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ABSTRACT

Background and Objectives: Recent studies have shown that sodium-glucose co-transporter 
2 (SGLT2) inhibitors reduce the risk of heart failure (HF)-associated hospitalization and 
mortality in patients with diabetes. However, it is not clear whether SGLT2 inhibitors have 
a cardiovascular benefit in patients without diabetes. We aimed to determine whether 
empagliflozin (EMPA), an SGLT2 inhibitor, has a protective role in HF without diabetes.
Methods: Cardiomyopathy was induced in C57BL/6J mice using intraperitoneal injection of 
doxorubicin (Dox). Mice with HF were fed a normal chow diet (NCD) or an NCD containing 
0.03% EMPA. Then we analyzed their phenotypes and performed in vitro experiments to 
reveal underlying mechanisms of the EMPA's effects.
Results: Mice fed NCD with EMPA showed improved heart function and reduced fibrosis. In 
vitro studies showed similar results. Phloridzin, a non-specific SGLT inhibitor, did not show 
any protective effect against Dox toxicity in H9C2 cells. SGLT2 inhibitor can cause increase 
in blood ketone levels. Beta hydroxybutyrate (βOHB), which is well known ketone body 
associated with SGLT2 inhibitor, showed a protective effect against Dox in H9C2 cells and in 
Dox-treated mice. These results suggest elevating βOHB might be a convincing mechanism 
for the protective effects of SGLT2 inhibitor.
Conclusions: SGLT2 inhibitors have a protective effect in Dox-induced HF in mice. This 
implied that SGLT2 inhibitor therapy could be a good treatment strategy even in HF patients 
without diabetes.

Keywords: Heart failure; Doxycycline; Sodium-Glucose Transporter 2 Inhibitors

Korean Circ J. 2019 Dec;49(12):1183-1195
https://doi.org/10.4070/kcj.2019.0180
pISSN 1738-5520·eISSN 1738-5555

Original Article

Received: Jun 13, 2019
Revised: Jun 27, 2019
Accepted: Jul 5, 2019

Correspondence to
Sangkyu Park, MD, PhD
Department of Biochemistry, College of 
Medicine, Catholic Kwandong University, 24, 
Beomil-ro 579beon-gil, Gangneung 25601, 
Korea.
E-mail: 49park@cku.ac.kr
 
Young-Guk Ko, MD, PhD
Division of Cardiology, Severance 
Cardiovascular Hospital, Yonsei University 
College of Medicine, 50, Yonsei-ro, 
Seodaemun-gu, Seoul 03722, Korea.
E-mail: ygko@yuhs.ac

*Chang-Myung Oh and Sungsoo Cho 
contributed equally to this work.

Copyright © 2019. The Korean Society of 
Cardiology
This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0) 
which permits unrestricted noncommercial 
use, distribution, and reproduction in any 
medium, provided the original work is properly 
cited.

ORCID iDs
Chang-Myung Oh 
https://orcid.org/0000-0001-6681-4478
Sungsoo Cho 
https://orcid.org/0000-0003-2059-1584
Ji-Yong Jang 
https://orcid.org/0000-0003-2842-7500
Hyeongseok Kim 
https://orcid.org/0000-0002-7093-0399

Chang-Myung Oh , MD, PhD1,*, Sungsoo Cho , MD, PhD2,*, Ji-Yong Jang , MD3, 
Hyeongseok Kim , MD, PhD4, Sukyung Chun, MS1, Minkyung Choi, BS1, 
Sangkyu Park , MD, PhD5, and Young-Guk Ko , MD, PhD6

1�Division of Endocrinology and Metabolism, CHA Bundang Medical Center, School of Medicine CHA 
University, Seongnam, Korea

2�Division of Cardiovascular medicine, Department of Internal medicine, Dankook University Hospital, 
Dankook University School of Medicine, Cheonan, Korea

3Division of Cardiology, National Health Insurance Service Ilsan Hospital, Goyang, Korea
4�Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and 
Technology, Daejeon, Korea

5Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung, Korea
6�Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, 
Korea

Cardioprotective Potential of an SGLT2 
Inhibitor Against Doxorubicin-Induced 
Heart Failure

https://e-kcj.org
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0000-0001-6681-4478
https://orcid.org/0000-0001-6681-4478
https://orcid.org/0000-0003-2059-1584
https://orcid.org/0000-0003-2059-1584
https://orcid.org/0000-0003-2842-7500
https://orcid.org/0000-0003-2842-7500
https://orcid.org/0000-0002-7093-0399
https://orcid.org/0000-0002-7093-0399
https://orcid.org/0000-0001-6681-4478
https://orcid.org/0000-0003-2059-1584
https://orcid.org/0000-0003-2842-7500
https://orcid.org/0000-0002-7093-0399
https://orcid.org/0000-0001-5525-2860
https://orcid.org/0000-0001-7748-5788
http://crossmark.crossref.org/dialog/?doi=10.4070/kcj.2019.0180&domain=pdf&date_stamp=2019-07-31


Sangkyu Park 
https://orcid.org/0000-0001-5525-2860
Young-Guk Ko 
https://orcid.org/0000-0001-7748-5788

Funding
This research was supported by the Basic 
Science Research Program through the 
National Research Foundation of Korea 
(NRF) funded by the Ministry of Education 
(2016R1A6A3A04010466 to Chang-Myung 
Oh) and by a research grant from the Korean 
Cardiac Research Foundation (201702-02 to 
Sungsoo Cho).

Conflict of Interest
The authors have no financial conflicts of 
interest.

Author Contributions
Data curation: Oh CM, Kim H, Chun S, Choi 
M; Funding acquisition: Oh CM, Cho S; 
Investigation: Oh CM, Cho S; Methodology: 
Oh CM, Cho S; Resources: Oh CM; 
Supervision: Park S; Validation: Jang JY, Park 
S; Visualization: Jang JY; Writing - original 
draft: Oh CM, Cho S, Park S; Writing - review & 
editing: Oh CM, Cho S, Park S.

INTRODUCTION

Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new class of anti-diabetic 
agents that improve glycemic control, and reduce body weight and blood pressure, as a 
monotherapy or in combination with other diabetes medication. Recent studies have shown 
that SGLT2 inhibitors reduce the risk of cardiovascular-related death and heart failure (HF) 
hospitalization in patients with type 2 diabetes.1) It has been proposed that SGLT2 inhibitors 
have several direct or indirect effects that prevent the progression of HF. Increased osmotic 
diuresis, reduced sympathetic tone, and whole-body metabolic shift from glucose to fat 
oxidation caused by SGLT2 inhibition might explain the cardiovascular benefits, in addition 
to its blood glucose-lowering effects.2)

Patients with type 2 diabetes have shown elevated serum ketone body levels after SGLT2 
inhibitor treatment.3) SGLT2 inhibition promotes ketone utilization as an energy source in 
the heart and this shift might provide an energy advantage to the failing heart.4) The ketone 
body beta hydroxybutyrate (βOHB) is one of major metabolites (acetoacetate, acetone, and 
βOHB) from liver by fatty acid oxidation.5) βOHB increases cardiac work efficiency and shows 
protective effects by reduces oxidative stress in several animal studies.6)7)

Interestingly, SGLT2 inhibitors also increase glycosuria and reduce body weight in non-
diabetic subjects, and these subjects without diabetes also showed elevated serum ketone 
body levels.8)9) Therefore, we postulated that SGLT2 inhibitors would have beneficial effects 
on non-diabetic patients with congestive HF.

To test this hypothesis, we constructed a HF model in mice using doxorubicin (Dox). Dox 
is an effective anti-tumor drug that is widely used to inducing HF in animal studies.10) 
Dox-induced cardiotoxicity is characterized by left ventricular dysfunction and cardiac 
hypertrophy, which lead to congestive HF. We fed a normal chow diet (NCD) containing an 
SGLT2 inhibitor, empagliflozin (EMPA), to Dox-treated mice and examined their cardiac 
function, and their molecular and histological phenotypes.

METHODS

Chemicals and reagents
Dox hydrochloride (D1515), phloridzin dihydrate (P3449), and βOHB (54920) were obtained 
from Sigma-Aldrich (St. Louis, MO, USA). EMPA (Boehringer Ingelheim, Ingelheim am 
Rhein, Germany) is a potent SGLT2 inhibitor. We made the EMPA diet by mixing EMPA in 
NCD (Harlan Teklad, Madison, WI, USA) at a concentration 300 mg/kg of diet.

Animals
Male C57BL/6J (B6J) mice were purchased from the Institute of Medical Science, University 
of Tokyo. The mice were housed at ambient temperature (22±1°C) in a specific pathogen-free 
facility under a 12 hours light-dark cycle. All diets and water were provided ad libitum. The 
serum βOHB levels of mice were measured using a βOHB Colorimetric Assay kit (Cayman 
Chemical, Ann Arbor, MI, USA) according to the manufacturer's protocol. All experiments 
were performed in accordance with relevant guidelines and regulations. Our animal protocol 
was designed to minimize pain and discomfort to the mice. For euthanasia, mice were 
continuously exposed to isoflurane during tissue sampling. All animal procedures were 
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approved by the Institutional Animal Care and Use Committee of CHA University (IACUC No. 
160033, 170047). Our study did not involve human data or tissue.

Dox-induced cardiomyopathy experiment
We constructed acute cardiomyopathy and chronic cardiomyopathy mouse models as 
previously described.11) Male B6J mice (8-weeks-old, weighting 22–24 g) were randomly 
divided into 4 groups. Control group: B6J mice (n=5) were fed an NCD with phosphate-
buffered saline (PBS) injection. EMPA group: B6J mice (n=5) were fed the EMPA diet with 
PBS injection. Dox group: B6J mice (n=5) were fed an NCD with Dox injection. Dox+EMPA 
group: B6J mice (n=5) were fed the EMPA diet with Dox injection. Acute cardiomyopathy 
was induced in the B6J mice by a single intraperitoneal (IP) injection of Dox (15 mg/kg). 
Diets were changed at night, 12 hours before PBS/Dox injection. To analyze the phenotype of 
these mice, all mice were sacrificed 2 weeks later. Chronic cardiomyopathy was induced by 
administering Dox at 2.5 mg/kg every other day for 12 days (cumulative dose=15 mg/kg). All 
mice were sacrificed 6 weeks later.

Mouse magnetic resonance imaging
Cardiac magnetic resonance imaging (MRI) was performed to assess the structural and 
functional changes in mice hearts by Dox-induced cardiotoxicity. Male B6J mice (10-weeks-
old, n=5 per each group) were examined using a Mouse Agilent 9.4 Tesla MRI Scanner 
(Agilent Technologies, Santa Clara, CA, USA). Heart sizes were measured using Image J 
software and functional parameters were calculated as previously described.12)

Cell culture and materials
H9C2 cells (rat cardiac myoblasts) were purchased from the Korean Cell Line Bank (21446) 
and maintained in high glucose Dulbecco's modified Eagle's medium supplemented with 
10% fetal bovine serum and 100 U penicillin/streptomycin. Cells were treated with various 
concentration of Dox (ranging from 0.1 to 10 µM) and tested after 12 hours or 24 hours. Dox 
and Phloridzin dihydrate were dissolved in dimethyl sulfoxide (DMSO). DMSO was used as a 
control vehicle.

Cytotoxicity assay and adenosine triphosphate assay
The cytotoxic effects of Dox and protective effects of other drugs in vitro on H9C2 cells 
were measured as previously described.13) The viability of H9C2 cells were analyzed using a 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide based colorimetric assay using 
a Cell Proliferation Kit I (Sigma-Aldrich). Adenosine triphosphate (ATP) was measured using 
ATPLite Luminescence Assay System (PerkinElmer, Waltham, MA, USA).

Determination of mitochondrial membrane potential and reactive oxygen 
species
Mitochondrial membrane potential (MPP) and reactive oxygen species (ROS) were measured 
as previously described.14) To measure the MPP and ROS, H9C2 cells were preincubated 
βOHB for 2 hours, and then with Dox for 12 hours in serum free media. For mitochondrial 
analysis, H9C2 cells were incubated for 30 minutes with 50 nM tetramethylrhodamine 
methyl ester (TMRM; Sigma-Aldrich). TMRM fluorescence images were obtained 
using confocal microscopy (Leica TCS SP5 II). Intracellular ROS were measured using 
2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) (Thermo Fisher Scientific, Waltham, 
MA, USA).
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RNA isolation and quantitative real-time reverse transcription polymerase 
chain reaction
Total RNA was extracted using the TRIzol® reagent (Invitrogen, Carlsbad, CA, USA) according 
to the manufacturer's protocol. For complementary DNA synthesis, total RNA (1µg) was 
reverse transcribed with the Qiagen Quantitect Reverse Transcription Kit (Qiagen, Hilden, 
Germany) according to the manufacturer's protocols. Quantitative real-time polymerase 
chain reaction (PCR) was performed using a FastStart Essential DNA Green Master kit (Roche 
Life Sciences, Indianapolis, IN, USA). The primer sequences are provided in Supplementary 
Table 1.

Western blot analysis
Heart tissue lysates and whole-cell lysates were used for western blotting analysis. Proteins 
were separated by electrophoresis and transferred to membranes. The membranes were 
incubated with specific primary antibodies (1:1,000) recognizing β-actin (#4970), cleaved-
caspase 3 (#9664), and C/EBP homologous protein (CHOP; #5554), purchased from Cell 
Signaling Technology (Danvers, MA, USA). The membranes were washed with Tris-buffered 
saline containing 0.05% Tween 20 and incubated with horseradish peroxidase-linked anti-
rabbit immunoglobulin G (IgG) antibody (1:2,000; AP188p) or anti-mouse IgG antibody 
(1:2,000; AP160P) from Sigma-Aldrich. Signals were captured using a ChemiDoc MP system 
(Bio-Rad, Hercules, CA, USA). Densitometric analysis was performed using Image J software.

Histological analysis
Mouse hearts were harvested, fixed in 4% paraformaldehyde in PBS, dehydrated, and 
embedded in paraffin. Then, 5-µm-thick tissue sections were deparaffinized and stained 
with hematoxylin and eosin (H&E). Fibrosis was detected with Masson's trichrome staining 
(Abcam, Cambridge, UK) according to the manufacturer's protocol.

Statistical analysis
Data are presented as mean±standard error of mean. Differences between groups were 
evaluated for statistical significance using Student's t-test or 1-way analysis of variance 
followed by Tukey's post hoc text. The p values <0.05 were considered significant.

RESULTS

An sodium-glucose co-transporter 2 inhibitor attenuates Dox-induced 
cardiomyopathy in mice
To test our hypothesis that EMPA might improve cardiac function in HF, we induced cardiac 
toxicity in mice by Dox administration and then fed them with an EMPA diet. We divided 
these mice into 4 groups: control group, EMPA group, Dox group, and Dox+EMPA group. 
Two weeks after Dox/vehicle injection, the left ventricles (LVs) of the mice in these 4 groups 
were examined to analyze the effects of EMPA on mouse hearts. To evaluate whether EMPA 
protects against Dox-induced cardiomyopathy, functional analysis was performed by 
heart MRI. In the acute stage, Dox causes cardiac hypertrophy in mice.15) The Dox+EMPA 
group showed body weight reduction after 2 weeks treatment but this change was not 
significant (Supplementary Figure 1). After 2 weeks of Dox treatment, mouse hearts showed 
hypertrophic changes (Figure 1A and B). As expected, EMPA reduced these pathological 
changes. The Dox+EMPA group displayed significantly reduced LV mass and improved fractional 
shortening compared with the Dox group (Figure 1B and C, Supplementary Figure 2). Masson's 
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trichrome staining revealed that EMPA reduced perivascular and interstitial fibrosis in mouse 
hearts treated with Dox (Figure 1D-F and Supplementary Figure 3). These results suggested 
that the SGLT2 inhibitor protects against Dox-induced cardiac toxicity in vivo.
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Beta hydroxybutyrate protects against Dox-induced cardiotoxicity in vitro
We observed that an SGLT2 inhibitor has protective effects against Dox-induced cardiac 
injury in vivo. However, the exact mechanism underlying the cardio-protective effect of 
SGLT2 inhibitors is still unclear. The SGLTs are present in heart. However, the major SGLT is 
SGLT1, not SGLT2.16)

We checked the expression of Sglt genes in the mouse heart. As expected, Sglt1 is expressed 
in both the kidney and LV. However, Sglt2 gene expression was very low in the LV compared 
with its expression in the kidney (Figure 2A and B). To investigate the direct effect of SGLT 
in the heart, we treated H9C2 cells with phloridzin (PHL), a non-selective SGLT inhibitor. 
After 2 hours of pretreatment with PHL, H9C2 cells were incubated with Dox for 24 hours. 
As shown in Figure 2C and D, cell viability was significantly reduced after Dox treatment and 
PHL pretreatment did not show a protective effect on Dox-induced cytotoxicity. These results 
suggested that SGLT has no direct role in cardiomyocytes during Dox-induced cardiotoxicity.

We focused on βOHB, a ketone body that is increased in the blood after SGLT2 inhibition, 
even in non-diabetic conditions.9)17)18) First, we treated H9C2 with βOHB at various 
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concentrations (100 μM, 1 mM, 10 mM, and 30 mM) according to previous studies.18)19) As 
shown in Figure 2C and E, βOHB pretreatment had significant protective effects against Dox-
induced cardiotoxicity.

Beta hydroxybutyrate reduces reactive oxygen species and improves 
mitochondrial function
Increased free radical production is the major mechanism of Dox-induced cardiac injury.20) 
Therefore, we measured intracellular ROS generation in H9C2 cells using H2DCFDA. 
H9C2 cells produced ROS after the addition of 5 μM Dox. However, when H9C2 cells were 
pretreated for 2 hours with βOHB, Dox-induced ROS production was significantly decreased 
(Figure 3A and B, Supplementary Figure 4). We then performed a western blotting assay to 
detect cell stress markers. We found that the levels of both cleaved caspase 3 and CHOP were 
increased after Dox treatment. In contrast, βOHB pretreatment suppressed the levels of these 
proteins (Figure 3C and D).

Dox treatment also induces mitochondrial dysfunction in cardiomyocytes.21) So, we measured 
the ATP levels after βOHB treatment. As expected, βOHB significantly increased intracellular 
ATP levels in H9C2 cells (Figure 3E). We then analyzed the MPP of Dox-treated H9C2 cells using 
TMRM fluorescent probe. Dox-treated H9C2 cells showed decreased uptake of TMRM. βOHB 
pretreatment restored the uptake of TMRM in H9C2 cells. These results suggested that βOHB 
protects cardiomyocytes from Dox-induced mitochondrial dysfunction (Figure 3F and G).

An sodium-glucose co-transporter 2 inhibitor protects the heart by 
increasing beta hydroxybutyrate levels
Collectively, these in vitro results suggested that the cardio-protective effects of SGLT2 
inhibition depend on elevated serum βOHB. We measured serum βOHB levels of our 4 
groups of mice after 2 weeks of treatment. As expected, the βOHB level was elevated in 
EMPA diet-fed groups (EMPA and Dox+EMPA) (Figure 4A). We then examined whether the 
EMPA diet reduced Dox-induced ROS generation in the mouse heart in vivo. We analyzed 
antioxidant gene expression in the LVs from the 4 groups of mice. In the qPCR analysis, the 
Dox treated LVs showed reduced anti-oxidative gene expression and the EMPA diet restored 
this suppression induced by Dox treatment (Figure 4B).

We then investigated whether βOHB could reduce Dox-induced cardiomyopathy in vivo. After 
a single IP injection of Dox (15 mg/kg), mice were injected with saline or βOHB (20 mmoL/
kg), according to a previously described method.22) After 2 weeks of IP injection, mice were 
sacrificed, histological analysis showed preserved myofibril structure and reduced cardiac 
fibrosis in the LVs of mice treated with Dox+ βOHB compared with that in the LVs of mice 
treated with Dox (Figure 4C and Supplementary Figure 5).

In addition, we investigated whether EMPA could inhibit Dox-induced chronic structural 
changes, such as eccentric hypertrophy in the heart. We fed the EMPA diet to Dox-treated 
mice and sacrificed them 6 weeks after the last injection, as previously described.23) After 
6 weeks of Dox injection, the hearts of Dox treated mice showed dilated cardiomyopathy 
(increased size and eccentric hypertrophy) (Figure 4D). The hearts of the EMPA diet-fed mice 
retained a similar size and structure to those of the control mice. Histological analysis also 
showed preserved myofibril structure and reduced cardiac fibrosis in the LVs of mice fed with 
Dox+EMPA compared with those of mice fed with Dox (Figure 4E). Collectively, these results 
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suggested that elevation βOHB by SGLT2 inhibition attenuated the oxidative stress induced 
by Dox treatment in mice.
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Figure 4. The SGLT2 inhibitor protects the heart by increasing βOHB. (A) Serum βOHB levels of mice, 2 weeks after single Dox (15 mg/kg) or saline injection. EMPA 
increased Serum βOHB levels of mice in both Control and Dox treated mice. (B) mRNA expression of FoxO3a, Sod2, and Cat (encoding catalase) in LV tissues of 
mice after single Dox or saline injection. EMPA increased these genes expression in LV tissues of mice with Dox. (C) Representative images of LV sections stained 
with H&E and with Masson's trichrome. Mice were injected daily with βOHB intraperitoneally after single Dox injection for 14 days. (D) Gross anatomical changes 
of Dox-treated hearts in a chronic model. (E) Representative images of LV sections stained with H&E and with Masson's trichrome. (F) A proposed model for the 
cardioprotective effect of the SGLT2 inhibitor against Dox-induced HF. Heart image was obtained and modified from Pixabay 2017 (https://pixabay.com/en/heart-
human-heart-anatomy-medicine-2028154). Scale bar=50 μm. Each bar represents mean±standard error of mean. 
βOHB = beta hydroxybutyrate; Dox = doxorubicin; EMPA = empagliflozin; H&E = hematoxylin and eosin; HF = heart failure; LV = left ventricle; mRNA = messenger 
RNA; ROS = reactive oxygen species; SGLT2 = sodium-glucose co-transporter 2. 
*p<0.05.
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DISCUSSION

SGLT2 inhibitors have shown beneficial effects on HF patients with type 2 diabetes.24) Our 
study was designed to investigate the role of SGLT2 inhibitors in the development of Dox-
induced HF in mice, which is a well-known non-diabetic HF animal model. We demonstrated 
that the SGLT2 inhibitor attenuated Dox-induced cardiomyopathy in mice. Dox-treated 
mouse hearts showed cardiac hypertrophy and myocardial fibrosis, and the EMPA diet-fed 
mice showed reduced Dox-induced cardiomyopathy in acute (Figure 1D and E) and chronic 
models (Figure 4D and E).

EMPA-fed mice showed increased serum βOHB levels compared with NCD-fed mice (Figure 4A). 
These changes in non-diabetic mice after EMPA treatment are consistent with recent clinical 
data from humans.9) As expected, βOHB improved cell viability (Figure 2C) and reduced ROS 
generation (Figure 3A) in Dox-treated H9C2 cells. Recent study supported these results about 
anti-oxidant properties of βOHB.25) βOHB also improves mitochondrial function and increases 
ATP production in pancreatic beta cells and neuronal cells.26)27) In line with these findings, we 
found that βOHB increased intracellular ATP levels and restored mitochondrial dysfunction in 
cardiomyocytes (Figure 3E and F).

Several studies support our findings about the cardioprotective role of βOHB. Ketone bodies 
are effective energy source of failing heart and increase survival in aging mice.26)28) Exogenous 
βOHB infusion protects ischemic injury in heart by reducing ROS and enhancing adenosine 
trisphosphate production.29) These findings led us to speculate that ketone bodies have 
critical role in maintaining heart function and SGLT2 inhibitor acts indirectly on the heart by 
increasing blood βOHB levels.

We found that βOHB attenuated Dox-induced cardiotoxicity in vitro. However, in vivo, 
βOHB supplementation reduced Dox-induced myofibrillar loss and cardiac fibrosis at the 
microscopic level (Figure 4C) but did not demonstrate significant improvement in the gross 
morphological changes caused by Dox (Supplementary Figure 6). These results suggested 
that metabolic and hemodynamic effects of SGLT2 inhibitors, such as improved glucose 
homeostasis, lowering of blood pressure and weight loss, also have additional protective 
effects on heart function.2)

In summary, our study showed that an SGLT2 inhibitor could reduce Dox-mediated LV 
dysfunction. This protective effect is mediated by elevated βOHB levels. During SGLT2 
inhibition, elevated βOHB levels attenuated ROS production and improved mitochondrial 
dysfunction in cardiomyocytes (Figure 4F). Our findings suggested that cardioprotective role 
of SGLT2 inhibitor indicates a new strategy to prevent HF in patients receiving Dox.
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SUPPLEMENTARY MATERIALS

Supplementary Table 1
Primer list for real-time PCR

Click here to view

Supplementary Figure 1
Body weight change after 14 days of treatment.

Click here to view

Supplementary Figure 2
FS and EF changes after 1 week Dox treatment. The EMPA group improved FS and EF 
compared with Control group. The Dox+EMPA group also showed improved FS and EF 
(p=0.06) compared with Dox group.

Click here to view

Supplementary Figure 3
H&E and Masson's trichrome stained microscopic images of Dox and Dox+EMPA treated 
heart (scale bar=100 um).

Click here to view

Supplementary Figure 4
The effect of Dox and βOHB on ROS generation using DCFDA assay in confocal microscopy 
(green: H2DCFDA, scale bar=50 um).

Click here to view

Supplementary Figure 5
H&E and Masson's trichrome stained microscopic images of Dox and Dox+βOHB treated 
heart (scale bar=100 µm).

Click here to view

Supplementary Figure 6
Gross images of Dox and Dox+βOHB treated heart.

Click here to view

REFERENCES

	 1.	 Berliner D, Bauersachs J. Current drug therapy in chronic heart failure: the new guidelines of the 
European Society of Cardiology (ESC). Korean Circ J 2017;47:543-54. 
PUBMED | CROSSREF

1193https://e-kcj.org https://doi.org/10.4070/kcj.2019.0180

SGLT2 Inhibitor and Heart Failure

https://e-kcj.org/DownloadSupplMaterial.php?id=10.4070/kcj.2019.0180&fn=kcj-49-1183-s001.xls
https://e-kcj.org/DownloadSupplMaterial.php?id=10.4070/kcj.2019.0180&fn=kcj-49-1183-s002.ppt
https://e-kcj.org/DownloadSupplMaterial.php?id=10.4070/kcj.2019.0180&fn=kcj-49-1183-s003.ppt
https://e-kcj.org/DownloadSupplMaterial.php?id=10.4070/kcj.2019.0180&fn=kcj-49-1183-s004.ppt
https://e-kcj.org/DownloadSupplMaterial.php?id=10.4070/kcj.2019.0180&fn=kcj-49-1183-s005.ppt
https://e-kcj.org/DownloadSupplMaterial.php?id=10.4070/kcj.2019.0180&fn=kcj-49-1183-s006.ppt
https://e-kcj.org/DownloadSupplMaterial.php?id=10.4070/kcj.2019.0180&fn=kcj-49-1183-s007.ppt
http://www.ncbi.nlm.nih.gov/pubmed/28955380
https://doi.org/10.4070/kcj.2017.0030
https://e-kcj.org


	 2.	 Abdul-Ghani M, Del Prato S, Chilton R, DeFronzo RA. SGLT2 inhibitors and cardiovascular risk: lessons 
learned from the EMPA-REG OUTCOME study. Diabetes Care 2016;39:717-25. 
PUBMED | CROSSREF

	 3.	 Mudaliar S, Polidori D, Zambrowicz B, Henry RR. Sodium-glucose cotransporter inhibitors: effects on 
renal and intestinal glucose transport: from bench to bedside. Diabetes Care 2015;38:2344-53. 
PUBMED | CROSSREF

	 4.	 Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate utilization in response to sodium–glucose 
cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 
2016;65:1190-5. 
PUBMED | CROSSREF

	 5.	 Grabacka M, Pierzchalska M, Dean M, Reiss K. Regulation of ketone body metabolism and the role of 
PPARα. Int J Mol Sci 2016;17:E2093. 
PUBMED | CROSSREF

	 6.	 Vettor R, Inzucchi SE, Fioretto P. The cardiovascular benefits of empagliflozin: SGLT2-dependent and 
-independent effects. Diabetologia 2017;60:395-8. 
PUBMED | CROSSREF

	 7.	 Kong G, Huang Z, Ji W, et al. The ketone metabolite β-hydroxybutyrate attenuates oxidative stress in 
spinal cord injury by suppression of class I histone deacetylases. J Neurotrauma 2017;34:2645-55. 
PUBMED | CROSSREF

	 8.	 Napolitano A, Miller S, Murgatroyd PR, et al. Exploring glycosuria as a mechanism for weight and fat 
mass reduction. A pilot study with remogliflozin etabonate and sergliflozin etabonate in healthy obese 
subjects. J Clin Transl Endocrinol 2013;1:e3-8. 
PUBMED | CROSSREF

	 9.	 Thapa S, Trivedi N, Omer A. Elevated serum beta-hydroxybutyrate levels (B-hb) in patients with type 2 
diabetes mellitus using sodium-glucose cotransporter 2 (SGLT-2) inhibitor. Novel treatment for diabetes-
focusing on GLP-1 and SGLT2 (posters). The 98th Annual Meeting of the Endocrine Society; 2016 Apr 1–4; 
Fri, USA. Boston (MA): Endocrine Society; 2016.

	10.	 Breckenridge R. Heart failure and mouse models. Dis Model Mech 2010;3:138-43. 
PUBMED | CROSSREF

	11.	 Jin Z, Zhang J, Zhi H, et al. Beneficial effects of tadalafil on left ventricular dysfunction in doxorubicin-
induced cardiomyopathy. J Cardiol 2013;62:110-6. 
PUBMED | CROSSREF

	12.	 Gao S, Ho D, Vatner DE, Vatner SF. Echocardiography in mice. Curr Protoc Mouse Biol 2011;1:71-83. 
PUBMED | CROSSREF

	13.	 Lee BS, Kim SH, Jin T, et al. Protective effect of survivin in doxorubicin-induced cell death in h9c2 cardiac 
myocytes. Korean Circ J 2013;43:400-7. 
PUBMED | CROSSREF

	14.	 Joshi DC, Bakowska JC. Determination of mitochondrial membrane potential and reactive oxygen species 
in live rat cortical neurons. J Vis Exp 2011;2704.
PUBMED

	15.	 Mouli S, Nanayakkara G, AlAlasmari A, et al. The role of frataxin in doxorubicin-mediated cardiac 
hypertrophy. Am J Physiol Heart Circ Physiol 2015;309:H844-59.
PUBMED

	16.	 Chen J, Williams S, Ho S, et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene 
and related family members. Diabetes Ther 2010;1:57-92. 
PUBMED | CROSSREF

	17.	 Lopaschuk GD, Verma S. Empagliflozin's fuel hypothesis: not so soon. Cell Metab 2016;24:200-2. 
PUBMED | CROSSREF

	18.	 Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable 
safety concern with SGLT2 inhibitors. Diabetes Care 2015;38:1638-42. 
PUBMED | CROSSREF

	19.	 Guh JY, Chuang TD, Chen HC, et al. β-hydroxybutyrate-induced growth inhibition and collagen 
production in HK-2 cells are dependent on TGF-β and Smad3. Kidney Int 2003;64:2041-51. 
PUBMED | CROSSREF

	20.	 Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced 
cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 2012;52:1213-25. 
PUBMED | CROSSREF

	21.	 Mitry MA, Edwards JG. Doxorubicin induced heart failure: phenotype and molecular mechanisms. Int J 
Cardiol Heart Vasc 2016;10:17-24. 
PUBMED | CROSSREF

1194https://e-kcj.org https://doi.org/10.4070/kcj.2019.0180

SGLT2 Inhibitor and Heart Failure

http://www.ncbi.nlm.nih.gov/pubmed/27208375
https://doi.org/10.2337/dc16-0041
http://www.ncbi.nlm.nih.gov/pubmed/26604280
https://doi.org/10.2337/dc15-0642
http://www.ncbi.nlm.nih.gov/pubmed/26861783
https://doi.org/10.2337/db15-1356
http://www.ncbi.nlm.nih.gov/pubmed/27983603
https://doi.org/10.3390/ijms17122093
http://www.ncbi.nlm.nih.gov/pubmed/28074254
https://doi.org/10.1007/s00125-016-4194-y
http://www.ncbi.nlm.nih.gov/pubmed/28683591
https://doi.org/10.1089/neu.2017.5192
http://www.ncbi.nlm.nih.gov/pubmed/29235586
https://doi.org/10.1016/j.jcte.2013.12.001
http://www.ncbi.nlm.nih.gov/pubmed/20212081
https://doi.org/10.1242/dmm.005017
http://www.ncbi.nlm.nih.gov/pubmed/23731918
https://doi.org/10.1016/j.jjcc.2013.03.018
http://www.ncbi.nlm.nih.gov/pubmed/21743841
https://doi.org/10.1002/9780470942390.mo100130
http://www.ncbi.nlm.nih.gov/pubmed/23882289
https://doi.org/10.4070/kcj.2013.43.6.400
http://www.ncbi.nlm.nih.gov/pubmed/21654619
http://www.ncbi.nlm.nih.gov/pubmed/26209053
http://www.ncbi.nlm.nih.gov/pubmed/22127746
https://doi.org/10.1007/s13300-010-0006-4
http://www.ncbi.nlm.nih.gov/pubmed/27508868
https://doi.org/10.1016/j.cmet.2016.07.018
http://www.ncbi.nlm.nih.gov/pubmed/26294774
https://doi.org/10.2337/dc15-1380
http://www.ncbi.nlm.nih.gov/pubmed/14633126
https://doi.org/10.1046/j.1523-1755.2003.00330.x
http://www.ncbi.nlm.nih.gov/pubmed/22465037
https://doi.org/10.1016/j.yjmcc.2012.03.006
http://www.ncbi.nlm.nih.gov/pubmed/27213178
https://doi.org/10.1016/j.ijcha.2015.11.004
https://e-kcj.org


	22.	 Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 
inflammasome-mediated inflammatory disease. Nat Med 2015;21:263-9. 
PUBMED | CROSSREF

	23.	 Liu X, Wang X, Zhang X, Xie Y, Chen R, Chen H. C57BL/6 mice are more appropriate than BALB/C mice in 
inducing dilated cardiomyopathy with short-term doxorubicin treatment. Acta Cardiol Sin 2012;28:236-40.

	24.	 Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 
diabetes. N Engl J Med 2015;373:2117-28. 
PUBMED | CROSSREF

	25.	 Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by β-hydroxybutyrate, an 
endogenous histone deacetylase inhibitor. Science 2013;339:211-4. 
PUBMED | CROSSREF

	26.	 Sampson M, Lathen DR, Dallon BW, et al. β-Hydroxybutyrate improves β-cell mitochondrial function and 
survival. J Insul Resist 2017;2:8.

	27.	 Lim S, Chesser AS, Grima JC, et al. D-β-hydroxybutyrate is protective in mouse models of Huntington's 
disease. PLoS One 2011;6:e24620. 
PUBMED | CROSSREF

	28.	 Aubert G, Martin OJ, Horton JL, et al. The failing heart relies on ketone bodies as a fuel. Circulation 
2016;133:698-705. 
PUBMED | CROSSREF

	29.	 Yu Y, Yu Y, Zhang Y, Zhang Z, An W, Zhao X. Treatment with D-β-hydroxybutyrate protects heart from 
ischemia/reperfusion injury in mice. Eur J Pharmacol 2018;829:121-8. 
PUBMED | CROSSREF

1195https://e-kcj.org https://doi.org/10.4070/kcj.2019.0180

SGLT2 Inhibitor and Heart Failure

http://www.ncbi.nlm.nih.gov/pubmed/25686106
https://doi.org/10.1038/nm.3804
http://www.ncbi.nlm.nih.gov/pubmed/26378978
https://doi.org/10.1056/NEJMoa1504720
http://www.ncbi.nlm.nih.gov/pubmed/23223453
https://doi.org/10.1126/science.1227166
http://www.ncbi.nlm.nih.gov/pubmed/21931779
https://doi.org/10.1371/journal.pone.0024620
http://www.ncbi.nlm.nih.gov/pubmed/26819376
https://doi.org/10.1161/CIRCULATIONAHA.115.017355
http://www.ncbi.nlm.nih.gov/pubmed/29679541
https://doi.org/10.1016/j.ejphar.2018.04.019
https://e-kcj.org

	Cardioprotective Potential of an SGLT2 Inhibitor Against Doxorubicin-Induced Heart Failure
	INTRODUCTION
	METHODS
	Animals
	Dox-induced cardiomyopathy experiment
	Mouse magnetic resonance imaging
	Cell culture and materials
	Cytotoxicity assay and adenosine triphosphate assay
	Determination of mitochondrial membrane potential and reactive oxygen species
	RNA isolation and quantitative real-time reverse transcription polymerase chain reaction
	Western blot analysis
	Histological analysis
	Statistical analysis

	RESULTS
	Beta hydroxybutyrate protects against Dox-induced cardiotoxicity in vitro
	Beta hydroxybutyrate reduces reactive oxygen species and improves mitochondrial function
	An sodium-glucose co-transporter 2 inhibitor protects the heart by increasing beta hydroxybutyrate levels

	DISCUSSION
	SUPPLEMENTARY MATERIALS
	Supplementary Table 1
	Supplementary Figure 1
	Supplementary Figure 2
	Supplementary Figure 3
	Supplementary Figure 4
	Supplementary Figure 5
	Supplementary Figure 6

	REFERENCES


