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EFEITOS A CURTO-PRAZO DE HIDROTERAPIA EM PASSADEIRA AQUÁTICA NAS 

FORÇAS DE REAÇÃO AO SOLO DE CANÍDEOS COM PATOLOGIA ORTOPÉDICA  

 

Resumo 

Esta dissertação teve como objetivo estudar o efeito de uma sessão de terapia em passadeira 

aquática (UWT) nas forças de reação ao solo de cães com claudicação de origem ortopédica, 

localizada em um ou ambos membros do mesmo par, através de análise de movimento. 

Foram pré-avaliados 14 cães que apresentavam condições ortopédicas apendiculares, e já 

submetidos a UWT anteriormente. Os 9 candidatos selecionados foram separados em dois 

grupos: o Grupo A incluiu cães com claudicação dos membros torácicos e o Grupo B 

indivíduos com claudicação dos membros pélvicos. Realizou-se análise de movimento com 

placa de pressão para determinar os valores base das forças de reação ao solo. Depois de 

terem completado uma sessão de UWT, os animais foram novamente submetidos a análise 

de movimento para determinar os valores pós-sessão. Mediu-se o pico e impulso das forças 

verticais (PFz e IFz), duração da fase de estação (SPD), área de contacto do membro (PCA), 

e comprimento da passada. A correlação entre o comprimento da passada e a altura do 

garrote foi avaliada usando os dados de todos os participantes. A simetria dos membros 

contralaterais foi calculada através de um índice de simetria (SI) para os parâmetros PFz, IFz, 

SPD e PCA (SIPFz, SIIFz, SISPD and SIPCA). Cães com um valor de SIPFz e SIIFz inferior 

a 3% foram considerados não claudicantes e excluídos. Todos os participantes apresentaram 

valores de claudicação nos membros pélvicos, independentemente do diagnóstico. Os valores 

pré e pós-UWT foram avaliados com o teste t de student para amostras emparelhadas. Não 

se observaram alterações significativas em nenhum dos parâmetros. No entanto, no Grupo A 

os valores pré e pós-UWT do comprimentos da passada, e do SIPFz e SIIFz nos membros 

torácicos demonstraram uma forte correlação positiva, o que também se verificou nos valores 

do comprimento da passada, velocidade média, SIPFz dos membros pélvicos e SIPCA dos 

membros torácicos no Grupo B. No Grupo B, observou-se uma diminuição geral no SIPFz dos 

membros pélvicos. Em ambos grupos, o valor médio de SIPCA aumentou nos membros 

torácicos e diminuiu nos pélvicos. O valor médio do comprimento da passada aumentou em 

6 cães, e manteve-se inalterado em 2. A correlação exponencial entre o comprimento da 

passada e a altura do garrote apresentou um valor de R = 0.78. Após UWT, 1 dos 9 

participantes passou a ser considerado não claudicante. Investigação adicional é necessária 

para determinar os efeitos a curto prazo da UWT nos parâmetros temporo-espaciais e pressão 

ao solo em cães com claudicação de origem ortopédica. 

 

Palavras-Chave: Cães, ensaio clínico, análise de movimento, claudicação de origem 

ortopédica, terapia em passadeira aquática 
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SHORT-TERM EFFECTS OF UNDERWATER TREADMILL THERAPY ON GROUND 

REACTION FORCES OF CANINE ORTHOPAEDIC PATIENTS 

 

Abstract 

This dissertation aimed to use kinetic gait analysis to study the effects of an underwater 

treadmill therapy (UWT) session on ground reaction forces of dogs with lameness caused by 

an orthopaedic condition, located in one or both contralateral limbs of a pair. Fourteen client-

owned dogs presenting appendicular orthopaedic conditions were recruited. All dogs had 

previously undergone UWT. The nine selected candidates were divided into two groups: Group 

A comprised dogs diagnosed with an orthopaedic condition in the forelimbs, and Group B 

individuals diagnosed with orthopaedic conditions in the hindlimbs. Pressure plate gait analysis 

was performed to determine ground reaction forces baseline data of all individuals. Afterwards, 

the dogs completed an UWT session, and gait analysis was repeated to determine post-

session values. Peak and impulse of vertical forces (PFz and IFz), stance phase duration 

(SPD), paw pressure contact area (PCA), and step length were measured. A correlation 

between step length and withers height was assessed using the collective data of all 

participants. Contralateral limb pair symmetry was calculated using a symmetry index (SI) for 

the parameters PFz, IFz, SPD and PCA (SIPFz, SIIFz, SISPD and SIPCA, respectively). Non-

lame dogs were excluded, using a SI cut-off value of <3% for PFz and IFz between 

contralateral limbs. All participants presented baseline hindlimb lameness, regardless of their 

diagnosis. Before and after measurements were evaluated using a paired student t-test. No 

statistically significant alterations were observed in any of the parameters. However, baseline 

and post-session values showed a strong positive correlation in Group A step length and 

forelimb SIPFz and SIIFz, as well as in Group B step length, mean velocity, hindlimb SIPFz 

and forelimb SIPCA. In Group B, post-UWT measurements showed an overall decrease in 

hindlimb SIPFz. In both groups, mean SIPCA increased in the forelimbs and decreased in the 

hindlimbs. Mean step length increased in 6 dogs and remained equal in 2 dogs. Step length 

and withers height exponential correlation presented a R value of 0.78. After UWT, 1 out of the 

9 participants was considered nonlame. Further research is required to determine the short-

term effects of UWT in temporospatial and pressure gait parameters of dogs with orthopaedic 

lameness. 

 

Keywords: Dog, clinical trial, gait analysis, orthopaedic lameness, underwater treadmill 

therapy 
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1. TRAINEESHIP REPORT 

 

As part of the Integrated Masters Degree in Veterinary Medicine from the Faculty of 

Veterinary Medicine of the University of Lisbon I completed a 4-month training between the 

26th of February of 2015 and the 30th of June of 2015, in an approximate total of 680 hours, in 

the section for Physical Therapy and Rehabilitation, headed by Dr Barbara Bockstahler (DVM, 

PD, DECVSMR (Small Animals), DACVSMR (Canine), FTA, CCRP, EBVS® European 

Specialist in Veterinary Sports Medicine and Rehabilitation) at the Clinic for Small Animal 

Surgery and Ophthalmology, University of Veterinary Medicine (Vetmeduni), Vienna, Austria. 

Throughout the training, I acquired skills concerning physical therapy case diagnosis and 

planning, resourcing from referral reports, anamnesis and complementary exams, which 

included MRI scan, CT scan, X-ray and motion analysis using a pressure plate and a camera. 

I had the opportunity to assist to and train physical examination, mainly within the 

neurologic and orthopaedic disciplines, comprising a significant number of geriatric and 

postoperative patients. Additionally, I partook in therapy planning, involving the devices and 

exercises, according to each case and its progression throughout sessions. I learned to work 

with the various tools in the department, which I operated daily.   

On-site rehabilitative 

equipment included two underwater 

treadmills (treadmill 1: Keiper™ 

model, Water Walker® brand; 

treadmill 2: custom-built, no brand), 

and a land treadmill with an 

adjustable sling suspension system 

(Runner 1™, Theravet®) (Figure 1). 

Other therapeutic on-site gears were 

a low level laser therapy (LLLT) 

device with Multiwave Locked 

System® (Mphi VET™ model, 

ASAlaser®), two different models of 

electrical stimulators which providedjjjj     

electrotherapy in the form ofjjjj 

transcutaneous electrical nerve stimulation (TENS) and electrical muscle stimulation (EMS) 

(AmpliMove synchro™, Knop®; PT-2010-N™, S+B medVET®), a therapeutic ultrasound (US) 

apparatus (Vetri-combi™, Physiomed®) and an extracorporeal shockwave therapy (ESWT) 

device (Swiss DolorClast VET™, EMS®) (Figure 2). The department was also equipped with 

Figure 1 – Treadmill Runner 1™ (Theravet®), 

equipped with a sling suspension system. 

 

Figure 2 – Examples of used devices. Top left: LLLT 

device Mphi VET™ (ASAlaser®) with protective 

goggles for the operator and patient; top right: 

electrotherapy device AmpliMove synchro™ 

(Knop®); bottom left: ESWT device Swiss 

DolorClast VET™ (EMS®); bottom right: US device 

Vetri-combi™ (Physiomed®).Figure 3 – Treadmill 

Runner 1™ (Theravet®), equipped with a sling 

suspension system. 
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a nuclear magnetic resonance therapy machine (ProVet Station™, MBST®). However, it was 

not operated during the traineeship period, as it was mostly used for research purposes. 

Additional tools were available to complement therapy, namely, therapy balls and rolls, 

balance boards, vertical weave poles, cavalletti rails, elastic bands, hot and cold packs, and 

vests and flotation equipment for aquatic therapy. Assistive devices for ambulation such as 

carts, slings, harnesses, boots, and joint protectors were available for pet owners to borrow 

and purchase. Contacts for reliable manufacturers of veterinary custom-made carts, orthoses, 

and prostheses were provided as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Physical Therapy and Rehabilitation department provided the Surgery, Internal 

Medicine, and Intensive Care units with ambulatory physical therapy treatment for the 

inpatients, where I practised post-operatory and critical care handling. Also, I studied and 

trained massage techniques, and assisted in shockwave therapy, neural therapy, and 

acupuncture sessions. With the tutoring of Dr Marion Mucha (DVM, CCRP, CVA, CVPP) I 

learned basic principles of neural and acupuncture therapies, mostly regarding pain and stress 

management, as well as acupuncture needle handling. During the traineeship period, I 

attended a webinar lectured by Dr Mila Speciani (DVM, EBW, GP Cert WVA&CPM) from 

Figure 2 – Examples of used devices. Top left: LLLT device Mphi VET™ 

(ASAlaser®) with protective goggles for the operator and patient; top right: 

electrotherapy device AmpliMove synchro™ (Knop®); bottom left: ESWT 

device Swiss DolorClast VET™ (EMS®); bottom right: US device Vetri-combi™ 

(Physiomed®). 

 

Graph 1 – Frequency of the main modality used for each patient, in percentage 

(n=143).Figure 4 – Examples of used devices. Top left: LLLT device Mphi VET™ 

(ASAlaser®) with protective goggles for the operator and patient; top right: 

electrotherapy device AmpliMove synchro™ (Knop®); bottom left: ESWT 

device Swiss DolorClast VET™ (EMS®); bottom right: US device Vetri-combi™ 

(Physiomed®). 
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ASAVET®, concerning biological and therapeutic effects of general laser therapy, its 

modalities and applications, and the Multiwave Locked System®. 

Although not numbered for this dissertation, the main objectives for patients to attend 

the Physical Therapy and Rehabilitation Department were for pain management, muscular 

reinforcement, weight loss, and neurologic rehabilitation. These usually followed surgery, 

trauma (car accidents, falling off windows, balconies and stairs), or were part of a degenerative 

joint disease management program. Surgical patients were accompanied together with a 

surgeon, and physical therapy was practised alongside conservative treatment, before and 

after surgery, as needed, adjusted to each case. Besides traditional acupuncture, a form of 

permanent acupuncture with gold bead implantation was used in surgery. It was mainly aimed 

at musculoskeletal conditions with chronic pain and/or inflammation, such as degenerative joint 

disease and osteochondritis.  

In cases regarding severe pain management, Gabapentin was the elected drug to 

provide analgesia, and it was on occasion complemented with nonsteroidal anti-inflammatory 

drug (NSAID) therapy, as needed. Patients with neurologic disorders affecting micturition were 

administered Terazosin regularly, to prevent urostasis and subsequent urinary tract infection. 

A minor component of outpatients came from other hospitals and clinics as referrals. These 

were usually referred due to the specialised equipment the department provided, and to get a 

second opinion. 

The overall number of patients observed during the traineeship period consisted of 139 

dogs and 4 cats, comprising a total of 143 patients. From this group, one healthy dog attended 

the department for exercising purposes, as physical conditioning for rescue dog training. All 

the remaining animals presented a clinical condition background. 

As shown in Graph 1, underwater treadmill therapy (UWT) was the most commonly 

practiced modality (n=55, dogs=54, cats=1). However, this graphic depicts only the main 

modality for each session, as most cases included a combination of two or more therapeutic 

modalities (Graph 2). 



4 

 

 

It is currently widely accepted that a rehabilitation program including a combination of 

different therapeutic modalities works synergistically in generating a better outcome when 

compared to using a single modality (Bockstahler 2004; Millis et al. 2004; Robertson 2013; 

Monk 2016). During the course of this study, UWT was more frequently used in combination 

with other modalities than it was as a single modality (Graph 3). 

 

 

 

 

Graph 2 – Distribution of sessions using 

one therapeutic modality or a combination 

of two to three modalities. 

 

Graph 4 – Distribution of sessions 

according to whether UWT therapy was 

performed alone or combined with other 

modalities.Graph 5 – Distribution of 

sessions using one therapeutic modality or 

a combination of two to three modalities. 

Graph 3 – Distribution of sessions according 

to whether UWT therapy was performed 

alone or combined with other modalities. 

 

Graph 6 – Number of patients according to 

the different combinations of UWT with other 

modalities. UWT– underwater treadmill 

therapy; LLLT– low level laser therapy; Acup 

– acupuncture; US– therapeutic ultrasound; 

Elect – electrotherapy.Graph 7 – Distribution 

of sessions according to whether UWT 

therapy was performed alone or combined 

with other modalities. 

Graph 1 – Frequency of the main modality used for each patient, in percentage (n=143). 

LLLT– low level laser therapy; US– therapeutic ultrasound therapy; ESWT– extracorporeal 

shockwave therapy; UWT– underwater treadmill therapy. 

 

Graph 2 – Distribution of sessions using one therapeutic modality or a combination of two to three 

modalities.Graph 3 – Frequency of the main modality used for each patient, in percentage (n=143). 

LLLT– low level laser therapy; US– therapeutic ultrasound therapy; ESWT– extracorporeal 

shockwave therapy; UWT– underwater treadmill therapy. 
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As seen in Graph 4, UWT was routinely the first phase of the session and would either 

be followed by laser therapy or electrotherapy (usually TENS). It was common practice to 

massage the patients at the end of the session, for 10 to 20 minutes, depending on the intensity 

of the exercise, presence of pain or an increase in muscular tension. A warm-up massage prior 

to UWT was also performed on geriatric individuals and on patients with considerable muscular 

soreness or tension. 

 

 

At the time of the traineeship, veterinary chiropractic was becoming increasingly 

popular in Vienna, particularly in dogs and horses. Many dogs that were on a physical therapy 

program also attended private chiropractors; some regularly once a week, others solely when 

the owners noticed muscular discomfort or postural abnormalities. 

Considering the cat patients observed 

during the traineeship (n=4), laser 

therapy and acupuncture were the most 

frequent treatment choices (n=3), and 

one cat performed underwater therapy 

(Figure 3). Both massage and passive 

range of motion were fairly accepted 

therapy complements. 

Patients attended the department 

typically twice a week, usually with a 

Graph 4 – Number of patients according to the different combinations of UWT with other 

modalities. UWT– underwater treadmill therapy; LLLT– low level laser therapy; Acup – 

acupuncture; US– therapeutic ultrasound; Elect – electrotherapy. 

 

 

Figure 3 – Cat during an UWT session. 
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minimum two-day interval between sessions. During the traineeship period, only two dogs did 

three sessions weekly. Depending on the patient’s condition, its improvement, and owner’s 

compliance, sessions would become progressively less frequent, up to one session monthly 

or total therapy cease. However, some cases, mainly associated with palsy and unsuccessful 

post-hemilaminectomy recovery, were kept on lifelong therapy to maximise the chances of 

better living quality. 

Being the physical therapy team part of the research Movement Science Group, I also 

had the opportunity to assist to a project’s results briefing. It regarded the conception of an 

apparatus (Vienna Equine Surface Tester – “The BALL”) designed to measure the mechanical 

properties of surfaces and floors, and its potential on future research on the racing horse health 

and performance, which was meanwhile published (Schramel and Peham 2016) 1. 

On March I wrote an Animal Use Protocol with the guidance of Dr Bockstahler, which 

was later presented to the University’s Ethics and Animal Welfare Committee, to obtain 

approval for the use of patients to represent the population sample for this dissertation. 

 

1 Schramel J and Peham C. 2016. Vorrichtung zur Bestimmung der mechanischen Eigenschaften von Oberflächen und 

Böden und Verfahren zum Betrieb der Vorrichtung. 
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2. LITERATURE REVIEW 

 

2.1. AQUATIC PHYSICAL THERAPY 

According to Geytenbeek (2008), the concept of aquatic physical therapy applies to the 

exercise of physical therapy in a water medium, with the goal of rehabilitating or achieving a 

particular physical conditioning objective. Hydrotherapy is a broader concept, which comprises 

all types of water-based therapy performed by a variety of professional specialities, including 

balneotherapy, spa therapy, whirlpool, colonic irrigation, Kneipp therapy, and 

hydrokinesiotherapy. 

Exercising in an aqueous environment is physically different from doing the same in 

land. In water, there are additional resistance forces involved in locomotion, and the body is 

subjected to buoyant and extra pressure forces. Therefore, land exercises cannot be identically 

mimicked in water, and to do so would imply not using the assets of exercising in water (Millis 

et al. 2004; Monk 2016). 

To develop an efficient aquatic therapy program, it is essential first to acknowledge 

several intrinsic properties of water, as well as principles that apply to the immersion and 

movement in the water. (Lindley and Watson 2010; NARCH 2015). 

 

2.1.1. Basic properties of water 

 

2.1.1.1. Fluid mechanics 

a. Density and specific gravity 

The density (ρ) of a substance is the quantity of mass existing per unit of volume. It is 

mathematically defined as the division of mass by volume. For a heterogeneous body (p.e., a 

mammal), the considered density is the average of all its body components (OpenStax 2017; 

Ling et al. 2018). 

In aquatic physical therapy, the average density of a body is what fundamentally 

determines whether it floats or sinks in water. To determine such, a ratio is calculated that 

compares the density of a substance (an animal, in this case) with the density of a reference 

substance (water, in this case). This ratio is referred to as specific gravity (SG), also known as 

relative density (Monk 2016; OpenStax 2017; Ling et al. 2018). 

Pure water has a SG of 1.0 at 4.00 °C, where water is at its maximum density, and it is 

considered the standard reference substance (Table 1). Besides temperature, density (and 

therefore SG) also varies with pressure and the presence of dissolved substances (OpenStax 

2017; Ling et al. 2018). 



8 

 

Table 1 – Specific gravity values of water and several main body tissues at atmospheric 

pressure. A fat SG of 0.96 means it’s 0.04 less dense than water. Muscle and bone SG of 1.06 

and 2.0 means it’s 1.06 and 2 times denser than water, respectively. *Varies from area to area, 

due to differences in its dissolved substances. **Varies with salinity content and temperature. 

(Adapted from Kerth 2013; Walker 2015; Monk and Goff 2016; Ling et al. 2018). 

 

Substance/tissue Specific gravity 

Pure water at 4 °C 1.0 

Pure water at 20 °C 0.998 

Tap water at 20 °C 0.998* 

Seawater 1.020-1.030** 

Fat 0.8-0.96 

Skeletal muscle 1-1.06 

Bone 1.5-2.0 

 

 

The variations in water SG are negligible when applied to aquatic physical therapy 

practice. Hence, a SG value of 1 is standardly used to refer to pool2 and tap water. 

If the SG of a body is lower than 1, it will float on water; if higher than 1, it will sink (Millis 

et al. 2004; Lindley and Watson, 2010). If SG is exactly 1, the body will remain suspended at 

its present depth (OpenStax 2017). This phenomenon is further discussed in the buoyancy 

topic below. 

The SG also determines the degree of immersion of a body in water (Figures 4 and 5). 

If a body has a SG of 0.8, 80% of it will be submerged in water, while the remaining 20% will 

sit above the water surface (Monk 2016). An individual’s SG is influenced by its body condition. 

As such, the effects of SG on aquatic therapy are: 

- Animals with higher body condition score (BCS) float more easily in the water; 

- Lean or heavily muscled animals tend to sink, and thus need to make more effort to 

move in the water. They may require additional assistance or flotation equipment; 

- Animals with osteoporosis will have a lower bone SG and, consequently, tend to float 

more easily. (Bockstahler et al. 2004; Mikail 2006; Monk 2016). 

 

2 Pool water has a standard chlorine content of 0.001% to 0.003% in veterinary aquatic therapy practices, so it’s considered to 

have a SG similar to tap water (NARCH 2015). 
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b. Buoyancy 

 Buoyancy is the upward force of the water on an immersed or floating body. It is 

experienced as a thrust of the body towards water surface (Bockstahler et al. 2004; Mikail 

2006). According to Archimedes’ principle, the value of the buoyancy of a body equals the 

weight of the water it displaces. In its turn, the weight of water displaced depends on the SG 

of the body. The buoyant force is always present on any body in water, whether it floats or not.  

(OpenStax 2017; Ling et al. 2018). 

 In aquatic physical therapy, buoyancy substantially reduces the weight the animal must 

carry (Bockstahler et al. 2004). The interaction between weight-bearing and water depth in 

dogs was assessed by Levine et al. in 2002 (Table 2). 

 

Table 2 – Percentage of weight-bearing of dogs standing at different water depths. Comparing 

to normal weight-bearing on land, the results obtained showed the higher the water level, the 

less weight-bearing occurs (Levine et al. 2002). Additional investigation in various breeds and 

sizes of dogs is needed, as well as the study of variations on weight-bearing during ambulation 

(Monk 2016). 

 

 

 

 

 

 

Immersion depth Weight-bearing (%) 

Tarsus 91 

Stifle 85 

Hip 38 

Figures 4 (left) and 5 (right) – Comparison of dogs with different average SG. The dog in figure 

4 is deeper immersed in water, compared to the dog in figure 5. 

https://www.needpix.com/photo/download/1522834/nature-animals-pets-dogs-browndog-

dachshund-wienerdog-swimming-bluewater 

https://www.sciencenewsforstudents.org/article/dissecting-dog-paddle 
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Since ambulatory limitations are typically due to an inability to support weight normally 

during a full gait cycle, animals may show improved ambulation when load-bearing is reduced. 

(Shmalberg 2018). 

The implications of buoyancy and reduced weight-bearing on animal patients are: 

- Unloading of painful joints by raising the water level above these (Bockstahler et al. 

2004; Lindley and Watson 2010; Steiss 2010);  

- Allowing ambulation when land-based exercise is contraindicated (Jackson et al. 2002). 

It includes starting ambulation earlier in recovery, for example in intervertebral disc 

protrusions and postoperative rehabilitation following cruciate ligament repair; 

- Provide a milder transition to land-based exercise, post-surgery or injury (Shmalberg 

2018); 

- Rehabilitation of muscular weakness (Steiss 2010; NARCH 2015). 

Buoyancy can additionally be used to increase resistance to movement, namely with 

flotation devices (NARCH 2015). If an anatomical part moves parallel to the water surface, 

buoyancy eases the movement acting as support. If it moves perpendicularly, buoyancy works 

as a resistance to movement. (Mikail 2006). 

Besides buoyancy, a body immersed in water is also subjected to gravity, which acts 

as an opposing force. If the centre of buoyancy and the centre of gravity are not aligned in the 

same vertical plane, the animal will not be in equilibrium and will tend to tip forward or tilt 

sideways (Lindley and Watson 2010; Monk 2016). 

In practice, animals with an amputated or a flexed limb will tend to rotate down to the 

opposite side to reach equilibrium. Patients with spinal injury or asymmetrical tone may 

struggle to control trunk rotation. Flotation devices are generally used to aid but need to be 

placed accordingly to compensate the imbalance (Monk 2016). 

 

b. Hydrostatic pressure 

Hydrostatic pressure is the pressure force effected on an immersed body due to the 

weight of a liquid (Ling et al. 2018). It is directly proportional to the immersion depth and fluid 

density: the greater the depth and fluid density, the greater the pressure. (Bockstahler et al. 

2004). 

Implications for animal patients: 

- Water exerts resistance to thoracic expansion when inhaling. Therefore, caution is 

advised when submerging patients with cardiac or respiratory conditions (Mikail 2006; 

NARCH 2015); 

- Hydrostatic pressure is beneficial for swollen joints and oedematous tissue located in 

the distal portion of limbs, which are deeper submerged, and aids venous return. It also 
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decreases nociception due to phasic stimuli exerted to the sensory receptors on the 

skin, thus allowing more movement with a lesser sensation of pain (NARCH 2015). 

 

c. Viscosity and resistance 

The viscosity of a fluid refers to the frictional resistance to flow, which is dependent on 

the cohesive forces at a molecular level. Resistance consists of the force exerted by a solid 

body moving through the fluid and is dictated by viscosity (Bockstahler et al. 2004). 

Implications for animal patients: 

- Water provides resistance that promotes muscular strengthening and cardiovascular 

fitness; 

- There is a possible increase in sensory awareness; 

- Assistance in stabilising unstable joint/s; 

- There is a greater prevention of falling by increasing the time for an animal to react, 

improving its willingness to move. This is particularly relevant in spinal patients 

(NARCH 2015); 

- Both buoyancy and hydrostatic pressure provide a supporting feeling to the patient 

while submerged in water (Mikail 2006). 

 

d. Turbulence 

Water turbulence consists of an irregular water flux which increases water-resistance 

to the patient’s movement when compared to a continuous unidirectional water flux. 

Generating water turbulence through manual water agitation or jet streamers creates variations 

of pressure in different body parts. It additionally has a massaging effect, enhancing blood and 

lymph circulation, and gently removing wound exudates and debris (Mikail, 2006). 

 

e. Surface tension 

Water molecules tend to have greater adherence among themselves near the surface. 

This surface tension creates a higher resistance to movement on the surface (Bockstahler et 

al. 2004).  

Implications for animal patients:  

- Exercising near the surface is more difficult, and must be accounted for with debilitated 

animals (Bockstahler et al. 2004); 

- Miniature breeds will be more affected by surface tension. (NARCH 2015).  
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2.1.1.2. Other properties 

a. Temperature 

Millis et al. (2004) recommend that healthy dogs exercise with a water temperature 

range between 26-28 °C in pools, and approximately 25,5-32 °C in aquatic treadmills. 

Heated water – The main physiological effects of exercising in water temperatures 

above normal body temperature are: increase of respiratory frequency, increase of cardiac 

frequency, increase in the heart returning blood flow, decrease of blood pressure, increase in 

muscular blood flow, increase in peripheral circulation, increase in metabolic rate, general 

muscular relaxation and increase in joint flexibility. The increase in circulatory flow enhances 

oxygen intake and carbon dyoxide and lactic acid removal, thus reducing muscular discomfort. 

Due to the increased strain in cardiac output, caution is advised when exercising cardiac and 

geriatric patients in heated water (Millis et al. 2004; Mikail 2006). 

Cold water – Water temperatures below normal body temperature are apparently well 

tolerated by dogs, particularly individuals with thicker coats (Millis et al. 2004). The main 

physiological effects of exercising in cold water are cellular metabolism decrease, reduction in 

capillary permeability and pain relief. The cold water also helps patients exercising with active 

inflammation (Mikail 2006). Subjects that perform UWT in cold water show lower heart rates 

than individuals exercising on land treadmills at the same velocity and length of time (Millis et 

al. 2004). 

 

b. Salinity 

Besides increasing the density of water, the addition of salts to water also increase 

osmolarity and osmotic pressure. Water with a high content in salt helps “draining” swollen 

tissues and open exudative wounds (Mikail 2006). The salinity changes the specific gravity 

much more than the temperature does (Walker 2015). 

 

c. Oxygenation 

A higher concentration of oxygen in water enhances tissue healing, similarly to the 

increase that occurs in hyperbaric chambers. (Sen 2009; Ladizinsky and Roe 2010).  The 

mean oxygen content in water at room temperature is around 2,4 parts per million (ppm) and 

increases to 8-11 ppm when at 2°C. Using jet streamers can also contribute to improving water 

oxygenation (Mikail 2006).  
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2.1.2. Physiological effects of immersion 

Body immersion in water at body temperature leads to well documented physiological 

changes. Some of those changes have already been discussed previously in this dissertation, 

and include a shift in blood volume from peripheric to central circulation caused by hydrostatic 

pressure, increased cardiac volume output, reduced heart rate and inspiratory volume changes 

(Millis et al. 2004; NARCH 2015). Although no clear mechanism has been described, it is also 

proposed that immersion reduces sympathetic nervous system activity. Sympathetic nervous 

system activation has been associated with some of the detrimental consequences of chronic 

stress and illness (Becker et al 2009). 

 

2.1.3. Physiological effects of exercising in water 

Exercising in water differs greatly from exercising on land (Monk 2016). Studies in 

humans described that metabolic requirements, oxygen uptake and heart rate were greater 

while exercising in water compared to performing the same exercises on land (Whitley and 

Schoene 1987; Johnson et al. 1977). Both in dogs and humans, it has been described that 

peak heart rate, blood lactate and oxygen uptake are lower in individuals exercising in water, 

which means that exhaustion is achieved with a smaller work rate when compared to 

exercising on land (Becker 2004; Mikail 2006). 

A study by Nganvongpanit et al. (2014) reported that swimming significantly improved 

the range of motion in dogs affected by hip osteoarthritis. Another study by Marsolais et al. 

(2003), suggested that swimming promoted significantly greater range of motion of the stifle 

and tarsal joints than walking in dogs following CrCL rupture correction surgery. Yet another 

one by Preston and Wills (2018) concluded that aquatic therapy increases range of motion and 

step length in labrador retrievers with elbow pathology and can be of benefit for canine elbow 

dysplasia management. 

Energy expenditure when exercising in water can vary significantly compared to the 

same exercise on land. On one hand, buoyancy reduces bodyweight and therefore reduces 

the amount of energy required to counter gravity. On the other hand, water viscosity, friction 

and turbulence require increased work to overcome resistance during movement. Water 

temperature also impacts energy expenditure, as thermoregulation mechanisms will need to 

balance body temperature if the water is too cold. Shivering due to low temperatures also 

increases energy consumption (Monk 2016).  
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2.1.4. Underwater treadmill therapy 

Underwater treadmill therapy is a modality that, like swimming, reduces weight-bearing 

on joints and adds resistance to movement due to the water’s attributes, while also enabling 

the execution of a range of motion similar to normal gait in land (Schmalberg 2018). Therefore, 

this type of aquatic therapy is selected when there is a need to exercise the patient in a normal 

gait pattern, especially in those cases where walking on ground would result in repeated or 

serious injury due to muscle weakness or improper balance (Millis et al. 2004).  

 

2.1.4.1. Indications 

The major indications for UWT are rehabilitation following orthopaedic surgery or 

neurological injury and improving joint and muscle strength (Bockstahler et al. 2004) (Figure 

6). Animals that have been recumbent for long periods of time benefit from aquatic therapy as 

a means to strengthen muscle mass while bearing reduced weight (Lindley and Watson 2010). 

It may also be useful in patients with peripheral oedema, muscle spasm, and to improve 

confidence in dogs reluctant to walk on ground. Due to having a greater muscle and 

cardiovascular demand compared to land treadmill, it is also indicated for athletic conditioning 

and weight management (Millis et al. 2004). 

The recommended water temperature varies with the condition treated: neurologic 

patients are usually recommended to walk with warmer water (approximately 29,5-32 °C), 

while orthopaedic patients and dogs in conditioning regimens require less warm temperatures 

(approximately 25,5-28,5 °C) (Millis et al. 2004). 

  

Figure 6 – Canine patient with partial cranial cruciate ligament rupture performing UWT 

following stifle arthroscopy. 

 

Figure 10 – Anterior view of a canine patient performing UWT.Figure 11 – Canine patient with 

partial cranial cruciate ligament rupture performing UWT following stifle arthroscopy. 
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2.1.4.2. Contraindications and precautions 

Aquatic therapy is not recommended in the case of open wounds, infections, cardiac 

or respiratory conditions, uncontrolled epilepsy, urinary incontinence and diarrhoea (Mikail 

2006). Dogs with surgical sutures that have not healed completely and do not have a 

waterproof cover should not be subjected to underwater therapy. Caution should be exercised 

in patients with laryngeal paralysis, skin or ear problems, epilepsy, and mild systemic 

compromise. Geriatric patients and those with very high BCS should be monitored closely 

during UWT (Monk 2016). If a dog exhibits fear or aversion to water and needs aquatic therapy, 

it is advised to first introduce the animal slowly to the room and encourage playing and 

exercising before actually starting therapy. Same animals might not be able to perform aquatic 

therapy due to the possibility of injuring themselves or the operators (Lindley and Watson 

2010). 

 

2.1.4.3. Comparing underwater treadmill therapy and swimming 

When swimming, almost the entire body is 

immersed, as only the head and part of the neck are 

outside the water. Additionally, there is no contact 

between the patient and the ground, requiring a 

constant motion of the limbs to maintain the head 

above the surface (Mikail 2006). As such, swimming 

is the modality of choice for improving range of 

motion and in patients with severe osteoarthritis, as 

they are able to exercise while bearing no weight on 

their limbs (Schmalberg 2018). With the ribcage 

immersed in water, increased respiratory work is 

required to overcome the pressure exerted by the 

water during inhaling. This results in a better 

cardiorespiratory capacity, and improved venous 

return and cardiac output (Mikail 2006). 

While swimming is certainly beneficial in 

some situations, underwater treadmill therapy is the 

better choice when the goal is improving proprioception and dynamic balance, as direct contact 

with the ground and the need to maintain a walking stance forces the patient to work its 

muscles and joints, while supporting less weight (Schmalberg 2018) (Figure 7).  

Figure 7 – Anterior view of a canine 

patient performing UWT. 
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2.1.4.4. Underwater treadmills used for the traineeship and study 

As previously stated in the traineeship report, there were two underwater treadmills at 

the Physical Therapy and Rehabilitation section at the Vetmeduni. 

The Keiper™ treadmill (Figure 8) was set above floor level, with a ramp and a lifting 

platform (Figure 9), so the patients could access it. It was equipped with a spindle lift to change 

the incline, a water heating system, and a counter-current jet streamer that provided the option 

to increase water resistance during exercise. The physiotherapist stood by one of the sides of 

the treadmill, within reach of both the controls and the patient, and the owner/caretaker stood 

at the front facing the patient for motivation and positive reinforcement. 

The custom-built treadmill (Figure 10) was purposely designed for the Vetmeduni. It 

worked through an exterior motor with adjustable speed to run the treadmill, and a hydraulic 

system to lift and lower the treadmill in and out of water. It was set below floor level, with 

sideways access on both sides. The treadmill was lifted to floor level for the patients to access 

through a small incline ramp. There was also a custom-made harness lift system to facilitate 

access. The physical therapist stood on the right-side pit to access both controls and patient, 

and the patient’s caretaker was positioned either on the left-side pit or outside, facing the 

patient. 

  

Figure 8 – The Keiper™ water treadmill, from the 

Water Walker® brand. 

 

Figure 9 – View of the ramp and the lifting 

platform, used to facilitate patient access 

to the water treadmill. 
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Comparing both treadmills, the 

Keiper™ treadmill offered a more accurate 

speed control and better assessment of 

the patient’s locomotion during exercise 

through its transparent panels. It was 

preferable for nervous dogs since some 

dogs stressed when they were lowered 

below floor level. The custom-built 

treadmill was more easily accessible for 

patients with ambulatory limitations and 

more practical for hoisting larger and 

heavier individuals. It also allowed better 

control over limb movement when 

assistance for walking underwater was 

needed.  

Regarding maintenance, the 

Keiper™ was more environmentally and 

cost-friendly through multiple re-using of 

the water with filter systems, enabling greater intervals between cleaning, but being more time-

consuming to clean. The custom-built treadmill had no filtering system to use between therapy 

sessions. It was easier to clean but required much more regular maintenance, which implied 

being emptied of water every time. Both treadmills were used for this study since each one 

presented assets that best suited the different types and conditions of the dogs. 

Figure 10 – The custom-built water treadmill 

at the Vetmeduni. 

 

Figure 16 – Foot ground contact diagram of 
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2.2. CANINE GAIT ANALYSIS 

 

Biomechanics is described as the study of the principles of mechanics applied to 

biological systems, particularly regarding structure and function. It concerns the effects of 

forces on body motion (Hatze 1974; Karduna 2007). Knowledge on the mechanical demands 

and constraints that occur during locomotion enables the assessment of compensations, 

secondary neuromuscular and skeletal problems and pathology that follow the failure of one 

or more elements. It is therefore essential in the diagnosis of numerous musculoskeletal and 

neurologic conditions and in the delivery of physical therapy. (Adrian 2016; Carr and Dycus 

2016). 

There are two primary types of locomotion: gait and nonrepetitive motions (Millis et al. 

2004). Gait is a repetitive sequence of movements which drive an animal forward. It consists 

of a way to translocate a body from one point to another in space, developed to minimise 

unwanted displacements that translate into energy costs (Hildebrand 1977). Nonrepetitive 

motions involve single events such as sitting, jumping, and movement initiation (Millis et al. 

2004). 

 

2.2.1. Normal gait 

Currently, sound dogs are considered to use four main gaits: walk, trot, canter and 

gallop (Zink and Carr 2018). Some authors also include swim, particularly the paddle (Millis et 

al. 2004; Catavitello 2015). 

The dynamic of a gait is influenced by the properties of the surface, its incline, ground 

movement (i.e., treadmill), submersion in water, and the curvature of the path. Body 

conformation and breed deeply influence an individual’s moving performance as well (Bertram 

et al. 2000; Millis et al. 2004; Mölsa et al. 2010). 

As repetitive locomotion, gait is composed of a series of strides. A stride consists of a 

cycle of body motion that starts with the contact of one foot and ends with that same foot again 

contacting the ground. In a stride, each limb undergoes a step cycle. Each limb’s complete 

step cycle is divided in stance phase and swing phase. Stance phase initiates with ground 

contact, where braking forces take place, and is followed by propulsion. After stance phase, 

swing phase starts, in which the foot is suspended and not contacting the ground (Millis et al. 

2004). 

In quadrupedal mammals, normal gait can be divided into symmetric and asymmetric 

gaits, according to how the body moves during each stride. In symmetric gait, the movements 

of the limbs are mirrored in the sagittal plane by their contralateral parts. In asymmetric gait, 

the left and right side of the body do not mirror each other (Alexander 1984; Budsberg et al. 
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1993). Examples of normal symmetric gaits are the pace, walk and trot; of asymmetric, are the 

rack, gallop and canter. 

In a healthy standing dog, approximately 30% of its weight is supported by each of the 

forelimbs, and 20% is supported by each of the hindlimbs (Zebas et al. 1991). Such weight 

distribution positions the centre of gravity at mid-chest level, behind the scapula. This 

proportion equilibrium results that when moving forward in a plane ground surface, the 

forelimbs are mainly responsible for braking, while the hindlimbs are in charge of the majority 

of propulsion (Millis et al. 2004). 

Because the experimental part of this dissertation involves solely the analysis of the 

walking gait and uses the trot for comparison purposes, the literature review will focus on these 

gait types. 

 

2.2.1.1. Walk 

The walk is the slowest gait a sound 

dog performs. It is also the only gait where 

there is a phase with three feet simultaneously 

contacting the ground. 

A full walking cycle (Figure 11, left) 

follows the pattern: right hindfoot, right forefoot, 

left hindfoot, left forefoot. Simply put, it starts 

with a hindfoot, followed by its ipsilateral 

forefoot, and then the same is performed by the 

contralateral limbs. Each hindfoot steps right 

ahead of where the forefoot was before (Zink 

and Carr 2018). The centre of gravity remains 

central throughout the whole cycle (Prydie and 

Hewitt 2015). 

Due to its speed, the walk is considered 

the easiest gait to visually assess. Though, it 

has the disadvantage of difficulting the 

detection of subtle lameness and that dogs are 

more prone to being distracted at walking 

speed (Millis et al. 2004).  

Figure 11 – Foot ground contact diagram 

of the walk (left) and the trot (right) gait. 

The numbers represent the sequence of 

footfall. The black prints depict the 

forefeet, the dark-grey depict the 

hindfeet, and the light-grey depict the 

forefoot from the precedent stride. 

(Adapted from Zink and Carr 2018). 

 

Figure 18 – Example of a normal pattern 

of vertical force distribution of a 

hindlimb over time, during the stance 

phase of a stride. Each coloured line 

represents a different trial of the same 

hindlimb. The PFz of each trial is their 
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2.2.1.2. Trot 

In the trotting gait, the two diagonal legs contact the ground simultaneously. It follows 

the pattern: left forefoot with right hindfoot, then right forefoot with left hindfoot. As observed in 

Figure 11 (right), two of the feet contact the ground in the same spot. It occurs every time one 

of the hindfeet moves forward, stepping into the place where the ipsilateral forefoot was 

moments before (Prydie and Hewitt, 2015; Zink and Carr 2018). In most breeds, when a dog 

is trotting there is a moment of suspension between the contact of each diagonal pair (Elliott 

2009). The trot is considered the best gait to visually detect lameness. This is due to being the 

only type of gait in which the limb contacting the ground is never assisted by its contralateral 

limb (Millis et al. 2004). 

 

2.2.2. Lameness 

 Lameness consists of a disturbance of normal gait, that affects the weight-bearing of 

one or more limbs. It can be of anatomical or pathologic nature. Anatomical lameness can be 

genetic (e.g. improper body conformation) or acquired (e.g. vitamin D deficiency). It may or not 

be generated by pain. Pathological lameness can occur due to neural (e.g. cauda equina) or 

musculoskeletal causes (e.g. hip dysplasia). Typically, musculoskeletal lameness is triggered 

by pain (Gillette 2011). 

The presence of lameness promotes complex adjustments in locomotion, which may 

generate secondary conditions (Wilson and Smith 2016). For instance, in the presence of 

unilateral lameness, a decrease in load in the lame limb is expected. This decrease is 

compensated by the transition of forces to other extremities (Bockstahler et al. 2009). 

 Analysing symmetrical gait types is recommended to assess lameness, as it is easier 

to detect (Colborne et al. 2011; Oosterlinck et al. 2011). Because of their symmetry and speed, 

the walk and trot are the two types most frequently used in lameness evaluation. Moreover, 

dogs tend to naturally perform them when incentivised to move (Weigel et al. 2005). 

 

2.2.3. Methods of gait analysis 

Gait analysis is currently performed resourcing both to subjective and objective 

methods (Carr and Dycus 2016). 

Observational gait analysis, also known as subjective gait analysis, involves the visual 

assessment of the patient’s locomotion at all angles, usually walking and trotting. It is 

recommended to be performed prior to other physical examinations, since the palpation of 

limbs and joints may influence subtle lameness. This method of gait analysis can include 

videotaping, and either a numerical rating score or a visual analogue scale. It is considered 
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quick and inexpensive and is currently the most common practice when assessing lameness 

in a clinical setting (Huntingford and Fossum 2019). 

Instrumented gait analysis, commonly named objective gait analysis, is considered to 

encompass some of the most accurate methods to assess locomotion. It allows the 

quantification of changes in gait, and the validated methods possess a higher sensitivity power 

in detecting subtle lameness (Huntingford and Fossum 2019). Owing to these attributes, it has 

been increasingly used in the developing of treatment plans and in the monitoring of patient 

progress (Carr and Dycus 2016). 

Numerous methods for gait analysis have been developed in the last decades. Among 

the most well-established techniques in veterinary practice are kinematic and kinetic gait 

analysis (Griffon 2008). 

Kinematic analysis evaluates the characteristics of motion from a spatial perspective. 

It involves the positioning of reflective markers in joint landmarks, and the use of 3D cameras 

to subsequently measure position, velocity, and acceleration of the body, limbs and joints. 2D 

systems are also available but are less effective (Weigel et al. 2005). It is mostly used for 

measuring changes in stride length and in joint angles during gait (Millis et al. 2004). 

Kinetic gait analysis quantifies the forces involved in locomotion, mainly in relation to 

the ground. It includes the measurement of braking, propulsive, horizontal and peak vertical 

forces; vertical, braking, and propulsive impulses; rates of loading and pressure distribution 

within the paw (Millis et al. 2004).  It is the most common technique for describing normal and 

abnormal locomotion (Schnabl-Feichter et al. 2017). Kinetic data can be collected using one 

or multiple force plates, or a pressure-sensitive walkway (also referred to as “pressure plate”) 

(Gillette and Angle 2008). Both are considered well-validated reliable measuring tools 

(Bockstahler, Skalicky et al. 2007; LeQuang, Maitre, Colin et al. 2010; LeQuang, Maitre, Roger 

et al. 2010). 

It is common for both the kinematic and kinetic methods to incorporate the time 

dimension in the analysis of their parameters (Gillette and Angle 2008). 

Several studies comparing subjective and objective lameness assessment indicate that 

due to its subjective nature, observational gait analysis may not be able to consistently detect 

subtle lameness (Oosterlinck et al. 2011; Lane et al. 2015; Carr and Dycus 2016). 

Nevertheless, observational gait analysis is still a practical tool in clinical practice and should 

integrate a complete orthopaedic, neurological and rehabilitation examination procedure. 

For the experimental part of this dissertation, a pressure plate with a video recorder 

was used to perform kinetic gait analysis, including temporospatial variables.  
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2.2.3.1. Kinetic gait analysis 

In kinetic gait analysis, the measured forces occur along three axes: vertical (z), 

horizontal (y) and transverse (x). Because these are all reaction forces occurring at the point 

of contact with the ground, they are referred to as ground reaction forces (GRFs) (Zink and 

Carr 2018). 

The assessment of GRFs is based on Newton’s third law of motion, which states that 

for every action force occurs an equal, collinear, and opposite reaction force (Weigel et al. 

2005). The reaction force along the vertical (z) is the force that occurs perpendicular to a plane 

ground surface. It represents the weight-bearing dimension of the resultant force. The reaction 

force along the horizontal (y) axis is composed by the propulsion and the braking components. 

Propulsion occurs in the positive direction of the resultant force, whereas braking occurs in the 

negative direction. Lastly, the reaction force along the transverse (x) axis concerns 

mediolateral forces. It is considered minor and is usually not quantified in most kinetic studies 

in dogs (Millis et al. 2004). 

According to the parameters measured in this dissertation’s clinical study, the following 

text will be dedicated to describing peak vertical force, vertical impulse, paw pressure contact 

area, and symmetry indexes. The parameter of stance phase duration was previously 

mentioned in the normal gait subchapter. 

 

a. Ground reaction forces 

Peak vertical force (PFz) represents the maximum force of the vertical GRF of a limb 

during stance. It is a punctual moment in time in the force time curve of a stride. 

Vertical impulse (IFz) is composed of the sum of the vertical force of a limb over time. 

Mathematically, it is represented by the area under the force-time curve (Zink and Carr 2018) 

Both PFz and IFz variables are depicted in Figure 12. 

 

b. Paw pressure contact area 

This variable represents the surface area of a paw that is contacting the ground (Millis 

et al. 2004). 

 

c. Limb symmetry 

As in previous human (Soudan 1982) and equine (Merkens et al. 1985) locomotion 

studies, in 1993 Budsberg et al. documented that healthy dogs did not present perfect right-

left symmetry at a trot. Instead, they presented small but consistent variations in weight-

shifting. 
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The percentage of asymmetry accepted in nonlame dogs has been the focus of 

numerous canine gait analysis studies. Symmetry or asymmetry indexes are currently 

considered the gold standard in the assessment of lameness in several species (Budsberg et 

al. 1993; Schnabl-Feichter et al. 2017). They can be calculated for each of the discussed 

kinetic parameters. Namely symmetry indexes of PFz and IFz are used in canine gait analysis 

(Oosterlinck et al. 2011), as they are considered the parameters with the higher reliability, and 

have been investigated by several researchers for a SI cut-off value to distinguish lame from 

non-lame individuals (Budsberg et al. 1993; Fanchon et al. 2007; Volstad et al. 2017). Typically 

lower PFz and IFz show lower values in the affected limb of a lame dog (Gillette and Angle 

2008), which can generate an imbalance in a limb pair and therefore be categorized as an 

asymmetry. 

 

  

Figure 12 – Example of a normal pattern of vertical force distribution of a hindlimb over time, 

during the stance phase of a stride. Each coloured line represents a different trial of the same 

hindlimb. The PFz of each trial is their respective highest point marked in the graph. The IFz of 

each trial is the area under their respective curve. The stance phase of a stride typically has 

an “M” shape, due to the peak of the first ground contact, and then the peak of the propulsion 

before the foot leaves the ground (Millis et al. 2004). This graph was automatically translated 

using the gait analysis dedicated software available at the Vetmeduni (Pressure Analyzer 

1.3.0.2; Michael Schwanda®). 
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3. MATERIALS AND METHODS  

 

3.1. Introduction 

Computer-assisted gait analysis is currently considered a cornerstone in the veterinary 

biomechanical field (Gillette and Angle 2008; Carr and Dycus 2016). Kinetic analysis is one 

method of gait analysis which evaluates weight-bearing alterations by measuring reaction 

forces. It is a reliable tool in the diagnosis of locomotion disorders, and evaluation of different 

treatment effects, supporting adjustments to produce a better outcome (McLaughlin 2001; 

LeQuang, Maitre, Roger et al. 2010). It is expected that as adherence to veterinary physical 

therapy and rehabilitation grows, the use of gait analysis in varied settings will increase as well 

(Weigel et al. 2005; Feeney et al. 2007; Griffon 2008). 

The benefits of underwater treadmill therapy in dogs have been extensively recognised 

and discussed in veterinary literature (Levine et al. 2002; Jackson et al. 2002; Bockstahler et 

al. 2004; Dunning et al. 2004; Millis et al. 2004; Chauvet et al. 2011; Monk 2016; Bertocci et 

al. 2018). However, much data is still required to more accurately understand its influence on 

canine locomotion, being one of the cases individuals recovering from orthopaedic lameness. 

 

3.2. Objective 

The aim of this study was to use a pressure plate to compare ground reaction forces 

(GRFs) in a heterogeneous population of dogs with lameness due to appendicular orthopaedic 

condition(s), before and after a physical therapy session on a water treadmill. It was proposed 

to measure changes in symmetry variation of vertical ground reaction forces, stance phase 

duration, and paw pressure contact area between contralateral limb pairs, as well as variation 

in step length. It was also proposed to investigate whether a correlation existed between the 

withers height and the step length of each dog. 

 

3.3. Candidates 

 Fourteen client-owned dogs enrolled in the clinical study, from April 2015 to July 2015, 

for voluntary participation. Eligible candidates were selected by medical record investigation. 

Inclusion criteria comprised a clinical history of lameness due to an orthopaedic condition 

originated in one or both contralateral limb pairs, and ongoing underwater treadmill treatment. 

Exclusion criteria included simultaneous orthopaedic conditions in both fore and hindlimbs, 

abnormal findings on a routine physical examination, previous neurologic diagnosis or 

abnormal findings on neurologic examination, or a diagnosis of a non-orthopaedic condition.  

One dog was excluded due to limb suspension during locomotion, which affected the 

consistency of measurements; 4 dogs were excluded after measurements, as they were no 
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longer considered lame. The 9 candidates that met the inclusion criteria were divided into two 

groups, based on whether the orthopaedic condition occurred in the forelimbs (Group A) or in 

the hindlimbs (Group B), as shown in Table 3. Each dog was assigned a number, to identify 

them throughout the study. 

 

In Group A, mean age ± standard deviation (SD) was 5.13 ± 3.29 years, ranging from 

0.5 to 8.08 years. Mean body mass ± SD was 23.55 ± 14.02 kilogram (kg); mean BCS ± SD 

was 6.25 ± 1.71, and 3 dogs were appraised as overweight (BCS ≥ 6/9) using the Purina® 

Body Condition Tool for Dogs (Laflamme 1997). There were 2 individuals affected in one 

forelimb, and 2 in both forelimbs. Regarding medication, participant number 4 was receiving 

Cimicoxib (2.5 mg/kg daily) to alleviate the symptoms of bilateral elbow dysplasia aggravated 

by omarthrosis and cubarthrosis. 

Group B participants mean age ± SD was 6.42 ± 4.17 years, ranging from 2.33 to 11.50 

years. Mean body mass ± SD was 27.36 ± 12.56 kg; mean BCS ± SD was 5.60 ± 0.89, and 2 

dogs were considered overweight. There were 3 dogs affected in one hindlimb and 2 in both 

hindlimbs. Participant number 2 was on oral Carprofen as needed (1.6 mg/kg). It was 

diagnosed with cranial cruciate ligament rupture and treated with unilateral tibial tuberosity 

advancement surgery 98 days before measurements day. 

Table 3 – Breed, gender, age, body mass and BCS of all dogs taking part in this study.                         

F – sexually intact female; FS – spayed female; M – sexually intact male; MN – neutered male. 

 

Figure 20 – Pressure plate setting in the motion analysis room. The measurement area is marked 

with white tape and covered under a rubber mat. In the corner, is the video camera used to film 

the trials.Table 3 – Breed, gender, age, body mass and BCS of all dogs taking part in this study.                         

F – sexually intact female; FS – spayed female; M – sexually intact male; MN – neutered male. 

Group A 
      

Dog Breed Gender Age (years) Body mass (kg) BCS (x/9) 

1 Mixed breed FS 5,25 42,0 8 

2 Mixed breed FS 8,08 26,3 7 

3 Irish Terrier F 0,50 10,0 4 

4 Mixed breed M 6,67 15,9 6 

      

      
Group B 

      

Dog Breed Gender Age (years) Body mass (kg) BCS (x/9) 

1 Icelandic Sheepdog MN 3,42 18,8 5 

2 Mixed breed FS 11,5 32 7 

3 Dogo Argentino X Labrador FS 4,58 40,0 5 

4 King Charles Spaniel M 2,33 10 6 

5 Large Münsterländer F 10,25 36,0 5 
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The complete general clinical and morphometric data of the candidates and its 

respective descriptive statistics are presented in Annex I. 

 

3.4. Experimental setting and data collection 

This study was reviewed and approved by the Animal Welfare Committee of the 

University of Veterinary Medicine Vienna, according to the Good Scientific Practice guidelines 

and Austrian legislation for research on animals (ETK-18/04/2015). Dog owners signed a 

consent form describing the purpose of the study and the intended procedures (template - 

Annex II). 

All examinations and measurings were carried out at the University of Veterinary 

Medicine Vienna. Prior to motion analysis and UWT, all dogs were weighed on a mechanical 

scale, and withers height was measured, from the dorsal scapular rim to the ground. The 

temperature of the water of the aquatic treadmills was measured on 8 separate days using a 

bath thermometer, to check for water temperature consistency, throughout the days. 

 

3.4.1. Gait analysis 

Each dog was walked on the pressure 

plate until a valid number of trials was obtained. 

Afterwards, each dog was taken to the 

underwater treadmill for its respective therapy 

session, was dried with towels and then taken 

back to the motion analysis room. The 

transitions between measurements and 

underwater treadmill therapy were managed 

swiftly and did not exceed 10 minutes. 

 For the gait analysis, a Zebris FDM Type 

2 pressure plate (Zebris Medical GmbH®, 

Allgäu, Germany) was set in a 7 m runway and 

covered with a 2 mm thick rubber mat to hide the 

measurement area from the dog’s sight and to 

avoid slipping. The pressure plate had a 

measurement area of 203.2 by 54.2 cm and 

comprised 15360 sensors with a sampling rate 

of 100 Hz. The gait analysis study was 

performed in a quiet room (Figure 13), with the 

owner and the research examiners. Prior to the 

measurements, each dog was allowed to walk 

Figure 13 – Pressure plate setting in the 

motion analysis room. The measurement 

area is marked with white tape and 

covered under a rubber mat. In the 

corner, is the video camera used to film 

the trials. 
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freely in the room and over the pressure plate. After getting accustomed, the dogs were walked 

on a leash over the pressure platform by either their owners or by one of the research 

examiners, maintaining the same handler in the before and after measurements. Each dog 

walked over the runway at its own comfortable speed in a straight line several times, until a 

valid number of trials was obtained (n=5) (Strasser et al. 2014). Some dogs required motivating 

by placing one or two persons at the ends of the walkway, calling and praising them. A trial 

was deemed valid when the dog walked in a straight line with the head in a straightforward 

position (not looking at the handler), without apparent tension on the leash and without 

apparent change of velocity (Evans et al. 2005; Bockstahler et al. 2016) (Figure 14). Dogs 

were walked in both directions along the walkway, to reduce variance due to leash side 

(Keebaugh et al. 2015). Mean walking velocity ± SD in Group A was 0.96 ± 0.17 meter per 

second (m/s), ranging from 0.75 to 1.14 m/s; in Group B was 0.97 ± 0.17, with a range of 0.68-

1.18 m/s. The difference in velocity between the before and after trials for each dog didn’t 

exceed 0.15 m/s, thus complying with the ≤ 0.3 m/s limit suggested by Riggs et al. (1993), and 

Roush and Mclaughlin (1994).  

All trials were filmed using a Panasonic NV-MX500 camera, and data were stored using 

WinFDM software (v1.2.2; Zebris Medical GmbH®).  

Figure 14 – Example of two valid trials from one of the participant dogs, showing the head in a 

straightforward position and reduced tension on the leash. 
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3.4.2. Underwater treadmill therapy 

Two underwater treadmills were used in this study: a Keiper™ treadmill and a custom-

built treadmill, purposely designed for the Vetmeduni Physical Therapy and Rehabilitation 

department. Further information on both underwater treadmills can be found on sub-chapter 

1.6.6. Underwater treadmills used for the traineeship and study. 

Mean water temperature ± SD was 25.63 ± 2.00 ºC, ranging from 23 to 29 ºC. All 

temperature measurements are presented in Annex III. 

As shown in Table 4, all dogs had already performed underwater treadmill therapy at 

least twice before and therefore was no need for the previous acclimatisation to the exercise 

on the day of measurement. Mean elapsed time on the treadmill ± SD was 10.00 ± 7.16 

minutes in Group A, and 12.40 ± 6.19 minutes in Group B. The treadmills were set to allow 

each dog to walk at a slow-paced comfortable speed. During the UWT session, the dogs were 

enticed with small treats and praised as an incentive. 

 

4. DATA PROCESSING 

 

4.1. Pressure plate data 

Using WinFDM software (v1.2.2; Zebris Medical GmbH®), the ground contact area of 

each footfall was identified from the video recordings and manually matched with the 

corresponding limb to obtain the data of all four limbs. The categorised motion analysis data 

was processed using dedicated software (Pressure Analyzer 1.3.0.2; Michael Schwanda®).  

For each limb, mean peak vertical force (PFz), vertical impulse (IFz), stance phase 

duration (SPD), pressure contact area (PCA) and step length were measured. 

The used pressure plate software expressed the results for PFz in Newton unit (N), and 

for IFz in Newton per second (N/s). To enable the comparison of these parameters among 

dogs, they were normalised to the percentage of total force (%TF), using the equation: 

 

Table 4 – Number of underwater treadmill therapy sessions performed by each dog, and their 

respective elapsed therapy time on the day of gait analysis. min – minutes. 

Group A 
 

Group B 

Dog UWT no. UWT time (min) 
 

Dog UWT no. UWT time (min) 

1 5 20 
 

1 19 18 

2 3 3 
 

2 13 10 

3 3 9 
 

3 24 20 

4 4 8 
 

4 3 7 

   
 

5 3 7 
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𝑋𝐹𝑧𝑙𝑖𝑚𝑏 (%𝑇𝐹) =
𝑋𝐹𝑧𝑙𝑖𝑚𝑏

𝑇𝐹
× 100 

 

where XFzlimb is the PFz or IFz of a limb, and TF, or total force, is the sum of the PFz 

or IFz of all limbs. The normalised values were used for the following statistical analysis of PFz 

and IFz. 

To investigate contralateral limb pair symmetry, an equation modified from Budsberg 

et al. (1993) (Bockstahler, Skalicky, et al. 2007) was used to calculate the symmetry index (SI) 

for the parameters PFz (SIPFz), IFz (SIIFz), SPD (SISPD), and PCA (SIPCA): 

 

𝑆𝐼𝑥 (%) = | (
𝑥𝐿 − 𝑥𝑅

𝑥𝐿 + 𝑥𝑅
) × 100 | 

 

where x is the evaluated parameter, xL is the parameter value for the left limb (fore or hind) 

and xR is for the right fore or hindlimb. The value of 0 indicates absolute symmetry for the 

measured variable, with variations expressed as a percentage of difference from 0. Based on 

a previous ground reaction forces study (Budsberg et al. 1993), a cut off value of 3% for the 

ground reaction force parameters (SIPFz and SIIFz) was used to categorise each dog as lame 

or non-lame. Therefore, dogs with SI greater than 3% were considered lame. 

Mean gait velocity was measured from the left forelimb. Step length was measured as 

a mean of the minimum and maximum step length of all four limbs. These parameters were 

automatically processed by the pressure plate software. 

The collected and normalised pressure plate data with their respective SI are available 

in Annex IV. 

 

4.2. Statistical analysis 

For both the fore and hindlimb groups, descriptive statistics (mean and standard 

deviation) were calculated for the morphometry, UWT and pressure plate measurements data. 

Using SPSS software (version 25.0), a Shapiro-Wilk test was used to check all the parameters 

for normal distribution. The differences between the before and after measurements for all 

parameters were normally distributed (Annex V). These differences were then evaluated using 

a paired student t-test, and a p-value equal or lesser than 0.05 was considered statistically 

significant. A Pearson correlation coefficient test was used to check for correlation between 

withers height and step length. Afterwards, several regression models were generated to 

assess which model presented the highest R2 value.  
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5. RESULTS 

 

The complete paired t-test results are shown in Annex VI. 

 

5.1. Ground reaction forces 

Considering the small sample number of dogs for each group, and how consequently 

one outlier value affected the mean group results and gave a high SD, both mean individual 

and collective values are presented (Table 5). Observing the baseline data from Group A, all 

dogs initially presented hindlimb lameness, according to the SIPFz parameter. Two dogs 

showed forelimb lameness in the SIPFz and SIIFz values. In Group B, all dogs also had 

hindlimb lameness (SIPFz), and two individuals presented forelimb lameness (SIPFz and 

SIIFz). After UWT, one participant was non-lame (dog number 4, from Group B). 

 

Table 5 – Mean individual and group SIPFz and SIIFz for each contralateral limb pair, before and 

after UWT, with respective standard deviation. FL – forelimb pair; HL – hindlimb pair. *Lame limb 

pair (SI greater than 3%). a Significant correlation (p = 0.003); b Significant correlation (p = 0.01); 

c Significant correlation. (p = 0.026). 

 

                  
 

   SIPFz (%)   SIIFz (%) 
                  

     Before   After    Before   After 

 Dog    FL HL    FL HL    FL HL    FL HL 

G
ro

u
p

 A
 1    1.10* 5.15*     0.89* 3.26*    0.85* 0.03*    0.63* 3.59* 

2    21.61* 12.64*    24.80* 14.23*    27.75* 14.47*    31.12* 16.36* 

3    0.10* 4.15*    1.33* 3.67*    0.07* 2.18*    2.57* 1.96* 

4    7.95* 10.94*    8.14* 4.96*    16.59* 8.92*    15.54* 4.79* 

 Mean    
7.69*a 8.22*     8.79*a 6.53*    11.31*b 6.40*    12.46*b 6.67* 

 SD    
9.92** 4.20*    11.18*** 5.19*    13.34** 6.58*    14.09** 6.56* 

    
              

    
              

   
 

              
     Before   After    Before   After 

 Dog    FL HL    FL HL    FL HL    FL HL 

G
ro

u
p

 B
 

1    3.61* 15.08*     1.30 12.00*    5.93* 20.90*    7.08* 15.30* 

2    0.60* 8.91*    0.52 9.54*    1.97* 15.95*    1.27* 14.40* 

3    0.02* 4.33*    1.14 3.53*    0.33* 6.81*    0.06* 7.41* 

4    0.50* 1.44*    2.41 0.58*    0.11* 5.06*    0.44* 0.86* 

5    0.40* 8.17*    1.78 3.79*    6.20* 11.75*    0.33* 2.21* 

 Mean    1.03 7.58*c     1.43 5.89*c    2.91 12.09*    1.83 8.04* 

 SD    1.46 5.16**    0.71 4.72**    2.97 6.52    2.96 6.69* 
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Using the paired samples t-test, no statistically significant differences were found in the 

SI of both parameters between the before and after measurements. In Group A, the SIPFz and 

SIIFz mean values in the forelimbs increased after UWT. There was a significant strong 

positive correlation between the before and after measurements in these limbs, which means 

that the effects of UWT in the SI were consistent between individuals. Regarding Group B, the 

SIPFz and SIIFz values in the hindlimbs were lower after UWT. There was a significant strong 

positive correlation between the before and after measurements of SIPFz in the hindlimbs, 

meaning the UWT effects in this group were consistent only for this parameter. 

 

 

5.2. Stance phase duration 

 The mean values and respective standard deviations for stance phase duration 

symmetry index (SISPD) are described in Table 6. No significant differences were found 

between the before and after measurements, nor was any significant correlation observed. It 

was observed a decrease in the after-UWT SISPD mean values in all groups. 

  

Table 6 – Mean values and respective standard deviation of SISPD before and after UWT. 

  FL SISPD (%) HL SISPD (%) 

  Mean SD Mean SD 

Group A 
Before UWT 3.36 2.18 2.82 2.08 

After UWT 2.74 2.58 2.24 2.47 

Group B 
Before UWT 1.67 0.66 3.27 2.63 

After UWT 1.26 0.78 3.22 0.99 
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5.3. Pressure contact area 

 The mean values and respective standard deviations for pressure contact area 

symmetry index (SIPCA) are described in Table 7. There was a significant difference between 

the SIPCA before and after measurements in the forelimbs of Group B. No significant 

correlation was observed in the PCA measurements. In both groups, after UWT, occurred an 

increase in the mean SIPCA of the forelimbs, and a decrease in the hindlimbs.  

 

 

   

5.4. Step length 

 Since this study comprised dogs with considerable size variety, both mean individual 

and collective values and SD for step length are described in Table 8. No significant differences 

were found between the before and after measurements, however, there is a significant strong 

positive correlation between the before and after measurements of both Group A and Group 

B. Post-UWT mean group results revealed an increase in the step length of both groups. 

  

Table 7 – Mean values and respective standard deviations of SIPCA before and after UWT. 

         a Significantly different (p = 0.016). 

 

Table 8 – Mean individual and group values and respective standard deviation of step length 

before and after UWT, in meter (m). a Significant correlation (p = 0.004); b Significant correlation. 

(p = 0.004). 

 

  FL SIPCA (%) HL SIPCA (%) 

  Mean  SD Mean SD 

Group A 
Before UWT 2.93 1.16 4.92 1.34 

After UWT 3.84 2.65 3.38 1.97 

Group B 
Before UWT 0.71a 0.39 3.95 3.27 

After UWT 2.18a 0.67 2.55 2.39 

 

 Step length (m) 

          

 
 Dog Before After  

G
ro

u
p

 B
 

Dog Before After 

 

G
ro

u
p

 A
 

1 0.85 0.88  1 0.63 0.63 

 
2 0.57 0.61  2 0.73 0.81 

 
3 0.62 0.62  3 0.92 0.94 

 
4 0.45 0.48  4 0.48 0.45 

 
       5 0.74 0.83 

 
 Mean 0.63a 0.65a  

Mean 0.70b 0.73b 

 
 SD 0.17* 0.17*   

SD 0.16* 0.19* 
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Graph 5 – Exponential regression for the variation of step length according to height. 

5.5. Mean velocity 

 The mean values and SD for mean velocity are described in Table 9. No significant 

differences were found between the before and after measurements, however, there was a 

significant strong positive correlation between the before and after measurements of Group B. 

Mean velocity increased in both groups, after UWT. 

 

5.6. Step length and withers height 

Considering all 9 participants, mean withers height ± SD was 0.51 ± 0.13 m (range 

0.27-0.65 m), and mean baseline step length was 0.67 ± 0.16 m (range 0.45-0.92 m). Pearson 

correlation between the variables height and step length found a very strong correlation 

coefficient (r = 0.904) that is statistically significant (p < 0.005), meaning that higher withers 

height proportionally corresponds to a longer step length. When exploring the regression 

models, exponential regression provided the highest R2 value (0.850) with significant value (p 

< 0.005). The exponential regression graph and the respective formula are depicted in Graph 

5. The complete data for the regression models can be found in Annex VII.  

Table 9 – Mean values and respective standard deviations of mean velocity before and after UWT, 

in meter per second (m/s). a Significant correlation (p = 0.045). 

   Mean velocity (m/s) 

  Mean  SD 

Group A 
Before UWT 0.95 0.18 

After UWT 0.98 0.16 

Group B 
Before UWT 0.95a 0.16 

After UWT 0.99a 0.18 
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6. DISCUSSION 

 

6.1. Candidates 

The number of candidates available for this clinical study limited the attainment of 

significant results. To achieve a compromise between candidate selection criteria and sample 

number, several causes of orthopaedic lameness were included. These conditions varied in 

location on the limb and whether it involved one or both limbs of the contralateral pair. The 

severity of the conditions varied as well. Ideally, these would have been divided accordingly 

into sub-groups. However, it was not executable for this research, as a small sample number 

greatly lowers the statistical power. 

As the candidates were first selected by medical record investigation, the time between 

the diagnosis and data collection differed. This circumstance may have biased the results as, 

in the long term, limb ground reaction forces change over time due to the diagnosed condition 

progressing or resolving (Budsberg et al. 1993; Budsberg 2001). 

The participant population of dogs comprised a heterogeneous sample of breeds, body 

size and BCS. As performed for this study, normalising the ground reaction force data to 

percent of total force is considered a valid method to compare results in a morphometrically 

heterogeneous sample (Bertram et al. 2000; McLaughlin 2001; Besancon et al. 2004; Kim et 

al. 2011; Krotscheck et al. 2014), and that it does not affect the SI (LeQuang, Maitre, Colin et 

al. 2010). Conversely, Mölsa et al. (2010) and Voss et al. (2011) reported that normalising 

does not reduce bias satisfactorily and should only be applied in groups with dogs of the same 

breed or of similar morphometry. 

A high BCS may influence some ground reaction force parameters as well (Bockstahler 

et al. 2009; Brady et al. 2013). Excessive body weight exerts higher mechanical stress on the 

skeleton, which over time promotes joint degeneration and impairs locomotion (von Eisenhart 

et al. 1999; Mason et al. 2005). Besides, obesity can limit performance in UWT, due to 

associated low tolerance to exercise (Lindley and Watson 2010).  

Regarding age, one of the participants from Group A was a 6-month-old Irish Terrier 

specimen. As mentioned by Lopez et al. (2006), the possibility of an immature skeletal system 

influencing measured GRFs should be taken into account. This study also comprised 

participants up to 11.5 years old, where there is a greater probability of undiagnosed 

degenerative joint disease (Anderson 2018), which can affect locomotion (Bockstahler et al. 

2009; Lorke et al. 2017).  
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6.2. Ground reaction forces 

In both groups, the results showed no statistically significant alterations in lameness 

immediately after UWT exercise. Nevertheless, gait alterations were observed, as 4 of the 5 

individuals from Group B presented a decrease in hindlimb post-UWT SIPFz, with a strong 

positive correlation between the before and after measurements. No compensatory increase 

in forelimb ground reaction forces was observed. In a larger sample group, this parameter 

could potentially assess if UWT exercise reduces hindlimb weight-bearing asymmetry in dogs 

afflicted by orthopaedic conditions in the hindlimbs. Rumph et al. (1993) reported that in dogs 

with induced unilateral acute stifle synovitis, PFz increased in the sound contralateral limb, 

increasing hindlimb SIPFz. Amimoto et al. (2019) described that unilateral rupture of the cranial 

cruciate ligament in dogs resulted in a decrease in PFz and IFz in the affected limb. In 

accordance with the obtained results, Rumph et al. (1995) and Jevens et al. (1996) reported 

that both unilateral and bilateral hindlimb lameness tend to affect solely the ground reaction 

forces of the hindlimbs and that forces shift between both hindlimbs. However, in these two 

former studies, single force plates were used, and non-consecutive footfalls were measured, 

which are a described source of bias (Budsberg et al. 1993). More recent studies described 

that compensatory adaptation to unilateral hindlimb lameness also involved the ipsilateral 

forelimb (Souza et al. 2014; Manera et al. 2017). 

The short-term effects of exercise on the ground reaction forces of orthopaedic patients 

were also researched by Beraud et al. (2010) and revealed a different outcome. This article 

compared baseline and post-exercise force plate data of a trotting exercise session (1.2 km) 

in 10 osteoarthritic lame dogs. The results suggested that in the short-term, moderate exercise 

deteriorated limb function and intensified hindlimb lameness in individuals impaired by 

osteoarthritis. In this case, the exercise was performed in land. 

In the Group A forelimb pair, the collective mean SI values were indicative of lameness. 

Yet, only half of the participants were initially lame in the forelimbs. This occurred since one of 

the lame dogs consistently presented a fairly high SI both for PFz and IFz. A study by Braun 

et al. (2019) comparing sound dogs to individuals with elbow osteoarthritis observed a 

decrease in the PFz and IFz of the afflicted limb, in relation to the other limbs, in the 

osteoarthritic group. In this case, a general increase in forelimb SIPFz and SIIFz was observed. 

All the participants in the study presented baseline hindlimb lameness, regardless of 

being diagnosed for the fore or hindlimbs. In research by Bockstahler et al. (2009), dogs with 

temporarily induced unilateral forelimb lameness presented a significant increase in the 

hindlimbs SIPFz. It occurred through a load shift between the lame limb and the respective 

diagonal limb. This study suggested that forelimb lameness leads to an overload of non-

affected limbs and the vertebral spine. 
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After UWT, one dog was no longer considered lame. This participant was a two-year-

old male of King Charles Spaniel breed and was diagnosed with non-graded bilateral mild hip 

dysplasia, bilateral severe coxarthrosis and bilateral patellar luxation. He performed 7 minutes 

of UWT, had not undergone surgery, and was not receiving medication. This result, however, 

does not necessarily express long-term improvement, as most immediate post-workout 

adaptive changes are transitory, and do not reflect a new baseline status (Millis 2004; Beraud 

et al. 2010; Preston and Wills 2018). 

Regardless of dividing the participants in Group A and Group B, it is not possible to 

exclude the presence of subclinical pathologic changes that affect more than a single limb pair 

(Katic et al. 2009). Canine lameness due to soft tissue injuries are often underdiagnosed (Fitch 

et al. 1997; Steiss 2002), and in addition, several participants were diagnosed with 

degenerative joint diseases, which can also offset subtle alterations (Anderson 2018), as 

previously mentioned. 

 

6.3. Stance phase duration 

 The measured absolute values of SPD varied according to each dog’s body size. 

Compared to small dogs, large dogs presented a longer SPD. These results agree with studies 

by Kim et al. (2011) and Fahie et al. (2018), which report that a difference in SPD alters the 

ratio of stance-swing times. 

 

6.4. Pressure contact area 

A significant difference in the before-after measurements was verified in Group B 

forelimbs. All the dogs in this group presented an increase in SIPCA. Similar results were 

described by Manera et al. (2017) and López et al. (2019), who observed an increase in PCA 

in the affected limb of dogs with unilateral forelimb lameness. However, in this case it occurred 

in the hindlimb lameness group. A greater area of ground contact is associated with 

adaptations to preserve body balance (Manera et al. 2017). 

 

6.5. Step length and withers height-step length ratio 

A strong positive correlation in the before-after measurements was verified in Group B 

for the step length. In this group, mean step length increased in 3 dogs, remained equal in 1 

dog, and decreased in another dog. Preston and Wils (2018) described that a single aquatic 

therapy session enhanced the range of motion and step length in a group of healthy labradors 

and a group of labradors diagnosed with bilateral elbow dysplasia. 

Both linear and exponential regressions of pre-UWT step length-withers height of all 

participants presented a high R value. Such a result suggests that in this population, as withers 
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height increased, step length increased accordingly. Small dogs possess shorter limbs and 

present shorter step length when compared to large dogs (Budsberg et al. 1987; Kim et al. 

2011). Therefore, if they do not alter step length, they require a higher step frequency to walk 

at the same velocity as large dogs. This occurrence is corroborated by studies performed by 

Mölsa et al. (2010) and Kim et al. (2011). 

 

6.6. Gait type and number of trials 

The chosen gait for this study was the walk. Voss et al. (2007) and Beraud et al. (2010) 

described that trotting presented better sensitivity and accuracy when detecting low-grade 

hindlimb lameness when compared to walking. However, exacerbating lameness throughout 

the repetition of trials enhances variance within trials, which is not desirable (Volstad et al 2016; 

Piazza et al 2017).  

In order to obtain five valid trials on the pressure plate, some dogs needed more 

passages than others, and therefore inevitably received more exercise, which also affected 

gait (Nordquist et al. 2011; Mickelson et al. 2017). 

 

6.7. UWT session 

In the UWT session, exercise represented again a factor of variation in measurements, 

as the dogs walked on the aquatic treadmill different extents of time and distance. Speed also 

varied. Beraud et al. (2010) proposed that an exercise-based protocol could be used to 

enhance the sensitivity in the detection of lameness. 

Immersion depth on UWT varied for each dog according to the orthopaedic 

condition(s). As mentioned in the literature review of this dissertation, weight-bearing varies 

according to the immersion depth (Levine et al. 2002). In this case, immersion depth was 

consistently above the stifle and around the hip level, which translates in a percentage of 

weight-bearing approximately ranging from 85% to 38% (Levine et al. 2002). Bertocci et al. 

(2018) reported that the immersion depth of UWT influenced the recovery outcome of dogs 

who had received surgical stabilisation for cranial cruciate ligament rupture. 

 

6.8. Concurrent NSAID medication 

Both participating groups had one element receiving an NSAID (cimicoxib and 

carprofen). The effects of carprofen on ground reaction forces have been described by 

Horstman et al. (2004), comprising 20 dogs with naturally occurring unilateral cranial cruciate 

disease. These authors reported no statistically significant differences between the medicated 

and the control groups. Nevertheless, the PFz and IFz values were substantially greater in 

dogs receiving carprofen.  
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7. CONCLUSIONS AND FUTURE DIRECTIONS 

 

This dissertation aimed to discuss and investigate the short-term effects of underwater 

treadmill therapy on pressure plate data, using a population of lame dogs with appendicular 

orthopaedic conditions. The findings of this clinical study suggest that underwater treadmill 

therapy is likely to influence the dog’s gait in a consistent manner. However, no statistically 

significant alterations were noted other than an increase in the SIPCA of the forelimbs of dogs 

diagnosed with an orthopaedic condition in the hindlimbs. 

The obtained results were disadvantaged by small sample size and the diversity of 

orthopaedic conditions included, which happened due to the short duration of the traineeship 

period, and consequently a limited time span to collect data dedicated to a single joint or cause 

of lameness. Future investigation on this topic should comprise a larger sample group for 

increased statistical power, a control group for comparison, and ideally focus on a single cause 

of lameness, or on a single joint. A Fourier analysis of the ground reaction forces could also 

be applied in a larger sample, as it has proven its potential in detecting subtle gait alterations 

that traditional statistical processing does not do (Katic et al. 2009). Parameters such as the 

time to reach PFz (Schnabl-Feichter et al. 2018) and the distribution of pressure in the paw 

(Schwarz et al. 2017; López 2019) are becoming increasingly utilized in recent publications 

using pressure plates and should also be considered. 

 With the growing interest on feline gait analysis (Lascelles et al. 2007; Guillot et al. 

2013; Stadig et al. 2016; Schnabl-Feichter et al. 2018), performing a similar study in cats 

should be considered, as surprisingly many of them tend to accept well UWT (Millis et al. 2004). 

Comparing the efficacy of exercising on a land treadmill vs. an aquatic treadmill in the 

treatment for a specific condition, as already performed in humans (Lee et al. 2015) and horses 

(Greco-Otto et al. 2017) would also be pertinent.  

Observational gait analysis using lameness scores is still the most common practice in 

a clinical setting (Millis et al. 2004), but pose significant limitations due to its subjectivism 

(Quinn et al. 2007; Waxman et al. 2008; Conzemius and Evans 2012). Therefore, gait analysis 

investigation has relied on computerised systems to objectively study even subtle variations 

normal and abnormal gait, and appraise the effectiveness of treatments (Fanchon and 

Grandjean 2007). These systems allow for greater accuracy, yet they are not broadly available 

nor economically feasible for most practices (Griffon 2008). In the absence of a computerised 

system, bathroom scales have been proven as a less exact but pertinent and accessible 

alternative to investigate weight-bearing abnormalities at a stance, as animals commonly bear 

less weight on a lame limb (Millis et al. 2004; Hyytiäinen et al 2013). Another alternative is 

portable pressure-measuring equipment, which is a quick, objective and easy to set up a tool 

for evaluating gait in routine clinical practice. It allows for long term lameness follow-up and is 
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also more cost-friendly than a traditional force plate (LeQuang, Maitre, Roger et al. 2010; 

Oosterlinck et al. 2011).  

The results here reported are of scientific interest as a starting point to further 

investigate short-term effects of therapy and exercise in an aquatic treadmill, by contributing 

with temporospatial gait data. Much of the current information on veterinary aquatic therapy 

originated from already existing guidelines for human aquatic therapy. Due to this 

extrapolation, there is still mensurable variability in veterinary aquatic therapy protocols, and 

subjective prescriptions, which lack controlled studies to corroborate (Edge-Hughes 2007). As 

an emerging field in veterinary medicine, gait analysis is gradually building up additional 

baseline data. Numbers on specific populations (breeds, orthopaedic and neurological 

conditions) are yet missing to enhance the applicability of gait analysis in clinical practice.  It 

is a tool still mostly used in an academic setting. However, with canine sports, working dogs 

and outdoor activities with pets becoming more popular, both owners and veterinarians would 

benefit from better understanding canine locomotion (Carr and Dycus 2016). 

In human orthopaedics, gait analysis promoted significant changes in the standard of 

care, namely in post-operative recovery, preventive practices, sports medicine and 

neuromuscular rehabilitation (Griffon 2008). As processing temporospatial and pressure gait 

parameters involve large amounts of information, “big data” is becoming more popular as a 

resource to explore meaningful patterns (Phinyomark et al. 2017). In the veterinary field, future 

perspectives involve a need for proper teaching and training professionals in this discipline 

and the development of a database solid enough to be used routinely in clinical practice.
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9. ANNEXES 

 

Group A      

 Dog Breed Gender Neutered/Spayed Age 

 1 Mixed breed F yes 5,25 

 2 Mixed breed F yes 8,08 

 3 Irish Terrier F no 0,50 

 4 Mixed breed M no 6,67 

      

    Mean 5,13 

    SD 3,29 

      

Group B      

 Dog Breed Gender Neutered/Spayed Age 

 1 Icelandic Sheepdog M yes 3,42 

 2 Mixed breed F yes 11,50 

 3 Dogo Argentino X Labrador F yes 4,58 

 4 King Charles Spaniel M no 2,33 

 5 Large Münsterländer F no 10,25 

      

    Mean 6,42 

    SD 4,17 

 

Annex I - General clinical and morphometric data of the candidates and its 

respective descriptive statistics 
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Group A      

 

Dog 
Body mass 

(kg) 
BCS 

(x/9) 
Withers 

height (m) 

Step length 
before exercise 

(m) 

 1 42,0 8 0,65 0,85 

 2 26,3 7 0,51 0,57 

 3 10,0 4 0,43 0,62 

 4 15,9 6 0,36 0,45 

      

 Mean 23,55 6,25 0,49 0,63 

 SD 14,02 1,71 0,12 0,17 

      

      

Group B      

 

Dog 
Body mass 

(kg) 
BCS 

(x/9) 
Withers 

height (m) 

Step length 
before exercise 

(m) 

 1 18,8 5 0,50 0,63 

 2 32,0 7 0,57 0,73 

 3 40,0 5 0,63 0,92 

 4 10,0 6 0,27 0,48 

 5 36,0 5 0,63 0,74 

      

 Mean 27,36 5,60 0,52 0,70 

 SD 12,56 0,89 0,15 0,16 
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Annex II – Template of Information and consent for pet owners 



52 

 

 

 

  



53 

 

(Free translation) 

Information and consent of pet owners - scientific study 
 
You are invited to participate with your pet in a scientific study conducted at the University 

of Veterinary Medicine, Vienna. The procedures listed under point 4 will be carried 
out.  We expressly point out that these procedures are not required from a veterinary point of view, 
but that they serve to improve medical treatment options and broaden scientific knowledge. The 
study was positively assessed by the Animal Welfare Commission and the Ethics Committee of the 
Vetmeduni Vienna. 

 
Participation in the study is voluntary and free of charge. The study can be stopped at any time. 
 
1. Title of the study 
Changes in the degree of lameness after underwater treadmill therapy 
 
2. Questions and objectives of the study 
In this study, it will be investigated whether the degree of lameness changes after underwater 
treadmill therapy. The hypothesis is that there are no changes, which means that the therapy does 
not cause any worsening of lameness, but also no immediate improvement. 
 
3. Expected benefits of the study 
The obtained data will serve as the basis for further projects, providing information on how long 
underwater treadmill therapy therapies can be applied at different degree of lameness and, above 
all, how the degree of lameness over several underwater treadmill therapies changes. 
 
4. Description of the planned procedures 

Immediately before the underwater treadmill therapy, a motion analysis is carried out on 
the pressure measuring plate as usual. After that your dog will receive the underwater therapy as 
usual. Immediately after the therapy, the motion analysis is repeated. 
 
5. Possible side effects and risks 
As with any medical intervention, side effects or complications may occur in the context of the 
measures listed under point 4. These include  
 
fatigue from training on the underwater treadmill, short-term worsening of lameness.  
 
If side effects are observed after the discharge of your animal, the treating clinic should be 
contacted immediately. 
 
6. Use of data 

Data and samples of the patient obtained during the study may be used anonymously in 
the teaching and research of the VetmedUni Vienna and, in particular, may also be published. 
 

Statement of consent 
I hereby confirm that I have been informed of the structure of the study and that I have had 

the opportunity to ask questions about the conduct of the study. I have taken note of the information 
above and I consent to the actions listed under point 4 and the use of the resulting data. 
 
Pet (Name, Type, Pet No. according to TIS, Chip-No., if available): 
 
Pet owner (First name and surname, Address, phone number): 
 

 
Place and date:     Signature of the pet owner: 
Study responsible person: 
 
Questions/contact: 
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Annex III – Water temperature measurements 
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Group A  PFz before UWT 

  Dog LF (%TF) RF (%TF) SI_FL (%) LH (%TF) RH (%TF) SI_HL (%) 

         

  1 28,26 27,65 1,10 23,18 20,91 5,15 

  2 18,99 29,47 21,61 22,51 29,03 12,64 

  3 32,79 32,73 0,10 16,52 17,95 4,15 

  4 33,80 28,83 7,95 20,73 16,64 10,94 

         

         

Group B  PFz before UWT 

  Dog LF (%TF) RF (%TF) SI_FL (%) LH (%TF) RH (%TF) SI_HL (%) 

         

  1 27,39 29,44 3,61 18,33 24,84 15,08 

  2 31,36 30,99 0,60 17,15 20,50 8,91 

  3 30,81 30,83 0,02 20,01 18,35 4,33 

  4 32,59 32,26 0,50 17,32 17,83 1,44 

  5 32,83 32,56 0,40 18,72 15,89 8,17 
 

Annex IV – Collected kinetic data normalized to percentage of total force 

(%TF). Values with a SI≥ 3% are highlighted in yellow. LF – left forelimb; RF – 

right forelimb; LH – left hindlimb; RH – right hindlimb 

Group A  PFz after UWT 

  Dog LF (%TF) RF (%TF) SI_FL (%) LH (%TF) RH (%TF) SI_HL (%) 

         

  1 28,90 28,39 0,89 22,05 20,65 3,26 

  2 17,96 29,81 24,80 22,40 29,83 14,23 

  3 34,31 33,41 1,33 15,54 16,73 3,67 

  4 33,92 28,81 8,14 19,56 17,71 4,96 

         

         

Group B  PFz after UWT 

  Dog LF (%TF) RF (%TF) SI_FL (%) LH (%TF) RH (%TF) SI_HL (%) 

         

  1 28,42 29,17 1,30 18,66 23,75 12,00 

  2 31,52 31,19 0,52 16,86 20,42 9,54 

  3 30,73 31,44 1,14 19,58 18,24 3,53 

  4 32,72 31,18 2,41 18,16 17,95 0,58 

  5 32,50 33,68 1,78 17,55 16,27 3,79 
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Group A  IFz after UWT 

  Dog LF (%TF) RF (%TF) SI_FL (%) LH (%TF) RH (%TF) SI_HL (%) 

         

  1 30,37 29,99 0,63 20,53 19,11 3,59 

  2 17,71 33,72 31,12 20,31 28,26 16,36 

  3 33,07 34,81 2,57 15,75 16,38 1,96 

  4 36,87 26,95 15,54 18,96 17,23 4,79 

         

         

Group B  IFz after UWT 

  Dog LF (%TF) RF (%TF) SI_FL (%) LH (%TF) RH (%TF) SI_HL (%) 

         

  1 27,62 31,82 7,08 17,18 23,38 15,30 

  2 31,80 32,62 1,27 15,22 20,35 14,40 

  3 33,06 33,02 0,06 18,22 15,71 7,41 

  4 32,36 32,08 0,44 17,93 17,63 0,86 

  5 33,23 33,45 0,33 17,03 16,29 2,21 
 

Group A  IFz before UWT 

  Dog LF (%TF) RF (%TF) SI_FL (%) LH (%TF) RH (%TF) SI_HL (%) 

         

  1 29,48 29,99 0,85 20,26 20,27 0,03 

  2 18,54 32,78 27,75 20,82 27,87 14,47 

  3 33,43 33,48 0,07 16,19 16,91 2,18 

  4 36,94 26,43 16,59 19,95 16,68 8,92 

         

         

Group B  IFz before UWT 

  Dog LF (%TF) RF (%TF) SI_FL (%) LH (%TF) RH (%TF) SI_HL (%) 

         

  1 26,52 29,87 5,93 17,25 26,36 20,90 

  2 30,88 32,13 1,97 15,54 21,44 15,95 

  3 32,64 32,42 0,33 18,66 16,28 6,81 

  4 33,15 33,22 0,11 15,96 17,66 5,06 

  5 34,65 30,61 6,20 19,41 15,33 11,75 
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Group A  PCA after UWT 

  Dog LF (cm2) RF (cm2) SI_FL (%) LH (cm2) RH (cm2) SI_HL (%) 

         

  1 60,87 61,74 0,71 51,65 48,83 2,81 

  2 35,11 39,45 5,83 37,39 41,64 5,38 

  3 29,05 25,65 6,23 23,92 24,35 0,89 

  4 32,60 30,96 2,59 25,82 23,62 4,45 

         

         

Group B  PCA after UWT 

  Dog LF (cm2) RF (cm2) SI_FL (%) LH (cm2) RH (cm2) SI_HL (%) 

         

  1 40,24 41,23 1,22 35,22 36,13 1,28 

  2 45,03 47,10 2,25 37,45 40,94 4,46 

  3 54,38 56,65 2,05 47,01 46,32 0,73 

  4 26,79 25,18 3,11 19,73 19,52 0,54 

  5 51,90 54,29 2,25 42,40 37,80 5,74 
 

Group A  PCA before UWT 

  Dog LF (cm2) RF (cm2) SI_FL (%) LH (cm2) RH (cm2) SI_HL (%) 

         

  1 63,22 61,04 1,75 52,59 47,98 4,58 

  2 35,70 38,91 4,30 35,91 39,22 4,40 

  3 24,21 22,60 3,45 22,24 24,01 3,83 

  4 32,44 31,03 2,23 25,66 22,37 6,87 

         

         

Group B  PCA before UWT 

  Dog LF (cm2) RF (cm2) SI_FL (%) LH (cm2) RH (cm2) SI_HL (%) 

         

  1 37,27 36,99 0,38 31,47 35,67 6,25 

  2 44,73 45,46 0,81 38,05 39,81 2,27 

  3 53,94 55,36 1,30 47,17 45,55 1,74 

  4 25,18 25,02 0,32 18,05 18,40 0,97 

  5 52,57 53,36 0,75 44,55 37,55 8,52 
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Group A  SPD after UWT 

  Dog LF (s) RF (s) SI_FL (%) LH (s) RH (s) SI_HL (%) 

         

  1 0,54 0,54 0,03 0,51 0,50 0,57 

  2 0,39 0,44 6,16 0,36 0,40 5,53 

  3 0,32 0,33 1,78 0,31 0,31 0,12 

  4 0,41 0,39 2,98 0,39 0,37 2,75 

         

         

Group B  SPD after UWT 

  Dog LF (s) RF (s) SI_FL (%) LH (s) RH (s) SI_HL (%) 

         

  1 0,35 0,37 2,53 0,33 0,36 4,50 

  2 0,48 0,49 1,24 0,44 0,47 3,27 

  3 0,55 0,54 1,06 0,51 0,48 3,22 

  4 0,41 0,41 1,10 0,39 0,38 1,70 

  5 0,57 0,57 0,39 0,51 0,54 3,43 
 

Group A  SPD before UWT 

  Dog LF (s) RF (s) SI_FL (%) LH (s) RH (s) SI_HL (%) 

         

  1 0,53 0,55 2,02 0,49 0,52 3,66 

  2 0,44 0,49 5,47 0,41 0,45 5,11 

  3 0,32 0,32 1,01 0,29 0,29 0,22 

  4 0,40 0,36 4,93 0,37 0,35 2,30 

         

         

Group B  SPD before UWT 

  Dog LF (s) RF (s) SI_FL (%) LH (s) RH (s) SI_HL (%) 

         

  1 0,41 0,43 2,42 0,38 0,44 7,28 

  2 0,48 0,49 1,35 0,44 0,48 4,35 

  3 0,53 0,52 1,63 0,49 0,47 1,96 

  4 0,39 0,40 0,76 0,35 0,37 2,27 

  5 0,59 0,57 2,17 0,55 0,55 0,49 
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Group A  Step length (m) 

  Dog Before UWT After UWT 

       

  1 0,85 0,88 

  2 0,57 0,61 

  3 0,62 0,62 

  4 0,45 0,48 

     

     

Group B  Step length (m) 

  Dog Before UWT After UWT 

       

  1 0,63 0,63 

  2 0,73 0,81 

  3 0,92 0,94 

  4 0,48 0,45 

  5 0,74 0,83 
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Group B  Mean velocity (m/s) 

  
Dog Before UWT After UWT Mean 

Difference between 
measurements 

  1 0,95 1,07 1,01 0,12 

  2 1,00 1,09 1,05 0,09 

  3 1,18 1,14 1,16 0,04 

  4 0,74 0,68 0,71 0,05 

  5 0,88 0,98 0,93 0,10 

       

  Mean 0,95 0,99 0,97  

  SD 0,16 0,18 0,17  

  Minimum 0,68   

  Maximum 1,18   

       
 

Group A  Mean velocity (m/s) 

  
Dog Before UWT After UWT Mean 

Difference between 
measurements 

  1 1,08 1,05 1,07 0,03 

  2 0,83 0,98 0,91 0,15 

  3 1,12 1,14 1,13 0,02 

  4 0,75 0,76 0,76 0,01 

  
     

  Mean 0,95 0,98 0,96  

  SD 0,18 0,16 0,17  

  Minimum 0,75   

  Maximum 1,14   

 

Overall Mean 0,97 

  SD 0,16 

  Minimum 0,68 

  Maximum 1,18 
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Group A 

 

Lameness 
Shapiro-Wilk 

Statistic df Sig. 

SI PFz FL 0.909 4 0.477 

SI PFz HL 0.964 4 0.804 

SI IFz FL 0.905 4 0.457 

SI IFz HL 0.961 4 0.786 

Step Length 0.841 4 0.198 

SPD FL 0.748 4 0.057 

SPD HL 0.739 4 0.060 

PCA FL 0.996 4 0.985 

PCA HL 0.859 4 0.258 

Mean Velocity 0.860 4 0.261 

 
 
 

Group B 

 

Lameness 
Shapiro-Wilk 

Statistic df Sig. 

SI PFz FL 0.880 5 0.309 

SI PFz HL 0.940 5 0.665 

SI IFz FL 0.786 5 0.063 

SI IFz HL 0.985 5 0.960 

Step Length 0.931 5 0.602 

SPD FL 0.876 5 0.292 

SPD HL 0.981 5 0.939 

PCA FL 0.863 5 0.240 

PCA HL 0.991 5 0.982 

Mean Velocity 0.813 5 0.103 

 

Annex V – Normality tests 
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Group A 

 

 Mean N Std. Deviation Std. Error Mean 

Pair 1 SI PFz FL Before 7,690 4 9,915 4,958 

SI PFz FL After 8,789 4 11,180 5,590 

Pair 2 SI PFz HL Before 8,219 4 4,201 2,100 

SI PFz HL After 6,533 4 5,185 2,593 

Pair 3 SI IFz FL Before 11,315 4 13,342 6,671 

SI IFz FL After 12,465 4 14,090 7,045 

Pair 4 SI IFz HL Before 6,400 4 6,577 3,289 

SI IFz HL After 6,672 4 6,560 3,280 

Pair 5 SPD FL Before 3,358 4 2,178 1,089 

SPD FL After 2,738 4 2,583 1,292 

Pair 6 SPD HL Before 2,823 4 2,080 1,040 

SPD HL After 2,243 4 2,474 1,237 

Pair 7 PCA FL Before 2,933 4 1,159 0,579 

PCA FL After 3,840 4 2,648 1,324 

Pair 8 PCA HL Before 4,920 4 1,339 0,669 

PCA HL After 3,383 4 1,972 0,986 

Pair 9 Step Length Before 0,626 4 0,169 0,085 

Step Length After 0,647 4 0,170 0,085 

Pair 10 Mean Velocity Before 0,948 4 0,183 0,091 

Mean Velocity After 0,981 4 0,163 0,081 

 
 

Paired Samples Correlations 

 N Correlation Sig. 

SI PFz FL Before & SI PFz FL After 4 ,997 ,003* 

SI PFz HL Before & SI PFz HL After 4 ,787 ,213*  

SI IFz FL Before & SI IFz FL After 4 ,990 ,010* 

SI IFz HL Before & SI IFz HL After 4 ,872 ,128* 

SPD FL Before & SPD FL After 4 ,799 ,201 

SPD HL Before & SPD HL After 4 ,737 ,263 

PCA FL Before & PCA FL After 4 ,927 ,073 

PCA HL Before & PCA HL After 4 ,499 ,501 

Step Length Before & Step Length After 4 ,996 ,004* 

Mean Velocity Before & Mean Velocity After 4 ,905 ,095* 

 

Annex VI – Paired t-test results. * - statistically significant value 
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Paired Samples Test 

 Mean 

Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence Interval 

of the Difference 

   

   

Lower Upper t df Sig. 

SI PFz FL Before – 

SI PFz FL After 

-1,099 1,522 0,761 -3,521 1,323 -1,444 3 ,244 

SI PFz HL Before – 

SI PFz HL After 

1,686 3,198 1,599 -3,404 6,775 1,054 3 ,369 

SI IFz FL Before –  

SI IFz FL After 

-1,150 2,119 1,060 -4,523 2,222 -1,085 3 ,357 

SI IFz HL Before –  

SI IFz HL After 

-0,272 3,321 1,661 -5,558 5,013 -,164 3 ,880 

SPD FL Before – 

SPD FL After 

0,620 1,559 0,780 -1,861 3,101 ,795 3 ,485 

SPD HL Before – 

SPD HL After 

0,580 1,692 0,846 -2,113 3,273 ,685 3 ,542 

PCA FL Before – 

PCA FL After 

-0,908 1,632 0,816 -3,504 1,689 -1,112 3 ,347 

PCA HL Before – 

PCA HL After 

1,538 1,745 0,873 -1,240 4,315 1,762 3 ,176 

Step Length Before – 

Step Length After 

-0,021 0,014 0,007 -0,044 0,001 -3,009 3 ,057 

Mean Velocity Before 

– Mean Velocity After 

-0,033 0,078 0,039 -0,157 0,090 -,858 3 ,454 
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Group B 

 

 Mean N Std. Deviation Std. Error Mean 

Pair 1 SI PFz FL Before 1,030 5 1,460 0,653 

SI PFz FL After 1,433 5 0,711 0,318 

Pair 2 SI PFz HL Before 7,585 5 5,163 2,309 

SI PFz HL After 5,889 5 4,715 2,109 

Pair 3 SI IFz FL Before 2,909 5 2,973 1,329 

SI IFz FL After 1,835 5 2,965 1,326 

Pair 4 SI IFz HL Before 12,093 5 6,517 2,915 

SI IFz HL After 8,035 5 6,694 2,994 

Pair 5 SPD FL Before 1,666 5 0,660 0,295 

SPD FL After 1,264 5 0,780 0,349 

Pair 6 SPD HL Before 3,270 5 2,631 1,177 

SPD HL After 3,224 5 0,999 0,447 

Pair 7 PCA FL Before 0,712 5 0,394 0,176 

PCA FL After 2,176 5 0,673 0,301 

Pair 8 PCA HL Before 3,950 5 3,270 1,462 

PCA HL After 2,550 5 2,387 1,067 

Pair 9 Step Length Before 0,700 5 0,162 0,073 

Step Length After 0,731 5 0,193 0,086 

Pair 10 Mean Velocity Before 0,949 5 0,163 0,073 

Mean Velocity After 0,993 5 0,183 0,082 

 
 

Paired Samples Correlations 

 N Correlation Sig. 

SI PFz FL Before & SI PFz FL After 5 -,094 ,881* 

SI PFz HL Before & SI PFz HL After 5 ,922 ,026* 

SI IFz FL Before & SI IFz FL After 5 ,565 ,321* 

SI IFz HL Before & SI IFz HL After 5 ,827 ,084* 

SPD FL Before & SPD FL After 5 ,329 ,589 

SPD HL Before & SPD HL After 5 ,582 ,303 

PCA FL Before & PCA FL After 5 -,106 ,865 

PCA HL Before & PCA HL After 5 ,591 ,294 

Step Length Before & Step Length After 5 ,978 ,004* 

Mean Velocity Before & Mean Velocity After 5 ,886 ,045* 
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Paired Samples Test 

 Mean 

Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence Interval 

of the Difference 

   

Lower Upper t df Sig. 

SI PFz FL Before – 

SI PFz FL After 

-0,403 1,683 0,753 -2,493 1,687 -,535 4 ,621* 

SI PFz HL Before – 

SI PFz HL After 

1,696 2,002 0,895 -0,790 4,181 1,894 4 ,131* 

SI IFz FL Before –  

SI IFz FL After 

1,075 2,768 1,238 -2,363 4,512 ,868 4 ,434* 

SI IFz HL Before –  

SI IFz HL After 

4,057 3,888 1,739 -0,770 8,885 2,334 4 ,080* 

SPD FL Before – 

SPD FL After 

0,402 0,840 0,376 -0,641 1,445 1,070 4 ,345 

SPD HL Before – 

SPD HL After 

0,046 2,205 0,986 -2,691 2,783 ,047 4 ,965 

PCA FL Before – 

PCA FL After 

-1,464 0,815 0,365 -2,476 -0,452 -4,015 4 ,016 

PCA HL Before – 

PCA HL After 

1,400 2,675 1,196 -1,922 4,722 1,170 4 ,307 

Step Length Before – 

Step Length After 

-0,031 0,048 0,021 -0,090 0,029 -1,419 4 ,229* 

Mean Velocity Before 

– Mean Velocity After 

-0,044 0,085 0,038 -0,149 0,061 -1,162 4 ,310* 
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Correlations 

 WithersHeight StepLength 

WithersHeight Pearson Correlation 1 ,904** 

Sig. (2-tailed)  ,001 

N 9 9 

StepLength Pearson Correlation ,904** 1 

Sig. (2-tailed) ,001  

N 9 9 

 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Curve Fit 

 

Model Summary and Parameter Estimates 

Dependent Variable:   Step Length   

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 

Linear ,818 31,423 1 7 ,001 ,113 1,096 

Logarithmic ,754 21,475 1 7 ,002 1,004 ,469 

Power ,798 27,660 1 7 ,001 1,104 ,738 

Exponential ,850 39,583 1 7 ,000 ,274 1,709 

 

The independent variable is Withers Height. 
 

Annex VII – Step length and withers height descriptive statistics, correlations and 

curve fit of several regression models. 

 Dog Withers height (m) Step length (m) 

 1 0,65 0,85 

 2 0,51 0,57 

 3 0,43 0,62 

 4 0,36 0,45 

 5 0,5 0,63 

 6 0,57 0,73 

 7 0,63 0,92 

 8 0,27 0,48 

 9 0,63 0,74 

    

Mean  0,51 0,67 

SD  0,13 0,16 

Minimum  0,27 0,45 

Maximum  0,65 0,92 

 


