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Glioblastoma (GBM) is a disease without any definite cure. Numerous approaches have been tested in efforts to conquer this brain 
disease, but patients invariably experience recurrence or develop resistance to treatment. New surgical tools, carefully chosen 
samples, and experimental methods are enabling discoveries at single-cell resolution. The present article reviews the cell-of-origin 
of isocitrate dehydrogenase (IDH)-wildtype GBM, beginning with the historical background for focusing on cellular origin and 
introducing the cancer genesis patterned on firework. The authors also review mutations associated with the senescence process 
in cells of the subventricular zone (SVZ), and biological validation of somatic mutations in a mouse SVZ model. Understanding GBM 
would facilitate research on the origin of other cancers and may catalyze the development of new management approaches or 
treatments against IDH-wildtype GBM.
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INTRODUCTION

Isocitrate dehydrogenase (IDH)-wildtype glioblastoma 

(GBM) is a disease with a dismal prognosis, a distinction that 

has led to GBM being dubbed the “emperor of all cancers”. 

The disease progression is rapid, and even with standard ther-

apy53) and supra-total resection52), the median survival of pa-

tients from diagnosis is approximately 14–20 months53,63).

There are continuing efforts by researchers in diverse disci-

plines, including epidemiology and molecular biology, to 

identify the cause of GBM. Epidemiological research on GBM 

suggests numerous risk factors that should be taken into ac-

count, such as irradiation of the head8,23,46,50,55) and the allergic 

history of patient4). Biological approaches for determining the 

cause of GBM include attempts to identify molecular signa-

tures in patient samples (e.g., DNA mutations)61), the use of in 

vivo mouse models58), and investigation of progenitor cells of 

GBM3,13,43).
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This article reviews the proof-of-concept that GBM origi-

nates in the subventricular zone (SVZ) from the microscale 

perspective such as a molecular biology with a cellular level 

resolution. The first sections present a brief overview of the 

disease and recapitulate the importance of mutations in the 

development of GBM. The remaining sections describe the 

cell-of-origin of GBM and the cancer genesis patterned on 

firework from SVZ43) and discuss a new hypothesis driving 

GBM research.

HISTORY : PROGRESS TOWARD THE STEM 
CELL ORIGIN OF GBM

There are plenty of discussions and arguments about the 

existence of the cell-of-origin from the early era of neuro-on-

cology whether the disease originates from embryonic cells or 

dedifferentiated cells51). The brain cancer model induced from 

the mutation of specific cells of brain is blurring the gap be-

tween those two sides2) by leading an edge of this field with a 

subsequent drug discovery targeting GBM58). 

The cell-of-origin of GBM has been suspected to have char-

acteristics of a stem cell, and this cell type has also been regard-

ed as the source of tumor recurrence22). There have been many 

trials conducted to isolate such treatment-resistant insidious 

cells from the tumor tissues3,34,41). Those cells were labeled as tu-

morspheres27,35,36) and their behaviors and characteristics have 

been validated from multiple sources14,25,30,39,42,49,64). As the pa-

tient-derived tumor cells are heterogeneous in the sample di-

mension (patient age, the size and location of the sample in the 

original tumor mass, sample control, purity of samples, or pre-

vious treatments), the mutation-induced tumor model has been 

accepted as another robust and predictable platform in the re-

peated experiments and clearly demonstrates the consequences 

of mutation1,20,43) better than the orthotopic xenograft by pri-

mary tumorsphere31,35,38,42).

An epiphany came from the experience of 5-aminolevulinic 

acid (5-ALA) fluorescence without any tumor cells in the tu-

mor specimen by pathologic examinations45). During surgery 

to remove GBM, high fluorescence of 5-ALA was found in the 

walls of ventricles45), which are non-coincidentally exposed af-

ter supra-total resection (or a so-called planned lobecto-

my)52,53). Moon et al.45) described interesting patterns of 5-ALA 

fluorescence in the ventricular wall of brain tumor patients. 

What they found the most interesting was the ventricular 

walls with positive 5-ALA fluorescence without magnetic res-

onance imaging enhancement and no tumor cells in the pa-

thology, a finding that perplexed surgeons45).

Concurrence of 5-ALA positive tissues with no tumor cells 

in the ventricle sample45) helped and guided us to find the ori-

gin of GBM in the in vivo model43). This 5-ALA glittering tu-

mor negative samples from the ventricular wall or the SVZ 

has a pattern of mutations that has not been previously dis-

covered. By comparing those mutation patterns, a novel way 

of understanding the disease could be revealed. The tumor-

private mutations in the tumor tissue might facilitate the de-

velopment of a new targeted therapy. In addition, the anatom-

ical location of those cells would mature the Big Bang 

theory7,60) into the Firework theory of subventricular abnormal 

cells43).

ETIOLOGY

Epidemiologic studies have linked a number of pollutants 

to the incidence of GBM48). Ionizing radiation to the head at a 

younger age increases the risk of glioma and meningio-

ma8,23,46,50,55). An allergic or atopic disease has been associated 

with a lower risk of GBM, and consistently with lower-grade 

glioma4). DNA mutations and its consequent syndromes in-

crease the risk of acquiring GBM32,48), such as Turcot syn-

drome (from mismatch repair-deficiency)15), Li-Fraumeni 

syndrome (from the germline mutation of TP53)37) and neu-

rofibromatosis type 1 (from NF1 gene)26,59).

However, there are additional unproven and controversial 

risk factors. One example is non-ionizing radiation from cel-

lular phones. Studies have not shown a consistent increase in 

the risk of glioma24). Another example is Radon exposure 

which reported to be associated with the risk of glioma in a 

Danish cohort9), but neither radon exposure nor background 

radiation was associated with glioma incidence in a cohort of 

British children28). Inconsistent results have been obtained 

with respect to the association of GBM development with ex-

posure to air pollutants or particulate matter, owing in part to 

difficulties in measuring exposure history5). There is hardly 

any or no evidence linking insecticides, rubber processing, 

pesticides, farming, solvents, metal fumes, or jet engine man-

ufacturing to the incidence of glioma48,54).
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IDENTIFICATION OF SOMATIC MUTATIONS IN 
SVZ STEM CELLS

Two senescence-associated mutational patterns were found 

in GBM : mutational signatures 1 and 543). These two types 

dominated the mutation profile of SVZ samples of the astro-

cytic ribbon (SVZ‡ in Fig. 1A, 33% [7.8 genes out of 23 total 

genes] and 45% [10.4 genes out of 23 total genes] for signature 

1 and 5 respectively in the SVZ samples)43).

The average number of genes for mutation signature 1 

jumped up from 7.8 genes (SVZ) to 81.9 genes in tumor sam-

ples of the Severance GBM cohort (10.5 fold increase)43). While 

the fold change of average number of genes that contribute to 

mutation signature 5 (fold 0.71, calculated from 10.4 genes of 

SVZ to 7.4 genes of the tumor) remains relatively stable as that 

of other signatures (fold 1.18, calculated from 4.8 genes of SVZ 

to 5.7 genes in the tumor)43). These findings suggest that GBM 

arises from the senescence process, especially if we focus on 

the number of genes of mutational signature 1 and 5 from 

SVZ to tumor, or alternatively from other causes that are as-

sociated with age.

DIRECTION OF CLONAL EVOLUTION

Accumulation of mutations in both the stem cells and the 

tumor region raises questions regarding the origin of the mu-

tations. Are mutations in both tumors and SVZ related? Are 

they coincidental? Do mutations in the SVZ reflect contami-

nation from the tumor? To deconvolute this complex pattern 

of mutations, the authors compared shared mutations (i.e., 

those in common to both the SVZ and tumor) and tumor-ex-

Fig. 1. Cell-of-origin of IDH-wildtype GBM and GBM genesis mechanism. A : Illustration of IDH-wildtype GBM genesis from the SVZ43). Left : gross 
structure of the tumor in the brain. Red arrow (yellow background in the arrowhead) indicates migrating GBM origin cell from SVZ (red line under the 
sky blue lateral ventricle) to the hemisphere. Red arrow with a pink background in the arrowhead indicates the explosion (or evolutionary increase in 
heterogeneity) of tumor cells that creates the tumor bulk. Right : schematic overview of tumorigenesis from the SVZ to the cortex (below → top). Some 
portion of cells in the astrocytic band in the SVZ (‡) acquire mutations (illustrated by asterisks with blue in the SVZ; additional mutations are depicted in 
cells of the GBM in green and red asterisks) as an incidental consequence of senescence (*), with mutations in the TERT promoter serving as the possible 
initial step (†), followed by mutations in TP53, PTEN and EGFR, among others. B : Illustration of the hypothetical SVZ origin of IDH-wildtype GBM 
recurrence via route 1 or 2. Route 1 indicates same site recurrence, while route 2 indicates different site recurrence from the GBM cell-of-origin in the 
SVZ. GBM : glioblastoma, IDH : isocitrate dehydrogenase, TERTp : promoter of telomerase reverse transcriptase (Gene symbol : TERT), p53 : tumor protein 
p53 (Gene symbol : TP53), EGFR : epidermal growth factor receptor, PTEN : phosphatase and tensin homolog, CSF : cerebrospinal fluid, SVZ : 
subventricular zone.
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clusive mutations (i.e., those not found in the SVZ)43). There 

were several shared mutations in the tumor-free SVZ and 

GBM bulk tumor, including those in the TERT promoter43). 

An analysis of variant allele frequencies (VAFs) and single-cell 

sequencing results revealed a unidirectional pattern from SVZ 

to bulk tumor. A two-dimensional VAF plot in a previous re-

port43) showed unique patterns of shared mutations between 

the tumor and the SVZ, with low-level driver mutations being 

located near the y-axis or tumor-axis. However, the tumor-

contaminated SVZ-tumor pair showed more genes that are 

spread along the identity line as opposed to the uncontami-

nated SVZ-tumor pair43) (Fig. 1A).

Single-cell sequencing of the DNA of bulk tumors also vali-

dated the result showing directionality from the SVZ to the 

tumor43). Twenty-four clones were derived from one IDH-

wildtype GBM patient (GBM245)43). The genes on the table of 

Lee et al.43) are subset of those genes of directionality. This 

surprising pattern of mutation was later confirmed from the 

intraventricular injection of plasmids to induce mutation in 

the SVZ16,43).

PROGRESSION OF MUTATIONS IN GBM FROM 
THE SVZ

Mutations oftentimes start with TERT promoter mutations 

in cells of the astrocytic ribbon in SVZ under the ventricle 

(TERTp† in Fig. 1A). With additional mutations in oncogenes, 

the mutated cells from SVZ migrate to the cortex and mani-

fest as the GBM (Fig. 1A, right)43). The authors searched for 

mutations in triple-matched samples of tumor-free SVZ, 

GBM tumor, and normal brain cortex (or blood)43). The au-

thors have hypothesized that the SVZ, which includes neural 

stem cells, is suspected of being the origin of tumors43); muta-

tions then progress from the SVZ to the tumor mass. In addi-

tion to this directionality, the number of mutations increases 

dramatically after the cell-of-origin reaches the cortex. As de-

scribed in the previous study of Lee et al.43), about 20 different 

somatic mutations of SVZ that contribute to the mutational 

patterns increased to around 100 mutations in the tumor. 

Furthermore, mutational signature 1 dominated most muta-

tions in tumors, whereas mutational signature 5 was preserved 

Fig. 2. Firework pattern of IDH-wildtype GBM genesis. A : Artistic illustration of IDH-wildtype GBM originating from the SVZ (colored in gold). Each 
firework trail corresponds to a different cancer clone. In this metaphorical depiction, the SVZ is represented as a cannon on the ground, denoting the 
starting point of GBM genesis. B : Conceptual illustration of the time line of the genesis of the firework pattern of IDH-wildtype GBM. Horizontal 
recurrence (or classical model) : GBM recurs from SVZ (red) → tumor (blue) → recurrence (green), vertical recurrence (hypothetical model) : primary GBM 
originates from SVZ (red) → tumor (blue), and it recurs from SVZ (red) → recurrent tumor (orange). GBM : glioblastoma, SVZ : subventricular zone, IDH : 
isocitrate dehydrogenase.

A B
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at about the same level between the SVZ and the tumor43). 

This pattern is slightly different version of the Big Bang con-

cept and, considering the anatomic location of the progres-

sion, the authors refer to it as a “Firework” pattern (Fig. 2).

BIOLOGICAL VALIDATION

Deep under the ependymal layer of the SVZ is a ribbon-like 

feature called the astrocytic ribbon57) (SVZ‡ in Fig. 1A). This 

area is populated by neural stem cells in both mouse and hu-

man brains65). Using molecular techniques described below, 

we introduced three types of mutations into the population of 

cells in the SVZ. These mutation-bearing cells migrated to the 

cortex, ultimately forming high-grade gliomas43) (Fig. 1A), 

presenting with firework-like GBM genesis (Fig. 2A).

A mass of GBM is created in the cortex by the mutation in 

the SVZ cells43). Crossbred mice (postnatal day 2–3 pups) car-

rying LSL-tdTomato and LSL-EGFRviii71) were used for these 

experiments43). A Cre-containing CRISPR/Cas9 plasmid was 

electroporated into one side of the ventricle in the brain to 

knock out Pten and Trp53 (mouse analog of human TP53) 

genes using single guide RNA (sgRNA) for these genes. After 

injection into the ventricular space with a sharp needle, the 

electroporation device was applied to deliver the plasmid into 

the SVZ43). In the presence of the mutations, brain tumors de-

veloped in 90% of mice (9/10), with 67% of tumors developing 

in a region distant from the mutation-arising SVZ, and these 

mice showed a median survival of around 20 weeks43).

Tumorigenesis, or Cancer genesis from the triple mutations 

marks the important step in the research of GBM61). By this 

finding43), more subtle nature of IDH-wildtype GBM can be 

revealed in the subsequent researches.

HYPOTHESIS : RECURRENCE OF GBM FROM 
THE SVZ 

One of the next steps in the research of IDH-wildtype GBM 

should be related with the recurrence pattern of GBM (The 

hypothesis on the recurrence of GBM). Careful selection of 

samples without tumor in the SVZ is the beginning point of 

this research. Recent article by Watts group61) is one example 

of selecting the tumor-invaded SVZ (median tumor content 

22.1%, rather than tumor-free SVZ) by the IDH-wildtype 

GBM and its results and implications should be carefully con-

templated in the research of vertical recurrence from the cell 

of SVZ (Fig. 2B). 

GBM recurs after irradiation of tumor margins at varying 

depth69). Although irradiating the SVZ appears to have a prog-

nostic benefit for GBM patients29,47), it does not cure these pa-

tients or prevent exacerbation of symptoms. There are at least 

two scenarios for recurrence of IDH-wildtype GBM. In the 

first case, GBM-initiating cells already present in the paren-

chyma of the brain restart the tumor after a dormant period 

(Fig. 2B, horizontal recurrence). In the second, dormant cells 

in the SVZ re-migrate to the tumor bed area, where they cre-

ate the recurrent tumor (Fig. 1B, the only hypothesis in this 

article; Fig. 2B, vertical recurrence). We hope to resolve the 

second phenomenon using tumor-free SVZ samples from 

GBM patients.

FUTURE : DEVELOPMENT OF THERAPEUTICS 
TARGETING THE SVZ

Many previous attempts to treat GBM have failed and the 

list harbors 5-f luorouracil and methotrexate10). A break-

through in treating GBM came with the application of alkyl-

ating agents18,62,67). Nitrosoureas proved the most effective at 

the time, and it became the most commonly used drugs for 

the management of brain tumors, including GBM56,70). Their 

antitumor effects were widely accepted and even led to the de-

velopment of an implantable chemotherapeutic system im-

pregnated with the nitrosourea derivative carmustine11).

However, these nitrosoureas had toxicity issues, and temo-

zolomide subsequently gained popularity because of its limit-

ed adverse effects compared with earlier alkylating agents6). 

But even temozolomide proved to be ineffective in treatment 

of recurrent GBM similarly to other alkylating agents33,44,66). 

And the therapeutic efficacy of other novel options is limited 

in Bevacizumab19,21,68), IDH-targeting drugs12) and immuno-

therapy17,40).

After the repeated efforts to treat the tumor itself, the origin 

of GBM emerged as the next generation target. Ultimately, in 

vitro and in vivo models will accelerate the screening for drugs 

that can preemptively target the initial process of cancer gene-

sis with firework pattern from SVZ.
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CONCLUSION

Mutated neural stem cells, that are present in the astrocytic 

ribbon in the SVZ, may migrate to the brain cortex and gen-

erate IDH-wildtype GBM with/or without any molecular or 

environmental cue43). While this concept has been demon-

strated scientifically, elucidating the detailed mechanism un-

derlying the GBM genesis process will require additional in-

vestigation. Our ongoing research efforts would focus on 

identifying the cell-of-origin to develop a potential treatment 

option for IDH–wildtype GBM, the “Emperor of cancer”. 
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