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Abstract: This study compares the environmental impacts of meatless and meat-containing meals in
the United States according to consumption data in order to identify commercial opportunities to
lower environmental impacts of meals. Average consumption of meal types (breakfast, lunch, dinner)
were assessed using life cycle assessment. Retail and consumer wastes, and weight losses and gains
through cooking, were used to adjust the consumption quantities to production quantities. On average,
meatless meals had more than a 40% reduction in environmental impacts than meat-containing
meals for any of the assessed indicators (carbon footprint, water use, resource consumption, health
impacts of pollution, and ecosystem quality). At maximum and minimum for carbon footprint,
meat-containing dinners were associated with 5 kgCO2e and meatless lunches 1 kg CO2e. Results
indicate that, on average in the US, meatless meals lessen environmental impacts in comparison to
meat-containing meals; however, animal products (i.e., dairy) in meatless meals also had a substantial
impact. Findings suggest that industrial interventions focusing on low-impact meat substitutes
for dinners and thereafter lunches, and low-impact dairy substitutes for breakfasts, offer large
opportunities for improving the environmental performance of the average diet.

Keywords: diets; life cycle assessment; vegetarian

1. Introduction

Consuming animal products is a well-recognized driver of greenhouse gas emissions, water
consumption, biodiversity loss, and nutrient cycling impacts due to agricultural production [1]. It
is predicted that technological advancements in livestock production practices have a limited ability
to decrease environmental impacts—for example, due to the low biomass conversion efficiency of
cattle and limited possible improvement in nitrogen fertilizer efficiency for animal feed [2–4]. Thus
decreasing meat and animal product consumption (shifting diets) to decrease demand and production
quantity is recommended as a key environmental impact mitigation strategy [5,6]. In order to
quantify the environmental benefit of reducing animal product consumption, research investigating
the environmental impacts of food systems considers various perspectives, for example, relatively
ranking individual food items [7] or dietary patterns (such as typical versus a vegetarian diet) [8].

When comparing food items, environmental impacts are often compared per mass (e.g., kilogram),
serving size, energy (e.g., kilocalorie), or protein [5,7,9]. Knowing the relative ranking of the
environmental impacts of various foods has been considered important to identify food groups of
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concern and to develop a basic scientific understanding of the impacts of food systems. Relative
ranking of food items also demonstrates the complexity of assessing the impacts of food consumption,
as using different metrics—e.g., greenhouse gas (GHG) emissions per kilogram, kilocalorie, gram
protein or servings—can change the relative ranking of food items [7,10,11]. Relative ranking can
also help understand the differences between local and imported foods [12], and differences between
geographical settings and farming practices—although such differences are notoriously challenging to
capture using most widely available quantitative sustainability assessment methods [13–15]. Further
adding to complexity when interpreting food-to-food comparisons to assess diets, comparing across
food products does not consider the context of consumption patterns; for example, impacts per
kilogram of a selected food may be substantially higher, but could be typically consumed in lesser
amounts. The relative ranking across food items therefore does not provide enough information to
guide informative decision-making to recommend dietary changes.

Given that relative ranking between food items does not always clearly help inform dietary
shifts, comparing the environmental impacts of diets (i.e., what is consumed on average per day), has
become another common way of assessing the environmental impacts of food consumption [7,8,16,17].
Detailed data (e.g., average quantities of food types consumed per day in a country) on different dietary
patterns such as vegan (no animal products), vegetarian (no meat products), and even the average
diet are largely missing. Many studies assessing diets thereby investigate “constructed” diets, for
example, by evaluating regulatory recommendations (i.e., food pyramids) or by making assumptions
about the replacement of food items to model a hypothetical diet such as a vegan or vegetarian
diet [5,8,18–26]. Assessing hypothetical diets such as food pyramids can help understand the impact
of recommended diets, and can offer the range of impacts for hypothetical substitutions [10,27,28].
This can help understand the potential range of impacts for “vegan” and “vegetarian” diets. To
reach a wider proportion of the population beyond vegetarians and vegans, many stakeholders
are investigating targeting meals (instead of overall diets) as an effective strategy to decrease
meat consumption, for example, through mobile phone applications, menu designs, recipes, or
meat-replacement products [29–32].

To complement recent market growth with respect to plant-based meat alternatives and the
opportunity to implement interventions on a meal-to-meal basis instead of an overall diet basis, we
chose to explore meal-to-meal comparisons in this study. Other recent work has also focused on
meals, for example, comparing Spanish meals and different meal preparation methods [33–35]. To
our knowledge, this is the first meal-to-meal environmental comparison study that uses United States
(US) dietary survey data to represent average meal composition. In this study, we focus on the US, a
country with meat consumption more than three times the global average [36], and with intake data
available to estimate meal compositions and assess respective environmental impacts. Specifically, we
used the National Health and Nutrition Examination Survey 2011–2012 (NHANES) [37], the United
States Department of Agriculture (USDA) Economic Research Service (ERS) [38], the National Marine
Fisheries Service (NMFS) [39], and the USDA Agricultural Research Service (ARS) National Nutrient
Database [40]. We used a life cycle assessment (LCA)-based approach to include impacts related to the
entire food provision system from primary production to disposal. The primary aim of this study was
to gather evidence that reflects realistic consumption quantities and understand whether (and how
much) of an environmental benefit can be obtained on a per-event basis if Americans begin to shift
towards meatless breakfast, lunch, and/or dinner. The purpose of this study was not to investigate
market consequences as demand shifts to a critical level.

2. Materials and Methods

We compared different meal types reported in the National Health and Nutrition Examination
Survey (NHANES) [37] with the functional unit of providing a US adult with one meal at their home.
A meal was defined as a self-reported in-home consumed breakfast, lunch, or dinner occasion and
did not include foods consumed between meals or out-of-home. To inform the environmental impact
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assessment, we began with meal compositions (quantity in mass of food categories consumed on
average daily), and the life cycles of the food categories within the meals were then constructed. The life
cycle of all considered food categories consists of production (harvest quantity), food manufacturing,
packaging, distribution (refrigeration and transport), consumer use (storage, preparation, and cleaning),
and waste (retail and consumer).

2.1. Meal Compositions, Food Groups and Sub-categories

The average compositions of meat-containing and meatless meals were first determined from
NHANES [37]. NHANES 2011–2012 (the most recent version at the time this study was conducted)
consists of self-reported 24-hour dietary recall survey data from 4948 male and female adults (19+

years). NHANES data were used to identify the food groups consumed during breakfasts, lunches, and
dinners in the United States, and their relative proportions. The sum of average breakfast, lunch, and
dinner meals does not equate to average daily intake as out-of-mealtime consumptions (e.g., snacks)
were not included.

We constructed average meal compositions based on key food groups and subcategories, to
synthesize the array of food items in the NHANES data and simplify the assessment. The food
groups were: dairy (milk drinks and other dairy); meats (including fish and any meat mixtures); eggs
(including egg substitutes such as whites and powders); vegetables (including potatoes); legumes, nuts,
and seeds; fruits and fruit juices; fats, oils, and dressing; and sugars and sweets. These food groups
and the corresponding food subcategories are listed in the first column of SI Table S1. The average
consumption of each subcategory and overall food group during each meal occasion was quantified,
the latter as a necessary pre-step to quantify the environmental impacts, and the former as a way to
visualize the consumption of various categories and to match to food loss and waste categories. A
meat-containing meal included any meal that contained any amount of food that corresponded to one
of the groups of meat, poultry, or fish, or any meat mixtures.

For the meat mixtures, equal proportions of the specified mixtures were assumed. For example,
meat and vegetable mixtures were assumed to contain half “vegetable” and half “meat” by weight,
and “meat”, “grain”, and “vegetable” mixtures were assumed to contain one-third of each of these
food groups. A meat mixture was modeled as a combination of beef, chicken, and pork, and fish,
proportional to the consumptions in 2012 as reported in USDA ERS [38] and NMFS [39], and listed
in SI Table S1. Meals were scaled to ensure that the same quantity of food was consumed in both
meat-containing and meatless meals. In the meal composition, fluid milk and fruit juices were
considered, but water, soda and other sweetened beverages were excluded assuming that consumption
of these products alongside meals does not vary greatly between meatless and meat-containing options.
If they were included, these other beverages would be the majority of the food weight consumed.

The composition of meatless meals should not be interpreted as reflecting the dietary patterns of
vegetarians, as non-vegetarians also consume meatless meals. The meals should be interpreted as the
average meal consumptions for US adults in 2011–2012.

2.2. From Composition to Life Cycle Considerations

In this study, we began with consumption data (for example, of cooked food) to obtain the
composition of each meal. From the composition, we then estimated the quantity of raw food produced,
and constructed the life cycle processes (e.g., production, manufacturing, packaging, transport,
preparation, clean-up, and waste associated with the foods in the meals).

Agricultural production of food is typically the largest contributor to environmental impacts
across the life cycle [41]. We therefore did not perform a detailed review of the other life cycle
considerations (i.e., packaging, cooking, etc.) for each food item in the meal types, and instead included
these aspects as generic estimates. To obtain the raw quantity of food produced, adjustments were
made to account for retail and consumer wastes, as well as water-weight lost or added during cooking.
Food wastes were considered per food group and, in some cases, per subcategory when data were
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available [42], and were assumed to be equal for meatless and meat-containing meals (that is, the food
waste percentage for each category was assumed to be independent of the meal occasions and meal
types). The considered waste values are presented in SI Table S2, and were simply used as scaling
factors such that the amount of food assumed to be produced was equal to the total of the amount
consumed plus the wasted amount. Additionally, USDA ARS [40] data were used to convert cooked
ingredients to their raw form, again to adjust for lost or gained water-weight during the cooking
process and to back-calculate the original quantity. For example, per 1 kg of cooked beans, only 400 g
of dry beans are required (the rest is water weight), and therefore the 400 g is used as the reference
value for the environmental impact calculations, and not the full 1 kg, which would over-estimate
results by more than a factor of 2. All food wastes were assumed to be sent to landfill, which is the
primary destination of food waste (about 95%) in the United States and the worst-case scenario.

To elucidate approximate proportional contribution of manufacturing and distribution life
cycle stages to the overall impact of meatless and meat-containing meals, we used the same set of
assumptions for all meal types. In order to derive the assumption on how much energy is used
due to food manufacturing and distribution for an average meal, we used an input-output database.
Input-output databases can provide useful information to make assumptions on average values, e.g.,
on energy consumptions for a given stage in a given sector for each dollar spent in that sector. We
used the economic input-output LCA database (EIOLCA) through Carnegie Mellon University [43] to
estimate the energy requirements of food manufacturing and distribution separately per meal, given a
$7.19 average meal cost [44]. From this starting value, EIOLCA estimates that each dollar spent in the
food sector results in between 0.05 and 0.1 MJ of total energy used in the manufacturing stage, and
0.002 MJ in distribution operations (e.g., retail). We thus assumed roughly 0.7 MJ of energy ($7/meal
multiplied by 0.1 MJ/$) to manufacture and 0.014 MJ of energy ($7/meal multiplied by 0.002 MJ/$) to
distribute 1 meal. The energy consumption per meal was then matched to an LCI entry for the US
electrical grid mix to estimate impacts as a realistic worst-case scenario, instead of separating into
various forms of energy combustion. We have no available evidence to justify that the values for
manufacturing and distribution would be drastically different between meatless and meat-containing
meals, therefore the inclusion of these stages in the study is only to estimate the magnitude of the
overall impact and not to compare the impacts between the meal types.

Transportation impacts are included within processes associated with life cycle stages. For
example, raw material production includes transport of feed to animal farms and transport from farm
to manufacturing facility when relevant. We did not modify the distances and vehicles assumed for
transport within the life cycle inventory database used (more information is provided in Section 2.3).
Generally, transport is a minor part of the overall impact, and we have no reason to suspect additional
transportation assumptions should be different for meat-containing and meatless meals.

The amount of packaging required per meal (also assumed to be the same for all meal types) was
estimated starting with national statistics of packaging disposal per year, the quantity of this packaging
that is related to food, the number of meals consumed in the US in one year, and then adjusting by the
estimated amount snacks and beverages consumed, as they were not included in the meal compositions
in this study. It follows that, with 75 million tons of packaging waste in the US [45], approximately
two-thirds of this related to food packaging [46], approximately 350 billion meals per year (319 million
people consuming 3 meals per day for 365 days per year), and finally adjusting for the roughly 50% of
food consumed that is snacks and beverages [47,48], there is roughly 70 g of packaging per meal, which
is broken down into specific material categories (plastics, paper, aluminum, etc.), based on the ratios
reported by the US Environmental Protection Agency (EPA) [45]. Packaging is recycled and disposed
of in municipal waste according to US EPA statistics [49]. Impacts associated with the recycling process
itself are included, but there is no benefit allocated for the recovery of recycled materials.

In general, food is stored and prepared in a wide variety of ways, with few statistics available
or identified to characterize typical values for different foods or meal types. We therefore used the
same set of expert assumptions for each meal (scaled to the meal weight) with respect to the energy,
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water, and material consumptions required for storing, cooking, and cleaning (i.e., washing). These
assumptions are listed in SI Table S3.

2.3. Life Cycle Inventory and Impact Assessment

Life cycle assessment (LCA) is an internationally-recognized quantitative assessment approach
that evaluates potential environmental impacts of products and services throughout their “life cycle”,
beginning with raw material extraction and including all aspects of transportation, manufacturing, use,
and end-of-life treatment. Over recent decades, LCA and life cycle thinking has become a principal
approach to compare the environmental impacts of various foods and diets [8,16,50,51].

The two main quantitative steps of LCA are life cycle inventory (LCI) and life cycle impact
assessment (LCIA). LCI identifies the flows of materials, energy, and substances into and out of each
considered food product system, and LCIA characterizes the effect of these flows. In this study, the
ecoinvent v3.1 and agri-footprint databases [52] were used to gather the LCI of representative unit
processes (with ecoinvent used in priority). The original study backing this article was performed in
2015 with ecoinvent 3.1 and SimaPro 8.0.3 software developed by PRé Consultants. Global processes
were prioritized (which account for the market mixes), with US processes (which do not account for
imports) used if global processes were unavailable. The full list of LCIs for the food categories is
available in SI Table S1. Recycled packaging materials were matched to the most appropriate ecoinvent
3.1 entry for material-specific recycling and municipal solid waste in a sanitary landfill. Food wastes
were modelled as municipal solid wastes in a sanitary landfill.

IMPACT 2002+ vQ2.2 [53,54] was employed as the LCIA method. Through IMPACT 2002+,
17 impact categories (midpoints) are aggregated into endpoint categories—human health impact of
pollution (e.g., by fine particulate matter), ecosystem quality, resource consumption, water use, and
carbon footprint—to indicate environmental damages. More detailed explanations of LCA, LCIA and
damage categories are available elsewhere [53–57].

3. Results

3.1. Meal Compositions and Associated Food Quantity Produced

As a first necessary step to compare meat-containing and meatless meals, the composition of
meals as reported to be consumed were obtained from NHANES 2011–2012 [37]. The proportions
of food groups within meat-containing and meatless meals (prior to any weight-adjustment or
waste-adjustment) are presented in Figure 1. The masses consumed of each food group sub-category
in each meal type are reported in SI Table S4, along with respective produced quantities, which are the
consumed quantities adjusted by wastes and cooking weights. The relative ranking of food items for
produced versus consumed quantities for meat-containing meals are presented in SI Figure S1.

On average, meatless meals contained 270.5, 341.1, and 432.1 g, and meat-containing meals
contained 365.6, 411.6, and 496.2 g of total food consumed for breakfasts, lunches and dinners,
respectively. As input for the environmental impact assessment, however, the weights of the meatless
meals were scaled up to equal those of meat-containing meals. This is to ensure a non-biased comparison
between what types of foods are eaten rather than how much of each food is eaten. Furthermore,
the reasons why meatless meals contained less overall food weight (e.g., perhaps due to gender or
age) on average is not clear from the data we had available for this study. Meatless lunches and
dinners contained approximately double the amount of grain-based foods and milk drinks than that of
meat-containing meals. Additionally, meatless meals contained more nuts and seeds, legumes (except
for breakfast), and fruits, and less fats, oils, dressings, and vegetables. Similar amounts of dairy and
sweets were consumed in both meal types.
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Figure 1. Composition of meat-containing and meatless meals by food groups.

3.2. Environmental Impact Assessment

3.2.1. Contribution of Food Groups

For meat-containing meals, the meat products were the major contributors to all impact categories,
despite being only about a third of the mass consumed. In meatless breakfasts, dairy was the largest
contributor to carbon footprint, resource consumption, and health impacts of pollution. Grains were
the largest contributor to water use. Fruits and fruit juices were the largest contributor to ecosystem
quality impacts. (In all cases emissions associated with food production were the majority of the
impact). In meatless lunches and dinners, grains tended to be the largest contributor to the overall
impact, largely due to the large proportion consumed (per kilogram, grains tend to have a lower impact
than other plant-based foods). The relative contribution of different food groups to the overall impact
for breakfast is presented in Figure 2, and lunch and dinner are presented in Figures S2 and S3.
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3.2.2. Impacts of Meal Types and Contribution of Life Cycle Stages

Figure 3 presents the relative environmental impacts comparing meatless to meat-containing
meals (scaled to 100%), as well as the contribution of different life cycle stages to the overall impact.
The absolute values of the environmental impact indicators are presented in SI Table S5. In summary,
the lowest impacting meal with respect to carbon footprint was meatless lunch, with 1 kg CO2e per
meal, and the highest impacting meal was dinners containing meat, at 5 kg CO2e per meal. Meatless
meals always resulted in less environmental impacts than meat-containing meals, with the biggest
advantage for water use and ecosystem quality, and the least advantage for resource consumption
(largely due to post-agricultural life cycle stages).Sustainability 2019, 11, x FOR PEER REVIEW 8 of 15 
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Figure 3. Comparing the relative impacts and contributions of lifecycle stages for meatless meals and
meat-containing meals for all environmental impact indicators and meal occasions.

For meat-containing meals, agricultural production (raw materials) contributed the largest
proportion of environmental impacts in each meal type and represented the majority of the footprint for
water use and ecosystem quality. In contrast, subsequent life cycle stages for meatless meals—which
had a lower overall footprint—were large contributors to the carbon footprint, resources use, and, to
some extent, the health impacts related to pollution.

Overall, the impact reductions ranged from 44% for resource consumption for meatless breakfast
to 88% ecosystem quality for meatless dinner. Generally, the benefits for switching to a meatless
breakfast are less than those for other meals, reflecting that less meat is, on average, consumed during
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breakfast. For meatless breakfasts, dairy (e.g., milk and yogurt) was a predominate contributor to
impact, and was consumed approximately 2×more than in meat-containing breakfasts. The impact
reductions by percentage and also by absolute value are summarized in Table 1.

Table 1. Environmental impact differences for meatless meals compared to meat-containing meals for all
meal occasions, with respect to percentage decrease and absolute decrease (impact of meat-containing
meal minus impact of meatless meal).

Meal
Carbon Footprint (kg

CO2 eq.) * Water Use (m3) *
Resource

Consumption
(MJ) *

Health Impact
of Pollution

(DALY) *

Ecosystem
Quality

(PDF-m2-y) *

Amt. % Amt. % Amt. % Amt. % Amt. %

Breakfast 1.5 58% 0.26 64% 8.3 44% 1.7 ×
10−6 62% 4.9 70%

Lunch 2.8 74% 0.56 81% 15.5 59% 3.1 ×
10−6 78% 9.0 85%

Dinner 3.7 77% 0.80 84% 20.4 64% 4.0 ×
10−6 81% 11.6 88%

* kilogram of carbon dioxide equivalent (kg CO2 eq.); cubic meters (m3); megajoules (MJ); disability-adjusted life
year (DALY); potential disappeared fraction of species on a square meter during a year (PDF m2-yr).

3.3. Uncertainty Assessment

In general, we found the results of this study to be well-aligned with other LCA-based research
where, for example, agricultural production impacts for one day of meals were roughly 5 kg
CO2e/day, or nearly 2 tons CO2e/person/year—and up to 4 tons CO2/person/year including all
life cycle stages [8,22,58]. In any case, there are several sources of uncertainty that can influence the
results in this study, including the composition of the diets from the dietary survey data (NHANES) and
the assumption of the mixture compositions (e.g., types of meats in a mixed meat product) described
in Section 2.1. Accounting for uncertainty of consumption data is extremely challenging and thus
considered outside the scope of this study. However, other work suggests that memory recall data is
highly uncertain and should thereby be used with caution [59].

As for mixture assumptions—if the same set of assumptions are used for dish types that occur in
both meat-containing and meatless meals—then the influence of these assumptions is most important
in the case of mixtures containing meat. The proportion of mixtures with both non-meat and meat items
e.g., “vegetables with meat, poultry, fish”, was never more than 2% of the total meal mass and thus
changing the assumptions would not drastically influence results. Meats as a category and mixtures of
meats where the meat type was not known accounted for up to 30% of the mass of meat-containing
dinners and thereby the type of meat consumed could have an important influence on the results. To
understand the influence of meat type, a sensitivity analysis was performed using a 100% total of beef,
pork, or chicken as the meat type in each meal; see SI Table S6. This analysis demonstrated that meat
containing meals that are 100% chicken have similar impacts related to the non-meat containing meals
with respect to carbon footprint, whereas meals containing 100% beef are substantially higher. This
finding underscores the large difference in impacts across meat types and not all “meat-containing”
meals should be assumed to be more impacting than meatless meals—especially meatless meals
containing other animal products (e.g., dairy). Other recent studies have done a thorough investigation
that involves disaggregating food types and have come to similar conclusions as our study with respect
to both magnitude of impacts and predominating contributors to US dietary impacts [60,61].

As an additional uncertainty, this study’s focus on meals rather than overall daily intake made
consistent accounting of beverages a major challenge. Including all beverages (e.g., water or soda) as
part of meal occasions is not practical because beverages then dominate the overall mass consumed,
which then skews results when scaling meatless meals to the same mass as meat containing meals.
Similar issues would occur if scaling diets by protein or by calories, as milk would influence protein
consumption and calories would be influenced by sugary sweetened beverages. As a compromise,
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fruit juice and milk drinks were included when reported with meal occasions for the following reasons.
First, fruit juices and milk drinks have higher environmental impacts than most other beverages (water
and sodas, for example). Fruit juices were consumed at relatively low amounts and in similar amounts
between meatless and meat containing meals. Milk and milk drinks were additionally included as
data demonstrated high consumption of milk drinks accompanying meatless meals, which if neglected
would show artificially lower environmental impact of meatless meals in comparison to actual practices,
e.g., where milk may accompany cereals in the morning as part of a meal. The uncertainty regarding
how to treat beverages when considering meals is tied to the reality that different beverages serve
different functions in the diet, which are subjectively “part of a meal” or not. Diet-level studies offer a
more holistic vision of the impact of beverages; for example, in Heller et al. (2018) beverages were a
non-negligible source of impact in the US diet [60].

Another type of uncertainty that can influence the results of this study is related to the life cycle
inventory (LCI) matching and modeling, and life cycle impact assessment (LCIA) modelling. Several
issues are that there is no information within dietary surveys regarding food production region, and
using another data source (e.g., import and export tables) to match this information to each food
category is a substantial undertaking. Furthermore, even with these data available, LCI database
entries only cover a fraction of the thousands of crop–country combinations on the market. Global LCI
entries were thus chosen in priority in this study to represent a market mix informed by economic and
agricultural statistics, and are thus considered a robust indication of impacts for impact screening.

The uncertainty related to food production origin is, however, becoming increasingly important
given deforestation, and other types of land use change (which are highly sensitive to the agricultural
production region) are being increasingly recognized as a major source of carbon emission and loss of
biodiversity. In LCA, such impacts are sensitive to not only variables such as measurable variations in
regional soil carbon, but also political decisions regarding time horizons, and market-influences related
to consequential market shifts and indirect land use change [61,62]. In this study, the uncertainty
related to land use change is highly relevant for meat and non-meat animal products (e.g., eggs and
dairy), which may have been produced with feed from regions undergoing extensive deforestation
(e.g., Brazil). To further quantify the uncertainty of the LCI and LCIA would require further research
and is discussed elsewhere, e.g., the user guide of IMPACT 2002+ available at quantis-intl.com [53].

4. Discussion

We found in all cases—for both meal occasions and for each environmental impact indicator—average
meatless meals had lower impacts than average meat-containing meals. At maximum and minimum for
carbon footprint, meat-containing dinners were roughly 5 kgCO2e and meatless lunches were roughly
1 kg CO2e. Furthermore, since we adjusted meatless meals in overall quantity of food consumed to match
meat-containing meals, the impacts of meatless meals would be even more profound if estimated by the
reported food quantity. NHANES [37] data were used to estimate average meatless and meat-containing
meals to employ a data-driven approach to estimate meal consumptions, instead of subjectively assuming
types of meat replacements. Recent studies also assessing US diet (not meal-to-meal) comparisons have
similar results, suggesting that animal product production (not just meat production) makes a large
contribution to the overall footprint of US diets [1–4]. As for studies outside of the US, similar findings
have also been reported, although there are regional variations in consumption habits; for example, much
more seafood and thus higher associated impact in Spain [33].

Dietary recall surveys such as NHANES can lead to reporting biases—for example, underestimating
energy intake [63], although protein reporting (for example, through meat consumption) may be
more accurate [64]. Given limitations of dietary surveys, the environmental impacts estimated for
reported average meal compositions are indicative of the magnitude of environmental advantage of
meatless meal occasions. Due to data availabilities and challenges in also accounting for demographic
differences in meal choices, and the potential that a person may choose to eat less, or less animal
products at a given meal and compensate at the next meal occasion, we did not attempt to compare
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the “most impacting” meatless meal with the “least impacting” meat-containing meal. Looking at
extremes of dietary choices would be more meaningful at the level of diets than at the level of meals,
and should also include information on nutrition and consider potential demographic differences.

This study offers no decision-making guidance that requires understanding the implications of
uncertainty (e.g., which vegetable based meal is recommended to replace meat containing meals, and
where should these vegetables be sourced from and what time of year) and furthermore makes no
attempt to predict or understand the consequential changes in markets (consequential LCA) if dietary
shift occurs.

Generally, we estimated larger proportional reductions in environmental impacts for meatless to
meat-containing meals than previous comparisons of meatless and meat-containing diets [5,11,20,21,65–67].
For example, we found a greenhouse gas reduction of 58–77% for meals, where generally a 30–50%
reduction of carbon footprint for entire vegetarian diets has been suggested [5,20]. We assume that we see
a larger reduction for meals than that seen with diets because of two main reasons. First, non-vegetarian
diets contain vegetarian meals such that the percent difference between the two diets would then be
less than that per-meal. Second, impacts of meals do not contain out-of-mealtime snacks and beverages,
which would increase the overall impact for both diets of similar magnitude, thus effectively lowering the
percent difference between diets.

Several details were not included in this study that could influence both the proportional
contribution of life cycle impacts of different stages and the total environmental impact estimations; for
example, emissions from human waste were not included [68], and details regarding different food
preparations were not considered [35]. Furthermore, any health impacts related to preparing and
consuming foods were not included; for example, any increase in health risks due to particulate matter
releases during cooking or for diets high in red or processed meat [69].

The meals compared were based on average consumptions and only scaled by mass to ensure no
bias for meatless meals, which on average have less weight than meat-containing meals. A sensitivity
study was performed to scale by calories and we found that because nutritional density was similar
across meal types, scaling by calories offered the same scaling factor (different by 1%) as scaling by
mass. We did not attempt to scale by protein, which we find more suitable for diet-level assessments
instead of meal-level assessments. As a result of the study design, we made no attempt to ensure
that meals were equivalent in nutritional value. Furthermore, we did not attempt to assess if the
consumption of the average breakfast, lunch, and dinner provided a nutritionally complete meal.
We therefore can make no recommendation for behavior change based on this study with respect to
nutrition and health. From these results in this study, we can say that focusing on behavior change
for shifting to meatless dinners can lead to the maximum benefits; about a two-fold improvement
in absolute reductions in environmental impacts can be obtained from shifting to meatless dinners
instead of breakfasts. Lunch meal occasions also offer an increased benefit to decrease environmental
impacts when compared to breakfasts. Advantages found for dinner and thereafter lunch are due to
the higher amount of meat consumed at lunch and dinner occasions in comparison to breakfasts.

The environmental impacts considered in this study were based on standardized life cycle impact
assessment methodologies, and therefore did not consider emerging urgent issues, such as biodiversity
loss due to land use change or effects on pollinators. In this way, this study’s novelty is reflected mainly
in the use of primary data for obtaining meal composition (instead of modelling or assuming meat
replacements), and we make no attempt to improve or complement LCA methodology with respect to
impact indicators.

5. Conclusions

This study used US nutritional dietary survey data to estimate the environmental impacts for the
average meat-containing and meatless meals. These meals were not intended to be representative of
what vegetarians and non-vegetarians consume, but of meals for the average American adult. This
study can help inform industry where there are opportunities to lower environmental impacts of
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meals (or products within meals). Interventions at the meal or product level tend to be more relevant
for immediate commercial response than interventions targeted at the diet-level (e.g., increasing the
number of vegetarians in a population), as prescribing a (new) dietary pattern is sensitive to social
norms and context, and may not be relevant for the average consumer [70]. Meatless meals always
had more than a 40% reduction in environmental impacts for any of the indicators (carbon footprint,
water use, resource consumption, health impacts of pollution, and ecosystem quality); the biggest
advantages were observed for dinner meal occasions due to the greater consumption of meat during
dinner than other meals. Animal products in general (e.g., dairy) were major drivers of impacts across
indicators, as well as for meatless meals, yet varied across meal occasions. Focusing on low-impact
meat substitutes for dinners, and milk and yogurt substitutes for breakfasts, are examples of where
commercial interventions (e.g., meat or dairy substitutes or alternative products) have the opportunity
to lower impacts of meals in the US. Overall, the novelty of this study is that dietary survey data were
used to obtain compositions of meatless and meat-containing meals.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/11/22/6235/s1.
Figure S1: Ranking of food items for the weight as consumed (averaged across meals) versus as produced
in meat-containing meals, Figure S2: Contribution of food categories to the environmental impact of lunches,
Figure S3: Contribution of food categories to the environmental impact of dinners, Table S1: Food categories and
corresponding sub-categories including the proportional split for the different environmental inventory matches,
Table S2: Percentage of food waste at retail and consumer levels for various food groups, adapted from Buzby
et al., 2014, Table S3: Assumptions used to account for food preparation and clean-up. The same assumptions
were used for all meals, scaled to the meal weight, Table S4: Average Consumption weight (grams) of meals
and the production weight required for the environmental impact assessment, Table S5: Absolute values for
environmental impact indicators of meal occasions for meatless and meat-containing meals, Table S6: Sensitivity
analysis of the influence of various meat types.
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