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Acronyms

AIC Akaike Information Criterion.

BF Bayes Factor.

BIC Bayesian Information Criterion.

BMA Bayesian Model Averaging.

BVS Bayesian Variable Selection.

DGP Data Generating Process.

GLS Generalised Least Squares.

HPD Highest Posterior Density.

HPM Highest Probability Model.

MPM Median Probability Model.

OLS Ordinary Least Squares.

RMSE Root Mean Squared Error.

RSE Relative Squared Error.

SD Standard Deviation.

SNR Signal-to-Noise Ratio.

SSE Sum of Squared Errors.

WLS Weighted Least Squares.
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Abstract

This dissertation aims to study the effect of heteroscedasticity on Bayesian
Variable Selection. It employs a simulation study, using two distinct datasets, to
evaluate the effects of introducing heteroscedasticity in a linear regression, and
whether transforming an heteroscedastic dataset into an homoscedastic one re-
sults in any considerable differences. We look at the variables selected, inclusion
probabilities and performance measures. We find Bayesian Variable Selection to
be robust to heteroscedasticity, although a better predictive performance may be
attained if we take the error variance’s structure explicitly into account.

KEYWORDS: Bayesian Variable Selection, Heteroscedasticity.
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Resumo

Nesta dissertação estudamos o efeito da heterocedasticidade na seleção bayesiana
de variáveis. Através de um estudo de simulação, e utilizando dois conjuntos de
dados reais, avaliamos os efeitos de introduzir heteroscedasticidade numa re-
gressão linear, bem como o efeito de transformar dados heterocedásticos em ho-
mocedásticos. Analisando as variáveis selecionadas, probabilidades de inclusão
e medidas de performance preditiva, concluimos que a seleção bayesiana de var-
iáveis é robusta à heterocedasticidade, mas é possível obter melhor perfomance
preditiva se a estrutura de variância dos erros for tomada em conta.

PALAVRAS-CHAVE: Seleção bayesiana de Variáveis, Heteroscedasticidade.
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1 Introduction

Heteroscedasticity is a concept that appears both in frequentist and Bayesian
econometrics, usually identified as a form of model misspecification. In linear
regressions, we observe a collection of random variables {y1, . . . , yn} and a col-
lection of predictors {X1, . . . , Xn}. One of the assumptions of the model is that
the conditional variances of yi given Xi do not change with i, and this is usually
referred to as the homoscedasticity assumption. If this assumption does not hold,
we have heteroscedasticity. It is well-known, for instance, that in the frequentist
approach heteroscedasticity leads to biased standard errors, invalidating infer-
ence on the parameters.

If heteroscedasticity is of known-form, there are simple solutions for the prob-
lem: Weighted Least Squares (WLS) for the frequentist case, and a transforma-
tion of the variables for the Bayesian approach. If the form of heteroscedastic-
ity is unknown, the problem is more delicate. In particular, to the best of our
knowledge, there is no study regarding the consequences on Bayesian Variable
Selection (BVS) of assuming homoscedasticity, when in fact the error term is het-
eroscedastic. This work aims to shed some light on this question, by using real-
data variables to evaluate the performance of BVS, when transitioning from an
homoscedastic to a comparable heteroscedastic situation.

Our approach is twofold. First, we check direct impacts in terms of variables
selected and predictive performance between homo and heteroscedasticity. Then,
we use a transformation to correct for heteroscedasticity and check if any differ-
ence is present.

This thesis is divided in three main sections. A literature review is conducted
in Section 2, where we define heteroscedasticity and introduce BVS, while men-
tioning some frequentist approaches to the problem of variable selection. We also
provide an intuition behind the issue of heteroscedasticity within BVS.

We then proceed to a Simulation Study in Section 3, aiming to detail the be-
haviour of BVS when moving from homoscedasticity to its counterpart, and the
consequences of trying to correct heteroscedasticity. Finally, we conclude our
work in Section 4, and provide some discussion on future research.

A preliminary note should be given concerning the notation. Lowercase greek
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letters are employed for parameters, and capital letters for matrices. Vectors are
denoted in bold lowercase. The notation Nn(µ, Σ) represents a multivariate nor-
mal distribution of a n-dimensional vector, with mean vector µ and covariance
matrix Σ; Nn(y |µ, Σ) denotes the corresponding density evaluated at a generic
vector y.

2 Literature Review

2.1 Heteroscedasticity

In a linear regression, the case we are concerned with in this work, heteroscedas-
ticity arises when the error term, denoted by ε, no longer has a covariance matrix
proportional to I. In more rigorous terms, writing in matrix form, we are specially
interested in the normal/gaussian linear regression, with n observations:

y = Xβ + ε

ε ∼ Nn(0, σ2I),

where y is a vector with n observations from the response variable, X is the n × p

full column rank matrix of p independent variables, with n > p, and ε is the error
term.

Under heteroscedasticity, the second assumption no longer holds, since now
Var(ε) = σ2 Ω, where Ω is a diagonal matrix with elements ωi, i = 1, . . . , n, and
σ2 is a multiplicative constant.

Further (and common) assumptions are the independence between ε and X ,
and the strict exogeneity of the regressors.

In the Bayesian framework, the treatment for heteroscedasticity for estimation
in the linear regression is part of textbook literature, whether its form is know or
unknown (see, inter alia, Koop (2003), chapter 6). For the first scenario, when
Ω is known up to a constant, a simple transformation of the variables, by pre-
multiplication of all terms (y, X and ε) with a matrix P, that satisfies the condition
PΩ PT = I, suffices. The simpler methods, which assume homoscedasticity, may
then be employed.

2
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When the form is unknown, an hierarchical prior in ωi is used, and the prob-
lem is equivalent to a regression where each error term, εi, has a t-student distri-
bution. The posterior is sampled via a Metropolis-Hastings algorithm.

In recent years, semiparametric and non-parametric Bayesian approaches for
linear regression have been further developed, usually adapting frequentist pro-
cedures (among others, Crainiceanu et al. (2007), Pelenis (2014) and Norets (2015)).

In frequentist econometrics, the treatment follows a similar approach. When
the form is known, the Generalised Least Squares (GLS) estimator (also called
WLS if there is no correlation in the errors) may be used (Hayashi, 2000). On
the other hand, when the form is unknown, the robust standard errors of White
(1980) are widely available and employed, since they are robust to quite general
forms of heteroscedasticity. Tests also exist to study its presence, the most com-
mon being the one proposed by White (1980) and the Breusch-Pagan test (Breusch
and Pagan, 1979; Koenker, 1981).

2.2 Variable Selection and the Bayesian Paradigm

Following García-Donato and Martínez-Beneito (2013) and Forte et al. (2018),
in a (normal) linear regression the variable selection problem may be stated as
selecting the subset from X = (x1, x2, . . . , xp) that better represents the Data Gen-
erating Process (DGP) of the target variable Y . Alternatively, consider the vector
γ = {γ1, . . . , γp}. γ j is a binary variable, assuming the value 1 if x j , j = 1, . . . , p

is part of the model. This means we have to choose from 2p competing models,
which belong to the model spaceM = {Mγ : γ ∈ {0, 1}p}.

One advantage of the Bayesian approach to variable selection is the possibil-
ity of calculating the posterior probability for each proposed model, and make a
decision based on those probabilities (Forte et al., 2015). BVS also works as an
automatic Occam’s Razor (Berger and Pericchi, 2001), preferring to select simpler
models.

Under each model Mγ, we can write:

Mγ : y ∼ Nn(α1 + Xγβγ, σ2 I ),

where Xγ contains the columns j of matrix X where γ j = 1. The simplest and base
model, M0, contains the constant α. Applying Bayes’ theorem, one can easily

3
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write the posterior probability of Mγ:

f (Mγ |y) =
f (y |Mγ) f (Mγ)∑
γ f (y |Mγ) f (Mγ)

,

where f (Mγ) is the prior probability of model Mγ. The marginal likelihood, f (y |Mγ),
is defined as:

f (y |Mγ) =

∫
Nn(y |α1 + Xγβγ, σ2 I) πγ(α, βγ,σ) dα dβγ dσ,

and πγ(α, βγ,σ) is the prior for the parameters under model Mγ.

The posterior model probabilities may also be expressed in terms of Bayes
Factors. The Bayes Factor (BF), denoted as Bγθ , is the ratio of the marginal likeli-
hoods of Mγ and Mθ , and represents the evidence provided by the data (although
it depends on the prior distributions) in favour of using model Mγ, against the
alternative Mθ (Kass and Raftery, 1995). Rewriting the posterior probability, we
get:

f (Mγ |y) =
Bγ0 f (Mγ)∑
γ Bγ0 f (Mγ)

.

The issue of prior distribution choice elicits some discussion. Since there is usu-
ally no preexistent information available, the use of noninformative (or objective)
priors is common.

This problematic is different whether we consider instances of Bayesian esti-
mation or variable selection. For instance, in the first case, improper priors may
be used, as long as the resulting posterior is proper. A fitting example is the well-
known Jeffreys’ prior (Jeffreys, 1946). In BVS, in general, the use of improper
priors is not feasible. Consider the Bayes Factor comparing model Mγ to M0:

Bγ0 =
f (y|Mγ)

f (y|M0)
=

∫
Nn(y |α1 + Xγβγ, σ2 I) πγ(α, βγ,σ) dα dβγ dσ∫

Nn(y |α1, σ2 I) π0(α,σ) dα dσ

If the prior were to be improper, the resulting Bayes Factor could take any value,
as it would only be defined up to a multiplicative constant (Berger and Pericchi,
2001).

One of the approaches for developing objective priors mentioned in Berger
and Pericchi (2001) is referred to as "conventional". More recently, Bayarri et al.
(2012) found these priors satisfy a set of optimality criteria, based on what is
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specified as Jeffreys’ desiderata. This construct encompass priors of the form:

πγ(α, βγ,σ) = πγ(α,σ) πγ(βγ) ∝ σ−1 πγ(βγ).

This prior is improper, since πγ(α,σ) is not integrable, and hence only known up
to a multiplicative constant. This constitutes, however, an exception to the above
discussion: in this situation, there are reasons to consider α and σ as common
parameters across models. Since they are common, they will have the same prior
and when computing the BFs the unknown multiplicative constant in πγ(α,σ)
will cancel out, resulting in a well-defined posterior (Sansó et al., 1996).

Bayarri et al. (2012) also suggested a new "robust" prior of this form, which
we will use in this work. The BF when applying this prior can be expressed in
closed-form:

Bi0 =

[
n + 1

pi + p0

]−pi/2

×
Q−(n−p0)/2

i0

pi + 1 2F1

[
pi + 1

2
;

n − p0

2
;

pi + 3
2

;
(1 −Q−1

i0 )(pi + p0)

1 + n

]
, (1)

where p0 is the number of independent variables of M0 - in our case, p0 = 1. pi

is the number of regressors in Mi except for the constant, and Qi0 = SSEi/SSE0,
where SSEi is the Sum of Squared Errors of Mi, after applying Ordinary Least
Squares (OLS). 2F1 is the hypergeometric function.

One also needs to decide on a prior probability for each of the models that
we are entertaining. Scott and Berger (2010) recommend the use of a hierarchi-
cal prior, via a Bernoulli distribution with a uniform-distributed parameter, to
control for multiplicity.

There are several quantities of interest when applying BVS. One can select the
model which, after taking data into account, is the most probable - the Highest
Probability Model (HPM). Or one can calculate the posterior probability of inclu-
sion for each variable, xl :

ql =
∑
γ: γl=1

f (Mγ | y),

which is an interesting measure of the importance of xl . Using ql , we can get the
Median Probability Model (MPM), which includes the variables with probability
of inclusion > 1

2 . This model is, under some conditions, the optimal choice among
single models in terms of performance (Barbieri and Berger, 2004).

We can also use the posterior probabilities of each model as weights of a mix-
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ture distribution, a procedure known as Bayesian Model Averaging (BMA) (de-
veloped in, for instance, Hoeting et al. (1999)). This constitutes another advantage
of BVS, since one is able to explicitly consider uncertainty in the selection proce-
dure. Generally, we use the distribution:

f (Λ|y) =
∑
γ

f (Λ|Mγ, y) f (Mγ |y),

where Λ is a quantity of interest. We may use it to calculate averaged coefficients
for the regression. Alternatively, we may calculate the posterior predictive distri-
bution for a new observation, y∗, for the values x∗ of the independent variables:

f (y∗ |y, x∗) =
∑
γ

f (y∗ |Mγ, y, x∗) f (Mγ |y).

When there are many variables (and correspondly a very large number of models
is being considered), it is computationally unfeasible to average over all possible
models. However, we can keep only a set of most probable models, which con-
tain a considerable total posterior probability, and perform averaging only among
them, renormalising the posterior probabilities so that their sum equals 1. This
approach is referred to by Madigan and Raftery (1994) as ’Occam’s Window’.

Using a logarithmic scoring rule, Raftery et al. (1997) showed that using BMA
gives better predictive performance than considering a single model. Piironen
and Vehtari (2017), using a similar measure, found that better predictive perfor-
mance also applies when comparing to other variable selection methods (includ-
ing Bayesian approaches to cross-validation and information criteria).

2.3 The frequentist approach to Variable Selection

It is not clear how to classify frequentist approaches to variable selection into
categories. We follow Jamil (2018), who separates between model comparison
employing a criterion and shrinkage methods. In the former case, one compares
the different models to get the highest (or lowest) criterion, an approach also
called best subset selection. This approach may be computationally-intensive,
since one needs to calculate the measure for 2p models, but there are algorithms
that make this computation feasible for a moderate p, such as the leaps from Furni-
val and Wilson (1974). Several measures are available, the most well known being
R2 (or its adjusted version), Akaike Information Criterion (AIC) and Bayesian In-

6
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formation Criterion (BIC). AIC (Akaike, 1973) is defined as n log
(

SSE
n

)
+2p, where

SSE is the Sum of Squared Errors. It should be noted that the AIC is prone to over-
fit when all models are enumerated (Burnham and Anderson, 2002, p. 436).

BIC (Schwarz, 1978) is similar to AIC, except the penalty term changes to the
higher p × log(n); BIC = n log

(
SSE

n

)
+ p log(n). The BIC is consistent (it selects

the true model with probability 1 as n increases); it can be derived through a
Laplace approximation, and the difference between the BIC of two models serves
as an approximation of the logarithm of the Bayes Factor between them (Kass
and Raftery, 1995).

Shrinkage methods consist in placing additional constraints in the optimisa-
tion procedure, in order to force (shrink) the less important parameters to be zero
(or close to zero). The most popular method is the Lasso (Tibshirani, 1996), where
the parameters β are obtained by minimising the expression

∑n
i (yi −

∑
p β j xi j)

2 +

λ
∑

j |β j | with respect to β. The first term is the expression used to calculate the
OLS estimate, while the second is the penalty term, which lowers the value of
the estimated parameters. It can provide estimates which are exactly zero, thus
providing guidance for variable selection decisions. This process may improve
the predictive performance due to the bias-variance trade-off. It should be noted
that, in order to work as desired, all (dependent and independent) variables used
in the procedure should be standardised.

Lasso also benefits from a Bayesian interpretation: the results obtained are
equivalent to the posterior mode of inducing an independent Laplace prior in
each parameter. This fact motivated fully Bayesian approaches to the Lasso (Park
and Casella, 2008), and Lasso is also the inspiration for penalised approaches to
estimate-based Bayesian Variable Selection (spike-and-slab priors - Ročková and
George (2018)), which are out of the scope of this work.

2.4 Heteroscedasticity and BVS: intuition

In Section 3.1, we will detail the circumstances under which we will compare
variable selection in an homoscedastic situation with an heteroscedastic scenario.
In essence, this will be controlled by the Signal-to-Noise Ratio (SNR). For now,
start by noting that the BF comparing models i and j, using the prior defined in
Bayarri et al. (2012) (Eq. 1), is only dependent on the models’ fit through Qi j , the

7
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ratio of the Sum of Squared Errors (SSE) of the two considered models. Since
heteroscedasticity only affects the standard errors (and not coefficient estimates)
in a frequentist framework, the SSE will remain close in comparable situations.
Therefore, BVS should work more or less the same when the error term goes
from homo to heteroscedastic. For this same reason, we should also not expect
any significant change from a method such as AIC.

We could not find any literature regarding how BVS behaves under heteroscedas-
ticity, but we may look into studies which might indirectly lead us to some pre-
liminary conclusions. One example is Pelenis (2014), who offers a comparison
(in terms of predictive accuracy, coverage of credibility intervals and credible
interval lengths) of a Bayesian linear regression with the usual priors (normal
and inverse-gamma, the closest case to ours) between homoscedastic and het-
eroscedastic situations. Although performance, measured with Root-Mean-Square
Error, does not change, the coverage and length of credible intervals both get
shorter: while uncertainty is reduced (the interval length decreases), heteroscedas-
ticity makes the normal linear regression lose accuracy (when measured by cov-
erage), but this issue is not explored any further.

We may also take an analytical approach. We assume homoscedasticity of the
error term in BVS, which means the error variance is proportional to the identity
matrix (σ2I). However, in an heteroscedastic situation, the true variance may be
written as σ2Ω, where σ2 is no longer the variance of a single error observation,
but an arbitrary constant, and Ω is a diagonal matrix.

Using the Cholesky decomposition, we can write:

Ω
−1 = LL>,

where L is a lower triangular matrix. When treating heteroscedasticity of known-
form, BVS is tantamount to the problem of parameter estimation in a linear re-
gression. This means that we can pre-multiply the vector y and the matrix X by
the matrix L> to eliminate heteroscedasticity, as it will ensure that the error vari-
ance is constant: Var(L>y) = L>Var(u) L = σ2L>ΩL = σ2L>(LL>)−1L = σ2I. The
same is done when applying the GLS estimator.

In our case, since there is no serial correlation in the error term, the matrixΩ is
diagonal. The procedure above may then be simplified, an analogous method to
what is employed when applying Weighted Least Squares (WLS). It is sufficient

8
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to divide each term by the square root of each variance term ωi. The transformed
variables will be yi j

√
ωi

and xi j
√
ωi

, i = 1, . . . , n; j = 1, . . . , p.

When estimating the parameters β with OLS, we minimise the expression
(Davidson and MacKinnon, 2004):

SSEOLS ≡ û>OLSûOLS = (y − X β̂OLS)
>(y − X β̂OLS).

On the other hand, the GLS estimate is the one that minimises:

(y − X β̂GLS)
>
Ω
−1(y − X β̂GLS).

Considering that the SSE for a general β̂ is (y − X β̂)>(y − X β̂), this makes it clear
that SSEOLS ≤ SSEGLS. Since these values will virtually never be the same, this
may mean there exists a bias in the selection procedure, as we are always using
OLS. However, it is not possible to quantify its proportion or direction. First of
all, the posterior probability is not dependent on the SSE only. Secondly, and
more importantly, the Bayes Factor (and posterior probability) is dependent on a
ratio of SSE, rendering any comparisons to be very difficult. This leads us to be-
lieve that the relationship between the ratios is contingent on the intrinsic char-
acteristics of each dataset. Furthermore, due to this nature of the ratio, it may
happen that dismissing heteroscedasticity (and not applying any transformation)
provides better results than taking it explicitly into account. It is the purpose of
the next section to investigate this phenomenon in the context of real datasets and
resorting to simulation.

3 Simulation Study

In this section, we perform a simulation study, employing datasets that are
common in the BVS literature. We start with the simplest form of linear regres-
sion, with only one independent variable. We then move on to a multiple linear
regression. In each, we simulate the dependent variable y, keeping the DGP in
terms of the parameters β, only making changes to the variance(s) of the error
term, simulated via a normal distribution. The balance between both situations
(homo and heteroscedasticity) is maintained with the Signal-to-Noise Ratio, a
measure detailed in the next subsection.

We compare the decisions made by the Highest Probability Model (HPM) and

9
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Median Probability Model (MPM), calculating the average number of times a cer-
tain variable is selected. The same results are given for the frequentist methods
mentioned in Section 2.3 (AIC, BIC and Lasso). We also analyse inclusion proba-
bilities, looking for further insights.

Predictive performance is evaluated as well. We start by randomly subsetting
the data between train and test datasets. BVS is applied on the training set only.
We sample 10000 values from the predictive posterior distribution of y∗, getting
f (y∗ |y, x∗), where x∗ is an observation of the test data, and compare the posterior
mean ŷi with the observed value yi using the Relative Squared Error (RSE):

RSE =

∑ntest
i=1 (yi − ŷi)

2∑ntest
i=1 (yi − ȳ)2

,

where ȳ is the mean of all observations of the dependent variable in the test set.

This measure is utilised instead of other more popular ones, such as the Root
Mean Squared Error (RMSE), because it allows comparisons for different scales
of y. This is especially important when comparing results between the original
and the "corrected" datasets, detailed below.

We also calculate the interval length of each predictive distribution. Since the
scale of this distribution is not constant, we calculate an "Interval Ratio Length",
consisting on dividing the 95% Highest Posterior Density (HPD) interval length
by the distance between the maximum and minimum values generated from
f (y∗ |y).

Additionally, results on an estimated coverage probability are reported. It
measures how often the credible interval contains the true value of y. Both the
interval length and coverage are employed by Pelenis (2014), who applies them
to the posterior distribution of the parameter β in several univariate DGPs, but
the interval length is modified to fit our purposes.

Since there are several repetitions, the final result is the average of the val-
ues obtained for every simulated ε. We apply these measures to two different
situations: after performing Bayesian Model Averaging (BMA), and using only
the HPM. Results are expected to improve with BMA, but in an empirical setting
a researcher might prefer to use a single model, so evaluating the performance
under the HPM is clearly an useful exercise.

10
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As mentioned in Section 2.4, heteroscedasticity can be easily accommodated
into Bayesian Variable Selection by a process analogous to Weighted Least Squares.
Since the DGP is fully known, we can divide each observation of every variable
by the standard deviation of the respective error term (the weight), and repeat
all the simulations above, verifying if any significant changes occur whether in
the selected variables or the measures of performance. We refer to the resulting
datasets as "corrected", and this process will provide an additional term of com-
parison, which comes from a different point of view to what is described above. If
in the first case we will be comparing results when introducing heteroscedasticity
(and it is not present before), here we evaluate if correcting for heteroscedasticity
(comparing to not doing it) results in any considerable differences. Here, we ex-
pect the results to get closer to what happens under homoscedasticity, since the
datasets will have, in theory, constant error variance.

Aside from the SNR, another decision one has to make is how to insert het-
eroscedasticity. It is usually assumed that it is dependent on variables that may
or may not be part of the model (Wooldridge, 2015; Koop, 2003), whether through
a squared or a exponential function (any function which returns positive values
suffices). We focus mainly on variables which are also part of the selection proce-
dure. Since X = (x1, x2, . . . , xp) is the vector of explanatory variables, we define
our vector of variances, with size n, as an exponential function:

ω = exp{1 + α1x1 + · · · + αpxp}.

There is also a need to quantify "how much" heteroscedasticity is present. The
idea presented by Gelfand (2015) may be of use here - the SD Ratio. To calcu-
late this measure, one starts by selecting the 10% observations of the error term
with highest Standard Deviations (SDs) and the 10% observations with lowest
SD. Then, the average value of SD is calculated for both groups. Finally, we di-
vide these averages (with the highest value on the numerator) to obtain the SD
ratio. We decide to employ values around 3.5, slightly higher than the ones they
find most proeminent in the studied datasets.

Our calculations are performed in R (R Core Team, 2017), and more partic-
ularly BVS is done with the R package BayesVarSel (García-Donato and Forte,
2017). For the calculations that follow, we use the objective prior for the parame-
ters defined in Bayarri et al. (2012), as previously mentioned, and the model prior
recommended in Scott and Berger (2010). These are the predefined choices in the
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package. The HPD interval is calculated with the package HDInterval (Meredith
and Kruschke, 2018).

For the multiple linear regression, AIC and BIC need to be applied with the
algorithm defined in Furnival and Wilson (1974), with package bestglm (McLeod
and Xu, 2018). Lasso is performed with the package glmnet (Friedman et al., 2010),
and variables are standardised for the Lasso only.

3.1 Signal-to-Noise Ratio

In all the conducted simulations, the purpose is to compare an homoscedastic
and an heteroscedastic dataset, and check if the procedure’s performance is af-
fected. Only by establishing a means of comparison one can make sure that they
are fair, and that the introduction of heteroscedasticity does not create excessive
noise, which may in itself deteriorate the results of the procedure.

To guarantee this fairness between datasets, we use the Signal-to-Noise Ra-
tio (SNR). This concept suffers from the drawback of not having an universal
definition: the meanings of signal and noise are not consensual. Besides, most
definitions usually fail to consider the matrix of regressors X , rendering them in-
appropriate for non-simulated instances. However, this measure is the only one
capable of comparing two different DGPs in relation to their coefficients and error
terms. We turn to Friedman et al. (2009), who provide the definition:

SNR =
Var( f (X))

Var(ε)
,

where Var(.) is the sample variance (the elements f (X), which is equal to Xβ in
the linear regression, and ε are known).

There is only an adaptation needed in order to accommodate heteroscedas-
ticity in the error term. This is achieved by replacing the variance of ε with its
average for all its observations, a reasoning that comes from the works of Do-
briban and Su (2018) or Jia et al. (2013). Our final SNR definition is:

SNR =
Var(Xβ)

1
n
∑

i Var(εi)
.

After some simulations, and in order to get more flexibility in our results, we
decide to utilise the values of 1 and 10 as references for low and high SNRs. It

12



HUGO MOREIRA THE EFFECT OF HETEROSCEDASTICITY ON BVS

should be mentioned that guaranteeing that the average variance of the error
term remains constant is more important than the chosen values for the SNR.

3.2 Simple Linear Regression: Setup

For a starting point, we use the dataset Ozone35, available in the package
BayesVarSel, and used by, for instance, Casella and Moreno (2006). We focus only
in the original variables (no squared terms or cross products were considered),
meaning there are 7 variables to be used as regressors, and one target variable
- measures of ozone concentration - that we dismiss, since we need to have full
control over the DGP. The number of observations is n = 178, and the candidate
variables are named X4 to X10.

The correlations between the regressors are not substantial: something that
may help in the procedure, as the prior includes the inverse of the matrix X>X .
The correlation table may be found in Appendix A.1, table A.I.

Focusing on the simple linear regression, we set:

y = 2 + 0.5X7 + ε

The variance of ε should adapt to conform to the values of SNR that we defined
as low and high (1 and 10, respectively). The numerator for this measure is 48.31,
meaning that we need an average variance of 48.31 and 4.831 to get our SNR as
desired.

We will start by setting the error as homoscedastic, starting with the highest
SNR:

εi ∼ N(0, 4.831) (2)

εi ∼ N(0, 48.31). (3)

For evaluation under heteroscedasticity, a function for the variance of the error
term needs to be defined. As mentioned, an exponential is used as basis: we
need then to adjust the parameters to the defined SD ratio, and finally adjusting
the vector of variances to the averages used in the homoscedastic situation (a
process that does not affect the SD ratio).

We start by setting the heteroscedasticity dependent only on X7, the variable
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that also enters the model:

ωi = exp{1 + 0.052 X7,i} (4)

The value 0.0052 is chosen so that the SD ratio is close to 3.5. We then renor-
malise the vector of variances so its average variance is 4.831 (SNR=10) and 48.31
(SNR=1).

We also make the heteroscedastic error vector dependent on another variable.
X6 is in the same order of magnitude of X7, but their correlation is not significant
(only 0.37). The parameter for an SD Ratio close to 3.5 is 0.038, meaning we use
the expression:

ωi = exp {1 + 0.038 X6,i}, i = 1, . . . , 178, (5)

and then renormalise it so the average variances are the same as in the homoscedas-
tic case.

3.2.1 Simple Linear Regression: original dataset

We now present the results of the procedures for this dataset, when working
with the original variables.

To evaluate whether heteroscedasticity is detectable, we employ frequentist
heteroscedasticity tests (where the null hypothesis is homoscedasticity). Breusch-
Pagan and White tests are carried, as defined by Wooldridge (2015): in the first
one, the auxiliar regression of the squared residuals is done on the elements of X ,
whereas in the second one the independent variables are ŷ, the fitted values, and
ŷ2 (the "alternative" test). We report the percentage of rejections of the null, after
10000 repetitions:

TABLE I: Percentage of rejections in heteroscedasticity tests: Ozone data

Breusch-Pagan White

SNR = 10
Homoscedasticity 4.48 4.62
Heteroscedasticity - X7 98.52 99.99
Heteroscedasticity - X6 97.65 38.17

SNR = 1
Homoscedasticity 4.73 5.16
Heteroscedasticity - X7 98.38 99.99
Heteroscedasticity - X6 97.66 38.37
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Results are very similar between the two values of SNR. For the case of ho-
moscedasticity, we get values close to 5% (the test’s dimension). Heteroscedastic-
ity is correctly rejected (test’s power) most of the time, getting only a less-than-
optimal result for the White test when the heteroscedasticity is dependent on X6,
which we do not believe should constitute any worry, as there is still some power
to the test (it is still detecting heteroscedasticity) and the Breusch-Pagan has no
problem rejecting the null.

The following tables report, in percentage, the number of times a certain vari-
able is selected by each method for each error variance, for values of SNR of 10
and 1. The last column refers to the number of times (in percentage again) where
the selected model is the correct one (i.e. the method selects X7 only). 5000 repe-
titions were used.

TABLE II: Selection frequencies (%) for Ozone data: SNR = 10

X4 X5 X6 X7 X8 X9 X10 Model

Homoscedasticity
HPM 0.1 0.1 0.2 100 0.3 0.1 0.1 99.1
MPM 0.2 0.2 0.1 100 0.3 0.1 0.1 99.0
AIC 16.7 17.0 16.3 100 17.2 16.2 16.6 37.5
BIC 2.1 2.6 2.5 100 2.9 2.2 2.1 87.1
Lasso 38.9 30.7 28.4 100 34.3 27.1 32.3 20.1

Heteroscedasticity - x7
HPM 0.0 0.0 0.0 100 0.0 0.1 0.0 99.9
MPM 0.0 0.0 0.0 100 0.0 0.1 0.0 99.9
AIC 8.0 12.9 11.0 100 9.2 12.6 8.6 55.8
BIC 0.4 1.1 0.9 100 0.5 1.1 0.5 95.7
Lasso 36.6 32.6 29.0 100 31.1 28.4 30.8 20.8

Heteroscedasticity - x6
HPM 0.1 0.0 0.0 100 0.1 0.1 0.0 99.7
MPM 0.1 0.1 0.0 100 0.1 0.1 0.1 99.6
AIC 14.4 14.1 16.1 100 13.6 19.2 12.1 44.3
BIC 1.2 1.1 1.3 100 1.4 2.2 1.2 92.7
Lasso 38.9 29.9 30.2 100 33.0 30.0 32.0 19.6

TABLE III: Selection frequencies (%) for Ozone data: SNR=1

X4 X5 X6 X7 X8 X9 X10 Model

Homoscedasticity
HPM 0.6 0.7 0.6 100 0.7 0.9 0.5 96.5
MPM 0.8 1.2 0.7 100 1.0 1.0 0.8 95.2
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X4 X5 X6 X7 X8 X9 X10 Model

AIC 16.4 16.5 17.9 100 16.1 17.0 16.3 37.4
BIC 2.2 2.8 2.4 100 2.5 2.3 2.3 86.9
Lasso 37.8 29.8 29.2 100 32.7 27.5 32.7 20.3

Heteroscedasticity - X7
HPM 0.1 0.2 0.3 100 0.2 0.2 0.1 99.1
MPM 0.1 0.3 0.3 100 0.3 0.3 0.1 98.7
AIC 7.5 12.6 12.2 100 8.7 12.4 8.2 56.7
BIC 0.2 1.0 1.0 100 0.7 1.1 0.5 95.9
Lasso 36.2 31.5 29.9 100 31.7 27.5 29.4 20.9

Heteroscedasticity - X6
HPM 0.3 0.3 0.5 100 0.3 0.6 0.4 98.2
MPM 0.5 0.6 0.6 100 0.5 0.9 0.5 97.1
AIC 13.9 14.6 16.0 100 12.2 17.7 12.7 45.6
BIC 1.2 1.3 1.5 100 1.3 1.8 1.4 92.8
Lasso 38.2 30.8 29.5 100 33.0 28.3 32.1 20.5

The results show that, on the one hand (and most importantly), BVS does
not seem to deteriorate when heteroscedasticity is introduced. The proportion of
wrong selections is low for the three considered scenarios and for both values of
SNR, even though the percentage of right model’s choice is higher when the aver-
age error variance is lower. These results are expected, considering our reasoning
in Section 2.4.

On the other hand, BVS consistently outperforms the frequentist methods.
Both AIC and Lasso are often selecting overfitted models. The BIC is the one that
closest resembles the (good) selections of BVS.

Another interesting property is that BVS seems to behave better when the
heteroscedasticity is dependent on X7, the variable that also enters the model.
One motive for this may be that observations with higher values will also be the
ones with higher variances, diluting the impact of heteroscedasticity; moreover,
since the average variance is constant, several observations in the dataset will
contain a lower variance comparing to its homoscedastic counterpart, making it
easier to capture the signal, and consequently easier for BVS to properly select
the HPM and MPM (the same rationale extends to the AIC and BIC).

A simple graphical representation is illustrative of this question. The follow-
ing figure plots two averages (10 simulations each) of homoscedastic and het-
eroscedastic instances of y against X7 (SNR = 1).
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FIGURE 1: Two instances of a simulated dependent variable (SNR=1)
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We can easily verify that, when the data is heteroscedastic, the points become
more "scattered" as X7 increases, since heteroscedasticity is positively dependent
on this variable.

The same explanation may probably be given for the third case considered,
where heteroscedasticity depends on X6, and BVS seems to improve as well. Al-
though a graphical representation is difficult in this case, the fact that selection
via AIC and BIC shows less false positives may lead us to conclude that the gen-
eration of the dependent variable y, and the induced change in the model’s fit, is
responsible for the majority of these differences (a reasoning that can be extended
to dependence on X7).

An analysis of the SSEs also yields similar conclusions, as there are differences
in the ratios between Mγ and M0 when the variance’s specification is altered. For
instance, when heteroscedasticity depends on X7, the ratio with lowest value (cor-
responding to the model with all variables included) is higher.

For BVS, a further look into the inclusion probabilities is also meritory. To
recapitalute, the MPM is the model which includes all variables with an inclusion
probability larger than 0.5. From our simulation results, it is expected that X7 has
a more substantial inclusion probability, with the others rarely passing the 0.5
threshold. We can boxplot the results from all repetitions for the three different
cases.

The inclusion probabilities for X7 are concentrated in 1, confirming good per-
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FIGURE 2: Boxplot of inclusion probabilities: SNR = 1
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formance in selection. Moreover, the quartiles for the remaining variables are all
close to zero, although some dispersion is present.

Once again, there seems to be a better performance when the heteroscedas-
ticity depends on X7 (lower quartiles for the variables not included in the model
and less dispersion). We could also extend this conclusion to the other case of
heteroscedasticity, although the difference is not so evident.

The last measures of comparison are related to the predictive performance of
BVS. For each of 10000 repetitions, 18 random observations are kept for testing,
and BVS is applied with the remaining 160. Then, we sample 10000 values from
the predictive distribution conditional on every vector of independent variables
in the test set, meaning there are 18 different distributions for every data reali-
sation. When applying BMA, all possible 128 models are used. The following
table contains the values obtained for the 3 different measures discussed in the
beginning of Section 3:

TABLE IV: Predictive performance: Ozone

RSE Interval Length Coverage

SNR = 10

Homoscedasticity HPM 0.107 0.505 0.951
BMA 0.106 0.505 0.952

Heteroscedasticity - X7
HPM 0.105 0.505 0.943
BMA 0.106 0.505 0.943
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RSE Interval Length Coverage

Heteroscedasticity - X6
HPM 0.106 0.505 0.942
BMA 0.107 0.505 0.940

SNR = 1

Homoscedasticity HPM 0.571 0.505 0.950
BMA 0.574 0.505 0.952

Heteroscedasticity - X7
HPM 0.579 0.505 0.942
BMA 0.582 0.505 0.942

Heteroscedasticity - X6
HPM 0.567 0.505 0.941
BMA 0.574 0.505 0.940

The interval length shows virtually no change between SNR, number of mod-
els used or variance types. The Relative Squared Error, however, is inconsistent
among SNRs: when it equals 10, this measure is lower for heteroscedastic sit-
uations under the HPM. When SNR=1, it gets higher for the first case of het-
eroscedasticity, and lower when it is dependent on X6.

Coverage probability is the measure where differences between homoscedas-
ticity and heteroscedasticity are more profound. When the error variance is equal,
this measure reaches 0.95 (and even surpasses it), which is the expected result if
we approach it from a frequentist standpoint of confidence intervals. When we
introduce heteroscedasticity, coverage diminishes: the HPD intervals fail to con-
tain the true value of y more often.

One additional interesting result is that the Relative Squared Error (RSE) is
lower when using only the Highest Probability Model in most situations. This
result is unexpected, considering the properties of BMA discussed in 2.2. The
fact that the posterior probability of the HPM is very close to 1 may be a factor
that justifies these values.

3.2.2 Simple Linear Regression: "corrected" datasets

In this section, we utilise the "corrected" datasets, which theoretically accom-
modate heteroscedasticity in the data. After dividing each observation by the
corresponding standard error for the two considered heteroscedastic situations,
we report the same measures (choice frequencies and predictive performance),
but we restrict them only to fully Bayesian procedures (HPM and MPM) and
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AIC1 in the frequencies table. A comparison with a frequentist method is useful
to analyse if the observed differences also apply to non-Bayesian approaches, a
situation that, if happening, would corroborate some of our conclusions in the
previous section. We also restrict our reported results to heteroscedastic cases
only, since applying this approach to the homoscedastic (original) dataset would
yield the same results as above.

To verify if heteroscedasticity is no longer detected, we ran the same frequen-
tist heteroscedasticity tests (White and Breusch-Pagan) as in Section 3.2.1. As ex-
pected, percentages of rejection are close to 5% in every case, which indicate that
heteroscedasticity is not present in the "corrected" datasets (table B.I, Appendix
B).

Results concerning frequencies of choice for each variable are presented be-
low:

TABLE V: Selection frequencies (%) for Ozone data ("corrected"): SNR = 10

X4 X5 X6 X7 X8 X9 X10 Model

Heteroscedasticity - X7
HPM 0.2 0.3 0.2 100 0.2 0.1 0.2 98.8
MPM 0.2 0.3 0.2 100 0.1 0.1 0.2 98.8
AIC 50.3 17.8 17.0 100 18.1 17.0 16.3 19.6

Heteroscedasticity - X6
HPM 0.1 0.2 0.1 100 0.2 0.2 0.2 99.2
MPM 0.1 0.2 0.1 100 0.2 0.1 0.2 99.2
AIC 49.1 16.8 16.3 100 17.7 18.0 18.6 20.1

TABLE VI: Selection frequencies (%) for Ozone data ("corrected"): SNR = 1

X4 X5 X6 X7 X8 X9 X10 Model

Heteroscedasticity - X7
HPM 0.6 0.4 0.3 100 0.7 0.4 0.4 97.2
MPM 0.8 0.7 0.5 100 1.0 0.7 0.7 96.1
AIC 25.3 18.7 17.7 100 18.8 16.5 17.7 28.2

Heteroscedasticity - X6
HPM 0.5 0.7 0.6 100 0.6 0.8 0.6 96.7
MPM 0.7 1.0 0.8 100 0.8 0.9 0.9 95.6

1Unfortunately, since the weights are also applied to the intercept, this term needs to be ex-
plicitly included in the design matrix X when performing the computations. Therefore, it is not
possible to include it by default in every considered model when applying AIC. This fact may
induce some bias in the procedure, but only for the frequentist method.
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X4 X5 X6 X7 X8 X9 X10 Model

AIC 20.6 17.1 16.1 100 17.2 16.4 18.2 34.7

To recapitulate, when no correction is made, BVS works better if there is het-
eroscedasticity (especially when it depends on X7), selecting spurious variables
less often and, in consequence, increasing the number of times the right model is
selected.

After applying weights to each observation, we see that the choices made by
BVS become more resembling of the homoscedastic dataset. Comparing to the
situations where homoscedasticity is assumed, we have more incorrect selections
and less correct models overall, for both values of SNR. We might say that this
correction eliminates, as intended, the differences in the model’s fit that existed
between homo and heteroscedasticity.

The frequentist method is, however, showing a different behaviour: the vari-
able X4 is being selected more often. We suspect that the high correlation between
X4 and X7 leads to this issue, as it is close to 0.9 in both cases (Tables A.II and A.III,
Appendix A.1).

We now analyse the three measures of predictive performance:

TABLE VII: Predictive performance: Ozone ("corrected")

RSE Interval Length Coverage

SNR = 10

Heteroscedasticity - X7
HPM 0.182 0.505 0.952
BMA 0.185 0.505 0.951

Heteroscedasticity - X6
HPM 0.023 0.505 0.951
BMA 0.023 0.505 0.951

SNR = 1

Heteroscedasticity - X7
HPM 0.733 0.505 0.951
BMA 0.735 0.505 0.952

Heteroscedasticity - X6
HPM 0.194 0.505 0.952
BMA 0.195 0.505 0.952

The largest differences occur in the first performance measure, the RSE. When
heteroscedasticity (and the weights) are dependent on X7, this value is substan-
tially higher than when considering homoscedasticity. This is reversed when we
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move to the remaining heteroscedasticity function (X6), where performance im-
proves by this measure.

Looking more closely at the formula for the RSE, we see that the denominator
is the sample variance of the dependent variable in the test set (missing only the
division by the number of observations, which cancels out with the numerator).
Calculating the numerator and denominator separately, the first component is
more or less constant when comparing the two weights used, while the denomi-
nator is much lower (higher) using weights depending on X7 (X6), driving all the
disparities encountered between each case.

Reasons for this are simple. y is a function of X7. When the corrections use
this same variable, and considering that the variance is a positive function of X7,
the values of this variable (and the values of y) get more concentrated. When the
weights depend on X6, the opposite is verified.

This can be seen in the sampled predictive distributions. Scale almost does
not change when heteroscedasticity depends on X7 (by visual inspection, mass is
usually in the 4-8 range), while in X6 the support of each distribution shows more
variability (the range length is similar, but mass is around the values 2-6 and 8-
12). This fact does not interfere with the average variance of the distributions,
which is virtually equal between these two situations, but the mean is higher in
the second case.

The question to address is if these results reflect true predictive performance
(in other words, if RSE is working as desired). The answer must be positive: the
RSE is harmonising squared differences in different scales. This does not mean,
however, that the use of weights should be automatically discouraged. This mea-
sure only utilises point estimates, while the remaining take full advantage of the
predictive distribution.

As for the other two measures, the interval length, once again, does not show
any difference. The coverage probability is where contrasts are more evident.
Values close to 0.95 are always reached, which constitutes an improvement com-
paring to when heteroscedasticity is ignored.
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3.3 Multiple Linear Regression: Setup

We now extend these results to the multiple linear regression, a case that, as
more interesting, is also more nuanced. To illustrate this scenario, we use the
Crime dataset, originally from Vandaele (1978), and available in BayesVarSel. It
was used extensively by Raftery et al. (1997) to illustrate Bayesian Model Av-
eraging, and also by Fernández et al. (2001) or Liang et al. (2008) to ellucidate
problems of model uncertainty and selection.

This dataset is composed of 47 observations (one for each US state in this
study from 1960) with 15 variables (we discard y once again), mostly economic
and social indicators.

We arbitrarly decide on the following DGP:

y = 0.1 Ed + 0.5 Po2 + 1.2 Pop − 0.2 Ineq + 100 Prob − 0.1 Time + ε

In order to get a SNR with a value 1, the average variance of the error needs to be
3124.117. The considerable number of variables in the DGP may make this num-
ber a bit excessive, but having an equal average variance is more decisive in order
to make realiable comparisons. We also expect that the existence of parameters
with negative values will contribute to worsen the results, as the signal might be
more difficult to capture.

For our heterocedastic datasets, we decide to start with a different approach.
The first is setting the variance through an exponencial function, exp{w}, where w

is the sequence of 47 equally spaced observations between 1 and 3.7 (this ensures
an SD ratio of 3.5):

ωi = exp
{
1 +

2.7
46

i
}

, i = 1, . . . , 47 (6)

Secondly, we divide the dataset in two parts, the first one having a variance
12.25 times higher than the second (to get, once again, the desired SD ratio):

ωi =

{
1, i = 1, . . . , 23
12.25, i = 24, . . . , 47

(7)

Then, our variance function will depend on a variable included and one not in-
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cluded in the DGP. We decide on:

ωi = exp {1 + 0.0186 Popi} , i = 1, . . . , 47 (8)

ωi = exp {1 + 0.0077 GDPi} , i = 1, . . . , 47 (9)

Once again, we transform all these expressions to conform to the defined SNR.

3.3.1 Multiple Linear Regression: original dataset

Reported findings for the original dataset follow the sequence of Section 3.2.1.
We begin by performing the heteroscedasticity tests described in that section,
with 10000 generated datasets:

TABLE VIII: Percentage of rejections in heteroscedasticity tests: Crime

Breusch-Pagan White

SNR = 10
Homoscedasticity 1.44 4.31
Heteroscedasticity - exponential 1.90 4.90
Heteroscedasticity - two values 1.23 4.72
Heteroscedasticity - Pop 23.81 53.91
Heteroscedasticity - GDP 5.71 17.5

SNR = 1
Homoscedasticity 1.63 4.67
Heteroscedasticity - exponential 1.86 3.14
Heteroscedasticity - two values 1.25 3.37
Heteroscedasticity - Pop 23.96 63.36
Heteroscedasticity - GDP 5.94 21.29

The number of correct rejections can only be considered acceptable when het-
eroscedasticity is a function of the dataset variables. One factor that may be driv-
ing these results is that the variance is not ordered by values of y. However,
ordering the generated dependent variable does not affect the obtained power in
any of the considered cases. Moreover, some simulations (like making y depen-
dent on one variable and heteroscedasticity dependent on the same variable) did
not improve the number of rejections, as did not changing the value of the SNR
further. These are, however, tests based on an auxiliary regression which contains
the regressors, or the fitted values of y, which are a function of the regressors. It
can, therefore, be expected that they perform poorer when the variance does not
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depend on any independent variable. Further explanations are the low power
these tests have for small samples (Long and Ervin, 2000), and the high number
of degrees of freedom (15) in the Breusch-Pagan test.

The following tables report the selection frequencies for the variables in the
dataset, along with the number of times the right model was selected. The vari-
ables belonging to the DGP are in bold. We use 5000 data realisations for this
procedure.

TABLE IX: Selection frequencies (%) for Crime data: SNR=10

M So Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time Model

Homoscedasticity
HPM 1.3 1.3 2.8 18.3 51.8 0.5 0.5 100 1.8 0.4 0.4 13.1 21.6 1.1 1.5 0.0
MPM 1.0 0.9 2.5 15.9 44.6 0.6 0.6 100 1.3 0.4 0.3 8.8 20.6 1.2 1.7 0.0
AIC 23.2 24.0 26.1 46.4 61.9 23.7 23.3 100 24.9 22.7 22.7 27.6 55.0 31.7 24.6 0.0
BIC 9.3 11.4 13.1 34.3 57.1 8.5 8.0 100 11.6 7.5 6.1 15.5 43.0 15.4 10.9 0.0
Lasso 41.9 27.3 35.3 47.7 73.9 31.3 32.1 100 23.0 29.2 29.3 43.8 72.1 32.7 32.9 0.1

Heteroscedasticity - Exponential
HPM 2.0 1.3 2.9 20.7 51.9 1.2 0.4 100 1.5 0.4 0.7 11.4 23.4 1.2 2.6 0.0
MPM 1.8 0.8 2.5 18.3 46.2 1.2 0.4 100 0.8 0.2 0.6 6.7 22.0 1.5 2.9 0.0
AIC 24.6 24.5 28.1 55.0 64.1 31.2 25.7 100 24.0 23.2 24.5 22.5 56.0 29.5 30.4 0.0
BIC 11.0 9.8 13.9 41.1 57.9 13.2 9.6 100 10.4 8.1 8.5 12.9 43.1 13.3 14.6 0.0
Lasso 42.9 25.1 35.4 50.4 70.9 34.3 31.4 100 22.2 29.8 31.1 42.1 72.6 29.5 37.6 0.0

Heteroscedasticity - two values
HPM 0.3 2.2 3.0 13.2 57.4 0.1 0.2 100 2.7 0.1 0.3 16.0 19.4 2.3 0.7 0.0
MPM 0.2 1.5 2.0 10.4 47.9 0.0 0.2 100 2.1 0.1 0.3 11.8 18.0 2.9 1.0 0.0
AIC 23.3 28.2 24.9 36.2 62.4 14.4 20.2 100 28.1 22.4 24.4 32.8 53.8 36.7 27.3 0.0
BIC 8.1 13.3 11.6 26.5 62.3 3.2 6.1 100 14.0 5.2 7.1 19.8 42.0 19.3 11.1 0.0
Lasso 40.1 31.0 36.7 45.5 81.1 24.4 30.8 100 26.6 27.5 30.3 45.7 72.4 37.4 34.1 0.0

Heteroscedasticity - Pop
HPM 1.3 0.8 3.2 12.3 57.3 0.2 0.1 100 0.9 0.3 0.5 16.9 21.2 0.6 0.7 0.0
MPM 1.2 0.5 2.4 9.7 51.7 0.2 0.1 100 0.4 0.2 0.6 12.3 20.9 0.7 0.9 0.0
AIC 25.5 20.0 25.1 41.4 62.1 18.8 18.4 100 20.1 21.8 28.1 30.1 56.5 29.2 24.9 0.1
BIC 9.8 7.2 13.9 28.7 60.4 5.5 6.4 100 8.5 6.7 10.0 19.8 44.1 12.8 10.6 0.0
Lasso 43.5 25.7 36.9 45.8 76.3 28.0 31.4 100 20.4 26.6 34.0 45.1 74.7 30.5 33.5 0.1

Heteroscedasticity - GDP
HPM 0.5 2.0 3.9 21.0 48.9 0.3 0.7 100 0.6 0.3 0.6 12.8 22.6 1.7 1.3 0.0
MPM 0.5 1.5 3.5 19.0 43.7 0.3 0.7 100 0.3 0.3 0.6 8.4 21.8 2.3 1.6 0.0
AIC 20.6 22.3 28.0 50.1 61.9 18.7 23.4 100 17.6 20.6 27.0 26.8 54.8 35.1 25.9 0.0
BIC 7.4 11.6 15.4 38.1 56.7 6.3 9.9 100 6.8 6.5 9.5 16.5 44.0 17.7 11.5 0.0
Lasso 41.8 28.7 37.6 47.4 73.0 28.8 36.1 100 17.7 27.6 32.6 44.6 74.5 35.5 33.4 0.0

TABLE X: Selection frequencies (%) for Crime data: SNR=1

M So Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time Model

Homoscedasticity
HPM 3.8 3.7 5.6 9.3 11.7 2.7 3.3 95.8 3.3 2.3 2.5 8.4 8.4 3.0 3.2 0
MPM 4.0 3.6 4.8 7.7 8.0 3.5 4.4 98.1 3.5 2.9 3.2 6.1 6.2 4.0 4.2 0
AIC 22.9 23.3 24.8 31.1 33.5 23.2 23.3 99.3 24.3 23.5 23.6 27.4 29.3 24.1 23.2 0
BIC 9.2 9.3 11.8 17.2 20.5 8.1 8.4 98.4 8.7 7.5 6.8 14.9 16.7 8.7 8.4 0
Lasso 33.9 22.1 21.6 40.8 44.8 27.5 27.3 100.0 20.4 24.6 27.3 29.5 28.5 29.6 28.3 0

Heteroscedasticity - Exponential
HPM 5.4 3.8 6.4 9.8 13.7 4.4 3.9 95.2 3.6 3.4 3.5 6.4 10.4 3.3 5.1 0
MPM 4.9 3.8 6.1 9.5 12.2 5.8 4.8 98.0 3.4 3.1 3.5 3.7 7.9 3.0 7.0 0
AIC 23.9 24.1 27.0 38.1 40.7 29.7 26.3 99.2 23.4 21.8 23.3 21.3 30.2 20.4 28.8 0
BIC 10.6 8.7 12.6 20.3 24.2 11.5 9.2 98.4 8.1 7.6 8.5 11.5 18.0 7.0 11.6 0
Lasso 35.5 21.7 23.1 40.6 46.8 29.1 28.3 100.0 18.9 25.7 27.9 25.5 29.7 26.5 33.4 0

Heteroscedasticity - two values
HPM 2.2 3.8 5.0 6.3 11.0 1.6 2.4 97.4 3.6 1.6 1.7 11.3 8.0 3.9 2.3 0
MPM 3.4 4.2 4.1 4.0 5.7 1.1 2.8 98.9 5.3 2.1 2.7 8.7 6.8 5.9 3.8 0
AIC 23.4 25.7 22.5 22.8 25.7 12.5 20.0 99.6 28.0 22.2 23.8 32.2 28.0 31.3 24.1 0
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M So Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time Model

BIC 7.3 10.1 10.8 11.9 18.4 3.0 5.6 98.8 11.5 5.8 6.7 19.5 15.7 13.3 8.1 0
Lasso 30.4 24.0 21.8 39.3 47.9 21.1 26.1 100.0 24.7 22.8 28.1 33.3 27.1 36.4 26.4 0

Heteroscedasticity - Pop
HPM 3.2 2.3 5.6 6.5 17.5 1.5 2.1 88.2 1.9 1.8 1.9 7.4 7.6 1.6 2.1 0
MPM 6.8 1.9 4.5 4.4 11.9 1.6 2.2 90.3 1.6 1.9 3.2 5.6 5.4 1.5 2.7 0
AIC 24.2 20.0 24.3 27.0 37.9 18.0 18.3 94.1 19.2 21.1 27.2 29.7 27.9 18.5 20.0 0
BIC 9.6 6.0 12.3 12.9 27.9 4.8 6.3 92.3 5.1 6.1 8.5 17.1 16.3 5.2 6.2 0
Lasso 32.4 19.6 23.3 34.7 47.8 23.0 25.8 94.4 15.4 21.8 27.5 30.7 26.4 24.5 25.8 0

Heteroscedasticity - GDP
HPM 2.8 3.3 4.0 14.9 14.3 2.1 4.2 91.2 2.0 2.2 2.4 6.6 8.0 3.7 3.2 0
MPM 3.2 3.2 3.9 13.7 11.6 1.9 5.2 94.6 1.3 2.2 3.4 5.7 6.5 4.8 3.9 0
AIC 19.5 21.3 25.1 38.6 38.0 16.8 22.7 98.2 15.7 20.6 26.2 26.4 28.2 27.1 23.0 0
BIC 7.0 8.1 10.6 23.9 24.5 5.0 9.8 95.9 3.9 5.8 8.2 14.1 15.7 10.8 8.2 0
Lasso 32.0 22.7 22.6 40.8 41.9 23.7 30.7 99.5 13.0 21.2 28.1 29.3 28.5 31.8 27.5 0

A mixture of the variance, which we believe is too high, and the chosen pa-
rameters result in selections that are not satisfactory. The correct model is virtu-
ally never selected. We see the same behaviour comparing to 3.2: the Lasso and
AIC are selecting models containing more variables, which helps making some
right decisions. HPM, MPM and BIC are selecting more parsimonious models.

The only variable selected most of the time is Pop. Since βPop = 100, this high
value (even though the magnitude of the variable is small) might be capturing
a considerable portion of the signal. For this and the remaining variables, while
there are changes in all methods when heteroscedasticity is introduced, neither
are they significant nor their signs unambiguous: the changes in percentages of
inclusion for each variable do not show any distinct pattern. Moreover, more sig-
nificant changes are usually related to selecting other variables which are highly
correlated (e.g. Po1 instead of Po2).

For evaluation of predictive performance, 7 observations were randomly kept
aside for testing, leaving the remaining 40 for training. For BMA, due to compu-
tational constraints, we keep only the 256 most probable models when simulating
from the posterior predictive distribution: this allows a total posterior probabil-
ity ranging from 0.5 to 0.9 when the SNR equals 1. 10000 instances of y were
simulated.

TABLE XI: Predictive performance: Crime

RSE Interval Length Coverage

SNR = 10

Homoscedasticity HPM 0.325 0.475 0.932
BMA 0.301 0.472 0.951

Heteroscedasticity - exponential HPM 0.324 0.475 0.925
BMA 0.297 0.472 0.942
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RSE Interval Length Coverage

Heteroscedasticity - two values HPM 0.315 0.475 0.918
BMA 0.293 0.472 0.933

Heteroscedasticity - Pop HPM 0.295 0.475 0.927
BMA 0.280 0.472 0.942

Heteroscedasticity - GDP HPM 0.316 0.475 0.921
BMA 0.289 0.472 0.938

SNR = 1

Homoscedasticity HPM 1.040 0.475 0.930
BMA 0.960 0.466 0.949

Heteroscedasticity - exponential HPM 1.053 0.475 0.922
BMA 0.953 0.467 0.938

Heteroscedasticity - two values HPM 1.020 0.475 0.913
BMA 0.934 0.466 0.930

Heteroscedasticity - Pop HPM 1.403 0.475 0.923
BMA 1.267 0.467 0.938

Heteroscedasticity - GDP HPM 1.122 0.475 0.922
BMA 1.031 0.467 0.935

For this dataset, conclusions from the RSE vary with the value of SNR con-
sidered: when the amount of noise is lower (higher SNR), the introduction of
heteroscedasticity improves the predictive accuracy of BVS. However, when the
level of noise increases, this is only true for the first two cases of heteroscedastic-
ity, where the White and BP tests performed poorly in capturing heteroscedastic-
ity. When heteroscedasticity is dependent on a dataset variable, it rises substan-
tially, even after BMA. The high variance needs to be considered when looking at
the values obtained from the lowest SNR.

Once again, differences in interval length are not substantial. As for the cov-
erage probabilities, we get a confirmation of the results obtained in 3.2: the intro-
duction of heteroscedasticity is detrimental to the coverage of the HPD interval.
When BMA is applied, coverage under homoscedasticity is always around the
desired 0.95.

Lastly, and contrary to 3.2, Bayesian Model Averaging improves the results
for every situation and measure considered.
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3.3.2 Multiple Linear Regression: "corrected" datasets

We now repeat the approach used in Section 3.2.2, applying it to this dataset.
We utilise 4 different sets of weights, corresponding to the 4 different heteroscedas-
ticity functions defined in the previous section.

We also ran frequentist heteroscedasticity tests. While the low quality results
for this dataset were already discussed, we get no evidence of heteroscedasticity
(table B.II, Appendix B).

Choices made by BVS can be seen in the following tables:

TABLE XII: Selection frequencies (%) for Crime data ("corrected"): SNR = 10

M So Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time Model

Heteroscedasticity - Exponential
HPM 1.3 1.1 2.5 19.2 65.1 0.5 0.4 100 2.1 0.3 0.4 7.4 30.9 1.5 1.9 0.0
MPM 0.9 0.5 1.8 16.7 61.2 0.4 0.4 100 1.2 0.2 0.3 5.2 30.2 1.5 1.9 0.0
AIC 27.2 25.6 29.1 47.9 67.0 26.1 28.1 100 25.7 23.7 24.3 28.0 68.9 36.7 27.4 0.0

Heteroscedasticity - two values
HPM 1.9 5.4 7.5 18.5 79.3 0.5 0.5 100 2.6 0.4 0.3 6.1 64.2 5.4 3.9 0.0
MPM 1.2 3.4 5.7 17.6 80.0 0.4 0.3 100 1.6 0.2 0.2 5.0 60.9 4.4 3.0 0.0
AIC 26.9 26.4 32.2 39.7 74.7 26.1 27.4 100 24.2 24.2 23.3 27.3 84.3 42.9 31.0 0.2

Heteroscedasticity - Pop
HPM 2.2 2.2 6.0 18.7 67.5 1.1 1.0 100 3.2 0.7 1.2 11.2 38.3 5.3 3.7 0.0
MPM 1.9 1.9 5.0 18.7 65.5 1.3 1.4 100 2.4 1.0 1.2 9.2 39.6 5.9 3.9 0.0
AIC 25.4 24.9 30.7 45.7 67.8 25.9 28.6 100 24.1 24.4 23.8 28.1 72.5 39.8 27.6 0.1

Heteroscedasticity - GDP
HPM 1.4 2.5 5.9 18.8 45.3 0.7 0.6 100 2.1 0.5 0.6 8.1 39.2 2.6 2.0 0.0
MPM 1.0 1.8 4.7 16.0 41.7 0.6 0.6 100 1.4 0.4 0.6 5.8 36.9 2.9 2.0 0.0
AIC 26.4 25.1 28.8 47.4 61.2 25.6 28.0 100 26.9 24.6 24.2 27.3 68.8 35.9 26.9 0.0

TABLE XIII: Selection frequencies (%) for Crime data ("corrected"): SNR = 1

M So Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time Model

Heteroscedasticity - Exponential
HPM 2.7 1.8 5.1 12.2 16.6 1.3 1.0 99.7 1.3 0.8 0.9 9.6 12.2 1.6 1.8 0.0
MPM 2.7 1.5 2.7 5.6 7.7 1.5 1.3 99.9 1.5 1.4 1.3 4.7 7.5 1.8 2.5 0.0
AIC 26.6 25.3 28.0 34.8 38.5 27.4 27.1 100 24.7 23.8 23.8 28.7 33.5 25.3 23.7 0.0

Heteroscedasticity - two values
HPM 1.9 2.8 5.2 15.1 31.9 0.6 0.9 100 1.0 0.8 0.6 18.5 15.5 1.0 1.1 0.0
MPM 1.2 1.9 2.9 9.2 18.9 0.8 1.1 100 0.8 0.5 0.6 9.3 10.4 1.2 1.0 0.0
AIC 26.6 26.1 26.7 38.1 47.4 25.3 28.0 100 25.3 24.7 23.1 29.6 40.0 25.6 25.7 0.0

Heteroscedasticity - Pop
HPM 13.3 12.8 15.5 21.7 28.1 12.1 12.9 75.1 12.7 12.1 12.1 20.0 21.3 12.3 12.3 0.0
MPM 14.7 9.8 10.7 20.1 24.7 8.7 10.5 88.5 9.5 9.0 8.9 14.3 16.7 10.1 9.2 0.0
AIC 26.8 24.3 27.9 35.0 39.4 25.9 27.0 96.7 23.8 24.5 24.1 30.0 34.2 26.3 25.1 0.0

Heteroscedasticity - GDP
HPM 5.6 5.9 9.5 14.5 14.7 4.1 4.8 89.8 5.1 3.7 3.9 10.1 13.6 4.7 4.5 0.0
MPM 5.4 5.3 7.2 10.8 11.3 4.6 5.0 94.9 4.4 3.8 3.9 6.9 11.0 5.4 4.6 0.0
AIC 26.6 24.2 27.3 32.2 34.5 28.1 28.3 98.9 23.1 24.2 24.1 27.6 34.6 24.9 23.3 0.0

For some variables, the number of correct choices is improving: this is the case
for Po2, Ineq and, more often than not, and when SNR=10, the remaining vari-
ables in the DGP. However, it is not possible to conclude that BVS is displaying a
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better behaviour: the case of Po1 when the SNR equals 1 is an appropriate exam-
ple. AIC is also showing these attributes, which leads us to believe that changes
in the datasets’ characteristics are the reason for the observed differences.

In fact, correlations are stronger when we correct for heteroscedasticity (tables
may be found in Appendix A.2). Excluding the diagonal and the new constant,
there are 105 different correlations between all independent variables. When
no weights are applied, 30 of them are larger than 0.5 in absolute value; when
weights are used, we get (in order) 70, 69, 51 and 75 values in the same situation.

Predictive performance is shown below:

TABLE XIV: Predictive performance: Crime ("corrected")

RSE Interval Length Coverage

SNR = 10

Heteroscedasticity - exponential HPM 0.197 0.475 0.931
BMA 0.178 0.471 0.951

Heteroscedasticity - two values HPM 0.147 0.474 0.920
BMA 0.129 0.468 0.951

Heteroscedasticity - Pop HPM 0.606 0.474 0.921
BMA 0.542 0.471 0.949

Heteroscedasticity - GDP HPM 0.447 0.475 0.927
BMA 0.398 0.472 0.950

SNR = 1

Heteroscedasticity - exponential HPM 0.803 0.475 0.931
BMA 0.738 0.471 0.949

Heteroscedasticity - two values HPM 0.625 0.475 0.928
BMA 0.584 0.470 0.951

Heteroscedasticity - Pop HPM 1.707 0.472 0.923
BMA 1.451 0.456 0.949

Heteroscedasticity - GDP HPM 1.322 0.474 0.926
BMA 1.181 0.461 0.950

Compared to the results obtained under the original dataset, correcting for
heteroscedasticity improves the Relative Squared Error (RSE) for the two first
cases of heteroscedasticity, while for the last two this measure worsens when ap-
plying weights. These considerable differences are similar to the results verified
in Section 3.2.2: once again, the numerators of the expression and the predictive
distributions’ scales are similar, but for the last two cases the denominator is con-
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siderably lower, increasing the obtained RSE.

The remaining measures show more definite realities. The interval length only
worsens for the first two situations, and when SNR=1; otherwise it remains con-
stant or decreases, especially when applying BMA. The advantages of consider-
ing more than one model may be better demonstrated when looking at the cover-
age probabilities. Improvements are modest when looking at the HPM, but after
BMA they reach the desired 0.95.

4 Conclusion

The objective of this thesis was to evaluate the consequences of heteroscedas-
ticity on BVS. To this effect, we performed an extensive simulation study, com-
paring the selections made and predictive performance in two situations: when
introducing heteroscedasticity, and when using a weighted dataset to correct for
heteroscedasticity.

In the first situation, it is important to refer that special care was taken in
guaranteeing that the introduction of heteroscedasticity did not bring excessive
noise to the datasets. To this effect, we adapted the existing definitions of Signal-
to-Noise Ratio to fit our needs.

We conclude that differences in the selected variables occur due to changes in
the underlying datasets. This takes the form of better/worse fit when comparing
to an homoscedastic dataset, and these changes in fit are not substantial. When
applying weights to correct for heteroscedasticity in each heteroscedastic case,
changes in the correlation structure are the driving factor behind modifications
in the selected variables. BVS can be considered to be robust to the introduction
of heteroscedasticity, although the quality of selection may not improve when
taking the structure of the error’s variance into account.

Even though the RSE shows mixed results, the interval length and coverage
probability, especially this last measure, show better values when variance is ex-
plicitly considered. Therefore, using the standard deviations as weights may im-
prove predictive performance. Since in a non-simulated environment this is not
possible, fully Bayesian approaches may be developed to allow for heteroscedas-
tic errors, which could in turn provide better predictions under BVS. The impor-
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tance of considering Bayesian Model Averaging should also be highlighted.

In terms of limitations of our study, it is important to point out that a different
approach could have been taken. Even though we looked at several different re-
sults (choice frequencies, predictive performance, and inclusion probabilities for
the univariate linear regression) from BVS, one advantage of BVS is its richness,
and other aspects of the analysis could have been explored in detail. For instance,
it is possible to check the consequences in the posterior model probabilities, the
estimates of the coefficients or the probabilities of selecting a certain number of
variables, a task that could yield additional or even different conclusions.

For future work, the same strategy can be applied to slightly different situa-
tions. An example is the use of different priors, including the mentioned spike-
and-slab distributions. It would also be interesting to study the case of serial
correlation in the errors, which is more general than the one here considered, but
where it is possible to employ the same measures, with some modifications. Al-
though usually not considered, the same study may be done in a p > n situation,
where the family of conventional priors has already seen some developments
(Berger et al., 2016).
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Appendices

A Correlation tables

A.1 Correlation tables of regressors: Ozone dataset

TABLE A.I: Correlation table, Ozone data: Homoscedasticity (original)

x4 x5 x6 x7 x8 x9 x10

x4 1
x5 -0.22 1
x6 0.06 0.28 1
x7 0.79 0.07 0.37 1
x8 -0.49 0.13 -0.24 -0.48 1
x9 -0.22 0.37 0.61 0.17 0.13 1
x10 -0.32 0.02 -0.48 -0.4 0.41 -0.14 1

TABLE A.II: Correlation table, Ozone data: Heteroscedasticity - X7 ("corrected")

x4 x5 x6 x7 x8 x9 x10

x4 1
x5 0.62 1
x6 0.58 0.52 1
x7 0.90 0.43 0.44 1
x8 0.69 0.57 0.40 0.62 1
x9 0.09 0.36 0.58 -0.03 0.27 1
x10 0.64 0.49 0.17 0.61 0.6 -0.01 1

TABLE A.III: Correlation table, Ozone data: Heteroscedasticity - X6 ("corrected")

x4 x5 x6 x7 x8 x9 x10

x4 1
x5 0.44 1
x6 -0.74 -0.25 1
x7 0.89 0.36 -0.67 1
x8 0.65 0.42 -0.55 0.48 1
x9 -0.76 -0.15 0.75 -0.68 -0.37 1
x10 0.79 0.49 -0.61 0.65 0.65 -0.53 1
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A.2 Correlation tables of regressors: Crime dataset

TABLE A.IV: Correlation table, Crime data: Homoscedasticity (original)

M So Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time

M 1
So 0.58 1
Ed -0.53 -0.7 1
Po1 -0.51 -0.37 0.48 1
Po2 -0.51 -0.38 0.50 0.99 1

LF -0.16 -0.51 0.56 0.12 0.11 1
M.F -0.03 -0.31 0.44 0.03 0.02 0.51 1
Pop -0.28 -0.05 -0.02 0.53 0.51 -0.12 -0.41 1
NW 0.59 0.77 -0.66 -0.21 -0.22 -0.34 -0.33 0.10 1
U1 -0.22 -0.17 0.02 -0.04 -0.05 -0.23 0.35 -0.04 -0.16 1

U2 -0.24 0.07 -0.22 0.19 0.17 -0.42 -0.02 0.27 0.08 0.75 1
GDP -0.67 -0.64 0.74 0.79 0.79 0.29 0.18 0.31 -0.59 0.04 0.09 1
Ineq 0.64 0.74 -0.77 -0.63 -0.65 -0.27 -0.17 -0.13 0.68 -0.06 0.02 -0.88 1
Prob 0.36 0.53 -0.39 -0.47 -0.47 -0.25 -0.05 -0.35 0.43 -0.01 -0.06 -0.56 0.47 1
Time 0.11 0.07 -0.25 0.1 0.08 -0.12 -0.43 0.46 0.23 -0.17 0.1 0 0.1 -0.44 1

TABLE A.V: Correlation table, Crime data: Heteroscedasticity - exponential ("cor-
rected")

M So Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time

M 1
So 0.46 1
Ed 0.91 0.16 1
Po1 0.67 0.01 0.83 1
Po2 0.67 0.01 0.83 1 1

LF 0.95 0.25 0.98 0.76 0.76 1
M.F 0.97 0.34 0.97 0.76 0.76 0.99 1
Pop 0.31 -0.01 0.39 0.63 0.63 0.36 0.35 1
NW 0.61 0.83 0.32 0.2 0.2 0.42 0.49 0.19 1
U1 0.89 0.32 0.87 0.67 0.67 0.88 0.92 0.34 0.49 1

U2 0.82 0.42 0.77 0.69 0.69 0.79 0.84 0.46 0.57 0.92 1
GDP 0.78 0.03 0.94 0.92 0.92 0.89 0.88 0.49 0.19 0.79 0.74 1
Ineq 0.93 0.64 0.74 0.45 0.45 0.83 0.87 0.25 0.75 0.81 0.78 0.56 1
Prob 0.69 0.70 0.47 0.16 0.17 0.56 0.61 -0.06 0.69 0.59 0.52 0.29 0.77 1
Time 0.81 0.27 0.77 0.66 0.66 0.82 0.81 0.57 0.51 0.7 0.73 0.73 0.76 0.36 1
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TABLE A.VI: Correlation table, Crime data: Heteroscedasticity - two values ("cor-
rected")

M So Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time

M 1
So 0.38 1
Ed 0.94 0.11 1
Po1 0.72 -0.04 0.83 1
Po2 0.72 -0.04 0.84 1 1

LF 0.97 0.2 0.98 0.8 0.8 1
M.F 0.98 0.23 0.98 0.79 0.8 0.99 1
Pop 0.3 0.16 0.32 0.55 0.54 0.32 0.32 1
NW 0.46 0.77 0.2 0.17 0.16 0.32 0.31 0.30 1
U1 0.87 0.12 0.91 0.73 0.73 0.9 0.93 0.31 0.16 1

U2 0.83 0.18 0.85 0.76 0.75 0.84 0.88 0.42 0.23 0.96 1
GDP 0.89 0.04 0.98 0.9 0.91 0.95 0.95 0.41 0.15 0.89 0.86 1
Ineq 0.95 0.54 0.84 0.59 0.59 0.9 0.92 0.3 0.54 0.83 0.79 0.77 1
Prob 0.76 0.41 0.70 0.38 0.39 0.73 0.75 0.08 0.38 0.66 0.60 0.60 0.80 1
Time 0.87 0.33 0.81 0.75 0.74 0.83 0.84 0.54 0.43 0.76 0.80 0.83 0.80 0.44 1

TABLE A.VII: Correlation table, Crime data: Heteroscedasticity - Pop ("corrected")

M So Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time

M 1
So 0.19 1
Ed 0.82 -0.22 1
Po1 0.37 -0.29 0.64 1
Po2 0.38 -0.29 0.65 0.99 1

LF 0.9 -0.1 0.95 0.54 0.55 1
M.F 0.94 -0.01 0.94 0.53 0.54 0.97 1
Pop -0.87 0.1 -0.91 -0.5 -0.51 -0.91 -0.94 1
NW 0.22 0.77 -0.20 -0.19 -0.20 -0.05 0 0.09 1
U1 0.76 -0.04 0.77 0.39 0.4 0.76 0.85 -0.84 -0.05 1

U2 0.61 0.16 0.56 0.4 0.41 0.56 0.69 -0.65 0.09 0.87 1
GDP 0.66 -0.31 0.92 0.8 0.82 0.83 0.83 -0.8 -0.33 0.68 0.54 1
Ineq 0.84 0.48 0.52 0.02 0.01 0.68 0.73 -0.62 0.47 0.63 0.57 0.27 1
Prob 0.60 0.43 0.42 0.01 0.02 0.48 0.55 -0.49 0.38 0.48 0.43 0.22 0.66 1
Time 0.61 0.15 0.41 0.20 0.18 0.49 0.50 -0.43 0.22 0.34 0.34 0.35 0.51 0.05 1

TABLE A.VIII: Correlation table, Crime data: Heteroscedasticity - GDP ("cor-
rected")

M So Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time

M 1
So 0.86 1
Ed 0.94 0.74 1
Po1 0.50 0.59 0.45 1
Po2 0.51 0.59 0.45 0.99 1

LF 0.97 0.78 0.97 0.46 0.46 1
M.F 0.98 0.82 0.97 0.48 0.48 0.98 1
Pop 0.18 0.36 0.07 0.49 0.46 0.12 0.14 1
NW 0.85 0.85 0.74 0.63 0.64 0.78 0.80 0.34 1
U1 0.85 0.69 0.86 0.37 0.37 0.84 0.90 0.07 0.68 1

U2 0.82 0.77 0.77 0.48 0.47 0.77 0.84 0.23 0.71 0.94 1
GDP 0.95 0.77 0.95 0.45 0.45 0.95 0.96 0.13 0.69 0.86 0.81 1
Ineq 0.98 0.88 0.94 0.52 0.52 0.96 0.98 0.23 0.85 0.88 0.86 0.94 1
Prob 0.89 0.79 0.89 0.39 0.40 0.86 0.90 0.10 0.79 0.82 0.78 0.83 0.89 1
Time 0.88 0.80 0.79 0.51 0.49 0.83 0.84 0.35 0.86 0.73 0.75 0.78 0.88 0.73 1
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B Heteroscedasticity tests ("corrected" datasets)

TABLE B.I: Percentage of rejections in heteroscedasticity tests: Ozone ("corrected")

Breusch-Pagan White

SNR = 10
Homoscedasticity 4.48 4.62
Heteroscedasticity - x7 3.78 5.33
Heteroscedasticity - x6 4.56 4.56

SNR = 1
Homoscedasticity 4.73 5.16
Heteroscedasticity - x7 4.10 5.18
Heteroscedasticity - x6 4.38 4.48

TABLE B.II: Percentage of rejections in heteroscedasticity tests: Crime ("cor-
rected")

Breusch-Pagan White

SNR = 10
Homoscedasticity 1.63 4.67
Heteroscedasticity - exponential 0.96 2.09
Heteroscedasticity - two values 0.72 1.67
Heteroscedasticity - Pop 1.73 3.81
Heteroscedasticity - GDP 1.39 4.72

SNR = 1
Homoscedasticity 1.44 4.31
Heteroscedasticity - exponential 1.10 2.19
Heteroscedasticity - two values 0.54 1.66
Heteroscedasticity - Pop 1.93 3.32
Heteroscedasticity - GDP 1.31 3.86
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C R Code

The R code used for all calculations can be found at https://github.com/
hugofvm/MFW_R_Code.
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