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Semimetric spaces: topological considerations 

 

João Ferreira do Amaral1 

1. Introduction 

In a previous paper (Amaral 2007) we introduced several issues related to the definition 

of convexity in semimetric spaces that is, spaces (E,d) such that E is a fundamental set 

and d is a real function d: E x E→R that satisfies all the conditions of a metric excluding 

the triangular inequality. In that paper we explicitly postponed to a future paper the 

discussion on the possibilities of defining a significant topology for a semimetric space. 

The aim of the present paper is to discuss this issue. In section 1 we mention  already 

known results or results easily derived from known ones. In section 2 we used these 

results to obtain a sufficient condition to define a topology on a semimetric space. 

 

1 Pseudo-open sets and structurally continuous spaces 

Let  (E,d) be a semimetric space. Let N(x,a) be the open ball with centre at x and radius 

a. We define  

Definition (Pseudo-open set). A non-empty set A ⊂  E is a pseudo-open set if and only if 

A = ∪x,a N(x,a) for all the x of A and all the  a such that for each x, N(x,a) ⊂ A 

Compare the definition with the usual definition of open set: 

A non-empty set A of the space (E,d) is an open set if and only if for each element x of A 

there exists a > 0 such that N(x,a) ⊂ A. 

It is easy to see that if a semimetric space is a metric space a non-empty set A is open if 

and only it is a pseudo-open set. However this is not necessarily the case for non-metric 

semimetric spaces. Surely, in any semimetric space any non-empty open set is a pseudo-

open set but the converse is not necessarily true. 
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However we can find sufficient conditions such that for a given semimetric space 

satisfying those conditions a pseudo-open set is an open set. 

Let us begin with the following definition,   

Definition (Structurally continuous semimetric space). A semimetric space (E,d) is 

structurally continuous if and only if for any a and b of E and p of R, p > 0, there is a 

N(b,q) of b such that │d(a,x) - d(a,b)│< p for all the x of N(b,q).  

Remark 1. The concept of structurally continuous space is related mainly to the 

continuity of the function d. It is not necessarily a space such that for each r > 0 there is 

a y distinct from x such that y ∈ N(x,r). Actually, a space for which there is a p* > 0 such 

that N(x,p) = {x} for all the x of E and all the real numbers p, p < p*, is structurally 

continuous.  

Theorem 1 Any metric space is structurally continuous. 

Proof. Let a, b and x be elements of E .Using the triangular inequality we have 

│d(a,x) - d(a,b)│≤ d(x,b).  

Therefore if we choose a  N(b,q) with q < p we obtain the result. □ 

Structurally continuous non-metric spaces can sometimes be obtained from metric spaces 

in an easy way. For example,  if d* is a metric and if  d is a function such that  d(x,y) = 

f(d*(x,y)) with f a real, strictly increasing function such that   f(z) = 0  if and only if z=0 

, satisfying the Holder condition │f(u) - f(v)│ ≤ M│u-v│n with M > 0 and  n>0, then  d is 

a semimetric and (E,d) is a structurally continuous semimetric space. 

The importance of the concept is illustrated by the following theorem: 

Theorem 2 For any structurally continuous, semimetric space a non-empty set A is an 

open set if and only if A is a pseudo-open set.  

We have only to prove that each pseudo-open set is open. 

Proof.  By definition A = ∪x,a N(x,a).  Let z be an element of A. Then z belongs to a ball 

N(x,a*). Since (E,d) is structurally continuous, for every x and z of E and p>0 there exists 

N(z,q(p)) of z such that │d(x,w) - d(x,z)│< p for every w belonging to N(z,q). Since   d(x,z) 
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= a*- h with  h > 0, we can choose a value for p, p*, such that  p* < h . Let w* be any 

one of those w belonging to N(z,q(p*)).    

Due to structural continuity 

d(x,w*) < d(x,z) + p* 

d(x,w*) < a*- h + p* < a*  

so that w* belongs to  N(x,a*) and N(z,q(p*)) ⊂ N(x,a*) ⊂ A.    □ 

Corollary 1. Any open ball of a structurally continuous semimetric space is an open set.  

This means that in such a space we can choose as a base of topology of open sets at a 

point the family of all the open balls. Open balls are also considered as neighbourhoods 

of the respective centres. 

Corollary 2. Every structurally continuous semimetric space is a Hausdorff space. (A 

Hausdorff space is space such that for two distinct points x and y in the space there are 

two open sets A and B such that x∈ A , y ∈ B and  A ∩ B =  Ø). 

Proof. Since x and y are distinct d(x,y) >0. Choose a p < d(x,y)/2. 

As the space is structurally continuous there is a N(y,q) with q=q(p) such that 

│d(x,z) - d(x,y)│< d(x,y)/2 for all the z of  N(y,q). 

That is  

d(x,z) > d(x,y) – d(x,y)/2 = d(x,y)/2 > p so that z does not belong to N(x,p). Therefore 

 N(y,q)∩ N(x,p) =  Ø. 

Since by Corollary 1 open balls are open sets we obtain the intended result. □ 

Coollary 3. Every non-empty set ϕ(x, y) of a structurally continuous semimetric space 

(E,d) is an open set. 

(Observation. As in Amaral (2017) by the symbol ϕ(x, y), for any x and y of E we denote 

the set of all elements z of E such that d(x,y) > d(x,z) + d(z,y). Of course for a semimetric 

space that is a metric space all those sets are empty). 
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Proof. Consider a z belonging to ϕ(x, y). We have  

d(x,y) - d(x,z)- d(z,y) ≡ H >0 Choose two positive numbers, m, n such that m+n < H. 

Obviously 

d(x,y) = H+ d(x,z)+ d(z,y)>m+n + d(x,z)+ d(z,y) 

Since (E,d) is structurally continuous we have 

d(x,w) < d(x,z) + m 

d(y,v) < d(y,z) + n  

respectively for all the w of a given ball N(z,r) and all the v of a given ball N(z,s). 

Therefore for all the u of the ball N(z,r*) where r* ≡ min(r,s) we have 

d(x,u) < d(x,z) + m 

d(y,u) < d(y,z) + n 

so that 

d(x,u) + d(u,y) < m+n + d(x,z)+ d(z,y) < d(x,y) 

and u belongs to ϕ(x, y). 

Since this happens for all the u of N(z,r*) we have N(z,r*) ⊂  ϕ(x, y) and ϕ(x, y) is open. 

□ 

As the empty set is considered open by definition we have the following version of the 

corollary 

Corollary 3*. For all structurally continuous semimetric (metric or non-metric) spaces 

every ϕ(x, y) set is open. 

Since the union of the sets of any family of open sets is an open set we have  

Corollary 4. Let Z be the set of all the elements z of E such that there are two elements 

x, y of E, x≠ y ≠ z, such that z ∈  ϕ(x, y).Then Z is an open set. 
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2. Sufficient condition for structural continuity 

With the following theorem we provide a sufficient condition for a semimetric space to 

be structurally continuous. 

Theorem 3. If (E,d) is such that for every x and y of E, inf {d(y,uλ)} > ε(y) > ε > 0, where 

the uλ are the elements of E that determine all the sets ϕ(x, uλ) to which y belongs then E 

is structurally continuous. 

Proof. First note that by the definition of sets ϕ(x,uλ) if y belongs to the set , y is not 

identical to uλ, so that the condition inf {d(y,uλ)} > ε(y) > ε > 0 makes sense. 

Suppose that y belongs to Z (Corollary 4 above). For any p >0 and x, y of E choose ε* 

such that ε*< min (ε,p) and a w of E such that d(y,w)< ε*.If there is no w, w ≠ y belonging 

to N(y, ε*), the proof is still valid (see Remark 1 above). Therefore we can say that y 

does not belong to ϕ(x, w). 

The same considerations for w instead of y allow us to say that w does not belong to 

ϕ(x, y), so that we have 

d(x,w) ≤ d(x,y) + d(y,w) 

d(x,y) ≤ d(x,w) + d(w,y)  

Therefore 

│d(x,w) – d(x,y)│ ≤  d(y,w) < ε* < p  

If y does not belong to Z we have for all the w of E 

d(x,w) ≤ d(x,y) + d(y,w) 

│d(x,w) – d(x,y)│ ≤  d(y,w) 

Given a p >0 we choose a q(p) < p so that we have d(y,w) < p and 

│d(x,w) – d(x,y)│< p  

The same for w if it does not belong to Z.□ 

We obtain easily the following important corollary: 
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Corollary. If for every u and v of E, the set F≡∪u,v ϕ(u,v) has at most a finite number of 

elements and each x of E belongs at most to a finite number of sets ϕ(u,v) then  (E, d)  is 

structurally continuous.  
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