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Abstract 

Anthropogenic impacts and climate change are considerably altering freshwater systems. Most 

significant consequences of this are changes to flow regimes as well as the transformation of per-

manent into temporary waterways. This is problematic, as despite their role in supporting biodiver-

sity and ecosystem processes, temporary waterways are undervalued and poorly understood. In 

fact, although the effects of non-flow periods are known, there is a lack of knowledge regarding 

how changes in frequency and duration of non-flow periods influence temporary waterways. There-

fore, the goal of further research is to extend the current knowledge surrounding the effects of 

temporal components on the aquatic ecosystem. This bachelor thesis aims to identify how the fre-

quency of non-flow periods affects autotrophic and heterotrophic stream biofilm. With this objec-

tive, an experiment at the Experimental Stream Facility of Catalan Institute for Water Research 

(ICRA) was performed. The treatments consisted of one drought duration (28 days) and three fre-

quencies (1 period of 28, 2 periods of 14, 4 periods of 7 non-flow days). The development of the 

autotrophic and heterotrophic stream biofilm was measured during flow periods by means of yield 

of photochemistry, aerobic respiration, ecosystem metabolism and ash free dry mass. The hypoth-

eses were that with increasing frequency, the effects on stream biofilm are less because the num-

ber of subsequent non-flow days is smaller and thus the biofilm is less stressed, and that auto-

trophs in the epipsammic biofilm recover more slowly than in the epilithic biofilm, because the 

amount of water retained in sand is higher. Both hypotheses were partially confirmed, as an in-

creasing frequency only lessened the effect on epipsammic biofilm and only autotrophic function 

recovered more slowly in sand than on cobbles. In addition, the majority of the variables experi-

enced the most severe impact and thus the quickest recovery in the same treatment. Nevertheless, 

at the end of the experiment none of the differences persisted. Therefore, the frequency of non-

flow periods only had an effect on a short-term but not on a long-term scale and consequently, 

both hypotheses were discarded.  
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Zusammenfassung 

Anthropogene Einflüsse und der Klimawandel führen zu erheblichen Veränderungen von Süss-

wassersystemen. Dabei zählen die Veränderung des Abflussregimes sowie der Wechsel von per-

manenten zu temporären Fliessgewässern zu den nennenswertesten Folgen. Trotz ihrer Wichtig-

keit für die biologische Vielfalt und die Ökosystemprozesse werden temporäre Fliessgewässer bis 

heute unterbewertet und nur unzureichend verstanden. Die Auswirkungen von Trockenperioden 

sind zwar bekannt, jedoch ist nicht klar, wie Änderungen der Frequenz und Dauer von Trockenpe-

rioden die temporären Fliessgewässer beeinflussen. Es besteht ein Forschungsbedarf bezüglich 

der Auswirkungen von temporalen Komponenten auf das aquatische Ökosystem. Das Ziel der vor-

liegenden Bachelorarbeit war es deshalb, zu untersuchen wie die Frequenz von Trockenperioden 

den autotrophen und heterotrophen Biofilm in Fliessgewässer beeinflusst. Dazu wurde ein Experi-

ment in den künstlichen Fliesskanälen (Experimental Stream Facility) des Katalanischen Instituts 

für Wasserforschung (ICRA) durchgeführt. Der Versuch bestand aus einer Trockenperiode (28 

Tage) und drei Frequenzen (1 Periode von 28, 2 Perioden von 14, 4 Perioden von 7 Trockenta-

gen). Die Reaktion des autotrophen und heterotrophen Biofilms wurde während der Fliessperioden 

anhand der photosynthetischen Aktivität, der aeroben Atmung, des Ökosystem-Metabolismus und 

des aschefreien Trockengewichts gemessen. Die dabei verfolgten Hypothesen besagen erstens, 

dass mit zunehmender Frequenz die Wirkung auf den Biofilm geringer ist, weil die Anzahl der auf-

einanderfolgenden Trockentage kleiner ist und somit der Biofilm weniger belastet wird. Zweitens, 

dass sich der autotrophe Biofilm im Sand langsamer erholt als auf den Steinen, da die im Sand 

zurückgehaltene Wassermenge grösser ist. Beide Hypothesen wurden teilweise bestätigt, da mit 

zunehmender Frequenz die Reaktion nur beim epipsammischen Biofilm vermindert war und sich 

nur die autotrophe Funktion im Sand langsamer erholte als auf den Steinen. Bei der Mehrheit der 

Variablen zeigte sich zudem, dass umso grösser die Auswirkung war, desto schneller war auch die 

Erholung innerhalb des entsprechenden Versuchs. Am Ende des Experiments bestanden jedoch 

keine Unterschiede mehr, was zur Schlussfolgerung führte, dass die Frequenz von Trockenperio-

den nur kurzfristige aber keine langfristigen Effekte hatte. Folglich wurden beide Hypothesen ver-

worfen. 
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1 Introduction 

Intermittent streams and rivers are waterways whose flow ceases at some point in time and space, 

often experiencing a periodic loss of some or all surface water and thus creating fragments of 

pools and dry sections (Acuña et al., 2014; Datry et al., 2014) (Figure 1). They dominate in, but are 

not restricted to arid, semi-arid and Mediterranean areas. Flow intermittency is caused naturally, as 

well as by human activities and is influenced by the on-going issue of climate change. According to 

Datry et al. (2014) intermittent waterways constitute more than half of the global river network. In 

accordance with current research, the number of intermittent waterways is projected to increase in 

the future, altering hydrologic connectivity and more importantly flow regimes (Döll & Zhang, 2010; 

Jaeger et al., 2014; Raymond et al., 2013). Flow regimes are characterized by spatial and temporal 

components. According to Richter et al. (1996) the spatial dimension refers to changes in water 

conditions such as the previously mentioned flow cessation in a particular location. Further, it is 

suggested that five temporal characteristics are essential: timing, rate of change, frequency, dura-

tion and magnitude. These components are crucial to the integrity of river ecosystems, since not 

only do they influence specific biophysical structures, but their ecological processes and services 

also carry economical and societal values (Acuña & Tockner, 2010; Datry et al., 2014; Datry et al., 

2017a). To quantify this influence, stream biofilm can be used as an impact indicator, due to its 

essential role in the bottom-up supply of energy and its major contribution to a well-functioning 

ecosystem (Anderson-Glenna et al., 2008; Sabater et al., 2007). 

 

1.1 Impact of climate change on freshwater ecosystems 

According to the Intergovernmental Panel on Global Change (IPCC), during the past decade 

(2006–2017) the global surface temperature has on average risen by 0.87°C above the pre-

industrial level. Following this trend, the warming will reach 1.5°C relative to the pre-industrial tem-

perature between 2030 and 2052 (IPCC, 2018).  

Figure 1: Examples of intermittent waterways during a non-flow and flow period. (received from Acuña, 2019) 
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Climate change has a substantial influence on terrestrial and freshwater ecosystems. The freshwa-

ter ecosystems, however, are considered to be among the most endangered ecosystems  

worldwide and are therefore significantly more affected (Dudgeon et al., 2005). For instance, dur-

ing the 20th century alone, over 50% of the freshwater ecosystems in Australia, New Zealand, Eu-

rope and North America were degraded (MEA, 2005a). The IPCC’s (Settele et al., 2014) fifth as-

sessment report determined that the main stressors to freshwater ecosystems are very likely to 

continue to be dominated by human actions as the demand for water resources grows, irrigated 

agricultural areas expand and urbanization increases (Malmqvist et al., 2008). It is, however, also 

emphasized that climate change will have a significant additional impact. Consequently, it is essen-

tial to pay attention to both the direct and indirect impact on freshwater ecosystems that is caused 

by climate change, as well as the intensification of human stressors and their co-occurrence, which 

leads to complex interactive effects (Griffith & Gobler, 2019; Settele et al., 2014). Direct influences 

include changes in precipitation rates and the rising temperature, which result in habitat shifts or 

changes in the phenology and physiology of freshwater species, ultimately altering freshwater eco-

system dynamics and food web structures (Ledger et al., 2012; Walther et al., 2002). Indirect ef-

fects via the geomorphology of aquatic ecosystems are shown, for instance, in changes in the 

acidification, salinization or eutrophication of water bodies (Day et al., 2008; Settele et al., 2014). 

The magnification of human stressors induced by climate change can be seen in nutrient polluted 

rivers and lakes, due to agricultural practices and wastewater (Schindler et al., 2016). Such prob-

lems are aggravated by the previously mentioned direct influences, which impact nutrient loads 

from catchment areas (Couture et al., 2018). 

There is, of course, a certain amount of variability between the estimated impacts of various cli-

mate scenarios, in particular at a regional scale (Döll & Zhang, 2010; EEA, 2005). Nonetheless, 

trends concerning the overall magnitude and the direction of change are visible. For instance, the 

change in temperature and precipitation is forecast to increase the irregularity of spatiotemporal 

characteristics of flow regimes. Arid, semi-arid and Mediterranean regions, which are already low 

on water resources, experience droughts frequently, and show a high imbalance between water 

availability and water demand, are thus especially vulnerable (Christiano et al., 2017; Estrela et al., 

2014). 

1.2 Intermittent waterways 

Since the number of intermittent waterways is growing, the reason they are still mostly considered 

to be a second-class rather than a unique ecosystem needs to be addressed (Acuña et al., 2017). 

In this chapter, recent findings are reviewed, current challenges are addressed, and gaps in 

knowledge which need to be further developed to improve scientific understanding are identified. 
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1.2.1 Importance of intermittent streams and rivers 

Intermittent streams and rivers are of importance because they i) support biodiversity, ii) act as 

conduits for lateral and longitudinal exchange and are iii) essential to people’s well-being (Acuña et 

al., 2014; Koundouri et al., 2017). The biodiversity of aquatic species which experience non-flow 

periods regularly and promote life-history adaption which favours resistance and resilience to 

droughts is facilitated by such waterways (Bogan et al., 2014; Lytle & Poff, 2004). In addition, dry 

riverbeds are ecologically valuable, as they are used as egg and seed banks and act as ecotones 

between terrestrial and aquatic phases. They also provide refuge in moist depressions and under 

leaf litter for various organisms. Nevertheless, if the dry period lasts too long, these refuges will 

cease to exist (Chester & Robson, 2011; Sabater et al., 2017; Sánchez-Montoya et al., 2016; 

Steward et al., 2012).  

Intermittently flowing streams and rivers can uphold their role as a conduit for lateral and longitudi-

nal exchange even without visible surface water (Acuña et al., 2014). This is essential because 

lateral connectivity, which allows for the movement of nutrients, is needed to maintain and regen-

erate riparian and floodplain ecosystems. Also, scientists have found that riparian vegetation were 

able persist due to the still present subsurface flow in the streambeds (Boulton et al., 2017; Fones-

ca & List, 2013; Gonzaléz et al., 2017). Concerning longitudinal connectivity, intermittent water-

ways are still able to maintain the transport of water, materials, energy and organisms without sur-

face flow (Acuña & Tockner, 2010; Larned et al., 2010). 

Flow intermittency supports valuable economical and societal services. Dry streambeds supply 

local people with wood and timber, they are used by livestock for foraging, and they provide addi-

tional space for agricultural practices (Goméz et al., 2005; Steward et al., 2012). Furthermore, they 

provide nonmaterial benefits such as cultural services. This includes educational and recreational 

services like fishing or hunting or inspirational and spiritual services, such as religious practices at 

or near intermittent waterways (Koundouri et al., 2017; MEA, 2005b). 

1.2.2 Issues and challenges of intermittent streams and rivers 

According to Acuña et al. (2014), intermittent waterways mainly face the following challenges: i) a 

lack of laws and ii) public recognition which is related to iii) a limited scientific understanding which 

results in iv) poor management.   

The legal status of intermittently flowing streams and rivers varies around the world. Despite being 

the dominant feature of many streams and rivers, they might not be legally recognized as such 

(Datry et al., 2014). For example, the European Union (EU) Water Framework Directive 

2000/60/EC (WFD) (EC, 2000) states that EU Member States and other countries committed to the 

WFD have to attain no less than a ‘good’ ecological status or ‘good ecological potential’ in all  
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surface waters. However, depending on the regional water body classification, intermittent streams 

and rivers may or may not be identified as such (EC, 2003). Nevertheless, there are some places 

which acknowledge intermittent waterways as an independent ecosystem. For instance, the Re-

source Management Act (RMA) of New Zealand defines a river as a ‘continually or intermittently 

flowing body of fresh water’ (RMA, 1991). Nonetheless, a global consensus on the definition of 

intermittently flowing streams and rivers will probably never be found because they show great 

variation concerning the cessation of flows, completely dry periods and timing during the year 

(Datry et al., 2017a). 

Moreover, society does not adequately appreciate the ecosystem services that are provided, most-

ly due to a lack of knowledge. This is, for instance, reflected in the interviews done by Armstrong et 

al. (2012). They concluded that most landowners, who live in a small Pennsylvanian catchment, 

lack concern and label non-flow periods as useless. Likewise, the scientific interest in intermittent 

waterways was minimal and scientist communities predominantly focused on the higher valued 

perennial streams and rivers (Boulton, 2014; Koundouri et al., 2017). Accordingly, contemporary 

concepts and methods concerning hydrology, ecology, water chemistry or geomorphology are not 

adapted to intermittent waterways (Datry et al., 2014; Koundouri et al., 2017). For instance, flow 

regimes are characterized by hydrological metrics such as duration, timing or frequency. These are 

measured using gaging stations which are usually sparsely distributed along intermittent water-

ways (Datry et al., 2017b). In addition to the insufficient amount of data being collected, the data is 

rarely robust because of the equipment’s inability to measure fine-scale nuances in flow regimes 

(Leigh et al., 2016; Snelder et al., 2013). Therefore, the data measured during non-flow periods 

and under dry conditions are often merged. Another issue which arises is that the hydrological met-

rics are limited in their spatiotemporal dimension and do not match with the current collected eco-

logical data (Datry et al., 2017b). 

The management of intermittent waterways is an ongoing debate without any suitable solutions. 

Since strategies have to consider various political, social, economic and environmental aspects, 

contemporary concepts and models are lacking (Datry et al., 2017b). As a result, intermittent wa-

terways are often managed as a part of wet terrestrial ecosystems or as a part of perennial water-

ways (Acuña et al., 2017). If intermittently flowing waterways are managed like wet terrestrial eco-

systems, they are frequently buried and prepared for agricultural cultivation. If they are managed 

like perennial streams and rivers, non-flow and dry periods are mostly ignored or transformed to 

permanent waterways by wastewater discharges or flow augmentation (Chiu et al., 2017; Luthy et 

al., 2015). These actions might lead to further negative consequences such as the introduction and 

distribution of alien and invasive species (Bunn & Arthington, 2002; Hamdan & Stromberg, 2016; 

Téllez et al., 2008). 
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1.2.3 Research opportunities regarding intermittent streams and rivers 

Although there have been recent scientific advances, many gaps in understanding these unique 

ecosystems remain. Datry et al. (2017b) recommends that future research should focus on invest-

ing in i) adapting current concepts used for perennial rivers to intermittent conditions, ii) developing 

and inventing methods and models to study intermittent waterways adequately and iii) closing pre-

sent gaps in regional and discipline-specific knowledge.  

One of the prevailing gaps is the extent to which current concepts of freshwater ecosystems fail to 

adapt to intermittent conditions of streams and rivers. Several contemporary conceptual models 

have been tested and modified to varying degrees. One example is the attempt to adjust the dis-

turbance theory in order to comprehend the variability in the characteristics of intermittent water-

ways such as severity, timing or intensity (Datry et al., 2017b). This has raised various questions, 

including how flow cessation and rewetting represent natural disturbances to the aquatic biota or if 

these processes play a crucial role in defining habitat patches (Lake, 2000; Larned et al., 2010). 

Nevertheless, it is just as important to closely relate conceptual research opportunities to available 

methodologies and their suitability to examine flow intermittency. 

Methodological limitations restrict research on intermittent streams and rivers and have a signifi-

cant effect on their successful management (Datry et al., 2017b; Gallart et al., 2016; De Girolamo 

et al., 2018). Since most sampling and modelling techniques were developed to be used in peren-

nial streams and rivers, they must be either dismissed or carefully implemented and modified. This 

includes a detailed analysis regarding their sensitivity and uncertainty (Ivkovic et al., 2013; Shel-

don, 2005). Scientists agree that to be able to study intermittently flowing waterways more exten-

sively, the number of experiments needs to be increased. One solution is to develop inexpensive 

equipment which is suitable for researching flow intermittency (Datry et al., 2017b). In addition, 

rapidly advancing technology allows for the development of new methodological approaches such 

as remote camera image processing or techniques which track geomorphological processes 

(Costigan et al., 2017; Tooth, 2012). Nowadays, scientists are investigating novel approaches like 

citizen-science programs which can produce long-term data on the state of streams and rivers or 

track the advancement of alien species in intermittent waterways (Allen et al., 2019; Turner & Rich-

ter, 2011). This approach has additional benefits because it educates the public and allows for the 

observation of a larger geographical region (Dickinson et al., 2010; Dickinson et al., 2012). 

Although intermittently flowing streams and rivers are an essential contributor to the integrity of 

river ecosystems around the world, the breadth of knowledge differs greatly depending on the re-

gion and the discipline in question. Most of the research has been carried out in the United States, 

Spain and Australia and thus has been published in English. Meanwhile, countries in which inter-

mittent waterways are prevalent produce only a small number of studies. This geographical  
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imbalance of research and depth of knowledge increases the difficulty of comparing data sets and 

impedes the development of policies, laws and management strategies (Boulton, 2014; Datry et 

al., 2017b). Furthermore, the geographical imbalance is reflected in discipline-specific knowledge. 

For example, the biochemistry of intermittent streams and rivers has mainly been researched in 

Mediterranean areas, while there is simultaneously limited knowledge regarding the biochemical 

responses to intermittency in Africa or South America (Larned et al., 2010; Von Schiller et al., 

2017). It seems that this geographical and disciplinary gap is hard to close. Nevertheless, first solu-

tions have been found though scientist initiated projects such as the ‘1000 Intermittent River Pro-

ject’. This is an international collaborative network which seeks to explore the same ecosystem 

processes in as many intermittent waterways as possible to cover a broad geographical range 

(Datry et al., 2015). A second example is the ‘Science and Management of Intermittent Rivers and 

Ephemeral Streams’ (SMIRES) initiated by the European Cooperation in Science and Technology 

(COST). This project combines research across disciplines in an effort to connect fragmented 

pieces of knowledge, transforming them into useful tools for management strategies and policy 

making (COST, 2016). 

1.3 Stream biofilm  

According to Flemming & Wingender (2010) biofilm is ‘the oldest, most successful and widespread 

form of life on Earth’. Although, several types of biofilm are known, they are generally character-

ized as communities of microbes that are attached to wet surfaces on which different auto- and 

heterotrophic species such as bacteria, algae, fungi and protozoa co-exist (Mora-Gómez et al., 

2016). In general, the microbes organize themselves in self-produced matrixes built by extracellu-

lar polymeric substances (EPSs). With a potential dry mass percentage of >90%, the EPS matrix 

supports the biofilm and enables communication and interaction among the microbes, therefore, 

appearing to be a multicellular organism (Flemming & Wingender, 2010; Morisaki, 2016). Due to 

the spongy and porous structure of the biofilm, adsorption of dissolved and particulate inorganic 

and organic material may occur very easily, promoting the complex organic matrix (Meyer-Reil, 

1996). Interstitial water among the EPSs (90–99% of total wet mass), which forms the immediate 

habitat of the microbes, affects their existence in a crucial way (Melo, 2005; Morisaki, 2016). For 

instance, desiccation can be buffered by the retained water, allowing for a certain degree of toler-

ance (Flemming & Wingender, 2010). The drying surface of the biofilm forms a control layer with 

low water transport. This hydraulic decoupling reduces the hydraulic conductivity and slows down 

the drying process within the matrix (Flemming & Wingender, 2010; Or et al., 2007). Furthermore, 

Roberson and Firestone (1992) observed that in response to desiccation more EPS is produced. 

The expansion of the matrix allows for more time to adapt to the new external conditions (Rob-

erson & Firestone, 1992). 
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Since non-flow periods of intermittent waterways manifest as a disturbance, biofilm can be used to 

assess the effect of flow intermittency and its temporal characteristics. Such biofilm is character-

ized by its ability to respond to the recurring phases of desiccation and rewetting. The response 

comprises of two components: i) resistance, which refers to the ability to persist during the disturb-

ance and ii) resilience, as a measure of the capacity to recover after the disturbance (Lake & 

Barmuta, 1986; Lake, 2000; Nimmo et al., 2015). Both components include various adaption strat-

egies which can be expressed in alterations of life cycles, morphology or physiological traits. For 

instance, some communities remain dormant on dry streambeds until the rewetting, allowing for 

the fast recovery of metabolic activities, while other communities have developed resistance struc-

tures like spores or thickened cells (Bogan et al., 2017; Sabater et al., 2017; Timoner et al., 

2014a). 

The composition of biofilm is affected by the substrate on which it grows (see Table 1). For in-

stance, the biofilm that develops on cobbles, which is called epilithic biofilm, is mainly dominated 

by algal biomass and autotrophic activity and is characterized by a more complex structure than 

the biofilm that develops in sand. This is the so called epipsammic biofilm, which mainly partakes 

in the decomposition of organic matter, thus being more heterotrophic than autotrophic (Romani & 

Sabater, 2001). 

 
Table 1: Considered types of biofilm in the experiment and their community composition depending on the substrate. 
(Mora-Gómez et al., 2016, modified) 

Substrate type Cobbles Sand 

Name Epilithic biofilm Epipsammic biofilm 

Community  
composition  

Mainly algae (autotrophic),  

cyanobacteria, bacteria, fungi,  

protozoa 

Mainly bacteria (heterotrophic),  

cyanobacteria, archaea, algae, 

fungi, protozoa 

 

Epilithic and epipsammic biofilm is used in this experiment, because it is of relevance to aquatic 

ecosystems (Morisaki, 2016). In open rivers, mainly bottom-up processes are prevalent, and bio-

film is known to be at the base, functioning as nutrition (primary production) for predators and con-

sumers of higher trophic levels (Anderson-Glenna et al., 2008; Coundoul et al., 2014). Additionally, 

biofilm participates in the carbon and nitrogen cycle and stores nutrients by retaining them and 

increasing hydrodynamic transient storage (Battin et al., 2003; Coundoul et al., 2014). The micro-

bial extraction and oxidation of inorganic and organic material from air, water and soil is fundamen-

tal to keeping habitats clean and eliminating harmful substances (Meyer-Reil, 1996). Furthermore, 
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biofilm is known to stabilize the sediment of a riverbed and mitigate its disturbance (Piqué et al., 

2016). To summarize, biofilms are involved in leading ecosystem processes and thus important for 

a well-functioning system. Consequently, due to the major role biofilm plays in the nutrient cycles 

and the physiological variety of its microbes, it is often considered to be an indicator of the impact 

of disturbance (Sabater et al., 2007). 

1.4 Recent studies  

As previously written, flow intermittency requires new investigation methods and strategies. Simul-

taneously, it creates unique aquatic-terrestrial ecosystems which provide various opportunities to 

test new and existing theories in a variety of disciplines, as seen in the following recent experi-

ments and studies (Datry et al., 2017b). 

1.4.1 Findings concerning intermittent waterways 

Datry et al. (2018) argue that flow intermittency contributes substantially to the global carbon cycle. 

Litter decomposition was evaluated in various climatic zones and CO2 emissions were quantified 

during rewetting events. It was found that a single rewetting event contributes up to 10% of the 

daily CO2 from perennial streams and rivers and therefore should be included in the global carbon 

cycle. Additionally, similar results were published by Gómez-Gener et al. (2016). They stated that a 

single non-flow period can emit a significant amount of CO2 and therefore needs to be included in 

the carbon balance of fluvial networks. In other studies, scientists mainly focused on local effects. 

For example, invertebrate diversity of desert streams in Arizona has been studied by Schriever et 

al. (2015). Of interest was the relationship between river systems with a high spatiotemporal flow 

variability and the functional and taxonomic composition of communities. As expected, with a pro-

longed non-flow period and an increased frequency of non-flow events, the functional and taxo-

nomic richness declined. Furthermore, Datry (2012) found similar results in a study investigating 

benthic and hyporheic invertebrate assemblage along a flow intermittency gradient in France. An 

increased duration reduced benthic and hyporheic density and taxonomic richness and the inver-

tebrate assemblage composition diverged. Finally, Jaeger et al. (2014) set out to determine how an 

increase in flow intermittency associated with climate change threatens hydrological connectivity 

and thus endangers endemic fish species in southwestern America. It was concluded that with an 

increase in frequency and duration, the number of isolated stream fragments grows. Consequently, 

this limits the number of available habitats for native fishes to reproduce and to take refuge.  
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1.4.2 Findings concerning the effect of flow intermittency on stream biofilm 

Within the framework of this thesis, the main focus lies on the temporal components of the intermit-

tent flow regime. As Colls et al. (2019) highlights, not many studies concerning the temporal com-

ponents of flow intermittency exist and there are even fewer studies with regard to stream biofilm. 

An overview of the current breadth of knowledge is presented by the following studies: investigat-

ing an intermittent Mediterranean stream in Spain, Timoner et al. (2012) observed that non-flow 

periods have a visible effect on the function of stream biofilm. Autotrophic biomass was reduced by 

80% but recovered quickly after the flow returns. In contrast, heterotrophic biomass decreased by 

only 20% and was thus more resistant, especially in the epipsammic biofilm. Timoner et al. (2014a) 

stressed in their research that bacterial communities in epilithic biofilm are more affected than they 

are in epipsammic biofilm because cobbles are more exposed and sediments, in particular sandy 

sediments, are able to retain moisture which increases the chance of survival. Timoner et al. 

(2014b) found that algal assemblages have a low resistance to desiccation but recover quickly 

when flow returns, indicating a high resilience. It was also noted that algae assemblage shows a 

low resistance to flow intermittency, which was indicated by a 60-90% decrease in biomass repre-

sented by chlorophyll-a during the non-flow period. These low values suggest that algae enter a 

dormant phase during desiccation. However, they are highly resilient, as chlorophyll-a recovers 

quickly after the flow resumes. In particular, chlorophyll-a recovers most rapidly in epilithic biofilm 

whereas the concentration of chlorophyll-a in epipsammic biofilm remains low during the rewetting.  

Until today, there is only a small number of studies which specifically research the individual and 

relative role of temporal components. Most of them stress the importance of the duration of non-

flow periods and their effect on stream biofilm. This is seen in Acuña et al. (2015), who used artifi-

cial streams to research the impact of the duration of non-flow periods on stream biofilm. They 

showed that duration influences the balance between autotrophic and heterotrophic activities, pro-

moting heterotrophy. However, this shift is limited to the non-flow period, as one week after the 

flow returned the balance was restored. A most recent study by Colls et al. (2019) researched the 

effects of duration, frequency and severity of the non-flow periods on stream biofilm. They studied 

Mediterranean streams of the Iberian Peninsula and found that duration decreased autotrophic 

biomass and gross primary production. The latter was also negatively affected by the severity of 

the event. However, there was no significant influence present, which was based on the frequency 

of non-flow periods. Similarly, Muñoz et al. (2018) published a study concerning the effect of the 

severity of non-flow periods on ecosystem structure and functions. They found that different severi-

ty treatments led to no alterations in ecosystem structure while ecosystem functions responded to 

rehydration and in some cases persisted until the end of the non-flow period. This implies a decou-

pling between structure and function. Due to an increase in function and photosynthetic and enzy-

matic activities, more CO2 was emitted and water-extractable organic matter in sediments  
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decreased. The key message is that the effect of non-flow periods on autotrophic and hetero-

trophic biofilm is inconsistent and the structure and function of autotrophs may be more affected 

than heterotrophs (Sabater et al., 2017; Timoner et al., 2012). 

1.5 Research hypotheses  

The previous chapters introduced the main topics of climate change, intermittent waterways and 

stream biofilm, elaborating a need for research.  

This bachelor thesis is part of a study concerning intermittent waterways at the Catalan Institute for 

Water Research (ICRA) in Girona, Spain. During the past years, ICRA has been using the Experi-

mental Stream Facility (ESF) to conduct studies on flow intermittency and related topics such as 

research surrounding the severity of non-flow periods and its effects on ecosystem structure and 

function (Muñoz et al., 2018). However, until now it was not possible to clearly separate the influ-

ence of temporal flow regime components from the complex system of other ecological variables 

such as pH or air temperature. Therefore, the objective of the ICRA’s ESF experiment is to identify 

the effect of the interaction between duration and the frequency of non-flow periods in intermittent 

flows as well as their individual and relative roles and their joint effects on the biofilm. To further 

narrow the research objective, the main focus of this thesis lies on the assessment of non-flow 

period’s frequency and the respective response of autotrophic and heterotrophic stream biofilm.  

According to Colls et al. (2019), the frequency of non-flow periods does not affect biofilm metabo-

lism and biomass, though the duration of non-flow periods has a significant impact. To confirm, this 

thesis analyses three frequency levels, and to exclude the effect of duration, the total amount of 

non-flow days remains the same in all treatments. Based on this, the first hypothesis states that the 

effects on autotrophic and heterotrophic biofilm are less if the frequency of non-flow periods is 

higher, because the number of subsequent non-flow days is smaller and thus the biofilm is less 

stressed. The second hypothesis is based on a study by Timoner et al. (2012), which found that 

during non-flow periods, autotrophs in epilithic biofilm were highly affected and showed a biomass 

loss of 80% but were able to recover quickly. Meanwhile, autotrophs in epipsammic biofilm recov-

ered slowly but showed steadier values of photosynthetic efficiency. Therefore, it is hypothesized 

that autotrophs in epipsammic biofilm recover more slowly than in epilithic biofilm if the frequency 

of non-flow periods increases, because the amount of water retained in sand is higher.  
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2 Materials and methods 

This chapter describes the Experimental Stream Facility (ESF) as well as the experimental design 

used to research the effects of non-flow period frequency on stream biofilm. Further, the analytical 

and statistical methods which are required to collect and analyse the data of the variables are ex-

plained. 

2.1 Experimental Stream Facility 

To determine the effects of non-flow periods’ duration and frequency in intermittent waterways, the 

following experiment was conducted in artificial streams. The streams are part of the indoor ESF of 

the Catalan Institute for Water Research (ICRA) in Girona, Spain.  

The ESF was launched in May 

2012 and is unique in Europe. It is 

inspired by a similar facility which 

was built by the Environmental 

Protection Agency (EPA) in Cincin-

nati, Ohio (USA). The ICRA’s ESF 

comprises of 24 independent 

methacrylate channels which are 

divided into four functional units 

(Figure 2). One channel has a 

length of 2 m, a width of 10 cm and 

a rectangular cross section of 

50 cm2. Depending on the experi-

ment, its slope can be adjusted 

manually, and further conditions 

can be manipulated as well. For instance, regarding hydraulics, the flow can be set between lami-

nar and turbulent (0.01–0.1 L/s, 2–50 minutes travel time), and can be switched between flow-

through, recirculation or hybrid operation. Each channel has a 70 L water tank in order to recircu-

late water. Sandy streambeds, glazed ceramic tiles or cobbles can be used as a substrate. The air 

and water temperatures can be controlled between 4–40 ºC. Since the system is computer-based, 

harvested rainwater, nutrients or dissolved organic carbon can be added automatically. Further-

more, variables such as hydraulics, light cycles, discharge, dissolved oxygen etc. can also be con-

trolled and monitored automatically. (Acuña et al., 2019; Experimental Streams Facility; ICRA (un-

dated)) 

 

Figure 2: Two functional units of the Experimental Streams Facility at the 
Catalan Institute for Water Research. (Etter, 2019) 
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The experiment was conducted between September 2nd and De-

cember 11th, 2019. The ESF comprises of 18 stream channels 

grouped into three functional units: 

• Unit A with channels A1–A6  

• Unit B with channels B1–B6  

• Unit D with channels D1–D6  

Six treatments were applied, defined by two different drought dura-

tions (D28 = 28 days, D56 = 56 days) and three different frequencies 

of non-flow periods (F1 = one non-flow period, F2 = two non-flow 

periods, F4 = four non-flow periods). Note that the duration indicates 

the total number of days during which no water flowed and the fre-

quency specifies how these days were divided. The treatments were 

assigned to three channels (replications), so that each treatment 

was represented once per unit, following a randomized complete 

block design. Since this bachelor thesis specifically focuses on the 

frequency of non-flow periods, the three relevant treatments involved 

only one drought duration (D28) and three different frequencies: 

• F1 with 1x 28 non-flow days 

• F2 with 2x 14 non-flow days 

• F4 with 4x 7 non-flow days 

Thus, only the nine channels of the treatments D28F1 (channels A1, 

B2, D3), D28F2 (channels A2, B3, D4) and D28F4 (channels A3, B4, 

D5) were analysed in the context of this thesis (Figure 3). 

To mimic natural conditions, substrate was taken from the Riera de 

Llémena. The stream surfaces in the mountains of Finestres and 

passes the plain of Sant Gregori, before flowing into the Ter river 

(Valldellemena, undated). It is characterized by well conserved river-

side vegetation, good water quality and a diverse fauna (Generalitat 

de Catalunya, undated).   

Figure 3: Experimental design 
and sampling schedule. For the 
description of the samplings see 
Table 2. 
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The stream can be described as a specially intermitted complex. This means that this stream falls 

dry only in some sections and thus promotes a large pool of species because of the habitat’s di-

versity and oligotrophic conditions (Acuña, oral information, 2019). The stream flows evenly 

through woodland and is shaded by relatively dense riparian vegetation. The stream course is 

characterized by differently sized pools and riffles (Figure 4).  

 

 
Figure 4: Riera de Llémena near Sant Esteve de Llémena, September 2, 2019. (Etter, 2019) 

 

During three days in early September 2019, sand and cobbles were collected at two unpolluted 

sections situated about 1 km northwest of Sant Esteve de Llémena (WGS84: N 42.071705, 

E 2.603396 and N 42.067453, E 2.609995). While sand was extracted from the pools with hand 

shovels and sieved on site (dmax = 8 mm), flat fist-sized cobbles (dmax = 7 cm) with a recognisable 

biofilm were collected in the riffles separately. 

The collected material was brought back to ICRA and within three hours it was distributed random-

ly in the channels. In each channel a levelled sand bed of 3.5 cm depth was created and a slope of 

1.5% was set. On average 11 cobbles were placed throughout each channel (Figure 5). 
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Figure 5: One unit of the Experimental Streams Facility with six channels after set-up, September 3, 2019. (Etter, 2019) 

 

After two days of set-up, the acclimatisation phase started, which lasted two weeks, allowing the 

biofilm to grow and adapt to the new environmental conditions. The biofilm developed from the 

inoculum in the sand and cobbles. All channels had a constant water flow of 10 mL/s, with a water 

depth between 2.5–5.5 cm (increasing from beginning to end of the channel). Harvested rainwater 

from the collection tank on top of the ICRA, which was filtered with active carbon filters, was used. 

The water circulation was set for flow-recirculation, preventing the inoculum from being washed 

away. According to natural conditions, the air temperature was constantly held at 16 ºC with a hu-

midity level of 65–70% and thus the water temperature was between 16.4–18.8 ºC. Additionally, 14 

hours of light (10 AM–12 PM) and 10 hours of darkness were set as the daily cycle of photosyn-

thetic active radiation (PAR) during the acclimatisation phase. Daylight was simulated by LED 

lights (120 W, Lightech, Girona, EU) allowing a constant PAR value of 173.99 ± 33 µE/m∙s. These 

light conditions emulated average natural conditions of the Riera de Llémena in late summer. PAR 

was monitored using one quantum sensor (LI-192SA, LiCOR Inc., Lincoln, USA) per unit of chan-

nels. Moreover, every three days, nutrients in the form of a concentrated solution were added au-

tomatically to all channels using a peristaltic pump (IPC pump: Ismatec, Glattbrugg, Switzerland) to 

maintain a final concentration of 0.5 mg/L of PO4, 0.5 mg/L of NH4 and 10 mg/L of NO3. This con-

centration corresponds with a moderate to good ecological status according to the implementation 

guides of the WFD (EC, 2000). 

At the beginning of the treatment phase, the water flow was stopped in all channels. The daily PAR 

cycle was changed to 12 hours of light (10 AM–10 PM) and 12 hours of darkness, in accordance 

with the average natural light conditions in autumn. The water circulation was altered to an hourly 

sequence consisting of a combination of flow-recirculation (58 minutes) and flow-open (2 minutes), 
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resulting in an exchange rate of 8.57% per hour and the water volume being fully replaced twice a 

day. The remaining conditions stayed the same as during the acclimatisation phase. Following the 

experimental design shown in Figure 3, new flow or non-flow periods started on Wednesday at 

10 AM when the lighting period began. During a flow period a constant water flow of 70 mL/s was 

maintained, thereby emulating low-flow conditions of the Riera de Llémena in autumn. Similar to 

the acclimatisation phase, nutrients were automatically added. However, they were more frequent 

(every hour for two minutes) and only added to channels during flow periods. 

2.2 Analytical methods 

The response of the epilithic and epipsammic biofilm to different frequencies was assessed in 

terms of water content (WC) and ash free dry mass (AFDM), ecosystem metabolism (net ecosys-

tem production (NEP), gross primary production (GPP) and ecosystem respiration (ER)), hetero-

trophic activity (aerobic respiration (AR)) as well as yield of photochemistry (Yeff) and fluorescence 

yield (Ft). Furthermore, environmental conditions were monitored. 

The different samplings took place at defined points in time in the concerned channels, as shown 

in Table 2. Each sampling time is given its own acronym, representing the described state in the 

column 'time of sampling' at the mentioned condition in the column 'condition in channel'. The ex-

perimental design, which can be found in Figure 3 and in detail in appendix I, serve to classify the 

sampling times as well. 
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Table 2: Description of the six defined points in time of the sampling: xi (initial state), xp (preliminary state), d (daily moni-
toring), x1 (end of final non-flow period), x2 (one week after final non-flow period) and xf (final state). 

Acronym Time of sampling Condition 
in channel 

xi Initial state: samples were taken one day before the start of the 

treatment phase during morning hours. 

wet 

xp Preliminary state: samples were taken before starting the next flow 

or non-flow period, respectively.  

Regarding numeration: the first digit after xp refers to the number of 

flow periods while the second digit refers to the day of the flow period 

in the respective treatment, for instance xp28: sampling of xp at the 

last day of the second flow period. 

dry or wet 

d Daily monitoring: samples were taken from Monday to Friday during 

flow periods during morning hours. 

Regarding numeration: the first digit after d refers to the number of 

flow periods while the second refers to the day of the flow period in 

the respective treatment, for instance d33: sampling of d at the third 

day of the third flow period. 

wet 

x1 End of final non-flow period: samples were taken at the end of the 

total number of non-flow days before starting the last flow period.  

dry 

x2 One week after final non-flow period: samples were taken one 

week after the end of the total number of non-flow days during morn-

ing hours. 

wet 

xf Final state: samples were taken at the end of the treatment phase 

during morning hours. 

wet 
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2.2.1 Physico-chemical parameters 

The physico-chemical parameters pH, dissolved oxygen, conductivity and water temperature were 

measured in order to assess the environmental conditions in the channels. 

pH is defined by the lime-carbonic acid equilibrium and the geochemical conditions in the catch-

ment area. In addition, temperature and biological processes such as photosynthesis and degrada-

tion of organic material play a major role as well. If the temperature is low, the solubility of CO2 

increases, which leads to a reduction in the pH. During photosynthesis, CO2 and HCO3- are re-

moved from the water, resulting in an increase in the pH. In natural watercourses, the pH should 

range from 6.5 to 8.5. The collected rainwater at the ICRA had a pH of 8. (Liechti, 2010) 

Oxygen concentration is defined by temperature, and the gas exchange between water and at-

mosphere, as well as photosynthesis, respiration and mineralisation of organic substances. The 

solubility of oxygen decreases with increasing temperature. The lowest concentration of oxygen is 

usually observed at the end of the night when more oxygen is used than produced. Additionally, 

increasing decomposition of organic matter (mineralisation) causes an increasing oxygen demand. 

(Liechti, 2010; BAFU, 2016) 

Conductivity is an indicator of the dissolved salt content and refers to ion concentration. It is pri-

marily influenced by water hardness (calcium, magnesium, bicarbonate) and further parameters 

such as nitrate, nitrite, ammonium and phosphate. Similar to pH, conductivity is affected by the 

lime-carbonic acid equilibrium and thus by both temperature and biological processes. Therefore, 

an increase in the water temperature causes an increase in conductivity. Conductivity rates be-

tween 150 and 500 µs/cm are typical for healthy streams. (EPA, undated; Liechti, 2010) 

Physico-chemical parameters were measured with hand-held probes (dissolved oxygen: YSI, Yel-

low Springs OH, USA; pH, conductivity and temperature: WTW, Weilheim, Germany). During the 

acclimatisation phase, the channels were monitored daily (d, see Table 2), 60 minutes after the 

start of the lighting period to check that the biofilm in all channels was developing under the same 

conditions. Daily monitoring was also maintained during the treatment phase in the wet channels, 

20 minutes after the lighting period began. 

2.2.2 Water content and ash free dry mass 

The WC describes the amount of water within the sediment (Campbell & Campbell, 2005). De-

pending on the pore size and type of soil, the water retention capacity varies. With a permeability 

value of >25.4 cm/h coarse sand, similar to the sand used in the experiment, drains very rapidly 

(O'Geen, 2013). The WC is of importance because it influences the oxygen concentrations and 
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nutrient availability (Drenovsky et al., 2004). The AFDM represents the weight of the organic matter 

and is essential because it allows for the estimation of the samplings’ total biomass (Aristi, 2016).  

To determine WC, sand samples were taken at xi, xp, x1, x2 and xf (see Table 2). For each chan-

nel, a sample of 1 cm3 of sand was extracted randomly with a trimmed syringe. The samples were 

weighed and then dried in a furnace for 72 hours at 60 ºC. Afterwards, the difference between wet 

and dry weight was calculated to determine the WC, expressed as percentage in relation to the wet 

weight. 

To determine the AFDM, the same sand samples were used. In addition, a slurry with tank water 

and scraped biofilm from two stones was prepared per channel (15 mL of slurry, consisting of 

30 mL tank water and scraped biofilm). To scrape the cobbles, a toothbrush was used, and to de-

termine the scraped surface, the scraped area was traced on aluminium foil, which subsequently 

was cut and weighed. The weight was used for the calculation of the surface by means of a linear 

regression. The scraped cobbles were marked with a rubber band and returned to the channels but 

not used for further measurements. The slurry samples were taken at xi, x1, x2 and xf (see Table 

2). Just as the sand samples, the slurries were weighed and dried in the furnace for 72 hours at 

60 ºC and then weighed once more. Afterwards, sand and slurry samples were combusted in a 

muffle furnace for 4 hours at 450 ºC. The differences between the dry and the mineral matter 

weight was evaluated to determine the AFDM expressed as mg/cm2 for sand and mg/cm3 for cob-

bles.  

2.2.3 Ecosystem metabolism 

Ecosystem metabolism is defined as the production and respiration of organic matter within a 

stream. CO2 is reduced to C by photosynthetic aquatic organisms, whereas mainly heterotrophic 

aquatic organisms oxidize C to CO2. The total amount of fixed C is termed as gross primary pro-

duction (GPP) and the amount of mineralized C as ecosystem respiration (ER). These two pro-

cesses are summarized as net ecosystem production (NEP), which is defined as  

NEP = GPP − |ER| . 

GPP and ER are key processes in specifying an ecosystem’s mass and energy balance. Thus, 

metabolism can be used to assess the activity of biofilm and the ecosystem’s health. To measure 

metabolism in streams, it is common to use oxygen, which is relative to CO2. The advantage of 

oxygen lies in its low concentration, allowing for simple detection of fluctuations caused by produc-

tion and respiration. (Acuña et al., 2015; Fellows et al., 2006; Hall, 2016; Lovett et al., 2006; 

Rodríguez-Castillo et al., 2018; Tank et al., 2010) 
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To assess the metabolic rates, a sand sample (tray of 160 cm3) and a sample of two cobbles per 

channel were assessed separately at xi, x1, x2 and xf (see Table 2). The trays were part of the 

sand bed of the channels (Figure 6). They were removed for the measurements and then returned. 

However, for every sampling another tray was used. The same process was applied for the cob-

bles. The samples were place in cylindrical recirculating chambers (acrylic glass, volume of 0.96 L) 

to monitor the oxygen production and consumption in the absence of any exchange with the at-

mosphere. A submersible pump provided an even distribution of the oxygen in the water (Figure 7). 

The chambers were placed in an incubator (Radiber AGP-700-ESP, Barcelona, Spain) at a con-

stant temperature (20 ºC). The oxygen concentration was logged at 15-s intervals with an oxygen 

sensor (PreSens OXY-10mini, Regensburg, Germany) for 90 minutes, first for 45 minutes under 

dark conditions and afterwards for 45 minutes under light conditions (PAR value of 168 ± 2 

µE/m∙s). Under dark conditions, the change in oxygen concentration reflects the ER, whereas NEP 

is linked to lighting conditions. Both were calculated as 

R =  
SL × V × 10′000

S
 ,  

with R being the respiration/consumption rate (gO2/m2∙d), SL being the slope calculated by means 

of a linear regression of the 360 logged interval data, multiplied by 1440 (gO2/L∙d), and V being the 

water volume in the chamber (L) and S being the ‘active’ surface of the stone (cm2). Assuming the 

respiration rate to be the same under light conditions, the GPP was calculated as sum of NEP and 

ER.  

 

Figure 6: Cylindrical recirculating chambers with two 
cobbles connected to a submersible pump. (Etter, 2019) 

Figure 7: A tray filled with sand as part of the channel 
bed. (Etter, 2019) 
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2.2.4 Heterotrophic metabolic activity (aerobic respiration) 

Resazurin, a chemical compound, is used to make existing bacterial activity, notably aerobic respi-

ration, visible. If there is any activity and thus reducing conditions, the dye resazurin (blue in col-

our) is reduced irreversibly to resorufin (pink in colour) by emitting an oxygen ion (Figure 8). The 

resazurin conversion and the oxygen consumption are directly proportional. The transformation 

mainly occurs in the surface and hyporheic zones, where metabolic activity is prominent. Since the 

resorufin is strongly fluorescent, it is quantifiable by fluorimetry. (González-Pinzón et al., 2012; 

Haggerty et al., 2008; Haggerty et al., 2009; McNicholl et al., 2007; Peroni & Rossi, 1986) 

 

 

 

The resazurin assay was performed only with sand samples at xi, xp, x1, x2 and xf (see Table 2). 

For each channel, a sample of 1 cm3 of sand was extracted randomly with a trimmed syringe and 

put in a tube. After the sampling, each tube was filled with 0.5 mL of the sample resazurin solution 

(see Table 3) and 4.5 mL of tank water (reaching a final resazurin concentration of 0.03 mM). In 

addition, two extra tubes were prepared as blank samples: one with 0.5 mL of the sample resaz-

urin solution and 4.5 mL of tank water and the other one with sediment and tank water. A phos-

phate buffer was added to ensure a pH >8 (see Table 3). This stabilizes the fluorescence of resaz-

urin and resorufin and therefore, makes it less error-prone and easier to detect. (Bueno et al., 

2002; Kangasniemi, 2004)  

Figure 8: Tubes with sand, tank water and resazurin after four 
hours of incubation. The purple colour indicates that a reduction to 
resorufin took place due to aerobic respiration. (Etter, 2019) 
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Table 3: Composition of the sample solution of resazurin and the phosphate buffer. 

Sample resazurin solution Phosphate buffer 

0.0126 g of resazurin salts were dissolved in 

50 mL of phosphate buffer, creating the initial 

resazurin solution. This solution was diluted to 

a resazurin concentration of 0.3 mM (15 mL of 

initial resazurin solution and 35 mL of phos-

phate buffer). 

The phosphate buffer with a pH ±8 contains  

1M NaH2PO4·H2O + 1M NaOH (1:1). 

 

After the preparation, all tubes were stored for 4 hours at 20 ºC and shaken (200 rpm) in an incu-

bator. After incubation, the fluorescence of the resorufin was measured in a fluorescence spectro-

photometer (F-7000, Hitachi High-Technologies Corporation, Tokyo, Japan). The maximal excita-

tion and emission wavelength were set at 570 nm and 583 nm, respectively. The detected values 

of the two blanks were deducted from the samples’ values because of the sand and water auto-

fluorescence, which could distort the value of resorufin fluorescence. 

A standard curve with final concentrations was used to estimate the concentrations of resorufin 

(regression analysis with R² = 0.9659 and y = 31.746x + 14.471, for more details see appendix II). 

Finally, the concentration of resorufin (nmol/cm3∙h), which acts as a proxy of aerobic respiration, 

was calculated as follows:  

AR =
CRRU × Vw

Vs × ti
 , 

with CRRU being the concentration of resorufin (µM), Vw the volume of added tank water (mL), Vs 

the volume of added sand (cm3) and ti the incubation time (h).  

2.2.5 Yield of photochemistry 

The light absorbed by chlorophyll molecules (e.g. of photosystem II pigments of algae) is used for 

photochemistry (photosynthesis), dissipated as heat or re-emitted as chlorophyll fluorescence. The 

three processes compete with each other. Hence, if one rate increases, the other two decrease. 

For example, during the photosynthesis process, electron transport occurs in the photosystem II 

causing the affected reaction centres to be closed. The efficiency of photochemistry is reduced and 

thus the yield of fluorescence increases. Therefore, by measuring the chlorophyll fluorescence, 

assumptions regarding the photochemistry of autotrophic organisms can be made. (Baker, 2008; 

Maxwell & Johnson, 2000) 
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Photosystem II is the main origin of chlorophyll fluorescence and can be measured in situ with a 

photosynthesis yield analyser in dark- and light-adapted states, using differing measurement val-

ues, indicated as fluorescence units (f.u.) (Figure 9). Under dark conditions, heat dissipation is at 

its minimum and photosystem II reaction centres are fully oxidised and open. In the presence of a 

weak measuring light, the steady-state or minimum chlorophyll fluorescence yield (F0) can be 

measured. Furthermore, after a light saturation pulse, which induces all reaction centres to close, 

the maximum chlorophyll fluorescence yield (Fm) can be measured. Knowing F0 and Fm, the vari-

able fluorescence (Fv) and therefore the maximum quantum yield of photochemistry (Ymax), de-

scribing the potential photochemical capacity, can be calculated as follows: 

Ymax =
Fm − F0

Fm
=

Fv
Fm

 . 

Under light conditions, so called fluorescence quenching effects occur, resulting in a lower variable 

fluorescence (ΔF). Consequently, the effective quantum yield of photochemistry (Yeff) is lower. 

This describes the effective efficiency of photochemistry on the basis of the proportion of absorbed 

energy used. Yeff is calculated in the same way as Ymax, but using the light-adapted equivalent 

minimum fluorescence yield (Ft) and the maximum fluorescence yield (Fm’): 

Yeff =
Fm′ − Ft
Fm′

=
ΔF
Fm′

 . 

Like with F0, Ft was used to estimate the algal biomass (Acuña et al., 2019). As long as actinic 

light is present, photosynthesis takes place and most of the reaction centres are closed. However, 

due to the increase in the conversion rate of the photochemical energy during the adaption time, 

Figure 9: Different variables of fluorescence measurements under dark and light conditions. (Heinz Walz GmbH, 
1998, modified) 
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which means that electrons are passed on faster, the fluorescence yield decreases. This phenom-

enon is called photochemical quenching. Light also leads to heat dissipation which prevents pho-

todamage because of excess exiting energy, lowering the fluorescence as well. This is called non-

photochemical quenching. (Baker, 2008; Genty et al., 1989; Heinz Walz GmbH, 1998; Maxwell & 

Johnson, 2000; Schreiber, 2004) 

In this experiment a submersible pulse amplitude modulated fluorometer (Diving-PAM: Walz, Ef-

feltrich, Germany) was used to assess photosynthetic performance and stress of the biofilm’s al-

gae (Baker, 2008). For instance, stress becomes visible through a lowered Fv/Fm ratio (= Ymax) 

(Kraus & Weis, 1991; Murchie & Lawson, 2013). The variables Ymax, Yeff, F0 and Ft, Fm and Fm’ 

as well as the fluorescence quenching coefficients (qP, qN and NPQ) were quantified. For each 

measurement, three locations in the sand and three on the cobbles (pseudo replicates) were ex-

amined per channel, resulting in an average value per channel, one for sand and one for cobbles. 

During the acclimatisation phase, the channels were monitored every day (d, see Table 2) under 

light conditions (around one hour after the start of the lighting period) by measuring the Ft variable 

with a distance of 10 mm between fiberoptics and the sample. The MEAS-INT and GAIN were set 

at 12. This monitoring was used to observe the development of the biofilm. The daily monitoring 

was also maintained during the treatment phase in the wet channels, 20 minutes before and after 

the start of the lighting period (with MEAS-INT and GAIN set at 8). Thereby, Fm and Ymax (in 

dark) and Ft and Yeff (in light) were measured. In addition, weekly measurements (with MEAS-INT 

and GAIN set at 8) also took place at xi, xp, x1, x2 and xf (see Table 2). Under dark conditions F0, 

Fm and qP, qN and NPQ were measured, followed by the measurement of Ft and Yeff under light 

conditions (light was switched on manually and biofilm had an adaption period of 20 minutes prior 

to measurement). 
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2.3 Data analyses 

The effects of the frequency of non-flow periods on the measured variables were determined by 

means of impact and recovery. Impact was calculated as the difference between the measurement 

values of x1 and xi (see Table 2), showing the biofilm’s resistance to non-flow conditions. Recovery 

was calculated as the difference between x2 and x1 (see Table 2), representing the biofilm’s resili-

ence after the disturbance (see chapter 1.3). Impact and recovery were analysed as absolute and 

as relative changes. (Lake & Barmuta, 1986; Lake, 2000; Nimmo et al., 2015) 

All analyses were performed using R (version 1.2.5001, RStudio, Inc., Boston, USA) with an as-

signed significance of p < 0.05. The following variables were considered: AFDM, Ft, Yeff, NEP, ER 

and GPP in epipsammic and epilithic biofilm and AR and WC only in the epipsammic biofilm. Ft, 

Yeff and GPP represent the autotrophic and AR and ER the heterotrophic biofilm, whereas AFDM 

and NEP stands for both. In addition, the biofilm’s biomass (structure) is represented by AFDM and 

Ft and the function (activity) by Yeff, AR, NEP, ER and GPP. WC describes the environmental 

condition and was statistically used only for the initial independence test. 

Before the start of the treatment phase, the independence of the units as well as the uniformity of 

the initial biofilm was tested. A one-way analysis of variance (ANOVA) was used with channel as a 

random factor and unit as a fixed factor (randomized block design). If a significant difference was 

detected, a post-hoc Tukey Test was applied, and the variable was not used for further statistical 

analyses (except for the final ANOVA). Provided that the difference did not persist until the end of 

the final non-flow period (x1), the variable was consulted as a descriptor variable instead, to im-

prove the understanding of the development and the relationship with other variables. If the differ-

ence persisted until the end of the final non-flow period (xi), the initial state had a greater influence 

on the variable than the treatment. Therefore, the variable was excluded. To determine the uni-

formity of the biofilm, the focus was on the robust variables (Ft, Yeff, NEP and ER), as Ft and Yeff 

were measured three times per channel, acting as pseudo replicates, and for the measurement of 

NEP and ER the largest quantity of substrate was used. 

A further one-way ANOVA with condition (impact or recovery) as a random factor and treatment as 

a fixed factor was conducted to test for significant differences between treatments regarding impact 

and recovery of the variables in epipsammic and epilithic biofilm. In the case of a significant differ-

ence, a post-hoc TukeyC Test was applied to locate which treatments differed significantly.  
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A pearson correlation was used to assess the strength and the direction of the relationship be-

tween impact and recovery of each variable. The results were expressed as a coefficient of deter-

mination (R2) and as a regression slope to determine whether the relationship is positive or nega-

tive. R2 values between 0 and 0.19 indicated no relationship, whereas values between 0.20 and 

0.39 stood for a weak and values >0.39 for a strong relationship. Additionally, it was used to com-

pare different variables and make a predication regarding their relationship. 

Lastly, the state at xf was compared between the treatments. All variables were included, similar to 

the initial uniformity one-way ANOVA. The difference was statistically tested with a one-way 

ANOVA with channel as a random factor and treatment as fixed factor. Conceding that there was a 

significance, a post-hoc TukeyC Test was applied. 
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3 Results 

In this chapter, the results are given for all relevant variables which are needed to answer the hy-

potheses. For the sake of simplicity, treatment names D28F1, D28F2 and D28F4 are abbreviated 

as F1, F2 and F4. Additionally, value names are extended with a subscripted ES for epipsammic 

(e.g. YeffES) and with an EL for epilithic (e.g. YeffEL) compartment. 

3.1 Analysis of physico-chemical parameters 

Table 4 shows the average value of each physico-chemical parameter per channel during the ac-

climatisation and treatment phase. Both phases showed approximately the same averages. pH 

averaged between 8.09 and 8.49, O2 content averaged between 88.10 and 97.75% as well as be-

tween 8.44 and 9.26 mg/l and the average of conductivity was between 332.94 and 435.50 μs/cm. 

In addition, temperature ranged from 16.64 to 18.83 ºC. However, the averages during the accli-

matisation phase were higher than during the treatment phase with the exception of the conductivi-

ty levels in F1 with the channels A1 (425.60 μs/cm; 434.40 μs/cm), B2 (430.60 μs/cm; 437.20 

μs/cm) and D3 (424.40 μs/cm; 434.40 μs/cm). Further, it is apparent that the average temperature 

of channels D3 (16.70 ºC) and D5 (16.64 ºC) were lower compared to the other channels (average 

of 18 ºC) during the treatment phase. In addition, nutrients were added regularly, but they were not 

evaluated within the context of this thesis. 

 
Table 4: The average values of physico-chemical parameters measured throughout the acclimatisation and treatment 
phase per channel (n = 1): F1 (channels A1, B2, D3), F2 (channels A2, B3, D4) and F4 (channels A3, B4, D5). 
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3.2 Uniformity of the initial state of the biofilm 

The three units were independent from 

each other and the initial biofilm was 

uniform at xi (for data per treatment see 

appendix III), as the variables Yeff, Ft, 

ER, AR and WC showed no significant 

difference (see Table 5). In contrast, a 

significant difference was noted in the 

variables GPPES (p-value = 5.3 E-5), 

NEPEL (p-value = 0.036), GPPEL (p-

value = 0.048) and AFDMEL (p-value = 

0.050). Nevertheless, since the initial 

differences were not maintained during 

the experiment, the variables are used 

as descriptors. Solely, AFDMES (p-value 

= 0.005) showed a significant difference which persists and therefore, this variable is excluded.  

3.3 Analysis of water content and ash free dry mass 

Figure 10 illustrates the amount of WC 

over the course of the experiment for 

each treatment. In addition to the meas-

urements at xi, x1, x2 and xf, several 

preliminary measurements at xp are 

included to highlight the development. 

At the beginning of the treatment phase, 

the WC was approximately the same in 

each treatment (20 ± 2%). At the begin-

ning of a flow period, the WC amounted 

to 0.35 ± 0.04% in F1 and F2 and to 6 ± 

2% in F4, whereas at the end of each 

period the average WC amounted 25 ± 

3%. Finally, the WC value at xf in F1 

was higher (37 ± 4%) than in F4 (28 ± 

10%) and F2 (26 ± 1%). 

 

Table 5: Results of the statistical analysis regarding the independ-
ence between units A, B and D and the uniformity at the initial state 
of the epipsammic (ES) and epilithic biofilm (EL). The concerned 
variables (n = 9) are quantum yield of photochemistry (YeffES, Yef-
fEL), minimum fluorescence yield (FtES, FtEL), net ecosystem produc-
tion (NEPES, NEPEL), gross primary production (GPPES, GPPEL), 
ecosystem respiration (ERES, EREL), aerobic respiration (AR), ash 
free dry mass (AFDMES, AFDMEL) and water content (WC). 

Figure 10: Epipsammic water content (WC) per treatment 
(n = 3) measured at xi (initial state), xp (preliminary state), x1 
(end of final non-flow period), x2 (one week after final non-flow 
period) and xf (final state). There is no available data for xp18 
(last day of the first flow period) in treatment F4. 
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Looking at the descriptor variable AFDMEL, the impact in F1 and F2 showed a decrease (-0.6 ± 

0.4 mg/cm2 and -0.3 ± 0.7 mg/cm2, respectively), and an increase in F4 (1.1 ± 1.0 mg/cm2). The 

recovery showed a reverse behaviour, with an increase in F1 (0.7 ± 0.3 mg/cm2), in F2 (0.5 ± 

0.3 mg/cm2) and in F4 (0.008 ± 0.4 mg/cm2) (see Table 6). Impact and recovery were negatively 

related, displaying a weak linear relationship (R2 = 0.23). 

 
Table 6: Average and standard deviation of impact and recovery in epilithic biofilm (EL) per treatment (n = 3): ash free 
dry mass (AFDMEL). 

 
 

3.4 Analysis of ecosystem metabolism 

Analysing the variables NEP, ER and GPP, it is important to consider that NEPEL, GPPES and 

GPPEL are only used as descriptors. Due to incomplete measurement results, there are no results 

available for the impact and the recovery of GPPES and GPPEL in F1.  

With respect to the NEPES, the impact in F1 and F2 showed a decrease (-24.4 ± 9.7 gO2/m3 · d and 

-1.6 ± 52.2 gO2/m3 · d, respectively), while in F4 an increase occurred (227.2 ± 113.6 gO2/m3 · d). 

During the recovery phase, NEPES increased in F1 (317.1 ± 114.2 gO2/m3 · d) and F4 (191.2 ± 114 

gO2/m3 · d) and showed the highest values in F2 (427.6 ± 143.5 gO2/m3 · d). The highest negative 

impact value for NEPEL appeared in F2 (-6.5 ± 2.3 gO2/m3 · d), followed by F1 (-5.8 ± 1.6 gO2/m3 · 

d) and F4 (-4.8 ± 2.4 gO2/m3 · d). Similarly, the recovery values for NEPEL were highest in F2 (15.6 

± 1.8 gO2/m3 · d), but, in contrast to the impact, were followed by F4 (8.2 ± 8.6 gO2/m3 · d) and 

then by F1 (6.3 ± 3.7 gO2/m3 · d). The impact of ERES decreased in F1 (-7.3 ± 4.0 gO2/m3 · d) and 

F4 (-0.5 ± 39.6 gO2/m3 · d), while the ERES values in F2 were positive (17.2 ± 13.8 gO2/m3 · d). 

During the recovery phase, positive values were visible in F1 (62.8 ± 40.6 gO2/m3 · d), F2 (0.3 ± 

20.3 gO2/m3 · d) and F4 (75.2 ± 22.1 gO2/m3 · d). As in the epipsammic biofilm, EREL is affected in 

all three treatments, displaying similar negative impact values in F1 (-1.4 ± 0.3 gO2/m3 · d), F2 (-1.3 

± 0.3 gO2/m3 · d) and F4 (-1.1 ± 0.7 gO2/m3 · d). EREL recovered in F1 (0.4 ± 0.1 gO2/m3 · d) and 

F4 (0.7 ± 0.5 gO2/m3 · d), while it was further impacted in F2 (-0.3 ± 0.1 gO2/m3 · d). Lastly, for 

GPPES impact values were positive in F2 (15.6 ± 60.3 gO2/m3 · d) and even higher in F4 (184.0 ± 

33.5 gO2/m3 · d). During the recovery phase, the values continued increasing in F2 (427.6 ± 

128.8gO2/m3 · d) and F4 (266.4 ± 135.8 gO2/m3 · d). Contrary to the epipsammic variables, the 

impact of GPPEL was higher in F2 (-7.8 ± 2.5 gO2/m3 · d O2/m3·d) than in F4 (-5.9 ± 2.9 gO2/m3 · d). 
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The same behaviour was visible in the recovery values with F2 (15.3 ± 1.9 gO2/m3 · d) having 

higher values than F4 (8.8 ± 9.0 gO2/m3 · d). Describing the difference between the epipsammic 

and epilithic biofilm, it is apparent that in F1 the impact and recovery values were higher in the 

epipsammic biofilm. In F2 and F4 the impact was more severe in the epilithic biofilm while the re-

covery values were higher in the epipsammic biofilm. Overall, the differences between the treat-

ments regarding impact and recovery were more distinct in the epipsammic than in the epilithic 

biofilm (see Table 7). Impact and recovery were not related for NEPEL (R2 = 0.15), while a weak 

negative relationship was evident for NEPES (R2 = 0.20) and EREL (R2 = 0.27). For ERES, GPPES 

and GPPEL relationship analyses could not be performed due to incomplete measurement results. 

 
Table 7: Average and standard deviation of impact and recovery in epipsammic (ES) and epilithic biofilm (EL) per treat-
ment (n = 3): net ecosystem production (NEPES, NEPEL), ecosystem respiration (ERES, EREL) and gross primary produc-
tion (GPPES, GPPEL). As exceptions, the number of samplings was smaller (n = 2) for the impact of ERES in F1 and ERES 
and GPPES in F4, as well as for the recovery of ERES in F1. There is no data available for impact and recovery of GPPES 
and GPPEL in F1. 

 
 

3.5 Analysis of heterotrophic metabolic activity (aerobic respiration)  

The Impact of AR decreased in F1 (-3.1 ± 0.6 nmol/cm3 · h) and in F2 (-3.0 ± 1.0 nmol/cm3 · h) 

while in F4 an increase (0.5 ± 1.2 nmol/cm3 · h) was visible. During the recovery phase, positive 

values were apparent in F1 as well as in F2 (1.2 ± 0.3 nmol/cm3 and 0.4 ± 0.6 nmol/cm3 · h, re-

spectively) and in F4 (1.4 ± 1.2 nmol/cm3 · h) (see Table 8). Impact and recovery were positively 

related, having a weak linear relationship (R2 = 0.21). 

 
Table 8: Average and standard deviation of impact and recovery in epipsammic biofilm (ES) per treatment (n = 3): aero-
bic respiration (AR). 
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Figure 11 highlights the changes in AR throughout the treatment phase for better understanding. It 

is apparent, that AR showed lower values at the end of non-flow periods in comparison to the val-

ues sampled at the end of flow periods. The average value for each treatment was between 0.1 

±  0.3 and 2.4 ±  0.8 nmol/cm3 · h at the end of non-flow periods and between 1.3 ±  0.2 and 3.1 ±  

1.0 nmol/cm3 · h at the end of flow periods. An exception can be noted in F4, in which AR at x1 (3.8 

± 0.4 nmol/cm3 · h) was higher than at xp38 (1.1 ±  1.4 nmol/cm3 · h). Additionally, it is recogniza-

ble that AR values were higher at the beginning of each new flow period in comparison to the pre-

vious. However, once more, in F4 an exception occurred, given that the values at xp21 (0.8 ±  

1.3nmol/cm3 · h) were lower than at xp11 (2.0 ±  0.4nmol/cm3 · h). It is also noticeable for all treat-

ments that values at xf, ranging between 4.4 ±  0.4 and 5.3 ±  1.5 nmol/cm3 · h, were higher than at 

xi, ranging between 3.2 ±  0.4 and 3.6 ±  0.5 nmol /cm3 · h. 

 

 

Figure 11: Development of aerobic respiration (AR, as concentration of resorufin) per treatment (n = 3) measured at xi 
(initial state), xp (preliminary state), x1 (end of final non-flow period), x2 (one week after final non-flow period) and xf 
(final state).  
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3.6 Analysis of yield of photochemistry 

As there is not continuous data for all the variables measured using the Diving-PAM, only the vari-

ables Yeff and Ft are considered for the analyses. 

As seen in Table 9, Yeff values generally showed higher variations between treatments than Ft 

values. Regarding the epipsammic variables, the impact of both YeffES and FtES decreased in F1 

(YeffES: -20 ± 1183 f.u.; FtES: -24 ± 11 f.u.) and in F2 (YeffES: -3080 ± 2964 f.u.; FtES: -20 ± 10 f.u.). 

In contrast, an increase was visible in F4 (YeffES: 190 ± 1703 f.u.; FtES: 24 ± 8 f.u.). In the epilithic 

biofilm, the impact was negative for all the treatments and highest for YeffEL in F1 (-2675 ± 2382 

f.u.) and for FtEL in F2 (-164 ± 39 f.u.), respectively. Referring to recovery, both YeffES and YeffEL 

increased. However, considering the high standard deviations, no clear patterns are evident. The 

FtES values increased during recovery in F1 (22 ± 14 f.u.) and in F2 (21 ± 2 f.u.) while FtES in F4 

declined (-24 ± 15 f.u.). In the epilithic biofilm, the FtEL values only increased in F2 (17 ± 9 f.u.) 

while they decreased in F1 (-1 ± 15 f.u.) and F4 (-8 ± 12 f.u.). The epilithic variables YeffEL and FtEL 

showed higher negative impact values than the epipsammic variables YeffES and FtES, except in 

F2, in which the opposite was true for Yeff. Regarding the recovery phase, the patterns are less 

clear. The epilithic variable YeffEL in F1 and F4 had higher values than the epipsammic variable 

YeffES, whereas in F2 it was reversed. The same applied to Ft in F1 and F2, but with epipsammic 

values being higher than the epilithic ones. In contrast, FtES and FtEL in F4 did not recover, with FtES 

showing a higher decrease than FtEL. Impact and recovery were negatively related. For FtEL a 

strong linear relationship was apparent (R2 = 0.53), although it was not pronounced, whereas for 

FtES (R2 = 0.37), YeffES (R2 = 0.34) and YeffEL (R2 = 0.26) the relationships were weak. 

 
Table 9: Average and standard deviation of impact and recovery in epipsammic (ES) and epilithic biofilm (EL) per treat-
ment (n = 3): quantum yield of photochemistry (YeffES, YeffEL) and minimum fluorescence yield (FtES, FtEL). 

 
 

Figure 12 illustrates the development of Yeff and Ft in the epipsammic and epilithic biofilm 

throughout the treatment phase for better understanding. There are four trends which need to be 

addressed.  

First, Yeff and Ft experienced a contradictory trend, mainly between the first day of the experiment 

and the last day of the flow period at x2. This is supported by the fact that Yeff showed higher val-



Stream biofilm response to an increasing number of non-flow periods 3 Results 

ZHAW LSFM | Bachelor Thesis | Ariane Etter, Selina Fischer  40 

ues on the last day of each flow period compared to the first day of the flow period. For instance, 

this is seen in F4, where YeffEL increased from 1586 (xp21) to 2563 f.u. (xp28). Despite this clear 

pattern, the values within one flow periods varied from day to day (e.g. see the last trend below). 

Meanwhile, Ft developed differently depending on the treatment. FtES in F1 increased during the 

flow period from 2 at x1 to 24 f.u. at x2 while the FtEL values remained approximately constant be-

tween 34 at x1 and 32 f.u. at x2. F2 presented a pattern in which FtES increased during both flow 

periods and FtEL decreased at first and then increased in the second flow period. In F4, both the 

FtES and FtEL generally displayed a decrease in each flow period, except for FtES from 31 (xp11) to 

53 f.u. (xp18) during the first flow period and for FtEL from 42 (xp21) to 65 f.u. (xp28) during the 

second flow period.  

Secondly, comparing Yeff and Ft values at the beginning and at the end of the treatment phase 

supports the contradictory relationship between Yeff and Ft which occurred during the flow periods. 

Yeff showed positive developments in all treatments, for instance in F4 the YeffEL values increased 

from xi (1467 f.u.) to xf (3135 f.u.). The exception is YeffEL in F1, whose values remained approxi-

mately the same at xi (2857 f.u.) and xf (2637 f.u.). Further, it is apparent that the values in F1, F2 

and F4 for YeffES were generally higher than for YeffEL. Regarding Ft in the epipsammic and epilith-

ic biofilm, FtEL values were considerably higher than FtES at xi, but seemed to have converged in 

the last quarter of the treatment phase. This is supported by the fact that FtES values in all three 

treatments were low at the beginning and remained more or less constant until xf as seen in F1 

where the value at x1 (25 f.u.) was approximately the same as at xf (22 f.u.). In contrast, the FtEL 

value at xi (177 f.u.) experienced a considerable decline to xf (19 f.u.). This trend is applicable to 

F2 as well as F4.  

Thirdly, Yeff and Ft in F1 and F2 seemed to have stabilized after x2, meaning that the values at x2 

and xf were similar. For example, in F2 the FtES value of 24 f.u. at x2 declined minimally to 29 f.u. 

xf. Since x2 was at the same time as xf in F4, no further development between x2 and xf existed 

and therefore F4 cannot be compared with F1 and F2.  

Lastly, there is a pattern which was only visible during the flow period in the Yeff diagram. Between 

day 3 and day 6 of each flow, the YeffES and YeffEL values in all treatments decreased. For in-

stance, YeffES in F2 declined from 4288 (d13) to 3338 f.u. (d16) and YeffEL from 2681 (d13) to 2046 

f.u. (d16). The only exception occurred in the second flow period in F4 during which no measure-

ments were taken for a duration of four days instead of two days. YeffES increased from 5488 (d22) 

to 6730 f.u. (d26) and YeffEL from 3426 (d22) to 4060 f.u. (d26). 
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Figure 12: Development of the effective quantum yield of photochemistry (Yeff) and minimum fluorescence yield (Ft) in epipsammic (ES) and epilithic biofilm (EL) per treatment 
(n = 3) at xi (initial state), xp (preliminary state), d (daily monitoring), x1 (end of final non-flow period), x2 (one week after final non-flow period) and xf (final state). On days with 
no values, no measurements were taken due to non-flow conditions or a day off. The standard deviations are not indicated for the sake of clarity. 
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3.7 Overall patterns of impact and recovery 

For better understanding of the overall pattern caused by the three treatments, Figure 13 shows an 

overview of the impact and recovery expressed as relative change (in %) (for data per treatment 

see appendix IV). High standard deviations existed for some variables, in particular for NEP, Yeff, 

GPP and AFDM. Neglecting the standard deviations and considering impact for the epipsammic 

biofilm, it is apparent that in F1 all values were negative, except for YeffES (11 ± 39%), which was 

slightly positive. In F2 the values were both negative and positive, while the variables in F4 showed 

the highest values, except for ERES (-3 ± 113%). Moreover, a pattern was evident in FtES, NEPES 

and AR: F1 was affected the most, followed by F2 and F4. This pattern was most pronounced in 

NEPES (F1: -954 ± 1470%; F2: 726 ± 853%; F4: 1467 ± 1698%). Looking at the epilithic biofilm, it is 

obvious that the impact was more severe because a decrease occurred in all treatments, except 

for AFDMEL in F4 (134 ± 121%). Again, F1 was most affected with the exception of FtEL (F1: -80 

± 5%; F2: -92 ± 4%; F4: -84 ± 11%). Considering recovery, in the epipsammic biofilm, all variables 

had the highest values in F1, except YeffES (F1: 40 ± 106%; F2: 579 ± 354%; F4: 39 ± 117%) and 

the lowest values in F4, with the exception of ERES (F1: 852 ± 886%; F2: 3 ± 43%; F4: 620 ± 

876%). Regarding epilithic recovery, there were no specific patterns visible.  

 

 



Stream biofilm response to an increasing number of non-flow periods 3 Results 

ZHAW LSFM | Bachelor Thesis | Ariane Etter, Selina Fischer  43 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 13: Overview of impact and recovery expressed as relative change [%], including standard deviation in epipsammic (ES) and epilithic biofilm (EL) per treatment (n = 3). 
The concerned variables effective quantum yield of photochemistry (YeffES, YeffEL), minimum fluorescence yield (FtES, FtEL), net ecosystem production (NEPES, NEPEL), eco-
system respiration (ERES, EREL), gross primary production (GPPES, GPPEL), aerobic respiration (AR) and ash free dry mass (AFDMEL). As exceptions, the number of samplings 
was smaller (n = 2) for the impact of ERES in F1 and ERES and GPPES in F4, as well as for the recovery of ERES in F1. There is no data for the impact and the recovery of gross 
primary production (GGPES, GPPEL) in F1. As the effective quantum yield of photochemistry in the epilithic biofilm (YeffEL) has very high values, they are indicated as numbers.  
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Analysing the relationship between variables, only few correlations are recognizable. Considering 

the relationship between variables within the epipsammic or epilithic compartment: epipsammic 

impact values of heterotrophic and autotrophic biofilms’ function variables AR and YeffES showed a 

weakly positive relationship (R2 = 0.32), whereas the recovery values showed no relationship (R2 = 

0.01). This is the same for the epilithic impact values of heterotrophic and autotrophic biofilms’ 

function variables EREL and YeffEL (R2 = 0.03), whereas recovery values showed a weakly positive 

relationship (R2 = 0.24). There was no relationship for impact and recovery between the auto-

trophic biomass and function variables FtES and YeffES (impact: R2 = 0.08; recovery: R2 = 0.07) and 

FtEL and YeffEL (impact: R2 = 0.08; recovery R2 = 0.06), as well as for the biofilms’ biomass varia-

bles AFDMEL and FtEL (impact: R2 = 0.12; recovery: R2 = 0.01). Considering the relationship of vari-

ables between the epipsammic and epilithic compartment: A strong negative relationship existed 

for the impact values between autotrophic function variables YeffES and YeffEL (R2 = 0.45). In con-

trast, the recovery values were not related (R2 = 0.19). Furthermore, there was no relationship be-

tween the autotrophic biofilms’ biomass variables FtES and FtEL (impact: R2 = 0.001; recovery: R2 = 

0.001), neither in impact nor in recovery. 

To summarize the described results, there were only a few significant differences between the 

treatments, regarding impact and recovery in epipsammic and epilithic biofilm (see Table 10). The 

impact of FtES, NEPES, and AR differed significantly between F1 and F4 (FtES: p-value = 0.002; 

NEPES: p-value = 0.013; AR: p-value = 0.008) and F2 and F4 (FtES: p-value = 0.003; NEPES: p-

value = 0.019; AR: p-value = 0.010). Thus, F1 and F2 experienced similar behaviour and did not 

differ significantly. In addition, the recovery of FtES showed a significant difference between F1 and 

F4 (FtES: p-value = 0.007), and between F2 and F4 (FtES: p-value = 0.008) as well. In contrast, 

ERES and EREL were only significantly different between F2 and F4 (ERES: p-value = 0.039; EREL: 

p-value = 0.019), whereas the values of F1 and F4 were similar. However, comparing the variables 

at xf (for data per treatment see appendix III), no significant differences between treatments were 

evident. Thus, the significant differences did not persist.  
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Table 10: Results of the statistical analysis of the differences between treatments concerning impact and recovery in the 
epipsammic (ES) and epilithic biofilm (EL). The concerned variables (n = 9) are quantum yield of photochemistry (YeffES, 
YeffEL), minimum fluorescence yield (FtES, FtEL), net ecosystem production (NEPES), ecosystem respiration (ERES, EREL) 
and aerobic respiration (AR). 
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4 Discussion 

In this chapter, the considerations and findings of the experiment are reflected and discussed, and 

suggestions for future experiments and practical implementations are illustrated as well. 

4.1 Considerations on the experiment 

The results of a controlled experimental system, such as the ESF, should be cautiously extrapolat-

ed to field conditions. While the advantage of a manipulative experiment is the elimination of irrele-

vant variables and enhancing statistical power to identify the effects, the disadvantage is that the 

conditions in the real world are potentially more extreme and stressors can co-occur (Colls et al., 

2019; Acuña et al., 2015; Acuña et al., 2019). Such co-occurrences can be of human origin, for 

instance, an increasing water demand, or of natural origin, such as alterations of the flow regime, 

induced by climate change (Griffith & Gobler, 2019; Malmqvist et al. 2008; Settele et al., 2014). 

Therefore, it is essential to identify the effects of interest as a first step and subsequently use the 

acquired knowledge to undertake further experiments under natural conditions. To extrapolate any 

results, various limitations have to be considered. For instance, it is important to bear in mind that 

the past hydrological history of stream biofilm, such as its ability to adapt to intermittent flow re-

gime, has great influence on stream biofilm response. It is also important to note that the natural 

community composition and the geomorphology are more complex and therefore the biota in natu-

ral streams are differently affected by disturbances (Muñoz et al., 2018; White & Pickett, 1985). 

Further constraints are found in the environment of the temporary stream. In this experiment, it was 

the Riera de Llémena, which is characterized, for example, by a well conserved and shading vege-

tation. This specific characteristic was not simulated at the ESF. Hence, light conditions and the 

related availability of nutrients, provided by organic material, differed.  

Prior to the following discussion, we would like to point out that the descriptor variables are includ-

ed in the discussion to have a broader basis for our statements and conclusions. However, in order 

to not distort the statements regarding patterns, we have decided to exclude GPP from the discus-

sion as there was only data for two treatments, and thus it is not comparable with the development 

of other response values. Additionally, several variables had large standard deviations, most clear-

ly for autotrophic function. Since standard deviations indicate the data distribution, we assumed 

that the biofilm was not evenly spread, creating irregular patches in the substrata which influenced 

our sampling. Patches are caused by dominating flow paths or the resistance to completely dry out 

and can therefore be described as an ‘ever-changing mosaic’ (Febria et al., 2012; Lake, 2000; 

Pringle et al., 1988). Each disturbance alters the patchiness patterns in streams and during the 

recovery phase, they undergo further changes due to recolonization (Lake, 2000). Moreover, alt-

hough the biofilm was acclimatised for two weeks, which is about the same time range as Muñoz 
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et al. (2018) applied in their ESF experiment for which biofilm samples from the same intermittent 

stream were used, the autotrophic variables showed rather low values at the beginning. Thus, the 

biofilm might have been more affected by the transport and set-up of the ESF than expected or 

due to a recent drought event in the Riera de Llémena. Considering that some methods, for in-

stance the Diving-PAM, are point measurements and both patches with well-developed or less 

developed biofilms could be sampled, a high standard deviation might occur. One approach to re-

duce high standard deviations could be to conduct more measurements per channel, as the stand-

ard deviation generally decreases with increasing sample size (Rumsey, 2016). 

4.2 Response of the stream biofilm 

Regarding relative changes, the impact values of epipsammic, but not of epilithic biofilm decreased 

with increasing frequency, with the exception of ERES. It is apparent that heterotrophic and auto-

trophic biofilm was similarly impacted by increasing frequency, as F1 and F2 significantly differed 

from F4 for biomass (FtES) and function (AR and NEPES). The values in F4 for FtES and AR were 

positive, continuously increasing instead of experiencing a small (negative) impact, which was un-

expected. The same pattern applied as well for the autotrophic function (Yeff), but without signifi-

cance. Consistent with the first hypothesis, the observed pattern allows for the presumption that 

frequency only mattered, if the non-flow period was split into several shorter ‘sub-periods’. With 

higher frequency the total number of non-flow days was divided in shorter durations, leading to 

both shorter flow and non-flow periods, to which epipsammic biofilm was apparently more re-

sistant. Although duration was not of relevance for this thesis, a link to its importance, as found by 

Acuña et al. (2015) under artificial and by Colls et al. (2019) under natural conditions, is inevitable. 

It seemed that even within the total drought duration of 28 days, the duration of the ‘sub-periods’ 

played a key role, suggesting a threshold between 2 and 4 frequencies (periods of 14 and 7 non-

flow days). The threshold indicates a change in conditions during which, despite non-flow condi-

tions, the biofilm continues to grow. As non-flow periods are ramp-patterned disturbances, condi-

tions change steadily, allowing biofilm to adapt (Lake, 2000). For example, it was previously ob-

served by Roberson & Firestone (1992), that biofilm’s EPS were able to retain water which led to a 

slower dehydration. Thresholds caused by extrinsic factors like hydrology are common for streams, 

as it characterizes the ecosystem’s structure (Groffman et al., 2006). The evidence for the men-

tioned threshold is linked to the fact that at high non-flow frequency and shorter non-flow periods, 

the water content at the beginning of flow periods was approximately 6%, whereas fewer frequency 

led to complete desiccation between flow periods. As the water content is one of the most im-

portant abiotic components, influencing the oxygen concentrations and nutrient availability for the 

biofilm, it enables a steady growth (Drenovsky et al., 2004). This occurred for instance, in auto-

trophic biomass in the epipsammic compartment, during the non-flow period at high frequency.  
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A threshold associated with the cessation of flow was also observed by Acuña et al. (2015) for 

community respiration, whose resistance values considerably changed between 6 and 12 non-flow 

days. 

An additional observation concerning the relative changes of the response variables was that the 

recovery level related to the severity of the impact. This was observed for all variables with the 

exception of the autotrophic function and biomass in epilithic compartment (YeffEL and FtEL). The 

sequence pattern was equal during impact and recovery for each particular variable, although not 

all variables decreased correspondingly with a higher frequency. An exception can be noted with 

FtES as impact and recovery experienced the same sequence pattern with the highest values in F1 

and the lowest values in F4, but the recovery value in F4 was negative, which was unexpected 

because the autotrophic biomass did recover during the other two treatments. One explanation 

could be that measurement errors occurred during the sampling. However, this is unlikely because 

FtES as well as FtEL exhibited a decrease in all channels. Additionally, the biomass value AFDMEL 

experienced the slowest recovery at the highest frequency as well. It is assumed that other factors 

were involved, such as community dynamics or the addition of nutrients. A change in the composi-

tion and concentration of nutrients might have led to growth inhibition (Harpole et al., 2011). 

Hence, it is not possible to say with certainty why the autotrophic biomass in F4 decreased during 

the last flow period. Nonetheless, the pattern of ‘the larger the impact, the quicker the recovery’ 

was also observed at an ESF experiment by Acuña et al. (2015). They argue that some autotrophic 

communities are more resilient, because they were able to use the released space and energy. 

This is in accordance with Townsend and Hildrew’s (1994) description of a disturbance as an event 

which removes organisms, creating patches of empty space and increasing resources. In addition 

to the findings in the autotrophic biofilm, Acuña et al. (2015) compared the impact and recovery 

relationship to the heterotrophic biofilm. They found that the autotrophic disturbance-response rela-

tionship was linear while the relationship was sigmoid for heterotrophs. This means that non-flow 

periods had an immediate effect on autotrophs while the effect on heterotrophs was delayed, indi-

cating that heterotrophs are more resistant and less resilient. The shift to heterotrophy after a dis-

turbance occurred at a duration of non-flow periods longer than 6 days and was limited to the non-

flow period and the first weeks of flow return. Considering our results, despite the fact that the ‘sub-

periods’ of non-flow periods in all treatments (7, 14 and 28 non-flow days) lasted longer than these 

6 non-flow days, no shift to heterotrophy was observed. The weakly positive relationship of auto-

trophic and heterotrophic function (YeffES and AR) let us assume that they responded similarly. 
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Comparing impact and recovery of biofilm’s function and biomass in the epilithic compartment, it is 

noticeable that all variables, except AFDMEL, were affected by desiccation but not by frequency of 

non-flow periods. For instance, the autotrophic biofilm’s biomass diminished equally in all treat-

ments. The reduction during impact averaged between 80-90%, which corresponds to the de-

crease of 80% in natural streams observed by Timoner et al. (2012). Analysing the biofilm’s recov-

ery values, the variables accordingly showed several differing developments. Overall, the response 

of the biofilm’s biomass and function in the epilithic compartment during impact and recovery stood 

in contrast to epipsammic compartment, where variables, except ERES, were affected similarly by 

the frequency of non-flow periods. Hence, the similar behaviour of the biomass and function accen-

tuate the assumption that humidity, which was present in the epipsammic substrate at highest fre-

quency, was decisive (as mentioned previously).  

We further hypothesized that the autotrophic biofilm in the epipsammic compartment recovers 

more slowly than in the epilithic compartment due to the retained water in the sand. This has only 

proven to be true for the autotrophic function. Timoner et al. (2012) came to the same conclusion 

as they found a positive relationship between autotrophic function and water content under natural 

conditions, while Muñoz et al. (2018) confirmed this development under artificial conditions. A fur-

ther observation was that the autotrophic function’s values in the epilithic compartment were gen-

erally higher than in the epipsammic compartment. The strong negative relationship between 

YeffES and YeffEL supports this statement, meaning the higher the values in the epilithic biofilm are, 

the lower they are in the epipsammic biofilm. Therefore, we conclude that the epilithic compartment 

was more affected as it experienced a greater impact and a quicker recovery, indicating low re-

sistance and high resilience. This high capacity to recover, especially in the epilithic compartment, 

was also studied in earlier works, which showed that autotrophs were able to develop various 

adaption strategies (Robson, 2000; Sabater et al., 2017). For instance, they had the ability to re-

main dormant during dry periods, developing drought resistant cell structures or the ability to close-

ly attach themselves to substrata to immediately resume their activities after flow return (McKew et 

al., 2011; Timoner et al., 2014a). This prevented damage in the photosynthetic apparatus and 

might partly account for the sensitivity of the autotrophs and their ability to respond to a small pulse 

of rehydration and thus allow for a rapid recovery (Timoner et al., 2012; Timoner et al., 2014b). 

Muñoz et al. (2018) confirmed the observation of the autotrophs’ sensitivity in natural streams. 

They found that with a rehydration pulse, autotrophic function increased up to approximately 60%, 

compared to the initial state. Moreover, a few days after flow return, which followed one week after 

the rehydration pulse, the autotrophic functions reached roughly the same values as the initial 

state. Considering our results, we found that after one week under flow condition, the autotrophic 

function in both compartments reached or exceeded the values of their initial state and seemed to 

stabilize until the end of the experiment.  
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Last but not least, while some variables showed a significant difference at the beginning (uniformi-

ty) or for impact and recovery during the treatment phase, all variables were uniform at the end of 

the experiment. Actually, this was well illustrated for instance by the autotrophic and heterotrophic 

function (Yeff and AR), which responded with an increase in activity with every returning flow peri-

od, showing higher values at the final state, compared to their initial state. This pattern was espe-

cially visible in F4, in which the duration of a single non-flow period was the shortest, as mentioned 

previously. Despite this apparent pattern of growth with every flow period during the treatment 

phase, indicating an effect of the increasing number of frequencies, the frequency of non-flow peri-

ods with the same total number of non-flow days had seemingly short-term, but no long-term ef-

fects on stream biofilm. This fact suggests, that according to the definition of Holling (1973), the 

system was resilient enough to recover and that the disturbance was within the tolerable magni-

tude of the system, allowing the return to the steady-state instead of altering the systems’ struc-

ture. However, one has to consider Schwalm et al. (2017), who predicted, that if droughts occur 

more often, ecosystems will be permanently harmed on a long-term scale, as there is not enough 

time left between two subsequent dry periods to fully recover.  

4.3 Future outlook 

Contemplating further studies, one approach could be to adapt the experimental design to a higher 

number of frequencies. To provide further insights into the results, the addition of a frequency with 

three non-flow periods (F3) might lead to a more precise determination of the threshold. It would 

also be interesting to research what would occur if the experiment is extended. For instance, if the 

duration of non-flow periods were to last at least two weeks, would the same short-term patterns 

appear or does the duration of the non-flow periods have more substantial effects? We would ex-

pect similar patterns as we observed in the context of this thesis, but for the threshold to disappear, 

because it is linked to the retained water in the substrate. Therefore, we also assume that the im-

pact and recovery would be greater in the epipsammic biofilm and that the effect would remain 

more or less the same in the epilithic biofilm. Furthermore, a prolongation of the experiment would 

perhaps result in clearer visible patterns regarding relationships between variables. Moreover, var-

ious methods and equipment should be applied to improve present methodological limitations and 

to gain experience (Datry et al., 2017b).  

The knowledge acquired by this thesis could be consulted to plan and conduct further experiments 

in natural temporary waterways. For instance, the threshold under natural conditions could be de-

termined, which is influenced more severely by factors such as climate, temperature, current flow 

regime or geomorphology (Acuña et al., 2015; Jaeger et al., 2017; McDonough et al., 2011). 

Therefore, the obtained findings improve the understanding of whether frequency is a decisive fac-

tor for stream ecosystems or not. In addition, the determination of thresholds is important to predict 
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future risks as well as to establish adequate regulatory frameworks, which improve the currently 

poor management strategies of intermittent streams and rivers (see chapter 1.2.2) (Acuña et al., 

2014; Brenden et al., 2008). An adequate management strategy considers the temporal aspects of 

flow regimes to uphold natural conditions of non-flow periods as far as possible and to avoid ex-

ceeding tipping points that could negatively affect flow intermittent ecosystems (Acuña et al., 

2015). With regard to this thesis, such a specific management strategy could include solutions to 

maintain the balance between impact and recovery of stream communities, support conservation 

or restore of degraded intermittent streams. 
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5 Conclusion 

To summarize, temporary waterways fulfil an essential role in supporting biodiversity and providing 

various ecological, economic and societal services. The number of intermittent waterways is ex-

pected to increase in the future, and it is anticipated that their flow regime will be altered by the on-

going climate change issue and the intensification of anthropogenic stressors (Acuña et al., 2017; 

Settele et al., 2014). As Colls et al. (2019) stated, only a small number of studies concerning the 

temporal components of flow intermittency exist and even fewer which research their individual and 

relative role. Therefore, this bachelor thesis assessed the specific role of frequency on stream bio-

film. We hypothesized that the response of the stream biofilm is less if the frequency of non-flow 

periods is higher, which we were able to prove for the biomass and function of autotrophic and 

heterotrophic biofilm in the epipsammic compartment. The biofilm’s behaviour suggested a thresh-

old between 7 and 14 non-flow days. In contrast, the epilithic biofilm was affected by desiccation 

regardless of the number of frequencies. We also assumed that autotrophs in epipsammic biofilm 

recover more slowly than in epilithic biofilm with higher number of frequencies due to an increasing 

amount of retained water. The experiment showed that the water content was retained at high fre-

quency which was consistent with the observation that autotrophic function in the epipsammic 

compartment had lower recovery values than epilithic autotrophs. However, the most noteworthy 

result was that at the end of the experiment none of the differences persisted. This led to the con-

clusion that frequency with the same total number of non-flow days only had an effect on a short-

term but not on a long-term scale. Thus, although the two hypotheses were partially confirmed, in 

relation to the fact that no long-term effects occurred, the two hypotheses have to be discarded. 

Nevertheless, these findings could be used to conduct experiments under natural conditions as 

well as to develop adequate management strategies. 
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Appendix I:  
Experimental design 
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Appendix II:  
Resorufin standard curve 

 

Preparation table for the seven samples for the resorufin standard curve (see below): 
Initial concentration 
of standard solution 

resorufin [µM] 

Initial volume of added 
standard solution 

resorufin [µL] 

Final concentration of 
standard solution 

resorufin [µM] 

Volume of added 
phosphate buffer 

[µL] 

Final volume 
in tube  

[µL] 
10 0 0.0 2000 2000 
10 100 0.5 1900 2000 
10 200 1.0 1800 2000 
10 300 1.5 1700 2000 
10 400 2.0 1600 2000 
10 600 3.0 1400 2000 
10 1000 5.0 1000 2000 

 

Standard resorufin solution: 0.0118 g of resorufin salts were dissolved in 50 mL of phosphate 

buffer, creating the initial resorufin solution. This solution was diluted to a resorufin concentration of 

0.01 mM (0.5 mL of initial resorufin solution and 49,5 mL of phosphate buffer).  

 

With the following standard curve, the concentration of resorufin in µM was calculated in accord-

ance with the detected fluorescence: 
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Appendix III:  
Initial and final state per treatment 

 

The average values per treatment of the initial state at xi and the final state at xf, including stand-

ard deviations: 
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Appendix IV:  
Data per treatment (relative change) 

 

The average values per treatment of the relative change (in %) of impact and recovery, including 

standard deviations. In addition, the sequence of the treatment going from highest to lowest impact 

and recovery value, respectively: 
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