
Universidade do Minho

Escola de Engenharia

Vasco Miguel Gonçalves Coelho

An SNMP-Based Audio Distribution Service

Architecture

Fevereiro de 2018

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Vasco Miguel Gonçalves Coelho

An SNMP-Based Audio Distribution Service

Architecture

Mestrado em Engenharia de Redes e Serviços Telemáticos

Trabalho realizado sob orientação de

Professor Bruno Alexandre Dias

Fevereiro de 2018

iii

To my parents and brother
António, Zulmira and Pedro

iv

v

Acknowledgments

In the first place, I thank my advisor, Professor Bruno Alexandre Dias
that agreed to guide me through this work with such interesting subject
matter, for the support and advice given during the duration of the thesis.

Next, I want to express my gratitude to all my teachers of the MSc course
in Engineering of Computers Networks and Telematic Services, for sharing
their knowledge, as well as, their support during my time in the University of
Minho. I thank my colleagues for the work done together, the talks, advice
and good times shared.

I thank my closest friends for showing their great support, motivation,
concern, interest in my work and their big patience of dealing with me.

Finally, I thank all the members of my family for the shown support,
especially, my parents who are always a source of great support and advice,
and always encourage me to study.

vi

Abstract

The constant growth of integration and popularity of “Internet of Things”
devices is affecting home automation systems, where new technologies were
introduced, in the recent years for this particular sector. These automa-
tion systems integrate devices that can be anywhere in the house, connected
to a home network, either through a wire or wireless connection. A home
automation system can be used to control air conditioning, lighting, pool
control systems, home-entertainment systems and much more.

Within the field of home-entertainment systems, the best known technolo-
gies are the Digital Living Network Alliance and the Digital Audio Access
Protocol, which provide interoperability to allow sharing of digital media
content between devices across a home network. However, these technologies
have the disadvantage of being proprietary, maintaining restrict documenta-
tion access, complex architectures and concepts and not optimal to specific
purposes, like audio distribution.

The main goal of this project was to prove that is possible to use stan-
dardized protocols, such as the Simple Network Manager Protocol and open
source tools in order to develop a music distribution service that allows the
implementation of similar features than the ones already existing proprietary
technologies. As such, the implementation prototype system allows a user
to manage and play audio from a music collection that is stored in a single
home audio server. The system architecture enables audio streaming between
the server and the various devices in the same local network. Further more,
the music collection, can integrate virtual audio files that are available from
external music sources, like iTunes, etc.

vii

viii

Resumo

O constante crescimento de integração e popularidade da “Internet das
coisas” tem atualmente afetado sistemas de domótica, onde cada vez mais
tecnologias têm vindo a ser desenvolvidas nos últimos anos para este sector
em particular. Estes sistemas de domótica integram dispositivos que podem
estar em qualquer parte de uma casa, ligados à rede seja através de um cabo
ou por wireless. Um sistema de domótica pode ser usado para controlar:
ar condicionado, iluminação, sistemas de controlo de piscinas, sistemas de
entretenimento, entre outros.

Na área de sistemas de entretenimento, as tecnologias mais conhecidas
são Digital Living Network Alliance e Digital Audio Access Protocol, que
fornecem interoperabilidade de modo a permitir a partilha de conteúdos dig-
itais multimédia entre dispositivos que se encontram na mesma rede local.
Contudo, possuem a desvantagem de serem tecnologias proprietárias, com
documentação e manuais restritos, arquiteturas e conceitos complexos, e não
otimizados para fins específicos, tal distribuição de áudio.

O principal objetivo deste projeto foi provar que é possível usar protoco-
los normalizados, como o Simple Network Manager Protocol e ferramentas
open source de forma a desenvolver um serviço de distribuição de música
que permite a implementação de funcionalidades semelhantes às tecnologias
proprietárias já existentes. Assim, o protótipo implementado permite a um
utilizador gerir e reproduzir áudio de uma coleção de música que se esteja
armazenada num servidor de áudio domestico. A arquitetura permite stream-
ing de áudio entre o servidor e os diferentes dispositivos que se encontram
na mesma rede local. Consequentemente, a coleção de música pode integrar
ficheiros de áudio visuais que estejam acessíveis através de fontes externas de

ix

x

música, como por exemplo: iTunes, etc.

Contents

1 Introduction 1

2 Related Technologies 5
2.1 Digital Living Network Alliance 5

2.1.1.1 DLNA Protocol Stack 5
2.1.1.2 DLNA Device Classes 7
2.1.1.3 DLNA Audio Codecs Supported 9

2.1.2 Universal Plug n Play 9
2.1.2.1 UPnP Device Architecture 10
2.1.2.2 UPnP Audio Video Architecture 12
2.1.2.3 Security Problems With UPnP 18

2.2 Digital Audio Access Protocol 20
2.2.1 Bonjour . 21
2.2.2 Software using DAAP 22

2.3 DLNA and DAAP Comparison 24
2.4 Simple Network Management Protocol 27

2.4.1 SNMP Concepts . 27
2.4.2 Management Information Base 28
2.4.3 SNMP Operations . 30
2.4.4 SNMP Versions . 30
2.4.5 Home Automation Systems using SNMP 32

2.5 Streaming . 32
2.6 Open Source Audio Codecs . 33

2.6.1 Ogg Vorbis . 34

xi

xii CONTENTS

2.6.2 Free Lossless Audio Codec (FLAC) 35

3 Audio Distribution Using Open Source Protocols and Codecs 37
3.1 Motivation . 37
3.2 Architecture . 38

3.2.1 Music Server . 40
3.2.1.1 Music MIB 41

3.2.2 Controller Application 44
3.2.3 Audio File Database 45
3.2.4 Playing Devices . 45

3.3 Functionalities . 46
3.4 Security . 47

4 Prototype Implementation 49
4.1 SNMP Agent . 50
4.2 Streaming Server . 52
4.3 SNMP Manager . 53
4.4 Graphical User Interface . 57
4.5 Audio Streaming . 59

4.5.1 Remote Devices . 61
4.6 Search Feature . 61
4.7 Testing The Prototype System 70

4.7.1 The Controller Application 71
4.8 Comparison With Other Solutions 75

5 Conclusions 77

A MUSIC-MIB 87

List of Figures

1.1 Music distribution service solution schematic. 3

2.1 Actions and responses during the Control step (adapted from
UPnP Device Architecture [1]). 11

2.2 Presentation request and its response [1]. 12
2.3 UPnP AV Device Interaction Model. 13
2.4 Generic Interaction diagram between Media Devices and Con-

trol Point [2]. 19
2.5 The SNMP key components and their relationships. 28
2.6 Branch of a MIB Object Identifier tree. 29

3.1 Architecture diagram. 40
3.2 A Part of the Music MIB in Entity-Relationship Model. 42

4.1 Implemented Architecture Components. 50
4.2 Class relationships between the Usemanager and the table

classes. 54
4.3 User types actions and how entities are related. 59
4.4 Flowchart between the Controller Application and the Music

Server. 60
4.5 Streaming to remote devices. 61
4.6 Flowchart of the Multi-Client Search. 68
4.7 How the MIB tables are related in Multi-Client Search. 69
4.8 Login window GUI. 72
4.9 Main window interface with retrieved entries. 73

xiii

xiv LIST OF FIGURES

A.1 MUSIC-MIB in Entity-Relationship Model. 92
A.2 MUSIC-MIB Tree (Part 1). 93
A.3 MUSIC-MIB Tree (Part 2). 94
A.4 Architecture diagram. 95

List of Tables

2.1 DLNA Layers. 6
2.2 DLNA Device Classes. 8
2.3 Audio formats and codecs supported by DLNA. 9
2.4 Media Servers using UPnP. 15
2.5 Audio Players using DAAP. 23
2.6 Comparing DLNA and DAAP. 24

4.1 String comparison examples. 65
4.2 Examples of generic and specific search functionality. 75

xv

xvi LIST OF TABLES

List of Algorithms

1 Addition of a genre to the MIB. 52
2 Use of the GET command in order to retrieve a MIB table. . . 55
3 Associating an album with an artist. 56
4 A SNMP SET command. 57
5 Levenshtein Distance Algorithm. 64
6 Full process of similarity calculation. 64
7 Match between artist and album. 66

xvii

xviii

Nomenclature

3GP Third Generation Partnership Project file format

AAC Advanced Audio Coding

AMR Adaptive Multi-Rate

API Application Programming Interface

ASF Advanced Systems Format

ASN.1 Abstract Syntax Notation 1

ATRAC3 Adaptive Transform Acoustic Coding 3

DAAP Digital Audio Access Protocol

DHCP Dynamic Host Configuration Protocol

DLNA Digital Living Network Alliance

DNS Domain Name System

DTCP Digital Transmission Content Protection

ER Entity-Relationship

FLAC Free Lossless Audio Codec

GNU GPL GNU General Public License

GUI Graphical User Interface

xix

xx

HTTP Hypertext Transfer Protocol

HTTPs HTTP Secure

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

JPEG Joint Photographic Experts Group

LPCM Linear Pulse-Code Modulation

MIB Management Information Base

MP3 MPEG Audio Layer III

MP4 MPEG-4

MPEG Moving Picture Experts Group

NAS Network Attached Storage

NMS Network Management Station

OID Object Identifier

OSI Open Systems Interconnection

PNG Portable Network Graphics

RTCP Real-time Control Protocol

RTP Real-time Transport Protocol

RTSP Real Time Streaming Protocol

SMI Structure of Management Information

SNMP Simple Network Management Protocol

xxi

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UI User Interface

UPnP Universal Plug n’ Play

UPnP AV UPnP Audio Video

URL Uniform Resource Locator

WMA Windows Media Audio

XBMC XBox Media Center

XML Extensible Markup Language

xxii

Chapter 1

Introduction

The rapid growth of increasingly powerful microprocessors and microcon-
trollers, combined with the acceptance and integration of computers into our
homes and lifestyle, are triggering the popularity of home automation sys-
tems. The “Internet of Things” (IoT) brought us the concept where every
electronic equipment in a home is connected to a communication network.

Home automation systems refer to the use of computer and information
technology to enable the control of domestic activities and systems, which
include: air conditioning, lighting, home entertainment systems, houseplant
and watering, pet feeding, pool management and house security systems.
Such automation systems use a home network to integrate devices, pro-
viding control and monitoring through personal computers, smartphones or
tablets, either locally or remotely from the Internet. Home automation sys-
tems should enhance security and energy efficiency.

Some of the first home automation systems were developed for a home
entertainment application. Their main ability was to allow distribution of
audio content throughout one or more buildings. Some would also have con-
trol voice operations, allowing to change music, TV channels, or redirecting
a phone call to the home speakers.

Recent buildings and houses are currently being built with already inte-
grated home automation systems. In other cases, where home automation
systems are installed afterwards, it tends to make hardware integration much

1

2 CHAPTER 1. INTRODUCTION

more difficult. The majority of present automation solutions rely on close in-
tegration between the hardware and software, which the software subsystem
is tight to a specific hardware solution. Further more, the software subsys-
tems for home entertainment sector or more specifically for audio distribution
systems uses proprietary technologies.

The best known technologies for digital media sharing between home
network devices, as well as for remote control management of media servers,
are the Digital Living Network Alliance (DLNA) [3], developed by Sony, and
Digital Audio Access Protocol (DAAP) [4], by Apple. These technologies
are responsible to provide interoperability for sharing digital media between
multimedia devices across a network, as well as auto addressing and device
discovery.

As the DLNA technology results from a partnership of many electronic
manufacturers, it is based on an universal and open standard, and aims to
be more device independent used by large number of vendors. On the other
hand, DAAP is based only on proprietary technologies which makes media
sharing only possible within Apple’s ecosystem and a few media vendors that
support apple products and technologies.

Both DLNA and DAAP have proprietary licenses, maintaining a very
restrict and closed environment. It is required to pay licenses or royalties
or consortium memberships in order to incorporate their technology into
commercial or undergoing application development. Also, access to technical
documentation is very restricted. Both systems rely on complex architectures
and concepts as they must cover access management and sharing of all types
of media: audio, video and image.

For music entertainment systems these solutions tend to be overly com-
plex. So there are many vendors that use alternative solutions that present
simpler and more efficient architecture and technology. Although, these are
best for audio only entertainment systems, they are also based on closed and
proprietary technology, like Sonos [5], Bluesound [6] and Bose [7].

With this in mind, it seemed evident the advantage of developing a specific
architecture with a restricted context just for audio, entirely based on open
standardized protocols and mechanisms.

3

So, the cornerstone objective of the project was to prove that is possible
to develop an automated music distribution system to be used across several
platforms, containing the main features of existing proprietary technologies.
In the context of this project the Simple Network Management Protocol
(SNMP) [8, 9] is used to control and manage collections of audio files in
a music server, that can be distributed across a home network. Further
more, the architecture allows the access to audio files from external music
accessibility through the Internet.

In order to prove the concept, the prototype was built with open source
tools, implementing basic functions to control and play audio files, by stream-
ing them from a music server to a device within the local network. Figure 1.1
shows the solution concept built. In order to use SNMP, it was necessary to
build a Management Information Base (MIB), so the music controller client
could access and control the audio files from the music server. While the
open source tools were used to allow audio streaming and its control from
the music server to the playing devices.

Figure 1.1: Music distribution service solution schematic.

In the remainder of this dissertation, Chapter 2 provides a review of re-
lated work, as well as, a study about the SNMP protocol, streaming protocols
and audio codecs. Chapter 3 provides an overview of the prototype’s archi-
tecture, as well as, detailed aspects regarding its implementation. Chapter 5

4 CHAPTER 1. INTRODUCTION

concludes the document.

Chapter 2

Related Technologies

This chapter introduces some work related the scope of the project. In
particular, it describes the DLNA and the DAAP technologies, presenting
a comparative study between them. Finally, it introduces the SNMP, some
streaming technologies and open source audio codecs.

2.1 Digital Living Network Alliance

The DLNA [3], founded by Sony Corporation, provides interoperability
guidelines that allow a wide selection of multimedia devices to easily connect
with each other using the local network. DLNA devices uses the Internet
Protocol (IP) in order to find and recognize each other and share their media
content. DLNA is based on the Universal Plug n’ Play (UPnP) technologies
(which will be approached in Section 2.1.2). This serves for discovering, man-
aging and controlling multimedia devices. It defines how the media content
is identified, managed and distributed.

2.1.1.1 DLNA Protocol Stack

Table 2.1 (adapted from [3]) shows the DLNA Protocol Stack layers, its
functionalities and related technologies or protocols.

The Connectivity and IP Networking layers resemble the same as in
the Open Systems Interconnection (OSI) model. They establish how devices

5

6 CHAPTER 2. RELATED TECHNOLOGIES

Layer Protocols Functionalities

Link Protection DTCP How commercial content is
protected on the network

Media Format JPEG, PNG/LPCM,
MP3/MPEG2

The media formats that
can be identified

Media Transport HTTP/RTP How media content is
transferred

Media Management UPnP Architecture
How media is identified,
managed and distributed

Discovery & Control How devices self configure,
discover and control

IP Networking IP How devices communicate

Connectivity Ethernet/Wi-
Fi/Bluetooth

How devices connect to the
network

Table 2.1: DLNA Layers.

are connected in a home network (Ethernet/Wi-Fi) and how such devices
communicate to each other (IPv4 and IPv6). In theory, any home device
can be connected to any other connected device in the IP world, allow-
ing applications running over different media to communicate transparently.
Currently, DLNA supports connectivity over Ethernet (IEEE 802.3), Wi-Fi
(IEEE 802.11 a/b/g/n), Bluetooth, HPNA1 and MoCA2.

The next two layers (Discovery and Control and Media Manage-
ment) follow the UPnP architecture, as described below (Section 2.1.2.1).
These layers enable devices to automatically configure themselves about net-
work properties, device discovering and lastly, for device control. After these
configurations have been established, the devices can identify, manage and
distribute their media content.

The Media Transport layer defines how media content is transferred
over the network. Currently, it uses Hypertext Transfer Protocol (HTTP) as
mandatory and Real-time Transport Protocol (RTP) as optional [10].

The Media Format layer designates a set of required and optional media
formats for every device category (see Subsection 2.1.1.2) and for each of

1Home Phoneline Networking Alliance
2Multimedia over Coax Alliance

2.1. DIGITAL LIVING NETWORK ALLIANCE 7

the three classes of media: image, music and video3. DLNA Media Format
expects to achieve a baseline of interoperability while encouraging continued
innovation in the media codec technology. Hopefully improvements in this
area will result in a better network bandwidth usage and media quality.

The last layer is the Link Protection layer. It uses Digital Transmis-
sion Content Protection (DTCP), which defines a cryptographic protocol for
protecting media entertainment content from unauthorized copying, allowing
only legitimate content to be delivered from a source device to one that has
been approved with a copy protection [11]. This protection system enables
secure sharing of copyright content between devices in a home network, by
ensuring that the content is protecting it from piracy and/or illegitimate
redistribution.

2.1.1.2 DLNA Device Classes

DLNA separates the devices within three Certified Device Classes: Home
Network, Mobile Handheld and Home Infrastructure Devices [12]. Table 2.2
shows these categories for Home Network and Mobile Handheld Devices of
DLNA Architecture Device, including some examples. Each class contains
multiple subclasses, which will be briefly explained:

• Home Network Devices are subdivided into five categories. Digi-
tal Media Server (DMS) that can store content and make it available
over the network; Digital Media Player (DMP), which finds the con-
tent stored in the DMS and can also provide playback and rendering
capabilities; Digital Media Renderers (DMR) plays the content received
from a Digital Media Controller (DMC), which can also be found in a
DMS or DMP; Digital Media Printers (DMPr) provide print services
where the DMP and DMC can invoke a print action.

• Mobile Handheld Devices are quite similar to Home Network De-
vices, despite being linked through a wireless connection to the network.
Mobile Handheld Digital Media Server (M-DMS) and Mobile Handheld

3This document considers that video also contains embedded audio

8 CHAPTER 2. RELATED TECHNOLOGIES

Home Network Devices
Digital Media Server (DMS) PCs and NAS devices

Digital Media Player (DMP) TVs, home theater, stereos
and game consoles

Digital Media Renderer (DMR) Audio/video receivers
(TVS, remote speakers)

Digital Media Controller (DMC) PC
Digital Media Printer (DMPr) Network printers

Mobile Handheld Devices

Mobile Digital Media Server (M-DMS) Mobile phones and
portable music players

Mobile Digital Media Player (M-DMP) Smartphones and tablets
Mobile Digital Media Controller (M-DMC) Smartphones and tablets

Mobile Digital Media Uploader (M-DMU) Digital cameras, mobile
phones and tablets

Mobile Digital Media Downloader (M-DMD) Portable music players
Home Infrastructure Devices

Mobile Network Connectivity Function (M-NCF) Routers and access points
Media Interoperability Unit (MIU) Interoperability devices

Table 2.2: DLNA Device Classes.

Digital Media Player (M-DMP) are almost the same as DMS and DMP,
but for both wired and wireless devices. The Mobile Handheld Digital
Media Controller (M-DMC) can find content in both DMS and H-DMS,
but as a DMC, it is only able to send it to DMRs. The Mobile Hand-
held Digital Media Uploader (M-DMU) and Mobile Handheld Digital
Media Downloader (M-DMD) are responsible to, respectively, send or
retrieve content into/from DMSs and M-DMSs.

• Home Infrastructure Devices are subdivided into two categories:
the Mobile Network Connectivity Function (M-NCF) that can estab-
lish a bridge between Mobile Handheld Devices and the home network;
and the Media Interoperability Unit (MIU) which is required to pro-
vide content transformation between required media formats for Home
Network and Mobile Handheld Devices, as some devices are not able
to play directly from the DMS or M-DMS.

2.1. DIGITAL LIVING NETWORK ALLIANCE 9

2.1.1.3 DLNA Audio Codecs Supported

A brief description of audio codecs and containers supported by DLNA
is presented in Table 2.3.

Codec/Format Container File Extension
LPCM - .wav

MPEG-1 Audio layer3 - .mp3
WMA ASF .asf, .wma

AAC MP4/3GP
.m4a, .m4b, .m4p,
.m4v, .m4r, .3gp,

.mp4, .aac
AMR 3GP .amr, .3ga

ATRAC - .aa3, .oma, .at3

Table 2.3: Audio formats and codecs supported by DLNA.

A container holds the various components of a media file. For example,
a video file can have multiple audio and video streams, subtitles and meta-
data along with the synchronization information needed to play the various
streams together. For audio files, a container is much simpler than a video
as it does not need to carry the video stream and other components, like the
subtitles or synchronization information.

The term codec implies coder/decoder. A codec compress or decompress
data, in order to make it possible to store and transmit files with a smaller
file size. There are a lot of codecs available, each one with their own advan-
tages and disadvantages. The biggest difference is between lossy and lossless
formats. Lossless codecs are employed in cases where there is a need to keep
all of the original information. But, when it is reasonable to lose some data,
in exchange for greater compression, and therefore obtain smaller audio files,
it is best to use a lossy format [13].

2.1.2 Universal Plug n Play

This subsection presents an overview of the UPnP standard. It details
its Device Architecture, the Audio Video Architecture and discusses some
security issues.

10 CHAPTER 2. RELATED TECHNOLOGIES

2.1.2.1 UPnP Device Architecture

The UPnP Device Architecture was the first International Standard pro-
moted by the UPnP Forum [1]. It is part of Microsoft’s IP-based home
networking and device control protocol [14]. The concept of UPnP is that,
upon the first utilization, no special device driver support is required. In-
stead, common network protocols are used.

There are only two types of devices in the UPnP Device Architecture: the
controlled devices (or just “devices”) and the control points. The controlled
devices work as servers by responding to requests from control points. De-
vices and control points can work on a great variety of machines, including
personal computers, smartphones, tablets and embedded systems.

The UPnP Protocol uses User Datagram Packet (UDP) (port 1900) due
to its lower overhead. Configuration procedures like: addressing, discovering,
descriptions, controls, events and presentation should be almost automatic
with none or very few configurations entered by the user. Such configurations,
that allow communication between devices, are described below.

0. Addressing is the step 0 of UPnP. Every device that does not im-
plement a Dynamic Host Configuration Protocol (DHCP) server, must
have a DHCP client enabled so it can search for a DHCP server when
connecting to the network. If there isn’t any DHCP server in the net-
work or if the device does not get a response after a DHCP Request
message, it has to be capable of assigning an address to itself - this
process is also called AutoIP.

1. Discovering allows a device to advertise its services to the control
points on the network. In contrast to Addressing, when a control
point connects to the network, the UPnP discovery protocol also known
as Simple Service Discovery Protocol, allows it to search for devices
of interest within the network. The key exchange is a message that
carries specific information about the devices and its services like type,
identifier and a URL that contains more information.

2. Description provides the functionality of retrieving more detailed in-
formation about a device. As at this stage, a control point has very

2.1. DIGITAL LIVING NETWORK ALLIANCE 11

Figure 2.1: Actions and responses during the Control step (adapted from
UPnP Device Architecture [1]).

little information about a device and thus, in order to interact with
the control point, must learn more about it. A full device description
and its capabilities are provided from the Uniform Resource Locator
(URL) previously sent in the UPnP discovery message, as previously
described. A device description also includes a list of variables corre-
sponding to the service state at running time.

3. Control. When a control point already knows a device’s service de-
scription and capabilities, it is able to invoke actions and receive back
the responses with the correspondent data. Figure 2.1, shows that the
invoked action is received by the device’s service, which will reply back
to the control point indicating if that action was successful or failed.

4. Event Notification. As previously introduced, a device contains a list
of variables. The control point can subscribe to receive a notification
when a certain variable changes. When there is more than one control
point in the same network, this eventing service makes it possible to
keep the interested control points informed about certain devices rather
than all of them.

5. Presentation. This is when the control point, with a device’s descrip-
tion previously retrieved, is ready to present it’s list of variables. The
control point retrieves a page from the device’s URL, loading it into a
browser, allowing the user to control the device or view its status, as
it can be seen in Figure 2.2.

12 CHAPTER 2. RELATED TECHNOLOGIES

Figure 2.2: Presentation request and its response [1].

2.1.2.2 UPnP Audio Video Architecture

UPnP Audio Video (UPnP AV) Architecture is an audio and video ex-
tension of the UPnP which defines the general interaction between UPnP
Control Points and UPnP AV Devices [2]. It supports a large variety of
devices such as TVs, CD/DVD players, stereo systems, MP3 players, video-
cameras and PCs. The architecture allows those devices to support different
types of formats for entertainment content, as well as different types of trans-
fer protocols. The main goal of the UPnP AV Architecture is to enable audio
and video content to flow directly among end-devices without any interaction
of the Control Points and therefore saving resources on devices that can have
limited memory and processing power.

Figure 2.3 depicts the three UPnP AV Components and its roles. The
MediaServer holds content (local or remotely) that the user will browse and
render in a MediaRenderer. Through the User Interface (UI) of a Control
Point, the user can locate and select the desired content stored in a Medi-
aServer and then choose in which MediaRenderer it will render/play that en-
tertainment content. The type of content which a MediaRenderer can receive
depends on the transfer protocols and data formats that both MediaServer
and MediaRenderer support [2].

The MediaServer and the MediaRenderer do not control each other via
UPnP actions. Instead, the Control Point uses UPnP actions to initialize the
communication and configuration of the media end-devices. However, once
a Control Point sets up the devices and triggers the flow of media content, it

2.1. DIGITAL LIVING NETWORK ALLIANCE 13

Figure 2.3: UPnP AV Device Interaction Model.

steps out of the communication. The content is transferred through an “out-
of-band” protocol, as the data transmission does not need to flow through
another device or machine besides the source (MediaServer) and destination
(MediaRenderer).

A more detailed explanation about the UPnP AV Components and their
main functions is given below.

MediaServer - The MediaServer holds the media content. It allows Con-
trol Points to browse and search for content items that are available for the
user, like DVD Players, satellite/cable box receivers, TVs, stereo systems,
PCs, etc. A MediaServer implements three services, ContentDirectory Ser-
vice, ConnectionManagement Service and AVTransport Service.

The main function of the ContentDirectory Service is to allow the Control
Points to browse for content stored in the MediaServers. This also retrieves
detailed information about each media item in the server. The information
is provided as meta-data, which includes fields such as: title, artist, date
created, size, genre, etc. Additionally, the returned meta-data can inform

14 CHAPTER 2. RELATED TECHNOLOGIES

about the transfer protocols and data formats that are supported by the
MediaServer for accessing a specific media item. The Control Point will
use this information to determine if a given MediaRenderer is capable of
receiving/rendering that content in its available formats.

The ConnectionManager Service has the role to prepare MediaServers for
the connections and to manage them when associated to a particular device.
The Control Points invoke an action in order to give the MediaServer an
opportunity to prepare itself for an upcoming content transfer. Depending
on the transfer protocol and the media data format chosen, the invocation
may contain an InstantID (Instance Identifier) of an AVTransport Service
allowing the Control Points to be able to control the flow of the content
for actions like: start, stop, pause, resume, seek and volume change. This
identifier is used to distinguish multiple instances of the AVTransport Service,
allowing just one MediaServer to handle multiple MediaRenderers at the
same time. When a Control Point wants to terminate a connection, it invokes
a ConnectionComplete action in order to release it from the MediaServer and
MediaRenderers.

The AVTransport Service is an optional service that is used by the Control
Points to control the flow of media content. Depending on the supported
transfer protocols and media data formats supported by the MediaServer,
this service may contain control actions like: stop, pause, resume, seek, etc.
The MediaServer may also support the access to multiple MediaRenderers
at the same time.

Implementation of UPnP media servers are available for many operating
system and hardware platforms and they can be software-based or hardware-
based. Devices like PCs, tablets or smartphones can run software-based
media servers, while a NAS device is hardware-based.

Table 2.4 shows a list officially supported and freely available software-
based media servers. Foobar2000 [15], Jamcast [16] and Windows Media
Connect are the only ones developed just for Windows platforms, while the
rest of them are cross-platform. From those cross-platforms software media
servers, XBox Media Center (XBMC) [17] currently stands out as one of
the best known cross-platform Media Centers. It can play music, video and

2.1. DIGITAL LIVING NETWORK ALLIANCE 15

Name Platform Audio Images Video Transconding Web
Interface

TVMOBiLi Cross-Platform Yes Yes Yes Yes Yes
Foobar2000 Windows Yes No No Yes No
Jamcast Windows Yes Yes No Yes No

PS3 Media
Server Cross-Platform Yes Yes Yes Yes Yes

Universal Media Cross-Platform Yes Yes Yes Yes Yes
XBMC Media

Center Cross-Platform Yes Yes Yes No Yes

Windows Media
Connect Windows Yes Yes Yes Yes No

Table 2.4: Media Servers using UPnP.

images and allows the installation of many Add-ons that can provide contents
like weather forecast, movie subtitles and live streaming. Universal Media
Player [18], TVMOBiLi [19] and PS34 Media Server [20] are similar to XBMC,
although they support transcoding and XBMC does not, which is needed in
cases where the target device does not support a specific media format or has
low storage capacity which requires a smaller file size in order to be played
or rendered.

Foobar2000 is the only one that only supports audio files and the imple-
mentation of UPnP Media Server and DLNA are supported in recent versions
as an official and third-party components, respectively.

MediaRenderer - A MediaRenderer is where the media content is going
to be rendered/displayed or played. It allows the Control Points to control
how the content can be rendered by changing parameters related to bright-
ness, contrast, volume, mute, etc. A MediaRenderer may also allow the user
to control the flow of the content (stop, pause, resume). MediaRenderers
implement a RenderingControl Service, a ConnectionManager Service and
an optional AVTransport Service.

The RenderingControl Service allows the Control Points to control how
the MediaRenderers render certain contents by providing a set of actions,
which may include some rendering characteristics like: brightness, contrast,

4Playstation 3

16 CHAPTER 2. RELATED TECHNOLOGIES

volume, etc.
The ConnectionManager Service, in the context of a MediaRenderer, has

the primary function of getting the information about the transfer proto-
cols and data formats that are supported by the MediaRenderer. With this
information, the Control Points can determine if a given MediaRenderer is
capable of rendering a specific media content. A MediaRenderer may also
implement an optional action, which assigns a ConnectionID (Connection
Identifier), so that a Third-Party Control Point retrieves information about
the connections that the MediaRenderer is currently using. Depending on
the specified transfer protocol and the data format being used, this service
may also provide an AVTransport Instance ID and a Rendering Control In-
stanceID, from which the Control Points are able to perform various actions
to control the flow of the media content and to control the rendering charac-
teristics, as described above.

The AVTransport Service has similar functions as the AVTransport Ser-
vice of a MediaServer. It is used by the Control Points to control the content’s
flow with actions like stop, pause, seek, etc.

Some devices can handle multiple items at the same time (e.g. an au-
dio mixer like a Karaoke device). Thus, in order to support those kinds of
devices, the RenderingControl and AVTransport Services must contain mul-
tiple independent instances of these services, where each instance is bound
to an incoming connection. This allows the Control Point to control every
incoming content connection separately.

Control Point - The Control Point coordinates the operations of the Me-
diaServer and the MediaRenderer, typically controlled by an user through
the Control Point’s UI. A Control Point should implement a series of func-
tionalities when interacting with the Media devices, as it is explained below:

1. Media Devices Discovery - It uses the UPnP’s Discovering process to
discover MediaServers and MediaRenderers in the network;

2. Locate Desired Content - It uses the browse/search actions from Me-
diaServer’s ContentDirectory to locate a desired media content. The

2.1. DIGITAL LIVING NETWORK ALLIANCE 17

information returned includes the transfer protocols and data formats
that must be supported for transfer and play media content.

3. Retrieve Renderer’s Protocols and Formats - By using the Connec-
tionManager Service of the MediaRenderer, a Control Point retrieves
information about the transfer protocols and data formats that a Me-
diaRenderer supports;

4. Compare and Match Protocols and Formats - After the retrieval of the
transfer protocols and data formats supported by the MediaServer and
the MediaRenderer, the Control Point compares and selects a matching
transfer protocol and data format supported by both devices;

5. Server and Renderer Configuration - The device’s ConnectionManager
service informs both the MediaServer and the MediaRenderer about
an incoming or outgoing connection by using the specified protocol and
data format that was previously selected by the Control Point. Depend-
ing on the transfer protocol, the MediaServer or the MediaRenderer will
return an AVTransport InstanceID which will allow the control of the
content’s flow (see Section 2.1.2.2). Additionally, the MediaRenderer
may also return a Rendering Control InstanceID that is used by the
Control Point to adjust Rendering characteristics (see Section 2.1.2.2);

6. Content Selection - By using the AVTransport service, an action is
invoked in order to identify the media content that needs to be trans-
ferred;

7. Start and Control of the Content Transfer - Invoking one of the trans-
port control actions (play, pause, resume, stop, etc.) of the AVTrans-
port service that is desired by the user;

8. Adjustment of Rendering Characteristics - Through the Rendering Con-
trol service, the user can adjust various rendering characteristics such
as: brightness, contrast, volume, etc.;

9. Select Next Content - The AVTransport service provides actions that
enable the identification of the next media content to be transferred
from the Server to the Renderer. It is possible to repeat the previous

18 CHAPTER 2. RELATED TECHNOLOGIES

content as desired;

10. Cleanup Server and Renderer - When the session is terminated, the
MediaServer and the MediaRenderer will invoke a Connection Com-
plete action from the ConnectionManager service in order to close the
connection.

Figure 2.4 shows the generic interaction sequence between a Control Point,
a MediaServer and a MediaRenderer [2].

2.1.2.3 Security Problems With UPnP

The lack of concern by the UPnP Forum [21] regarding the implemen-
tation of security led the UPnP to end up with a set of risks that are not
addressed in the original standard, which diminished the interest to support
the architecture. The DLNA identified several scenarios that contributed
to the urgency of developing a deployable framework for security in UPnP,
including the Device Protection Service and the Device Security Service.

The Device Protection Service provides a set of mechanisms designed
to support authentication and access control for UPnP Devices [22], while
the Device Security Service supplies the services for strong authentication,
authorization, replay prevention and privacy of UPnP SOAP (Simple Object
Access Protocol) actions [23].

The main security concerns for UPnP are user authentication, content
privacy and integrity protection. By default, the UPnP does not implement
any kind of authentication, therefore, the UPnP Device Architecture needs
to be complemented with an additional Device Protection Service and the
Device Security Service.

Moreover, deployment over a LAN network stacks do not validate data.
As UPnP was created for LAN environment, there are no functions to check
if the IP is on the LAN, therefore allowing UPnP actions coming from the
WAN, which contradicts the UPnP specification [24].

Device Protection and Device Security services implement privacy and
integrity protection which are on top of Transport Layer Security (TLS) over
HTTP Secure (HTTPs).

2.1. DIGITAL LIVING NETWORK ALLIANCE 19

Figure 2.4: Generic Interaction diagram between Media Devices and Control
Point [2].

20 CHAPTER 2. RELATED TECHNOLOGIES

Nevertheless, implementing Device Protection and Device Security Ser-
vices does not necessarily means that a device will be secured against an
attack. If a device exposes some resources to legacy Control Points, then an
attacker can explore vulnerabilities present in those legacy services.

There is also the possibility of an user’s Control Point being compromised
with a running malware. Such malware could launch an attack against a
protected UPnP Device by injecting malicious messages into the TLS channel
previously established. As the protected UPnP device assumes that a Control
Point is still legitimate, it cannot distinguish malicious messages from those
originating from the Control Point.

The possibility of UPnP devices becoming compromised was one of the
primary motivations for establishing security mechanisms for UPnP. If a
given device is likely to be compromised, users are advised not to grant
high privileges (e.g. administrative) to Control Points. Besides that, in
order to reduce the risk of cross-site scripting attacks injecting messages, the
UPnP Forum advises that devices and Control Points should use random
port numbers [22, 23].

2.2 Digital Audio Access Protocol

The DAAP [4] was introduced by Apple as part of its iTunes software,
which enables sharing of music libraries over a local network. This protocol
and the Digital Photo Access Protocol (DPAP) rely on the Digital Media
Access Protocol (DMAP) that is used by Apple in the iTunes, iPhoto and
Remote software applications for sharing media over the home network.

The DAAP works as a specialized HTTP server, as it provides the capa-
bility not only to stream audio from one computer to another, but also, to
retrieve a list of the host’s playlists. This list is requested by the client in
form of URLs and the server replies with data encapsulated in a flattened
form of Extensible Markup Language (XML) file.

Along with the DAAP, there is also the Digital Audio Control Protocol
(DACP). These protocols are used to control DAAP servers and to exchange
information between them and the clients.

2.2. DIGITAL AUDIO ACCESS PROTOCOL 21

Like the DLNA makes use of UPnP, iTunes/DAAP uses the ZeroConf
service, also known as Bonjour, to announce and discover DAAPmedia shares
on a local network, using the Transmission Control Protocol (TCP) port 3689
by default, as it is explained in the following Section.

2.2.1 Bonjour

Bonjour [25] is from Apple’s implementable open source standard Zero-
Conf Working Group, which is part of the Internet Engineering Task Force
(IETF). It allows service providers, hardware manufacturers and program-
mers to easily support IP networks on theirs user applications. The Bonjour’s
Zero-configuration enables users not to worry about IP addressing or host-
naming. They are simply asked to choose what kind of network services they
want to enable from a given list. This functionality is useful as applications
can automatically detect services or other applications that they may inter-
act with, making it possible to connect, communicate and exchange data
without any user intervention.

Similarly to the UPnP Device Architecture, the Bonjour requirements
and proposed solutions for zero-configuration networking over IP, cover ad-
dressing, naming and service discovery, which are explained below:

• Addressing self-assigns link-local addresses and it uses a range of re-
assigned addresses for the home network. The IPv6 specification al-
ready includes a self-assigned link-local address as part of the protocol,
thus making it simpler and more reliable than IPv4, where it needs to
pick up a random link-local address and test if that address is already
in use or not.

• For Naming, Bonjour uses names instead of addresses, implement-
ing Multicast Domain Name System (mDNS) to translate names-to-
address (by sending DNS-format queries to a multicast address; no
DNS server is required), as each device provides its own capabilities.
In contrast to DNS host names, the mDNS only has significance on the
home network.

22 CHAPTER 2. RELATED TECHNOLOGIES

• Service Discovery is used to discover DAAP services and enables
applications to find all available instances of a particular type of ser-
vice and maintains a list of named services and port numbers. Ap-
plications can resolve the service hostname to a list of IP addresses,
as described earlier in Naming. This list of named services allows
applications to keep a persistent list of available services. Bonjour is
service-oriented, which means that queries are made according to the
type of service needed and not dependent on the hosts who which pro-
vide them. Applications store service instance names, not addresses,
allowing IP addresses, port numbers or even host names, to change and
retaining the capability to connect to services. As a consequence, the
user’s experience should be more graceful and trouble-free.

2.2.2 Software using DAAP

DAAP has two versions implemented. The first one is supported by
iTunes prior to version 7.0 and the other one afterwards this version. Apple
did not make DAAP publicly available, instead they released it for third-
party software licenses like SoundBridge5. In iTunes 4.2 Apple implemented
an authentication method so that only iTunes clients could connect to iTunes
servers. Later, in iTunes 4.5, Apple changed to another authentication
method that used a custom hashing algorithm. However, both authenti-
cations were reversed-engineered, which allowed to DAAP non-Apple client
software to connect to iTunes servers [26, 27]. From iTunes 7.0 Apple changed
the method so that a certificate exchange is performed in order to calculate
the hash sent in a Client-DAAP-Validation package header.

DAAP has been implemented in audio applications like Amarok [28] or
Rhythmbox [29] and the already referenced XBMC Media Center [30]. Some
players like Banshee, Songbird and Exaile require the installation of a plug-in
in order to connect using DAAP [31].

Table 2.5 shows a brief comparison of audio players that implement

5Hardware device designed to play audio streaming across a local network

2.2. DIGITAL AUDIO ACCESS PROTOCOL 23

Software Role Supports iTunes Platform
Amarok Client/Server No Unix-like
Banshee Client/Server8 No Cross-platform

DAAP Client Client No Android
Exaile Client8 No Unix-like
Firefly Client/Server No Cross-platform
iTunes Client/Server Yes Mac OS X/Windows

LimeWire Server No Cross-platform
Rhymthbox Client/Server8 No Cross-platform
Songbird Client8 No Cross-platform

SoundBridge/
Roku Client Yes Dedicated hardware

device
Tangerine Server No Cross-platform

XBMC Media
Center Client No Cross-platform

Table 2.5: Audio Players using DAAP.

DAAP. It is possible to verify that just SoundBridge/Roku6, a part of Ap-
ple’s iTunes, is capable of supporting earlier versions of iTunes with DAAP.
That is due to the fact that Apple has only licensed the DAAP to Roku
[32, 33]. However, since January 2012, Soundbridge is no longer available
from Roku, as they stopped manufacturing SoundBridge hardware and only
continue supporting Pinnacle-branded hardware, which was not licensed by
Apple [34]. iTunes stands out by being the only software that was made
for both Mac OS X and Windows platforms, since the majority of the other
software parties were released under the GNU General Public License7 (GNU
GPL), thus there is little or no interest of those parties to make this kind of
software restrictive to certain platforms.

An increasing number of mobile devices, such as the ones with Android
and iOS9, are including DAAP clients.

6Roku Inc. - private company that manufactures home digital media players
7Most widely used free software license
8With a plug-in
9iPhone OS - Apple’s mobile operating system

24 CHAPTER 2. RELATED TECHNOLOGIES

2.3 DLNA and DAAP Comparison

This section provides a brief comparison study between the two technolo-
gies previously introduced, DLNA and DAAP.

DLNA is similar to UPnP AV but with added restrictions, as it only shares
certain image, video and audio files, which contrasts with UPnP servers, as
they can share any kind of media file just like any HTTP server can do.
For a file or media item to be totally DLNA compliant, it needs to fulfill
the requirements of DLNA profiles. This means that it does not just need
to comply with the codec but also with its container and media properties
like bitrate and resolution. For example, although a MPEG Audio Layer III
(MP3) audio format is supported by DLNA, it can not be played or streamed
if it does not match a specific bitrate.

As presented on Table 2.6, both technologies support MP3 and AAC
audio codecs, which are present in many digital audio files, allowing most of
them to be able to play and stream through DLNA or DAAP. However, both
lack support to open source or lossless codecs like Ogg Vorbis or FLAC.

DLNA DAAP
Ports UDP 1900 TCP 3689

Audio Codecs LCM (.wav), MP3,
WMA and AAC

AAC, ALAC10,
AIFF11, MP3 and

WAV
Discovery Service

and
Self-configuration

UPnP Device and
UPnP AV

Architectures
ZeroConf/Bonjour

Security
Device Protection
and Device Security

Services

Authentication,
copy-right protections

Number of users Unlimited Limited

Compatibility Aims to be universal Only between Apple’s
devices

Table 2.6: Comparing DLNA and DAAP.

10Apple Lossless Audio Codec
11Audio Interchange File Format

2.3. DLNA AND DAAP COMPARISON 25

The UPnP Forum released Device Protection and Device Security Ser-
vices specifications, which cover authentication, privacy and integrity protec-
tion to UPnP devices, but there are still some security issues that should be
taken care of. On the other hand, Apple implements authentication methods
since 2003 on iTunes version 4.2. Although security problems of DAAP/Bon-
jour are not frequent, there were some reports concerning the installation of
spyware12 with faked iTunes updates on some iTunes versions [35] and the
increased Bonjour’s discovery traffic in a subnet with Apple clients. An-
other issue is that, by default, Bonjour has the discovery service (sharing
service) enabled, therefore announcing their existence. Thus, a simple user
can browse a list of nearby computers and its shared files [36].

Another downside for Apple’s DAAP is that recent versions of iTunes
limit the number of clients to 5 unique IP addresses [37], while DLNA can
have an unlimited number of clients and connections.

Regarding compatibility, Apple focus on its own ecosystem, meaning that,
sharing is only possible among iOS devices and OS X devices, making an
exception with iTunes version for Windows platforms and Soundbridge/Roku
hardware. By contrast, DLNA compatibility aims to be universal, as it
results from a consortium of electronic manufacturers and software makers
like Erickson, Intel, Microsoft, etc.

As to the service discovery, Bonjour and UPnP use similar techniques,
relying on solutions for self-configuration, in particular addressing and service
discovery. UPnP aims to be universal and supporting more than just media
files. It defines an architecture where there are devices that play/render
the media content, while some devices can store it and other devices can
control the previous two. While on the other hand, Apple’s Bonjour comes
built-in with OS X and iOS operating systems and also within iTunes and
Safari software (for Windows platforms), wherein any device can either be
the server or the renderer. This fact makes DAAP/Bonjour more simpler to
deploy than UPnP.

With these solutions for zero-configuration networking, users no longer
12Malicious software that monitors and collects data on a computer

26 CHAPTER 2. RELATED TECHNOLOGIES

need to worry about IP addressing or host name assignment in order to ac-
cess services on the network. This kind of services also enables applications to
automatically detect services they need or may interact with, allowing auto-
matic connection establishment, communication and data exchange, without
any user intervention.

The purpose of DLNA and DAAP is to simplify user experience, although
the protocols themselves, may contain some complexability.

2.4. SIMPLE NETWORK MANAGEMENT PROTOCOL 27

2.4 Simple Network Management Protocol

The SNMP [9] lies in the Application layer of the OSI model for managing
devices on IP networks, making it easy to exchange management information
among equipments on the network. The purpose of SNMP is to manage and
monitor network equipments performance and usage, detect faults and con-
figure. All of enterprise network brand devices (e.g. Cisco, HP and Juniper)
come already with SNMP capabilities implemented. As for home network
brand devices, the majority are also SNMP-capable but usually, only for
monitoring functionalities.

The protocol was built to be deployed on the largest possible number of
network devices, so it needs to follow some principles, like consume minimal
resources (e.g. CPU, RAM), and have minimal transport requirements in
order to consume minimum bandwidth while transfer information between
management entities. Furthermore, it should be easier to implement, config-
ure and be resilient, so it can still work when most of other network appli-
cations fail.

This section introduces the SNMP in more detail, its operations and a
brief description of its released versions.

2.4.1 SNMP Concepts

Due to its operation commands, the SNMP may not follow the regular
concept of client-server model, as the managed elements on the network can
behave both as client or server. As such, the terms Agent and Manager
are respectively used to designate the managed device and the device that
manages.

Figure 2.5 shows the three SNMP key components: the managed devices,
the agent (software that runs on the managed device) and the Network Man-
agement Station (NMS - software that runs on the manager) [38].

The manager access information that is controlled by the agent using a
database module by a MIB definition.

28 CHAPTER 2. RELATED TECHNOLOGIES

Figure 2.5: The SNMP key components and their relationships.

2.4.2 Management Information Base

SNMP agents provide access to management data information on the
devices as variables (or management objects). Figure 2.6 shows that such
variables are organized in a tree-structured hierarchical database. MIBs ob-
jects are defined using Structure of Management Information (SMI), which
is a subset of the Abstract Syntax Notation (ASN.1), standard used to de-
scribe data structures to be transferred between the Application Layer and
the Presentation Layer of the OSI model in telecommunications and com-
puter networking [39, 40].

Each object entry in a MIB is addressed through an object identifier
(OID). The managed objects can either be scalar (single object instance)
or sequential tabular where multiple related object instances are grouped in
sequence tables. SMI specifies the allowed data types and divides them into
two major categories:

• Simple Data Types:

– Integer;
– Octet string;

2.4. SIMPLE NETWORK MANAGEMENT PROTOCOL 29

Figure 2.6: Branch of a MIB Object Identifier tree.

– Object ID.

• Application-wide Data Types:

– Network Address;

– Counter, non-negative integer that increase until they reach the
maximum value and then restart again from zero;

– Gauge, like counter but can also decrease;

– Time ticks, represent the time since an event has occurred;

– Opaque, arbitrary encoding that is used to pass arbitrary infor-
mation strings that do not conform to the strict data typing used
by SMI.

A MIB should not be mistaken as a normal database. Unlike most types
of databases, a MIB does not offer the capability to interpret queries, as it
just provides a vision of the paradigm, which is called instrumentation.

Each new MIB has to be defined in under private (OID: 1.3.6.1.4.1) or
experimental (OID: 1.3.6.1.3) subtrees, which are assigned and controlled by
the Internet Assigned Numbers Authority (IANA).

30 CHAPTER 2. RELATED TECHNOLOGIES

2.4.3 SNMP Operations

SNMP has a simple way of exchanging information and defines three
major operations: GET, SET and TRAP/NOTIFICATION. The operation
request for the GET and the SET originates from the application that con-
trols or manages the network and aims for the UDP port (161 by default) of
an agent, while the TRAP/NOTIFICATION operation is originated in the
managed device/network equipment that transmits the information to the
controller (using UDP port 162 by default).

Manager’s requests retrieve or modify variable/object stored in an agent’s
MIB:

• GET - This request is sent from the manager towards the agent in order
to retrieve one or more variable values;

• GET-NEXT - Similar to the GET requests but retrieves the value of
the variable with the next OID in the MIB tree;

• GET-BULK - Used to retrieve larger amounts of data from MIB tables;

• SET - This operation modifies/updates multiple variables values in a
MIB.

An agent can send:

• TRAP/NOTIFICATION - a message to warn the manager about the
occurrence of a predefined event;

• RESPONSE - used to carry the values requested by the manager.

From manager to manager:

• INFORM - similar to a TRAP but requires a confirmation from the
manager upon receiving the message;

2.4.4 SNMP Versions

The first version of the protocol was released in 1988 and was defined in
RFC 1157 [9]. This version was criticized for its poor security functionalities,

2.4. SIMPLE NETWORK MANAGEMENT PROTOCOL 31

as the authentication of clients was performed by a “community string” that
acted like a password and was transmitted in clear text.

SNMPv2 was defined in RFC 1441 [41]. It includes improvements in
the areas of performance, security, confidentiality, and new features like:
manager-to-manager communications, packet types, and transport mappings.
The GET-BULK request was introduced as an alternative to interactive
GET-NEXT requests for retrieving large amounts of data from MIB tables.
However, the new party-based security system in this second version was not
widely accepted as it was considered too complex, and so, two variants of
SNMPv2 were released: SNMPv2c and SNMPv2u.

Community-based SNMPv2 or SNMPv2c, is SNMPv2 without any new
security mechanism. Instead, it uses the same community-base system from
SNMPv1. This variant of SNMPv2 is defined in RFC 1901 [42].

User-based SNMPv2 or SNMPv2u was defined in RFC 1909 and RFC
1910, with better security than SNMPv1 but not as complex as the original
SNMPv2 [43].

The third version of SNMP, defined in various RFCs (from 3410 to 3415),
did not get any new relevant improvements but defined all security mech-
anisms created for SNMPv2 as mandatory, which include: strong authenti-
cation (ensuring that the message comes from a valid source), integrity in
order to guarantee that a packet hasn’t been intercepted and forged while in
transit, and confidentiality by encryption of packets for privacy. This version
also added new textual conventions, concepts and terminology [44].

The use of the SNMP provides an integrated management architecture
regardless the device manufacturer. A good network management system is
important to whom has the responsibility to plan, deploy and manage the
network and its devices.

Therefore, SNMP seemed a suitable tool to manage home automation sys-
tems, like intrusion detection, air conditioning, lighting/windows controllers,
gas/smoke detection and media systems.

32 CHAPTER 2. RELATED TECHNOLOGIES

2.4.5 Home Automation Systems using SNMP

SNMP is already being used in a few home automation systems. A solu-
tion provided with Moxa devices [45] connected to different sensors (doorbell,
mailbox, air conditioning, lighting control, fire sprinkler, etc.), using SNMP
in order to monitor and control them. A Moxa server is then connected to
a control panel device, which the user is able to configure and monitor the
various sensors status connected through the home via SNMP and receive
alarm messages with SNMP Traps.

Another solution relies on SNMP for consumption management of elec-
tric power [46]. The consumption readings of electricity is provided from a
meter/converter with an ethernet port. These readings are then available in
a MIB from which the client application can access in order to present them
to the user.

The ease of integration, configuration and use, makes the utilization of
SNMP an advantage in home automation systems.

2.5 Streaming

Streaming applies when there is a need to transport multimedia content
(audio, video or images) between a source (server) and one or more desti-
nations (clients). In general, does not require disk space resources as the
content is played while it is being received. Through the use of streaming
it is possible to enjoy listening an audio file without having to wait for the
file to completely downloading. It requires, in a certain way, a good net-
work bandwidth with low delay and small jitter, so the stream can be played
without dropouts or media breaks (otherwise a delay will be experienced and
large buffers must be used).

Streaming can be achieved using some standard network transport pro-
tocols:

• The User Datagram Protocol (UDP) uses simple connectionless trans-
mission with a minimum of protocol mechanisms. This means that
there is no guarantee that the packets are successfully delivered and,

2.6. OPEN SOURCE AUDIO CODECS 33

therefore, if some packets are lost some dropouts may occur to the
stream [47];

• The RTP provides end-to-end delivery services for data with real-time
characteristics, such as interactive audio and video. Applications usu-
ally run RTP on top of UDP to make use of its multiplexing and check-
sum services. RTP, also supports data transfer to multiple destinations
by using multicast distribution [48];

• As for the Real Time Streaming Protocol (RTSP), it is designed to
control streaming media servers, by establishing and controlling media
sessions between end points, acting like a “network remote control” for
multimedia servers. As the transmission of streaming data itself is not
a task of the RTSP protocol, most of RTSP servers use the RTP with
the Real-time Control Protocol (RTCP13) for media stream delivery
[49].

2.6 Open Source Audio Codecs

In the scope of this project there was the need to approach audio codecs,
especially, open source audio codecs. As stated in Section 2.3, the current
software for media sharing over a network (DAAP and DLNA) do not support
any open source audio codecs and DAAP only supports one lossless format
(ALAC) .

From current open source audio codecs, some are lossy and others are
lossless. The Ogg Vorbis and the FLAC codecs are two of the most known
and used open source formats.

The next section briefly describes these two codecs, which are supported
in this project.

13RTCP provides out-of-band statistics and control information for an RTP session

34 CHAPTER 2. RELATED TECHNOLOGIES

2.6.1 Ogg Vorbis

Ogg Vorbis [50] is an open source method of encoding, compressing and
streaming digital audio, identical but arguably technologically superior to
MP3 or AAC. The success key of MP3 was its ability to reduce the size of
uncompressed CD14-Quality audio file up to a tenth of its original size and
barely without perception of audio quality loss (at least at the highest bit
rates). MP3 brought ease of sharing music files through the web, due to
the fact that it was now possible to download or share music files with good
sound quality and small file sizes, when the network and Internet connections
were relatively poor, in comparison to the speeds and bandwidth of nowadays
connections [51].

MP3 mainly uses constant bitrates while on the other hand, Vorbis uses
variable bitrates by default, allowing the quality to stay constant. As such,
an Ogg Vorbis encoded audio file should sound better as it has more detailed
highs, solid lows, acoustic ambiance and it is generally clearer than MP3
converted at the same bit rate. This means that a very acceptable sound
quality could be streamed over the Internet even at low bitrates/bandwidth
(e.g. dial-up) using Vorbis.

However, if an audio file is transcoded from MP3 to Ogg Vorbis, the out-
come will be a file with lower sound quality than the original MP3. So it
is recommended to encode Ogg Vorbis directly from the original or uncom-
pressed source that has never been compressed before (e.g. CD or an analog
recording encoded in wave format).

The Ogg Vorbis codec is nowadays widely used. Many video games have
in-game audio in Ogg Vorbis format like: Minecraft, Unreal Tournament,
Grand Theft Auto: San Andreas, Guitar Hero, Eve Online or World of War-
craft. The codec is also supported by many music player softwares, websites
and audio streaming services, like Spotify [52].

Ogg Vorbis’s higher fidelity, being completely free, open and unpatented,
makes it a good audio format replacement for patented and restricted for-
mats.

14Compact Disc (PCM 16/24, 44.1KHz sampling frequency)

2.6. OPEN SOURCE AUDIO CODECS 35

2.6.2 Free Lossless Audio Codec (FLAC)

FLAC [53] is the fastest, non-proprietary and most widely supported
lossless audio codec. It has an open source implementation and a well-
documented format and Application Programming Interface(API).

Lossless means that audio is compressed and no loss in sound quality is
injected by the compression mechanisms. Kind of similar to how ZIP15 works,
but with the peculiarity that FLAC was designed specifically for audio. It
can compress a PCM audio file by 40-50% of its original size. It allows to
directly playback compressed audio files just like any other audio codec (e.g.
MP3, AAC, Ogg Vorbis) would do.

FLAC’s libraries use a compression level parameter that can vary between
0 (fastest) and 8 (smallest). If the parameter has the lowest value, the com-
pression will be fast but the outcome compressed file will also have a higher
size. Comparatively, if the parameter is set to the higher value, the com-
pression will take longer, but it will result in a smaller file. The compression
process involves a trade-off between speed and size. However, the decoding
process is usually quick and not dependent on the compression level.

This format is convenient as an archive format for media owners that wish
to preserve their audio collections without loss of a digital quality. A FLAC
copy ensures that an exact duplicate of the original digital audio track can be
recovered, which does not happen with a lossy archive format, as a restoration
from it, is impossible. FLAC by being lossless, also gives the possibility to
transcode to another format, like MP3 or Ogg. FLAC support compared to
lossy formats, is somewhat limited, specially in portable audio players. On
the other hand, it is currently better supported than the competing lossless
formats. FLAC also has a further advantage, which is the ability to be
streamed and quickly decoded, independently of the compression level used,
which enhances user experience.

15Archive file format that supports lossless data compression

36 CHAPTER 2. RELATED TECHNOLOGIES

Chapter 3

Audio Distribution Using Open
Source Protocols and Codecs

In this chapter is presented the project motivation, the adopted solution
and a description of architecture and functionalities of the system modules.

3.1 Motivation

As seen in the previous chapter, Apple’s DAAP and Sony’s DLNA use dif-
ferent communication protocols and mechanisms, either for auto addressing,
device discovery and media content access. DLNA mainly relies in the UPnP
standard and aims to be universally compatible. On the other hand, Apple’s
software uses proprietary technologies and is to be used on the Apple ecosys-
tem, allowing media sharing only from an Apple’s device (iOS or iMac1).
DLNA technology results from a partnership of many electronic manufactur-
ers in contrary to DAAP, which is only compatible with the newer versions
of Apple TV and with some audio manufacturers.

DLNA and DAAP cover a large set of protocols that support many tech-
nologies like video, audio and access to image folders. Thus, their imple-
mentation requires the usage of resources which are often misfits to more
restrict and specific purposes, like distribution of audio streams over generic

1Apple’s desktop computer

37

38 CHAPTER 3.

IP networks or home automation applications contexts.
In order to have a more universal and compatible inter-operability be-

tween devices, some of these technologies have complex architectures inte-
grating a lot of concepts, which may be another obstacle, mainly if good
documentation support is not provided.

UPnP is a complex architecture with many device types. This can ham-
per the development, implementation and deployment of solutions for the
end user. DLNA, for instance, has some documentation available but it is
required a payment in order to access DLNA entire documentation guide-
lines. So, although this approach integrates some universal technologies it
still works much like a proprietary solution.

As for the DAAP, it is very easy for the end user to setup the devices and
use Apple’s software/devices. However, like other proprietary technologies, it
is required to pay licenses and/or royalties in order to incorporate the DAAP
into specific hardware or into an application.

With this in mind, it seemed obvious the advantages of developing a
specific architecture for a more restricted context and entirely based on open
source technologies, standardized mechanisms, protocols and audio codecs.
Thus, the aim of the project was to define such an architecture and develop
a modular audio distribution system with similar capabilities that could be
implemented on top of common IP networks. More specifically, the proposed
solution is based on the internet standard network management protocol in
order to attain, not only communication between their entities but also an
abstract interface syntax to manage audio file collections. It will also allow
the use of open source mechanisms and technologies for audio streaming from
the server to the playing devices.

3.2 Architecture

While this architecture’s solution presents four main devices, DLNA de-
fines many device types which makes it more complex to implement and
deploy. On the other hand, DAAP only defines two types of devices but does

3.2. ARCHITECTURE 39

not provide any solutions for support of external audio file databases and
audio server independency.

Solutions like DLNA and DAAP define architectures where the software
and hardware are extremely bonded and very hard to separate one from
another, thus requiring the payment of licenses or copyrights in order to use
the software in another hardware. In some other cases, the hardware already
has embedded software that is not possible to modify or even substitute with
other third party applications.

Defining a totally open solution implies that its technologies should be
free to implement (with complete access to all needed documentation) and its
architecture should be free to deploy. Furthermore, solutions could integrate
modules created by different developers, freely or commercially available,
with no compatibility issues.

Despite that, UPnP and Bonjour are able to be used by any developer on
any other solution, they are only a part of the components needed and, thus,
requiring additional modules and protocols which will increase the complexity
of the system. Proprietary solutions tend to be updated less frequently and
seldom providing relevant new features.

As shown in Figure 3.1, the proposed model has the following main com-
ponents:

• Controller Application - this module has the functionality of managing
information on the Music Server, deploying the client application to
the final user and controlling music playback on the Playing Devices;

• Music Server - this component holds the metadata information (imple-
mented on a MIB database) that will be accessed by the Controller Ap-
plications and initiates the indirect audio streaming server; The Music
Server is able to manipulate communication with multiple Audio File
Databases through a Gateway Module;

• Audio File Database - the database systems that hold the music file
collections;

• Playing Devices - the devices that actually play the music for the user.

40 CHAPTER 3.

Figure 3.1: Architecture diagram.

Control Applications access music metadata information via SNMP and
use it to implement all functionalities available to the users. Within the archi-
tecture, several modules implementing a Controller Application can coexist.
Also, a Controller Application can control multiple Music Servers.

3.2.1 Music Server

The Music Server includes an SNMP Agent implementing a Music MIB
database which objects represent metadata information from music collec-
tions stored on Audio File Databases, as well as other server system’s infor-
mation.

The SNMP Agent has a high-level Instrumentation Control Module which
implements the methods to transform the abstract semantics of the Music
MIB objects into generic mid-level operations that access and control music
collections. The best approach to this transformation (or mapping) is when
these operations are not dependent on a particular Audio File Database tech-
nology. This allows the implementation of the SNMP Agent Module to be
independent of any Audio File Database technology. On the other hand,

3.2. ARCHITECTURE 41

for each particular Audio File Database technology to be supported by the
Music Server, a Gateway Module must be implemented, which finally maps
the generic mid-level operations into specific technologies supported by the
external music database servers (the systems that really store/manage the
audio files of the music collection).

On first initialization, the Music Server, through the Instrumentation
Control and the Gateway Module, will load all music files metadata infor-
mation from the Audio File Databases into the relevant MIB objects. This
information is then available to be accessed and controlled by the Controller
Application through SNMP. With time, the data on the MIB will be updated
with new information gathered from the Audio File Database systems.

One of the most important operations that the Music Server supports
is the launching and control of streaming audio files from streaming servers
(either internal or external). Every time a user requests to play an audio file
from the music collection in one of his Playing Devices, the Gateway Module
commands the Audio File Database system containing the respective file to
stream it to the destination Playing Device. If the Audio File Database
system does not support direct streaming, then the Gateway Module will
request the raw file from the Audio File Database system and will use an
internal audio streaming server (implemented inside the Music Server). In
this case, to guarantee protection of copyrights, the raw file must not be
saved to any internal non-volatile file system in the Music Server.

3.2.1.1 Music MIB

The Music MIB specification was defined accordingly to the SMIv2 stan-
dard and appended under the experimental subtree (OID: 1.3.6.1.3). The
MIB structure, including all tabular (sequences) and scalars objects, is pre-
sented in Appendix A.

The Music MIB objects either represents specific metadata information
about all music tracks in the collections (artist, album, genre, etc.) or more
general information about system resources and application users (users ac-
counts, Playing Devices, usage statistics, etc.).

42 CHAPTER 3.

Figure 3.2: A Part of the Music MIB in Entity-Relationship Model.

As an example, the Album table with an index idAlbum and the columnar
objects albumTitle, label, year and ghostAlbum is depicted in Figure 3.2 as
part of an Entity-Relationship (ER) model. This means that every idAlbum
uniquely identifies a set of metadata values for one album with a particular
albumTitle. With this abstraction, an album title does not need to be unique,
allowing different music albums on a music collection to have the same title.

For mapping the ER model into a SMIv2 specification, the Album table
(OID 1.3.6.1.3.2.1.2) contains the following columnar objects:

albumTable.entry.1 – idAlbum (integer, table key)

albumTable.entry.2 – albumTitle (string)

albumTable.entry.3 – label (string)

albumTable.entry.4 – year (integer)

albumTable.entry.5 – ghostAlbum (integer)

As in a conventional database, MIB tables may have relationships between
them. As the index of a table behaves as a primary key in an ER model, it
is necessary to define a relationship by cross-reference the indexes (primary
keys). There are two different kinds of relationships as they define how
MIB tables are related: Many-to-Many relationship (N:N) and One-To-Many
relationship (1:N).

3.2. ARCHITECTURE 43

Many-to-Many Relationship (N:N)

The Artist table (OID 1.3.6.1.3.2.2.2) has a relationship of many-to-many
with the Album table, meaning that an album can be owned by more than
just one artist and an artist can own/release more than one album. It con-
tains the following columnar objects:

artistTable.entry.1 – idArtist (integer, table key)
artistTable.entry.2 – artistName (string)
artistTable.entry.3 – ghostArtist (integer)
In order for the Album and Artist tables to be related it was created an

auxiliary table that holds the primary keys (now called foreign keys) of both
tables. This auxiliary table, the AlbumArtist table (OID 1.3.6.1.3.2.23.2),
contains the following columnar objects:

albumArtistTable.entry.1 – idAlbumArtist (integer, table key)
albumArtistTable.entry.2 – albumIDalbumArtist (string, foreign key)
albumArtistTable.entry.3 – artistIDalbumArtist (string, foreign key)

One-To-Many Relationship (1:N)

An album can have more than one part or CD, but a CD is associated
with just one album so this kind of relationship is one-to-many. In this
situation it is the primary key of the table with more unique values that will
be inserted on the other table as a foreign key. Therefore, the PartAlbum
table (OID 1.3.6.1.3.2.14.2) contains the following columnar objects:

partAlbumTable.entry.1− idPartAlbum (integer, table key)
partAlbumTable.entry.2 − partNumber (integer)
partAlbumTable.entry.3− albumID (integer, foreign key)

Tables like Music, Artist, Genre, etc. will contain object values from the
metadata information embedded into the Audio File Databases and fetched
through the Gateway Modules. On the other hand, tables like Server, Statis-
tics, User, etc. contain object values implemented directly in the instrumen-
tation module running on the agent’s system.

There is no standard methodology to create a MIB’s definition, but it is

44 CHAPTER 3.

important to design and make a plan beforehand, as the objects that will
make part of it should maintain the same level of abstraction and style of
organization. If there is a table or object that would be needed to be added
later on (due to architectural changes or optimization purposes), this will be
time consuming as it will require redefinition of the MIB specification and
modification of the SNMP Agent instrumentation source code.

3.2.2 Controller Application

As the Controller Application is the component that allows the user or
the administrator to interact with the system, it should support many func-
tionalities in order to allow a proper utilization or management. The im-
plementation of those functionalities relies on the manipulation of the Music
MIB on the Music Server.

The Controller Application is composed by a Music Controller Module, a
Graphical User Interface (GUI) and an SNMP Manager which includes the
Administration Module and an User Module.

The user module should permit to:

• List or browse music tracks according to search criteria (e.g. a simple
search or an advanced search with a few fields for input);

• List or browse the user’s playlists and liked/starred music tracks;

• List or browse playable devices on the network and select music tracks
to play on them, independently;

• To manage (add or remove music tracks, etc.) of user’s playlists;

• Play, stop and pause a music track;

• Show statistics of a track for a given user;

• Show user’s preferences page (user options, e.g. volume, password);

• Etc.

The administrator module should permit to:

• Add, remove music tracks;

3.2. ARCHITECTURE 45

• Manage music collections (name and rename, define music genres, etc.);

• Define operation parameters for gateways, servers and devices;

• Manage user accounts;

• Clear/reset statistical data;

• Edit music tracks metadata information (artist name, genre, etc.);

• Etc.

The GUI is responsible to present the information retrieved, as well as
allowing the user to control music playback through the Music Controller
Module. Audio streaming should be initiated by the Gateway Module on the
Music Server.

3.2.3 Audio File Database

An Audio File Database can be an external source like the iTunes service
or a specific a MySQL database or just a simpler hierarchical structured di-
rectory system (for example, a structure directory for every artist, containing
sub-directories with their respective albums and, in turn, each sub-directory
of each album containing the respective music tracks). This component needs
to provide any sort of access technology to a Gateway Module inside the Mu-
sic Server.

The Gateway Module must take into consideration that the communica-
tion with the Instrumentation Control Module must be independent of the
Audio File Database technologies used. The Gateway Modules should ensure
compatibily between the Instrumentation Control Module and the external
music sources.

3.2.4 Playing Devices

The Playing Devices components are controllable by the Controller Appli-
cations and are responsible for playing the audio stream. These components

46 CHAPTER 3.

can be integrated on the same system as the Controller Applications or in
an external device on the same local network.

3.3 Functionalities

Both DLNA and DAAP support an addressing and discovery service by
means of UPnP and Bonjour. In contrast, the proposed model takes for
granted that the devices are already connected to the local IP network, pre-
configured and ready to start communicating with each other, therefore re-
ducing complexity, as there are already existing standard TCP/IP protocols
and services (like DHCP and DNS that can take care of these issues).

As for discovery, Controller Applications, Music Server and Playing De-
vices should be able to find themselves through an “Hello” message which
is sent frequently. The “Hello” message carries the IP address, application
port and type of the component, announcing it to the other components in
the same local network. This “Hello” message does not need to be generated
if each of the server components (Music Server, Audio File Databases and
Playing Devices) would register as services into one or more DNS servers.

As for playback actions such as play, stop, pause, changing volume, etc.,
the proposed solution integrates these operations into the semantics of the
Music MIB objects allowing total control through SNMP messages. On the
other hand, DLNA and DAAP use HTTP in order to carry a structured
message (SOAP or XML), which can hold unnecessary information for such
simple actions.

Other more advanced features, such as searching audio files with criteria
or filters are also not available by default on DLNA and DAAP, therefore
requiring the applications that run on top of these technologies to support
and implement it. In some cases, it is needed to install an add-on in order
to have that kind of feature available, while in our solution its support this
is already built in the Music MIB definition.

Regarding audio codecs, while DLNA and DAAP make use of the most
used audio codecs such as MP3, AAC and WAV, they lack support for other
important open sources audio codecs (like FLAC and OGG), which are known

3.4. SECURITY 47

to be technologically more efficient for audio streaming on local IP networks
in comparison to the existing ones that are usually used in streaming. The
proposed solution makes no restrictions on audio codecs, thus allowing sup-
port for all audio codecs.

3.4 Security

As for security, an SNMP-based solution can implement authentication
and encryption (SNMPv3), while the other two referred mainstream solu-
tions have their own mechanisms and procedures to implement some security
guarantees like authentication and copyright protection.

However, in the context of a home network environment, it does not make
much sense to have some of these security constrains and thus making the
system even more complex. For example, this proposed design has no direct
support for copyright protection systems. Nevertheless, the architecture does
not promote or allow audio files duplication and it is granted that the user
has legally acquired the right to access the audio files on the Audio File
Databases.

48 CHAPTER 3.

Chapter 4

Prototype Implementation

Based on the architecture, which was presented on the previous chapter, a
prototype system, depicted in Figure 4.1, was planned, developed and tested.
In order to implement a complete prototype system that could be considered
a valid and relevant proof of concept, all of the following components were
included: a Controller Application, a Music Server, one Playing Device and
one Audio File Database.

The core communication technology adopted in the prototype was the
SNMPv2c and a complete Music MIB was defined in SMIv2, which was then
implemented in the SNMP agent module on the Music Server. More specif-
ically, for the development of the SNMP modules (agent and manager) it
was used the SNMP4J Java based API [54]. This widely used open source
programming library contains implementations of SNMP primitives that are
required for the interaction between agents and managers on Java platforms.
For the creation of Music MIB two additional tools were used: the MibDe-
signer [55], MIB graphical editor that helps on the creation of MIBs and
provides syntax and semantic verification, and the AgenPro [56], which gen-
erates a Java or C++ based source code from a given MIB definition file.
This source code can then be used as the basis for programming of the agent’s
MIB instrumentation.

As an Audio File Database technology, a structured UNIX directory file
system was used and its correspondent Gateway Module for the Music Server

49

50 CHAPTER 4. PROTOTYPE IMPLEMENTATION

Figure 4.1: Implemented Architecture Components.

component were created. An Indirect Streaming Server was deployed by
means of the integration of a streaming server on the Music Server component
and a streaming client on the Playing Device component. These modules
were based on the VLCJ Open Source API [57] that provides Java libraries
to build a media server or a player, allowing either to play media files locally
or to stream them over a local IP network. On the Java platform, the VLCJ
offers bindings with the VLC Open Source media player from VideoLan,
providing a well-documented API and good support for developers.

The remainder of this chapter explains in more detail the development of
the prototype solution.

4.1 SNMP Agent

After the Music MIB definition, the first major step towards the devel-
opment of an SNMP agent is the setting up of the MIB database instrumen-
tation. Its management objects were syntactically and semantically verified
in the MIB Designer tool. Semantic verification is only possible for verifica-
tion of data types as semantic meaning can only be verified by testing the

4.1. SNMP AGENT 51

prototype system’s behavior.
The specification output file generated by the MIB Designer was then

used as the AgenPro input to generate the Java based source code with
data objects for implementation of the MIB instrumentation module for the
SNMP Agent module. This source code, together with the SNMP4J SDK
libraries for communication primitives, was used to code the complete SNMP
Agent implementation included in the Music Server.

The Music Server also implements a complementary Gateway Module
that is able to manage audio meta-information (title, artist, album, track
number, genre) from a UNIX structured directory file system containing au-
dio files from music collections. This information is mapped to the SNMP
Agent Music MIB instrumentation. The Agent cross-references this infor-
mation on Music MIB tables, in order to associate the music files with their
respective albums, artists and genre. It also implements other more generic
MIB tables, referring to varied system information, other Music Servers,
Gateway Modules, users and administrators.

More specifically, the created MusicMib Java class provides access to the
object values of the MIB tables, including row manipulation. This means
that, when adding a new row of information into a MIB table, the table-
model provides knowledge about in which row it will be inserted to. For
example, the method getRowCount returns the number of rows a MIB table
currently has.

In the development of the MIB instrumentation it was taken into con-
sideration that some MIB tables cannot have duplicated value attributes (or
object’s instances values), like genre, artist, format and album of an artist.
A music genre (e.g. Rock/Jazz/Classical) can only have one entry in the
Genre table. For Artist (e.g. Queen/Guns N’ Roses) and Format (e.g. OG-
G/FLAC) it was used the same principle, as they can only have one entry
in the respective MIB tables. The Album table is different, due to the fact
that it can have duplicated values, as long as they belong to different artists.
This means that an artist can not have two albums with the same title, but
two artists can have an album with the same title.

In order to prevent duplicated values the information is previously veri-

52 CHAPTER 4. PROTOTYPE IMPLEMENTATION

fied if it already exists in the table or not (Algorithm 1). If, in fact, it already
exists, the method returns the respective number ID of the information that
was about to be inserted (artist, format, genre). If it does not exist, the in-
formation is normally inserted into a row and this last one into the respective
table and the method returns the row number where it was add to.

Algorithm 1 shows how a music genre is verified and then added to the
MIB. This is a generic algorithm as it used for most of the rest of MIB
tables. For tables like ArtistMusic, it is not need to return any value as it
cross-references the music files with the respective artist.

input : genreName
output: rowNumber
rowNumber ← GenreTable.getRowCount+1;
for i← 1 to rowNumber do

if GenreTable.getRow(OID(i)).
getGenreName().equals(genreName) then
return i;

end
end
newRow ← (rowNumber , genreName);
GenreTable.addRow(new GenreRow(OID(rowNumber),
newRow));
return rowNumber;

Algorithm 1: Addition of a genre to the MIB.

To verify the information that was added into the MIB instrumentation
objects, the following NET-SNMP command should be used:

snmpwalk −v 2c −c pub l i c 1 2 7 . 0 . 0 . 1 : 2 0 0 0 1 . 3 . 6 . 1 . 3 . 1 8

As detailed previously, the OID 1.3.6.1.3 is the OID of the root of Mu-
sicMIB and the number 18 represents the root of the Server table.

4.2 Streaming Server

The Music Server is also responsible for starting an audio streaming once
a playing request is submitted by the manager on the Controller Applica-

4.3. SNMP MANAGER 53

tion. The Agent monitors the MIB instrumentation for when the object mu-
sicIDuser (in the User MIB table) changes to the correct enumerated value.
It then requests the streaming server for playing the music track identified
by the respective musicID. More specifically, the object musicIDuser value
is changed when a valid SNMP SET command is received by the Agent, sent
by the Manager on the Controller Application when a user triggers a play,
pause or application port where the user’s Playing Device is listening. The
destination unicast streaming port numbers and network addresses of the
Playing Devices are defined in the Device MIB table. By allowing different
stream ports to be configured, the system allows the server to support mul-
tiple stream connections on the same or on different devices/destinations at
the same time. When the music ends the value of musicIDuser is reset and
the stream for that destination stops.

4.3 SNMP Manager

The Manager implements methods that retrieve or set new values from
or to the MIB tables of an SNMP Agent. The manager works like a bridge
as it sends SNMP request primitives (or just SNMP commands) depending
on the actions originated from the user interface. A user or an administrator
action will trigger an SNMP command. For example: if an user change his
password, this will trigger a SET command, while selecting an artist it will
trigger a GET command in order to retrieve the music tracks associated to
that artist.

Note: A GET command, in the context of this document, was implemented
as one of the three SNMP GET request primitives: Get.Request, Get-
Next.Request or Get-Bulk.Request. Also, a SET command was imple-
mented as an SNMP Set.Request primitive.

The GET and SET commands are executed with the table OIDs and col-
umn IDs, which are provided by the Java class MusicMib, as it is shown in
Algorithm 2. When requesting a GET or a SET, it is necessary to know
the OID of the object’s instance to be obtained or modified. As it is shown

54 CHAPTER 4. PROTOTYPE IMPLEMENTATION

Figure 4.2: Class relationships between the Usemanager and the table classes.

in Figure 4.2, a Java class was created on the Manager for each MIB Table
that the Agent has. Once the values are retrieved from the MIB Tables of an
Agent, they need to be organized and structured in the Manager’s software.
For example, as there is an User MIB table, the Manager also has a User
Java class with the same objects/attributes that exist in the User table of
the Agent’s MIB instrumentation. Those attributes have their own getters
and setters, so they can be easily accessed and modified.

The manager has a Java class, the Usemanager, which makes use of the
Java table classes (Figure 4.2). The Usemanager contains methods that allow
to send commands to an Agent, without the need of storing any data. Like
the isSNMPServer method, which checks if a given IP address is running an
SNMP Music Server, or the getLoginCredentials method returns an object of
the type User if the user or administrator inserted his credentials correctly
in the GUI Login window.

To execute an SNMP GET command, the Usemanager makes use of
the Manager’s getAsString and getAsInteger methods (Algorithms 2 and 3),
which are dependent on the type of data that is about to be requested, a
String or an Integer type, for example. OIDs are passed as parameters to
these methods, in order to indicate which information from the Agent’s MIB

4.3. SNMP MANAGER 55

is to be retrieved. If successful, the Agent replies with a Get.Response with
the values that were requested. The Usemanager contains object lists of the
type of each table class. The lists are filled when they are needed, preventing
a big retrieval of data upon startup of the Manager. When retrieving a MIB
table, the Usemanager uses both getAsString and getAsInteger methods.
After the Agent replied, the values retrieved are then added to the respective
object class and then to a list. Algorithm 2 details the steps of how a MIB
table is obtained and added to a Java list object, which in this case is for the
Album table.

output: albumList
for i← 0 do

id← getAsString(OID(
oidAlbumEntry + ”.” + colIdAlbum + ”.” + i));
if id.equals("noSuchInstance") then

break;
end
title← getAsString(OID(
oidAlbumEntry + ”.” + colAlbumTitle + ”.” + i));

label← getAsString(OID(
oidAlbumEntry + ”.” + colLabel + ”.” + i));

year ← getAsInteger(OID(
oidAlbumEntry + ”.” + colY ear + ”.” + i));
albumList.add(new Album(id,title,label,year));

end
return albumList;

Algorithm 2: Use of the GET command in order to retrieve a MIB table.

Relationships between tables must also be implemented in the Manager’s
module. These associations are needed as it allows cross-reference the in-
stances of the objects. For example, they are necessary to correctly associate
music tracks to their respective artists and respective music albums. Again,
using the Album/Artist example, to make the association between Album
and Artist the Album class must contain a list of Artist and Artist class
must contain a list of Album. Both of these classes have a method that
searches for a given ID in a given list and returns the object that matches
with that ID. So, when associating two tables, it is required to obtain the

56 CHAPTER 4. PROTOTYPE IMPLEMENTATION

object of the respective ID and then adding this returned object to the other
object’s list. Algorithm 3 details the steps to make these kind of associations.

input : albumList,artistList
for i← 0 do

id← getAsString(OID(
oidAlbumArtistEntry + ”.” + colIdAlbumArtist + ”.” + i));
if id.equals("noSuchInstance") then

break;
end
//Get Album object from the AlbumList;
albumID ← getAsInteger(OID(oidAlbumArtistEntry +
”.” + colAlbumIDalbumArtist + ”.” + i));

album← Album.getAlbum(albumList,albumID);
//Get Artist object from the ArtistList;
artistID ← getAsInteger(OID(oidAlbumArtistEntry +
”.” + colArtistIDalbumArtist + ”.” + i));

artist← Album.getAlbum(artistList,artistID);
//Add to each other’s list if not already in them;
if !album.getArtistsList().contains(artist) then

album.getArtistsList().add(artist)
end
if !artist.getArtistsList().contains(album) then

artist.getArtistsList().add(album)
end

end
Algorithm 3: Associating an album with an artist.

The SET command is used when a new value is to be set to the object’s
instance of the OID (both OID and new value are passed as parameters).
An exception is thrown if there was no response or if there was error during
the execution of the command on the Agent. Algorithm 4 shows a simple
example of how to send a SET command in order to change a value in the
MIB.

Although SET command allows to set/configure a value in the MIB table,
this can only be done to an object that has been previously added to the MIB,
that is, to an instance that already exists in the MIB instrumentation. So,

4.4. GRAPHICAL USER INTERFACE 57

input : musicID,userID
//After check if musicID and userID are within the parameters;
set((oidUserEntry+"."+colMusicIDuser+"."+userID),musicID);
//If successfull, then the music track of musicID should start
playing;

Algorithm 4: A SNMP SET command.

in order to add or remove a user, a playlist, a device, a server, a collection
or statistics, it is used a SET command with the OID of the MIB object
AddRemoveRow.

The values that are sent within the SET command are a composition of
parameters required to add or remove a row in a specific MIB table. The
values need to indicate if it is to add or remove the row, followed by the
name of the MIB table (where to make changes) and then followed by the
new values that will be in the new row. For example, to add a new row in the
Playlist table, this needs the values “add:playlist:RockPlaylist”, to be sent.
When the Agent receives the SET command, it checks if the value of the
object OID AddRemoveRow has changed and adds or removes a row based
on the received parameters. After the row has been added or removed the
value of AddRemoveRow is reset.

These methods are the core methods used on the Manager software, either
to obtain or to modify instance’s values and also to add or remove rows in
MIB tables. The methods can be triggered by the user interface actions
through the Usemanager.

4.4 Graphical User Interface

The GUI was developed with the JavaFX API which has available a
set of media packages that allows to design and creation of graphical client
applications.

The user interface module consists of five windows: Login, User Prefer-
ences, Administrator Panel, About and the Player. All of these windows

58 CHAPTER 4. PROTOTYPE IMPLEMENTATION

contain graphical objects that once the user interacts with them, triggers
specific actions.

Here is a brief description of the main functionalities for these windows:

• The Login window is the first window that appears upon the start of
the controller client application. The user enters his username and
password to login into the system. There is also a button to register a
new user and a field to show errors if any occur;

• The main window allows browsing the list of tracks of the music col-
lections, dependently on the selected object (a user’s playlist, device,
server or a search text). There are also some media buttons like, play,
pause, stop, previous and next, a slider for the audio volume, a panel
with the information about the music that is currently playing, buttons
to add or remove a music track to a playlist. From his window, the user
has access to the other windows, except for the Admin Panel, where
only administrators are allowed;

• The Admin Panel is only accessible to administrators and allows them
to manage users, servers, musics, collections and statistics;

• The User preferences window enables a user to change his password,
manage his devices and playlist and reset his statistics;

• The About window is just to show general information of the Controller
Application.

User Types

There are three types of users: guest, user and administrator. The ad-
ministrator is the top level of the user types and manages the accounts of
guests and users with the authority to transform a guest into a user or a user
into an administrator. He can delete guests and users accounts. An admin-
istrator is also able to manage music collections directly from the Controller
Application interface.

4.5. AUDIO STREAMING 59

Figure 4.3: User types actions and how entities are related.

Upon registration, a guest can only browse for music collections but is
not able to listen to audio file. On the other hand, a normal user can browse
and play any music present in the collections.

Figure 4.3 illustrates what actions each type of user can perform, as well
as how the entities are related among them.

4.5 Audio Streaming

The prototype audio Playing Device receives the audio stream provided by
a streaming server implemented inside the Music Server. The audio file source
is from the Audio File Database system. A streaming client process is always
in a standby state on the player. The prototype Controller Application also
supports redirection of the audio stream to third party software or hardware
Playing Devices through streaming.

Figure 4.4, shows the communication exchanged between the Music Server
and the Controller, and how a streaming is started and terminated. Once a

60 CHAPTER 4. PROTOTYPE IMPLEMENTATION

Figure 4.4: Flowchart between the Controller Application and the Music
Server.

user selects a music track to play, the Manager Module sends a SET command
to the Agent Module. Then, a stream is opened with the Playing Device’s IP
address and port waiting for the connection to be established. On the other
side, the Agent requests a streaming service to the local streaming server for
the selected music.

When the music ends, the Agent resets the value that the SET command
changed earlier in order to indicate which track to play. To allow multiple
stream connections at the same time, the streaming’s client port is randomly
chosen from a valid range of values.

4.6. SEARCH FEATURE 61

Figure 4.5: Streaming to remote devices.

4.5.1 Remote Devices

The Controller Application allows a user to remotely control the playing
of a music track in a device other than where the GUI is being executed.

An example is when there are devices around the house connected to the
home network. These devices can be any kind host stations (e.g. desktop,
notebook, mini-PC, smartphone, multimedia systems, etc.) that have local
audio playing functionalities available or are connected to a classic external
digital sound system (DAC, amplifier, speakers), as long as they include a
streaming client application.

Figure 4.5 shows the connections between Controller Application, server
and the playing remote devices. It is possible to notice that SNMP messages
only flow between the Controller Application (SNMP manager) and the Mu-
sic Server (SNMP agent), while the streaming happens between the Playing
Devices and the streaming server. As noted earlier, is possible to have several
streams from the same music track occurring at the same time.

4.6 Search Feature

The search feature is implemented on the Music Server side, as it holds the
needed tables in order to perform searches. If not, the data required would

62 CHAPTER 4. PROTOTYPE IMPLEMENTATION

have to be transferred to the controller, which would be highly inefficient
for big volumes of data. Furthermore, having most of the processing on the
server side has the advantage of lighten the controller.

In order to implement this feature, it was necessary to extend the initial
Music MIB (see Figure A.1). It was added four string scalar objects, one for
every text field/filter supported by the search feature, three tables (artist,
album and music) and two enumerated scalars objects.

When the user uses at least one of the search text boxes available in the
user interface, it triggers the SNMP Manager to send a SET command to
the SNMP Agent in the Music Server. This command carries the typed in
data from the text boxes and the user’s search threshold. The searchStatus
object is also set accordingly:

• 1 - The agent has the result search tables emptied and is ready to
perform a new search;

• 2 - Executing the search;

• 3 - Search has ended and the results are ready for retrieval.

Strings Comparison

In order to perform a search, the agent instrumentation executes an al-
gorithm that compares the search terms with the artist names, album titles
and music titles in the Audio File Database.

In the first implementation effort it was used the compareToIgnoreCase
method of the Java class String, which compares two strings lexicographi-
cally. The result is a negative or positive integer if the string object lexico-
graphically precedes or follows the argument string. The distance is zero if
the strings are equal. However, as it is shown in Table 4.1, this comparison
method did not return proper search results.

As such, it was decided to investigate other solutions. The Hamming
distance [58] is widely deployed, but it only considers string substitutions to
calculate the metric and so it requires that the string must have the same
length [59] which would not apply here.

4.6. SEARCH FEATURE 63

The Levenshtein distance algorithm is one of the most widely used com-
parison string metrics and it has been extensively used in spell checkers and
dictionary correction systems [60, 61]. The Levenshtein distance algorithm,
also known as edit distance, measures how different two strings are. The
result distance is the minimum number of editions required to change one
string into another. The original Levenshtein distance takes in consideration
that an edition can be an insertion, deletion or substitution. The Levenshtein
distance is zero if the strings are equal (no editions are required) and greater
than zero if different. The Algorithm 5 shows how the Levenshtein distance
calculates the similarity between strings. Tests were made and Table 4.1
resumes the results. Its possible to verify a clear improvement on the desired
search results in comparison to the initial method.

On the other hand, the contains method of the Java String class yields a
result of zero if the first string (searched text string) is contained in any of
the other. This method (which ignores case) is used after the Levenshtein
distance has been calculated, as it improves even further the quality of search
results when the user inserts only a segment of the word to search for (for
example, when the user inserts “red hot” in order to search for the tracks of
the “Red Hot Chili Peppers” band).

Algorithm 6 shows the full process of similarity calculation between a
given string and string on a target list of strings.

Table 4.1 presents results for various examples of an artist search on a list
with ten different artists in it. It shows the terms for searching and the top
five results with the respective score. The difference when using the contains
method is noticeable for the “queen” search term, as the result “Queens of
the Stone Age” comes ranked second whereas otherwise it would not even
appear in the top five results.

Generic Search

The generic search uses the search keyword to search in the artist, album
and music tables. Each table search returns a hash map with the ID of

64 CHAPTER 4. PROTOTYPE IMPLEMENTATION

input : string1,string2
output: result
string1← string1.toLowerCase();
string2← string2.toLowerCase();
if string1 == string2 then

return 0;
//The strings are equal

end
int costs[]← new int[string2.length()+1];
costs[0]← 0;
for i← 0 to string1.length() do

int lastV alue← 0;
for j ← 1 to string2.length() do

int newV alue← costs[j − 1];
if string1.charAt(i-1) != string2.charAt(j-1) then

newV alue← MIN(newV alue, lastV alue, costs[j]) +1;
end
costs[j − 1]← lastV alue;
lastV alue← newV alue;

end
if i > 0 then

costs[string2.length()] ← lastV alue;
end

end
return costs[string2.length()];

Algorithm 5: Levenshtein Distance Algorithm.

input : string,list
output: hashmapResult
for each item in list do

comparison← LevenshteinDistance(string,item);
if containsIgnoreCase(string,item) then

comparison← 0;
end
hashmapResults.put(item,comparison);

end
hashmapResults← sortByValues(hashmapResults);
return hashmapResults;

Algorithm 6: Full process of similarity calculation.

4.6. SEARCH FEATURE 65

Resulting List

Word for Searching compareToIgnoreCase Levenshtein Levenshtein with contains

queen

Queen - 0 Queen - 0 Queen - 0

Phill Collins - 1 Daft Punk - 8 Queens of The Stone Age - 0

Red Hot Chili Peppers - 1 Joe Cocker - 8 Daft Punk - 8

Tara Perdida - 3 Blink 182 - 9 Joe Cocker - 8

Xutos e Pontapés - 7 Tara Perdida - 11 Blink 182 - 9

quen

Phill Collins - 1 Queen - 1 Queen - 1

Red Hot Chili Peppers - 1 Daft Punk - 8 Daft Punk - 8

Tara Perdida - 3 Blink 182 - 8 Blink 182 - 8

Xutos e Pontapés - 7 Joe Cocker - 9 Joe Cocker - 9

Joe Cocker - 7 Tara Perdida - 11 Tara Perdida - 11

pil colins

Phill Collins - 1 Phill Collins - 3 Phill Collins - 3

Queen - 1 Joe Cocker - 7 Joe Cocker - 7

Queens of The Stone Age - 1 Daft Punk - 9 Daft Punk - 9

Red Hot Chili Peppers - 2 Queen - 9 Queen - 9

Tara Perdida - 4 Blink 182 - 9 Blink 182 - 9

Table 4.1: String comparison examples.

artist/album/music as the hash map key and the comparison score as the
value. Afterwards, the three hash maps are sorted by their values and their
IDs added to the respective MIB result search tables.

Specific Search

The specific search performs each search in each respective table. It
searches the artist keyword in the artist table, the album keyword in the
album table and the music keyword in the music table. However, if the user
types in more than one search text box, entries that match each search text
box will be presented. For example, if the artist and album text boxes are
fill in, the results listed are matches from the list of artist and also from the
list of albums.

The match is done through a nested loop join algorithm [62]. A nested
loop join is the simplest form of join algorithm: for each entry in the first
table, it goes through all the entries in the second table. For example, the
process for a join search of artist with album verifies the resulting album

66 CHAPTER 4. PROTOTYPE IMPLEMENTATION

table against the resulting artist table and a match happens when an album
ID that was previously associated to an artist ID is also in the resulting
album table.

The average calculated from the hash maps values (comparison metric
scores) of artist and album entries updates the entry value in the resulting
album table. Algorithm 7 demonstrates how the nested loop join is performed
with artist and album resulting lists.

input : artistList,albumList,albumArtistTable
results← albumList;
for Each entry in artistList do

for i← to albumArtistTable.size() do
if albumArtistTable(i).getArtistID == entry.getKey then

albumID ← albumArtistTable(i).getAlbumID();
if results.containsKey(albumID) then

results.replace(albumID,(results.get(albumID)+
entry.getValue())/2);

end
end

end
end
albumList.putAll(results);
return hashmapResults;

Algorithm 7: Match between artist and album.

For search requests with matching between three tables, two nested loop
join algorithms are executed. The first nested loop join is performed with
the first two tables (artist and album). Then, the second join is executed
with the result of the first join and the last table (music). Just like for the
generic search, the resulting hash maps list is sorted by values and IDs are
added to the corresponded MIB result search tables.

This algorithm is not optimized on the prototype Music Server imple-
mentation, as it is not relevant for the scope of the project. For example,
the sorted nested join and the hash join algorithms should yield a better
performance, in comparison to the implemented nested join [62].

4.6. SEARCH FEATURE 67

After the search is completed, the Agent instrumentation modifies the
value of searchStatus accordingly and sends an SNMP TRAP.Request prim-
itive to the Manager in the Controller, informing that the results are ready
to be retrieved. The Manager obtains the results through GET commands,
and the Controller displays them into the user interface.

Multi-Context/Multi-Client Search

The simple specific search previously described had the limitation of being
available for one client at a time. If a user wanted to do a search, while there
was one already in progress, it would had to wait until the first had finished
the process.

Therefore, in order to make a multi-client search algorithm, the MIB had
to be extended again. It was added four more scalars objects for each of
the search fields. These fields also exist in a new table called SearchTerms.
It was also added, the SearchUsers table and the column SearchID to each
one of the three result tables (Artist, Album and Music). Also, to allow the
concurrent execution of the algorithm, the implementation of multi-threads
for the search processes was introduced.

Figure 4.6 shows a flowchart of the algorithm. When a user requests a
search, the strings from the search text boxes are sent on via SET commands
to the Agent in the Music Server. A value for the userIDSearch scalar is set
and the Agent checks if the exact combination of these terms already exists
in the SearchTerms table.

Figure 4.7 shows how the SearchTerms, the SearchUser and search result-
ing tables are related. If the combination is already in the SearchTerms table,
the server takes the value of IDSearchTerms correspondent of that combina-
tion and looks for it in the termsID column of the SearchUsers table. It
verifies if the search has already been completed updating the corresponding
userID table entry with the userIDSearch value. If the combination are not
yet in the SearchTerms table, it is added and the corresponding values of
the IDSearchTerms and userIDSearch objects are added to the SearchUsers
table.

68 CHAPTER 4. PROTOTYPE IMPLEMENTATION

Figure 4.6: Flowchart of the Multi-Client Search.

4.6. SEARCH FEATURE 69

Figure 4.7: How the MIB tables are related in Multi-Client Search.

One thread is created for execution of the search algorithm for each combi-
nation on SearchUsers table. After completion, the search results are inserted
into the respective table results and the searchStatus fields of the SearchUsers
table are updated. Lastly, the Agent sends a Trap.Request primitive to the
Manager, informing that the search results are ready to be retrieved. Upon
receiving the notification, the client retrieves the search results that corre-
spond to its user’s ID.

Caching Search Results

The SearchUser has a timer field, which marks the time of when a search
has been completed or re-accessed. This field is used so the entries can be
cleared after some predefined time is passed without the entries being used.

So, the search functionality implemented on the Music Server permits
caching of search results for a temporary period of time. These temporary
tables improve the performance of the search feature.

This search feature is supported directly on the SNMP Agent instrumen-
tation by means of the MIB table that store temporary searching results.
This cache table allow much shorter access times on common requests.

70 CHAPTER 4. PROTOTYPE IMPLEMENTATION

4.7 Testing The Prototype System

In order to setup the entire system, it is firstly required to deploy the Mu-
sic Server, including the SNMP Agent Module with the MIB instrumentation
and the Gateway Module for interaction with the Audio File Database. In
this prototype, the music database is based on a structured directory file
system and the Gateway Module is embedded on the Music Server software.
Directory paths for music collections are configuration parameters of the Mu-
sic Server so the Agent’s instrumentation, through the Gateway Module, can
import/update the music meta-data information from all files of the music
collections into the correspondent MIB tables. Other Music Server configu-
ration parameters must also be setup the first time the system is installed:
network and applications addresses, identification, description and location,
etc.

It follows an excert of the log file of the setup process when the Music
Server starts up:

Adding t ra ck s
(. . .)
Adding Music : 13 T i t l e : Contact
/home/ p lut /Music/Daft Punk/Random Access Memories /13 Daft Punk − Contact .mp3
Adding Music : 14 T i t l e : Horizon
/home/ p lut /Music/Daft Punk/Random Access Memories /14 Daft Punk − Horizon .mp3
Adding Music : 23 T i t l e : Smel l s Like Teen S p i r i t
/home/ p lut /Music/Nirvana/Nevermind/01 Smel l s Like Teen S p i r i t .mp3
Adding Ar t i s t : 2 Nirvana
Adding Album : 2 Nevermind
Adding Music : 24 T i t l e : In Bloom
/home/ p lut /Music/Nirvana/Nevermind/02 In Bloom .mp3
(. . .)

Information like artist, album or genre, are only added to the MIB tables
when these have not yet been added. For example, when adding the music
track “Smells Like Teen Spirit” from the artist “Nirvana”, the module verifies
that the artist is not yet on the Artist MIB table and so it adds the respective
meta-data.

4.7. TESTING THE PROTOTYPE SYSTEM 71

Testing the SNMP Agent

It is possible to execute a simple test to verify if the Agent is working
correctly and accepting requests. In order to do so, some SNMP GET and
SET commands can be performed using NET-SNMP commands.

snmpwalk −v 2c −c pub l i c 1 2 7 . 0 . 0 . 1 : 2 0 0 0 1 . 3 . 6 . 1 . 3 . 2 . 2 . 2 . 1 . 2
SNMPv2−SMI : : exper imenta l . 2 . 2 . 2 . 1 . 2 . 1 = STRING: " Daft ␣Punk"
SNMPv2−SMI : : exper imenta l . 2 . 2 . 2 . 1 . 2 . 2 = STRING: " Nirvana "

The OID 1.3.6.1.3.2.22.2.1.16.1 represents the musicID object of the first
entry/row on the User table, this OID is modified when a music is requested
to be played or stopped (detailed in Appendix A).

snmpset −v 2c −c pub l i c 1 2 7 . 0 . 0 . 1 : 2 0 0 0 1 . 3 . 6 . 1 . 3 . 2 . 2 2 . 2 . 1 . 1 6 . 1 i 13
SNMPv2−SMI : : exper imenta l . 2 . 2 2 . 2 . 1 . 1 6 . 1 = INTEGER: 13

4.7.1 The Controller Application

Once the Music Server is up and running as a service, the Controller
Application can be executed to access the music collection.

Login Window

The login window (Figure 4.8) is where a user logs into the system and
is composed by two text boxes and two buttons, so that the user can type in
his username and password.

When the “Log in” button is clicked, the application verifies if the entered
credentials exist and are correct in the MIB User table. A text message is
displayed informing the user if an error occurred, otherwise the login window
is closed and the main window displayed.

Main Window

The main window holds the interface objects that are used by a user. Each
one of the GUI objects has an action: to control the music track, to change

72 CHAPTER 4. PROTOTYPE IMPLEMENTATION

Figure 4.8: Login window GUI.

the audio volume, to search for a specific music track, or even add devices
and create playlists. The interface is composed by the following objects:

• Buttons for controlling the streaming (e.g. play, stop) music track;

• Text fields for searching;

• Sliders for volume and music progress;

• Lists in order to display the music track, servers and playlists;

• Menus for username options and device selection access;

• Labels for displaying the current music track information and playing
time;

• Time.

Figure 4.9 shows what the main window interface looks like. After the
GUI objects have been loaded, the application retrieves the needed informa-
tion from the MIB instrumentation, that is, the SNMP Manager retrieves

4.7. TESTING THE PROTOTYPE SYSTEM 73

Figure 4.9: Main window interface with retrieved entries.

entries from the following MIB tables: playlist, server, device and music. It
is possible to observe that a server has been added to the server list on the
left side of the GUI, the user menu has changed to the current logged in the
username and some music tracks were listed.

Playing a Music Track

To play a music from the list, the user simply selects one and clicks on the
Play button or just double-clicks on top of the music title. This action sends
a SET command to the Music Server for the respective user’s musicID OID
(1.3.6.1.3.2.22.2.1.16.1) with the value of the music’s ID. Depending on which
value goes in the SET message, the server initiates or stops the streaming
server. For example, when selecting the music track “Touch” from the “Daft
Punk” artist (see Figure 4.9) the Manager sends a SET command with the
music ID value 6 to the respective OID of musicID column in the User table:

74 CHAPTER 4. PROTOTYPE IMPLEMENTATION

agent : a va lue has changed on the User t ab l e
Row/UserID : 1
MusicID : 6
F i l epath : / s e r v e r /Music/Daft Punk/Random Access Memories

/07 Daft Punk − Touch (f e a t . Paul Wil l iams) .mp3
Streaming s e r v e r INITIATED on port 5555

Search Feature Implementation

Figure 4.9 shows that the search box is composed by four text boxes:
generic, artist, album and music. The generic search looks for the search
keyword in the artist, album and music tables, while the specific search looks
for each specific keyword (if typed) in the respective table.

On one hand, if the user just uses the generic search field, he will be
presented with artist names, album titles and music titles that are similar to
the keyword typed. On the other hand, when performing a specific search,
depending on which search fields the user types in (if artist, album or music
search field), he will be presented with the search result of the respective
table(s) of the searched keyword.

Figure 4.9 shows a plus sign next to each text box. This allows a user to
add more searching criteria. For example, searching for more than on artist
in the same search.

Table 4.2 shows examples of generic and specific searches along with their
results. In the first search, it is performed a generic search as the rest of the
search fields are empty. Here, the search word (“queen”) is searched on all
three fields (artist, album, and music) without doing any match among them.
Therefore, the results on the three presented lists are not related with each
other. This explains how albums and music tracks from different artists are
presented in the artists list. However it is possible to verify that two music
tracks from the respective album, also appeared in the album list. This is
due to the fact that there are music tracks with the same title as the album
in which they have been released.

The second, third and fourth searches have two of the search fields typed
in so they execute a combined search as detailed before. Due to that reason,

4.8. COMPARISON WITH OTHER SOLUTIONS 75

Results

Search Artist Album Music

1
Generic:”queen”

Artist:
Album:

Music:

Queen
Queens of The Stone Age

Queensryche

Queen by Perfume Genius
Queen - Raheen Vaughn

Queens of the Cloud by Tove

Lo

Queen by Perfume Genius
Queen of California by John

Mayer

Queens of the Cloud by Tove Lo

2
Generic:

Artist:”queen”
Album:”magic”

Music:

Queen
Queens of The Stone Age

Queensryche

Kind of Magic by Queen
Magic by Coldplay

Magic by Bruce Springsteen
-

3
Generic:

Artist:”queen”
Album:

Music:”love”

Queen
Queens of The Stone Age

Queensryche
-

Somebody To Love by Queen
Crazy Little Thing Called Love

by Queen

Love Kills by Queen

4
Generic:
Artist:

Album:”magic”

Music:”friends”

-
A Kind of Magic by Queen

Magic by Coldplay

Magic by Bruce Springsteen

Friends Will Be Friends by Queen
Friends by Ed Sheeran

Internet Friends by Knife Party

5
Generic:

Artist:”queen”
Album:”magic”

Music:”friends”

Queen
Queens of The Stone Age

Queensryche

A Kind of Magic by Queen
Magic by Coldplay

Magic by Bruce Springsteen

Friends Will Be Friends by Queen
Friends by Ed Sheeran

Internet Friends by Knife Party

Table 4.2: Examples of generic and specific search functionality.

their results are related. For example, in the second search, the album tittle
“A Kind of Magic” comes first because it was a match with the artist “Queen”.
The last example presents the results that matched the music “Friends Will
Be Friends” that was released in the album “A Kind of Magic” by the artist
“Queen”.

4.8 Comparison With Other Solutions

As stated earlier, the search feature of the DLNA and DAAP solutions
has some limitation as there is no support for implementations of this func-
tionality on the Music Server side of the architectures nor there are any
guidelines on how to implement it on the client application side. UPnP only
has the MediaServer’s Content Directory service, which is responsible for
just retrieving the meta-data about each media item and make it available
for Control Points to browse them, which can be problematic on large music

76 CHAPTER 4. PROTOTYPE IMPLEMENTATION

collections. All implementation issues must be resolved on the client con-
troller side with proprietary mechanisms, which can have a great impact on
the overall performance of the system as the servers do not have the possi-
bility of temporarily store search results. Some of these client applications
require third-party software, like XBox Media Center (XBMC) [17] in order
to implement it.

On the other hand, the prototype system of the proposed model has
direct support for this functionality on the Music Server side by means of
the Music MIB definition itself. Also, as the Music Server does most of
the processing, the clients can be much lighter. With this paradigm, client
mobile applications can be easily developed, which could be a fundamental
key advantage of this approach.

In the new client application prototype is possible for an administrator
to authorize, or not, a selected group of users to play/listen certain music
collections (or parts of them). For example, XBMC or iTunes applications
do not support local user management account.

The developed prototype also has the ability to stream music to remote
Playing Devices/machines other than where the GUI is being executed, al-
though it is required some streaming technology to be supported in these
devices in order to receive the audio stream from the Music Server. Through
the GUI, a user can manage a group of devices and easily choose to play the
music track independently to each device.

Furthermore, the prototype is very modular and is prepared to provide
interaction with any hardware/software platforms, as long as they implement
the same music MIB and support at least version 2c of the SNMPs.

Chapter 5

Conclusions

The functionalities and conceptual requirements implemented on the pro-
totype system of this project proves that audio distribution systems for ap-
plication on local area networks, like home multimedia systems, can be built
using only standard management protocols (in particular SNMP), multime-
dia technologies and other open sources software. The SNMP architecture
has been shown to allow an integrated management of network services inde-
pendently of the equipment manufacturer or software makers and therefore,
enables the monitoring, controlling and managing of a vast range of sys-
tems, including home electronic appliances. In the scope of this project, this
protocol was used for home automation in the field of home-entertainment.

All elements of the prototype system were built taking with into consid-
eration the conceptual requirements defined for the proposed architecture,
relying solely on management protocols, standardized mechanisms and open
source software. The prototype offers the possibility to control and manage
music files in Music Servers using Controller Application. These controllers
allow music files to be played on a local or remote device, through standard
audio streaming protocols.

SNMP is used between the Music Servers and Controller Applications.
Music Servers implement an SNMP Agent Module and a MUSIC-MIB in-
stallation. This MIB was defined specifically on the scope of this project.
The prototype was also built using fundamental open source APIs in order

77

78 CHAPTER 5. CONCLUSIONS

to enable the use of SNMP and streaming protocols. However, not all of
the functional requisites initially established were implemented, leaving just
a few for future development.

This work proves that the SNMP protocol can be easily deployed in an
electronic house for domestic systems and in particularly for audio distri-
bution, where every media device is connected to a home network. This
project, shows advantages when compared to those already existent media
device sharing technologies, which are based on more complex models and
are content restrictive or device incompatible, like DLNA/UPnP systems
which are not easy for the final user to understand and/or set up, and the
DAAP/Bonjour is only compatible within Apple’s system devices.

The purpose of this project was to develop an alternative system to these
already established architectures that could include the same or even more
functional features and using SNMP and open source technologies. Both
DLNA and DAAP are proprietary systems, using technologies that are very
restrictive with private and closed software environments.

Results

The developed prototype system includes all components and modules of
the proposed architecture. All major functionalities of such type of audio
distribution systems (managing user accounts and music collections, playing
music tracks locally or remotely, searching tracks on music collections, etc.)
were implemented and successfully tested.

The Controller Application is the software component that a general user
will interact with and allows browsing, searching and playing music tracks
like a normal music player would. The user will not notice that the music
collection may be stored in a different location from where the interface is
being executed and he can specify where he wants to listen the audio stream:
in the local device or on a/multiple device(s).

The system implements a search feature where is possible to perform a
generic search or a combined search using various fields such as artist, album
and music title. The search are temporary stored allowing results to be

79

retrieved faster if the exact same search is performed again.
The prototype allows an administrator to manage user accounts. The

administrator can also authorize or not, specific users to playlist certain
parts of the music collections.

There is also a Gateway Module which allows importing of music meta-
data from an external Audio File Database on a structured directory file
system into the Music Server.

From the usability/functionality tests executed on the prototype system
could be concluded that all implemented features worked as expected.

Future Work

The project still has some features that can be further developed.
The Music Server still needs some development on the Gateway Modules

so they could integrate support to other types of Audio File Database systems
like the ones based on web-services. On the client application side, some
additional functional features could also be added.

One of the next goals would be to develop a new streaming server to
incorporate on mobile remote devices or audio renderers. Some networked
audio speakers could include this new streaming software.

Another advance would be to develop and test a Controller Application
for a mobile device platform based on an Android operating system. By being
connected through the wireless home network, a user with a smartphone
could control audio playing on any room/part of the house where the playing
devices could be installed.

Also, the Music Server component could support streaming of individual
audio channels, which would be very useful for surround sound applications.

The new solution could be technologically competitive when compared
with other already existing solutions.

80 CHAPTER 5. CONCLUSIONS

Bibliography

[1] Allegro Software Development Corporation, Conexant Systems Inc, In-
tel Corporation, Microsoft Corporation, Motorola, Nokia Corporation,
Philips Electronics, Pioneer and Sony Electronics, “UPnP Device Ar-
chitecture 1.0,” no. October, 2008.

[2] J. Ritchie, T. Kuehnel, Intel Corporation and Microsoft Corporation,
“UPnP AV Architecture:1,” 2002.

[3] “DLNA - Technical Overview.” http://www.dlna.org/
dlna-for-industry/technical-overview.

[4] “DAAP Documentation.” https://code.google.com/p/ytrack/wiki/
DAAPDocumentation.

[5] “Sonos.” https://www.sonos.com/en-gb/home.

[6] “Bluesound.” http://www.bluesound.com/en-eu/.

[7] “Bose Multi-Room Speakers.” https://www.bose.com/en_us/
products/speakers/multi_room_speakers.html.

[8] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple Network
Management Protocol,” August 1988. https://tools.ietf.org/html/
rfc1067.

[9] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “RFC 1157: Simple
Network Management Protocol (SNMP),” May 1990.

81

http://www.dlna.org/dlna-for-industry/technical-overview
http://www.dlna.org/dlna-for-industry/technical-overview
https://code.google.com/p/ytrack/wiki/DAAPDocumentation
https://code.google.com/p/ytrack/wiki/DAAPDocumentation
https://www.sonos.com/en-gb/home
http://www.bluesound.com/en-eu/
https://www.bose.com/en_us/products/speakers/multi_room_speakers.html
https://www.bose.com/en_us/products/speakers/multi_room_speakers.html
https://tools.ietf.org/html/rfc1067
https://tools.ietf.org/html/rfc1067

82 BIBLIOGRAPHY

[10] C. Rus, K. Kontola, I. Curcio, and I. Defee, “Mobile TV Content to
Home WLAN,” Consumer Electronics, IEEE Transactions on, vol. 54,
no. 3, pp. 1038–1041, 2008.

[11] Intel Corporation, Panasonic Corporation, Sony Corporation,
Toshiba Corporation and Hitachi Ltd, “Digital Transmission
Content Protection Specification Volume 1 (Informational Ver-
sion),” vol. 1, 2011. http://www.dtcp.com/documents/dtcp/
info-20130605-dtcp-v1-rev-1-7-ed2.pdf.

[12] “DLNA Certified® Device Classes - DLNA.” http://web.archive.
org/web/20101222205822,http://www.dlna.org/digital_living/
devices/.

[13] “The DLNA standard: a real mess?.” http://www.digitalversus.
com/tv-television/dlna-standard-real-mess-a971.html.

[14] “ISO/IEC standard on UPnP Device Architecture Makes Networking
Simple and Easy.” http://www.iso.org/iso/home/news_index/news_
archive/news.htm?refid=Ref1185, 2008.

[15] “foobar2000.” http://www.foobar2000.org/.

[16] “Jamcast.” https://getjamcast.com/.

[17] “XBMC (Kodi).” https://kodi.tv/.

[18] “Universal Media Server.” http://www.universalmediaserver.com/.

[19] “TVMOBiLi.” http://www.tvmobili.com/.

[20] “PS3 Media Server.” https://github.com/ps3mediaserver/
ps3mediaserver.

[21] “UPnP Forum.” http://upnp.org/.

[22] V. Lortz and M. Saaranen, “DeviceProtection:1 Service,” pp. 1–67, 2011.

http://www.dtcp.com/documents/dtcp/info-20130605-dtcp-v1-rev-1-7-ed2.pdf
http://www.dtcp.com/documents/dtcp/info-20130605-dtcp-v1-rev-1-7-ed2.pdf
http://web.archive.org/web/20101222205822, http://www.dlna.org/digital_living/devices/
http://web.archive.org/web/20101222205822, http://www.dlna.org/digital_living/devices/
http://web.archive.org/web/20101222205822, http://www.dlna.org/digital_living/devices/
http://www.digitalversus.com/tv-television/dlna-standard-real-mess-a971.html
http://www.digitalversus.com/tv-television/dlna-standard-real-mess-a971.html
http://www.iso.org/iso/home/news_index/news_archive/news.htm?refid=Ref1185
http://www.iso.org/iso/home/news_index/news_archive/news.htm?refid=Ref1185
http://www.foobar2000.org/
https://getjamcast.com/
https://kodi.tv/
http://www.universalmediaserver.com/
http://www.tvmobili.com/
https://github.com/ps3mediaserver/ps3mediaserver
https://github.com/ps3mediaserver/ps3mediaserver
http://upnp.org/

BIBLIOGRAPHY 83

[23] Carl Ellison and Intel Corporation, “DeviceSecurity:1,”
pp. 1–66, 2003. http://www.upnp.org/specs/sec/
UPnP-sec-DeviceSecurity-v1-Service.pdf.

[24] D. Garcia, “UPnP Mapping,” Defcon 2011, 2011.

[25] Apple Inc., “Bonjour Overview,” 2006. https://developer.apple.
com/library/mac/documentation/Cocoa/Conceptual/NetServices/
Introduction.html.

[26] “iTunes 4.5 Authentication Cracked - Slashdot.” http://beta.
slashdot.org/story/45544.

[27] “crazney.net - iTunes stuff.” http://craz.net/programs/itunes/.

[28] “Amarok Music Sharing DAAP.” https://community.kde.org/
Amarok/Archives/Amarok_1.4/User_Guide/Music_Sharing.

[29] “Rhythmbox GNOME - DAAP Share Source.” https://help.gnome.
org/users/rhythmbox/stable/daap.html.en.

[30] “DAAP in XBMC.” http://kodi.wiki/view/ITunes_(DAAP).

[31] “Banshee DAAP Plug-in.” http://linuxappfinder.com/package/
banshee-daap.

[32] “Roku Forums - Attention iTunes Users!.” http://forums.roku.com/
viewtopic.php?p=55884, September 2006.

[33] “DAAP Licensing | nanocr.eu.” http://nanocr.eu/2007/02/07/
daap-licensing/, 2007.

[34] “Roku Forums - Pinnnacle and DAAP.” http://forums.roku.com/
viewtopic.php?t=17116, June 2008.

[35] M. Rosenbach, “Troublesome Trojans: Firm Sought to Install Spyware
Via Faked iTunes Updates - SPIEGEL ONLINE.” http://spon.de/
adv5r, 2011.

http://www.upnp.org/specs/sec/UPnP-sec-DeviceSecurity-v1-Service.pdf
http://www.upnp.org/specs/sec/UPnP-sec-DeviceSecurity-v1-Service.pdf
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/NetServices/Introduction.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/NetServices/Introduction.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/NetServices/Introduction.html
http://beta.slashdot.org/story/45544
http://beta.slashdot.org/story/45544
http://craz.net/programs/itunes/
https://community.kde.org/Amarok/Archives/Amarok_1.4/User_Guide/Music_Sharing
https://community.kde.org/Amarok/Archives/Amarok_1.4/User_Guide/Music_Sharing
https://help.gnome.org/users/rhythmbox/stable/daap.html.en
https://help.gnome.org/users/rhythmbox/stable/daap.html.en
http://kodi.wiki/view/ITunes_(DAAP)
http://linuxappfinder.com/package/banshee-daap
http://linuxappfinder.com/package/banshee-daap
http://forums.roku.com/viewtopic.php?p=55884
http://forums.roku.com/viewtopic.php?p=55884
http://nanocr.eu/2007/02/07/daap-licensing/
http://nanocr.eu/2007/02/07/daap-licensing/
http://forums.roku.com/viewtopic.php?t=17116
http://forums.roku.com/viewtopic.php?t=17116
http://spon.de/adv5r
http://spon.de/adv5r

84 BIBLIOGRAPHY

[36] J. Cox, “Apple’s Bonjour/AirPlay poses net-
work challenges for IT | CITEworld.” http://
www.citeworld.com/article/2115354/mobile-byod/
apples-bonjourairplay-poses-network-challenges-it.html,
July 2012. CITEworld.

[37] “Digital Audio Access Protocol - Protocol documentation v0.2.” http:
//www.gyfgafguf.dk/raspbian/daapdocs.txt.

[38] Cisco, “Cisco - Example of the Primary SNMP Components.”
http://www.cisco.com/c/en/us/td/docs/optical/15000r5_0/
15310/troubleshooting/guide/310r50ts/310snmp.html#wp29007.

[39] J. Ostell, “Using ASN.1 (Abstract Syntax Notation 1): A Data De-
scription Language.” http://www.nal.usda.gov/pgdic/Probe/v2n2/
using.html, 1992.

[40] K. McCloghrie, K. McCloghrie, J. Schoenwaelder, and D. Perkins, “RFC
2578: Structure of Management Information Version 2 (SMIv2),”

[41] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, “RFC 1441: In-
troduction to Version 2 of The Internet-standard Network Management
Framework,” April 1993.

[42] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, “RFC 1901: In-
troduction to Community-based SNM,” January 1996.

[43] G. Waters, “RFC 1910: User-based Security Model for SNMPv2,” 1996.

[44] J. Case, R. Mundy, D. Partain, and B. Stewart, “RFC3410: Introduc-
tion and Applicability Statements for Internet Standard Management
Framework,” 2002. https://tools.ietf.org/html/rfc3410.

[45] Moxa Inc., “Using SNMP for a Ethernet-Based Home Automation
System.” https://www.moxa.com/application/Using_SNMP_for_a_
Ethernet_based_Home_Automation_System.htm.

http://www.citeworld.com/article/2115354/mobile-byod/apples-bonjourairplay-poses-network-challenges-it.html
http://www.citeworld.com/article/2115354/mobile-byod/apples-bonjourairplay-poses-network-challenges-it.html
http://www.citeworld.com/article/2115354/mobile-byod/apples-bonjourairplay-poses-network-challenges-it.html
http://www.gyfgafguf.dk/raspbian/daapdocs.txt
http://www.gyfgafguf.dk/raspbian/daapdocs.txt
http://www.cisco.com/c/en/us/td/docs/optical/15000r5_0/15310/troubleshooting/guide/310r50ts/310snmp.html#wp29007
http://www.cisco.com/c/en/us/td/docs/optical/15000r5_0/15310/troubleshooting/guide/310r50ts/310snmp.html#wp29007
http://www.nal.usda.gov/pgdic/Probe/v2n2/using.html
http://www.nal.usda.gov/pgdic/Probe/v2n2/using.html
https://tools.ietf.org/html/rfc3410
https://www.moxa.com/application/Using_SNMP_for_a_Ethernet_based_Home_Automation_System.htm
https://www.moxa.com/application/Using_SNMP_for_a_Ethernet_based_Home_Automation_System.htm

BIBLIOGRAPHY 85

[46] Santos F. S.,Cagnon J. A. and Silva E. C. G., “Sistema Integrado para o
Gerenciamento Energético de Edifícios Utilizando o Protocolo de Rede
de Computadores SNMP para a Integração da Produção Limpa e Sus-
tentabilidade,” 2013.

[47] J. Postel, “RFC 768 User Datagram Protocol,” ISI, 1980.

[48] Jacobson, V. and Frederick, R. and Casner, S. and Schulzrinne, H.,
“RFC 3550 - RTP: A Transport Protocol for Real-Time Applications,”

[49] Schulzrinne, H. and Rao, A and Lanphier, R., “RFC 2326 - Real Time
Streaming Protocol (RTSP),” 1998.

[50] “Xiph.org: Ogg.” https://xiph.org/ogg/.

[51] “Ogg Vorbis - Better Than Mp3?.” http://h2g2.com/edited_entry/
A6556511, December 2005.

[52] “What bitrate does Spotify use for streaming?- Spotify.”
https://support.spotify.com/pt/learn-more/faq/#!/article/
What-bitrate-does-Spotify-use-for-streaming.

[53] “FLAC - Free Lossless Audio Codec.” https://xiph.org/flac/index.
html.

[54] Fock, F and Katz, J, “SNMP4J - Free Open Source SNMP API for
Java.” http://www.snmp4j.org/index.html.

[55] “MIB Designer.” http://www.mibdesigner.com/.

[56] “AgenPro.” http://www.agentpp.com/agen/agen.html.

[57] Caprica Software, “VLCJ - API for Java Platforms.” http://www.
capricasoftware.co.uk/projects/vlcj/index.html.

[58] Hamming, Richard W, “Error Detecting and Error Correcting Codes,”
Bell System technical journal, vol. 29, no. 2, pp. 147–160, 1950.

https://xiph.org/ogg/
http://h2g2.com/edited_entry/A6556511
http://h2g2.com/edited_entry/A6556511
https://support.spotify.com/pt/learn-more/faq/#!/article/What-bitrate-does-Spotify-use-for-streaming
https://support.spotify.com/pt/learn-more/faq/#!/article/What-bitrate-does-Spotify-use-for-streaming
https://xiph.org/flac/index.html
https://xiph.org/flac/index.html
http://www.snmp4j.org/index.html
http://www.mibdesigner.com/
http://www.agentpp.com/agen/agen.html
http://www.capricasoftware.co.uk/projects/vlcj/index.html
http://www.capricasoftware.co.uk/projects/vlcj/index.html

86 BIBLIOGRAPHY

[59] Wagner, Robert A. and Fischer, Michael J., “The String-to-String Cor-
rection Problem,” J. ACM, vol. 21, pp. 168–173, Jan. 1974.

[60] Vladimir I. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” 1965. English translation in Soviet Physics
Doklady, 10(8):707-710, 1966.

[61] Vreda Pieterse and Paul E. Black, “Levenshtein Distance,”

[62] Taniar, David and Leung, Clement HC and Rahayu, Wenny and Goel,
Sushant, High Performance Parallel Database Processing and Grid
Databases, vol. 67. John Wiley & Sons, 2008.

Appendix A

MUSIC-MIB

In this Appendix, it is shown the MUSIC-MIB tree, the MUSIC-MIB in
Entity-Relationship Model and the description of its objects.

Album (Table) 1.3.6.1.3.2.1.2

albumTitle 1.3.6.1.3.2.1.2.1.2 - OctetString - The album title of a
music track.

label 1.3.6.1.3.2.1.2.1.3 - OctetString - Label name of the album.

year 1.3.6.1.3.2.1.2.1.4 - Year in which the album was released.

ghostAlbum 1.3.6.1.3.2.1.2.1.5 - Integer32 - If there is no information
available regarding the album title, this object will have the value
of “1”.

Artist (Table) 1.3.6.1.3.2.2.2

artistName 1.3.6.1.3.2.2.2.1.2 - OctetString - Name of the artist.

ghostArtist 1.3.6.1.3.2.2.2.1.3 - Integer32 - If there is no information
available regarding the artist name, this object will have the value
of “1”.

Channel (Table) 1.3.6.1.3.2.3.2

87

88 APPENDIX A. MUSIC-MIB

channelDescription 1.3.6.1.3.2.3.2.1.2 - OctetString - Textual de-
scription of a channel.

Collection (Table) 1.3.6.1.3.2.4.2

collectionName 1.3.6.1.3.2.4.2.1.2 - OctetString - Collection name.

collectionDescription 1.3.6.1.3.2.4.2.1.3 - OctetString - Textual de-
scription of a collection.

numberOfMusics 1.3.6.1.3.2.4.2.1.4 - Integer32 - Number of music
tracks that exist in a collection.

Device (Table) 1.3.6.1.3.2.5.2

deviceAddress 1.3.6.1.3.2.5.2.1.2 - OctetString - The IP address of a
device in the network.

deviceType 1.3.6.1.3.2.5.2.1.3 - OctetString - The type of the device,
if it is a dedicated server, a desktop/notebook or a smartphone.

deviceLocation 1.3.6.1.3.2.5.2.1.4 - OctetString - Physical location of
the device (e.g. bedroom, living room).

deviceDescription 1.3.6.1.3.2.5.2.1.5 - OctetString - Textual descrip-
tion of the device.

Format (Table) 1.3.6.1.3.2.8.2

format 1.3.6.1.3.2.8.2.1.2 - OctetString - The format of a music track
(e.g. Ogg, FLAC).

Gateway (Table) 1.3.6.1.3.2.10.2

gatewayAddress 1.3.6.1.3.2.10.2.1.2 - OctetString - The gateway’s IP
address.

gatewayPort 1.3.6.1.3.2.10.2.1.3 - Integer32 - The gateway’s applica-
tion port.

gatewayType 1.3.6.1.3.2.10.2.1.4 - OctetString - Type of a gateway
(e.g. SQL, iTunes).

89

Genre (Table) 1.3.6.1.3.2.11.2

genreName 1.3.6.1.3.2.11.2.1.2 - OctetString - The genre name of a
music track (e.g. Rock, Pop, Classic, Jazz).

ghostGenre 1.3.6.1.3.2.11.2.1.3 - Integer32 - If there is no information
available regarding the genre, this object will have the value of “1”.

Music (Table) 1.3.6.1.3.2.13.2

title 1.3.6.1.3.2.13.2.1.2 - OctetString - The title of a music track.

trackNumber 1.3.6.1.3.2.13.2.1.3 - Integer32 - The track number of
the music track.

size 1.3.6.1.3.2.13.2.1.4 - OctetString - The size in megabytes (MB) of
the music file.

duration 1.3.6.1.3.2.13.2.1.5 - OctetString - The duration of the music
track in the format of “Minutes:Seconds”.

PartAlbum (Table) 1.3.6.1.3.2.14.2

partNumber 1.3.6.1.3.2.14.2.1.2 - Integer32 - This object represents
the CD number in an album.

Playlist (Table) 1.3.6.1.3.2.15.2

playlistName 1.3.6.1.3.2.15.2.1.2 - OctetString - Name of a playlist
defined by the user.

Server (Table) 1.3.6.1.3.2.17.2

serverAddress 1.3.6.1.3.2.17.2.1.2 - OctetString - The IP address of
a Audio SNMP server.

serverName 1.3.6.1.3.2.17.2.1.3 - OctetString - The server’s name.

serverDescription 1.3.6.1.3.2.17.2.1.4 - OctetString - Textual descrip-
tion of the server.

serverLocation 1.3.6.1.3.2.17.2.1.5 - OctetString - Server’s location.

90 APPENDIX A. MUSIC-MIB

Statistics (Table) 1.3.6.1.3.2.20.2

like 1.3.6.1.3.2.20.2.1.2 - Integer32 - This object represents if the user
liked or disliked a music track. It defines the value “0” for dislike,
“1”(default value) for neither dislike or like and “2” if the user
likes a music track.

quality 1.3.6.1.3.2.20.2.1.3 - Integer32 - Ranging values from “0” (no
quality) to “4” (high quality). This value is also defined by the
user and represents the user’s classification of music audio track
quality.

timesPlayed 1.3.6.1.3.2.20.2.1.4 - Integer32 - Counters how many times
did the user played that music track.

SubGenre (Table) 1.3.6.1.3.2.21.2

subgenreName 1.3.6.1.3.2.21.2.1.2 - OctetString - The sub-genre of
a music track (e.g. Heavy-Rock, Alternative-Rock, New-Jazz).

ghostSubgenre 1.3.6.1.3.2.21.2.1.3 - The selected objects were chosen
for the MUSIC-MIB, in order to satisfy the systems functionality
requirements.Integer32 - If there is no information available re-
garding the sub-genre, this object will have the value of “1”.

User (Table) 1.3.6.1.3.2.22.2

username 1.3.6.1.3.2.22.2.1.2 - OctetString - The user name, which
identifies a user in the system.

password 1.3.6.1.3.2.22.2.1.3 - OctetString - The user’s secret pass-
word.

active 1.3.6.1.3.2.22.2.1.4 - Integer32 - Range from “0” (false) to “1”(true),
depending if the user is currently active or not.

state 1.3.6.1.3.2.22.2.1.5 - Integer32 - State of the user, if he is listening
or paused to a music track, or if he is not listening anything. The
values range from “0” to “2”, depending on what the user is doing
at the current moment.

91

accessType 1.3.6.1.3.2.22.2.1.6 - Integer32 - Type of access which a
user is allowed to.

allowStatistics 1.3.6.1.3.2.22.2.1.7 - Integer32 - When this object is
true (value “1”), it allows an associated user to use/view statistics.

playTime 1.3.6.1.3.2.22.2.1.8 - OctetString - The exact time of a mu-
sic track that a user is listening to at the moment. This is used
when there is a need to “transfer” the music audio from one device
to another.

playedOnPlaylist 1.3.6.1.3.2.22.2.1.9 - OctetString - Playlist name of
the music track that is being listening to. When a user demands
to change device while playing a music, it will continue to play
from that playlist too.

lastLoggin 1.3.6.1.3.2.22.2.1.10 - OctetString -The date of user’s last
login in the system.

normalization 1.3.6.1.3.2.22.2.1.11 - Integer32 - Normalization is dis-
abled if value is “0” and enabled when value is “1”. Audio nor-
malization brings the average or peak audio amplitude to a target
audio level.

volume 1.3.6.1.3.2.22.2.1.12 - Integer32 - The level of audio volume,
ranging values from 0 (silent) to 100 (loudest).

searchRelaxation 1.3.6.1.3.2.22.2.1.13 - Integer32 - Level of “relax-
ation” when a user search for a music title, an artist, an album or
a playlist.

nMaxReplies 1.3.6.1.3.2.22.2.1.14 - Number of maximum replies that
the client can receive from a server.

previousPlayed 1.3.6.1.3.2.22.2.1.15 - OctetString - Path of the last
music track that the user has listened.

92 APPENDIX A. MUSIC-MIB

Figure A.1: MUSIC-MIB in Entity-Relationship Model.

93

Figure A.2: MUSIC-MIB Tree (Part 1).

94 APPENDIX A. MUSIC-MIB

Figure A.3: MUSIC-MIB Tree (Part 2).

95

Figure A.4: Architecture diagram.

	Introduction
	Related Technologies
	Digital Living Network Alliance
	DLNA Protocol Stack
	DLNA Device Classes
	DLNA Audio Codecs Supported

	Universal Plug n Play
	UPnP Device Architecture
	UPnP Audio Video Architecture
	Security Problems With UPnP

	Digital Audio Access Protocol
	Bonjour
	Software using DAAP

	DLNA and DAAP Comparison
	Simple Network Management Protocol
	SNMP Concepts
	Management Information Base
	SNMP Operations
	SNMP Versions
	Home Automation Systems using SNMP

	Streaming
	Open Source Audio Codecs
	Ogg Vorbis
	Free Lossless Audio Codec (FLAC)

	Audio Distribution Using Open Source Protocols and Codecs
	Motivation
	Architecture
	Music Server
	Music MIB

	Controller Application
	Audio File Database
	Playing Devices

	Functionalities
	Security

	Prototype Implementation
	SNMP Agent
	Streaming Server
	SNMP Manager
	Graphical User Interface
	Audio Streaming
	Remote Devices

	Search Feature
	Testing The Prototype System
	The Controller Application

	Comparison With Other Solutions

	Conclusions
	MUSIC-MIB

