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Abstract: The re-emergence of infectious diseases such as measles and polio is creating logistics challenges 
for the state authorities to curb their spread and contain them. (CL, 2015) Real-time surveillance of infectious 
diseases is important to detect possible epidemics in advance to prevent shortages of medications (FDA, 2018). 
The outbreak of an infectious disease creates panic in the community and is accompanied by a sudden increase 
in the online interest in knowing more about the disease and its symptoms. Prior studies have found a strong 
relationship between web-based information and disease outbreak but the influence of dynamics of web-based 
information in real-time is often not considered (Zhang, 2017). The dynamics or rate of change of the online 
interest in a disease can inform or misinform about perspective cases of the disease in a region. Oftentimes, 
especially in this connected world individuals overreact to the situation which may send spurious online signals 
regarding the disease progression. Hence, we study the relationship between the dynamics of online 
information and the infectious disease outbreak. We also investigate if this relationship could be influenced by 
regional demographic factors. We analyze weekly online interest dynamics for five infectious diseases over a 
period of three years across 50 states of the United States. We control for several factors (including weather, 
demographics, and travelers) and utilize hierarchical functional data models to incorporate real-time dynamics 
and clustering at the regional level. Preliminary findings suggest that online interest dynamics have a significant 
relationship with disease outbreak and the effect is segregated at the regional level. These findings are important 
to develop a system for real-time surveillance and account for the influence of heterogonous online interest 
during an endemic outbreak. 

 

 
BACKGROUND  
 
Infectious diseases are a risk to public health and wellness. In the year 2016, the deaths caused by infectious diseases 
were ranked in the top 10 leading causes of deaths worldwide, mostly occurring in low-income countries (WHO, 
2016). The prediction of the progression of these diseases based on historical estimates can help save lives by 
preventing drug shortages and is of increasing interest in studies (M.F.Myers, 2004). This is no dearth of research on 
explaining the outbreak of infectious disease, however, due to their erratic transmission patterns, it is still challenging 
to predict outbreaks with an acceptable level of accuracy (Presanis, 2011).  
 
The federal care organizations at the state level are authorized to take steps for preventing the outbreaks of the 
infectious disease and providing adequate care for the infected. However, the duration between when the infection is 
contracted, treatment and reporting make it difficult for them to track or predict the future cases of the disease (Jajosky, 
2004). Nowadays due to the abundance of medical resources on the internet the patients are encouraged to seek the 
medical advice or investigate the cause of their symptoms from the online sources.    

 
The role of online search trends related to a disease in predicting its outbreak is an emerging area of research. Prior 
studies have found a strong correlation between online search trends and the active cases of an infectious disease. 
These studies, however, did not control for a variety of factors that can influence the impact of online activity and the 
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actual disease count. For instance, regions where patients are not tech-savvy there they might not leave any footprints 
on the internet. Similarly, in the regions where health services are easy to avail or are less costly the patients there 
may not seek medical information on the internet. It is important to understand the regional factors which might impact 
the relationship between online activity and disease progression for developing a robust and effective disease 
surveillance system.  
 
Over the years the internet has become a reliable and cheap source of medical information while the Medicare costs 
have risen consistently in the United States. It is not a surprise that about a third of the online search today is for 
medical information. It is possible that this high cost of availing health services in drawing some of the internet traffic 
for medical information. For some individuals, the cost of reaching out to physicians for medical advice might to too 
high to immediately approach them as the symptoms appear. The financially constrained patients may prefer to first 
verify their symptoms and their severity from online information sources before reaching out to the physicians.  
 
Hence, in this study, we first investigate if there are any regional variations in the relationship between online search 
activity of a disease and its progression. Next, we study the role of Medicare costs in a state in determining the direction 
of this relationship. We investigate if the higher Medicare costs strengthen the positive association between the online 
search for a disease and its actual cases or not. The findings from this study would help the stakeholders to better 
understand the dynamics of online search activity and disease progression. This could be the first step for developing 
a more robust disease surveillance system. While form the policy perspective the finding can have implications for 
the healthcare expenditures for the state.  
 
We investigate the progression of 5 infectious diseases over a period of five years across all 50 states of the United 
States to answer the above questions. We control for several variables that may contribute the cases of infectious 
disease including weather, travelers, population density, income and age of the residents. We multilevel modeling 
approach to account for the unobserved heterogeneity across the states. We also allow the relationship between the 
search activity and disease cases to vary across each state by incorporating random coefficient hierarchical models. 
The next sections discuss prior work, data, methods and key findings from this study.  
 
PRIOR WORK 
 
Internet search queries have shown to help improve the disease prediction by several prior studies  (Santillana, 2015) 
(Chae, 2018) (Zhang, 2017) (Fuente, 2018) (Milinovich, 2014). A survey study found that people having trouble 
getting access to health care might be more likely to query the internet and can help the accuracy and reliability of 
surveillance systems (Lee, 2015).  However, no team was able to predict influenza season milestones using the online 
data during a challenge sponsored by the Center for Disease Control and Prevention (CDCP). The problem with 
forecasting models proposed by most teams during the challenge was the lack of interactions between model 
developers and public health decision-makers as well as a limited amount of data. 
 
The geospatial studies have shown that there is likely an effect of long-range airline transportation on the spread of 
diseases (Duygu Balcan, 2009). Along with long-range geospatial effect, the short-distance spatial infectious disease 
spread is likely to affect school season resulting in faster close proximity spread and slower long-distance spread (Gog, 
2014). As one might expect the close proximity and higher density of population have shown likely to affect disease 
rate spread (Hu, 2013). Different diseases have different responses in spread rate in varying weather conditions as 
well as other descriptive and predictive studies have shown (Chae, 2018) (Song, 2015) 
 
There is also some evidence that individuals living in poor conditions are more inclined to obtain and transmit 
infectious diseases that those living in an affluent environment  (Xia, 2013). Some studies have also found that the 
demographics of the population essentially the age group of the individuals living in an area also impact the 
progression of an infectious disease   (Valle, 2014).  These different sited environmental factors have all be used in 
these studies either for prediction or assessing if they are relevant factors in improving infectious disease surveillance 
systems. In this study, we control for most of the factors cited in the prior studies that could have an impact on the 
progression of the disease. The table 1 below discusses the prior work in detail. 
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Table 1: Literature Review 

PAPER OBJECTIVE METHOD Online 
Search 

FINDINGS 

Ray, E. L. 
(2018). 

Predicting influenza 
progression. 

Featured weighted 
density ensemble 
models   

No  Component models showed more 
variability and ensemble methods 
showed slightly better average 
performance  

 
Zhang, Y. 
(2017) 

To analyze usefulness of 
internet search query’s in 
pertussis surveillance.  

Time Series Method 
(SARIMA)  

Yes 
 

Google trends information improves 
forecast  

Milinovich, 
G. J. 
(2014). 

 

To investigate the potential 
of using internet search data 
for early warning of a wide 
range of disease. 

Correlation Analysis  Yes  17 Diseases were found to be 
significantly correlated with a search 
result  

Biggerstaff, 
M. (2016). 

Predicting the timing of start, 
peak and intensity of 
influenza 

Multiple prediction 
models  

Yes No team was entirely accurate in 
forecasting influenza season 
milestones. 

Chretien, 
J.-P. 
(2014). 

To review influenza 
forecasting models 

Literature Review  N/A Comparing the accuracy of the 
forecasting applications in prior 
studies is difficult as forecasting 
methods, outcomes, and validation 
metrics varied widely. 

Shaman, J. 
(2012). 

 

To predict influenza disease 
outbreaks in New York from 
2003-2008  

SIRS-EAKF ensemble 
method  

Yes Real time skillful predictions of peak 
timing possible up to 7 weeks in 
advance  

Santillana, 
M. (2015). 

Getting improved predictions 
using- Google searches for 
influenza surveillance 

Machine Learning 
Methods (Adaboost, 
SVM etc.) 

Yes Ensembles ML are more accurate than 
any of the algorithms alone. 

Duygu 
Balcan. 
(2009) 

To analyze the geospatial 
effect of transportation 
methods on global 
epidemics. 

Generalized Linear 
Models  

No The spatiotemporal patterns of disease 
spreading are mainly determined by 
long-range airline transportation. 

Chowdhury
, F. R. 
(2018). 

To study the effect of 
weather on disease spread 

ANOVA test No Heterogeneity in impact of 
temperature and humidity on disease 
progression.  

Chae, S. 

(2018). 

To use big data to deep 
learning to help reduce 
disease reporting delays  

Deep Neural Network, 
ARIMA  

Yes The deep learning methods DNN 
performed much better that time series 
approaches like ARIMA.  

Song, Y. 

(2015).  

To study the usefulness of 
weather variables in the 
prediction of hand foot and 
mouth disease. 

Time series method 
(SARIMA)  

No Strong relationship between weather 
and the progression of diseases 
considered  

Fuente, M. 
O. (2018). 

To estimate the rate of 
influenza epidemics using 
information from public 
sources  

GLS regression models  No The GLS estimators performed much 
better than OLS estimators.  
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Most of the prior studies focused on a specific disease such as influenza or utilized black-box approaches (e.g. machine 
learning methods) to predict disease progression. To our knowledge, none of the prior studies investigated the 
heterogeneity in the relationship between online activity and disease progression. In this paper, we aim to observe the 
combination of most of the previously studied environmental factors in a more comprehensive study to find out how 
Medicare costs are associated with disease transmission. 
 
DATA 
 
To understand the relationship between the online search trend of a disease and its reported cases, we combined data 
from multiple databases. First, we obtained the states level disease data from the National Notifiable Disease 
Surveillance System (NNDSS,2019). The NNDSS system coordinates the data gathering and organization from 
several state-level reporting systems managed by the Center for Disease Control (CDC). We collected weekly from 
50 states for five different diseases including Chlamydia, Gonorrhea, Campylobacteriosis, Salmonellosis, and Syphilis 
for the years 2015-2017.  
 
To account for online search activity associated with each of the aforementioned diseases, we collected weekly google 
trends search results associated with each disease across all the states under consideration. The Google search trend 
measure associated with a disease is scaled between 0 -100 and is adjusted at the geography and topic level to make 
comparison easier between the terms. It should be noted however that different regions that show the same search 
interest don't always have the same total search volumes. The Google search data is an unbiased sample of the actual 
searches and only a percentage of online search sample is used to compile trends. We picked the most relevant search 
terms for each of the diseases, for example, the disease ‘Campylobacteriosis’ did not have as much information as the 
more commonly searched term is ‘Campylobacter’ which refers to the same disease. This was the only one of the 
diseases where the scientific name of the disease was not used in the google trends search.  
 
The Medicare cost per capita data for each state were obtained from the Centers for Medicare and Medicaid Services 
(CMS,2019). The CMS works with the state authorities to monitor the distribution of the Medicaid and health 
insurance portability standards. The key state-level Medicare cost variables collected included, the actual per capita 
Medicare costs, hospital inpatient (IP) per capita actual cost and hospital outpatient (OP) per capita actual costs. 
 
To control for the tourists arriving in the state which may lead to an increase in the count of infectious disease we 
collated the air travel data. The travel data was obtained from the bureau of transportation statistics website (Transstat, 
2019). The dataset contains information on the number of arrivals and departures for each airport for each state in the 
U.S.  
 
We also control for the weather conditions in a state during a certain week by obtaining data from the Automated 
Surface Observing System (ASOS) database. The information of this database covers all weather stations in each state 
containing weather observations on multiple variables every 20 minutes for each station. To reduce processing time 
for gathering the weather data we decided to pick 10 stations for each state in the U.S. that were picked on the spatial 
proximity to other weather stations locations in that state. We extracted two different weather variables including the 
air temperature and relative humidity and standardized them at the state and week level.   
 
We also control for various state-level characteristics including the population density, median age, and median 
income for each state from the U.S. census bureau from the US census website. These variables are estimated at the 
annual level, the table xxx below describes the data used in the study. 
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Table 2: Variables Description 

Variable Name Descriptive Statistics  Description  
Disease_Count (Count) Min = 0, Mean =72.25,  

Max = 4331.00 
This is a daily count of disease from 
the NNDSS aggregated and summed 
by week from 01-02015- 12-2017 

Online_Trend Min = 0, Mean = 18.02,  
Max = 100 

Search trend for the disease in past 
one week.  

Week  Time series  This is the week of the year  
Temperature  Min = -12.4, Mean = 54.14, Max = 

92.11 
The average air temperature in 
Fahrenheit in the state over the week.  

Humidity  Min = 14.17, Mean = 69.51, Max = 
95.21 

The average relative humidity in % 
over the week. 

Population Density  Min = 1.292, Mean = 200.7, 
Max=1208.66 

This is population estimates for each 
year divided by the area per square 
mile in each state  

Median_Income Min = 40037, Mean = 58966, Max = 
81084 

This is median income per year 
estimates from U.S. Census Bureau 
for each state. 

Arrival_Rate Min = 0, Mean = .04, Max = .25 The average number tourist visiting 
each week as a % of total population  

Median_Age Min = 30.10, Mean = 38.06, Max = 
44.30 

This is the Median Age for each state 
for each year from the U.S. Census 
Bureau  

Medicare Cost Min = 29539, Mean = 574115, Max 
= 2725203 

Actual per capita Medicare costs  

Inpatient Cost Min = 10017,Mean =183655,Max = 
766103 

Hospital inpatient (IP) actual costs as 
a percent of total actual Medicare 
costs  

Outpatient Cost  Min = 4111, Mean = 103517,Max = 
376058 

Hospital outpatient (OP) actual per 
capita Medicare costs. 

 

EMPIRICAL ANALYSIS AND RESULTS  
 
The data structure considered in this study consists of repeated weekly observations for each state on the disease count, 
weather, online search, state demographics, and Medicare cost variables. The observations are not independent and 
are clustered at the state level. One of the questions of interest in our study is the relationship between the online 
search trends for a disease and its actual cases in the state and how this relationship varies for a different state. To 
account for the multilevel structure of the data we use a multilevel model with random coefficient to investigate 
heterogeneity in the relationship between online interest and the actual count of infectious disease. The model equation 
is described below:   

 
𝐶𝑜𝑢𝑛𝑡௜௝ = 𝛽଴௜ + 𝛽ଵ௜𝑂𝑛𝑙𝑖𝑛𝑒_𝑇𝑟𝑒𝑛𝑑  + 𝛽ଷ𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝛽ଷ𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 + 𝛽ସ𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 𝛽ହ𝐴𝑟𝑟𝑖𝑣𝑎𝑙_𝑅𝑎𝑡𝑒  
+ 𝛽଺𝑀𝑒𝑑𝑖𝑎𝑛_𝐼𝑛𝑐𝑜𝑚𝑒 + 𝛽଻𝑀𝑒𝑑𝑖𝑎𝑛_𝐴𝑔𝑒 + 𝛽଻𝑀𝑒𝑑𝑖𝑐𝑎𝑟𝑒_𝐶𝑜𝑠𝑡 + 𝛽଼𝑊𝑒𝑒𝑘 + ∑ 𝛽௝𝐷𝑖𝑠𝑒𝑎𝑠𝑒௝   + ∑ 𝛽௞𝑌𝑒𝑎𝑟௞  +  𝜀௜௝ ---- 
(1) 
𝛽ଵ௜  = 𝛾଴଴ + 𝑈଴௜ ---- (2) 
 
The dependent variable of interest in our model is the number of cases for a disease ‘j’ in the state ‘i’ (𝐶𝑜𝑢𝑛𝑡௜௝). We 
account for state-level fixed effects through the coefficient 𝛽଴௜ while the disease-specific effects are accounted by the 
coefficients 𝛽௝. To account for heterogeneity in the disease count cases due to unobserved year-specific event we 
control for the ‘Year' of observation in our model. We also control for the weather, demographics, and Medicare-
related variables in our model. The level 2 model the random part 𝑈଴௜ which is normally distributed with mean zero 
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accounts for heterogeneity in the relationship between the search trend and the weekly cases for a disease. Both level 
1 and level 2 models are estimated using the restricted maximum likelihood method which has been shown to be better 
than the typically used MLE estimation method. We compare multiple models in table 3 and 4 below to test the 
robustness of the hierarchical modeling structure.  
 

Table 3: Model Results  

 
Model 1 
Linear 
Regression  

Model 2 
Random 
Intercept  

Model 3 
Random Coefficient 
Fixed Intercept  

(Intercept) 810.53262 52.11749 753.46739ꞏ 
 (493.60455) (189.30897) (398.83138) 
Online interest 0.41248*** 0.40728*** 4.40549** 
 (0.08291) (0.08287) (1.58178) 
Week 0.11197ꞏ 0.11144ꞏ 0.08870ꞏ 
 (0.06100) (0.06086) (0.04926) 
Temperature 0.16731** 0.16907** 0.18893*** 
 (0.06297) (0.06278) (0.05083) 
Humidity -0.13684 -0.14731 -0.15480ꞏ 
 (0.11394) (0.11351) (0.09199) 
Population density -0.60472 0.08601ꞏ 0.27498 
 (0.81784) (0.04604) (0.66031) 
Median income -0.00005 -0.00012 -0.00023 
 (0.00057) (0.00051) (0.00046) 
Arrival rate 113.09268 119.88411 40.69653 
 (124.86290) (115.52776) (100.80944) 
Median age -21.79922ꞏ -3.73173 -20.96897* 
 (12.38203) (4.82108) (10.00208) 
Total per-capita cost 0.00006 0.00013*** 0.00009 
 (0.00009) (0.00003) (0.00007) 

Disease Fixed Effects Yes Yes Yes 
Adj. R2 0.38684  0.3925 0.807 
Num. obs. 39000 39000 39000 
AIC 514784.5 514997.36179 498138.46452 
Num. groups: state  50 50 
Var: state (Intercept)  6386.28272  

Var: Residual  31571.60789 20561.24840 
Var: state online_interest   124.67191 
***p < 0.001, **p < 0.01, *p < 0.05, ꞏp < 0.1 
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Table 4: Model Results   

Random Coefficient Fixed 
Intercept 

 

Model 4 
(Total per-capita cost) 

Model 5 
(Outpatient cost) 

 

Model 6 
(Inpatient costs) 

 

(Intercept) 823.56289* 311.37766 898.20245* 
 (399.02551) (416.03195) (385.67617) 
Online interest -2.37955 0.89658 -1.48232 
 (1.83843) (1.67893) (1.90155) 
Week 0.08946ꞏ 0.08938ꞏ 0.09007ꞏ 
 (0.04925) (0.04924) (0.04926) 
Temperature 0.18815*** 0.18653*** 0.18897*** 
 (0.05083) (0.05082) (0.05083) 
Humidity -0.15648ꞏ -0.14849 -0.15844ꞏ 
 (0.09198) (0.09202) (0.09196) 
Population density 0.38973 0.58321 0.32557 
 (0.66063) (0.66268) (0.65945) 
Median income -0.00021 -0.00021 -0.00019 
 (0.00046) (0.00045) (0.00047) 
Arrival rate 37.98723 45.55041 34.93340 
 (100.80423) (100.76199) (100.79987) 
Median age -19.62189* -8.86586 -21.44970* 
 (10.00468) (10.60499) (9.83232) 
Total per-capita cost -0.00013   
 (0.00009)   

Online interest: Total per-capita 
cost 

0.00001***   

 (0.00000)   

Outpatient cost  0.00005  
  (0.00026)  

Online interest: Outpatient cost  0.00003***  
  (0.00001)  

Inpatient cost   -0.00044ꞏ 
   (0.00024) 
Online interest: Inpatient cost   0.00003*** 
   (0.00001) 
AIC 498140.51932 498131.06150 498144.52389 
Adj. R Squared. 0.774 0.7935 0.7737 
Num. obs. 39000 39000 39000 
Num. groups: state 50 50 50 
Var: state*online interest 86.15747 110.46377 90.89845 
Var: Residual 20558.57534 20549.56109 20561.62823 

***p < 0.001, **p < 0.01, *p < 0.05, ꞏp < 0.1 
 
        The proposed modeling structure (Model 3 in Table 3) explains about 80% of the variations in the observed 
data which is significantly higher than the linear model (Model 1) and the models with state-level random effects 
(Model 2). The model fit statistics AIC and likelihood values also suggests that the model that accounts for the 
randomness in the relationship between online search and the disease count explains most variation in the observed 
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data. The model statistics described in Table 4 confirm the interaction effect of Medicare costs on online search 
activity. For instance, the interaction coefficient (Online interest: Total per-capita cost) is significant and positive 
in Model 4. We also investigate the interaction effect of inpatient (Model 5) and outpatient cost (Model 6) per capita 
and we observe a similar relationship. This finding further confirms the robustness of the proposed relationship.  
This indicates that the states where Medicare costs are higher the effect of online activity on disease count would 
also be higher. Figure 1 below described the variation in the effect size of online search for a disease on disease 
count for low (first quartile) and high (second quartile) levels of Medicare costs across the states under 
consideration.  
 

Figure 1: Effect of Online Search on Disease Count 

 
RESULTS AND DISCUSSION  
 
The findings of our study suggest that there is a significant variation in the relationship between the online search 
activity related to a disease and its actual cases in the following week across 50 states of USA. On further investigation, 
we found that medicare costs play is a key role in explaining this heterogeneity in the relationship across states. The 
states where medicare cost is higher the online search activity has a stronger influence on the actual reported cases of 
the disease in the coming weeks. One of the reasons for this finding could be the hesitations of the residents to avail 
medical services in the states with higher medicare costs. Instead to spending money on tests for medical diagnosis 
the residents in these states prefer to go online and look for information relevant to their symptoms.  Hence, in states 
with higher costs of Medicare services a sudden rise in online search activity related to a disease should be taken more 
seriously as it might bring a sudden rise in number of disease cases.   
 
We also find that for the five infectious diseases that we have considered the effect on online activity is not moderated 
by the inpatient cost. This finding reflects upon the severity of the diseases under consideration. As the diseases 
considered are not fatal in nature inpatients visits are not required to treat them. Hence, higher inpatient costs does not 
have any significant impact on the relationship between online activity and disease cases. The future disease 
surveillance systems should account for this heterogeneity in the effect of online search activity on disease cases for 
an improved forecast. The proposed linear model that accounts for state and disease level fixed effects as well as the 
heterogeneity in the relationship through random coefficient explains the maximum (~80%) amount of variation in 
the cases of infectious diseases in near future. The variation explained is about twice of that that explained by the 
models that only account for state level random effects.   

 
LIMITATIONS & FUTURE WORK 
 
We used weekly information from the CDC which is the standard for national disease surveillance systems research. 
This weekly CDC information oftentimes is unable to capture all the disease occurrences as only the individuals who 
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choose to seek medical treatment at the hospitals are reported. In addition, variables such as arrival rate that we have 
controlled for in our models does not capture the information of number of individuals arriving in the state via road, 
trains or any personal transport.  
 
The majority of diseases in this study were related to sexual based diseases and do not account for variables that could 
be instrumental to the spread of such diseases, for example, number of conversation interactions between users of an 
online dating application or number of social meeting locations in a state or city. We leave this investigation to future 
research. Our findings are based on search data shared by Google which is used in about 75% of global internet 
searches. We collected data on search trends linked to the exact names of the diseases under consideration. We do not 
collect trends data on other synonyms or local names of the disease that users might search. In addition, it is difficult 
to determine if the search trends were generated by true disease enquiries or due to associated events such as research 
breakthroughs or new treatment drugs. Prior studies have also argued that search data may be spurious for the diseases 
with high media exposure as non-patient searches would drive most of the online activity. On the other hand the 
extensive weekly collection of search data for five disease for over three years help control for some of the biases that 
may arises due to unconventional events. 
 
Future work in this direction can understand the spillover effect of the online activity in neighboring states on the 
disease cases in the home state. The effectiveness of the real-time dynamics or rate of change of online activity on 
disease progression could also be investigated. The research also opens a potential debate on the implications of online 
search behavior for health care policy. How can online search activity inform heath care policy makers? Is excessive 
online health information seeking an indicator of inaccessible medical services in a geographical region?  
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