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GLOBAL EXISTENCE AND FINITE TIME BLOW-UP IN A

CLASS OF STOCHASTIC NONLINEAR WAVE EQUATIONS

RANA D. PARSHAD*, MATTHEW A. BEAUREGARD, ASLAN KASIMOV†,
AND BELKACEM SAID-HOUARI†

Abstract. We consider a stochastic extension of a class of wave equations
with nonlinear viscoelastic damping and nonlinear forcing. We show the
global existence of the solution of the stochastic equation and, additionally,
when the source term dominates the damping term and when the initial data
are large enough, we show that the expected value of the L

p norm of the
solution, blows up in finite time. In the presence of noise, we extend the pre-
viously known range of initial data corresponding to blow-up. Furthermore
we use a spectral stochastic Galerkin method to perform numerical simula-
tions that verify certain special cases of our theoretical results.

1. Introduction

Wave motion is a very common phenomenon in the physical world: vibrations
of elastic strings and plates, propagation of water waves, electromagnetic waves
and sound, shock waves and tsunamis are well-known examples [4, 12, 38], which
have been extensively studied. In certain cases the external forcing terms modeling
such phenomena, may contain a random component. For example, waves arising
in composite material structures pass through a host of different layers [28], which
have randomly varying physical properties. Understanding the role played by
stochastic effects in wave dynamics, is thus an important theoretical as well as
practical problem. Given a mathematical model for non-linear wave propogation,
one can investigate the question of whether there is a globally existing solution,
or if perhaps finite time blow-up occurs. That is:

lim
t→T∗<∞

||u||X = +∞ (1.1)

where X is a certain function space. Classical examples where finite time blow-up
is seen include Burgers’ equation [38], and wave equations with a nonlinear source
term [16, 35]. Understanding the conditions that lead to blow-up of solutions in
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stochastic nonlinear wave equations, continues to be intensely investigated [2, 5,
7, 10, 20, 27, 31].

Our goal in this work is to demonstrate global existence as well as blow-up
(depending on the class of the initial data and the exponents on the source and
damping terms), for the following nonlinear damped and forced wave equation
with a stochastic noise term


























∂ttu−∆∂tu− div(|∇u|α−2∇u)− div(|∇∂tu|
β−2∇∂tu) + a|∂tu|

q−2∂tu

= b|u|p−2u+ σ(x, t)∂tW (x, t),

u(x, t) = 0, on ∂D,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x),

(1.2)

for x ∈ D and t > 0, where D ⊂ R
n is a bounded domain with the boundary ∂D,

which is assumed to be smooth. The constants in (1.2) are such that a, b > 0 and
α, β, q, p ≥ 2. We also require that p ≤ rα, where rα is defined as follows:

rα = nα/(n− α), if n > α,
rα > α, if n = α,
rα = ∞, if n < α.

(1.3)

The restriction of p ≤ rα is related to the criticality of the Sobolev embedding,
W 1,α

0 (D) →֒ Lp(D), which is necessary for the analysis below. Furthermore, for
global existence, we require that p ≤ q. The term σ(x, t)∂tW (x, t) represents a
perturbation via a Wiener random field [9].

The energy functional associated with system (1.2) is defined as

E(t) =
1

2
||∂tu(t)||

2
2 +

1

α
||∇u(t)||αα −

b

p
||u(t)||pp. (1.4)

We note that, in this functional, the first two terms represent the kinetic and
potential energies of deformation and they are always positive. The last term
arises from the external forcing in (1.2) and it can be negative. Even though this
definition allows for negative values of E(t), it is the natural energy functional for
(1.2).

In the absence of the stochastic term, the PDE in (1.2) takes the form [39, 30]:

∂ttu− div
[

(|∇u|α−2)∇u+
(

1 + |∇∂tu|
β−2
)

∇∂tu
]

+ a|∂tu|
q−2∂tu = b|u|p−2u.

(1.5)
The energy functional associated with (1.5) is defined as

Ẽ(t) =
1

2
||∂tu(t)||

2
2 +

1

α
||∇u(t)||αα −

b

p
||u(t)||pp. (1.6)

However, the key difference between (1.4) and (1.6) is that in (1.4) the terms are
functions of the random component ω as well as t. Thus, Ito’s lemma [19] has to
be applied in order to compute the time derivative of E(t).

The nonlinearities in (1.5) and (1.2), are motivated by the Kelvin-Voigt models
of viscoelastic deformations, which assume that the stress, S, depends on the
strain, ε, and the rate of strain, ∂tε, as S = Eε+ η∂tε = E∇u+ η∂t∇u = E∇u+
η∇∂tu, where E is the Young’s modulus and η is the coefficient of viscosity, both
of which are usually constants. However, in (1.5) and (1.2) to model the the stress
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(the terms inside the square brackets in (1.5)) we have E = E(∇u) = |∇u|α−2

and η = η(∇∂tu) = 1 + |∇∂tu|
β−2. That is we have a stress dependent Young’s

modulus and a strain dependent viscosity, as is often seen in certain viscoelastic
materials [8, 17, 22].

We begin with a recap of the literature in the deterministic setting. Equation
(1.5) was considered in [39] where the author showed that its solution blows up in
finite time, T ∗, under the condition max{α, q} < p < rα (rα is defined in (1.3)),
α > β, and the initial energy is sufficiently negative (see condition (ii) in [39,
Theorem 2.1]). In fact, this condition makes it clear that there exists a certain
relation between the blow-up time and |D|, the measure of D (see [39, Remark 2]).
Messaoudi and Said-Houari [30] improved the result in [39] and showed that the
blow-up of solutions of problem (1.5) takes place for negative initial data regardless
of |D|.

Equation (1.5) is a generalized version of the wave equation with damping and
source terms

∂ttu−∆u + |∂tu|
q−2

∂tu = |u|
p−2

u, in (0, T )×D, (1.7)

with Dirichlet boundary conditions on ∂D. The properties of the solution of (1.7)
are well understood. Indeed, in the absence of the damping term, Ball [1] and
Kalantarov and Ladyzhenskaya [18] showed that the source term |u|p−2u causes
finite-time blow-up of solutions with large initial data (negative initial energy);
that is, the Lp norm of the solution tends to infinity as time, t, approaches a finite
value, T ∗. On the other hand, and as it was shown by several authors (see for

example Haraux and Zuazua [13]), the damping term |∂tu|
q−2

∂tu in the absence of
the source term extends the lifespan of the solutions to the whole interval, [0,+∞).

Analysis of the competition between the source and damping terms was the
subject of a series of papers beginning in the early 1970s. Levine [23, 24] investi-
gated (1.7), when the damping is linear (q = 2) and showed that solutions with
negative initial energy blow up in finite time, via the “concavity method”. Note,
the concavity method fails if the nonlinear damping term (i.e., q > 2) is present.
Georgiev and Todorova [11] solved this problem in 1994, and extended Levine’s
result to the nonlinear damping case. In [11], the authors considered (1.7) and
introduced a new method to show that solutions with small initial data continue
to exist globally in time if the damping term dominates the source term (i.e., if
p ≤ q) and blows up in finite time in the other case (i.e., if p > q), provided that the
initial data are large, that is, for sufficiently negative initial energy. Their method
is based on the construction of an auxiliary function, L, which is a perturbation
of the total energy of the system. However, the blow-up result in [11] was not
optimal in terms of the initial data. Thus, several improvements followed (see, for
example, [25, 26, 29, 37]). In particular, Vitillaro in [37] combined the arguments
in [11] and [26] to extend the result in [11] to situations where the damping is
nonlinear and the solution has positive initial energy.

There have been a number of papers dealing with local and global existence
or finite time blow-up, when the stochastic source term is present, [2, 5, 7, 10,
20, 27, 31]. The primary tool in most of these works is Ito’s lemma. Essentially,
the equations considered are viewed as a deterministic equation plus a stochastic
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perturbation, which has to be handled via Ito’s calculus and the use of various
martingale inequalities, [9, 19]. In [7], Chow investigated a wave equation with a
polynomial nonlinearity perturbed by white noise. He showed explosion of the so-
lutions when the nonlinearity was cubic. He also showed existence and uniqueness
of global solutions when the nonlinearity satisfied certain restrictions.

The study of the stochastic nonlinear wave equations with nonlinear damping
terms was initiated by Pardoux in [32]. There are also recent results to this end
by Kim [20] and Barbu et al. [2]. The following system,















∂ttu−∆u+ |∂tu|
q−2∂tu = |u|p−2u+ σ(x, t)∂tW (x, t),

u(x, t) = 0 on ∂D,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x),

(1.8)

was recently considered in [10]. They established global existence for p ≤ q. For
p > q, they showed that the L2 norm of the solution blows up in finite time with
positive probability. Their results are valid when the initial energy (the same
as (1.4) for α = 2) is sufficiently negative; namely, they require E(0) ≤ −β for
some β > 0. Note that in [11] for the deterministic equation, finite time blow-up
takes place if E(0) < 0. The recent works on stochastic nonlinear wave equations
[5, 27, 10] deal only with the standard wave operator with damping and source
terms. However the nonlinear stochastic viscoelastic wave equation (that is with
gradient type nonlinearity or α-laplacian type operators) has not been investigated,
despite the many applications of viscoelastic materials [8, 17, 22]. Furthermore,
the blow-up results in [27, 10] are proved only under the condition that the initial
energy is sufficiently negative. We know in the deterministic setting [37] that
blow-up can also occur for positive initial energy, but no effort has been made to
extend this to the stochastic setting. Lastly, the recent works on the stochastic
wave equation are purely theoretical, and no numerical simulations have been
performed to visualise the blow-up and global existence results. Our primary
contributions in the present work are the following,

(1) We show show local existence for (1.2), which is a generalised form of
(1.8). Note here we are dealing with α-laplacian type operators, and not
the standard wave operator.

(2) We show that if q ≥ p, the local solution can be extended for all time, and
is thus global.

(3) We show that finite time blow up is possible for (1.2), if p > q, and
the initial data is large enough (that is if the initial energy is sufficiently
negative).

(4) We improve upon the results in [10], by showing that blow-up is possible
even if the initial energy is positive.

(5) We verify global existence and blow-up results numerically in 1d and 2d,
in certain parameter range, via a stochastic spectral Galerkin method, for
the equation considered in [10]. This also verifies a special case of our
global existence result Theorem 4.1.
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(6) In both [10] and [27], it is remarked that the stochastic forcing acts as
a damping term. Essentially in order to have finite time blow-up in the
presence of the stochastic term, the initial energy is required to be more
negative than the deterministic case, as the stochastic calculus leads to
certain positive quantities appearing in the energy inequalities. We verify
numerically that the stochastic forcing, does indeed act as damping.

Our manuscript is organized as follows. In section 2, we recall certain stochastic
preliminaries that are used throughout the paper. Section 3 is devoted to the
study of the local existence of weak solutions. In section 4, global existence is
demonstrated. In section 5, we prove that under certain assumptions the local
solution ceases to exist, and blows up in the Lp norm in finite time. In section 6 we
verify our results numerically in a certain parameter range, via a stochastic spectral
Galerkin method. Lastly, in all estimates made henceforth, C,Ci, {i = 1, 2, ...} are
generic constants that can change in value from line to line, and sometimes within
the same line, if so required.

2. Preliminaries

For the sake of completeness, we introduce here certain stochastic preliminaries.
For complete details, the reader is refered to [9] and [19].

Let (Ω,P,F) be a complete probability space for which a filtration {Ft, t ≥ 0}
is defined. An atom in Ω will be denoted as ω and E stands for the expecta-
tion with respect to the probability measure, P. We consider {W (x, t), t ≥ 0}, a
H = L2(D)-valued Wiener random field on the defined probability space, with
covariance operator R satisfying Tr R <∞, such that

Rei = λiei, i = 1, 2, ... (2.1)

where λi are eigenvalues of R satisfying
∑∞

i=1 λi < ∞ and {ei} are the corre-
sponding eigenfunctions that form an orthonormal basis in H . Therefore,

W (x, t) =

∞
∑

i=1

√

λiBi(t)ei, (2.2)

where {Bi(t)} are independent copies of standard Brownian motions in one di-

mension. We also define H to be the set of L0
2 = L2(R

1
2H,H)-valued processes

that possess the norm

||ψ(t)||H =

(

E

[∫ t

0

||ψ(s)||2L0
2
ds

])

1
2

=

(

E

[∫ t

0

Tr(ψ(s)Rψ∗(s))ds

])

1
2

<∞,

(2.3)
where ψ∗(s) denotes the adjoint operator of ψ(s).

Since (1.2) contains an α-Laplacian operator, F (u) = div(|∇u|α−2∇u), (α > 2),

the natural space that one searches for a solution is W 1,α
0 (D), and not H1

0 (D).
This is easily seen via a cursory integration by parts, upon multiplying (1.2) by a
suitable test function. In order to proceed we recap the notion of a Gelfand triple.

Definition 2.1. A Gelfand triple is datum of the form

B
J
→֒ H

K
→֒ B∗, (2.4)
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where H is a separable Hilbert space, B is a Banach space (or more general topo-
logical vector space (TVS)), B∗ is a dual TVS of B, J : B →֒ H is an injective
bounded operator with dense image, andK is the composition of the canonical iso-
morphism H ∼= H∗ determined by the inner product and of the Banach transpose
(dual) J∗ : H∗ → B∗ of the operator J .

In the context of our problem then, we define the following Gelfand triple,

W 1,α
0 (D) →֒ L2(D) →֒ W−1,α/(α−1)(D), (2.5)

such that

F : [0, T ]×W 1,α
0 (D)× Ω →W−1,α/(α−1)(D). (2.6)

This allows us to reconcile the inner product of a W 1,α
0 (D)-valued function with

the L2(D)-valued noise via methods in [34], in the energy estimates that follow.
(See [34] for details on stochastic differential equations with α-Laplacian type
operators).

Definition 2.2. Let (X,A) be a measurable space. A stochastic process X(t, ω) :
[0,∞)×Ω → X is said to be progressively measurable, if, for every time t, the map
X : [0, t]× Ω → X defined by (s, ω) 7→ Xs(ω) is Borel (0, t)⊗Ft measurable.

Furthermore, we will assume that for a solution to equation (1.2), we have

(u0, u1) ∈ Lα(Ω;W 1,α
0 (D))× L2(Ω;L2(D)) (2.7)

and (u0, u1) are F0 measurable (here (u0, u1) denotes a pair of functions and
it should not be confused with the L2 scalar product, which is denoted by 〈., .〉).
Also the σ(x, t) in (1.2) is assumed to be H1

0 (D)∩L∞(D)-valued and progressively
measurable such that

E

[

∫ T

0

(

||∇σ(t)||22 + ||σ(t)||2∞
)

dt

]

<∞. (2.8)

Definition 2.3. Under the assumptions made in (2.7) and (2.8), we say that u is
a weak solution of (1.2) on the time interval [0, T ] if

(u, ∂tu) is W
1,α
0 (D)× L2(D)-valued progressively measurable,

(u, ∂tu) ∈ Lα(Ω;C([0, T ];W 1,α
0 (D))) × L2(Ω;C([0, T ];L2(D))),

∂tu ∈ Lq((0, T )×D), for almost all ω,

u(0) = u0, ∂tu(0) = u1, for almost all ω,

and the following holds

〈ut(t), φ〉 = 〈u1, φ〉 −

∫ t

0

〈

|∇u|α−2∇u,∇φ
〉

ds−

∫ t

0

〈

|∇ut|
β−2∇ut,∇φ

〉

ds

−

∫ t

0

〈

|u|p−2u, φ
〉

ds+

∫ t

0

〈

|us|
q−2us, φ

〉

ds+

∫ t

0

〈φ, σ(x, s)dWs〉 .

For all test functions φ bounded, positive, compactly supported in D, and in
C∞(D × [0, T ]), with φ(x, T ) = φt(x, T ) = 0.
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Remark 2.4. Henceforth we use the following notation: we denote u by ut and ∂tu
by vt. This is done to be consistent with the standard notation in the literature.
Also, we use the following notation for the L2(D) inner product:

∫

D

UV dx = 〈U, V 〉 . (2.9)

3. Local Existence

In this section, we show the existence and uniqueness of a weak solution of
problem (1.2). We follow the methods of [10, 20], and refer to them when necessary.
We first consider the following regularized problem (without loss of generality, we
set a = 1, b = 1 from now on):



















∂ttu−∆∂tu− div(|∇u|α−2∇u)− div(|∇∂tu|
β−2∇∂tu) + gλ(∂tu)

= fN (u) + σ(x, t)∂tW (x, t), (x, t) ∈ D × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂D × (0, T ),

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ D,

(3.1)

where the functions fN and gλ are regularized approximations of f and g as defined
below in (3.9) and (3.10), respectively. We assume that, in (3.1),

u0 ∈ Lα(Ω;W 1,α
0 (D)), u1 ∈ L2(Ω;L2(D)), (3.2)

and (u0, u1) are F0 measurable. Also, σ(x, t) is H1
0 (D) ∩ L∞(D)-valued progres-

sively measurable such that

E

[

∫ T

0

(

||∇σ(t)||22 + ||σ(t)||2∞|
)

dt

]

<∞. (3.3)

The idea is now to consider a Galerkin approximation of the solution to (3.1)
of the form

utm(x, t) =

m
∑

j=1

am,j(t)ej(x) (3.4)

and to obtain a priori estimates for utm and take the limit as m → ∞ afterward.
Here, ej(x) is taken to be a basis inW 1,α

0 (D) that is orthogonal in L2(D) as shown
in [40]. We state the following lemma.

Lemma 3.1. Assume that (3.2) and (3.3) hold. Then there exists a time T and
a pathwise unique solution of (3.1) such that

ut ∈ Lα(Ω;L∞(0, T ;W 1,α
0 (D))) ∩ L2(Ω;C([0, T ];H1

0 (D))), (3.5)

vt ∈ L2(Ω;L∞(0, T ;L2(D)))∩Lβ(Ω;Lβ(0, T ;W 1,β
0 (D)))∩L2(Ω;C([0, T ];L2(D))),

(3.6)
and

E

[

||vt||L∞(0,T ;L2(D)) + ||vt||Lβ(0,T ;W 1,β
0 (D)) + ||ut||L∞(0,T ;W 1,α

0 (D))

]

≤ CN . (3.7)
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Essentially, in the regularized problem, we have replaced f(ut) by fN(ut) and
g(vt) by gλ(vt). We begin the proof by recalling the basic theory for these ap-
proximations (see [20, 10] for details). Let f(ut) = |ut|

p−2ut. For each N ≥ 1, we
define a function

χN =















1, if x ≤ N,

∈ (0, 1), if N < x < N + 1,

0, if x ≥ N + 1,

(3.8)

such that ||χ′
N ||∞ ≤ 2, and let

fN(ut) = χN (||∇ut||2)f(ut). (3.9)

Then we have

||fN (u)− fN (v)||2 ≤ CN ||∇u−∇v||2.

(See equation (11) in [5] for further details). Let g(x) = |x|q−2x and for any given
λ > 0, let

gλ(x) =
1

λ

(

x− (I + λg)−1(x)
)

= g(I + λg)−1(x), x ∈ R, (3.10)

where gλ is the Yosida approximant of the mapping g.
We next recap the maximal monotonicity property

Definition 3.2. A set valued map T from a Banach space E into the subset of
its dual E∗ is said to be a monotone operator provided

〈x∗ − y∗, x− y〉 ≥ 0 (3.11)

∀x, y ∈ E and x∗ ∈ T (x), y∗ ∈ T (y).

Definition 3.3. A subset G of E × E∗ is said to be monotone provided 〈x∗ −
y∗, x− y〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ G. A set valued mapping T : E → 2E

∗

is
a monotone operator if and only if its graph

G(T ) = {(x, x∗) ∈ E × E∗ : x∗ ∈ T (x)} (3.12)

is a monotone set. A monotone set is said to be maximal monotone if it is maximal
in the family of monotone subsets of E × E∗, ordered by inclusion. An element
(x, x∗) ∈ E × E∗ is said to be monotonically related to the subset G provided

〈x∗ − y∗, x− y〉 ≥ 0 (3.13)

for all (y, y∗) ∈ G.
We say that a monotone operator T is maximal monotone provided its graph

is a maximal monotone set.

Via the above, we see that g(x) satisfies a maximal monotonicity property.
Furthermore g′(x) = (q − 1)|x|q−2 ≥ 0 for any x ∈ R, then gλ ∈ C1(R) and
satisfies the following:

0 ≤ g′λ ≤
1

λ
, |gλ(x)| ≤ |g(x)|, |gλ(x)| ≤

1

λ
|x|, ∀x ∈ R.

We now recall the following lemma [33].
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Lemma 3.4. Let {λk} be a sequence of positive numbers and {xk} be a sequence
of real numbers such that λk → 0 as xk → x. Then

lim
k→∞

gλk
(xk) = g(x). (3.14)

(For details on derivations of manipulations on gλ, see [20]). Using the above
Galerkin approximation and applying Ito’s lemma to ||vtm||22, we obtain

||vtm||22 + 2

∫ t

0

||∇vtm||22ds+ 2

∫ t

0

||∇vsm||ββds+
2

α
||∇utm||αα ≤ ||vtm(0)||22

+2

∫ t

0

||∇vtm(0)||22ds+
2

α
||∇utm(0)||αα − 2

∫ t

0

∫

D

gλ(vsm)vsmdxds

+2

∫ t

0

∫

D

fN (vsm)vsmdxds + 2

∫ t

0

〈vtm, σdWs〉

+C2TrR

m
∑

j=1

∫ t

0

| 〈ej, σ〉 |
2ds. (3.15)

Via the form of the constructions for fN(ut) and gλ(vt) and Hölder’s inequality,
we find

∫

D

fN (utm)vtmdx ≤

∫

D

χN (||∇utm||2)||utm||p−1||vtm(s)||dx

≤ CN ||∇utm||2||vtm||2.

(3.16)

For details on this estimate, see [5], but it essentially follows from the form of
the construction of fN (ut). We also have

−2

∫ t

0

∫

D

gλ(vm(s))vm(s)dxds ≤ 0. (3.17)

To tackle the stochastic integral term, we define

Mt =

∫ t

0

〈vtm, σ(x, s)dWs〉 . (3.18)

We can show that Mt is a local martingale; hence, to estimate its supremum, we
can apply the Burkholder-Davis-Gundy inequality [19] as follows:

E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

〈vtm, σ(x, s)dWs〉

∣

∣

∣

∣

]

≤ CE






sup

t∈[0,T ]

||vtm||2





∞
∑

j=1

∫ T

0

〈σ(x, t)Rei, σ(x, t)ei〉 dt





1
2







≤
1

2
E

[

sup
t∈[0,T ]

||vtm||22

]

+ CTrRE

[
∫ t

0

||σ(t)||22dt

]

(3.19)

≤ E

[

sup
t∈[0,T ]

1

2
||vtm||22

]

+ C1.
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We take the expectation and supremum of (3.15), via the Sobolev embedding of

W 1,α
0 (Ω) →֒ H1

0 (Ω) and the estimate in (3.19), we obtain

E

[

sup
t∈[0,T ]

1

2
||vtm||22

]

+ E

[

sup
t∈[0,T ]

2

α
||∇utm||αα

]

≤ CN

∫ t

0

(

E

[

sup
t∈[0,T ]

||vtm||22

]

+ E

[

sup
t∈[0,T ]

2

α
||∇utm||αα

])

ds+ C1.

Consequently, Gronwall’s lemma yields

E

[

||vtm||L∞(0,T ;L2(D)) + ||utm||L∞(0,T ;W 1,α
0 (D))

]

≤ CN . (3.20)

Now, we insert this bound back into (3.15) to obtain
∫ t

0

||∇vsm||ββds ≤ ||vtm(0)||22 + ||∇vtm(0)||22 +
1

α
||∇utm(0)||αα

+CN

∫ t

0

(

E

[

sup
t∈[0,T ]

||vtm||22

]

+ E

[

sup
t∈[0,T ]

2

α
||∇utm||αα

])

ds

+C2, (3.21)

Thus

E

[

||vtm||Lβ(0,T ;W 1,β
0 (D))

]

≤ CN + C2. (3.22)

Next, we define the following quantity:

Aλ = ||vtm||L∞(0,T ;L2(D)) + ||vtm||Lβ(0,T ;W 1,β
0 (D)) + ||ut||L∞(0,T ;W 1,α

0 (D))

+2

∫ T

0

∫

D

gλ(vtm(s))vm(s)dxds. (3.23)

The idea is now to give a probabilistic estimate on the event that Aλ ≤ L. This
is done by considering a union over all truncations, utm, and then subsequently
a union over all possible finite bounds, L. This is incorporated directly from the
form of Aλ as

P





∞
⋃

L=1

∞
⋂

j=1

∞
⋃

m=j

{Aλ(utm) ≤ L}



 = 1.

Next, we define Pm as the projection onto the subspace spanned by {e1, ..., em}.
From the earlier truncation and Ito’s lemma, we have

∂t(vtm − PmM(t)) = −Pm(gλ(vtm)) + PmfN (utm)

+Pm

(

div(|∇utm|α−2∇utm)
)

+ Pm

(

div(|∇vtm|β−2∇vtm)
)

.

This holds in a distributional sense in (0, T )×D for almost all ω. Here, M(t) =
∫ t

0
〈σ(x, s), dWs〉. As σ(x, t) is H1

0 (D)-valued and progressively measurable and
{W (t, x) : t > 0} is a V -valued process, there exits Ω1 ⊂ Ω of full measure, such
that, for each ω ∈ Ω1, we have

M ∈ C([0, T ];H1
0 (D))
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Now, from the estimate derived in (3.20) and (3.22), we have for each ω ∈ Ω1 that
there is a subsequence, {utmk

}
∞

k=1, such that

Aλ(utmk
) ≤ Lω (3.24)

for all k. Thus, we conclude that

utmk

∗
⇀ ut in L

∞(0, T ;W 1,α
0 (D)), (3.25)

vtmk
⇀ vt in L

β(0, T ;W 1,β
0 (D)), (3.26)

and
vtmk

∗
⇀ vt in L

∞(0, T ;L2(D)). (3.27)

In the above⇀ denotes weak convergence, and
∗
⇀ denotes weak-star convergence.

Also these convergences are with P a.s. By defining an appropriate Gelfand triple
W 1,α

0 (Ω) →֒ H1
0 (Ω) →֒W−1, α

α−1 (Ω), and using the estimate in (3.20) we obtain

utmk
→ ut in C([0, T ];H

1
0 (D)). (3.28)

Next, we note via the earlier assumption on gλ in (3.10), the embedding of
Lq/(q−1)(D) →֒W−1,α/(α−1)(D), and the estimates in (3.23) and (3.24) that

||gλ(vtmk
)||Lq/(q−1)(0,T ;W−1,α/(α−1)(D)) ≤ CLω.

To show the convergence of the terms with divergence structures, we are re-
quired to show that, for almost all ω,

lim
m→∞

∫ t

0

〈

div(|∇utm|α−2∇utm, wj

〉

ds =

∫ t

0

〈

div(|∇ut|
α−2∇ut, wj

〉

ds

and

lim
m→∞

∫ t

0

〈

div(|∇vtm|β−2∇vtm, wj

〉

ds =

∫ t

0

〈

div(|∇vt|
β−2∇vt, wj

〉

ds.

Indeed, consider

Um
ǫ = ǫutm + (1− ǫ)ut, V

m
ǫ = ǫvtm + (1− ǫ)vt.

Then we can make the following estimates:

lim
m→∞

∣

∣

∣

∣

∫ t

0

〈

div(|∇utm|α−2∇utm − |∇ut|
α−2∇ut, wj

〉

ds

∣

∣

∣

∣

(3.29)

= lim
m→∞

∣

∣

∣

∣

∫ t

0

〈∫ 1

0

d

dǫ
∇Umα−1

ǫ ∇Um
ǫ dǫ,∇wj

〉

ds

∣

∣

∣

∣

(3.30)

≤ lim
m→∞

α

∫ t

0

(

|∇(utm − ut)|

∫ 1

0

|∇Um
ǫ |α−1dǫ, |∇wj |

)

ds (3.31)

≤ lim
m→∞

C

∫ t

0

||∇(utm − ut)|| ||∇wj ||2α

∫ 1

0

||∇Um
ǫ ||α−1

2α dǫds (3.32)

≤ lim
m→∞

C

∫ t

0

||∇(utm − ut)||2ds (3.33)

→ 0. (3.34)

These inequalities follow from the compact Sobolev embedding of

W 1,α
0 (D) →֒ H1

0 (D), W 1,β
0 (D) →֒ H1

0 (D)
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The convergence for vtm is established similarly.
These estimates enable

||vtm − PmM(t)||W 1,q/(q−1)(0,T ;W−1,α/(α−1)(D)) ≤ CLω. (3.35)

Hence, via (3.25), (3.27) and (3.35) and an appropriately defined Gelfand triple

as W 1,α
0 (Ω) →֒ L2(Ω) →֒W−1, α

α−1 (Ω), we obtain

(vtm − PmM(t)) → (vt −M(t)) in C([0, T ];L2(Ω)).

Thus, we have via the Riesz-Fischer theorem [36] a subsequence, still denoted as
vtmk

, that

vtmk
(t, x) → vt(t, x)

for almost all (t, x) ∈ (0, T )×D. Thus, we have

gλ(vtmk
)⇀ gλ(vt) in Lq/(q−1)((0, T )×D).

This demonstrates that (1.2) is satisfied in the sense of distributions. We show
uniqueness via contradiction. Assume there exists another subsequence that con-
verges to ù = ù(ω). We consider w = u − ù, and derive an equation for w.
Multiplying this by w′, and via earlier estimates via (3.16), (3.29), we derive an
inequality essentially of the form

|w′(t)|22 + |∇w(t)|αα ≤ C

∫ t

0

(|w′(s)|22 + |∇w(s)|αα)ds

Gronwall’s lemma now yields w = 0 or u = ù. One can also see [10, 20, 6]. We
now state without proof a progressive measurability result on (ut, vt). The proof
follows via mimicking the methods in [10].

Lemma 3.5. Consider (ut, vt) that solve (3.1). Then (ut, vt) is W
1,α
0 (D)×L2(D)-

valued progressively measurable for any t ∈ [0, T ]. Furthermore,

E [Aλ(ut)] ≤ CN .

We next consider the following problem


























∂ttu−∆∂tu− div(|∇u|α−2∇u)− div(|∇∂tu|
β−2∇∂tu) + g(∂tu)

= fN (u) + σ(x, t)∂tW (x, t),

u(x, t) = 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x).

(3.36)

Applying the methods as we did to derive our earlier estimates (3.25), (3.26),
(3.27) , (3.28) and (3.16) we can derive similar estimates for (3.36) and show that
the following lemma holds.

Lemma 3.6. Assume that (3.2) and (3.3) hold. Then there exists a time T and
a pathwise unique local solution of (3.36) such that

ut ∈ Lα(Ω;L∞(0, T ;W 1,α
0 (D))) ∩ L2(Ω;C([0, T ];H1

0 (D))),

vt ∈ L2(Ω;L∞(0, T ;L2(D)))∩Lβ(Ω;Lβ(0, T ;W 1,β
0 (D)))∩L2(Ω;C([0, T ];L2(D))),
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and

E

[

||vt||L∞(0,T ;L2(D)) + ||vt||Lβ(0,T ;W 1,β
0 (D)) + ||ut||L∞(0,T ;W 1,α

0 (D))

]

≤ CN .

We can now state the following result concerning (1.2).

Theorem 3.7. Assume that (3.2) and (3.3) hold. Then there exists a time T and
a pathwise unique local solution of (1.2) such that, for any t ∈ [0, T ], and almost
all ω, the following energy equation holds,

||vt||
2
2 + 2

∫ t

0

||∇vt(s)||
2
2ds+

2

α
||∇ut||

α
α + 2

∫ t

0

||∇vt(s)||
β
βds

+2

∫ t

0

||vt(s)||
q
qds−

2

p
||ut||

p
p = ||u1||

2
2 +

2

α
||∇u0||

α
α

+2

∫ t

0

〈vt(s), σ(x, s)dWs〉+

∞
∑

i=1

∫ t

0

∫

D

λie
2
i (x)σ

2(x, s)dxds.

Proof. The proof proceeds similarly as in the earlier truncated problems. We
consider Galerkin truncation sequences {utm}, {vtm}, and {σm(x, t, ω)} such that

u0,m ∈ Lα(Ω;W 1,α
0 (D)), u1,m ∈ L2(Ω;L2(D)),

σm(x, t, ω) ∈ L2(Ω;L2(0, T ;H1
0 (D) ∩ L∞(D))).

Using the a priori estimates made in Lemma 3.6, we see that the following energy
equation holds:

||vtm||22 + 2

∫ t

0

||∇vtm(s)||22ds+
2

α
||∇utm||αα + 2

∫ t

0

||∇vtm(s)||ββds

+2

∫ t

0

||vtm(s)||qqds− 2

∫ t

0

∫

D

χ(||∇utm||2)|utm|p−2umvtmdxds

= ||u1||
2
2 +

2

α
||∇u0||

α
α + 2

∫ t

0

〈vtm(s), σm(x, s)dWs〉

+

∞
∑

i=1

∫ t

0

∫

D

λie
2
i (x)σ

2
m(x, s)dxds. (3.37)

We set

Mm(t) =

∫ t

0

〈σm(x, s), dWs〉 . (3.38)

In order to show that the energy equation in Theorem 3.7 holds, we take the limit
of each of the terms in (3.37). The convergence of most terms is standard, as
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shown earlier. For the stochastic terms, notice that

E

[∣

∣

∣

∣

∣

∫ T

0

〈vtm, σmdWs〉 −

∫ T

0

〈vtN , σNdWs〉

∣

∣

∣

∣

∣

]

≤ E

[∣

∣

∣

∣

∣

∫ T

0

〈vtm − vtN , σmdWs〉

∣

∣

∣

∣

∣

]

+ E

[∣

∣

∣

∣

∣

∫ T

0

〈vtN , (σm − σN )dWs〉

∣

∣

∣

∣

∣

]

≤ CE



 sup
0≤t≤T

||vtm − vtN ||2

(

∞
∑

i=1

∫ T

0

(σmRei, σmei)dt

)
1
2





+CTrRE

[

sup
0≤t≤T

||vtN ||2

]

E





(

∫ T

0

||σm − σN |22dt

)
1
2





→ 0. (3.39)

These follow via the Burkholder-Davis-Gundy inequality [19]. We therefore have

lim
m→∞

∫ T

0

〈vtm, σmdWs〉 →

∫ T

0

〈vtN , σNdWs〉 . (3.40)

Here, utN is the solution to (3.36). We thus obtain

||vtN ||22 + 2

∫ t

0

||∇vtN (s)||22ds+
2

α
||∇utN ||αα + 2

∫ t

0

||∇vtN (s)||ββds

+2

∫ t

0

||vtN (s)||qqds− 2

∫ t

0

∫

D

χ(|∇utN |)|utN |p−2utNvtNdxds

= ||u1||
2
2 +

1

α
||∇u0||

α
α + 2

∫ t

0

〈vtN (s), σ(x, s)dWs〉

+

∞
∑

i=1

∫ t

0

∫

D

λie
2
i (x)σ

2(x, s)dxds. (3.41)

Next, we define a stopping time as

τN = inf {t > 0; ||∇utN ||2 ≥ N} . (3.42)

Clearly, for t ∈ [0, τN ∧ T ), ut = utN is the local solution to (1.2). We let

τ∞ = lim
N→∞

τN .

Thus, we have constructed a unique local solution,

ut = lim
N→∞

utN ,

to (1.2) on [0, T ∧ τ∞], which solves the energy equation in Theorem 3.7. �

4. Global Existence

In this section, we show that the local solution derived in the previous section
can be continued beyond the local time of existence if p ≤ q. We establish a
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uniform bound on the following functional:

Ψ(t) := ||vt||
2
2 +

2

α
||∇ut||

α
α +

2

p
||ut||

p
p, (4.1)

which will prevent unlimited growth [11, 10, 20].

Theorem 4.1. Assume that (3.2) and (3.3) hold. If p ≤ q, then for any time
T > 0, there is a pathwise unique solution of (3.1) on the time interval [0, T ] such
that for any t ∈ [0, T ],

E [Ψ(t)] <∞. (4.2)

Proof. We proceed by showing that

lim
N→∞

utN = ut(t ∧ τN ) → ut. (4.3)

To do this, it suffices to prove that

lim
N→∞

P(τN → ∞) = 1. (4.4)

Here τN is as defined in (3.42). To this end, the Borel-Cantelli lemma is employed,
[19]. Equation (4.4) demonstrates that the local solution can be continued to be
global. Via Theorem 3.7, the following energy equation holds

||vt||
2
2 + 2

∫ t

0

||∇vt(s)||
2
2ds+

2

α
||∇ut||

α
α + 2

∫ t

0

||∇vt(s)||
β
βds

+2

∫ t

0

||vt(s)||
q
qds−

2

p
||ut||

p
p = ||u1||

2
2 +

2

α
||∇u0||

α
α

+2

∫ t

0

〈vt(s), σ(x, s)dWs〉+

∞
∑

i=1

∫ t

0

∫

D

λie
2
i (x)σ

2(x, s)dxds. (4.5)

This is, of course, true only on the local time interval, [0, t ∧ τN ]. We add

4

p
||ut(t ∧ τN )||pp = 4

∫ t∧τN

0

∫

D

|ut|
p−2utvtdxds (4.6)

to both sides of (4.5) to obtain

Ψ(ut(t ∧ τN )) ≤ Ψ(ut(0)) + 4

∫ t∧τN

0

∫

D

|ut|
p−2utvtdxds

−2

∫ t∧τN

0

||∇vt(s)||
2
2ds− 2

∫ t∧τN

0

|∇vt(s)|
β
βds (4.7)

−2

∫ t∧τN

0

||vt(s)||
q
qds− 2

∫ t∧τN

0

〈vt(s), σ(x, s)dWs〉

−

∞
∑

i=1

∫ t∧τN

0

∫

D

λie
2
i (x)σ

2(x, s)dxds.

We now estimate, by using Young’s inequality, that
∣

∣

∣

∣

∫

D

|ut|
p−2utvtdx

∣

∣

∣

∣

≤ γ||vt||
p
p + C(γ)||ut||

p
p. (4.8)
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Since we are considering q ≥ p, we have ||vt||
p
p ≤ C||vt||

p
q . Using this inequality in

(4.7) we obtain,

Ψ(ut(t ∧ τN )) ≤ Ψ(ut(0)) + 4Cγ

∫ t∧τN

0

||vt||
p
qds− 2

∫ t∧τN

0

||vt(s)||
q
qds

+4C(γ)

∫ t∧τN

0

||ut||
p
pds+ 2

∫ t∧τN

0

〈vt(s), σ(x, s)dWs〉

+C0TrR

∫ t∧τN

0

||σ||22ds. (4.9)

Now, there are two possible cases for q ≥ p. Either we have ||vt||
q
q > 1, in which

case we choose a small enough γ, such that

−2||vt(s)||
q
q + 4Cγ||vt||

p
q ≤ 0, (4.10)

or we have ||vt||
q
q < 1, and we trivially have

−2||vt(s)||
q
q + 4Cγ||vt||

p
q ≤ 4Cγ. (4.11)

In either case, we have

Ψ(ut(t ∧ τN )) ≤ Ψ(ut(0)) + 4Cγ(t ∧ τN ) + 4C(γ)

∫ t∧τN

0

||ut||
p
pds

+2

∫ t∧τN

0

〈vt(s), σ(x, s)dWs〉

+C0TrR

∫ t∧τN

0

||σ||22ds. (4.12)

We now take expectations in (4.12) to obtain

E[Ψ(ut(t ∧ τN ))] ≤ Ψ(ut(0)) + 4Cγ(t ∧ τN ) + 4C(γ)

∫ t∧τN

0

E
[

||ut||
p
p

]

ds

+2

∫ t∧τN

0

E [〈vt(s), σ(x, s)dWs〉] + Ψ(ut(0)) + 4Cγ(t ∧ τN )

+C0TrR

∫ t∧τN

0

E
[

||σ||22
]

ds+K

∫ t∧τN

0

E[Ψ(ut(t ∧ τN ))]ds

+C0TrR

∫ t∧τN

0

E
[

||σ||22
]

ds.

This follows by the local martingale property of
∫ t∧τN
0

〈vt(s), σ(x, s)dWs〉 and by
the definition of the functional, Ψ(t). We now use the integral version of Gronwall’s
lemma and assume that (3.2) and (3.3) hold to obtain

E[Ψ(ut(T ∧ τN ))] ≤ (Ψ(u(0) + CT )eKT ≤ CT . (4.13)

We note that for a characteristic function, χ(τN ≤ T ), we obtain

E[Ψ(ut(T ∧ τN ))] ≥ E [χ(τN ≤ T )Ψ(ut(τN ))]

≥ CE[χ(τN ≤ T )||uτN ||
2
2]

≥ CN2
P(τN ≤ T ). (4.14)
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Combining (4.13) and (4.14) gives us

P(τ∞ ≤ T ) ≤ P(τN ≤ T ) ≤
CT

N2
. (4.15)

We apply the Borel-Cantelli lemma to obtain

P(τ∞ ≤ T ) = 0, (4.16)

which implies that

lim
N→∞

τN = ∞. (4.17)

Thus,

lim
N→∞

utN = ut (4.18)

is the global solution on

[0, τ∞ ∧ T ] = [0, T ]. (4.19)

To check the energy bound in Theorem 4.1, we note that

E[ sup
0≤t≤T

Ψ(ut(t))] ≤ Ψ(ut(0)) + (4Cγ + C1)(T )

+4C(γ)

∫ t∧τN

0

E[ sup
0≤t≤T

Ψ(ut(T ))]ds

+E[ sup
0≤t≤T

∫ t

0

〈vt(s), σ(x, s)dWs〉]. (4.20)

It follows via the Burkholder-Davis-Gundy inequality that

E[ sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

〈vt(s), σ(x, s)dWs〉

∣

∣

∣

∣

] ≤ E[ sup
0≤t≤T

||vt||
2
2] + C1

∫ T

0

E
[

||σ(t)||22
]

dt

≤ C2.

Therefore, by inserting the above inequality into (4.20), we find

E[ sup
0≤t≤T

Ψ(ut(t))] ≤ C3 + C4

∫ T

0

E[ sup
0≤s≤T

Ψ(ut(s))]ds. (4.21)

Then employing the integral version of Gronwall’s lemma, we obtain

E[ sup
0≤t≤T

Ψ(ut(t))] ≤ C3e
C4T , (4.22)

which validates the energy bound in Theorem 4.1. �

,,,,,,,,,,,,

5. Finite Time Blow-up

In this section, we show that if the source term dominates the damping term
and if the initial data are large enough, then the solution of problem (1.2) ceases
to exist and blows up in finite time. To do this, we use certain estimates from [30],
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where the deterministic problem has been investigated. Using the same notation
as in the previous section, (1.2) can be rewritten as the following Ito system:



































dut = vtdt,

dvt = (∆vt + div(|∇ut|
α−2∇ut) + div(|∇vt|

β−2∇vt)

−|vt|
q−2vt + |ut|

p−2ut)dt+ σ(x, t)dW (t, x), in ∈ D × (0, t),

ut = 0, on ∂D,

u0(x, 0) = u0, v0(x, 0) = u1(x), in D.

(5.1)

Here, (u0, u1) ∈ Lα(Ω;W 1,α
0 (D))×L2(Ω;L2(D)). The energy functional associated

with (5.1) as defined in (1.4) takes the form

E(t) =
1

2
||vt||

2
2 +

1

α
||∇ut||

α
α −

1

p
||ut||

p
p. (5.2)

The following lemma holds true.

Lemma 5.1. Let (ut, vt) be the solution to system (5.1) with initial data (u0, u1) ∈

Lα(Ω;W 1,α
0 (D))× L2(Ω;L2(D)). Also, assume that (3.3) holds. Then we have

d

dt
E [E(t)] = −E[||∇vt||

2
2 + ||∇vt||

β
β + ||vt||

q
q] +

1

2

∞
∑

i=1

∫

D

λie
2
i (x)σ

2(x, t)dx. (5.3)

Furthermore,

E [〈ut(t), vt(t)〉] = 〈ut(0), vt(0)〉 −

∫ t

0

E
[

||∇us||
2
2

]

ds

−

∫ t

0

E
[〈

|vs|
q−2vs, us

〉]

ds−

∫ t

0

E [||∇us||
α
α] ds−

∫ t

0

E||∇vs||
β
βds+

∫ t

0

E
[

||us||
p
p

]

ds+

∫ t

0

E
[

||vs||
2
2

]

ds. (5.4)

Proof. Using Ito’s lemma, it follows that

||vt||
2
2 = 2E(0)− 2

∫ t

0

||∇vs||
2
2ds− 2

∫ t

0

||∇vs||
β
βds−

2

α
||∇ut||

α
α

−2

∫ t

0

||vs||
q
qds+

2

p
||ut||

p
p + 2

∫ t

0

〈vt(s), σ(x, s)dWs〉

+
∞
∑

i=1

∫ t

0

∫

D

λie
2
i (x)σ

2(x, s)dxds (5.5)
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Now (5.3) follows by taking expectations in the above. Next we see that

〈ut, vt〉 = 〈u0, v0〉+

∫ t

0

〈us(s), dvs(s)〉 ds+

∫ t

0

〈vs(s), dus(s)〉 ds

= 〈u0, v0〉 −

∫ t

0

||∇vs||
2
2ds−

∫ t

0

〈

|vs|
q−2vs, us

〉

ds+

∫ t

0

||us||
p
pds

+

∫ t

0

||vs||
2
2ds−

∫ t

0

||∇us||
α
αds−

∫ t

0

||∇vs||
β
βds

+2

∫ t

0

〈ut(s), σdWs〉 , (5.6)

and (5.4) follows by taking expectations in the above. �

Let B be the optimal constant for the embedding W 1,α
0 (Ω) →֒ Lp(Ω). Let us

also define

E1 =

(

1

α
−

1

p

)

ζα1 , ζ1 = B−p/(p−α). (5.7)

We now state the following lemma, which is an adaptation of [37, Lemma 1].

Lemma 5.2. Suppose that α ≤ p ≤ rα and let u be the solution of (1.2). Assume
that E(0) < E1 and E [||∇u0||α] > ζ1. Then there exists a constant ζ2 > ζ1 such
that

E [||∇ut(., t)||α] ≥ ζ2, ∀t ∈ [0, T ), (5.8)

E [||ut||p] ≥ Bζ2, ∀t ∈ [0, T ). (5.9)

Proof. Using the definition of the energy functional, we obtain

E [E(t)] ≥
1

α
E

[

||∇ut||
α
α −

1

p
E||ut||

p
p

]

≥
1

α
E [||∇ut||

α
α]−

Bp

p
E [||∇ut||

p
α]

=
1

α
ηα −

Bp

p
ηp

= h(η), (5.10)

where η = E [||∇ut||α] . It is easy to verify that h is increasing for 0 < η < ζ1,
decreasing for η > ζ1 and h(η) → −∞ as η → ∞. Also

h(ζ1) = E1. (5.11)

Therefore, as E[E(0)] < E1, there exists ζ2 > ζ1 such that h(ζ2) = E(0). If we set

ζ0 = E [||∇u0||α] ,

then, by (5.10), we have

h(ζ0) ≤ E(0) = h(ζ2), (5.12)

which implies that ζ0 ≥ ζ2. Now, to establish (5.8), we assume that, on the
contrary,

E [||∇ut(t0)||α] < ζ2 (5.13)
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for some t0. By the continuity of E [||∇ut(.)||α] in time, we choose t0 such that
E [||∇ut(t0)||α] > ζ1. We now use (5.10) to obtain

E(t0) ≥ h(E [||∇ut(t0)||α]) > h(ζ2) = E(0).

However, since E(t) ≤ E(0) for all t ∈ [0, T ), we arrive at a contradiction. This
proves (5.8). Now,

E [||∇ut(t)||
α
α] ≤ E[E(0)] +

1

p
E
[

||ut||
p
p

]

.

Therefore,

1

p
E
[

||∇ut||
p
p

]

≥
1

α
E [||∇ut||

α
α]− E [ E(0)]

≥
1

α
ηα − E [ E(0)]

≥
1

α
ηα − g(η)

Bp

p
ηp.

�

Our main result in this section reads as follows:

Theorem 5.3. Let (ut, vt) be the solution of system (1.2) with initial data

(u0, u1) ∈ Lα(Ω;W 1,α
0 (D))× L2(Ω;L2(D)). Assume further that

E

[

∫ T

0

(

||∇σ(t)||22 + ||σ(t)||2∞|
)

dt

]

<∞. (5.14)

Suppose that the initial energy satisfies

E(0) ≤ E1 − E2, (5.15)

where E1 is defined as

E1 =

(

1

α
−

1

p

)

B−αp/(p−α). (5.16)

Here, B is the optimal constant for the embedding W 1,α
0 (Ω) →֒ Lp(Ω), and 2 ≤

p ≤ rα, where rα is given in (1.3) and E2 is defined as

E2 = E

[

1

2
C2TrR

∫ ∞

0

∫

D

σ2(x, s)dxds

]

≥ E

[

1

2

∞
∑

i=1

∫ t

0

∫

D

λie
2
i (x)σ

2(x, s)dxds

]

= F (t). (5.17)

Then if β < α and max(α, q) < p < rα, there exists a finite positive time T ∗ ∈
(0, T ] such that

lim
t→T∗<∞

E[||ut||
p
p] = +∞. (5.18)

Remark 5.4. Note that Theorem 5.3 allows for blow-up with positive initial ener-
gies since, depending on the strength of the noise, we may have E1 − E2 > 0.
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Proof. Following [11], we define the function H (t) as follows:

H(t) = E1 + F (t)− E [E(t)] . (5.19)

Thus, we obtain

H ′(t) = F ′(t)−
d

dt
E [E(t)] = E[||∇vt||

2
2 + ||∇vt||

β
β + ||vt||

q
q] ≥ 0. (5.20)

Next, we consider the perturbed functional

L(t) = H1−s(t) + ǫE [〈ut, vt〉] , (5.21)

where ǫ is a small positive constant that will be chosen later and s satisfies

0 < s ≤ min

(

α− 2

p
,

α− β

p(β − 1)
,

p− q

p(q − 1)
,
α− 2

2α

)

. (5.22)

Our goal is to show that L(t) satisfies the differential inequality

dL (t)

dt
≥ ξL1+ν (t) , t ∈ [0,∞) , ν > 0. (5.23)

Inequality (5.23) leads to a blow-up of the solutions in finite time,

t ≥ L (0)−ν ξ−1ν−1, provided that L (0) > 0. Indeed, taking the time derivative of
(5.21), we obtain

L′(t) = (1− s)H−s(t)H ′(t)− ǫE [〈∇ut,∇vt〉]− ǫE
[〈

|∇vt|
β−2∇vt, ut

〉]

−
1

α
ǫE [||∇ut||

α
α]− E

[〈

|vt|
q−2vt, ut

〉]

+
1

p
E
[

||ut||
p
p

]

+E
[

||vt||
2
2

]

− ǫF (t). (5.24)

Young’s inequality yields, for some µ > 0 and δ > 0, that

E [〈∇ut,∇vt〉] ≤
1

4µ
E
[

||∇ut||
2
2

]

+ µE
[

||∇vt||
2
2

]

, (5.25)

E
[〈

|vt|
q−2vt, ut

〉]

≤
δq

q
E
[

||ut||
q
q

]

+
q − 1

q
δ−q/(q−1)

E
[

||vt||
q
q

]

, (5.26)

and

E

[∫

D

|∇vt|
β−1∇utdx

]

≤
λβ

β
E

[

||∇ut||
β
β

]

+
β − 1

β
λ−β/(β−1)

E

[

||∇ut||
β
β

]

. (5.27)

Substituting (5.25)-(5.27) into (5.24) results in

L′(t) ≥ (1− s)H−sH ′(t) + ǫE
[

||vt||
2
2

]

−
ǫ

4µ
E
[

||∇ut||
2
2

]

−µǫE
[

||∇vt||
2
2

]

− ǫE [||∇ut||
α
α]− ǫ

λβ

β
E

[

||∇ut||
β
β

]

−ǫ
β − 1

β
λ−β/(β−1)

E

[

||∇vt||
β
β

]

+ ǫE
[

||ut||
p
p

]

− ǫ
δq

q
E
[

||ut||
q
q

]

(5.28)

−ǫ
q − 1

q
δ−q/(q−1)

E
[

||vt||
q
q

]

− ǫF (t).
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We now choose














δ−q/(q−1) =M1H
−s(t),

µ =M2H
−s(t),

λ−β/(β−1) =M3H
−s(t),

where Mi (i = 1, 2, 3) are large positive constants that can be choosen later. Let
M =M2 + (β − 1)M3/β + (q − 1)M1/q. Then we obtain from (5.28) that

L′(t) ≥ ((1 − s)− ǫM)H−sH
′

(t) + ǫE
[

||vt||
2
2

]

−
ǫ

4M2
Hs

E
[

||∇ut||
2
2

]

− ǫE [||∇ut||
α
α]− ǫ

M
−(β−1)
3

β
Hs(β−1)

E

[

||∇ut||
β
β

]

+ ǫE
[

||ut||
p
p

]

− ǫ
M

−(q−1)
1

q
Hs(m−1)

E
[

||ut||
q
q

]

− ǫF (t).

(5.29)

Since we are dealing with the case p > q, we use the embedding of Lp(D) →֒ Lq(D)
to obtain

Hs(q−1)(t)E
[

||ut||
q
q

]

≤ C (1/p)
s(q−1) (

E
[

||ut||
p
p

])(q+sp(q−1))/p
. (5.30)

We also exploit the inequality

E
[

||∇ut||
2
2

]

≤ C (E [||∇ut||
α
α])

2/α

and the embedding W 1,α
0 (D) →֒ Lp (D) to obtain

Hs (t)E
[

||∇ut||
2
2

]

≤ C (1/p)
s
(E [||∇ut||

α
α])

(ps+2)/α
. (5.31)

Because α > β, we have

E

[

||∇ut||
β
β

]

≤ C (E [||∇ut||
α
α])

β/α
.

Consequently,

Hs(β−1) (t)E
[

||∇ut||
β
β

]

≤ C (1/p)s(β−1) (E [||∇ut||
α
α])

(ps(β−1)+β)/α ,

where C is a constant depending only on D. By using (5.22) and the algebraic
inequality

zν ≤ z + 1 ≤

(

1 +
1

a

)

(z + a) , ∀z ≥ 0, 0 < ν ≤ 1, a ≥ 0, (5.32)

we have the following
(

E
[

||ut||
p
p

])(q+sp(q−1))/p
≤ (E [||∇ut||

α
α])

(q+sp(q−1))/α

≤ d (E [||∇ut||
α
α] +H (0)) , (5.33)

≤ d (E [||∇ut||
α
α] +H (t)) , ∀t ≥ 0.

Similarly, we have

(E [||∇ut||
α
α])

(ps+2)/α ≤ d (E [||∇ut||
α
α] +H (t)) , ∀t ≥ 0 (5.34)

and

(E [||∇ut||
α
α])

(ps(β−1)+β)/α ≤ d (E [||∇ut||
α
α] +H (t)) , ∀t ≥ 0, (5.35)
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where d = 1 + 1/H (0). Now, we use

−ǫF (t) ≥ −ǫ(E [||∇ut||
α
α] +H(t))−

1

2
E
[

||vt||
2
2

]

(5.36)

and insert the estimates (5.30), (5.31), and (5.33) into (5.29) to obtain

L′(t) ≥ ((1− s)− ǫM)H−s (t)H ′ (t) + kH (t) + ǫ

(

1 + k

2

)

E
[

||vt||
2
2

]

−ǫpE(E1)−
ǫ(C2 + 1)

M2
(E [||∇ut||

α
α] +H (t)) + ǫ

( p

α
− 1
)

E [||∇ut||
α
α]

−
ǫC3

Mβ−1
3

(E [||∇ut||
α
α] +H (t)) +

k

α
E [||∇ut||

α
α]

−
ǫC1

M q−1
1

(E [||∇ut||
α
α] +H (t)) +

(

ǫ−
k

p

)

E
[

||ut||
p
p

]

,

for some constant k and

C1 =
Cd

q

(

1

p

)s(q−1)

, C2 =
Cd

4

(

1

p

)s

, C3 =
Cd

β

(

1

p

)s(β−1)

.

Then we use (5.9) to obtain

L′(t) ≥ ((1− s)− ǫM)H−s (t)H
′

(t) + kH (t) + ǫ
(

1 +
p

2

)

E
[

||vt||
2
2

]

−
ǫC2

M2
(E [||∇ut||

α
α] +H (t)) + ǫ

( p

α
− 1− pE1ζ

−α
2

)

E [||∇ut||
α
α]

−
ǫC3

Mβ−1
3

(E [||∇ut||
α
α] +H (t)) +

k

α
E [||∇ut||

α
α]

−
ǫC1

M q−1
1

(E [||∇ut||
α
α] +H (t)) + ǫ

(

1−
k

p

)

E
[

||ut||
p
p

]

.

This implies that

L′(t) ≥ ((1− s)− ǫM)H−s (t)H ′ (t) + kH (t) + ǫ
(

1 +
p

2

)

E
[

||vt||
2
2

]

−
ǫC2

M2
(E [||∇ut||

α
α] +H (t)) + ǫc0E [||∇ut||

α
α]

−
ǫC3

Mβ−1
3

(E [||∇ut||
α
α] +H (t)) +

k

α
E [||∇ut||

α
α]

−
ǫC1

M q−1
1

(E [||∇ut||
α
α] +H (t)) + ǫ

(

1−
k

p

)

E
[

||ut||
p
p

]

,

where

c0 =
p

α
− 1− pE1ζ

−α
2 > 0, as ζ2 > ζ1.
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Thus, we arrive at

L′(t) ≥ ((1− s)− ǫM)H−s (t)H ′ (t) + ǫ

(

p+ 2

2

)

E
[

||vt||
2
2

]

+ǫ

(

p−
C2

M2
−

C3

Mβ−1
3

−
C1

M q−1
1

)

H (t)

+ǫ

(

c0 −
C2

M2
−

C3

Mβ−1
3

−
C1

Mm−1
1

− 1

)

E [||∇ut||
α
α] .

At this point, we choose large enough M1, M2, and M3 such that

L′(t) ≥ ((1− s)− ǫM)H−s (t)H ′ (t) + γǫ
[

H (t) + E
[

||vt||
2
2

]

+ E [||∇ut||
α
α]
]

,

where γ is a positive constant (this is possible because p > α and hence c0 > 0).
By choosing ε < (1− s) /M such that

L (0) = H1−s (0) + ǫE [〈u0, u1〉] > 0,

we obtain

L (t) ≥ L (0) > 0, ∀t ≥ 0

and

L′(t) ≥ γǫ
[

H (t) + E
[

||vt||
2
2

]

+ E [||∇ut||
α
α]
]

. (5.37)

Next, it is clear that

L1/(1−s) (t) ≤ 21/(1−s)
{

H (t) + ǫ1/(1−s) (E [〈vt, ut〉])
1/(1−s)

}

.

By the Cauchy-Schwarz inequality, the embedding of Lα (D) →֒ L2 (D), and the
properties of expectations, we obtain

E [〈vt, ut〉] ≤
(

E
[

||ut||
2
2

])1/2 (
E
[

||vt||
2
2

])1/2

≤ C (E [||ut||
α
α])

1/α (
E
[

||vt||
2
2

])1/2
,

which implies

E [〈vt, ut〉]
1/(1−s)

≤ C (E [||ut||
α
α])

1/(1−s)α (
E
[

||vt||
2
2

])1/2(1−s)
.

Also, Young’s inequality gives

E [〈vt, ut〉]
1/(1−s) ≤ C

[

(E [||ut||
α
α])

µ/(1−s)α +
(

E
[

||vt||
2
2

])θ/2(1−s)
]

for 1/µ+ 1/θ = 1. We take θ = 2 (1− s) and hence µ = 2(1−s)
(1−2s) to get

E [〈vt, ut〉]
1/(1−s)

≤ C
[

(E [||ut||
α
α])

2/(1−2s)α
+ E

[

||vt||
2
2

]

]

.

By using (5.22) and (5.32), we deduce

(E [||ut||
α
α])

2/(1−2s)α
≤

(

1 +
1

H (0)

)

(E [||ut||
α
α] +H (t)) .

Therefore,

E [〈vt, ut〉]
1/(1−s) ≤ C

[

H (t) + E [||ut||
α
α] + E

[

||vt||
2
2

]]

, ∀t ≥ 0. (5.38)
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Consequently,

L1/(1−s) (t) ≤ Γ
[

H (t) + E [||ut||
α
α] + E

[

||vt||
2
2

]]

,

where Γ is a positive constant. A combination of (5.37) and (5.38) thus yields

L′ (t) ≥ ξL1/(1−s) (t) , ∀t ≥ 0. (5.39)

Integration of (5.39) over (0, t) gives

Ls/(1−s) (t) ≥
1

L−s/(1−s) (0)− ξs
(1−s) t

.

Hence, L (t) blows up in finite time: that is, if

T ∗ =
1− s

ξsL
s

1−s (0)
, (5.40)

then L(t) → +∞ as t → T ∗, which implies the blow-up of H(t) and hence of
E[||ut||

p
p]. �

6. Numerical Experiments

In this section our goal is to perform various numerical experiments on equation
(1.7) with noise, when q = 2. This is precisely a special case of the problem
considered in [10]. This is also a special case of the problem we consider (1.2)
(that is, if α = q = 2, and there were no strong damping terms. The strong
damping terms can always be done away with if we assume some coefficients in
front of them, and then set those to be zero.). We perform numerical simulations
in one and two dimensions using a stochastic spectral Galerkin method on

∂ttu+ a∂tu = ∆u + b|u|p−2u+ σ(x, t)dW, x ∈ Ω, t > 0, (6.1)

where u = 0 on the boundary of the domain.
For brevity, the development of the numerical scheme for a one dimensional

domain (0, L) is shown. The development for higher dimensions follows similarly.
Define the inner product as

< v(x), w(x) >=

∫ L

0

v(x)w(x)∗dx.

Let u(x, t) be approximated through a finite dimensional fourier expansion in
the spatial coordinates

u(x, t) ≈ uN (x, t) =

N
∑

j=1

uj(t)hj(x),

where {hj(x)} are orthogonal global basis functions of the form,

hj(x) =
1

2

sin (π(N + 1)(x− xj)/L)

sin (π(x− xj)/L)
,

for xj = jh, h = L/(N + 1), and uj(t) are the time-dependent fourier coefficients
to be determined. The global basis functions satisfy the Dirichlet boundary condi-
tions and are known to have advantageous properties in numerical computations
[14].
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The stochastic term is expanded in the fourier basis,

σ(x, t)dW =

N
∑

j=1

βj(t)hj(x)dWj ,

where dWj is a random time-dependent variable obeying a standard Wiener pro-
cess. The finite term expansions are substituted into (6.1). The inner product is
taken with another basis function, hk(x). Upon integrating by parts, a system of
stochastic initial value differential equations are established that determines the
fourier coefficients, uj, namely,

1

2
(v̇k + av̇k) =

N
∑

j=1

−uj < h′j , h
′
k > +b <

∣

∣

∣

∣

∣

∣

N
∑

j=1

ujhj

∣

∣

∣

∣

∣

∣

p−2
N
∑

j=1

ujhj , hk >

+
1

2
βkdWk, k = 1, . . . , N (6.2)

u̇j = vj , j = 1, . . . , N, (6.3)

where ˙ = d/dt. Define the 2N−dimensional vectors

y = (v1, . . . , vN , u1, . . . , uN)⊤,

y0 = (v1(0), . . . , vN (0), u1(0), . . . , uN(0))⊤,

dŴ = (β1dW1, . . . , βNdWN , 0, . . . , 0)
⊤,

f =






<

∣

∣

∣

∣

∣

∣

N
∑

j=1

ujhj

∣

∣

∣

∣

∣

∣

p−2
N
∑

j=1

ujhj , h1 >, . . . ,

<

∣

∣

∣

∣

∣

∣

N
∑

j=1

ujhj

∣

∣

∣

∣

∣

∣

p−2
N
∑

j=1

ujhj, hN >, 0, . . . , 0







⊤

.

Let P = (< h′j, h
′
k >), a N × N symmetric matrix. Let IN and I represent the

N × N and 2N × 2N identity matrices, respectively. Then (6.2)-(6.3) can be
written in vector form,

ẏ = Cy +Mf + I0dŴ ,

where

C =

(

−aI −2P
I 0

)

, M =

(

2I 0
0 I

)

, I0 =

(

IN 0
0 0

)

.

The implicit solution to the evolution equation is

y(t) = exp (Ct)

(

y0 +

∫ t

0

exp (−Cτ)Mfdτ +

∫ t

0

exp (−Cτ)I0dŴd〈τ〉

)

.

We employ a Padé 1-1 approximation to the exponential operator, a trapezoidal
rule for the nonlinear integral, and an Euler-Maruyama method for the stochastic
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integral to develop the fully discretized equations to advance the solution [3, 15, 21],

yn+1 =

(

I −
∆t

2
C

)−1(

I +
∆t

2
C

)(

yn +
∆t

2
Mfn

)

+
∆t

2
Mfn+1 + dŴ , (6.4)

where tn+1 = tn + ∆t, and yn and fn are approximations to y(tn) and f(tn),
respectively. The first N terms of implicit term fn+1 is determined through an
Euler prediction to uj+1, that is, uj+1 ≈ ũj+1 = uj +∆t vj .

In the following examples the numerical solution is said to blow-up if the
maxx∈Ω |uN(x, ti)| > 106 for some finite ti. Thus we are considering blow-up
in the L∞(Ω) norm. The numerical solution is said to approach a steady-state
solution if maxx∈Ω | ∂∂tuN (x, ti)| < 10−6 at some finite ti. The computations for
our experiments are implemented through a Matlab c© platform on a Dellr XPS
8700, (Intel Core i7-4770, 3.9 GHz, 8M L2 cache, 1600 MHz FSB, 2 TB Hard
Drive) 64-bit workstation.

Example 6.1. Consider the one dimensional domain (0, 5), p = 2, and initial
conditions u(x, 0) = .1x(5 − x) and ut(x, 0) = 0. The initial energy is −.3125.
Let h = .05, ∆t = 10−3, and a = b = 1. Hence, for this spatial domain and
grid size there are 99 basis functions in our fourier expansions. Consider σ(x, t) =
exp{(−t)}. Hence, the criteria of [10] are satisfied. This experiment establishes
the bound for the energy functional Ψ(t) defined in [10]. The energy functional is
defined as in (1.4), that is,

Ψ(t) =
1

2

(

‖ut‖
2
2 + ‖ux‖

2
2 − ‖u‖22

)

The functional is calculated at each iteration. The semi-log plot of the functional,
as shown in Figure 1, clearly shows it is bounded by an exponential function in
time.

0 10 20 30 40 50
0

20

40

60

80

100

t

ln
 ( 
Ψ

 )

Figure 1. The natural logarithm of the functional Ψ(t) is shown
versus time. The noise is self-evident in the curve, however, the
linear trend suggests that the functional is bounded by an expo-
nential function.
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Example 6.2. Consider a one dimensional domain (0, 5), p = 3, and initial con-
ditions u(x, 0) = .1x(5− x) and ut(x, 0) = 0. Let a = 1. Again, we use a grid size
of h = .05 and 99 basis functions.

In the deterministic case, σ = 0, blow-up will occur if b > 0.035645 = b∗.
Consider the case b = 0.035654 > b∗. Hence, blow-up is expected and observed
in numerical solution. Now, consider σ(x, t) = ρ exp{(−κt)}. It is observed for
particular values of ρ and κ that on average (greater than 50% of the 1, 000 simula-
tions) the numerical solution approaches a steady-state solution and blow-up does
not occur. The solution u(x, t) is shown in Figure 2(a). The maximum location
throughout the simulation is 2.5, hence a plot of u(2.5, t) is shown in Figure 2(b).
Note in this case we see blow-up even if the initial energy is positive, which is
legitimate via the results of [37].
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t x

0 1 2 3 4 5
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 | 
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(2

.5
, t

) |

Figure 2. The solution in the (a) (x-t) plane and at x = 2.5 for
the (b) stochastic (ρ = 10, κ = 10). A semi-log plot of the solu-
tion for the deterministic case is shown in (c). The deterministic
solution will blow-up, however, on average, the stochastic term
can prevent this from occurring and the solution will converge to
a steady state.

This experimental observation is in support of the analysis of the previous
sections, that is, a stochastic term may act as an additional damping and prevent
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blow-up. Note that this has been reported in [10, 27], but not numerically verified,
to the best of our knowledge.

Remark 6.3. The experiments suggest that for a fixed ρ there exists a critical
decay rate κ. For instance, if ρ = 10 and for values of κ > κ∗ = 7.726563, then, on
average, the numerical solution approaches a steady state. For values of κ < κ∗,
then, on average, the numerical solution blows up.
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Figure 3. Plots of the numerical solution u(x, y, t) (a) ini-
tially, (b) when the maxx,y |u(x, y, t)| = .5maxx,y |u(x, y, t)|,
(c) when the maxx,y |u(x, y, t)| = .25maxx,y |u(x, y, t)|, and (d)
maxx,y∈Ω |u(x, y, t)| at ti for mod(i, 100) = 0. The solution con-
verges to a steady state as a result of the introduction of the sto-
chastic term of the form exp(−t). Fifty one equally spaced nodes
are used in the x and y directions to create the two-dimensional
basis functions. ∆t = 10−3, 492 basis functions, a = 1, and
b = 0.0684675.

Example 6.4. Experiments were completed for a square domain (0, 5) × (0, 5).
Let u(x, y, 0) = 0.017xy(x− 5)(y − 5) and ut(x, y, 0) = 0. The initial energy is on
the same order as in the previous example in one-dimension, that is, −.1325. The
grid size is .1 in both directions, hence we have 492 basis functions. Let p = 3 and
b = 1. Blow-up is observed in the deterministic problem provided the nonlinear
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coefficient b = b∗ > 0.068467. Let b = 0.0684675 > b∗, a value just above threshold,
and let σ(x, t) = exp (−t). On average, over 50% of the 1, 000 simulations, the
numerical solution was found to approach a steady-state rather than blow-up as
in the deterministic case. This empirical evidence affirms the theoretical results
of [10], and also a very special case of our global existence results (that is when
α = p = q = 2 and there is no strong damping). Select snapshots of the numerical
solution in the stochastic case for particular iterates are shown in Figure 6.3(a)-(c).
The maximum absolute value of the numerical solution at ti for mod(i, 100) = 0
is shown in Figure 6.3(d).
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