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Abstract

Background: Transcription factors forkhead box protein O1 (FOXOT1) and paired box 3 (PAX3) have been reported
to play important roles in various cancers. However, their role in epithelial ovarian cancer (EOC) has not been
elucidated yet. Therefore, we evaluated the expression and clinical significance of FOXO1 and PAX3 in EOC.

Methods: Immunohistochemical analyses of FOXO1 and PAX3 in 212 EOCs, 57 borderline ovarian tumors, 153
benign epithelial ovarian tumors, and 79 nonadjacent normal epithelial tissues were performed using tissue
microarray. Various clinicopathological variables, including the survival of EOC patients, were compared. In addition,
the effect of FOXO1 on cell growth was assessed in EOC cell lines.

Results: FOXO1 and PAX3 protein expression levels were significantly higher in EOC tissues than in nonadjacent
normal epithelial tissues, benign tissues, and borderline tumors (all p < 0.001). In EOC tissues, FOXO1 expression was
positively correlated with PAX3 expression (Spearman’s rho = 0.118, p = 0.149). Multivariate survival analysis revealed
that high FOXO1 expression (hazard ratio = 2.77 [95% Cl, 1.48-5.18], p = 0.001) could be an independent prognostic
factor for overall survival. Most importantly, high expression of both FOXO1 and PAX3 showed a high hazard ratio

(4.60 [95% Cl, 2.00-10.55], p < 0.001) for overall survival. Also in vitro results demonstrated that knockdown of
FOXO1 was associated with decreased cell viability, migration, and colony formation.

Conclusions: This study revealed that high expression of FOXO1/PAX3 is an indicator of poor prognosis in EOC.
Our results suggest the promising potential of FOXO1 and PAX3 as prognostic and therapeutic markers. The
possible link between biological functions of FOXO1 and PAX3 in EOC warrants further studies.
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Background

Epithelial ovarian cancer (EOC) is the second most com-
mon gynecologic cancer and the fifth leading cause of
cancer-related death in the United States of America [1].
The standard treatment for EOC is cytoreductive surgery
followed by adjuvant chemotherapy. Despite significant
improvements in the diagnosis and treatment of EOC,
more than 70% of women are diagnosed at advanced
stages, and the majority of them tend to relapse and die.
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Consequently, there is a great need for research to under-
stand the molecular pathogenesis of ovarian cancer and
spur the development of more specific and effective prog-
nostic markers to improve patient outcomes.

The forkhead box (FOX) family of proteins consists of 19
sub-families of transcription factors. FOXO sub-family con-
sists of four members, FOXO1, FOXO3, FOXO4, and
FOXO6, with high protein homology [2] that are involved
in diverse intracellular signaling pathways, such as phos-
phorylation through the phosphoinositide 3-kinas (PI3K)/
protein kinase B (AKT) signaling pathway, and these FOXO
members also regulate cell-cycle arrest, apoptosis, DNA
damage repair, and detoxification of reactive oxygen species
by regulating specific genes [3-5].
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Paired box 3 (PAX3) is a member of the paired box or
PAX family of transcription factors [6]. PAX3 and PAX7
comprise the group III subfamily, which share a high de-
gree of sequence homology and similar genomic and func-
tional organizations [7]. These transcription factors play
critical roles in cell proliferation, migration, differentiation,
and tissue development [8]. The role of PAX3 as an onco-
gene has been widely reported in various cancers, such as
neuroblastoma, glioblastoma, melanoma, Ewing sarcoma,
rhabdomyosarcoma, and gastric cancer [9-15].

FOXOL1 is a negative regulator of the PI3K/AKT signaling
pathway. Several tissue culture experiments have shown
that FOXOL1 is down-regulated in a wide variety of cancers,
such as breast, kidney, prostate, and uterine cervix cancers
[16—19]. Only a few studies have investigated FOXOL1 alter-
ations in EOC. Therefore, in this study, we evaluated the
clinical significance of FOXO1 and PAX3 expressions in
EOC by assessing their correlation with various clinicopath-
ological characteristics, and performing functional studies
to determine the role of FOXOL1 in EOC.

Methods

Patients and tumor specimens

Tissue samples from 212 EOCs, 57 borderline ovarian
tumors, 153 benign epithelial ovarian tumors, and 79 non-
adjacent normal epitheliums were included in the study.
Tissue samples were obtained from patients who under-
went primary surgery at Gangnam Severance Hospital be-
tween 1996 and 2012 and the Korea Gynecologic Cancer
Bank as part of Bio & Medical Technology Development
program of the Ministry of the National Research Founda-
tion (NRF) funded by the Korean government (MIST)
(NRF-2017M3A9B8069610). Tumor staging was assessed
according to the International Federation of Gynecology
and Obstetrics (FIGO) classification. Clinical information,
including age, surgical procedure, survival time, and
survival status, were collected from medical records. Re-
sponse Evaluation Criteria in Solid Tumors (RECIST;
version 1.0) was used to assess the patients’ response to
therapy by spiral computed tomography [20]. Pathological
reports were reviewed to obtain tumor grade and cell
types. All tumor tissues were histologically examined by
one gynecologic pathologist, and all biological samples
were collected after obtaining informed consent from par-
ticipants, according to the guidelines of the institutional
review board (IRB) of Gangnam Severance Hospital.

Cell lines

Human ovarian cancer cell lines OVCA433 and OVCA429
were kindly gifted by Dr. Samuel C. Mok (University of
Texas MD Anderson Cancer Center, Houston, USA). A
polymerase chain reaction (PCR)-based method was done to
test for possible contamination by mycoplasma according to
the manufacturer’s instructions (i-MycoPCR mycoplasma

Page 2 of 10

detection kit; iNtRON Biotechnology Inc.,, Seongnam,
Korea). OVCA433 and OVCA429 cells were grown in
DMEM supplemented with 10% fetal bovine serum (FBS),
1% penicillin, and 1% streptomycin, and were cultured at
37 °C in a humidified atmosphere containing 5% CO,.

Immunoblotting

Protein levels in OVCA433 and OVCA429 cells were mea-
sured by western blotting. OVCA433 and OVCA429 cells
were homogenized in RIPA buffer (150 mM sodium chlor-
ide, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS,
50 mM Tris-HCI, pH 7.5, and 2 mM EDTA) containing pro-
teinase inhibitor cocktail (Roche, Nutley, NJ) to lyse the cells.
Then, cell lysates were centrifuged at 13,500xg for 30 min,
and supernatants were recovered. Lysate supernatants con-
taining about 30 pg of protein were resolved by sodium do-
decyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE),
and analyzed by western blotting using anti-a-tubulin
(mouse antibody clone# sc-5286; Santa Cruz Biotechnology,
Santa Cruz, CA) and anti-FOXO1 (mouse antibody clone#
sc-374,427; Santa Cruz Biotechnology) antibodies.

Knockdown of FOXO1 by RNA interference

Synthetic small interfering RNAs (siRNAs) specific for
FOXO1 were purchased from Bioneer (Daejeon, Korea).
The following sequences of FOXO1 and nonspecific (NS)
siRNAs used: FOXO1 #1 sense 5'-CUGCAUAGCAUCA
AGUCUU-3" and antisense 5-AAGACUUGTUGCUA
UGCAG-3’, FOXO1 #2 sense 5'-GUCCAAGACAUAGC
UGGUU-3" and antisense 5'-AACCAGCUAUGUCUUG
GACC-3’, and FOXO1 #3 sense 5'-GAGGGUUAGUGA
GCAGGUU-3" and antisense 5'-AACCUGCUCACUAA
CCCUC-3". For in vitro delivery, cells in a 6-well plate
were transfected with 100 pmol of siRNA using Lipofecta-
mine™ RNAIMAX reagent (Invitrogen, Carlsbad, CA)
according to the manufacturer’s instructions. The siRNA-
treated cells were collected 3 days after transfection for
western blot analysis.

Cell viability assay

Control and FOXO1 siRNA-transfected cells were seeded
at 1 x 10* cells per well in a 96-well plate, and incubated for
1, 2, or 3days. At each time point, cells were mixed with
10 uL of EZ-CYTOX reagent (Cat. # EZ-3000; Dogenbio,
Seoul, Korea), and plates were incubated at 37 °C for 1h.
After shaking for 1 min on an orbital shaker, the absorb-
ance was measured with a microplate reader (Bio-Rad La-
boratories, Inc., Hercules, CA) at 450 nm. The experiment
was performed in triplicate.

Cell migration assay

Cell migration was assessed by Boyden chamber migra-
tion assay. OVCA433 and OVCA429 cells were seeded
(1 x 10° cells) in the upper chamber (8 um polycarbonate
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membrane; Neuro Probe #PFB8) containing 56 pL of
DMEM without FBS. DMEM supplemented with 10%
EBS (27 uL) was added to the lower chamber, and the
chamber was incubated for 24h. Cells that migrated
through the membrane were fixed with Diff-Quik fixative
solution for 2 min, and stained with Diff-Quik staining so-
lutions 1 and 2 for 2 min each. Then, non-migrated cells
were removed with wipers, and invaded cells were
counted in three random fields under Axio Imager.M2
Microscope (200x magnification; Carl Zeiss, Thornwood,
NY). Each experiment was repeated three times.

Colony formation assay

In order to examine the clonogenicity, OVCA433 and
OVCA429 cells were seeded with 250 cells in a 6-wells
plate and cultured in DMEM supplemented with 10%
FBS for 2 weeks. Colonies formed in each well were fixed
with 3.7% paraformaldehyde sucrose and stained with
0.5% crystal violet for 30 min, and then washed with dis-
tilled water. Stained cells were dissolved in 2% DMSO
for 20 min on an orbital shaker, and the absorbance was
measured at 595 nm. Each cell group was examined in
triplicate.

Tissue microarray and immunohistochemistry

A tissue microarray (TMA) was constructed of tissue cores
(1 mm) containing sufficient proportion of tumor cells
punched from formalin-fixed paraffin-embedded tumor tis-
sue blocks. TMA blocks were cut into 5-um-thick sections
on a rotary microtome, and then deparaffinized and rehy-
drated in graded ethanol. Next, the sections were treated
with a 3% H,O, solution in methanol for 30 min to quench
endogenous peroxidase activity. Then, heat-induced antigen
retrieval was performed by incubating the sections for 20
min in target retrieval buffer at pH 6.0 (Dako, Carpinteria,
CA) for FOXO1 and in a buffer at pH 9.0 for PAX3 using a
steam pressure cooker (Pascal; Dako). The slides were then
stained with an anti-FOXO1 antibody (rabbit antibody,
clone# EP927Y, 1:400; Abcam, Cambridge, MA) and an
anti-PAX3 antibody (rabbit polyclonal antibody, Cat. #
Ab216683, 1:200; Abcam) for 1h at room temperature
using Autostainer Plus (Dako). Antigen-antibody reactions
were visualized by using En vision” Dual Link System-HRP
(Dako) and DAB* (3, 3’-diaminobenzidine; Dako). The
stained sections were dehydrated and counterstained with
hematoxylin and mounted in Faramount Aqueous Mount-
ing Medium (Dako). Appropriate negative and positive con-
trols were included.

Evaluation of IHC staining

The stained TMA sections were scanned using a high-
resolution optical scanner (NanoZoomer 2.0 HT; Hamama-
tsu Photonics KK, Japan) at 20x objective magnification
(0.5 um resolution). The scanned sections were analyzed

Page 3 of 10

with Visiopharm software, version 4.5.1.324 (Hersholm,
Denmark). Brown staining intensity was scored on a scale
from 0 to 3 (0 = negative, 1 = weak, 2 = moderate, and 3 =
strong) using a predefined algorithm and optimized set-
tings. The overall IHC score (histoscore) was calculated as
the percentage of positive cells multiplied by staining inten-
sity (score range: 0—300).

Statistical analysis

Statistical analyses of FOXO1 and PAX3 expression data
were performed by either Mann-Whitney or Kruskal-Wallis
test, as appropriate. Kaplan-Meier method was used to as-
sess the overall survival (OS) and disease free survival (DFES),
and survival was analyzed by log-rank test using the cut-off
values that showed the highest discriminative power (histo-
scores of 136 for FOXO1 and 156 for PAX3). Cox propor-
tional hazards model was used to estimate the hazard ratios
and confidence intervals (CIs) in both univariate and multi-
variate models. Statistical analysis was performed using SPSS
version 23.0 (SPSS, Inc., Chicago, IL). P-value less than 0.05
was considered statistically significant.

Results

FOXO1 and PAX3 expression levels were elevated in EOC

tissues

To evaluate the protein expressions of FOXO1l and
PAX3 in EOC, we analyzed FOXO1 and PAX3 protein
levels in 212 EOC tissues, 57 borderline tumors, 153
benign tumors, and 79 nonadjacent normal epithelial tis-
sues by IHC. Some samples were lost due to problems
with the sectioning and staining of samples. Finally,
FOXOL1 data from 165 EOC tissues, 46 borderline tu-
mors, 42 benign tumors, and 57 nonadjacent normal
epithelial tissues, as well as PAX3 data from 167 EOC
tissues, 42 borderline tumors, 31 benign tumors, and 70
nonadjacent normal epithelial tissues could be inter-
preted. Most FOXO1 immunoreactivity was observed in
the cytoplasm, while most PAX3 immunoreactivity was
in the nucleus (Fig. 1a). IHC scores for FOXO1 and
PAX3 are summarized in Table 1, and data revealed that
FOXOL1 and PAX3 expression levels were significantly
higher in EOC tissues than in borderline tumors (both
p <0.001), benign tumors (both p <0.001), and nonadja-
cent normal epithelial tissues (both p < 0.001; Fig. 1b). In
addition, FOXO1 immunoreactivity was positively corre-
lated with poor tumor grade (p=0.004; Fig. 1b). Al-
though not significant, there was a trend towards a
positive correlation between PAX3 immunoreactivity
and CA125, as shown in Fig. 1b and Table 1 (p = 0.061).
Next, we examined the association between FOXO1 and
PAX3 expression. Spearman’s rank correlation analysis
revealed that FOXO1 expression tended to be positively
correlated with PAX3 expression in EOC (Spearman’s
rho = 0.118, p = 0.149; Fig. 2).
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Fig. 1 Immunohistochemical (IHC) staining of FOXO1 and PAX3 in epithelial ovarian cancer samples, a Representative images of IHC staining for
FOXO1 and PAX3 in normal, benign, and borderline tumors and epithelial ovarian cancer (Cancer) tissue samples (scale bar: 50 um). b Boxplots of
IHC staining data (histoscores) according to various clinicopathological characteristics. Histoscores were calculated based on staining intensity and

Serum CA125

FOXO1 overexpression is associated with poor prognosis

We then examined the relationship between FOXO1 ex-
pression and outcomes in EOC patients. OS and DFS were
analyzed by Kaplan-Meier plots to determine the relation-
ship between FOXO1 and PAX3 expression and survival
(Fig. 3). Survival analysis included 165 EOC patients for
FOXO1 and 167 EOC patients for PAX3 who underwent
optimal debulking surgery. Kaplan-Meier plots demon-
strated that patients with high FOXO1 expression (cut-off
value: 137) or high PAX3 expression (cut-off value: 156)
displayed significantly poorer OS (log-rank p = 0.001 and

p =0.011, respectively; Fig. 3a, c). DES analysis showed sig-
nificant survival disadvantages in patients with high
FOXO1 or PAX3 expression (Log-rank p =0.007 and p =
0.023, respectively; Fig. 3b, d). Furthermore, significant dif-
ferences in both OS (p < 0.001; Fig. 3e) and DES (p = 0001;
Fig. 3f) were observed for patients with high expressions
of both FOXO1 and PAX3 compared to patients with low
expression levels. Cox multivariate proportional hazards
analysis showed that high FOXO1 expression (hazard ra-
tio = 2.77 [95% CI, 1.48-5.18], p = 0.001) was an independ-
ent prognostic factor for poor OS (Table 2). Notably, high
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Table 1 Expressions of FOXO1 and PAX3 in relation to clinicopathological characteristics in IHC analysis

No. FOXO1 No. PAX3
Mean score p-value Mean score (95% Cl) p-value
(95% Cl)
All study subjects 310 1109 [105.7-116.0] 310 125.2 [119.7-130.8]
Diagnostic category
Normal 57 85.3 [79.9-90.8] <0.001 70 93.6 [87.2-100.0] <0.001
Benign 42 90.3 [78.7-101.8] 31 95.2 [82.3-108.1]
Borderline 46 93,6 [854-101.9] 42 107.0 [96.1-117.8]
Cancer 165 129.8 [122.1-137.5] 167 148.7 [140.9-156.5]
FIGO stage 0.854 0.230
-l 43 131.1 [115.2-147.0] 43 143.3 [130.8-155.8]
-1V 106 132.8 [123.3-142.3] 107 154.1 [143.9-164.2]
Cell type 0.99% 0319
Serous 120 129.8 [121.0-138.6] 122 151.1 [141.6-160.6]
Others 45 129.7 [113.6-145.8] 45 142.2 [128.5-155.9]
Tumor grade 0.004 0.365
Well/Moderate 70 118.1 [106.9-129.2] 70 153.7 [141.3-166.0]
Poor 90 140.8 [130.1-1514] 89 146.2 [135.3-157.0]
CA125 0470 0.061
Negative 25 137.3 [116.2-1584] 27 133.0 [119.1-147.0]
Positive 137 129.5 [121.1-137.8] 136 153.0 [144.1-161.9]
Chemosensitivity 0.112 0254
Sensitive 144 1296 [121.4-137.9] 147 1496 [141.4-157.9]
Resistant 10 156.0 [116.0-195.9] 10 1304 [86.3-174.4]

FIGO International Federation of Gynecology and Obstetrics, C/ Confidence interval
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Fig. 2 Correlation between the expression levels of FOXO1 and

O1 expression showed a tendency to be positively
with PAX3 expression in EOC. (Spearman’s

rho=0.118, p=0.149)

expressions of both FOXO1 and PAX3 were strong inde-
pendent prognostic factors for poor OS (hazard ratio =
4.60 [95% CI, 2.00-10.55], p <0.001; Table 2), and high
FOXOL1 expression was an independent poor prognostic
factor for DFS (hazard ratio=1.71 [95% CI, 1.05-2.78],
p =0.029; Table 2).

Knockdown of FOXO1 in ovarian cancer cells decreased
cell viability, migration, and colony formation
Maintaining proliferation, escaping growth suppression,
and migration are three qualities that a normal cell must
acquire to become a cancer cell. Therefore, to elucidate
the biological functions of FOXO1 in EOC cells, we
modulated intracellular FOXO1 expression in OVCA433
and OVCA429 cells and assessed cell proliferation and
migration. OVCA433 and OVCA429 cells were trans-
fected with either a FOXO1 knockdown (FOXO1
siRNA) vector or a control vector (no insert), and
FOXOL1 expression levels in transfected cells were mea-
sured by western blotting (Fig. 4a). To evaluate the pro-
liferation ability, we analyzed the short-term and long-
term effects by cell viability assay and colony forming
assay. Cell growth was significantly lower in both
FOXO1 siRNA-transfected cell lines than in negative
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Table 2 Univariate and multivariate analyses of the associations between prognostic variables and overall and disease-free survival

rates in epithel

ial ovarian cancer

Overall survival hazard ratio
[95% CI*], p-value

Disease-free survival hazard ratio
[95% CI*], p-value

Univariate

Multivariate

Univariate

Multivariate

FIGO stage (llI-IV)

3.86 [1.52-9.82], 0.004

Cell type (serous)
Tumor grade (poor)
CA125+ (>35U/mL)
Age (> 50)

FOXO1 +°

PAX3 +P
FOXO1+/PAX3+

343 [1.35-8.73], 0.009
1.79 [0.96-3.31], 0.064
1.74 [0.62-4.89], 0.290
1.79 [0.96-3.35], 0.067
2.74 [1.49-5.04], 0.001
217 [1.17-4.01], 0.013

553 [247-12.40], < 0.001

3.04 [1.15-8.04], 0.025

5.59 [2.79-11.20], < 0.001

4.98 [2.30-10.79], < 0.001

2.24 [0.84-5.93], 0.105
NA
NA
NA
2.77 [1.48-5.18], 0.001
1.56 [0.82-2.93], 0.168

460 [2.00-10.55], < 0.001

3.19 [1.77-5.77], < 0.001
2.08 [1.34-3.23], 0.001
1.92 [0.96-3.83], 0.064
1.34 [0.87-2.05], 0.173
1.79 [1.16-2.76], 0.008
1.62 [1.06-247], 0.025
2.75 [1.47-5.15], 0.001

2.14 [1.00-4.58], 0.049
1.28 [0.77-2.11], 0.333
NA

NA

1.71 [1.05-2.78], 0.029
1.00 [0.64-1.57], 0.980
1.84 [0.97-3.50], 0.061

It Confidence interval; NA Not applicable
2Cut-off value of FOXO1* was over 137 of IHC score; Pcut-off of PAX3* was over 156 of IHC score; *Cl Confidence interval, FIGO International Federation of
Gynecology and Obstetrics, LN Lymph node; NA Not applicable
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different time points. The viability of FOXO1 knockdown cells decreased. ¢ Cell migration assay of siNC- and siFOXO1-transfected OVCA433 and
OVCA429 cells. Upper panel: representative images of migrated cells. Lower panel: quantitative results of cell migration experiments. The assay
showed that FOXO1 knockdown (siFOXO1-transfected cells) resulted in decreased migration and invasion compared to negative control (siNC)
cells. d Colonogenic assay performed on OVCA433 and OVCA429 cells. Upper panel: representative figures of colonogenic assay. Lower panel:
quantitative results of colonogenic assay. Colony formation decreased in FOXO1 knockdown (siFOXO) compared to negative control (siNC). The
number of asterisks (*) indicates the level of significance: *p < 0.05, **p < 0.005. Data and error bars represent the mean + SD of
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control (siNC)-transfected cells (Fig. 4b). Also, colony
formation was significantly decreased in both FOXO1
siRNA-transfected cell lines than in siNC-transfected
cells (Fig. 4d). To investigate whether FOXO1 plays a

role in the migration of EOC cells, we conducted

Boyden chamber assay. The siRNA-mediated FOXO1
knockdown significantly altered cell migration compared
to that of siNC- transfected cells (Fig. 4c). These data
showed that FOXO1 plays a key role in the proliferation
and migration of EOC cells.
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Discussion

Despite significant improvements in the treatment of EOC,
the mortality rate still remains high. Understanding the
molecular mechanisms related to the progression and
metastasis of EOC is necessary for the development of use-
ful prognostic biomarkers. Transcription factor FOXO1
plays an important role in glucose metabolism, cell cycle
progression, apoptosis, and differentiation [3]. Although the
functions of FOXO1 have not been fully elucidated, it has
been shown to act as a tumor suppressor in various human
cancers, including melanoma as well as prostate, bladder,
and breast cancers [21-23]. However, the role of FOXO1
in the carcinogenesis of EOC is controversial. To gain
insight into the role of FOXO1 in EOC and its relationship
with PAX3, we performed IHC to detect FOXO1 and
PAX3 in EOC tissues.

Our IHC analysis showed that FOXOL1 is significantly
upregulated in EOC tissues compared to borderline tu-
mors, benign tumors, and nonadjacent normal epithelium
(all p<0.001, Table 1). In contrast to our results, FOXO1
is downregulated in tumors from other organs, such as the
uterine cervix, kidney, breast, prostate, and endometrium
[16-19, 24]. Wang et al. reported that FOXO1 is downreg-
ulated in EOC [24]. This discrepancy in the expression
status of FOXO1 might be attributed to differences in
methodology-related factors, such as IHC techniques, anti-
bodies, and samples, as well as interobserver variations.

Next, the relationship between FOXO1 expression, as de-
termined by IHC, and clinicopathological factors in EOC
patients, including survival outcomes, was investigated. Cox
multivariate analysis showed that FOXOL1 is an independ-
ent poor prognostic factor for OS and DFS in EOC, which
means that upregulation of FOXO1 in the cytoplasm
follows malignant transformation in the carcinogenesis of
in EOC patients, and is associated with poor prognosis.
Similar to our study, a number of other studies have shown
that high FOXO expression and/or activity is correlated
with poor prognosis, whereas many other studies have
shown that high expression and/or nuclear localization of
FOXO is correlated with favorable prognosis [25-38]. As
previously mentioned, Wang et al. reported that high
FOXOL1 expression in EOC was positively correlated with a
good prognosis, which is the opposite of our results [39].
These contradicting results could be due to differences be-
tween the two studies. First, Wang et al. analyzed survival
data from the Cancer Genome Atlas (TCGA) database.
TCGA data are quantitative mRNA expression levels, while
our data are protein levels as determined by IHC analysis.
Since many cellular processes after transcription are ultim-
ately regulated by protein levels, there is a strong possibility
of discrepancies between the two studies. Moreover, Wang
et al. included only ovarian serous cystadenocarcinoma
patients, while we included different histopathological sub-
types, such as serous, mucinous, and endometrioid.
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Since our analysis of clinical specimens suggested a crit-
ical role for FOXOL1 in tumorigenesis, we examined the
role of FOXO1 in tumor cell growth (proliferation) and
metastasis (migration) in functional studies. In cell viability
assay, siRNA-mediated FOXO1 knockdown in OVCA433
and OVCA429 cells led to decreased cell proliferation. In
addition, migration assay showed that FOXO1 knockdown
had negative significant effects on the migration of EOC
cells. PI3/AKT signaling pathway is a key mechanism for
the role of FOXO family members in various cancers. It
has been shown that PI3K/AKT pathway negatively regu-
lates the transcriptional activity of FOXO1, FOXO03, and
FOXO4; however, when FOXO3 was coactivated with -
catenin, FOXO3 showed pro-tumoral activity [40]. In
addition, it was reported that matrix metalloproteinase-1
(MMP-1) is induced by FOXOL1 and enhances the invasive
potential of human breast cancer cells [41]. Therefore,
further molecular studies are needed to determine the
detailed mechanism by which FOXO1 confers growth and
invasion advantages to EOC cells.

To determine the mechanism underlying the role of
FOXOL1 in tumorigenesis, we focused on the correlation
between FOXO1 and PAX3 in EOC, since PAX3-FOXO1
is a well-known fusion protein that is associated with
alveolar rhabdomyosarcoma and modulates multiple sig-
naling pathways involved in cell proliferation, migration,
and death. Before evaluating the correlation between
FOXO1 and PAX3, PAX3 expression in EOC was ana-
lyzed by IHC to determine the role of PAX3 in EOC. The
results showed that overexpression of PAX3 in EOC tis-
sues was significantly associated with poor prognosis, as
reported in previous studies on melanoma, glioma, gastric
carcinoma, and breast cancer [12, 42-44]. Multivariate
analysis showed that upregulation of both FOXO1 and
PAX3 is a strong independent prognostic factor for OS.
We also observed a non-significant trend toward a posi-
tive correlation between FOXO1l and PAX3. To our
knowledge, there are only a few existing studies on the
correlation between FOXO1 and PAX3. However, based
on previous reports, there are some possible mechanisms
to consider. First, FOXO1 and PAX3 might bind directly,
as Kubic et al. showed that overexpression of FOXD3, a
member of the FOX protein family, upregulated PAX3 ex-
pression in melanoma cells by the direct binding of
FOXD3 to PAX3 promoter [45]. Second, there might be
other target genes that are activated or repressed by
FOXO1 and PAX3. For example, activation of P13K/AKT
was enhanced upon activation of FOXO1 in renal tumors
and mammalian cells [46, 47], and Liu et al. reported that
PAX3 was regulated by PI3K/AKT signaling pathways in
thyroid cancer [48]. FOXOL1 is a well-known transcription
factor that is activated in the nucleus, and its neo-
cytoplasmic shuttling requires the balancing of a multi-
tude of post-translational modifications. Furthermore, the
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localization of FOXO is roughly inversely correlated to PI3K
activity [49]. Activation of FOXO1 and PAX3 is a dynamic
process. Therefore, determining the target genes of FOXO1
and PAX3 and the localization of other FOXOs would be
useful for determining the functions of FOXOL1 and its rela-
tionship with PAX3. Investigating the mechanisms related
to the cellular activity of FOXO1 and PAX3 will likely con-
tribute to the development of cancer therapies.

Conclusions

In summary, we investigated the role of FOXO1, both alone
and in combination with PAX3 in EOC. Our results
showed that FOXO1 was an independent prognostic factor
for OS and DES in EOC. Furthermore, high expressions of
both FOXO1 and PAX3 were independent predictors of
poor prognosis. PAX3 is very informative by itself, and
based on this study the combination with FOXO1 and
PAX3 may improve the prognostic classification of EOC.

Abbreviations

AKT: Protein Kinase B; Cl: Confidence interval; DFS: Disease-free survival;
EOC: Epithelial ovarian cancer; FOXO1: Forkhead box protein O1;

IHC: Immunohistochemistry; OS: Overall survival; PAX3: Paired box3;

PI3K: Phosphoinositide 3-kinas; RECIST: Response evaluation criteria in solid
tumors; siRNAs: Synthetic small interfering RNAs; TCGA: The Cancer Genome
Atlas; TMA: Tissue microarray; FIGO: International Federation of Gynecology
and Obstetrics; H&E: Hematoxylin and eosin

Acknowledgements

This research was supported by the Bio & Medical Technology Development
Program of the National Research Foundation (NRF) funded by the Korean
government (MSIT) (NRF-2017M3A9B8069610).

Authors’ contributions

GHH, HC, and J-YC conceived and designed the study, and revised the ex-
perimental design. HC and J-YC designed and built tissue microarrays. GHH,
HC, and DC performed data analysis for experiments or clinical records. SN
performed functional studies. GHH and DC drafted the final version of the
manuscript and figure legend. J-HK, J-YC, and HC revised the figures and
added critical contents to the discussion, and were responsible for revising
all portions of the submitted manuscript. All authors read and approved the
final manuscript.

Funding
This research did not receive any specific grant from any funding agencies in
the public, commercial or not-for-profit sector.

Availability of data and materials

Data supporting the conclusions of this study are included in the article.
Additionally, data are available to interested researchers upon reasonable
request.

Ethics approval and consent to participate

This study was approved by the institutional review board (IRB) of Gangnam
Severance Hospital. All patients provided their written informed consent to
the use and publish their information.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
'Department of Obstetrics and Gynecology, Yonsei University College of
Medicine, Seoul, Republic of Korea. “Department of Obstetrics and

Page 9 of 10

Gynecology, Gangnam Severance Hospital, Yonsei University College of
Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, Seoul 06273, South Korea.
3Experimental Pathology Laboratory, Laboratory of Pathology, Center for
Cancer Research, National Cancer Institute, National Institutes of Health,
Bethesda, MD, USA.

Received: 15 July 2019 Accepted: 27 November 2019
Published online: 10 December 2019

References

1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin.
2010;60(5):277-300.

2. Fu Z Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene.
2008;27(16):2312-9.

3. Xing YQ, Li A, Yang Y, Li XX, Zhang LN, Guo HC. The regulation of FOXO1
and its role in disease progression. Life Sci. 2018;193:124-31.

4. Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical
significance and regulation. Biomed Res Int. 2014;2014:925350.

5. LuH, Huang H. FOXO1: a potential target for human diseases. Curr Drug
Targets. 2011;12(9):1235-44.

6. Boudjadi S, Chatterjee B, Sun W, Vemu P, Barr FG. The expression and
function of PAX3 in development and disease. Gene. 2018,666:145-57.

7. Stuart ET, Kioussi C, Gruss P. Mammalian Pax genes. Annu Rev Genet. 1994;
28:219-36.

8. Schafer BW. Emerging roles for PAX transcription factors in cancer biology.
Gen Physiol Biophys. 1998,17(3):211-24.

9. LiCG Eccles MR. PAX genes in Cancer, friends or foes? Front Genet. 2012,3:6.

10. Xia L, Huang Q, Nie D, Shi J, Gong M, Wu B, Gong P, Zhao L, Zuo H, Ju S,
et al. PAX3 is overexpressed in human glioblastomas and critically regulates
the tumorigenicity of glioma cells. Brain Res. 2013;1521:68-78.

11. Fang WH, Wang Q, Li HM, Ahmed M, Kumar P, Kumar S. PAX3 in
neuroblastoma: oncogenic potential, chemosensitivity and signalling
pathways. J Cell Mol Med. 2014;18(1):38-48.

12. Plummer RS, Shea CR, Nelson M, Powell SK, Freeman DM, Dan CP, Lang
D. PAX3 expression in primary melanomas and nevi. Mod Pathol. 2008;
21(5):525-30.

13. Frascella E, Toffolatti L, Rosolen A. Normal and rearranged PAX3 expression
in human rhabdomyosarcoma. Cancer Genet Cytogenet. 1998;102(2):104-9.

14.  Schulte TW, Toretsky JA, Ress E, Helman L, Neckers LM. Expression of PAX3
in Ewing's sarcoma family of tumors. Biochem Mol Med. 1997,60(2):121-6.

15. Zhang L, Xia L, Zhao L, Chen Z, Shang X, Xin J, Liu M, Guo X, Wu K, Pan'Y,
et al. Activation of PAX3-MET pathways due to miR-206 loss promotes
gastric cancer metastasis. Carcinogenesis. 2015;36(3):390-9.

16.  Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96,
and miR-182 in breast cancer cells. J Biol Chem. 2009;284(35):23204-16.

17. Zhang B, Gui LS, Zhao XL, Zhu LL, Li QW. FOXOT is a tumor suppressor in
cervical cancer. Genet Mol Res. 2015;14(2):6605-16.

18.  Kojima T, Shimazui T, Horie R, Hinotsu S, Oikawa T, Kawai K, Suzuki H, Meno
K, Akaza H, Uchida K. FOXO1 and TCF7L2 genes involved in metastasis and
poor prognosis in clear cell renal cell carcinoma. Genes Chromosom Cancer.
2010;49(4):379-89.

19. Fendler A, Jung M, Stephan C, Erbersdobler A, Jung K, Yousef GM. The
antiapoptotic function of miR-96 in prostate cancer by inhibition of FOXOT1.
PL0oS One. 2013;8(11):e80807.

20. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L,
Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, et al. New
guidelines to evaluate the response to treatment in solid tumors. European
Organization for Research and Treatment of Cancer, National Cancer
Institute of the United States, National Cancer Institute of Canada. J Natl
Cancer Inst. 2000;92(3):205-16.

21. Coomans de Brachene A, Demoulin JB. FOXO transcription factors in cancer
development and therapy. Cell Mol Life Sci. 2016;73(6):1159-72.

22. LiR, Erdamar S, Dai H, Wheeler TM, Frolov A, Scardino PT, Thompson TC,
Ayala GE. Forkhead protein FKHR and its phosphorylated form p-FKHR in
human prostate cancer. Hum Pathol. 2007;38(10):1501-7.

23. Zhang Y, Jia L, Zhang Y, Ji W, Li H. Higher expression of FOXOs correlates to
better prognosis of bladder cancer. Oncotarget. 2017,8(56):96313-22.

24.  Goto T, Takano M, Albergaria A, Briese J, Pomeranz KM, Cloke B, Fusi L,
Feroze-Zaidi F, Maywald N, Sajin M, et al. Mechanism and functional
consequences of loss of FOXO1 expression in endometrioid endometrial
cancer cells. Oncogene. 2008,27(1):9-19.



Han et al. BMIC Cancer

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

(2019) 19:1202

Dansen TB, Burgering BM. Unravelling the tumor-suppressive functions of
FOXO proteins. Trends Cell Biol. 2008;18(9):421-9.

Chung SY, Huang WC, Su CW, Lee KW, Chi HC, Lin CT, Chen ST, Huang KM,
Tsai MS, Yu HP, et al. FoxO6 and PGC-1alpha form a regulatory loop in
myogenic cells. Biosci Rep. 2013;33(3):485-97.

Renault VM, Thekkat PU, Hoang KL, White JL, Brady CA, Kenzelmann Broz D,
Venturelli OS, Johnson TM, Oskoui PR, Xuan Z, et al. The pro-longevity gene
FoxO3 is a direct target of the p53 tumor suppressor. Oncogene. 2011;
30(29):3207-21.

Gan B, Lim C, Chu G, Hua S, Ding Z, Collins M, Hu J, Jiang S, Fletcher-
Sananikone E, Zhuang L, et al. FoxOs enforce a progression checkpoint to
constrain mTORC1-activated renal tumorigenesis. Cancer Cell. 2010;18(5):
472-84.

Bouchard C, Lee S, Paulus-Hock V, Loddenkemper C, Eilers M, Schmitt CA.
FoxO transcription factors suppress Myc-driven lymphomagenesis via direct
activation of Arf. Genes Dev. 2007,21(21):2775-87.

Habashy HO, Rakha EA, Aleskandarany M, Ahmed MA, Green AR, Ellis 10,
Powe DG. FOXO3a nuclear localisation is associated with good prognosis in
luminal-like breast cancer. Breast Cancer Res Treat. 2011;129(1):11-21.
Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA. AF6q21, a novel
partner of the MLL gene in t(6;11)(q21;,23), defines a forkhead
transcriptional factor subfamily. Blood. 1997;90(9):3714-9.

Kim SY, Yoon J, Ko YS, Chang MS, Park JW, Lee HE, Kim MA, Kim JH, Kim
WH, Lee BL. Constitutive phosphorylation of the FOXO1 transcription factor
in gastric cancer cells correlates with microvessel area and the expressions
of angiogenesis-related molecules. BMC Cancer. 2011;11:264.

Kim JH, Kim MK, Lee HE, Cho SJ, Cho YJ, Lee BL, Lee HS, Nam SY, Lee JS,
Kim WH. Constitutive phosphorylation of the FOXOTA transcription factor as
a prognostic variable in gastric cancer. Mod Pathol. 2007;20(8):835-42.
Santamaria CM, Chillon MC, Garcia-Sanz R, Perez C, Caballero MD, Ramos F,
de Coca AG, Alonso JM, Giraldo P, Bernal T, et al. High FOXO3a expression
is associated with a poorer prognosis in AML with normal cytogenetics.
Leuk Res. 2009;33(12):1706-9.

Chen J, Gomes AR, Monteiro LJ, Wong SY, Wu LH, Ng TT, Karadedou CT,
Millour J, Ip YC, Cheung YN, et al. Constitutively nuclear FOXO3a localization
predicts poor survival and promotes Akt phosphorylation in breast cancer.
PLoS One. 2010;5(8):e12293.

Hagenbuchner J, Rupp M, Salvador C, Meister B, Kiechl-Kohlendorfer U,
Muller T, Geiger K, Sergi C, Obexer P, Ausserlechner MJ. Nuclear FOXO3
predicts adverse clinical outcome and promotes tumor angiogenesis in
neuroblastoma. Oncotarget. 2016;7(47):77591-606.

Corno C, Stucchi S, De Cesare M, Carenini N, Stamatakos S, Ciusani E, Minoli
L, Scanziani E, Argueta C, Landesman VY, et al. FoxO-1 contributes to the
efficacy of the combination of the XPO1 inhibitor selinexor and cisplatin in
ovarian carcinoma preclinical models. Biochem Pharmacol. 2018;147:93-103.
Beretta GL, Corno C, Zaffaroni N, Perego P. Role of FoxO Proteins in Cellular
Response to Antitumor Agents. Cancers (Basel). 2019;11(1).

Wang Z, Ji G, Wu Q, Feng S, Zhao Y, Cao Z, Tao C. Integrated microarray
meta-analysis identifies MiRNA-27a as an oncogene in ovarian cancer by
inhibiting FOXO1. Life Sci. 2018;210:263-70.

Tenbaum SP, Ordonez-Moran P, Puig |, Chicote |, Arques O, Landolfi S,
Fernandez Y, Herance JR, Gispert JD. Mendizabal L et al: beta-catenin
confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to
promote metastasis in colon cancer. Nat Med. 2012;18(6):892-901.

Feng X, Wu Z, Wu Y, Hankey W, Prior TW, Li L, Ganju RK, Shen R, Zou X.
Cdc25A regulates matrix metalloprotease 1 through Foxol and mediates
metastasis of breast cancer cells. Mol Cell Biol. 2011;31(16):3457-71.
Muratovska A, Zhou C, He S, Goodyer P, Eccles MR. Paired-box genes are
frequently expressed in cancer and often required for cancer cell survival.
Oncogene. 2003;22(39):7989-97.

Staron MM, Gray SM, Marshall HD, Parish 1A, Chen JH, Perry CJ, Cui G, Li MO,
Kaech SM. The transcription factor FoxO1 sustains expression of the
inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during
chronic infection. Immunity. 2014;41(5):802-14.

Xu Y, Shao QS, Yao HB, Jin Y, Ma YY, Jia LH. Overexpression of FOXC1
correlates with poor prognosis in gastric cancer patients. Histopathology.
2014,64(7):963-70.

Kubic JD, Little EC, Kaiser RS, Young KP, Lang D. FOXD3 promotes PAX3
expression in melanoma cells. J Cell Biochem. 2016;117(2):533-41.

Lin A, Piao HL, Zhuang L, Sarbassov dos D, Ma L, Gan B. FoxO transcription
factors promote AKT Ser473 phosphorylation and renal tumor growth in

47.

48.

49.

Page 10 of 10

response to pharmacologic inhibition of the PI3K-AKT pathway. Cancer Res.
2014;74(6):1682-93.

Chen CC, Jeon SM, Bhaskar PT, Nogueira V, Sundararajan D, Tonic |, Park Y,
Hay N. FoxOs inhibit mTORCT and activate Akt by inducing the expression
of Sestrin3 and Rictor. Dev Cell. 2010;18(4):592-604.

Liu W, Sui F, Liu J, Wang M, Tian S, Ji M, Shi B, Hou P. PAX3 is a novel tumor
suppressor by regulating the activities of major signaling pathways and
transcription factor FOXO3a in thyroid cancer. Oncotarget. 2016;7(34):
54744-57.

Kim HJ, Lee SY, Kim CY, Kim YH, Ju W, Kim SC. Subcellular localization of
FOXO3a as a potential biomarker of response to combined treatment with
inhibitors of PI3K and autophagy in PIK3CA-mutant cancer cells. Oncotarget.
2017,8(4):6608-22.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patients and tumor specimens
	Cell lines
	Immunoblotting
	Knockdown of FOXO1 by RNA interference
	Cell viability assay
	Cell migration assay
	Colony formation assay
	Tissue microarray and immunohistochemistry
	Evaluation of IHC staining
	Statistical analysis

	Results
	FOXO1 and PAX3 expression levels were elevated in EOC tissues
	FOXO1 overexpression is associated with poor prognosis
	Knockdown of FOXO1 in ovarian cancer cells decreased cell viability, migration, and colony formation

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

