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Abstract
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unbounded support from samples of conditional expectations and discuss the error inherent in each algorithm.
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1 Introduction

In 1917 Johann Radon showed that one could determine a function (with domain in R2) completely from
knowledge of the density along all lines through the domain of the function; equivalently, if we know the integral
along each line through a function we can recover the original function [1]. These integrals are collectively
called the Radon transform. Radon’s pioneering work was later generalized and extended to higher dimensions
and remains an active area of research at the confluence of mathematical tomography, integral geometry, and
inverse problems; see [2, 3, 4]. His work later led to some extraordinary technologies including CT scans.

The problem of reconstructing objects from a finite number of samples of the Radon transform is at the
heart of modern tomographic imaging and a large focus of this manuscript. Knowing that it is possible to
reconstruct an object from its Radon transforms is quite different from actually being able implement a process
which accurately and reliably accomplishes this end from a finite data set.

In this paper we endeavor to build off of the work of Becnel and Chang in [5] and further develop an
application of the Radon transform to probability theory: recovering a random variable from its conditional
expectations. Hence, in Section 2 we begin with a brief introduction to the Radon transform, its properties
and relevant results. We present an algorithm for recovering a function from samples of the function’s Radon
transform via a powerful result relating the Radon transform of a function to the Fourier transform of that
function. Next we will discuss the geometric dual of the Radon transform, the backprojection operator, and its
relationship to the filtered backprojection algorithm–one of the primary algorithms used to reconstruct functions
from Radon transform samples. Following the description of the Fourier algorithm, we provide a brief remark
on the sources of error; we conclude the chapter with a theorem giving the error components of the filtered
backprojection algorithm, and a brief discussion of the sources of those error components.

In Section 3, we present results found primarily in [5] establishing a Gaussian measure on the hyperplane in
Rn and defining the Gauss Radon transform. Again, we present most results without proof; the interested reader
is directed to [5]. In particular, we present results that relate the Gauss Radon transform to the Radon transform,
and a representation of the Gauss Radon transform as the conditional expectation of a random variable defined
over an appropriate probability space.

In the final chapter, we adapt the Fourier and filtered backprojection algorithms to the recovery of a random
variable from samples of its conditional expectation. We also develop results that allow us to establish error
estimates when the random variable (function) of interest is not of compact support—a common assumption in
Radon transform reconstruction problems. The chapter concludes with a full error analysis of the Gauss filtered
backprojection algorithm, along with some heuristics for minimizing each error component in practice. We part
with a few remarks on the future of this research.

We have also included an appendix which catalogs the necessary results outside the purview of the contents
of this article. For the sake of brevity we have omitted proofs for most results; in lieu of proof for these results
we have one or more references.

2 Radon Transform and Reconstruction

In this chapter, we begin by introducing the Radon transform and describing its action on functions of a
suitable variety. We state some of the properties of the Radon transform that are integral to the analysis ahead.
After defining the Radon transform, we will introduce two of the most prominent methods of reconstruction
developed in the literature of mathematical tomography: Fourier Reconstruction and Filtered Backprojection.
The mathematical results motivating each reconstruction method will be presented; the reader is referred to
the appendix for several auxiliary results necessary to obtain the algorithms. In conclusion we will discuss the
error incurred by the reconstruction algorithms and the dependence of that error on data filtering and sampling
schemes.
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2.1 The Radon Transform
We denote the set of hyperplanes in Rn as Pn. That is,

Pn = {αθ + θ⊥ ; α ∈ R, θ ∈ Rn is a unit vector }.

where in the above θ⊥ is the orthogonal complement of the the singleton set {θ} containing the unit vector θ.
Observe that each hyperplane αθ + θ⊥ is specified by the parameters α and θ. We may think of θ as the vector
normal to the hyperplane, while |α| represents the distance from the hyperplane to the origin. At times we may
find it convenient to use an alternative representation of the hyperplane αθ + θ⊥:

αθ + θ⊥ = {x ∈ Rn ; ⟨x, θ⟩ = α}.

From this representation we gain a conceptually nice interpretation of a hyperplane as the set of all vectors with
“θ direction coordinate” equal to α.

Definition 2.1. The Radon transform of a function f : Rn → R is a function R f on the set Pn given by

R f (αθ + θ⊥) =
∫
αθ+θ⊥

f (x) dx (2.1)

where dx is the Lebesgue measure on the hyperplane αθ + θ⊥.

Remark 2.1. From the definition above, we can think of the Radon transform as a function of α and θ.
Henceforth we will typically write the Radon transform of f as R f (α, θ). There are several ways to express the
Radon transform. At times we may find it more convenient to use one of the following equivalent expressions:

R f (α, θ) = R f (αθ + θ⊥) =
∫
θ⊥

f (αθ + y)dy =
∫
⟨x,θ⟩=α

f (x)dx.

When we apply the Radon transform to a function, we are integrating that function over all of the points in
a plane defined by the pair (α, θ). Lacking restrictions on f the function R f may not exist for every element of
Pn. To ensure that the R f is defined and finite for every element of Pn, one typically assumes that f is rapidly
decreasing, i.e.

sup
x∈Rn
|x|k | f (x)| < ∞ for all k > 0

or that f is in the Schwartz space S (Rn).
Alternatively, we can also assure the existence ofR f by assuming that the function f is infinitely differentiable

with compact support; that is f ∈ C∞0 (Rn). This is a commonly used assumption in much of the literature on
reconstruction, justified for practical purposes. In such applications, the function f sometimes represents the
density of an organ such as the brain which, at least for most of us, is of finite extent. Thus for most practical
purposes, those studying the Radon transform have been principally interested in deriving algorithms and error
bounds for compactly supported functions. Foreshadowing to later chapters, we will endeavor to remove the
assumption of compact support in the derivation of reconstruction algorithms and error bounds for the Gauss
Radon transform.

2.2 Fourier Reconstruction
The Fourier reconstruction approach exploits a powerful result, the Fourier Slice Theorem. The algorithm to
follow is essentially a numerical approximation to this algorithm broken down into four distinct steps. Before
delving into the algorithm, let us state the two main results we will need. For proofs the interested reader may
consult [5, 6, 2].

Theorem 2.1. (Fourier Slice Theorem). The n-dimensional Fourier transform of a function f ∈ S (Rn) is
equivalent to the one-dimensional Fourier transform of R f (α, θ). That is,

R̂ f (α, θ) = (2π)
n−1

2 f̂ (αθ), (2.2)

3
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where R̂ f (α, θ) is understood to the be the Fourier transform with respect to the first argument α ∈ R, treating
θ as a fixed constant.

The Fourier Slice Theorem, along with the inverse Fourier transform (see appendix), can be used to derive
an inversion formula for the Radon transform. See [5, 6, 7]

Theorem 2.2. The inversion formula for a function f ∈ S (Rn) in terms of the Radon transform is

f (x) = (2π)( 1
2 −n)

∫
S n−1

∫ ∞

0

∫
R

R f (α, θ)e−iβ(α−⟨θ,x⟩)βn−1dαdβdσ(θ). (2.3)

2.3 Fourier Reconstruction Algorithm
The idea behind this algorithm is to (1) gather Radon transform samples from a polar grid covering the support
of the function, (2) approximate the Fourier transform of the Radon data, (3) use Fourier transform data from (2)
to approximate the Fourier transform of the original function, and (4) then perform a discrete Fourier inversion
to recover the original function.

Algorithm—Fourier Reconstruction: Let f ∈ C∞0 (Ωn
r ), where Ωn

r is the closed ball of radius r in Rn, centered at
the origin.

Step 1: Sample the Radon transform of f at (sl, θ j) for j = 1, ..., p ; l = −q, ..., q, obtaining samples
R f (sl, θ j). Here θ j ∈ S n−1, and sl = hl, h = r/q.

Note that in this case we are following a “naive” sampling scheme sampling at points evenly spaced r/q
units apart in each direction θ j.

Step 2: Approximate f̂ . This is accomplished by a discrete approximation to the Fourier transform of R̂ f

based on the sampled points above, followed by application of the Fourier Slice Theorem (2.1). For j = 1, ..., p,
approximate R̂ f (rπ, θ j) by R̂( j,r)

f , where

R̂( j,r)
f = (2π)−

1
2 h

q−1∑
l=−q

eiπrl/qR f (sl, θ j) , r = −q, ..., 0, ..., q − 1. (2.4)

Note that (2.4) is simply the discrete Fourier transform of R f in R. Also notice that we took Radon
transform samples from points in Ωn

r and now have an approximation to the Fourier transform of f on the polar
grid

Gp,q = {πrθ j : r = −q, ..., q − 1 ; j = 1, ..., p}.
Hence

f̂ (rπθ j) = (2π)
1−n

2 R̂( j,r)
f , (2.5)

up to discretization errors.
Step 3 (Interpolation): This step is necessary in order to make use of a fast Fourier transform (FFT)

algorithm; otherwise the Fourier algorithm cannot compete in computational efficiency with other reconstruction
algorithms. The FFT cannot be used on the polar grid Gp,q [3]. Thus we must interpolate to a suitable Cartesian
coordinate grid. For now we will only consider nearest neighbor interpolation.

For each k ∈ Zn, |k| < q, find the point ξk = πrθ j in the polar grid closest to πk and set

f̂k = (2π)
1−n

2 R̂( j,r)
f (2.6)

Step 4: approximate f (hm),m ∈ Zn, using a discrete inverse Fourier transform,

fm =

(
π

2

) n
2 ∑
|k|<q

eiπm·k/q f̂k , |m| < q, (2.7)

where 2.7 is the discrete inverse Fourier transform in Rn.
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2.4 Filtered Backprojection
An alternative to the Fourier algorithm, the filtered backprojection algorithm exploits a key relationship between
the Radon transform, backprojection operator, and convolution. First, we define the backprojection operator,
the dual of the Radon transform. We will go on to characterize the backprojection operator in terms of integral
geometry in relation to the Radon transform.

Definition 2.2. Let g : S n−1 × R →. We define the backprojection operator to be the function R#, R#g : Rn →
defined by

R#g(x, θ) =
∫

S n−1
g(⟨x, θ⟩, θ)dθ (2.8)

Recall that R acts on a function f by integrating over all points in a hyperplane. The backprojection
operator R# forms a natural dual to R in terms of integral geometry since it integrates over all planes through
a point. Furthermore, it turns out that the backprojection operator is the formal adjoint of the Radon transform
[2].

Theorem 2.3. Let ⟨ f , g⟩L2 =
∫
Rn f (x)g(x)dx and let f (x), g(x) ∈ L2(Rn), where f and g are assumed to be

nonnegative and measurable functions. Then

⟨R f , g⟩L2 = ⟨ f ,R#g⟩L2 . (2.9)

At this point we might ask if it is possible to recover a function from its Radon transform using the
backprojection operator. The next theorem, which can be found in [2, 3], suggests that any attempt to reconstruct
f using this strategy will yield poor results.

Theorem 2.4. (Backprojection Theorem). If f is a nonnegative Lebesgue measurable function on Rn then

R#R f = T ⋆ f , (2.10)

where

T (x) =
∣∣∣S n−2

∣∣∣ 1
|x| ,

and
∣∣∣S d

∣∣∣ is the “surface area” of the unit sphere in Rd.

While it is perhaps unfortunate that R# alone failed to achieve reasonable reconstruction, the following
theorem leads us to a very successful approach known as filtered backprojection.

Theorem 2.5. Let f ∈ S (Rn) and w ∈ S (R × S n−1), where w is bounded and measurable. Then

(R#w) ⋆ f = R#(w ⋆ R f ). (2.11)

Proof. Using the definition of convolution (see 6.1) and the backprojection operator we have

(R#w ⋆ f )(x) =
∫
Rn
R#w(x − y) f (y)dy

=

∫
Rn

∫
S n−1

w(⟨(x − y), θ⟩, θ)dθ f (y)dy

=

∫
S n−1

∫
Rn

w(⟨(x − y), θ⟩, θ) f (y)dydθ,

5
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where in the last step we used the Fubini Theorem to change the order of integration. To disintegrate the integral
over Rn to the integral of hyperplanes moving through R, let y = sθ + z, z ∈ θ⊥. Hence∫

S n−1

∫
Rn

w(⟨(x − y), θ⟩, θ) f (y)dydθ =
∫

S n−1

∫
R

∫
θ⊥

w(⟨x, θ⟩ − s, θ) f (sθ + z)dzdsdθ

=

∫
S n−1

∫
R

w(⟨x, θ⟩ − s, θ)R f (s, θ)dsdθ

=

∫
S n−1

(w ⋆ R f )(⟨x, θ⟩, θ)dθ

= R#(w ⋆ R f )(x),

which is the desired result. �

We can think of the term R#w as a “filter” for the backprojection defined above. In the next subsection, we
will investigate some of the desirable properties for this filter, and how we might practically use such a filter to
reconstruct a function from its Radon transform.

2.5 Filtered Backprojection Algorithm
The filtered backprojection algorithm is a numerical implementation of

Wb(ξ) ⋆ f = R#(wb ⋆ Rg) , Wb = R#wb. (2.12)

In order to use Theorem 2.5 to accurately reconstruct a function f , we choose wb so that Wb approximates
the δ-distribution. More specifically, in most literature Wb is called a low-pass filter with cutoff frequency b.
Accordingly, we can represent Wb as

Ŵb(ξ) = (2π)−
n
2 Φ̂

(
|ξ|
b

)
, (2.13)

where:

1. 0 ≤ Φ̂ ≤ 1

2. Φ̂
( |ξ|

b

)
= 0 f or |ξ|b ≥ 1.

Observe that as b gets arbitrarily large, Φ̂ approaches a constant, which is the Fourier transform of δ0 up to a
constant multiple (2π)−

n
2 .

Algorithm—Filtered Backprojection: Let f ∈ C∞0 (Ωn
r ).

Step 1: We first sample the Radon transform of f at points (sl, θ j) , j = 1, 2, ..., p , l = −q, ..., q , θ j ∈
S n−1 , sl = hl = r

q l.
Step 2: Perform discrete convolution of wb ⋆ R f (sl, θ j). That is

wb
h
⋆ R f (σ, θ j) = h

q∑
l=−q

wb(σ − sl)R f (sl, θ j). (2.14)

In this step we are performing a 1-dimensional convolution of wb and R f (sl, θ j) for each direction θ j.
Step 3 (Discrete Backprojection): We now require a quadrature rule on S n−1, based on the choice of

θ1, θ2, ..., θ j, with positive weights αp j. Furthermore we assume that this quadrature rule is exact in H′2m, the
even spherical harmonics of degree 2m, for some m (see [3]). Hence∫

S n−1
ν(θ)dθ =

p∑
j=1

αp jν(θ j), f or ν ∈ H′2m (2.15)

6
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Thus we may interchange the backprojection on the right side of 2.5 for the discrete backprojection defined
by R#

p

R#
pν(x) =

p∑
j=1

αp j ν(θ j, x · θ j). (2.16)

Therefore

fFB = R#
p(wb

h
⋆ R f (σ, θ j)) =

p∑
j=1

αp j h
q∑

l=−q

wb(σ − sl)R f (sl, θ j) (2.17)

where fFB is the filtered backprojection algorithm approximation of f .

2.6 Error Analysis

2.6.1 Fourier Error
Following the development of these reconstruction algorithms, it is natural to ask what kind of error each
algorithm incurs. For the sake of brevity we omit a detailed analysis of the error in the Fourier algorithm;
however we will provide a summary of the relevant sources of error. As delineated in [3], the Fourier algorithm
only has one major source of error: the interpolation step. Assuming that the Radon transform is properly
sampled, according the Nyquist–Shannon sampling theorem (Theorem 6.6), steps 1, 2, and 4 are effectively
error free. Interpolating from the polar grid Gp,q to the Cartesian grid Zn is necessary in order to use a FFT
algorithm–otherwise the Fourier algorithm cannot compete in computational efficiency with other algorithms.
In the algorithm above we took a naive approach, using nearest neighbor interpolation. It turns out that this
method produces large artifacts in the recovered function. In Chapter 5 of [3], the author derives the necessary
sampling geometry to minimize the error incurred by interpolating to the Cartesian grid, and provides examples
in R2.

2.7 Filtered Backprojection Error
We have established the Filtered Backprojection Algorithm for recovering the function f from its Radon
transform sampled at discrete points in Ωn

r . It is natural to investigate the error incurred by this numerical
routine and establish an upper bound on this error. The following theorems adapted from [3] provides an error
bound for the filtered backprojection algorithm applied to compactly supported functions on the ball of radius
r.

Theorem 2.6. Let w(θ, α) ∈ S (S n−1 × R). Then

R̂#w(ξ) = (2π)
n−1

2 |ξ|1−n
(
ŵ

(
ξ

|ξ| , |ξ|
)
+ ŵ

(
−ξ
|ξ| , − |ξ|

))
. (2.18)

Theorem 2.7. Let f ∈ C∞0 (Ωn
r ). Assume that (2.15) holds on H′2m and that, for some ϑ with 0 < ϑ < 1,

b ≤ ϑm, b ≤ π/h. (2.19)

Define the approximate reconstruction of f as

fFB = Wb ⋆ f + e1 + e2 = R#wb ⋆ R f + e1 + e2, (2.20)

where
e1 = R#

p(wb
h
⋆ R f − wb ⋆ R f )

and
e2 = (R#

p − R#)(wb ⋆ R f ).

7
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Then,

|e1| ≤
1
2

(2π)
−(n+1)

2 |S n−1| sup
θ∈S n−1

∫
|α|≥b
|α|n−1| f̂ (αθ)|dα (2.21)

and

|e2| ≤ 2
∣∣∣S n−1

∣∣∣ (2π) −(n)
2 (r)

−n
2 ∥ f ∥L∞(Ωn

r )

∑
l>m

N(n, l)
c(n, l)

l
n
2 η1(ϑ, 2l + k)

≤
∣∣∣S n−1

∣∣∣ (2π) −(n)
2 (r)

−n
2 ∥ f ∥L∞(Ωn

r )η(ϑ,m)

This Theorem 2.7 suggests several sources of error in the reconstruction of f from its Radon transform in
practice. The term e1 includes the error contributed by using a discrete approximation to the convolution on the
right side of Theorem 2.5. Observe that e1 is a function of f and b; note that in practice we only have control
over b through the sampling distance h. If f is b-band limited or essentially b-band limited (see section 6.2)
then the integral bounding e1 will be negligible. In practice we do not know f but if we choose b large enough
(or h small enough) then we make e1 small. The assumption b ≤ π

h ensures that the discrete convolutions and
Fourier transforms are essentially error-free.

The e2 error term results from discretizing the backprojection in 2.5. The interpretation of this term is
not readily apparent from the statement of the theorem. The assumption that b ≤ ϑm ensures that the discrete
backprojection is indeed exact on H′2m. The derivation of e2 involves expanding wb ⋆ R f in terms of a series
involving spherical harmonics. The series must be truncated after finitely many terms. It turns out that the tail
of the series being truncated is bounded by the exponentially decaying term η(ϑ,m). The interested reader can
refer to the proof of 2.7 found in [3] for an unbowdlerized account of the error terms.

3 Gauss Radon Transform
In this chapter we will construct the Gauss Radon transform and discuss its relationship to the Radon transform.
Motivation for the Gauss Radon transform will be provided along with illustrative examples. For this chapter
we have borrowed heavily from [5]. The interested reader is directed to this paper for further details.

3.1 Gaussian Measure
To construct the Gauss Radon transform, we must first construct a Gaussian measure on a hyperplane αθ + θ⊥.
We will denote such a measure by µαθ+θ⊥ . Suppose dµαθ+θ⊥ (x) = cαe−|x|

2/2 dx, where dx is the Lebesgue measure
on the hyperplane. We need to determine the constant cα such that

∫
αθ+θ⊥

dµαθ+θ⊥ = 1. To this end, note that by
a change of variables we have∫

αθ+θ⊥
e−|x|

2/2 dx =
∫
θ⊥

e−|αθ+x|2/2 dx

=

∫
θ⊥

e−
|x|2+α2

2 dx since |θ| = 1 and ⟨θ, x⟩ = 0

= e−α
2/2

∫
θ⊥

e−
|x|2
2

= e−α
2
(2π)(n−1)/2.

Using this calculation we define the Gaussian measure on αθ + θ⊥ as follows:

Definition 3.1. The Gaussian measure µαθ+θ⊥ on the hyperplane αθ + θ⊥ is defined by

dµαθ+θ⊥ (x) =
eα

2/2

(2π)(n−1)/2 e−|x|
2/2 dx (3.1)

where dx is the Lebesgue measure on the hyperplane αθ + θ⊥.

8
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Remark 3.1. If x ∈ αθ + θ⊥, we have that

|x − αθ|2 = |x|2 − 2⟨x, αθ⟩ + |αθ|2 = |x|2 − 2α2 + α2 = |x|2 − α2

allows us also to express the dµαθ+θ⊥ as

dµαθ+θ⊥ (x) = e−|x−αθ|
2/2 dx

(2π)(n−1)/2 .

3.2 Properties of Gaussian measure on the hyperplane
We now describe some properties for this measure. We begin by computing the measures characteristic function.

Proposition 3.1. The characteristics function of the Gaussian measure on the hyperplane αθ + θ⊥ is∫
αθ+θ⊥

ei⟨x,y⟩dµαθ+θ⊥ (x) = eiα⟨θ,y⟩− 1
2 |yθ⊥ |

2
for any y ∈ Rn

where yθ⊥ denotes the orthogonal projection of y onto the subspace θ⊥.

A useful and fundamental property of the probability measure µαθ+θ⊥ is that every vector in Rn can be
understood as a normally (or Dirac) distributed random variable in its probability space, as illustrated by the
following proposition.

Proposition 3.2. There is a mapping given by

Rn → L2(µαθ+θ⊥ )

u 7→ ũ(x) = ⟨u, x⟩

such that ũ is normally (or Dirac) distributed with mean α⟨θ, u⟩ and variance |uθ⊥ |2.

Note that if uθ⊥ = 0 the random variable ũ, as stated above, takes on the Dirac distribution. In all other
cases, ũ ∼ N(α⟨θ, u⟩, |uθ⊥ |2).

As we continue, Proposition 3.2 will provide us with a convenient way of studying many functions in terms
of the Gauss Radon transform. Before we begin, we make one more observation about the random variable ũ.

Proposition 3.3. If u, v ∈ Rn satisfy ⟨uθ⊥ , vθ⊥ ⟩ = 0, then the random variables ũ, ṽ are independent with respect
to µαθ+θ⊥ .

3.3 Gauss Radon Transform Definition
With the definition of the Gaussian measure on the hyperplane securely behind us, we can turn our attention
to defining the Gauss Radon transform. Just as the Radon transform finds the integral of a function over a
hyperplane using the Lebesgue measure for the hyperplane, the Gauss Radon transform will output the integral
of a function over a hyperplane using the Gaussian measure for the hyperplane.

Definition 3.2. The Gauss Radon transform of a function f : Rn → R is a function G f on the set Pn given by

G f (αθ + θ⊥) =
∫
αθ+θ⊥

f (x) dµαθ+θ⊥ (x) (3.2)

where µαθ+θ⊥ is the Gaussian measure on the hyperplane αθ + θ⊥.

Again, with no restrictions on f , the function G f may not exist for every element of Pn. For example, it
is fairly easy to justify that G f does not exist when f (x) = e|x|

2
. That said, it is important to note that using

the Gaussian measure in place of the Lebesgue measure ensures the existence of G f for a much broader class
of function, including polynomials. We will now compute some examples of the Gauss Radon transform for
common functions.

9
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3.4 Gauss Radon Transform as a Conditional Expectation
In this section we provide an interesting result relating the the Gauss Radon transform to a conditional expectation.
We will exploit this relationship heavily in the final chapter. In the following, µ represents the standard Gaussian
measure on Rn.

Theorem 3.1. Let f : Rn → R be a integrable function on the probability space (Rn, µ) such that G f exists for
all hyperplanes in Pn. Then the Gauss Radon transform of f : Rn → R on a hyperplane αθ + θ⊥ is equal to the
conditional expectation of f under the condition θ̃ = α. i.e.

G f (αθ + θ⊥) = E[ f | θ̃ = α]. (3.3)

3.5 Gaussian Bounded Functions
The rapidly decreasing functions and Schwartz space functions used in the Radon transform seem too restrictive
for the Gauss Radon transform. A class of functions suitable for the Gauss Radon transform were defined in [5]
as follows:

Definition 3.3. A function f ∈ C∞(Rn) is δ-Gaussian bounded if for any polynomial function p, there exist
constants Mp > 0 and 0 < kp < δ such that

|p(∂1, ∂2, . . . , ∂n) f (x)| ≤ Mpekp |x|2 for all x ∈ Rn.

Remark 3.2. From the definition it is clear that if f is 1
2 -Gaussian bounded, then f (x)e−

|x|2
2 ∈ S (Rn).

Notice that the class of δ-Gaussian bounded functions holds a much broader class of functions than the
usual Schwartz space. In particular, polynomial functions are δ-Gaussian bounded for all δ > 0.

3.6 Relationship between Radon and Gauss Radon transform
The relationship between the Radon transform and the Gauss Radon transform is really the key to developing
inversion formulas for the Gauss Radon transform. For our results we extensively use the following proposition
from [5].

Proposition 3.4. Suppose f is an 1
2 -Gaussian bounded function. Then

G f (αθ + θ⊥) = e
α2
2 Rg(αθ + θ⊥), (3.4)

or equivalently by Theorem 3.1

E[ f | θ̃ = α] = e
α2
2 Rg(αθ + θ⊥), (3.5)

where g(x) = f (x) e−
|x|2
2

(2π)(n−1)/2 .

3.7 Inversion Formulas for the Gauss Radon Transform
Theorem 3.2. The inversion formula for a 1

2 -Gaussian bounded function f in terms of its Gauss Radon
transform is

f (x) = (2π)−
n
2 e
|x|2
2

∫
S n−1

∫ ∞

0

∫
R

G f (αθ + θ⊥)e−iβ(α−⟨θ,x⟩)− α2
2 βn−1 dα dβ dσ(θ).

for any x ∈ Rn.

Proof. Simply replace f in Theorem 2.3 with g(x) = f (x) e−|x|
2/2

(2π)(n−1)/2 . Then use Proposition 3.4 to replace Rg(αθ+

θ⊥) with e−α
2/2G f (αθ + θ⊥). �

10
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We now recast the above theorem in terms of a conditional expectation using Proposition 3.4.

Corollary 3.1. Let X be a 1
2 -Gaussian bounded random variable on the probability space (R, µ) where µ is the

standard Gaussian measure. Then X can be expressed in terms of the conditional expectations E[X | θ̃ = α] as
follows:

X(y) = (2π)−
n
2 e
|y|2
2

∫
S n−1

∫ ∞

0

∫
R

E[X | θ̃ = α]e−iβ(α−⟨θ,y⟩)− α2
2 βn−1 dα dβ dσ(θ).

for any y ∈ Rn.

4 Reconstruction from Conditional Expectation
We have explored the reconstruction of functions from discretely sampled Radon transforms and the construction
of a Gaussian measure over hyperplanes to motivate the Gauss Radon transform. Furthermore, the Gauss Radon
transform can also be interpreted as the conditional expectation of a random variable in the probability space
(Rn, µ). We use this representation of the Gauss Radon transform as we explore the reconstruction of a random
variable f from its conditional expectations by adapting reconstruction methods for the Radon transform to the
Gauss Radon transform. In parallel to Section 2, we begin the main results of this work by briefly exploring
a Fourier reconstruction algorithm before developing the Gauss Radon analog of the filtered backprojection
algorithm. With the algorithm in hand, we present a rigorous analysis of the error incurred by the Gauss Radon
analog of the filtered backprojection algorithm. We conclude by discussing the sources of error—in particular,
the error derived from relaxing the assumption that the function (random variable) of interest is of compact
support—and how to approach mitigating those sources of error.

4.1 Gauss Fourier Reconstruction from E[ f | θ̃ = α]
As in Section 2 this numerical approximation is a discretization of the Fourier Slice Theorem and inverse Fourier
transform. This algorithm differs with respect to the samples, now conditional expectations E[ f | θ̃ = α], and
we need to add a step where we use (3.4) to transform each conditional expectation into the corresponding
Radon transform.

The idea behind this algorithm is to 1) gather conditional expectations of the random variable f from a
polar grid covering Ωn

r , 2) transform the conditional expectations from 1) into Radon transforms via (3.1) and
(3.4), 3) approximate the Fourier transform of the Radon transform samples, 4) use Fourier transform data from

3) to approximate the Fourier transform of g(x) = f (x) e−
|x|2
2

(2π)(n−1)/2 , 5) interpolation, 6) perform a discrete Fourier

inversion to recover g, and 7) multiply by (2π)(n−1)/2e
|x|2
2 to recover f .

Algorithm-Gauss Fourier Reconstruction: Let f be a 1
2 -Gaussian bounded random variable on the probability

space (Rn, µ).
Step1: Collect the conditional expectations E[ f | θ̃ j = sl] of f sampled at (θ j, sl) for j = 1, ..., p ; l =

−q, ..., q where θ j ∈ S n−1, and sl = hl, h = r/q.

Remark 4.1. In this case we are once again following a “naive” sampling scheme sampling at points spaced
r/q units apart in the direction θ. Note that f no longer needs to be of compact support. Later in this chapter
we will discuss how to choose r in order to achieve a reasonable reconstruction.

Step 2: Multiply each sample by the appropriate Gaussian term as per Proposition 3.4; that is

Rg(sl, θ j) = e
−s2

l
2 E[ f | θ̃ j = sl] (4.1)

Step 3: Approximate ĝ. We accomplish this by a discrete approximation to the Fourier transform of Rg

based on the sampled points above, followed by application of the Fourier Slice Theorem (Theorem 2.1).

11
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For j = 1, ..., p, approximate R̂g(θ j, rπ) by R̂( j,r)
g , where

R̂( j,r)
g = (2π)−

1
2 h

q−1∑
l=−q

eiπrl/qRg(θ j, sl) , r = −q, ..., q − 1. (4.2)

Note that (4.2) is simply the discrete Fourier transform in R.
Step 4: Applying Theorem 2.1 to the Fourier Radon samples of g we obtain

ĝ(rπθ j) = (2π)
1−n

2 R̂( j,r)
g , (4.3)

up to discretization errors. Note that we took conditional expectation samples from points in Ωn
r and now have

an approximation to the Fourier transform of g on the polar grid

Gp,q = {πrθ j : r = −q, ..., q − 1 ; j = 1, ..., p}.

Step 5 (Interpolation): It is now necessary to make use of a fast Fourier transform (FFT) algorithm in order to
efficiently calculate the Fourier transforms, as in step 3 of the Section 2 Fourier algorithm; but first we must
interpolate to a suitable Cartesian coordinate grid.

For each k ∈ Zn, |k| < q, find the point ξk = πrθ j in the polar grid closest to πk and set

ĝk = (2π)
1−n

2 R̂( j,r)
g (4.4)

Step 6: We now approximate g(hm),m ∈ Zn, using the discrete inverse Fourier transform,

gm =

(
π

2

) n
2 ∑
|k|<q

eiπm·k/qĝk , |m| < q, (4.5)

where 4.5 is the discrete inverse Fourier transform in Rn.
Step 7: By Proposition 3.4

g(hm) = f (hm)
e
−|hm|2

2

(2π)
n−1

2
, (4.6)

which implies

f (hm) ≈ πn

√
2π

e
|hm|2

2

∑
|k|<q

eiπm·k/q · ĝk by (4.6),

=
πn

√
2π

e
|hm|2

2

∑
|k|<q

eiπm·k/q · (2π) 1−n
2 R̂( j,r)

g by (4.4),

= πn(2π)
−(n+1)

2 e
|hm|2

2

∑
|k|<q

eiπm·k/q · h
q−1∑
l=−q

eiπlr/qRg(θ j, sl) by (4.2),

= πn(2π)
−(n+1)

2 e
|hm|2−s2

l
2

∑
|k|<q

eiπm·k/q · h
q−1∑
l=−q

eiπlr/qE[ f | θ̃ j = sl],

by Proposition 3.4.

4.2 Gauss Convolution
We also develop a filtered backprojection based reconstruction algorithm for the Gauss Radon transform. This
not only provides another way to reconstruct the random variable f from its conditional expectations; we also
have a promising method of attack for deriving the error incurred by such an algorithm. In Chapter 2 we saw that
Theorem 2.5 was instrumental in the filtered backprojetion algorithm for the Radon transform. Unfortunately
the same theorem does not hold when we exchange R f (θ, α) for G f (θ, α) and use the Gaussian measure µαθ+θ⊥
in place of the Lebesgue measure. In light of this obstacle, we define a new convolution type operator, ♢ , and
use it to prove the Gauss Radon analog to Theorem 2.5.

12



Becnel and Riser-Espinoza; AJPAS, 3(1): 1-31, 2019; Article no.AJPAS.46373

Definition 4.1. Let f and g be 1
2 -Gaussian bounded functions on Rn. Define the Gauss convolution of f and g

to be f ♢ g, where

( f ♢ g) (x) =
∫
Rn

f (x − y)g(y)e
−|y|2

2
dy

(2π)
n
2
. (4.7)

From this definition we immediately derive the relationship between Gauss convolution and standard
convolution.

Theorem 4.1. Let f and g be 1
2 -Gaussian bounded functions on Rn. Then

( f ♢ g) (x) = ( f ⋆ h) (x), (4.8)

where

h(x) = g(x)
e
−|x|2

2

(2π)
n
2
. (4.9)

We are now ready to show filtered backprojection for the Gauss Radon transform using the Gauss convolution
operator.

Theorem 4.2. Let f and g be 1
2 -Gaussian bounded functions on Rn. Then(

R#g
)
♢ f = R#

(
g ♢ G f

)
. (4.10)

Proof. Using the the Gauss convolution operator defined above we have(
(R#g) ♢ f

)
(x) =

∫
Rn

(R#g(x − y)) f (y)e
−|y|2

2
dy

(2π)
n
2

=

∫
Rn

∫
S n−1

g(θ, ⟨(x − y), θ⟩)dθ f (y)e
−|y|2

2
dy

(2π)
n
2

=

∫
S n−1

∫
Rn

g(θ, ⟨(x − y), θ⟩) f (y)e
−|y|2

2
dy

(2π)
n
2

dθ,

where in the last step we used the Fubini theorem to change the order of integration. Decomposing the integral
over Rn to an integral over the hyperplane parallel to θ⊥ at distance |s| from the origin, and an integral over all
s ∈ R, for y ∈ Rn let y = sθ + z, z ∈ θ⊥. Hence

((R#g) ♢ f )(x) =
∫

S n−1

∫
R

∫
θ⊥

g(θ, ⟨x, θ⟩ − s) f (sθ + z)e
−|sθ+z|2

2
dzdsdθ
(2π)

n
2

=

∫
S n−1

∫
R

g(θ, ⟨x, θ⟩ − s)
∫
θ⊥

f (sθ + z)e
−|z|2

2
dz

(2π)
n−1

2

 e
−s2

2
dsdθ

(2π)
1
2

=

∫
S n−1

∫
R

g(θ, ⟨x, θ⟩ − s) G f (s, θ)e
−s2

2
dsdθ

(2π)
1
2

=

∫
S n−1

g(θ, ⟨x, θ⟩) ♢ G f (θ, ⟨x, θ⟩)dθ

= R#(g ♢ G f )(x),

which is the desired result.
�

Since ultimately we are interested in reconstructing the random variable f from its conditional expectations,
we implement the filtered backprojection algorithm with the following corollary.

Corollary 4.1. Let f be a 1
2 -Gaussian bounded random variable on the probability space (Rn, µ) and w a

1
2 -Gaussian bounded function on Rn. Then(

R#w
)
♢ f = R#

(
w ♢ E[ f | θ̃ = α]

)
. (4.11)

Proof. The result follows directly from applying Theorem 3.1 to Theorem 4.2. �
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4.3 Gauss Filtered Backprojection from E[ f | θ̃ = α]
In practice, we are forced to reconstruct a random variable f from a finite set of conditional expectations. Thus
we need to discretize Theorem 4.2. In the filtered backprojection algorithm of Section 2 we defined the discrete
backprojection operator R#

p and used discrete convolution. We now define the discrete analog of the Gauss
convolution ♢ .

Definition 4.2. Let f and g be 1
2 -Gaussian bounded functions on Rn. Define the discrete Gauss convolution by

h
♢ , where

f
h
♢ g =

hn

(2π)
n
2

∑
l

f (x − hl)g(hl)e
−|hl|2

2 . (4.12)

In parallel to the filtered backprojection algorithm for the Radon transform we now implement Corollary 4.1
numerically to recover f from its conditional expectations, appropriately sampled over the support of f :

Wb ♢ f = R#(wb ♢ E[ f | θ̃ = α]) , Wb = R#wb. (4.13)

As before, in order to accurately reconstruct f we choose wb so that Wb approximates the δ-distribution
and satisfies the properties of 2.13.

Algorithm—Gauss Filtered Backprojection: Let f be a 1
2 -Gaussian bounded random variable on the probability

space (Rn, µ).
Step 1: Sample the conditional expectation of f , E[ f | θ̃ j = sl], at points (sl, θ j) , j = 1, 2, ..., p , l =

−q, ..., q , θ j ∈ S n−1 , sl = hl = r
q l.

Step 2: Perform discrete Gauss convolution of wb ♢ E[ f | θ̃ j = sl]. That is

wb
h
♢ E[ f | θ̃ j = sl] = h

q∑
l=−q

wb(σ − sl)E[ f | θ̃ j = hl] e
−|hl|2

2 . (4.14)

In this step we are performing a 1-dimensional Gauss convolution of wb and E[ f | θ̃ j = sl] for each
direction θ j.

Step 3 (Discrete Backprojection): We use the same quadrature rule on S n−1 defined in (2.15).∫
S n−1
ν(θ)dθ =

p∑
j=1

αp jν(θ j), f or ν ∈ H′2m (4.15)

Thus we may interchange the backprojection on the right side of Theorem 4.2 for the discrete backprojection
defined by R#

p,

fGFB = R#
p(wb

h
♢ E[ f | θ̃ j = sl]) =

p∑
j=1

αp jh
q∑

l=−q

wb(σ − sl)E[ f | θ̃ j = hl] e
−|hl|2

2 (4.16)

where fGFB is the approximation of f given by the filtered backprojection algorithm via Corollary 4.1.

5 Error Analysis for Gauss Radon Algorithms

5.1 Gauss Fourier Error
The Fourier algorithm for the conditional expectation (Gauss Radon transform) is effectively the same as that
for the Radon transform. After using Proposition 3.4 to convert the conditional expectation samples to Radon
transforms the algorithm is exactly the same as the Fourier algorithm of Section 2 2. Hence this algorithm will
be subject to the same error estimates summarized in Section 2.6.1.
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5.2 Gauss Filtered Backprojection Error
We are now ready to assess the sources and magnitudes of error incurred by using the Gauss-filtered backprojection
algorithm to reconstruct f from E[ f | θ̃ = α]. The proof of Theorem 2.7, found in [3], motivates much of the
proceeding derivation of error. Recall that in Theorem 2.7 we assumed that f ∈ C∞0 (Ωn

r ). We will now relax that
assumption and allow f to be defined over all of Rn. To accommodate this change we will introduce a bump
function and prove two auxiliary results that give us insight into how best to sample when f is no longer of
compact support, and a convenient way to put bounds on the filter wb.

Theorem 5.1. Let f , h be 1
2 -Gaussian bounded functions, f , h : Rn → R. Let ε > 0. Then

| f (x) − h(x)| ≤ ε(2π)− n
2 (5.1)

if and only if ∣∣∣G f (α, θ) − Gh(α, θ)
∣∣∣ ≤ ε, (5.2)

where x = αθ.

Proof. (⇒) By Theorem 3.2

| f (x) − h(x)| ≤ (2π)−
n
2 e
|x|2
2

∫
S n−1

∫ ∞

0

∫
R

∣∣∣G f (α, θ) − Gh(α, θ)
∣∣∣ [e−2βαe

−α2
2 dα]eiβ⟨θ,x⟩βn−1dβdσ(θ)

≤ (2π)−
n
2 e
|x|2
2

∫
S n−1

∫ ∞

0

∫
R

ε [e−βαe
−α2

2 dα]eiβ⟨θ,x⟩βn−1dβdσ(θ)

= ε(2π)−
n
2 e
|x|2
2

∫
S n−1

∫ ∞

0
e
−|β|2

2 eiβ⟨θ,x⟩βn−1dβdσ(θ)

= ε(2π)−
n
2 e
|x|2
2

∫
Rn

e
−|y|2

2 ei⟨y,x,⟩dy

= ε(2π)−
n
2 e
|x|2
2 e

−|x|2
2 .

Thus
| f (x) − h(x)| ≤ ε(2π)− n

2 .

(⇐) Using the definition of the Gauss Radon transform (3.2) we have∣∣∣G f (α, θ) − Gh(α, θ)
∣∣∣ ≤ ∫

αθ+θ⊥
| f (x) − h(x)| dµαθ+θ⊥

≤
∫
αθ+θ⊥

ε(2π)−
n
2 dµαθ+θ⊥

= ε(2π)−
n
2

∫
αθ+θ⊥

dµαθ+θ⊥

= ε(2π)−
n
2 ∗ 1

< ε,

by definition of the Gaussian measure. �

This theorem is significant in that, replacing h with 0 above, it tells us that G f and f decay at the same rate,
up to a constant. Alternatively, suppose we hypothesize that the unknown function f may actually be a function
h with known Gauss Radon transform Gh. We can take the difference

∣∣∣G f (α, θ) − Gh(α, θ)
∣∣∣ between samples of

each Gauss Radon transform and note whether or not the differences are getting small within some region of
interest.
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Corollary 5.1. Let f , h be 1
2 -Gaussian bounded random variables on the probability space (Rn, µ) where µ is

the standard Gaussian measure. Let ε > 0. Then

| f (x) − h(x)| ≤ ε(2π)− n
2

if and only if ∣∣∣E[ f | θ̃ = α] − E[h | θ̃ = α]
∣∣∣ ≤ ε,

where x = αθ.

Proof. This follows directly from Theorem 3.1. �

Lemma 5.2. Let Wb and wb be defined as in 2.5 and 2.13. Then

ŵb(σ) =
1
2

(2π)
1
2 −n |σ|n−1 Φ̂(|σ| /b), (5.3)

which implies

0 ≤ ŵb(σ) ≤ 1
2

(2π)
1
2 −n |σ|n−1 . (5.4)

Proof. Observe that by Theorem 2.6, we may express Wb in terms of wb via their Fourier transforms:

Ŵb(ξ) = (2π)
n−1

2 |ξ|1−n
(
ŵb( ξ|ξ| , |ξ|) + ŵb(− ξ|ξ| ,− |ξ|)

)
.

Note that by 2.13, Ŵb is a radial function, thus the first argument of ŵb is dropped. For ŵb even we obtain

ŵb(σ) =
1
2

(2π)
1
2 −n |σ|n−1 Φ̂( |σ|b ).

From the assumptions on Φ̂ below (2.13), we arrive at the desired result. �

Proposition 5.1. Let wb be defined as in 2.13. Then

|wb(s)| ≤ (2π)−n bn

n
(5.5)

Proof. We can write wb(s) in terms of its inverse Fourier transform and use Lemma 5.2 to obtain

|wb(s)| ≤ 1
√

2π

∫
R

∣∣∣ey⟨i,s⟩
∣∣∣ |ŵb(y)| dy

=
1
√

2π

∫
R

|ŵb(y)| dy

≤ 1
√

2π

1
2

(2π)
1−2n

2

∫ b

−b
|σ|n−1 dσ

=
1
2

(2π)−n2
∫ b

0
|σ|n−1 dσ

≤ (2π)−n bn

n
.

�
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5.3 Bump Functions and Bounds
In the typical applications of the Radon transform and filtered backprojection (i.e. medical imaging), it is
assumed the function of interest f is of compact support. Now considering the reconstruction of a random
variable f from its conditional expectations, we would like to relax this assumption. In practice we will have
to limit the collection of conditional expectations within some ball of radius r. This allows us to use the Gauss-
filtered backprojection algorithm above; however we incur additional error in the information lost outside of
this sampling region. We will assess this error with the help of bump functions. The bump functions will enable
us to represent f as compactly supported function on Ωn

r smoothly connected to (Ωn
r )c via the bump function.

The notion of a O
(

1
|x|

)
function provides a way to bound the error outside the sampling region while invoking a

relatively weak assumptions on f .

Definition 5.1. A function ϕ : Rn → R is called a bump function if ϕ is a smooth function, satisfying ϕ(x) ≤ 1,
with compact support; that is ϕ ∈ C∞0 (Rn).

Proposition 5.2. Define h : Rn → R

h(|x|) =
e−

1
|x| |x| > 0

0 x = 0
. (5.6)

Then h ∈ C∞(Rn) and all of its derivatives are 0 at x = 0.

We can now construct a bump function ϕr,∆(|x|) from the function h defined above, which is 1 on Ωn
r and 0

outside of Ωn
r+∆.

Proposition 5.3. Let h be defined as in Proposition 5.2. Define

b(x) =
h(r + ∆ − |x|)

h(r + ∆ − |x|) + h(|x| − r)
=

e
−1

r+∆−|x|

e
−1

r+∆−|x| + e
−1
|x|−r

. (5.7)

Then

ϕr,∆(x) =


0 |x| ≥ r + ∆
b(x) r < |x| < r + ∆
1 |x| ≤ r

(5.8)

is a bump function.

Definition 5.2. Let f be a function on Rn. We say f is O
(

1
|x|

)
if there exists M,R > 0 such that | f (x)| ≤ M

|x| for
all x with |x| > R.

Proposition 5.4. Suppose f is O
(

1
|x|

)
. Then for every ε > 0 there exists r such that | f (x)| < ε for every x with

|x| > r.

Proof. Let ε > 0. Since f is O
(

1
|x|

)
we know there exists M,R > 0 such that

| f (x)| ≤ M
|x| .

for all x with |x| > R. Choose r > R so that

M
|x| ≤ ε.

for all x with |x| > r. Hence

| f (x)| ≤ M
|x| < ε

for every x with |x| > r, which is the desired result. �
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The following lemma will be instrumental in the error analysis to follow.

Lemma 5.3. Suppose f is O
(

1
|x|

)
. Let ε > 0. Then there exists r and ∆ such that∣∣∣ f (x) − f (x)ϕr,∆(x)

∣∣∣ ≤ ε, (5.9)

where ϕr,∆(x) is as defined in Proposition 5.3.

Proof. Using Proposition 5.4 with ϕr,∆(x) from (5.7) we have∣∣∣ f (x) − f (x)ϕr,∆(x)
∣∣∣ = | f (x)|

∣∣∣1 − ϕr,∆(x)
∣∣∣ ≤ ε

since 0 ≤ ϕr,∆(x) ≤ 1. �

5.4 Error Estimates: e1, e2, e3

We now have all the tools necessary to derive the error estimate for using the Gauss-filtered backprojection
algorithm to recover a random variable from samples of its conditional expectations.

Theorem 5.2. Let f ∈ C∞ be a O
(

1
|x|

)
random variable on the probability space (Rn, µ) and let g(x) =

f (x) e−
|x|2
2

(2π)(n−1)/2 . Assume that (2.15) holds on H′2m and that, for some ϑ with 0 < ϑ < 1,

b ≤ ϑm, b ≤ π/h. (5.10)
Let ε and r be as in Lemma 5.3. Define the approximate reconstruction of f as

fFB = Wb ♢ f + e1 + e2 + e3

= R#wb ♢ E[ f | θ̃ = α] + e1 + e2 + e3,

where
e1 = R#

(
wb ♢ E[ f | θ̃ = α]

)
− R#

(
wb ♢ E[ fϕr,∆ | θ̃ = α]

)
,

e2 = R#
(
wb ♢ E[ fϕr,∆ | θ̃ = α]

)
− R#

p

(
wb

h
♢ E[ fϕr,∆ | θ̃p = sl]

)
,

and
e3 = R#

p

(
wb

h
♢ E[ fϕr,∆ | θ̃p = sl]

)
− R#

p

(
wb

h
♢ E[ f | θ̃p = sl]

)
Then,

|e1| ≤ ε
∣∣∣S n−1

∣∣∣ 1
n(2h)n ,

|e2| = |e2a| + |e2b| ,

|e2a| ≤ 1
2

(2π)
−(n+1)

2 |S n−1| sup
θ∈S n−1

∫
|α|≥b
|α|n−1

∣∣∣ĝϕr,∆(αθ)
∣∣∣ dα

|e2b| ≤ 2
∣∣∣S n−1

∣∣∣ (2π) −(n+1)
2 (r + ∆)

−n
2 ∥g∥L∞(Ωn

r+∆) η(ϑ, 2l + k) |e3| ≤ ε
∣∣∣S n−1

∣∣∣ 1
n(2h)n .

Proof. Observe that ∣∣∣∣∣R#
(
wb ♢ E[ f | θ̃ = α]

)
− R#

p

(
wb

h
♢ E[ f | θ̃p = sl]

)∣∣∣∣∣
≤

∣∣∣∣R#
(
wb ♢ E[ f | θ̃ = α]

)
− R#

(
wb ♢ E[ fϕr,∆ | θ̃ = α]

)∣∣∣∣
+

∣∣∣∣∣R#
(
wb ♢ E[ fϕr,∆ | θ̃ = α]

)
− R#

p

(
wb

h
♢ E[ fϕr,∆ | θ̃p = sl]

)∣∣∣∣∣
+

∣∣∣∣∣R#
p

(
wb

h
♢ E[ fϕr,∆ | θ̃p = sl]

)
− R#

p

(
wb

h
♢ E[ f | θ̃p = sl]

)∣∣∣∣∣ .
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We will proceed by looking at each error term individually.
e1: Using linearity in the backprojection and convolution operators,∣∣∣∣R#

(
wb ♢ E[ f | θ̃ = α]

)
− R#

(
wb ♢ E[ fϕr,∆ | θ̃ = α]

)∣∣∣∣
=

∣∣∣∣R#
{
wb ♢

(
E[ f | θ̃ = α] − E[ fϕr,∆ | θ̃ = α]

)}∣∣∣∣
≤ R#

(
wb ♢

∣∣∣E[ f | θ̃ = α] − E[ fϕr,∆ | θ̃ = α]
∣∣∣)

We now invoke Lemma 5.3, with
∣∣∣ f (x) − f (x)ϕr,∆(x)

∣∣∣ ≤ ε(2π)− n
2 , and Corollary 5.1 to establish the bound∣∣∣E[ f | θ̃ = α] − E[ fϕr,∆ | θ̃ = α]

∣∣∣ ≤ ε.
Hence

R#
(
wb ♢

∣∣∣E[ f | θ̃ = α] − E[ fϕr,∆ | θ̃ = α]
∣∣∣)

≤ R#(|wb| ♢ ε)

≤
∫

S n−1

∫
R

|wb(s − t)| ε e
−t2

2
dt
√

2π

≤ ε
∣∣∣S n−1

∣∣∣ ∫
R

|wb(s − t)| e −t2
2

dt
√

2π
.

Using Proposition 5.1 and the assumption b ≤ π/h we find

≤ ε
∣∣∣S n−1

∣∣∣ [(2π)−n bn

n

] ∫
R

e
−t2

2
dt
√

2π

≤ ε
∣∣∣S n−1

∣∣∣ (2π)−n bn

n

≤ ε
∣∣∣S n−1

∣∣∣ 1
n

(
1

2h

)n

.

First, e2: This error term is essentially the Gauss Radon analog of Theorem 2.7. We will proceed by
breaking up e2 into two parts similar to Theorem 2.7.

e2a: The error incurred by using the discrete Gauss convolution on the compactly supported part of f is

R#
p

(
wb

h
♢ E[ fϕr,∆ | θ̃p = sl] − wb ♢ E[ fϕr,∆ | θ̃ = α]

)
.

Using Proposition 3.4 we obtain

R#
p

(
wb

h
♢ e

α2
2 Rgϕr,∆ − wb ⋆ e

α2
2 Rgϕr,∆

)
= R#

p

wb
h
⋆ e

α2
2 Rgϕr,∆

e
−α2

2

√
2π
− wb ⋆ e

α2
2 Rgϕr,∆

e
−α2

2

√
2π


=

1
√

2π
R#

p

(
wb

h
⋆ Rgϕr,∆ − wb ⋆ Rgϕr,∆

)
.

Using Theorem 6.7, we express the term in parentheses in terms of its Fourier transform,

(wb
h
⋆ Rgϕr,∆ − wb ⋆ Rgϕr,∆ )̂(θ, α) = (2π)1/2ŵb(α)

∑
l,0

R̂gϕr,∆

(
θ, α − 2π

h
l
)
.
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By taking the inverse Fourier transform and absolute value we obtain∣∣∣∣∣wb
h
⋆ Rgϕr,∆ − wb ⋆ Rgϕr,∆

∣∣∣∣∣ (θ, s) =
∫ b

−b
|ŵb(α)|

∑
l,0

∣∣∣∣∣R̂gϕr,∆ (w, α − 2π
h

l)
∣∣∣∣∣ ∣∣∣eis·α

∣∣∣ dα
≤

∫ b

−b
|ŵb(α)|

∑
l,0

∣∣∣∣∣R̂gϕr,∆ (w, α − 2π
h

l)
∣∣∣∣∣ dα.

Since b ≤ π/h we may employ Lemma 5.2 to obtain∣∣∣∣∣wb
h
⋆ Rgϕr,∆ − wb ⋆ Rgϕr,∆

∣∣∣∣∣ (θ, s) ≤ 1
2

(2π)
1
2 −n

∫
|α|≥b
|α|n−1

∣∣∣∣R̂gϕr,∆ (θ, α)
∣∣∣∣ dα.

Using the Fourier Slice Theorem (Theorem 2.1) we now have∣∣∣∣∣wb
h
⋆ Rgϕr,∆ − wb ⋆ Rgϕr,∆

∣∣∣∣∣ (θ, s) ≤ 1
2

(2π)
−n
2

∫
|α|≥b
|α|n−1

∣∣∣ĝϕr,∆(αθ)
∣∣∣ dα.

Now, applying the backprojection operator and quadrature rule (2.15) we obtain

1
√

2π
R#

p(wb
h
⋆ Rgϕr,∆ − wb ⋆ Rgϕr,∆ )

≤ 1
√

2π
R#

p

[
1
2

(2π)
−n
2

∫
|α|≥b
|α|n−1

∣∣∣ĝϕr,∆(αθ)
∣∣∣ dα]

≤
p∑

j=1

αp j sup
θ∈S n−1

[
1
2

(2π)
−(n+1)

2

∫
|α|≥b
|α|n−1

∣∣∣ĝϕr,∆(αθ)
∣∣∣ dα] .

Observe that after applying the supremum the expression in brackets above is no longer a function of θ j .
Therefore ν(θ j, ⟨x, θ⟩ = α) = 1 in the expression for the quadrature rule. Furthermore

p∑
j=1

αp j =
∣∣∣S n−1

∣∣∣ .
Thus we obtain the desired result for e2a.

Now e2b: Expand (wb ⋆ Rgϕr,∆ ) in terms of spherical harmonics (Corollary 6.2) noting that all spherical
harmonics of odd degree drop out since (wb ⋆ Rgϕr,∆ ) is an even function of θ:

(wb ⋆ Rgϕr,∆ )(θ, ⟨x, θ⟩ = α) =
∞∑

l=0

1
c(n, l)

N(n,l)∑
k=1

Y2l
k (θ)νl,k(x),

where

νl,k(x) =
∫

S n−1
Y2l

k (θ)(wb ⋆ Rgϕr,∆ )(θ, ⟨x, θ⟩ = α)dθi.e ∞∑
l=0

N(n,l)∑
k=1

⟨(wb ⋆ Rgϕr,∆ ),Y2l
k (θ)⟩Y2l

k (θ)

 .
Note that, using the Funk-Hecke Theorem (Theorem 6.10) it can be shown,∫

S n−1

∣∣∣Y2l
k (θ)

∣∣∣2 dθ = c(n, l), (5.11)

and, using (6.17) ∣∣∣Y2l
k

∣∣∣ ≤ 1. (5.12)
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Let us express (wb ⋆ Rgϕr,∆ ) in terms of its Fourier transform, yielding

νl,k(x) =
∫

S n−1
Y2l

k (θ)
[∫
R

eiαx·θ( ̂wb ⋆ Rgϕr,∆ )(θ, α)dα
]

dθ.

Using Fourier inversion and the Fourier Slice Theorem 2.1

νl,k(x) = (2π)
n−1

2

∫
S n−1

Y2l
k (θ)

∫ b

−b
eiα⟨x,θ⟩ŵb(α)ĝϕ(r,∆)(αθ)dα dθ

= (2π)
n−1

2

∫
S n−1

Y2l
k (θ)

∫ b

−b
eiα⟨x,θ⟩ŵb(α)(2π)

−n
2

∫
Rn

gϕ(r,∆)(y)dydα dθ.

= (2π)
1
2

∫
R

g(y)ϕ(r,∆)(y)
∫ b

−b
ŵb(α)

∫
S n−1

Y2l
k (θ)eiα⟨(x−y),θ⟩dθ dα dy.

Using (6.23), the innermost integral yields

(2π)
n
2 i2l(α|x − y|)

(2−n)
2 J2l+ n−2

2
(α|x − y|)Y2l

k

(
x − y
|x − y|

)
.

Also note that
x − y
|x − y| ∈ S n−1.

Employing Lemma 5.2 again and recalling that
∣∣∣Y2l

k

∣∣∣ ≤ 1,∣∣∣νl,k(x)
∣∣∣ ≤ 1

2
(2π)

−n
2 · | − 1|

∫
Ωn

r+∆

∣∣∣g(y)ϕ(r,∆)(y)
∣∣∣ · |x − y| 2−n

2

∫ b

−b
α

n
2 J2l+ n−2

2
(α|x − y|)dα dy. (5.13)

Now let l > m and set k = n−2
2 . Also note that b ≤ ϑm < ϑl and by construction of ϕr,∆ we have

|x − y| ≤ 2(r + ∆). Then, using Proposition 6.3, we obtain∫ b

−b
α

n
2 J2l+k(α|x − y|)dα ≤

∫ b

−b
|α| n2 |J2l+k(α|x − y|)| dα

≤ b
n
2

∫ b

−b
|J2l+k(α|x − y|)| dα

≤ l
n
2

∫ ϑl

−ϑl
|J2l+k(α|x − y|)| dα, since ϑ < 1,

≤ sup
|s|≤1

l
n
2

∫ ϑl

−ϑl
|J2l+k(2(r + ∆)sα)| dα

=
1

2(r + ∆)
l

n
2 sup
|s|≤1

∫ (r+∆)ϑl

−(r+∆)ϑl
|J2l+k(ts)| dt

≤ 1
2(r + ∆)

l
n
2 sup
|s|≤1

∫ ϑ((r+∆)l+k)

−ϑ((r+∆)l+k)
|J2l+k(ts)| dt

≤ 1
2(r + ∆)

l
n
2 η1(ϑ, 2l + k).

Hence,

|νl,k | ≤
1
2

(2π)
−n
2

∫
|y|≤2(r+∆)

∣∣∣g(y)ϕr,∆(y)
∣∣∣ · |x − y| 2−n

2

[
1

2(r + ∆)
l

n
2 η1(ϑ, 2l + k)

]
dy

≤ 1
2

(2π)
−n
2

∫
Ωn

r+∆

∣∣∣g(y)ϕr,∆(y)
∣∣∣ (2(r + ∆))

−n
2 l

n
2 η1(ϑ, 2l + k)dy

≤ 1
2

(4π (r + ∆))
−n
2 ∥gϕr,∆∥L∞(Ωn

r+∆)l
n
2 η1(ϑ, 2l + k).
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Let (wb ⋆ g)m represent the spherical harmonic series expansion for wb ⋆ g, truncated after the mth term. It
follows that

||wb ⋆ gϕr,∆ − (wb ⋆ gϕr,∆)m||L∞(Z)

≤
∑
l>m

1
c(n, l)

∑
k

||νl,k ||L∞(Ωn
r+∆)

≤ 1
2

(4π (r + ∆))
−n
2 ∥g∥L∞(Ωn

r+∆)

∑
l>m

N(n, l)
c(n, l)

l
n
2 η1(ϑ, 2l + k).

Note that

|e2b| =
∣∣∣(R#

p − R#)(wb ⋆ gϕr,∆ − (wb ⋆ gϕr,∆)m)
∣∣∣

=
∣∣∣R#

p(wb ⋆ gϕr,∆) − R#(wb ⋆ gϕr,∆) − R#
p(wb ⋆ gϕr,∆)m + R#(wb ⋆ gϕr,∆)m

∣∣∣
=

∣∣∣2R#
p(wb ⋆ gϕr,∆ − (wb ⋆ gϕr,∆)m)

∣∣∣ .
Employing the quadrature rule on H′2m (2.15), we obtain

|e2b| ≤ 2
∣∣∣S n−1

∣∣∣ ∥wb ⋆ gϕr,∆ − (wb ⋆ gϕr,∆)m∥L∞(Z)

≤ 2
∣∣∣S n−1

∣∣∣ 1
2

(4π (r + ∆))
−n
2 ∥gϕr,∆∥L∞(Ωn

r+∆)

∑
l>m

N(n, l)
c(n, l)

l
n
2 η1(ϑ, 2l + k)

≤
∣∣∣S n−1

∣∣∣ (4π(r + ∆))
−n
2 ∥gϕr,∆∥L∞(Ωn

r+∆)η(ϑ,m),

where

η(ϑ,m) =
∑
l>m

N(n, l)
c(n, l)

l
n
2 η1(ϑ, 2l + k)

≤
∑
l>m

N(n, l)
c(n, l)

l
n
2

√
2ϑ

(1 − ϑ)
1
4

e−
2l+ n−2

2
4 (1−ϑ2)

3
2
,

which converges for all n,m ∈ N (see Section 6.4; for details see pages 65-66 of [3]). This completes the e2

error term.
Lastly, e3: This error term accounts for the discretization of the backprojection operator and Gauss convolution

with respect to the first error term, e1. Using linearity in the discrete backprojection and convolution operators,

∣∣∣∣∣R#
p

(
wb

h
♢ E[ fϕr,∆ | θ̃p = sl]

)
− R#

p

(
wb

h
♢ E[ f | θ̃p = sl]

)∣∣∣∣∣
= R#

p

∣∣∣∣∣wb
h
♢

(
E[ fϕr,∆ | θ̃p = sl] − E[ f | θ̃p = sl]

)∣∣∣∣∣
≤

p∑
j=1

αp j
h

(2π)
1
2

∑
l

wb(s − hl)
∣∣∣E[ fϕr,∆ | θ̃p = sl] − E[ f | θ̃p = sl]

∣∣∣ e −|hl|2
2 .

Using Lemma 5.3 with
∣∣∣ f (x) − f (x)ϕr,∆(x)

∣∣∣ ≤ ε(2π)− n
2 and Corollary 5.1, we obtain

≤
p∑

j=1

αp j
h

(2π)
1
2

∑
l

|wb(s − hl)| ε e
−|hl|2

2

≤ ε
∣∣∣S n−1

∣∣∣ h

(2π)
1
2 +n

bn

n

∑
l

e
−|hl|2

2 ,
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by Proposition 5.1 and (2.15).

We now use the first assumption on b and bound the infinite sum over l by its integral giving us

≤ ε
∣∣∣S n−1

∣∣∣ h

(2π)
1
2 +n

(
π
h

)n

n

∑
l

e
−|hl|2

2

≤ ε
∣∣∣S n−1

∣∣∣ 1

n
√

2π

1
2nhn−1

∫ ∞

−∞
e
−|hl|2

2 dl

≤ ε
∣∣∣S n−1

∣∣∣ 1

n
√

2π

1
2nhn−1

√
2π
h

≤ ε
∣∣∣S n−1

∣∣∣ 1
n(2h)n .

�

Several comments are in order with respect to the sources of error. Each error component of the Gauss
filtered backprojection algorithm gives us some insight into how to reduce or eliminate that component. The first
error term e1 is primarily a function of r+∆. Recall that for any ε we could construct a bump function ϕr,∆ with
parameters r and ∆ such that

∣∣∣ f (x) − f (x)ϕr,∆(x)
∣∣∣ ≤ ε. Thus by choosing r + ∆ large we can make ε arbitrarily

small and offset the remaining constants; however, we also want to choose b to be large to minimize some of the
other error terms. Although the parameter b is not directly within our control, a related quantity—the sampling
distance h—is chosen during sampling. We choose h ≤ π

b , satisfying the Nyquist–Shannon Theorem 6.6.
Taking h small implies b is large. Since bn appears in e1 we must increase r + ∆ to accommodate the choice of
b. In practical terms, this translates to sampling conditional expectations out to a greater radius.

The second error term is entirely analogous to the two error terms in the original filtered backprojection
algorithm (2.7). If g is b-band limited or essentially b-band limited then the integral in e2a is negligible or
zero. The reduction of this error term can be achieved by taking the sampling distance h to be small, inflating
b to include the largest frequency component of g. The term e2b is inversely proportional to (r + ∆)

n
2 so as we

increase r by sampling a larger ball this term goes to zero since the remaining terms are essentially constants.
The third error term is the discrete analog of e1. This term is similarly reduced by choosing r + ∆ to make

ε small and offset b (or equivalently h).
In summary, the choice of sampling interval h and the parameters r and ∆ determine the accuracy of

the Gauss filtered backprojection algorithm. The reader will likely have noticed that, while the Gauss Radon
transform can be performed on 1

2 -Gaussian bounded functions, the error analysis required a slightly stronger
assumption, O

(
1
|x|

)
, on the function (random variable) of interest. It is fairly easy to see that it was not necessary

for f to be in S (Rn) for the error analysis to hold; however, we found that it was necessary to assume that the
function was “eventually” bounded by some decreasing curve outside the ball of radius r. A future research
topic would be to investigate the error bounds for reconstruction of 1

2 -Gaussian bounded functions, or the
weakest assumptions necessary to bound the error for reconstruction of 1

2 -Gaussian bounded functions.

5.5 Future Work, and Observations
The last chapter of the Radon/Gauss Radon transform has certainly not been written. There are many subtopics
in mathematical tomography that we have not touched upon in relation to the Gauss Radon transform; see
[3, 2, 6, 4]. We did not investigate sampling geometry for either algorithm, although we already know from the
comments following the Fourier algorithm, that sampling geometry can be a deciding factor in the utility of that
particular algorithm.
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6 Appendix

6.1 Convolution
Definition 6.1. Let f and g ∈ L1(Rn). Define the convolution of f and g, f ⋆ g, by

f ⋆ g(x) =
∫

y∈Rn
f (x − y)g(y)dy (6.1)

Remark 6.1. If F and H ∈ L1(R×S n−1) then we define the convolution of F⋆H in terms of the the first variable
only. That is

(F ⋆ H)(s) =
∫

t∈R
F(s − t, θ)H(t, θ)dt (6.2)

Here we present several basic properties of the convolution operation.

Proposition 6.1. Let f , g, and h ∈ L1(Rn). Then the following hold:

1. (commutativity) f ⋆ g = g ⋆ f

2. (associativity) f ⋆ (g ⋆ h) = ( f ⋆ g) ⋆ h

3. (distributivity) f ⋆ (g + h) = f ⋆ g + f ⋆ h

The space of Lebesgue integrable functions L1(Rn) can be considered a commutative algebra, defining
multiplication as convolution; however, the algebra is not without issue [2]. This algebra does not have a
multiplicative identity. That is, there exists no element ϕ ∈ L1(Rn) such that f ⋆ ϕ = f . Fortunately we can
define a collection of functions called approximate identities that, when convoluted with a function f , return f
approximately to any degree of accuracy.

Definition 6.2. Let f ∈ L1(Rn). The function ϕϵ(x) ∈ L1(Rn) is an approximate identity if

lim
ϵ→0

f ⋆ ϕϵ(x) = f (x)

for all x ∈ Rn.

The next theorem guarantees that such functions exist and provides some insight into how we might
construct them. A proof for the following theorem can be found in [2]. For more general results consult
[8].

Theorem 6.1. (Approximate Identity Theorem). Let ϕ be a nonnegative, integrable function defined on Rn such
that ∫

Rn
ϕ(x)dx = 1.

For any ϵ > 0 define

ϕϵ(x) =
1
ϵ
ϕ
( x
ϵ

)
. (6.3)

Then for any function f such that f is continuous and bounded,

lim
ϵ→0

f ⋆ ϕϵ(x) = f (x) (6.4)

for all x ∈ Rn.
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6.2 Fourier Transform Results
There are several different conventions commonly used to define the Fourier transform of a function [7, 8].
These conventions typically differ by the location of the 2π factor. For this manuscript we will adopt the
definition to follow. We will define the Fourier transform, several key results, and present the inversion formula
based on our definition. The interested reader may consult the sources above for a more complete exposition
on the subject.

Definition 6.3. Let f ∈ L1(Rn). The Fourier transform of f is defined by

f̂ (ξ) = (2π)−
n
2

∫
Rn

e−i⟨x,ξ⟩ f (x)dx, (6.5)

where dx is the Lebesgue measure on Rn.

Theorem 6.2. Let f ∈ L1(Rn). Then f̂ ∈ S (Rn), and

∥ f̂ ∥L∞ ≤ ∥ f ∥L1 (6.6)

Thus the Fourier transform is a mapping from L1(Rn) into S (Rn), the sup-normed Banach space of
complex continuous functions on Rn that vanish at infinity. The next two theorems tells how the Fourier
transform acts on f ∈ S (Rn) and L2(Rn).

Theorem 6.3. The Fourier transform is a continuous linear homeomorphism from S (Rn) onto S (Rn).

Theorem 6.4. (Plancherel Theorem). Let f ∈ S (Rn). Then the Fourier transform f → f̂ extends a linear
isometry of L2(Rn) onto L2(Rn) and

∥ f ∥L2 = ∥ f̂ ∥L2 (6.7)

Theorem 6.5. (Fourier Inversion Theorem). Let f ∈ L1(Rn). Then

f (x) = (2π)−
n
2

∫
Rn

ei⟨x,ξ⟩ f̂ (ξ)dξ. (6.8)

The following are several useful results relating convolution operator to the Fourier transform.

Proposition 6.2. Let f , g ∈ S (Rn). Then the following hold:

1. ̂( f ⋆ g) = (2π)
n
2 f̂ ĝ

2. (̂ f g) = (2π)−
n
2 f̂ ⋆ ĝ

3. f ⋆ g ∈ S (Rn)

In numerous applications we are interested in studying the Fourier transform or inverting the Fourier
transform using discrete samples. We are typically unable to evaluate the integrals explicitly from sampled
data so we require discrete analogs to Fourier transforms and inverse transforms.

Definition 6.4. Let f (x) ∈ L1(Rn). Let f be sampled at intervals of length h. Define the discrete Fourier
transform as

f̂ (ξ) = (2π)−
n
2 hn

∑
k

f (hk)e−ih⟨ξ,k⟩ , k ∈ Zn. (6.9)

Similarly, define the discrete inverse Fourier transform as

(2π)−
n
2

∑
k

f̂ (hk)eih⟨x,k⟩ , k ∈ Zn. (6.10)
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The next natural step is to establish the accuracy of such discrete approximations and determine how we
must sample in order to reliably approximate a Fourier or inverse Fourier transform. First we must define a
class of functions whose Fourier transforms disappear (or nearly so) far enough from the origin. The Nyquist-
Shannon Sampling theorem then tells us exactly the conditions that must be satisfied to accurately approximate
a Fourier transform from this class of functions. We present the following results in the vernacular of [3]. The
interested reader should consult [9] for a more in depth treatment.

Definition 6.5. Let f ∈ L1(Rn) and b > 0. The function f is called b-band-limited or band-limited with
bandwidth b if f̂ is locally integrable and f̂ (ξ) = 0 a.e. for all ξ such that |ξ| > b.

Remark 6.2. We call a function f essentially b-band-limited if for every ε > 0 there exists b such that∫
|ξ|≥b
|ξ|n−1

∣∣∣ f̂ (ξ)
∣∣∣ dξ ≤ ϵ. (6.11)

Theorem 6.6. (Nyquist-Shannon sampling theorem). Let f ∈ L1(Rn) be b-band-limited and let h ≤ π
b . Then

the following hold in L2(Rn)
f̂ (ξ) = (2π)−

n
2 hn

∑
k

f (hk)e−ih⟨ξ,k⟩ , k ∈ Zn , (6.12)

and
f (x) =

∑
k

f (hk) sinc ( π2 (x − hk)) (6.13)

where sinc(z) = sin(z)
z .

The significance of the sampling theorem cannot be understated. If we can sample a function f such that
the distance between sampled points is at most half of the smallest ”frequency” component of f then we can
reconstruct the function or its Fourier transform exactly. Put another way, we can compute Fourier transforms
(and inner products) exactly by a quadrature rule (e.g. trapezoidal) in L2(Rn). This theorem plays a major role
in the reconstruction of a function from its Radon and Gauss Radon transforms due to their intrinsic relationship
to the Fourier transform via the Fourier slice theorem.

We conclude this section with a result from [3] giving the difference between the Fourier transform of
the discrete and continuous convolution of two functions from the Schwartz space. We need this result for the
derivation of error components for the filtered backprojection algorithm.

Theorem 6.7. Let f , g ∈ S (Rn). Then

̂
( f

h
⋆ g)(ξ) − ̂( f ⋆ g)(ξ) = (2π)

n
2 f̂ (ξ)

∑
l,0

ĝ
(
ξ − 2π

h l
)

(6.14)

6.3 Spherical Harmonics
Definition 6.1. Consider the following sets of polynomials:

1. Let Pk be the set of polynomials of degree less than or equal to k.

2. Let Ph
k be the set of homogeneous polynomials of degree k, i.e. p is degree k and p(αx) = αk p(x).

3. Let Hk = {p ∈ Pk
k ; ∆p = 0}, where ∆ is the Laplacian Operator, i.e. ∆p =

∑n
i=1
∂2 p
∂x2

i
.

4. Let H′k be the the restriction to S n−1 of Hk. That is |x| = 1.

The set H′k is the space of spherical harmonics of degree k.

Theorem 6.8. The dimension of H′k is given by

N(n, l) = dim(H′k) =
(2k + n − 2)(n + k − 3)!

k!(n − 2)!
= O(kn−2).
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See [10, 11]
The following results are presented in [11] on page 141 as Corollaries 2.3 and 2.4, and the remarks

following Corollary 2.4. This result is powerful in that it allows us to express any function restricted to S n−1 as a
linear combination of spherical harmonics. Furthermore, spherical harmonics of different degree are orthogonal
on S n−1. Thus after normalizing we can construct an orthonormal basis for L2(S n−1, dθ) from

∪∞
k=0 H′k.

Theorem 6.9. The collection of all finite linear combinations of elements of
∪∞

k=0 H′k is

1. dense in the space of all continuous function on S n−1

2. dense in L2(S n−1, dθ)

Corollary 6.1. If Y j and Y l are are spherical harmonics of degree j and l, respectively, with j , l, then∫
S n−1

Y j(θ)Y l(θ)dθ = 0 (6.15)

Corollary 6.2. The collection
∪∞

l=0
∪N(n,l)

k=1

{
Y l

k
c(n,l)

}
of normalized spherical harmonics form an orthonormal basis

for L2(S n−1, dθ). That is if f ∈ L2(S n−1, dθ), then there exists a unique representation

f (θ) =
∞∑

l=0

1
c(n, l)

N(n,l)∑
k=1

Y l
k(θ)νl,k, (6.16)

where
νl,k =

∫
S n−1

Y l
k(θ) f (θ)dθ

and c(n, l) =
∫

S n−1

∣∣∣Y l
k(θ)

∣∣∣2 dθ .

Remark 6.3. Using the Funk-Hecke Theorem, it can be shown that∣∣∣Y l(θ)
∣∣∣2 ≤ 1

c(n, l)

∫
S n−1

Y l2(ω)dω. (6.17)

see [3].

Before presenting the Funk-Hecke Theorem, a powerful result instrumental in deriving the error bounds in
both Radon and Gauss-Radon Reconstruction, we must define the Gegenbauer Polynomials.

Consider the weight function Gλ(x) = (1 − x2)λ−
1
2 and the corresponding space L2([−1, 1],Gλ(x)dx) with

inner product given by

⟨ f , g⟩λ =
∫ 1

−1
f (x)g(x)Gλ(x) dx

By performing the Gram-Schmidt procedure on the set {1, x, x2, . . . }, we obtain an orthogonal set of polynomials
{Cλk }∞k=0 where k is the degree of the polynomial. That is ⟨Cλk ,Cλl ⟩ = 0 when l , k. The polynomials are often
normalized so that Cλk (1) = 1, in which case Cλ0 ≡ 1.

Theorem 6.10 (Funk-Hecke Theorem). Suppose that F : R → satisfies
∫ 1

−1
|F(t)| (1 − t2)(n−3)/2 dt < ∞ and

S m ∈ H′m, then ∫
S n−1

F(⟨θ, ω⟩)S m(θ) dθ = S m(ω)|S n−2|
∫ 1

−1
F(t)Cλm(t)(1 − t2)(n−3)/2 dt

where λ = 1
2 n − 1.

Note that the above theorem assumes the normalized version of Cλm where Cλm(1) = 1.

Remark 6.4. Note that the assumption
∫ 1

−1
|F(t)| (1−t2)(n−3)/2 dt < ∞ is equivalent to stating that F ∈ L1([−1, 1],G

1
2 n−1(t)dt).

27



Becnel and Riser-Espinoza; AJPAS, 3(1): 1-31, 2019; Article no.AJPAS.46373

6.4 Bessel Functions
For an extensive survey of Bessel functions the reader is directed to [12]. Bessel functions of the first kind,
Jk(x), are defined as the solutions to the differential equation

x2 d2w
dx2 + x

dw
dx
+

(
x2 − k2

)
w = 0. (6.18)

Bessel functions of the first kind can be defined by the generating function

ex(z− 1
z )/2 =

∑
k

zk Jk(x)

where Jk(x) = 1
2πi

∫
S 1 ex(z− 1

z )/2z−k−1 dz

Fact 6.1. The Bessel functions of the first kind satisfy the following growth bound for 0 < α < 1

0 ≤ Jv(αv) ≤ 1
√

2πv

1
(1 − α2)1/4 e−

v
3 (1−α2)3/2

.

See [3] for derivation.

Proposition 6.3. For 0 < α < 1 and m ≥ 0 define

η1(α,m) = sup
−1<r<1

∫ αm

−αm
|Jm(rσ)| dσ.

Then there exists nonnegative Cα, λα, and Mα such that

η1(α,m) ≤ Cαe−λαm

for all m > Mα.

Proof. Observe

η1(α,m) = sup
−1<r<1

∫ αm

−αm
|Jm(rσ)| dσ

= sup
−1<r<1

∫ αm

−αm
|Jm(r

σ

m
m)| dσ

let t = σm and dt = dσ
m to get

= sup
−1<r<1

m
∫ α

−α
|Jm(rtm)| dt

apply Fact 6.1 to get

≤ sup
−1<r<1

m
∫ α

−α

1
√

2πm

1
(1 − (rt)2)1/4 e−

m
3 (1−(rt)2)3/2

dt

≤ sup
0≤r<1

2m
∫ α

0

1
√

2πm

1
(1 − (rt)2)1/4 e−

m
3 (1−(rt)2)3/2

dt

Since 1
(1−x2)1/4 and e−

m
3 (1−x2)3/2

are increasing functions on (0, 1)

≤ 2m
∫ α

0

1
√

2πm

1
(1 − α2)1/4 e−

m
3 (1−α2)3/2

dt

= (2m)1/2 α

(1 − α2)1/4 e−
m
3 (1−α2)3/2

.
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Now we use the following: for 0 < β < δ and k ∈ R there exists a constant M such that xke−δx ≤ e−βx for all
x > M. So for the above there exists an Mα such that

η1(α,m) ≤ 21/2 α

(1 − α2)1/4 e−
m
4 (1−α2)3/2

for all m ≥ Mα. Thus we arrive at the desired result, taking Cα =
√

2α
(1−α2)1/4 and λα =

(1−α2)3/2

4 �

Fact 6.2. The Bessel functions and the Gegenbauer polynomials are related via the Fourier transform as follows

̂(GλCλm)(σ) =
Γ(2λ)
Γ(λ)

(2π)
1
2 2−λi−mσ−λJm+λ(σ).

See [13].

Example 6.3. It can be shown that using the Funk-Hecke Theorem and 6.2 we can compute:∫
S n−1

e−iσy·θS m(θ) dθ

as
(2π)n/2im(σ|y|)−λJm+λ(σ|y|)S m(y/|y|), (6.19)

where y ∈ Rn, σ ∈ R, and S m ∈ H′m.
We begin by rewriting the above integral as:∫

S n−1
e−iσ|y| y

|y| ·θS m(θ) dθ

We can use the Funk-Hecke Theorem with F(t) = e−iσ|y|t and get that the above is equivalent to

S m(y/|y|)|S n−2|
√

2π
∫ 1

−1
e−iσ|y|tCλm(t)(1 − t2)(n−3)/2 dt

√
2π
,

where we have multiplied and divided by
√

2π in anticipation for the next step. Temporarily ignoring the
constants in front, the integral above is nothing more than the Fourier transform of GλCλm evaluated at σ|y|
(with λ = 1

2 n − 1). Note here that the function Gλ is only defined on the interval [−1, 1] and thus the Fourier
Transform integral is only taken over [−1, 1] and not the entire real line. Thus using Fact 6.2, the previous
integral becomes

̂(GλCλm)(σ|y|) = Γ(2λ)
Γ(λ)

(2π)2−λi−m(σ|y|)−λJm+λ(σ|y|)

where Jm+λ is a Bessel function. In summary∫
S n−1

e−iσy·θS m(θ) dθ = S m(y/|y|)|S n−2|Γ(2λ)
Γ(λ)

(2π)2−λi−m(σ|y|)−λJm+λ(σ|y|) (6.20)

where λ = 1
2 n − 1.

Using the substitution y = −y in (6.20) we obtain∫
S n−1

eiσy·θS m(θ) dθ = S m(−y/|y|)|S n−2|Γ(2λ)
Γ(λ)

(2π)2−λi−m(σ|y|)−λJm+λ(σ|y|).

Since S m is homogeneous of degree m we have S m(−1θ) = (−1)mS m(θ) and thus∫
S n−1

eiσy·θS m(θ) dθ = (−1)mS m(y/|y|)|S n−2|Γ(2λ)
Γ(λ)

(2π)2−λi−m(σ|y|)−λJm+λ(σ|y|)
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combining the (−1)m and i−m we get simply im and thus∫
S n−1

eiσy·θS m(θ) dθ = S m(y/|y|)|S n−2|Γ(2λ)
Γ(λ)

(2π)2−λim(σ|y|)−λJm+λ(σ|y|). (6.21)

We now simplify (6.20) and (6.21) by using that λ = 1
2 n − 1 and |S n−2| = 2π

n−1
2

Γ( n−1
2 )

[3] to get that the above is

equivalent to

|S n−2|Γ(2λ)
Γ(λ)

(2π)2−λ = 2π
n−1

2
Γ(n − 2)

Γ( n−1
2 )Γ( 1

2 n − 1)
(2π)2−( 1

2 n−1). (6.22)

We can then apply the duplication formula (multiplication theorem) for the gamma function

Γ(z + 1
2 )Γ(z) = 2(1−2z) √πΓ(2z),

found on page 256 of [12]. Using z = 1
2 n − 1 = n−2

2 in the above yields

Γ( 1
2 n − 1

2 )Γ( 1
2 n − 1) = 2(−n+3) √π Γ(n − 2).

or equivalently
Γ(n − 2)

Γ( n−1
2 )Γ( 1

2 n − 1)
= 2(n−3)π−1/2

Using the above in (6.22) yields

|S n−2|Γ(2λ)
Γ(λ)

(2π)2−λ = 2π
n−1

2 2(n−3)π−1/2(2π)2−( 1
2 n−1) = (2π)n/2

Therefore (6.20) and (6.21) become∫
S n−1

e−iσy·θS m(θ) dθ = (2π)n/2i−m(σ|y|)−λJm+λ(σ|y|)S m(y/|y|) (6.23)

and ∫
S n−1

eiσy·θS m(θ) dθ = (2π)n/2im(σ|y|)−λJm+λ(σ|y|)S m(y/|y|) (6.24)

respectively.

Example 6.4. In the previous examples (6.20) and (6.21), we take the special case S 0 = 1 ∈ H′0 we have∫
S n−1

e−iσy·θ dθ =
∫

S n−1
eiσy·θ dθ = (2π)n/2(σ|y|)−( 1

2 n−1) J 1
2 n−1(σ|y|). (6.25)
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