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Abstract

An element a in a ring R is called clean if it is the sum of an idempotent e
and a unit u. Such a clean decomposition a = e + u is said to be strongly
clean if eu = ue and special clean if aR ∩ eR = (0). In this paper, we prove
that a is Drazin invertible if and only if there exists an idempotent e and a
unit u such that an = e + u is both a strongly clean decomposition and a
special clean decomposition, for some positive integer n. Also, the existence
of the Moore-Penrose and group inverses is related to the existence of certain
∗-clean decompositions.
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1. Introduction

Throughout this paper, we assume that R is a ring with unity 1. Recall
that an element a of R is called clean if it is the sum of an idempotent e ∈ R
and a unit u ∈ R. Such a clean decomposition a = e+u in a ring R is called
strongly clean [10] if eu = ue and special clean [2] if aR ∩ eR = (0). A ring
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is said to be clean if all its elements are clean. This definition dates back to
the paper of Nicholson [9].

An involution a 7→ a∗ in R is an anti-isomorphism of degree 2, that is,
(a∗)∗ = a, (ab)∗ = b∗a∗ and (a+b)∗ = a∗+b∗ for all a, b ∈ R. We say that R is
a ∗-ring if there is an involution on R. An element p in a ∗-ring R is called a
projection if p2 = p = p∗. In 2010, Vaš [15] introduced ∗-clean elements and
strongly ∗-clean elements by substituting “a projection” for “an idempotent”
in the appropriate concepts. Also, a ∗-clean decomposition a = p + u in a
∗-ring R is called special ∗-clean if aR ∩ pR = (0).

Let us now recall some notions of generalized inverses. An element a ∈ R
is (von Neumann) regular if there exists an element x ∈ R such that a = axa.
Such an x is called an inner inverse of a, and is denoted by a−. By the symbol
a{1} we denote the set of all inner inverses of a.

We say that a ∈ R is Drazin invertible [7] if there exist b ∈ R and a
nonnegative integer k such that

(i) ak = akba, (ii) bab = b, (iii) ab = ba.

Any b satisfying (i)-(iii) is called a Drazin inverse of a. It is unique if it
exists, and is denoted by aD. The smallest nonnegative integer k is called
the Drazin index of a and is denoted by ind(a). It is well-known that a ∈ R
is Drazin invertible if and only if there exists some positive integer m such
that am ∈ am+1R∩Ram+1. We call a group invertible if it is Drazin invertible
and ind(a) = 1. The group inverse of a is denoted by a#.

Following Penrose [11], an element a of a ∗-ring R is Moore-Penrose in-
vertible if there exists some x ∈ R satisfying

(i) axa = a, (ii) xax = x, (iii) (ax)∗ = ax, (iv) (xa)∗ = xa.

An x satisfying (i)-(iv) is called a Moore-Penrose inverse of a. It is unique if
it exists, and is denoted by a†. We call a to be {1, 3}-invertible if it satisfies
the conditions (i) and (iii). Such an x is a {1, 3}-inverse of a and is denoted
by a(1,3). Similarly, a is {1, 4}-invertible if it satisfies the conditions (i) and
(iv). Such an x is a {1, 4}-inverse of a and is denoted by a(1,4). It is known
that a is Moore-Penrose invertible if and only if it is both {1,3}-invertible
and {1,4}-invertible. In this case, a† = a(1,4)aa(1,3). By R−1, RD, R# and R†

we denote the sets of all invertible, Drazin invertible, group invertible and
Moore-Penrose invertible elements in R, respectively.

Over the last decade, many authors [2, 3, 5, 9, 10, 14, 15] studied the
cleanness and ∗-cleanness of elements. As idempotents, projections and units
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can be constructed by generalized inverses of an element, then generalized
inverses of an element can be related to its cleanness. For example, [5,
Propositions 2.5 and 2.6] and [6, Theorem 5.5] relate generalized inverses
of elements with the parts of the clean decomposition of these elements.
Motivated by this, we aim to further study relations between generalized
inverses of an element and its clean decomposition.

The paper is organized as follows. In Section 2, we prove that a ∈ RD if
and only if there exist an idempotent e and a unit u such that an = e + u
is both a strongly clean decomposition and a special clean decomposition,
for some positive integer n. Moreover, an is proved to be uniquely strongly
clean. In Section 3, we show that a ∈ R† if and only if aa∗ has both a
strongly ∗-clean decomposition and a special ∗-clean decomposition, under
certain assumptions. Further, a ∈ R# ∩ R† if and only if a2a∗ has both a
strongly ∗-clean decomposition and a special ∗-clean decomposition, under
the assumption of the right strongly ∗-cancellability of a. As a special case,
a characterization of EP elements is given.

2. The Drazin inverse of an element and its cleanness

We begin with the following known lemma, which plays an important role
in the sequel.

Lemma 2.1. Let a, b ∈ R. Then
(i) If (ab− 1)x = 1 for some x ∈ R, then (ba− 1)(bxa− 1) = 1.
(ii) If y(ab− 1) = 1 for some y ∈ R, then (bya− 1)(ba− 1) = 1.

By Lemma 2.1, we know that ab−1 ∈ R−1 if and only if ba−1 ∈ R−1. In
this case, (ba−1)−1 = b(ab−1)−1a−1. This formula is known as Jacobson’s
Lemma.

The following characterization of the Drazin inverse of a ring element is
slightly different from the classical existence of Drazin inverse of matrices over
a ring [12, page 107]. Herein, a2n(an)− + e ∈ R−1 is proved to be equivalent
to an+1 − e ∈ R−1, where e = 1− an(an)−.

Lemma 2.2. Let a ∈ R. Then the following conditions are equivalent:
(i) a ∈ RD with ind(a) = n.
(ii) n is the smallest positive integer such that an is regular and u =

an+1 − 1 + an(an)− ∈ R−1.
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(iii) n is the smallest positive integer such that an is regular and v =
an+1 − 1 + (an)−an ∈ R−1.

In this case, aD = u−1an = anv−1.

Proof. (i) ⇒ (ii) As a ∈ RD and ind(a) = n, then an = anaaD =
an(aaD)n+1 = a2n+1(aD)n+1. Also, a ∈ RD implies that an is regular with
(aD)n ∈ an{1}. It follows from Lemma 2.1 that an+1 − 1 + an(an)− is right
invertible if and only if a2n+1(an)− − 1 + an(an)− is right invertible since
an+1 = an(an)−an+1. Note that (a2n+1(an)−−1+an(an)−)(an(aD)n+1(an)−−
1+an(an)−) = 1. So, an+1−1+an(an)− is right invertible. Similarly, we can
show that u = an+1 − 1 + an(an)− is left invertible using an = (aD)n+1a2n+1.
So, u = an+1 − 1 + an(an)− ∈ R−1.

(ii) ⇔ (iii) follows from Lemma 2.1.
(iii) ⇒ (i) If v = an+1 − 1 + (an)−an ∈ R−1, then anv = a2n+1 and hence

an = a2n+1v−1 ∈ an+1R. Since u = an+1 − 1 + an(an)− ∈ R−1, we have
an = u−1a2n+1 ∈ Ran+1. Thus, an ∈ an+1R ∩Ran+1, that is a ∈ RD.

As uan = a2n+1 = anv, then u−1an = anv−1. Next, we show that z =
u−1an = anv−1 is the Drazin inverse of a with ind(a) = n.

(1) Note that uan+1 = a2n+2 = an+1v. Then u−1an+1 = an+1v−1. Hence
za = u−1an+1 = an+1v−1 = aanv−1 = az.

(2) zaz = anv−1aanv−1 = u−1anan+1v−1 = u−1a2n+1v−1 = u−1an = z.
(3) an+1z = an+1anv−1 = a2n+1v−1 = an.
Therefore, aD = u−1an = anv−1. �

It follows from Lemma 2.2 that a ∈ RD implies am − 1 + aaD ∈ R−1

for some positive integer m. Applying this result, we present the relations
between the Drazin inverse of an element and its clean decomposition in a
ring.

Theorem 2.3. Let a ∈ R. Then the following conditions are equivalent:
(i) a ∈ RD.
(ii) There exist an idempotent e and a unit u such that an = e+u is both

a strongly clean decomposition and a special clean decomposition, for some
positive integer n.

In this case, aD = an(an−1u−1)n+1 = (u−1an−1)n+1an.

Proof. (i) ⇒ (ii) Suppose a ∈ RD. It follows from Lemma 2.2 that u =
an − 1 + aaD ∈ R−1 for any integer n > ind(a). Let e = 1 − aaD. Then
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an = e+u is a clean decomposition. By a direct check, we get eu = −e = ue
and hence an = e+u is a strongly clean decomposition. Given b ∈ eR∩anR,
then b = (1 − aaD)x = any = (1 − aaD)any = 0 for some x, y ∈ R. So,
an = e + u is also a special clean decomposition.

(ii)⇒ (i) As an = e+u is a strongly clean decomposition, then ean = ane.
By the special cleanness of an = e + u, we know eR ∩ anR = 0. Hence,
ean ∈ eR ∩ anR = (0). Multiplying an = e + u by an on the right yields
a2n = uan and hence an = u−1an−1an+1 ∈ Ran+1.

Also, an = a2nu−1 = an+1an−1u−1 ∈ an+1R by the commutativity of u
and an. So, a ∈ RD and aD = an(an−1u−1)n+1 = (u−1an−1)n+1an. �

Corollary 2.4. Let a ∈ R. Then the following conditions are equivalent:
(i) a ∈ RD.
(ii) There exist e2 = e ∈ R and some positive integer n such that ane =

ean = 0 and an − e ∈ R−1.
(iii) There exist e2 = e ∈ R and some positive integer n such that ane =

ean = 0 and an + e ∈ R−1.

Proof. (i)⇒ (ii) Take e = 1− aaD, and n > ind(a), then the result follows
from Lemma 2.2.

(ii) ⇒ (i) Let u := an − e ∈ R−1. When multiplying the relation an =
u + e by an on the left and right, we obtain that a2n = uan = anu. So,
an = u−1a2n = a2nu−1 ∈ an+1R ∩Ran+1, which means a ∈ RD.

(i) ⇔ (iii) is similar to the proof of (i) ⇔ (ii). �

Recall that an element a ∈ R is called uniquely strongly clean if it has a
uniquely strongly clean decomposition (see [4]).

It follows from Theorem 2.3 that a ∈ RD implies that an has a strongly
clean decomposition, for some positive integer n. The following result shows
that such a strongly clean decomposition is unique, under certain conditions.

Theorem 2.5. Let a ∈ RD. Then an is uniquely strongly special clean, for
some positive integer n.

Proof. Suppose a ∈ RD. Then, by Theorem 2.3, there exist an idempotent
e and a unit u such that an = e + u is a strongly clean decomposition. Let
an = f+v be another strongly special clean decomposition, where f = f 2 and
v ∈ R−1. To show that an is uniquely strongly special clean, it is sufficient
to prove e = f .
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From Corollary 2.4, there exists some positive integer n such that ean =
0 = fan, and consequently an = (1 − e)an = (1 − e)(e + u) = (1 − e)u.
Then 1 − e = anu−1. Multiplying 1 − e = anu−1 by f on the left we obtain
f(1− e) = fanu−1 = 0, i.e., f = fe.

Similarly, we have 1− f = v−1an. Multiplying 1− f = v−1an by e on the
right yields (1− f)e = v−1ane = 0, i.e., e = fe = f , as required. �

3. The Moore-Penrose inverse of an element and its ∗-cleanness

Throughout this section, we assume R to be a ∗-ring. It is known from [8,
Theorem 5.4] that a ∈ R† if and only if a ∈ aa∗R ∩Ra∗a. It was proved [17]
that a ∈ R† if and only if a ∈ aa∗aR if and only if a ∈ Raa∗a. In particular,
if a = aa∗ax or a = yaa∗a for some x, y ∈ R, then a† = (ax)∗ = (ya)∗ (see
[18, Theorem 3.12]).

An element a ∈ R is called left ∗-cancellable if a∗ax = a∗ay implies
ax = ay, and a ∈ R is called right ∗-cancellable if baa∗ = caa∗ implies ba =
ca. Moreover, a is left ∗-cancellable if and only if a∗ is right ∗-cancellable.
An element a ∈ R is ∗-cancellable if it is both left and right ∗-cancellable,
which is equivalent to the implication a∗a = 0 ⇒ a = 0. A ring R is called
∗-cancellable if every element of R is ∗-cancellable. Recall that a ring is
∗-cancellable is also said to have a proper involution (see e.g. [1]).

The following result presents the relation between ∗-clean elements and
Moore-Penrose invertible elements, under one-sided ∗-cancellability.

Theorem 3.1. Let a ∈ R be right ∗-cancellable. Then the following condi-
tions are equivalent:

(i) a ∈ R†.
(ii) There exist a projection p and a unit u such that aa∗ = p + u is both

a strongly ∗-clean decomposition and a special ∗-clean decomposition.
In this case, a† = a∗u−1.

Proof. (i) ⇒ (ii) As a ∈ R†, then p = 1 − aa† is a projection, and u =
aa∗− 1 + aa† ∈ R−1 from [16, Theorem 2.3]. Hence, aa∗ = p+ u is a ∗-clean
decomposition. We have pu = −p = up by aa∗aa† = a(aa†a)∗ = aa∗. So,
aa∗ = p + u is a strongly ∗-clean decomposition. Let c ∈ (1− aa†)R ∩ aa∗R.
Then there exist g, h ∈ R such that c = (1−aa†)g = aa∗h = (1−aa†)aa∗h =
0, that is, aa∗ = p + u is a special ∗-clean decomposition.

(ii) ⇒ (i) Suppose that aa∗ = p + u is a strongly ∗-clean decomposition.
Then paa∗ = aa∗p. Also, as aa∗ = p + u is a special ∗-clean decomposition,
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then paa∗ = 0 since paa∗ ∈ pR ∩ aa∗R. Multiplying aa∗ = p + u by aa∗

on the left yields aa∗aa∗ = aa∗u, which implies a∗aa∗ = a∗u since a∗ is left
∗-cancellable. Hence, a = (u−1)∗aa∗a, which guarantees that a ∈ R† and
a† = ((u−1)∗a)∗ = a∗u−1. �

By Theorem 2.3, we get that a ∈ R# if and only if it has both a strongly
clean decomposition and a special clean decomposition. Theorem 3.1 ensures
that a ∈ R† if and only if aa∗ has both a strongly ∗-clean decomposition and
a special ∗-clean decomposition, under the ∗-cancellability of a. It is natural
to consider whether a ∈ R#∩R† is equivalent to the statement that a2a∗ has
both a strongly ∗-clean decomposition and a special ∗-clean decomposition,
under certain conditions. The following theorem addresses this problem. We
will need the following lemma.

Lemma 3.2. Let a ∈ R. Then the following conditions are equivalent:
(i) a ∈ R# ∩R†.
(ii) a is regular and u = aa∗a− 1 + aa− ∈ R−1.
(iii) a is regular and v = a2a∗ − 1 + aa− ∈ R−1.

Proof. (i) ⇒ (ii) It follows from [16, Corollary 2.7] that a ∈ R† implies
aa∗ − 1 + aa− ∈ R−1 and hence aa∗aa− − 1 + aa− ∈ R−1 by Jacobson’s
Lemma. Also, a ∈ R# implies a+ 1−aa− ∈ R−1. Hence, we have (aa∗aa−−
1 + aa−)(a + 1− aa−) = aa∗a− 1 + aa− ∈ R−1.

(ii)⇒ (i) As u = aa∗a−1+aa− ∈ R−1, then t = a∗a2−1+a−a ∈ R−1 by
Jacobson’s Lemma. Since at = aa∗a2, it follows a = aa∗a2t−1 ∈ aa∗aR, which
means a ∈ R†. Again, by [16, Corollary 2.7], we get aa∗−1 +aa− ∈ R−1 and
hence aa∗aa−−1+aa− ∈ R−1. As a+1−aa− = (aa∗aa−−1+aa−)−1(aa∗a−
1 + aa−) ∈ R−1, it follows a ∈ R#, and consequently a ∈ R# ∩R†.

(i) ⇔ (iii) can be proved similarly. �

Let a ∈ R. We call a right square ∗-cancellable if ba2a∗ = ca2a∗ implies
ba = ca for any b, c ∈ R. A ring R is said to be right square ∗-cancellable if
all its elements are right square ∗-cancellable.

Theorem 3.3. Let a ∈ R be right square ∗-cancellable. Then the following
conditions are equivalent:

(i) a ∈ R# ∩R†.
(ii) There exist a projection p and a unit u such that a2a∗ = p+ u is both

a strongly ∗-clean decomposition and a special ∗-clean decomposition.
In this case, a† = (u−1a2)∗ and a# = (aa∗u−1)2a.
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Proof. (i) ⇒ (ii) It follows from Lemma 3.2 that a ∈ R# ∩ R† implies
u = a2a∗ − 1 + aa† ∈ R−1. Take p = 1− aa†. Then a2a∗ = p + u is a ∗-clean
decomposition. As pu = −p = up, then a2a∗ = p + u is a strongly ∗-clean
decomposition. Moreover, pR∩a2a∗R = (0). Indeed, for any n ∈ pR∩a2a∗R,
we have n = px = a2a∗y = pa2a∗y = 0 for some x, y ∈ R. Hence, a2a∗ = p+u
is both a strongly ∗-clean decomposition and a special ∗-clean decomposition.

(ii) ⇒ (i) As a2a∗ = p + u is a strongly ∗-clean decomposition, then
pa2a∗ = a2a∗p. From the special ∗-cleanness, we get pa2a∗ ∈ pR ∩ a2a∗R =
(0). Multiplying a2a∗ = p + u by a2a∗ on the right yields a2a∗a2a∗ = ua2a∗.
From the right square ∗-cancellability of a, it follows that a2a∗a = ua and
hence a = u−1a2a∗a ∈ Raa∗a. So, a ∈ R† and a† = (u−1a2)∗ by [18, Theorem
3.12].

Since ua2a∗ = a2a∗a2a∗ = a2a∗u, we get a2a∗u−1 = u−1a2a∗. Hence,
a = u−1a2a∗a = a2a∗u−1a ∈ a2R. As a† = (u−1a2)∗, then a = aa∗(a†)∗ =
aa∗u−1a2 ∈ Ra2. So, a ∈ a2R∩Ra2, i.e., a ∈ R# and a# = aa∗u−1aa∗u−1a =
(aa∗u−1)2a.

Therefore, a ∈ R# ∩R†. �

Remark 3.4. The right square ∗-cancellability of a in Theorem 3.3 above
cannot be dropped. In fact, let R = Z4 and let ∗: x 7→ x be an involution of
R. Then 2 is not right square ∗-cancellable, because 1 · 22 · 2∗ = 0 = 0 · 22 · 2∗
but 2 6= 0. By a direct check, we get 2 /∈ R# ∩ R†. However, there exist a
projection 1 and a unit 3 such that 22 · 2∗ = 0 = 3 + 1 is both a strongly
∗-clean decomposition and a special ∗-clean decomposition.

Recall that an element a ∈ R is EP if a ∈ R# ∩ R† and a# = a†. A
characterization of EP elements is that a is EP if and only if aa† = a†a.
Finally, we give a characterization of an EP element in a ∗-ring.

Theorem 3.5. Let a ∈ R. Then the following conditions are equivalent:
(i) a is EP.
(ii) There exist a projection p and a unit u such that a = p + u is both a

strongly ∗-clean decomposition and a special ∗-clean decomposition.
In this case, a# = a† = u−2a = au−2.

Proof. (i) ⇒ (ii) As a is EP, then u = a− 1 + aa† ∈ R−1 by [13, Corollary
1]. Since p = 1− aa† is a projection, we have up = pu by direct calculations.
Let b ∈ aR ∩ pR. Then b = (1 − aa†)x = ay = (1 − aa†)ay = 0 for some
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x, y ∈ R. Hence, aR ∩ pR = (0). So, a = p + u is both a strongly ∗-clean
decomposition and a special ∗-clean decomposition.

(ii) ⇒ (i) Note that pa = ap and aR ∩ pR = (0). Multiplying a = p + u
by a on the left yields a2 = au and hence a = a2u−1 ∈ a2R. Multiplying
a = p + u by a on the right yields a2 = ua and hence a = u−1a2 ∈ Ra2. So,
a ∈ a2R ∩Ra2, i.e., a ∈ R# and a# = u−1au−1.

As pa = ap, then pa∗ = a∗p. Since aR ∩ pR = (0), it follows that
ap = pa = 0 and hence a∗p = pa∗ = 0. Multiplying a = p + u by a∗ on the
left yields a∗a = a∗u and hence a = (u−1)∗a∗a. By [19, Lemma 2.2], we know
that a is {1,3}-invertible and that u−1 is a {1,3}-inverse of a. Multiplying
a = p+u by a∗ on the right gives aa∗ = ua∗ and hence a = aa∗(u−1)∗. Again,
from [19, Lemma 2.2], it follows that a is {1,4}-invertible and that u−1 is a
{1,4}-inverse of a. Thus, a ∈ R† and a† = a(1,4)aa(1,3) = u−1au−1 = a#.

Therefore, a is EP. �
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