.8 

14.3 

31.0 

436 

32.0 

27.7 

7.9 

9.4 
23.0 

272 

30.6 

11.9 
13.2 

22.4 

21.9 

ULTRASONIC 

70 

60 

!50 

,�·, 

�I 

-�1� 

-,� 

�i 
:-'( 

Q.) 3 
(/) 

----- 1.55 40 
ULTRAS<>klC 

MECHANICAL 

2 
30 

1.45 

20 

1.35 

• 

.. 

700 600 500 400 700 600 500 400 300 2CO 

700 600 500 400 300 

Canadian Standard Freeness, ml 
Canadian Standard Freenes 

Bulk vs. Freeness 

(a-4) 

Canadian Standard Freeness, ml 

Tear vs. Freeness 



Diagram #6 

( a- 5)



ID

5 

Graph #1 

\.I 
[) � (f, l \ 
'J e, 4.,·t' /V 3 t:- � /Y\ & 

( a-6) 



Graph #2 

.? 

?-� -

)-0 < 

\J .. 

/0 

• 
. • .J,,.!.. .,.,.,..,,_ .............. 

( a-7) 



� 

yO-.L "o r

( f \/r/)) 
� 

\:,D 

�1' 

Graph #3 

Corv, b.
'-1.I ec9

� \ e.e (1) e, s s (_ /'i l I \ 

( a-8) 

0 



Graph #4 

( 

te,/U)I L- 1\.-<\ 

ya.LW
< 

(�) \,\,0 

� ree..-v<-Sj (._r"' \) 

( a-9) 



Graph #5 

-Ya .... L \O( 



-)--.\.l,

{I 
/I 

Jo)-. 

Graph #6 

' 

3oJ-

( a-11) 



D 

� 
CL 

C 

1 't.W �

1 ,)..':) 

1 

I 

·1

Graph #7 

-:- ce-erve-�'.J L m {)
( a-12) 



>­
I-
-

(f) 
z 
w 
1-­
z 

I 
u 
z 

w 
0:: 
<( 
::) 
0 
(J) 

� 
I-

� 

Table #2 

ESH 

CAVIT 

PARTLY DE -GASSED 

TAP WATER 

••••
•••••••••••

••• 

IKC IOKC 

ON 

FRESH 

TAP WATER 

IOOKC 

FREQUENCY 

(a-13) 

IMC 



t£ IV5 l\ e,
( IL-0 1 
---

rS .r,j1t1 

Graph #8 



\ 
--'JG

l x> LJ \)
��

;5' 

}� 

\ 'j 

.l, 

Graph #9 

frl e 
L\t\C\N { Gs_\ 

C o IV\ \o ,' rv ��

')5C, 
qslo 

t,eu._; ( � (' !',/\-\ ':. 

( a-15) 

ttS\b \�s·.<o \SSb 



Graph #10 

�o\�

{ C..'-{ e, l e'? '
L\'-\b 

0 0 

0 

f:-ec..._ (' ( lj (" t,/Vt ') )

( a-16) 



' ,,,-
1 ;. ,CJ · 

7 I ')__
.--

l • ) 

Graph #11 

t__ e__. (.if ( lj r 'VVl S )
( a-17) 

\""2 -- r 
. }� '""' 

0 


	The Use of Ultrasonic Frequencies as a Mechanism for Refining
	Recommended Citation

	tmp.1585579266.pdf.yVIK4

