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A B S T R A C T

There has been an increasing investment in cancer research that generated an enormous
amount of biological and clinical data, especially after the advent of the next-generation
sequencing technologies. To analyze the large datasets provided by omics data of cancer
samples, scientists have successfully been recurring to machine learning algorithms, iden-
tifying patterns and developing models by using statistical techniques to make accurate
predictions.

Deep learning is a branch of machine learning, best known by its applications in arti-
ficial intelligence (computer vision, speech recognition, natural language processing and
robotics). In general, deep learning models differ from machine learning “shallow” meth-
ods (single hidden layer) because they recur to multiple layers of abstraction. In this way, it
is possible to learn high level features and complex relations in the given data.

Given the context specified above, the main target of this work is the development and
evaluation of deep learning methods for the analysis of cancer omics datasets, covering both
unsupervised methods for feature generation from different types of data, and supervised
methods to address cancer diagnostics and prognostic predictions.

We worked with a Neuroblastoma (NB) dataset from two different platforms (RNA-Seq
and microarrays) and developed both supervised (Deep Neural Networks (DNN), Multi-Task
Deep Neural Network (MT-DNN)) and unsupervised (Stacked Denoising Autoencoders (SDA))
deep architectures, and compared them with shallow traditional algorithms.

Overall we achieved promising results with deep learning on both platforms, meaning
that it is possible to retrieve the advantages of deep learning models on cancer omics data.
At the same time we faced some difficulties related to the complexity and computational
power requirements, as well as the lack of samples to truly benefit from the deep architec-
tures.

There was generated code that can be applied to other datasets, wich is available in a
github repository https://github.com/lmpeixoto/deepl_learning [49].
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R E S U M O

Nos últimos anos tem havido um investimento significativo na pesquisa de cancro, o
que gerou uma quantidade enorme de dados biológicos e clı́nicos, especialmente após o
aparecimento das tecnologias de sequenciação denominadas de “próxima-geração”. Para
analisar estes dados, a comunidade cientı́fica tem recorrido, e com sucessso, a algoritmos
de aprendizado de máquina, identificando padrões e desenvolvendo modelos com recurso
a métodos estatı́sticos. Com estes modelos é possı́vel fazer previsão de resultados. O apren-
dizado profundo, um ramo do aprendizado de máquina, tem sido mais notório pelas suas
aplicações em inteligência artificial (reconhecimento de imagens e voz, processamento de
linguagem natural e robótica). De um modo geral, os modelos de aprendizado profundo
diferem dos métodos clássicos do aprendizado de máquina por recorrerem a várias ca-
madas de abstração. Desta forma, é possı́vel “aprender” as representações complexas e
não lineares, com vários graus de liberdade dos dados analisados. Neste contexto, o obje-
tivo principal deste trabalho é desenvolver e avaliar métodos de aprendizado profundo para
analisar dados ómicos do cancro. Pretendem-se desenvolver tanto métodos supervisiona-
dos como não-supervisionados e utilizar diferentes tipos de dados, construindo soluções
para diagnóstico e prognóstico do cancro. Para isso trabalhámos com uma matriz de dados
de Neuroblastoma, proveniente de duas plataformas diferentes (RNA-seq e microarrays),
nos quais aplicámos algumas arquiteturas de aprendizado profundo, tanto como métodos
supervisionados e não-supervisionados, e com as quais comparámos com algoritmos tradi-
cionais de aprendizado de máquina. No geral conseguimos obter resultados promissores
nas duas plataformas, o que significou ser possı́vel beneficiar das vantagens dos modelos
do aprendizado profundo nos dados ómicos de cancro. Ao mesmo tempo encontrámos
algumas dificuldades, de modo especial relacionadas com a complexidade dos modelos e
o poder computacional exigido, bem como o baixo número de amostras disponı́veis. Na
sequência deste trabalho foi gerado código que pode ser aplicado a outros dados e está
disponı́vel num repositório do github https://github.com/lmpeixoto/deepl_learning

[49].
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1

I N T R O D U C T I O N

1.1 context and motivation

Over the last decades, cancer has become one of the major concerns of medicine. This
disease lead to an enormous amount of deaths and elevated costs in healthcare systems all
over the world. In 2016, more than 1.5 million Americans were expected to be diagnosed
with cancer, while over half a million were expected to die of the disease. Cancer remains
the second most common cause of death, surpassed only by cardiovascular causes [5].

Although these facts are by themselves overwhelming, medical sciences are evolving.
Much progress has been made against cancer. Both the treatments and earlier diagnostic
are crucial checkpoints to succeed in the cancer battle. Returning to numbers, more than
1.7 million deaths were avoided due to improvements in those areas in last decade [5].

It is easier to treat a patient when the cancer is still well circumscribed. When it is
metastasized to other organs, the success is lower and will depend on the effectiveness of
treatments which are typically more agressive and less efective. When more aggressive
treatments are used, there are also more adverse effects and more costs. Earlier diagnostic
is, thus, probably the key success factor to avoid the huge number of deaths by cancer.

There were large scale efforts lead by international consortia in order to better character-
ize and understand the etiology of cancer. That generated an enormous amount of biolog-
ical and clinical data, especially after the advent of the Next Generation Sequencing (NGS)
technologies. The Cancer Genome Atlas (TCGA), and later Genomic Data Commons (GDC), are
examples of huge databases that contain genomic measurements from more than 20 differ-
ent types of human cancer. GDC contains almost 5 petabytes of information [32, 58]. But
a question arises, is it better to invest in producing more data, or analyzing the available
data?

NGS originates what is called “big data”. There are two types of data - the raw data
that outputs directly from the sequencing machine (i.e. sequence reads), and the processed
data (i.e. gene expression data). Raw data is several folds bigger than processed data. For
gene expression data, and even more for genome data, those datasets are normally huge,
dense and hard to analyze. They have more features (genes) than samples, which makes

1



1.2. Objectives 2

it difficult to train and produce a correct model for data prediction. Data analysis of gene
expression has made extensive use of machine learning methods. With pattern recognition,
using mathematical and statistical foundations, coupled with a computer science approach,
scientists are producing models that can be used in several biological problems.

Predicting if a sample is normal or cancerous, or classifying the tumor by stage are two
examples, while another scenario is fitting the right treatment for a given patient profile.
This leads us to the concepts of personalized or precision medicine, which fits treatments
to specific patient characteristics [50]. Although there are no exact methods to solve these
problems, with machine learning one can create very accurate models that can be used to
answer very defined biological and clinical problems.

Over the last years, as a result of the increasing amounts of available data (big data), more
computational power, and because of the development of tools like Theano or TensorFlow,
deep learning techniques have been used widely, especially in what concerns to computer
vision, speech recognition and natural language processing. Intelligent solutions are now
becoming ubiquitous. They are present in our smartphones, applications like Facebook,
Twitter, Google, Android or Apple iOS ecosystems, online and physical shops like Amazon,
and much more. Research teams like Google and Baidu have reached solutions that even
outperform humans in some tasks (i.e. playing games with reinforcement learning [53]).
The fact is that deep learning is offering the human being a possibility to live a better life.

One of the most promising areas of application of these new technologies is biological
and biomedical research. By developing more accurate models that will help the process of
decision making, we hope to have an improvement in every sense in quality of life [39]. In
cancer genomics, although deep learning is still a new area of research, there have already
been published studies which demonstrate it can achieve better results than classic machine
learning implementations [15, 23]. For instance, the Variational Autoencoders (VA) from Way
et al. [63] and Deep Neural Networks (DNN) from Leung et al. [42] are good examples of
that.

1.2 objectives

The objectives of this project are to develop both unsupervised and supervised deep
learning methods to deal with cancer omics data and validate these methods with selected
case studies involving real data. As aforementioned, the datasets we will work on, have
more features than samples. With regard to gene expression data we can have a dataset
with more than 20.000 genes (features) and only 500 cases. So, it is an important step to
reduce the dimensionality of the data and work on a subsequent predictive analysis.

Using unsupervised models, we expect to extract relevant features from the different
types of omics data (e.g. genomics, gene expression, epigenomics).
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The supervised approach is expected to produce pipelines for cancer diagnosis or predic-
tion using the available data and evaluating the different alternatives based on the defined
criteria.

The final objective will be addressing specific case studies for the validation of the meth-
ods, including TCGA/GDC real data, building models, and generating and submitting
predictions for unknown data.

1.3 organization of the text

• MACHINE LEARNING AND DEEP LEARNING: A STATE OF THE ART - the pur-
pose of this chapter is to make an introduction of basic machine learning concepts
and an overview of some of the most popular shallow machine learning algorithms.
There will be presented the Artificial Neural Networks (ANN) principles as well as the
backpropagation and Stochastic Gradient Descent (SGD) algorithm. Then it will be
explained some deep learning specific concepts, a small sample of supervised and
unsupervised learning architectures, and the libraries available for their construction.

• CANCER OMICS - here we will explain some of the most used databases of cancer
omics and its objectives. We will also approach the applications of deep learning in
cancer omics and cite some of the most important works made in this field.

• METHODS - this chapter describes our experiments and the pipelines chosen, as well
as the written code and the configurations made.

• RESULTS AND DISCUSSION - all the results and their analysis and discussion are
presented here.

• CONCLUSION - this is the final chapter and the objective is to give an overview of
the entire work as well as to share some insights and experiences achieved.
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M A C H I N E L E A R N I N G A N D D E E P L E A R N I N G : A S TAT E O F T H E A RT

2.1 machine learning fundamentals

Machine learning is a subfield of computer science and mathematics. Arthur Samuel, in
1959, described it as a “field of study that gives computers the ability to learn without being
explicitly programmed” [21]. In other words, using a computer and recurring to statistical
and mathematical techniques, machine learning explores the construction of algorithms
that can learn from input data and make predictions [9].

There are basically three categories of machine learning methods: unsupervised learn-
ing, supervised learning and semi-supervised learning. Supervised learning refers to a pro-
cess of inferring a function from labeled training data. On the other hand, unsupervised
learning includes methods that return new features or patterns from unlabeled data only.
Semi-supervised learning uses unsupervised methods to improve supervised algorithms
[9, 36, 39].

Table 1.: Comparison between supervised and unsupervised learning. Adapted from Python machine
learning, by Sebastian Raschka, 2015 [52].

Supervised Learning Unsupervised Learning

Labeled data No labels
Direct feedback No feedback
Predict outcome Find hidden patterns

2.1.1 Supervised Learning

Let us consider a machine that receives some sequence of inputs (x1, x2, ...xn), what we
call data. In supervised learning, the machine is given a sequence of outputs (y1, y2, ...yn),
and the goal is to correctly predict an output given a new input.

Supervised learning refers to constructing a model from labeled data to predict new
unlabeled cases. For this type of predictive analysis, the model can be built to address two
types of tasks: regression and classification. Regression models make predictions regarding

4



2.1. Machine Learning Fundamentals 5

continuous variables (e.g. prediction of death rate in function of pollution variables), while
classification models assign discrete class labels to observations as outcomes of a prediction
(e.g. prediction of cancer sub-type based on tumor size and characteristics).

Figure 1.: Supervised learning pipeline. Adapted from Python machine learning, by Sebastian
Raschka, 2015 [52].

The flowchart of Figure 1 depicts a common pipeline for supervised learning classifi-
cation or regression. The first step is to collect and process the raw data. If an input is
provided with missing data, many machine learning algorithms might fail. In this stage,
tasks include feature extraction, handling missing data and creating a dataset with compa-
rable information [52]. The second step will be to split the dataset into training and test
subsets. The training dataset is used to train the model, and the test dataset is used to eval-
uate the performance of the model. This division is essential to avoid overfitting. Testing
with instances that were never shown to the model guarantees that evaluation is well done.

Afterwards, we preprocess the data performing tasks as feature normalization, feature
selection and dimensionality reduction, depending on the type of data at hand. The nor-
malization rescales the attributes in a certain range, making them comparable, especially
when they are measured in different scales. Feature selection will lead to a reduction of
dimensionality. The objective is to remove noise and increase computational efficiency by
keeping only “useful” features that will give insight into the prediction.

An important task is to select the algorithm hyperparameters that best adjust to our
model. To optimize both parameters or feature sets, we need to run our algorithm several
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times with different configurations and evaluate the error for each. This is achieved by
shuffling the samples, to reduce the sampling bias, performing either a resampling or a
cross validation estimation. The next step will be testing our algorithm with the test dataset
and then performing an evaluation recurring to error estimation.

Some of the most used supervised machine learning methods for classification are Logistic
Regression (LR), Support Vector Machines (SVM), Decision Trees (DT), Bayesian Networks (BN)
and ANN [36, 52].

Logistic Regression (LR)

LR is a binary classification model, used to classify examples in two different classes.
Equation 1 represents the logistic or sigmoid function, used in LR as a probability function,
used to calculate the probability of labeling an example as positive when applied to a linear
combination of a set of weights (model parameters) multiplied by the input feature vector
(Equation 2). The parameters θ are estimated minimizing the error function J(θ) (Equation
3) using the gradient descent method, which will be addressed in a posterior section [25, 52].

φ(z) =
1

1 + e−z (1)

hθ(x) =
1

1 + e−θT x
(2)

J(θ) = − 1
m
[

m

∑
i=1

y(i) log hθ(x(i)) + (1− y(i)) log(1− hθ(x(i)))] (3)

Decision Trees (DT)

DT are discrete classifiers where nodes represent the input variables, branches represent
their possible values, and the leaves represent the outcomes (classes). DT are one of the
earliest and most used methods for classification. Based on the architecture of the DT,
they are simple to interpret and fast to learn through top-down algorithms as ID3 and its
successors. We can traverse the tree to interpret the result and find about its class. The
decisions that result from their architecture allow for adequate reasoning which makes
them an appealing technique [25, 52].

Support Vector Machines (SVM)

SVM are a more recent machine learning method. Initially, SVM map the input vector
into a feature space of higher dimensionality and identify the hyperplane that separates the
data points into two classes. The marginal distance between the decision hyperplane and
the instances that are closest to boundary is maximized. The resulting classifier achieves
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considerable generalization capabilities and can, therefore, be used for the reliable classifi-
cation of new samples. It is worth noting that probabilistic outputs can also be obtained
for SVM. The identified hyperplane can be thought as a decision boundary between the
two classes. Obviously, the existence of a decision boundary allows for the detection of any
misclassification produced by the method [25, 52].

Bayesian Networks (BN)

BN classifiers produce probability estimations rather than predictions. As their name
reveals, they are used to represent knowledge coupled with probabilistic dependencies
among the variables of interest via a directed acyclic graph. BN have been applied widely to
several classification tasks as well as for knowledge representation and reasoning purposes
[38].

2.1.2 Unsupervised Learning

In unsupervised learning, sometimes called representation learning [7], the machine sim-
ply receives the inputs x but obtains neither target outputs, nor rewards from its environ-
ment. The unsupervised learning approach instead of making predictions, tries to “un-
derstand” the data searching for patterns. Because it does not require labeled data, the
algorithm is not searching for something specific, but rather exploiting the structure of the
data. It is the analysis of the results, taking context into account, that will decide whether
the patterns extracted are meaningful or not.

The unsupervised learning pipeline (Figure 2) is simpler than the supervised one be-
cause there is no training/test and, therefore, the objective here is to validate the extracted
knowledge according to our data structure and meaning.
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Figure 2.: Unsupervised learning pipeline. Adapted from Python machine learning, by Sebastian
Raschka, 2015 [52].

Some popular examples of unsupervised learning algorithms are k-means clustering, hi-
erarchical clustering, Principal Component Analysis (PCA), Hidden Markov Models (HMM) or
Restricted Boltzman Machines (RBM). There are two main usages of unsupervised learning -
clustering and dimensionality reduction [9, 25, 52].

Clustering

Clustering algorithms try to discover hidden structures in the data and group them to-
gether in clusters, based on data features. It can be achieved by various algorithms like
the Lloyd algorithm, which assumes the k-means clustering cost function, which minimizes
the distances of the points to the assigned clusters assuming an Euclidean space, being the
most widely used clustering algorithm for continuous data.

In k-means clustering algorithm, k is the number of clusters we want to find. The cluster
centroids µj represent the guesses for the positions of the clusters center. In the initialization,
we choose k training examples randomly, and set the centroid values to be equal to them.
Then, we assign each training example x(i) to the closest centroid µj. The next step is to
move each centroid to the mean of the points that belong to them and this is repeated
iteratively until no further movements are possible.

In k-means, the performance depends on the starting configuration - number of centroids.
On the other hand, hierarchical clustering does not require to specify the number of clus-

ters as an input. Instead, there is a measure of dissimilarity between (disjoint) groups of



2.1. Machine Learning Fundamentals 9

observations. They produce hierarchical representations in which the clusters at each level
of the hierarchy are created by merging clusters at the lower level. At the lowest level,
each cluster contains a single observation. At the highest level there is only one cluster
containing all of the data.

They can be agglomerative (bottom-up) and divisive (top-down). Agglomerative strate-
gies start at the bottom and, at each level, recursively merge a selected pair of clusters into
a single cluster. This produces a grouping at the next higher level with one less cluster. The
pair chosen for merging consists of the two groups with the smallest dissimilarity. Divisive
methods, on the other hand, start at the top and at each level recursively split one of the
existing clusters at that level into two new clusters. The split is chosen to produce two new
groups with the largest dissimilarity. With both paradigms there are N − 1 levels in the hi-
erarchy. Clustering can be very useful for exploratory data analysis and data visualization
[25].

PCA and Feature Extraction

The set of features selected by a feature selection method will always be a subset of the
original set of features. On the other hand, the set created by a feature extraction method
does not have to. For instance, PCA reduces dimensionality by making new latent features
from linear combinations of the original ones, and then discarding the less important ones.

The main purposes of a PCA process are the analysis of data to identify and find patterns
to reduce the dimensions of the dataset (d) with minimal loss of information. Defining k as
the number of dimensions of the new feature subspace, where k ≤ d, we can summarize
the PCA algorithm in five steps:

• Normalize the data (because we will calculate eigenvalues, it is convenient that data
is normalized);

• Calculate covariance matrix;

• Choose k eigenvectors that correspond to the k largest eigenvalues;

• Construct the projection matrix W from the selected k eigenvectors;

• Transform the original dataset X via W to obtain a k-dimensional feature subspace Y.

Here, our desired outcome of the PCA is to project a feature space onto a smaller sub-
space that represents better our data removing co-linearity in the variables, as the new ones
are orthogonal. One possible scenario for using PCA would be a classification task where
we would want to reduce the dimensions of our feature space. This would reduce the error
of parameter estimation and also the computational cost [52].
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2.1.3 Feature Selection

In machine learning and statistics, both feature selection and feature extraction make
what is called dimensionality reduction. Sometimes it is also useful to create new features.
Feature selection is the term used for selecting a subset of features for the model construc-
tion. There are three major methods to select features - filter methods, wrapper methods
and embedded methods. The wrapper methods measure the “usefulness” of features based
on the classifier performance. The filter methods are methods that select properties of the
features, e.g. statistically measured, used to rank the features, being those measures inde-
pendent of specific classifiers.

Wrapper methods are essentially optimizing the classifier performance, but they are also
computationally more expensive compared to filter methods due to the repeated learning
steps and cross-validation. Embedded methods are similar to wrapper methods, because
they are also used to optimize the objective function or performance of a learning algorithm
or model. The difference to wrapper methods is that an intrinsic model building metric is
used during learning [52, 25].

2.1.4 Error Estimation

The generalization performance of a learning method relates to its prediction capability
on independent test data. The assessment of model’s performance is extremely important
because it helps to choose the learning method or model, and also gives a measure of the
quality of the model [25].

Cross-validation

Probably the simplest and most widely used method for estimating prediction error is
cross-validation. This method directly estimates the average generalization error when the
model is applied to an independent test sample [25].

In K-Fold cross-validation, all the samples are divided in k groups, called folds, of equal
sizes, if possible. For prediction we use k− 1 folds, and the other fold is used for testing.
The overall error is the average of the measures on the n test sets (one for each fold).

Leave One Out is another cross-validation method where each learning set is created by
taking all the samples except one, being the test set the sample left out. Thus, for n samples,
we have n different training and test sets. This procedure does not waste much data as only
one sample is removed from the training set. In K-Fold, if k = n, the method is equivalent
to Leave One Out [25].
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Model Evaluation

Consider T to be the training set, and each example represented as (x, y). In binary
(hard) classification, y consists of a “positive” (typically represented as 1) and “negative”
(represented as 0) labels. Each classifier c segments a set of examples with known label
into four partitions, based on both the true label yi and the predicted label c(xi) for each
example (xi, yi) ∈ T. We will refer to true positives (yi = c(xi) = 1) as TP, false positives
(yi = 1 but c(xi) = 0) as FP, false negatives (yi = 0 but c(xi) = 1) as FN, and true negatives
(yi = c(xi) = 0) as TN. The accuracy of a classifier over the set of examples is defined as:
(TP + TN)/(TP + TN + FP + FN). For accuracy we mean P(x,y)∼D(c(x) = y), where D
is an unknown distribution that determines the probability or density to sample a specific
example x with a label y [24].

The precision (Pr) and recall (Re) of a classifier are given by Equations 4 and 5.

Pr := TP/(TP + FP) (4)

Re := TP/(TP + FN) (5)

The F1-measure combines these two into a single number, which is useful for ranking or
comparing methods. Formally, it is the harmonic mean between precision and recall being
defined by equation 6 [24].

F := 2 · Pr · Re
Pr + Re

(6)

FPR := FP/(FP + TN) (7)

The recall is also names as True Positive Rate (TPR) or sensitivity (Equation 5). The False
Positive Rate (FPR), or 1−specifity, is given by Equation 7. To combine the TPR and FPR into
a single metric we can plot them on a single graph, with the FPR on the abscissa and the TPR
values on the ordinate. The resulting curve is called Receiver Operating Characteristic (ROC)
curve, and the metric we consider is the Area Under The Curve (AUC) of this curve, which
we call Area Under The ROC Curve (AUROC). Note that a given classifier is represented by
a dot on this graph; a graph can be plotted if the classifier has a parameter that can be
changed to consider different trade-offs of sensititivity and specificity, which is true for all
binary classifiers that allow to estimate positive label probabilities.

When comparing two models based on the AUROC, if the two curves do not cross each
other, the ROC curve with the greatest value of the index (Figure 3, red curve) corresponds
to the system which presents a better performance, i.e. a greater discriminant power [10].
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Figure 3.: Roc Curve.

2.1.5 Bias-Variance Decomposition

One of the major problems in machine learning is overfitting, especially when we have
both complex models and limited data. Overfitting happens when the model is too complex,
fitting the training data too well, and hence the model has a poor predictive performance
over the test set with unseen examples.

More generally, in machine learning, there is a bias-variance trade-off. If our model has
low variance and high bias, the average is far from the correct solution and it is not a good
classifier, meaning that the model has poor capacity (or complexity) to learn the problem, or
underfitting. To correct this situation we can increase the model complexity (e.g. increasing
the number of parameters).

When it has high variance and low bias, some of the predictions might be far from correct
value, although the average is near the correct solution. In this case, our model is overfitting
and learning noise, and not meaningful patterns. The solutions can be to limit the model
complexity (e.g. reducing the number of parameters, or by some kind of regularization,
that will be exploited next) or to increase the number of data cases.

The objective is to have a low variance and low bias model. It is a very delicate process
and, to detect such situation, we must ensure that the trained model does not vary a lot if
the training set changes and the average model is close to the true solution [25]. In practice,
it is typically impossible to guarantee that we find the best model, but error estimation of
different complexity degrees can provide models with good performance in practice.
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Figure 4.: Bias-Variance Trade-off.

2.1.6 Regularization

Regularization is a technique used in an attempt to solve the overfitting problem in sta-
tistical models. As previously mentioned, when our model is overfitting, it fits too much
to the training data and the model has probably learned the background noise while being
fit.

For n features and m training examples, given a set of points (x1, y1), (x2, y2)...(xn, yn),
our goal is to fit a function y = f (x) to the given data. Let us call this a hypothesis hθ(x)
(Equation 8), where theta are the model parameters.

hθ(x) =
n

∑
j=0

θjxj (8)

For each example i, where x is a vector [x1, x2...xn], we are trying to find values of θ so
that the function outputs a value close to given y values. Using Mean Squared Error (MSE)
to compute our cost function J, we have:

J(θ) =
1
m

m

∑
i=1

(hθ(xi)− yi)
2 (9)

There are two major regularization methods - L1 and L2 [47].
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L2 Regularization - Ridge

The L2 regularization, also known as Ridge, penalizes large individual weights. It adds
an extra term to the cost function, which performs the sum of the squares of all the parame-
ters (Equation 10). This is multiplied by a factor (regularization parameter) λ, where λ > 0
[25].

J(θ) =
1
m

m

∑
i=1

(hθ(xi)− yi)
2 + λ

n

∑
j=1

θ2
j (10)

L1 Regularization - Lasso

L1 regularization comprises adding the sum of the absolute values of the parameters
(Equation 11). It is similar to L2 regularization, penalizing large parameters, but the way the
parameters shrink during training is different. While in L1 regularization, the parameters
shrink by a constant amount toward 0, in L2 regularization, the parameters shrink by an
amount which is proportional to θ.

J(θ) =
1
m

m

∑
i=1

(hθ(xi)− yi)
2 + λ

n

∑
j=1
|θj| (11)

With Ridge regularization, the coefficients cannot be zero, so it is computationally more
efficient in non-sparse cases due to having analytical solutions. In contrast, the Lasso does
both parameter shrinkage and variable selection automatically and can yield sparse models,
while Ridge cannot [25].

2.2 artificial neural networks (ann)

2.2.1 Perceptrons and neurons

The perceptron were the first forms of neurons. These are binary classifiers, represented
by a function f (x) , defined by Equation 12, that maps the binary input x, which can assume
the value of 0 or 1, to a binary output (Figure 5). Here, w is a weight vector, and b is the
bias, that shifts the decision boundary from origin, and does not depend on the input value.
We can think of the bias as a measure of how easy it is to get the perceptron to output 1.

f (x) =

1 if (w · x + b) > 0 , ∀x ∈ {0, 1}

0 else
(12)

The perceptron classification is based on the dot product between the examples and w
(Equation 13), where m is the total number of weights, which will be summed with the bias.
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Figure 5.: Perceptron unit.

Perceptrons can be used to make decisions, 0 or 1, based on their constraints. They can also
be used to compute elementary logical functions such as AND, OR, and NAND. But, since
a perceptron can only perform linear operations through its input space, there are some
categorizations that are impossible to do. One of the simplest examples of a non-linearly
separable problem is XOR, or “exclusive or” (equivalent to OR and NOT AND). If one
perceptron can solve OR and one perceptron can solve NOT AND, then two perceptrons
combined can solve XOR.

Adding layers of neurons allows the network to break down the problems into sub-
problems, and then combine the results later. So, constructing NAND gates trough neural
networks it is possible to build any computation because the NAND gate is universal for
computation [47].

z =
m

∑
i=0

wixi + bi (13)

In ANN, we have a neuron as elementary unit, which is similar to a perceptron, but
neurons have an x input that can assume a real value. The output of a neuron is not 0 or 1,
but instead goes through an activation function φ(z), where z is the net input. The neuron
reads the information on vector x and performs a computation on two steps – pre-activation
(Equation 14), and output activation (Equation 15).

a(x) = b + ∑
i

wixi = b + wTx (14)

h(x) = φ(a(x)) = φ(b + ∑
i

wixi) (15)

The activation function φ of an ANN is usually the sigmoid, Rectified Linear Unit (ReLU),
Hyperbolic Tangent (TANH) or softmax functions. There are differences between these activa-
tion functions, especially in what concerns to the squashing of pre-activation values, range
and bounds as we can see in Table 2.
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Table 2.: Comparison between activation functions for ANN.

Act. Function Squashing Range Bounds

Linear No squashing NA NA
TANH Between -1 and 1 Positive or negative Bounded

Sigmoid Between 0 and 1 Always positive Bounded
ReLU Below 0 by 0 Always non-negative Not upper-bounded

Assuming a sigmoid neuron, we have that φ(z) is the sigmoid function (Equation 1 and
16).

φ(z) =
1

1 + e−(∑i wixi+b)
, ∀ x ∈ < (16)

This sigmoid neuron produces an output between 0 or 1 being useful when we are facing
a classification problem.

2.2.2 Feedforward neural networks

We can couple several neurons to create a layer of neurons. Furthermore, we can stack
these into a network of neurons, a feedforward ANN (6). The first layer is the input layer,
where we have a bunch of neurons that receive the inputs to the training algorithm. The last
layer is called the output layer, where we have a number of neurons equal to the number of
output variables (e.g. in classification can be the number of classes), that return a numerical
value that can be interpreted in different ways for classification or regression. The layers
between the input and output are called hidden layers. In Figure 6, we can see an ANN
with 3 layers, one input layer with 3 units xi, one hidden layer with 4 units and an output
layer with 3 units yi.

Figure 6.: Artificial Neural Network (ANN).
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The Universal Approximation Theorem states that “a single hidden layer neural network
with a linear output unit can approximate any continuous function arbitrarily well, given
enough hidden units” [33].

Generalizing, we have a target function y = f ∗(x) that we want to learn. Our model
provides a function y = f (x; θ), and our learning algorithm will adapt the parameters θ to
make f as similar as possible to f ∗.

To check how the output of a feedforward neural network is computed, let us start by
defining the notation. With several layers, W l will be a matrix of weights for every layer l.
The symbolic representation wl

jk refers to the weight of layer l, for the connection of the kth

neuron of layer (l − 1) to the jth neuron in the layer l. We use bl
j to represent the bias of jth

neuron in the layer l (thus, bl will be a vector with the biases of layer l), and al
j represents

the output of jthneuron in the layer l (Equation 17), and thus al is a vector with the outputs
of the neurons in layer l. Thus, the activation function equation of each neuron is given by:

al
j = φ(∑

k
wl

jkal−1
k + bl

j) (17)

A vectorized form (Equation 18) of this equation is provided by:

al = φ(W lal−1 + bl) (18)

To compute the output of an ANN, this expression is applied for all layers of the network,
from the input layer to the output layer.

2.2.3 Training the network: gradient descent

For most nonlinear problems, there is no way to solve for w and b in closed form (taking
the derivative of the cost function and solving via Calculus). We must instead optimize
our objective function using a method called gradient descent. In this method, we “travel”
along the gradient of J, the cost function, with respect to w and b, until we hit a minimum.

We can define our optimization problem as an empiric risk minimization as expressed
in Equation 19, where by θ we mean all the parameters, weights and biases, l is the loss
function, xt is a training example with yt as the output, Ω(θ) is the regularization term,
and λ is the hyperparameter control term, that achieves the balance between optimizing
the average loss and the regularization term.

min
θ

1
T ∑

t
l( f (xt; θ), yt) + λΩ(θ) (19)

In SGD (Algorithm 1) the parameters θ are updated towards the opposite sign of the
calculated gradient ∇ with an α learning rate which dictates the step of update. The opti-
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mization can update the weights after each training case (online learning), after a full sweep
through the training data (full batch) or after a small sample of training cases (mini-batch).
Also, the learning rate α can be fixed or adapted during the optimization process [30].

Algorithm 1 SGD.

1: Initialize the parameters θ
2: for N iterations (epochs):
3: for each training example (x(t), y(t))
4: ∆ = −∇θ l( f (x(t); θ), y(t) − λΩ(θ)
5: θ←−θ + α∆

2.2.4 The Backpropagation algorithm

The basis of backpropagation is how changing the weights and biases of the network
changes the cost function. For that, we must compute the partial derivatives of the cost
function in order to the weights and the biases, ∂J/∂wl

jk and ∂J/∂bl
j respectively. Based on

the chain rule of derivatives, a small change in x (∆x) gets transformed into a small change
in y (∆y) by getting multiplied by its partial derivative ∂y/∂x. It also works when x, y
and z are vectors [39]. For regression, we use the MSE function as our measure of fit. For
classification we use either MSE or cross-entropy [25].

We can measure the error of each neuron by Equation 20 using a quadratic cost function,
or MSE, where L is the number of layers of the neural network, yj is the output of each j
training example, and aL

j is the vector of activations where the input is j.

J =
1
2 ∑

j
(yj − aL

j )
2 (20)

The error of each neuron is given by Equation 21:

δl
j =

∂J
∂zl

j
(21)

The error in the output layer is represented by Equation 22. ∂J/∂aL
j measures how fast

the cost is changing as a function of the jth output activation. If the cost function J does
not depend much on an output j neuron, then δL

j will be small. The second term φ′(zL
j )

measures how fast the activation function φ is changing at zL
j .

δL
j =

∂J
∂aL

j
φ′(zL) (22)

We can also write that in the vectorial form (Equation 23), where ∇a J is a vector of the
partial derivatives ∂J/∂aL

j , which expresses the rate of change of J with respect to output
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activations. “�” is the Hadamard product, which means the elementwise product between
the two members. Now, we must calculate the partial derivatives of the next layer, bias and
weights parameters. Calculating all the gradients, we have the following equations:

• Output layer

δL = ∇a J � φ′(zL) (23)

• Next layer

δl = ((wl+1)Tδl+1)� φ′(zl) (24)

• Biases

∂J/∂bl
j (25)

• Weights

∂J/∂wl−1
jk δl

j (26)

We can also use the cross entropy (negative log-likelihood) formula, as stated in Equation
27, where n is the total number of items of training data, the sum is over all training inputs,
x, and y is the corresponding desired output. This equation is positive and tends toward
zero as the neuron gets better at computing the desired output y. It also has the property
of avoiding the learning slowdown [47].

J = − 1
n ∑

x
[y ln a + (1− y) ln (1− a)] + λΩ(θ) (27)

2.2.5 Improvements on training algorithms

L1 and L2 regularization

L1 regularization comprises adding the sum of the absolute values of the weights, which
in ANNs is achieved by Equation 28.

J = − 1
n ∑

x
[y ln a + (1− y) ln (1− a)] +

λ

2n ∑
w
|w| (28)

The L2 regularization (Equation 29) is also known as weight decay because it is only
applied on weights, not on biases. It adds an extra term to the cost function, which performs



2.2. Artificial Neural Networks (ANN) 20

Figure 7.: Dropout regularization.

the sum of the squares of all the weights in the network. This is multiplied by a factor
(regularization parameter) of λ/2n, where λ > 0 and n is the size of our training set [47].

J = − 1
n ∑

x
[y ln a + (1− y) ln (1− a)] +

λ

2n ∑
w

w2 (29)

Dropout

As we can see in Figure 7, dropout regularization is a method that modifies the neural
network structure. We remove hidden units stochastically, where each hidden unit is set to
0 with a p probability. In this way, these hidden units (black) cannot co-adapt to other units,
suppressing the connections (weights) between them. As result, hidden units become more
generally useful, producing more robust models.

Early stopping

Early stopping is a hyperparameter used with iterative algorithms like SGD, which allows
the optimization process to stop before the model starts to overfit the training data. We can
choose the number of epochs (N) that can be run before the model begins to overfit. At
the end of each N epochs, we evaluate the error on the test set and if we have a better
performance we save that network, otherwise we continue. The final model will be the one
that achieved better performance.

Parameter Initialization

The initialization of weights and biases can influence in a large extent the learning capac-
ity of the neural network. Biases can all be initialized to zero, but that is not possible for
the weights, particularly with a TANH activation function which will produce gradients of
zero. The weights cannot be initialized to the same value because in that way, all the hidden
units in a layer will behave the same, so we need to break that symmetry. A very powerful
solution is to initialize all the weights within a uniform distribution following the Equation
30, where U[−b, b] is the uniform distribution in the interval [−b, b] and Hk is the number
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of columns of W, the size of the previous layer. Equation 31 presents a common solution
for the TANH activation function units [29].

Wi,j ∼ U[−b, b] (30)

b =

√
6√

Hk + Hk−1
(31)

Momentum Method

The momentum method is a technique used to accelerate and improve the convergence
rate of gradient-based optimization. While gradients of loss function are being calculated, it
accumulates a velocity in the same direction of that gradients, and updates the parameters
using that same velocity instead of the gradients. That is represented by Equation 32 and
33, where µ ∈ [0, 1] is the momentum coefficient, η is the learning rate, V is the velocity
and ∇l(θ) is the gradient of the loss function [15].

V(k+1) = µV(k) − η(k)∇l(θ(k) (32)

θ(k+1) = θ(k) + V(k+1) (33)

Batch Normalization

Instead of normalizing all the data in preprocessing, we can make it while the data
flows through the deep network in each mini-batch. This process avoids a problem named
“internal covariate shift”, where weights and parameters from hidden layers deviate from
zero-mean and variance of one. By doing batch normalization we obtain a faster learning
and a higher accuracy [35].

2.2.6 Model Selection

There are basically four methods for selecting hyperparameters. By hyperparameters we
mean the learning rate, momentum coefficient, number of layers, number of units, activa-
tion functions and loss function, and other parameters that we can change to improve the
learning and capacity of the neural network.
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Table 3.: Hyperparameters of ANN.

Hyperparameter Description

Number of units
Input and output layers related with the shape of

inputs and outputs. Number of hidden units choice
is empirically-driven.

Number of layers
More hidden layers means more capacity to detect

non-linearities.

Activation functions

Possible to choose different activation functions for
the different layers. Output activation function

related to the output we want
(classification/regression).

Loss function Measure of error we want to minimize.

Learning rate Step size in gradient descent.

Early stopping
Number of epochs that can be run before the model

begins to overfit.

Number of training
iterations (Epochs)

More epochs can lead to overfitting, while less than
necessary can lead to underfitting.

L1 and L2 regularizers
Choosing the right regularizer is crucial to avoid

overfitting.

Dropout Better generalization and less overfitting.

Weight Initialization
Weight initialization can have influence on the local

minimum found.

Batch size
Number of samples that are going to be propagated

through the network on each epoch.

Momentum
Faster convergence when using appropriate

momentum.

The first method is manual search, where we select the parameters using the knowledge
we have, and observing the results. That process is repeated until we find the best parame-
ters choice. On grid search, we test all the possible combinations of hyperparameters where
each takes a set of possible values in their domain, and then select the best combination.
Then, we can repeat the process to a larger range of values to fine-tune the hyperparameter.

Random search is another method, where like in grid search we define a range of values
for each, and then in a random way, we test combinations of those values. This method
showed to perform with the same accuracy of grid search, and sometimes even better [8].
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Figure 8.: Example of a multilayered ANN.

Another way of selecting hyperparameters is performing a Bayesian optimization, in
which we use the information gained from a previous experiment to select the hyperpa-
rameters for the next experiment [55].

2.3 deep learning

2.3.1 Deep neural networks

Differently from “shallow” methods, deep learning methods have multiple layers of non-
linear modules of representation. Each of them transforms the representation at one level
into a more abstract higher level. These transformations permit discovering intricate struc-
tures in high-dimensional data with several degrees of freedom. Thus, it is quite promising
that deep learning is outperforming the machine learning “shallow methods” in some areas.
But, as we know, deep learning does not represent an advantage in every situation, because
it is easily prone to overfitting.

The biological motivation in the use of deep architectures instead of one hidden layered
ANN is because brains have a deep architecture. Humans organize their ideas hierarchi-
cally, through composition of simpler ideas. First we learn simpler concepts, and then we
compose them to represent more abstract ones. One example is the visual cortex of humans
when processing an image. The image runs through several layers of abstraction in neurons
until it reaches the final visual representation.

2.3.2 Architectures

According to the task, in deep learning there are several architectures capable of perform-
ing better. Here, we will present the most common neural network architectures used in
deep learning.
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Deep Neural Networks (DNN)

DNN (Figure 8) are neural networks similar to shallow ANN except they have more than
one hidden layer. As aforementioned, adding extra hidden layers to a neural network we
can gain more degrees of freedom, having the capacity to fit better the training data, even
for more complex cases. Here resides the advantage of deep architectures against shallow
ones. But that has two major problems - computational power and overfitting. Because
today we have more computational power than a few decades ago, scientists can try deep
architectures using clusters and distributed systems, and vulgarly using Graphics Processing
Unit (GPU) to perform the computations. The second problem addressed, overfitting, is
solved through regularization techniques and designing a robust model selection. But still
sometimes the deep learning architectures fail to outperform shallow ones.

Convolutional Neural Networks (CNN)

Based on experiments made by Hubel [34] in the visual cortex of the cat, surged one of
the most used deep learning architecture, the Convolutional Neural Networks (CNN). CNN
are models of supervised learning, especially used in computer vision and image recog-
nition. The structure of this network is composed by two types of layers - convolutional
and pooling layers (Figure 9). The input is in form of multiple arrays: 1D for signals and
sequences, including language; 2D for images or audio spectrograms; and 3D for video or
volumetric images.

In a first step, convolution, a filter is passed over a specific area, the receptive field,
and a higher order representation is made, recurring to ReLU units. Then, inputs from
the convolution layer can be “smoothened” to reduce the sensitivity of the filters to noise
and variations, creating an even more abstract representation (pooling). On an array data
such as images, local groups of values are often highly correlated, forming distinctive local
motifs that are easily detected. The repetition of the processes of convolution and pooling
will create the output model of the CNN [39]. For this specific architecture there are some
hyperparameters that must be chosen (Table 4).
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Figure 9.: Convolutional Neural Network.

Table 4.: Hyperparameters of CNN.

Layer Hyperparameter

Convolution Number of features

Size of features (receptive field)

Pooling Window size

Window stride

Fully connected Number of neurons

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) are popular models that have shown great promise in
Natural Language Processing (NLP). The concept behind RNN is the use of sequential infor-
mation. RNN are called recurrent because the output depends on previous computations.
The training of a RNN is similar to the one of a traditional ANN. We also use backpropaga-
tion, but with a difference, the gradient at each output depends on the calculations of the
current time step, and also the previous ones [39]. Like CNN and DNN, RNN are used to
solve supervised learning problems.

Stacked Autoencoders (SA)

Autoencoders (AE) take the raw input, pass it through a hidden layer and try to reconstruct
the same input at the output. To find more robust features, we train the autoencoder
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to reconstruct the input from a corrupted version of it (Denoising Autoencoders (DA)). The
stochastic corruption of data randomly sets some of the inputs (as many as half of them) to
zero. Basically, the DA works like a single layer neural network where instead of predicting
labels we predict the input. Then, the loss function calculated can be the cross-entropy
(binary inputs), or the squared euclidean distance (real inputs), measuring the difference
between the raw input and the predicted input at the output layer. The training is composed
by two stages - an unsupervised pre-training stage that is useful to build features from data,
and a fine-tuning stage where we want to predict the error on a supervised task.

Stacked Denoising Autoencoders (SDA) are similar to DA, but with more than one hidden
layer. The pre-training is done one layer at a time. Each layer is trained as a DA by
minimizing the error in reconstructing its input (which is the output code of the previous
layer). When the first layers are trained, we can train the k + 1th layer because we can now
compute the code from the layer below. Summarizing, with SDA we have a first step with
an unsupervised training and a second step that corresponds to a supervised training using
the features constructed on the first step [60].

Restricted Boltzman Machines (RBM), Deep Boltzman Machines (DBM) and Deep Belief Networks
(DBN)

RBM can find patterns in our data by reconstructing the input. An RBM is a two-layer
neural network, and so considered as a shallow method. The first layer is known as the
visible layer and the second is called the hidden layer. Each node in the first layer is
connected to every node in the hidden layer. An RBM is considered “restricted” because
there is only one hidden layer.

In the forward pass, an RBM takes the inputs and translates them into a set of numbers
that encode the inputs. In the backward pass, it decodes back to form the reconstructed
inputs. Three steps are repeated over the training process - the first one is similar to feed-
forward ANN, next, in a backward pass, each activation is combined with an individual
weight and an overall bias, and the result is passed to the visible layer for reconstruction;
in the third step, on the visible layer, the reconstruction is compared against the original
input to determine the quality of the result. RBM use a measure called Kullback–Leibler
Divergence (relative entropy) for the last step.

RBM are energy-based models which associate a scalar energy to each configuration of
the variables of interest. This model can be learnt by performing (stochastic) gradient de-
scent on the empirical negative log-likelihood of the training data. When we have more
than one hidden layer we call them Deep Boltzman Machines (DBM) or Non-restricted Boltz-
man Machines. Multiple hidden layers can be learned by treating the hidden layer output
of one RBM.
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Deep Belief Networks (DBN) are a composite model which are different from DBM, be-
cause they have undirected connections between its top two layers and downward directed
connections between all its down layers.

All the methods mentioned above are unsupervised, which means that the data does not
need to be labeled and we can extract new features [30].

2.3.3 Deep Learning Frameworks and Tools

Deep learning frameworks are software solutions that help the construction of neural net-
work deep models. They present some differences in the ease of use and the way models are
trained and constructed. One of the main advantages in the use of these frameworks is the
automatic differentiation. That way, the framework computes automatically the gradients
of neural networks.

Theano

Theano [3] is a framework developed by University of Montreal and is build in Python
and compiled to C++. It is a compiler for mathematical expressions that uses a declar-
ative programing paradigm, which means that the programmer does not need to specify
the order in which instructions need to be executed. The neural network is declared as
a symbolic computational graph, and then is compiled and executed. Theano supports
GPU usage which translates into a better performance then with Central Processing Unit
(CPU). That is done using CUDA, a NVIDIA parallel computing platform and Application
Programming Interface (API) for general-purpose computing on GPU units [6].

TensorFlow

TensorFlow [2] is developed by Google and written in C++, offering an interface to
Python. It is similar to Theano with respect to the declarative paradigm, the automatic dif-
ferentiation and the abstraction used (symbolic computational graph). Because TensorFlow
is C++ native, it has a native support for parallelization across different platforms (CPUs
and GPUs). Another advantage is TensorBoard that allows the visualization of networks to
monitoring the training progress (i.e. learning curves or parameter updates) [6, 51].

Keras

Keras [17] is a Python library that works as a wrapper for both Theano and TensorFlow.
With it one can make higher-level implementations of neural networks turning it to be
easier and faster. The main data structure in Keras is a model, which represents a single
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layer that can easily be stacked to other layers. The modularity concept of Keras is one of
its major advantages. It is possible though to build complex models using Keras API.



3

C A N C E R O M I C S

The Human genome is three billion base pairs long and is split into 23 pairs of chromo-
somes. Humans have two sets of chromosomes, one from each parent, that differ in their
content by around 0.01 percent. An individual’s genome, therefore, contains around six
billion base pairs. The Human Genome Project (HGP), was the first project that mapped all
of the genes of the human genome. The project’s goal was to produce a full human genome
sequence for $3 billion between 1990 and 2005. Nowadays, the “$1,000 genome” promises
to make the Deoxyribonucleic Acid (DNA) sequencing so affordable that individuals might
think to have a full personal genome sequence.

This revolution is deeply connected with the surge of NGS techniques (also called High
Throughput), that turned the sequencing task less expensive. Cheaper sequencing technolo-
gies made genomics data more relevant by increasing the number of researchers able to
study genomes, and the number of genomes they can use to understand variations among
individuals in both sickness and health [18].

The current nomenclature of omics sciences includes genomics for DNA variations, tran-
scriptomics for messenger Ribonucleic Acid (mRNA), proteomics for peptides and proteins,
and metabolomics for intermediate products of metabolism, but also many other data
types, as epigenomics (e.g. DNA methylation). These data results from techniques as
NGS technologies (DNA and Ribonucleic Acid (RNA) sequencing), DNA microarrays, Mass
Spectrometry or Nuclear Magnetic Resonance, just to name a few.

3.1 cancer omics databases

The generation of low-cost data is leading us to the “big data” era in biomedicine. The
advent of NGS techniques, particularly when applied to cancer research, brought a huge
amount of information that needs to be stored, and we are talking in the order of petabytes
of data. The availability of this kind of data provides a unique opportunity, but also raises
some new challenges. To cite some, there is the organization of such an huge amount of
data that can come from different platforms and research teams. There is also the privacy
of patients information that must be protected. Another challenge is to make these data

29
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available to researchers on an efficient way. There are several repositories of cancer omics
data like the GDC. More recently, we have been surrounded by some portals that combine
both databases and some statistical inference in real time (e.g. cBioPortal) [32, 31].

It is very important that those resources are available, and sometimes a question arises
- is it better to keep investing on new experiments, or in analyzing the existent data? The
answer is not so obvious, but we can conclude that there must be a huge amount of data
to be processed, and lots of discoveries to be made in the future from what we have until
now. The largest omics datasets available until the date are TCGA (now part of GDC) and
The Encyclopedia of DNA Elements (ENCODE). Over the next sections we will refer to some
of the most popular cancer omics databases.

3.1.1 The Cancer Genome Atlas (TCGA)

TCGA was a United States government project, started in 2005, and supervised by the
National Cancer Institute’s Center for Cancer Genomics and the National Human Genome
Research Institute. Its main goal was to catalogue genetic mutations responsible for cancer,
using NGS and bioinformatics. They started studying glioblastoma multiforme, lung, and
ovarian cancer, but in the end, they characterized 33 cancer types. The TCGA project
was very important to the development of cancer knowledge, and many of cancer studies
presented in this document used TCGA data. Now TCGA data is hosted in GDC [58]. The
TCGA data is organized through tiers.

3.1.2 NCI Genomic Data Commons (GDC)

GDC is a project developed by the National Cancer Institute (NCI), the Univeristy of
Chicago, the Ontario Institute for Cancer Research, and Leidos Biomedical Research. It
contains information from NCI-funded projects such as TCGA and Therapeutically Appli-
cable Research to Generate Effective Treatments (TARGET). Besides those two, GDC integrates
data from: International Cancer Genome Consortium, NCI clinical trials, and user-submited
studies.

With this project, one of the goals was to harmonize the data, using pre-defined analytic
pipelines to ensure that researchers can use these data, regardless of data provenience.
GDC also has an interface to upload new cancer genomic data from researchers worldwide.
There are also concerns about security and access to patients data. There is an API for
developers, to easily access data from their applications.

There are several goals of the GDC team, which are to develop a new taxonomy of
cancer based on molecular pathogenesis, to identify low-frequency cancer drivers, to define
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genomic determinants of treatment response, and to compose clinical trial cohorts sharing
targetable genetic lesions.

The different types of data GDC stores are: mutation calls, structural variants, copy
number, and digital gene expression. For that they implement state-of-the-art methods [32].
Currently, GDC Data Portal stores 39 projects, 14,531 cases, and 4.98 petabytes of data.

There are four levels of data according to the processing degree:

• level 1 - Raw data

• level 2 - Normalized data

• level 3 - Aggregated data

• level 4 - Regions of Interest data

• level 0 - No level

3.2 cancer bioinformatics applications

3.2.1 Precision Medicine

According to the National Institutes of Health (NIH), precision medicine is “an emerging
approach for disease treatment and prevention that takes into account individual variability
in genes, environment, and lifestyle for each person” [59]. Although precision medicine
can be applied to many diseases, oncology sits at its vanguard (precision oncology). One
obvious reason is the fact that cancer is a genomic disease: most cancers harbor a cocktail
of mutated oncogenes and tumor suppressors that work in concert to specify the molecular
pathways that lead to their genesis, maintenance, and progression.

The main steps in precision oncology are: first characterize the genomes of tumors; sec-
ond, filter the genomic data through a knowledge base of existing and emerging anticancer
drugs; and third, present an annotated list to the treating oncologist that can be incor-
porated into clinical decision making [27]. Although we already know what needs to be
done, it is not so straightforward to apply these concepts to real cases. There are several
challenges related to the quality and quantity of genomic information, the cost of various
platforms, and finally the analytic challenges and methods chosen to perform data analysis.

Bioinformatics, of course, plays a determinant role, and there are already attempts to
apply the machine and deep learning technologies in Computer Aided Diagnostic (CAD) soft-
ware tools [16]. We will cover below a number of applications which can contribute to this
effort, focusing on the application of machine/deep learning over cancer omics data.
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3.2.2 DREAM Challenge

The DREAM Challenges is a platform for computational biologists and data scientists
that introduces the concept of crowd-sourcing to solve real problems in biomedicine. That
way it is possible to have teams all over the world participating and contributing to science
in a competitive way. It is developed by Sage Bionetworks, which has made important
contributions to the TCGA project. The expertise and institutional support are provided by
Sage Bionetworks, along with the infrastructure to host challenges via the Synapse open
platform. In the DREAM project, there have been various DREAM challenges related to
cancer (Table 5). Recently, there have been two related challenges - ICGC-TCGA DREAM
Somatic Mutation Calling RNA Challenge (SMC-RNA) and Multiple Myeloma DREAM
Challenge.

Table 5.: DREAM challenges related to cancer.

Challenge Name Year

DREAM 6

FlowCAP2 Molecular Classification of Acute
Myeloid Leukaemia Challenge

2011

DREAM 7

Sage Bionetworks-DREAM Breast Cancer Prognosis
Challenge

2012

DREAM 7 NCI-DREAM Drug Sensitivity Prediction Challenge 2012

DREAM 8

HPN-DREAM Breast Cancer Network Inference
Challenge The Broad-DREAM Gene Essentiality

Prediction Challenge
2013

DREAM 8.5
ICGC-TCGA-DREAM Somatic Mutation Calling

Tumor Heterogeneity Challenge
2013

DREAM 9

Acute Myeloid Leukemia (AML) Outcome
Prediction

2014

DREAM 9.5 Prostate Cancer DREAM Challenge 2015

DREAM 10 Multiple Myeloma DREAM Challenge 2017

Along the DREAM project, there were some important discoveries such as PAM50 and
Oncotype DX, that reveal the extensive work done for improving treatment based on the
incorporation of different features [38].
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3.2.3 cBioPortal

The cBio Cancer Genomics Portal (http://cbioportal.org), is developed at the Memorial
Sloan-Kettering Cancer Center. The main goal of cBioPortal is to provide a web resource for
exploring, visualizing, and analyzing multidimensional cancer genomics data. It contains
148 cancer genomics studies, including the aforementioned TCGA, GDC and International
Cancer Genome Consortium (ICGC) datasets. With cBioPortal it is possible for researchers
to easily interact with omics data with a graphical interface and design fast data analysis
without any programming barriers. cBioPortal also has an API for developers [11, 26].

3.2.4 Cancer Genomics Cloud (CGC)

The CGC is a web portal (http://www.cancergenomicscloud.org/), developed by Seven
Bridges. Within Cancer Genomics Cloud (CGC) we can access TCGA data (both public and
private cohorts) and perform analysis within the standard bioinformatics pipelines using a
graphical interface and an API. Somehow it resembles the cBioPortal, but the advantage of
CGC is that we can upload our own custom analysis tools and share them with researchers
around the world.

3.3 machine learning applications in cancer

Over the last years, within the context of “cancer big data”, and using gene expression
data, several studies were published recurring to machine learning “shallow” methods.
There are both supervised and unsupervised approaches. The major classes of supervised
cancer biological problems are: prediction of cancer susceptibility, recurrence and survival
[38, 31, 19]. For unsupervised learning we can refer the cancer staging, sub-typing, and
feature extraction from gene expression datasets.

3.3.1 Classical Machine Learning

Using classical machine learning algorithms we have several studies. On Table 6 we
summarize some representative papers that give a good perspective over what has been
done. There are both unsupervised and supervised learning approaches, dealing with sev-
eral types of cancer. We can observe the importance of the stratification of cancer subtype
and risk prognosis. The objectives concentrate on the development of more accurate tools
for clinical decision and patient treatment. The most used algorithms are SVM, ANN, and
glsbn. We can mention Tan et. al [56] work with DA. Here, with the help of an unsuper-
vised learning neural network architecture (DA), this team constructed features that shown
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to be more accurate to predict several types of endpoints. It is very interesting because we
can exploit the advantages of neural networks with gene expression data.
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Table 6.: Published papers of machine learning and cancer over gene expression data.

Type of study Article title
ML

method
Ref.

Susceptibility
prediction

Predicting cancer susceptibility
from single-nucleotide

polymorphism data: a case study
in multiple myeloma

SVM [61]

Predictive models for breast cancer
susceptibility from multiple single

nucleotide polymorphisms
SVM [45]

Recurrence
prediction

Predicting cancer susceptibility
from single-nucleotide

polymorphism data: a case study
in multiple myeloma

BN [22]

Integrative gene network
construction to analyze cancer

recurrence using semi-supervised
learning

Graph-
based
semi-

supervised
learning

[48]

Survival
prediction

Risk classification of cancer
survival using ANN with gene
expression data from multiple

laboratories

ANN [14]

Oral cancer prognosis based on
clinicopathologic and genomic

markers using a hybrid of feature
selection and machine learning

methods

SVM [12]

A Gene Signature for Breast
Cancer Prognosis Using Support

Vector Machine
SVM [64]

Predicting the prognosis of breast
cancer by integrating clinical and

microarray data with Bayesian
networks

BN [28]

Sub-typing
Unsupervised analysis of

transcriptomic profiles reveals six
glioma subtypes

k-means,
Nonnega-

tive Matrix
Factoriza-

tion

[43]

Feature
Extraction

Extraction From Genome-Wide
Assays of Breast Cancer

DA [56]
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3.3.2 Deep Learning

Deep learning is a recent field of research, and so there are still few applications in Bioin-
formatics. The majority of papers published are relative to image recognition. With CNN,
they recur to medical images from radiology [37] or histology [62]. Another interesting ap-
proach is the integration of electronic records of patients [46]. The deep learning pipeline
used on previous studies is usually the previously explained in Figures 1 and 2, with the
model selection and regularization techniques characteristic from deep learning [6].

There are several publications using deep learning in the biological area, over omics data.
In Table 7, we show some of the most relevant studies in different areas, such as gene ex-
pression, predicting splicing and transcription factors binding regions, epigenomics, micro-
RNA binding sites, signaling and metagenomics. These studies are not directly related
to cancer, but with the cellular and molecular biology processes, which may also be very
useful in cancer research.

If we restrict the domain to cancer-only studies, the number of papers decreases drasti-
cally. For cancer itself, Fakoor et al. [23] used unsupervised learning stacked autoencoders
to perform the task of cancer detection and cancer type classification and achieved better
results with deep learning. Liang et al. [44] also achieved better results with deep learning.
They used DBN to perform clustering by integrating genomics information with clinical
data, which they compared with k-means clustering. Way et al. [63] used VA to construct
features over genomics cancer data. It is a very promising study for unsupervised learning
application of deep learning. The VA is similar to a SDA, the only difference is that they
have a sampling layer which samples form a distribution (usually Gaussian) and then feeds
the generated samples to the decoder part.
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Table 7.: Published papers of deep learning in omics data.

Biological
Problem

Article title Arch. Ref.

Gene expression
Gene expression inference with

deep learning
DNN [15]

ADAGE signature analysis:
differential expression analysis

with data-defined gene sets
SDA [57]

Evaluating deep variational
autoencoders trained on

pan-cancer gene expression
VA [63]

Splicing
Deep learning of the

tissue-regulated splicing code
DNN [42]

Boosted Categorical Restricted
Boltzmann Machine for

Computational Prediction of
Splice Junctions

DBN [41]

Transcription
factors and
RNA-binding
proteins

A deep learning framework for
modeling structural features of
RNA-binding protein targets

DBN [65]

Epigenomics
Predicting effects of noncoding

variants with deep learning–based
sequence model

CNN [67]

DeepChrome: deep-learning for
predicting gene expression from

histone modifications
CNN [54]

Micro-RNA
binding

deepTarget: End-to-end Learning
Framework for microRNA Target
Prediction using Deep Recurrent

Neural Networks

RNN [40]

Signaling
Trans-species learning of cellular
signaling systems with bimodal

deep belief networks
DBN [13]

Metagenomics
Multi-Layer and Recursive Neural

Networks for Metagenomic
Classification

DNN,
RNN

[20]

Others

Predicting the sequence
specificities of DNA- and

RNA-binding proteins by deep
learning

N/A [4]
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M E T H O D S

In this chapter, we will present the project pipeline and the details of the developed ma-
chine learning models, as well as an explanation about the used the data. For software
development, the programming languages used were Python, for the majority of jobs, and
R for accessing microarrays data. In Python, the most important libraries used were Numpy,
SciPy, Pandas, Scikit-learn, and Keras with Theano backend. Within R we used Bioconduc-
tor, and the Limma package for accessing Agilent two-color microarrays. The gene expres-
sion data origin is the Neuroblastoma Data Integration Challenge, part of the 16th Annual
International Conference on Critical Assessment of Massive Data Analysis (CAMDA). Because of
computational power demanded, mainly by the deep learning models, we used the Search
6 cluster from Departamento de Informática (DI), Universidade do Minho (UM). Deep learning
models were run using GPU NVIDIA Tesla K20 (node 652-1 and 652-2). For Multi-Task Deep
Neural Network (MT-DNN), unsupervised learning, and CPU vs. GPU experiments we used
an Amazon EC2 p2.xlarge instance with a NVIDIA Tesla K80 GPU.

4.1 deep learning software

The code for the entire pipeline for this work is available in a github repository https:

//github.com/lmpeixoto/deepl_learning [49].
It is composed by the following modules:

• ShallowModel - supervised shallow machine learning models pipeline.

• DNNModel - supervised DNN models pipeline.

• DNNMTModel - supervised multi-task DNN models pipeline.

• SDAEModel - unsupervised SDA models pipeline.

ShallowModel creates the supervised shallow machine learning experiments, DNNModel
and DNNMTModel create supervised deep learning experiments with DNN and MT-DNN
models. SDAEModel creates deep learning unsupervised experiments. These will be de-
scribed in the next sections.
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Figure 10.: Global supervised learning pipeline.

Supervised Learning - ShallowModel

The task of using supervised shallow machine learning algorithms is carried out with the
python class named ShallowModel. This class was constructed to set a pipeline based on
Figure 10 with:

1. Model selection - Grid search for the hyperparameters tuning of shallow classifiers
through the several possible output variables in the dataset (e.g. clinical endpoints).
That step creates a table with the grid search results and selects the best model.

2. Best model fit - the best model is fit with the selected data using the best set of
hyperparameters.

3. Model evaluation - the best model is evaluated according to the pipeline. The results
are saved to a report text file.

The machine learning classifiers tested were : LR, SVM, Random Forests (RF), Linear Dis-
criminant Analysis (LDA) and K-Nearest Neighbors (KNN).

The ShallowModel class constructor takes as arguments an X and y matrices or the
train/test splitted matrices (for using a separated test set), and the number of folds for
cross validation (cv). Accordingly to the input arguments, the class decides whereas there
is as splitted or non-splitted experiment (cross validation vs. hold out validation set). We
consider a splitted experiment whenever we save a part of our data and keep it until we
want to evaluate our model, similar to the one used in [66].
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Inside ShallowModel, the model selection is performed by a grid search with cross vali-
dation carried out using Sci-kit Learn library methods. We obtain as result a table with the
score results of each classifier and the parameters, with information of the fitting time. The
best model is evaluated and the scores are calculated in different metrics (ROC AUC, F1

score, Mathews Correlation Coefficient (MCC), accuracy, precision, recall, log loss) and saved
in a plain text file that we call report. It is possible to run a model selection through all
endpoints, or a selection of endpoints.

Table 8.: Shallow models parameter grid.

Model Parameter Grid

SVM
C: [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1, 0.5, 1, 1.5, 2, 5, 10, 20, 50, 100, 150,
200, 500, 750, 1000]

kernel: linear, rbf

gamma: [0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 5, 10, 20, 50,
100, 150, 200, 500, 750, 1000]

RF
n estimators: [10, 50, 100, 200, 500, 1000,
2000, 5000, 10000]

KNN n neighbors: [1, 3, 5]

LDA
n components: [2, 4, 6, 8, 10, 12, 14, 16,
18, 20]

LR
C: [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1, 0.5, 1, 1.5, 2, 5, 10, 20, 50, 100, 150,
200, 500, 750, 1000]

penalty: l1, l2

Supervised Learning - Deep Learning

For deep learning, we constructed a class named DNNModel. In this class, we designed
a Keras sequential model of a DNN. For hyperparameter tuning we performed random
search model selection keeping track of metrics along epochs. The random selection picks
each parameter from a batch with ranges of values to test. The model takes the follow-
ing parameters: dropout, output activation function, optimization algorithm, learning rate,
units in input layer, units in hidden layers, number of epochs, batch size, early stopping,
patience.
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After model selection is completed, the code generates a file with results, similar to the
previous class (ShallowModel). The best model combination is selected and evaluated. The
fit results are saved - both a plot representing loss and accuracy metrics along epochs, and a
report with metrics values. Inside deep learning classes, the resulting plot represents each
fold from the cross validation fit.

Another model created was a MT-DNN. The MT-DNN includes several clinical endpoints
in the y matrix (n x m, where n are the samples and m the clinical endpoints) forcing the
neural network weights to adapt to predict all the endpoints at the same time. The Python
class is DNNMTModel.

Unsupervised Learning

Figure 11.: SDA pipeline.

The Stacked Autoencoders (SA) is the model we chose to perform an unsupervised learning
approach to gene expression data as depicted in Figure 11. The Python class of our code is
SDAEModel. We can divide this module in two parts - SA and DNN. On a first moment, we
have a SA that will encode the gene expression data. This way the SA creates a compressed
representation of data. It is a kind of feature construction.

The second step occurs when we use that encoded representation to perform supervised
learning classification. The autoencoder has a model selection method with random search
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for hyperparameter tuning. We intend to find the optimum parameters that can reconstruct
the enconded layer with minumum loss. After we find the best encoded representation to
compress our data, we submit that layer to a regular DNN or MT-DNN. When it is complete,
the code generates a file with the results.

4.2 configuration of theano and keras libraries

To select Theano as default backend for Keras, we created a file (keras.json) where we
set the ”KERAS BACKEND” flag to theano. Within Theano, we configured the library to
use the GPU. For that, we created a file (.theanorc) specifying the parameters like Compute
Unified Device Architecture (CUDA) path, memory alocation for NVIDIA CUDA Deep Neural
Network library (cuDNN), and other settings. Because of memory constraints, as the GPU
used (NVIDIA Tesla K20) has limited 6 Gigabytes (GB) memory, we restricted the number
of features of deep learning models to 5000, the batch size was also limited to a maximum
of 200, and we did not use more than 4 hidden layers.

4.3 neuroblastoma dataset

Neuroblastoma is a type of cancer that affects mostly children. It forms in certain types of
nerve tissue. Most frequently, it starts from one of the adrenal glands, but can also develop
in the neck, chest, abdomen or spine. The assessment of patient risk is based on both
clinical and molecular parameters like tumor stage, patient age at diagnosis, and genomic
amplification status of MYCN proto-oncogene. There have been previous models based on
gene expression to predict patient outcome, but the prediction of high-risk patient remains
challenging. The success of treatment depends on the risk group within the patient belongs.
Because of that it is very important to develop a model that can predict accurately high-risk
patients [66].

The Neuroblastoma dataset contains RNA-seq and Agilent two-color microarray gene
expression profiles of 498 children patients, as well as matched Array Comparative Genomic
Hybridization (aCGH) data for 145 of these patients for Copy Number Variation (CNV) and
Copy Number Alteration (CNA) analysis. There are also clinical data for each patient. The
main objective of this challenge was to integrate different types of data and produce bet-
ter predictive models about survival time and other clinical endpoints [1]. For our study,
we used the RNA-seq and Agilent microarrays data (accession numbers GSE49711 and
GSE49710 from Gene Expression Omnibus (GEO) database, respectively).

We based our experiments in Zhang et al. [66]. In their experiments, they generated 360

gene expression machine learning models to predict six different endpoints:

• SEX - the patient gender;
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• CLASS LABEL - label that indicates membership of a subgroup with extreme disease
outcome: event-free survivors without chemotherapy for at least 1000 days post diag-
nosis (favorable), or patients died from disease despite chemotherapy (unfavorable).

• EFS ALL - the occurrence of events, that is, progression, relapse, or death;

• OS ALL - the occurrence of death from disease;

• EFS HR - the occurrence of events in the subset of high-risk patients (patients with
stage 4 disease, more than 18 months at diagnosis and patients of any age and stage
with MYCN-amplified tumors);

• OS HR - the occurrence of death from disease in the subset of high-risk patients.

The various endpoints have different predictive difficulties. SEX and CLASS LABEL are
of low difficulty, EFS ALL and OS ALL of intermediate difficulty, EFS HR and OS HR are
of high difficulty [66]. On the Table 9 we can have an overview of the Neuroblastoma (NB)
dataset, the distribution between the cohorts and the different clinical endpoints.

Table 9.: Characterization of NB dataset. Adapted from Zhang et al. [66].

Cohort Endpoint (bin 1/0) 1 0

All patients (498) SEX
(F/M)

211 287

EFS ALL
(Event Y/N)

183 315

OS ALL
(Death Y/N)

105 393

Class labeled
patients (272)

CLASS LABEL
(Unfavorable/Favorable)

91 181

High-risk
patients (176)

EFS HR
(Event Y/N)

120 56

OS HR
(Death Y/N)

92 131

On a first phase of our project we decided to reproduce the results of applying machine
learning shallow predictors to the six different clinical endpoints and compare with the re-
sults published in Zhang et al. [66]. For that purpose, we used the original train/validation
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split and then repeated the experiment with 10-fold cross validation, that is the configu-
ration we will use for deep learning models. Then, we did the same with deep neural
networks, to check if there is an improvement. Because on Zhang et al. [66] they used MCC
as main metric to compare, we decided to replicate this setup and use MCC (Equation 34)
as the main metric.

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(34)

4.3.1 RNA-seq data

For RNA-seq data, we used the CAMDA dataset that was already preprocessed (log 1 +
Reads Per Kilobase Million (RPKM) transformed). The RNA-seq dataset is composed by 498

samples and 60778 features, representing genes.

4.3.2 Microarray data

For Microarray Agilent 4x44 data, we used Bioconductor in R to load the GEO GSE49710

dataset. Then, using Limma package we performed background correction (normexp) and
normalized with the quantile method. We removed the control probes and log2 trans-
formed the expression measurements. In the end, we exported the expression matrix to be
processed by Python Pandas package. The microarray dataset is composed by 498 samples
and 30200 features, representing genes.

4.3.3 Clinical data

We extracted the gene expression matrix (X). After that, we integrated the information
of the clinical data file with patient samples. For the several clinical endpoints, we also
extracted a labels (y) matrix.

NBHighThroughput and NBMicroarrays are NB dataset specific modules to extract the
expression matrices (X) and the output labels (y).

The NBHighTroughput class is composed of several properties (Table A.1.1) like the name
of the dataset and clinical data files, number of samples, number of features, as well as the
X and y matrices extracted. For reading the RNA-seq data file and clinical data there
are some methods (Table A.1.2), aggregated in load data. For each clinical endpoint, it
generates different X and y matrices, according to clinical data information, keeping only
complete cases. There is also a method for feature selection (filter method) based on Mean
Absolute Deviation (MAD) (top genes) and other based on variance (variance filter).
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The NBMicroarrays module overrides the NBHighthroughput, changing only the way it
reads the expression matrix.

4.3.4 Experiments Performed

Supervised Learning

We used the information from supplementary files from [66] to reconstruct the boxplots
that depict the MCC score of their models over the different clinical endpoints. For shallow
models, we tested both the original split and 10-fold cross validation pipelines with RNA-
Seq and Microarray datasets. For DNN, we replicated the same experiments. For MT-DNN,
we tested with RNA-seq dataset.

Unsupervised Learning

For unsupervised learning, we built a SA. Then, we extracted the encoded layer and ran
a DNN in the endpoint Sex on a supervised learning way, from RNA-Seq dataset. The
architecture of those networks are the ones in Table 10.

Table 10.: SA and DNN of unsupervised experiment.

Architecture Parameters Type

Stacked
Autoencoder

batch size: 60

early stopping: False
learning rate: 0.001

nb epoch: 1000

optimization: SGD
units in hidden layers: [2500, 500 ,2500]

units in input layer: 5000

Unsupervised

Deep Neural
Network

batch size: 70

dropout: 0.6
early stopping: False
learning rate: 0.001

nb epoch: 500

optimization: SGD
output activation: sigmoid

units in hidden layers: [250, 100, 50]
units in input layer: 500

Supervised
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GPU vs CPU fit time comparison

To compare the fit time difference between CPU and GPU we ran a DNN with the RNA-
Seq dataset, using the Endpoint Sex to perform a supervised learning experiment. The
DNN configuration is detailed on Table 11.

Table 11.: DNN parameters for GPU vs CPU performance comparison.

batch size: 80

dropout: 0.6
early stopping: False
learning rate: 0.001

nb epoch: 10

optimization: SGD
output activation: sigmoid

units in hidden layers: [1000, 10]
units in input layer: 5000



5

R E S U LT S A N D D I S C U S S I O N

5.1 neuroblastoma dataset

5.1.1 Supervised Learning

RNA-Seq

Using supplementary files from Zhang et al. [66], we were able to reconstruct the results
of the original publication, shown in Figure 12. Here, we can clearly distinguish the sepa-
ration between the low difficulty endpoints (Sex and Class Label) and high difficulty ones
(EFS HR and OS HR). To validate our methodology, we reproduced the same experiments,
using the same train/validation split as used in the original work [66]. On the original
experiment, the teams submitted several models for each endpoint (10 x 5-Fold Cross Val-
idation) and they draw a boxplot representing all those models. For shallow models we
obtained results, as can be checked by looking at Figure 13.

47
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Figure 12.: Zhang et al results - shallow models with original split (RNA-seq).
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Figure 13.: Results for shallow models with original split (RNA-Seq) obtained in this work.

Since in our experiments we used a different pipeline, recurring to 10-fold cross valida-
tion, we checked if using our pipepline we would obtain similar results. In fact we did, as
stated in Figure 14.
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Figure 14.: Results for shallow models obtained in this work with 10-fold cross validation (RNA-
Seq).

On Table 12 we have the best models for shallow and deep learning experiments and
the respective scores. The best result for each endpoint is stressed in bold. For results in
detail, on the Tables B.1.1 and B.1.2, we can see the configurations (type of model, number
of features and parameters) and results for shallow models with the RNA-Seq dataset. On
Tables B.1.3 and B.1.4 we did the same for DNN models.
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Table 12.: NB best models (RNA-Seq).

Endpoint Best Model MCC

SEX LR 0.992 ± 0.0161

DNN 0.9841 ± 0.0195

CLASS LABEL SVM 0.8762 ± 0.0957

DNN 0.8951 ± 0.1060

EFS ALL LR 0.4933 ± 0.1491

DNN 0.4694 ± 0.1493

OS ALL LR 0.5097 ± 0.1786

DNN 0.5284 ± 0.1707

EFS HR LDA 0.1445 ± 0.1940

DNN 0.1985 ± 0.2166

OS HR LR 0.1982 ± 0.3265

DNN 0.2211 ± 0.3197

To better compare the two approaches we have a graph plotting the mean and standard
deviation (error) of shallow models versus deep learning models (graph on Figure 15).

As we can observe from the graph, deep learning models outperformed shallow ones (in
terms of mean) on Class Label, OS All, EFS HR and OS HR clinical endpoints. Looking
for the errors we can observe that on those DNN outperforming endpoints, the error was
slightly lower than from the shallow ones. But because the error was generally very high
we cannot conclude which one was better. The same is true for the cases of the Sex and EFS
ALL outputs, where the advantage is gained by the shallow learning methods, also quite
slight and not significant.
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Figure 15.: Comparison between shallow and deep learning models (RNA-Seq).

Another experiment we did was the construction of a MT-DNN. The network configu-
ration that performed best was the presented in Table 14. The results were not consistent
with previous experiments (shallow and DNN) as we can observe on Table 13. For more
detailed results we can consult Tables B.3.1 and B.3.2.

Table 13.: NB MT-DNN models results (RNA-Seq).

Endpoint MCC

Sex 0.0604 ± 0.2120

Class Label 0.0754 ± 0.2016

EFS All 0.0919 ± 0.3717

OS All 0.1010 ± 0.3178

EFS HR 0.1445 ± 0.1940

OS HR 0.1893 ± 0.2874

A probable explanation is the reduced number of samples (note that this approach can
only be applied to complete cases, where all endpoints exist) that were only 176.
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Table 14.: MT-DNN parameters.

batch size: 100

dropout: 0

early stopping: True
patience: 80

learning rate: 0.01

nb epoch: 1000

optimization: Adam
output activation: sigmoid

units in hidden layers: [2500, 1000, 500, 100]
units in input layer: 5000

Microarrays

For the microarrays dataset, we performed the same experiments as RNA-Seq. As pre-
viously, we can compare our experiments with the results from [66]. We can see that
reproducing the original split we obtained the results on Figure 16.
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Figure 16.: Results for the shallow models with the original split (Microarrays (MA) dataset).

Then, with 10-fold cross-validation we obtained the results shown in Figure 17. Compar-
ing with DNN models, we obtained the results shown in Figure 18.
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Figure 17.: Results for the shallow models with 10-fold cross validation (MA dataset).
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Table 15.: NB best models (MA).

Endpoint Best Model MCC

Sex LR 1.0 ± 0.0

DNN 0.9796 ± 0.0204

Class Label SVM 0.9197 ± 0.0885

DNN 0.9075 ± 0.0957

EFS All SVM 0.4330 ± 0.1154

DNN 0.4871 ± 0.1257

OS All LR 0.5021 ± 0.1259

DNN 0.5303 ± 0.1672

EFS HR SVM 0.2704 ± 0.2521

DNN 0.2034 ± 0.1811

OS HR LR 0.2738 ± 0.1644

DNN 0.3093 ± 0.1881

Figure 18.: Comparison between shallow and deep learning models (MA dataset).
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As we can see, the DNN outperformed (in terms of mean) shallow ones on EFS ALL, OS
ALL and OS HR. The error from DNN is higher than the shallow ones, except for EFS HR.
But one more time the high error makes it impossible to compare both methods.

5.1.2 Unsupervised Learning

The unsupervised learning experiments generated the results that we can observe on
Figure ?? and Table 16. The results were clearly worst than without the stacked autoencoder
compression when comparing to shallow and DNN.

Because of the lack of computational power, we restricted the entry layer to 5000 features
and limited the number of epochs to 500. If we observe the graphs on Figure 19 we can see
that if we increased the number of epochs, probably the score would be better. Also, the
number of features would be of considerable importance because we could capture more
information as we increase the number of features.

Figure 19.: Loss and MCC values for DNN coupled with a stacked autoencoder on endpoint Sex
(RNA-Seq).
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Table 16.: NB Stacked Autoencoder results (RNA-Seq).

Endpoint Scores

Sex

roc auc: 0.9646 ± 0.0263

accuracy: 0.9600 ± 0.0309

f1 score: 0.9559 ± 0.0332

mcc: 0.9241 ± 0.0571

precision: 0.9222 ± 0.0651

recall: 0.9952 ± 0.0143

log loss: 0.1382 ± 1.0668

5.2 neural networks fine tuning of hyperparameters

For model selection, we ran 4 times the random search, obtaining 4 models, and keeping
the best of those. The first approach used early stopping, which means that the gradient
descent stopped when it reached the maximum score and minimum loss, after advancing
a few iterations more to see if there was an improvement (parameter patience, set to 30

epochs). If there was no improvement, the last best configuration was the selected one. In
the end, we intend to reach an optimum configuration knowing the exact number of epochs
of each neural network.

In this section, we will present the manual process that was used to fine tune a neural
network. Note that there is no ground truth nor a guide to select the best configuration,
meaning that sometimes this process can be tedious and time-consuming. For that, we will
present the case of selection for Class Label endpoint from RNA-Seq dataset. On Table 17,
we can observe the best model configuration obtained which we will start to make small
changes.
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Table 17.: Class Label case study.

Parameters MCC

batch size: 150

dropout: 0.8
early stopping: True

patience: 30

learning rate: 0.01

nb epoch: 1000

optimization: RMSprop
output activation: sigmoid

units in hidden layers: [2500, 500]
units in input layer: 5000

0.8801 ± 0.0917

Figure 20.: Plot of loss (left) and MCC (right) through epochs for DNN on NB MA dataset.

Observing the graph from Figure 20 we can find it a little confusing to understand. This
graph represents the loss and MCC over epochs. The orange line represents the test set,
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while the blue line represents the training set. But because we have a 10-Fold cross vali-
dation pipeline, each fold has a represented line, and because we applied early stopping,
each fold can have a different number of epochs. But trying to consolidate the number of
epochs, we can admit that the optimum number is somewhere between 60 and 120, where
MCC values from certain folds start to drop.

The first step was to test different epoch number, but now without early stopping. The
results can be observed on graph from Figure 21. It is clear that the winner is 100 epochs.
We will fix this epoch number and continue to tune some more parameters.

Figure 21.: Variation of MCC with number of epochs.

With respect to the dropout regularization parameter, we tested again several configura-
tions, as we can observe on the graph from Figure 22.
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Figure 22.: Variation of MCC with dropout regularization parameter.

Figure 23.: Variation of MCC with batch size parameter.
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Figure 24.: Variation of MCC with learning rate parameter.

We reached the best configuration with the value of 0.9. Making changes to batch sizes
resulted in the best value of 150 (graph from Figure 23). And, finally, the best learning rate
value achieved was 0.01 (graph from Figure 24).

Overall, we improved our first model from 0.8801 ± 0.0917 to 0.9075 ± 0.0957 (Table 18).

Table 18.: NB DNN models results (MA) for CLASS LABEL endpoint.

Parameters MCC

batch size: 150

dropout: 0.9
early stopping: False

learning rate: 0.01

nb epoch: 100

optimization: RMSprop
output activation: sigmoid

units in hidden layers: [2500, 500]
units in input layer: 5000

0.9075 ± 0.0957
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Figure 25.: Plot of loss and MCC against epochs for DNN on NB MA dataset.

The final model obtained with the best parameters selected originated a plot represented
by the graph on Figure 25. Here, we can observe clearly the loss and MCC over the epochs
because every fold ran the exact same amount of epochs (100). Another observation we
can make is that not every fold achieves the same score, as expected. The error measure-
ment was made, and we already compared it with the one from shallow models. But, the
discrepancy that we observed from the plot lines from different folds makes us consider
that our pipeline of 10-fold cross validation may not be the best one, suggesting that some
overfitting could be occurring. If computational power would not be a problem, maybe a
nested cross validation like the one used on the original paper [66] of 10 x 5-Fold cross
validation would be preferable.

As we exploited before, there are more parameters that we can use to construct a DNN
model. We can mention L1 and L2 regularization, weight initialization, momentum, we
could choose not to use batch normalization or choose which layers to use, as well as
dropout.
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5.3 fitting time of shallow vs . deep models comparison

We fixed an endpoint (EFS All) in the RNA-seq dataset and compared the fitting time
of different models, as we can observe in the graph from Figure 26. The DNN model took
more than 25 times more time on most cases.

Figure 26.: Variation of fit time between shallow and deep models.

5.4 CPU vs . GPU fit time

As we can observe on the boxplot from Figure 27, a GPU is faster than a CPU. While a
GPU fits a DNN model in a median time of 8.64 seconds, a CPU took a median of 90.48

seconds to perform the same task. We can say that, in this task, GPUs are over 10 times
faster than CPUs.
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Figure 27.: Variation of fit time of DNN with GPU and CPU.
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C O N C L U S I O N

The application of deep learning methods to analyze gene expression data revealed to
be somehow complex and computationally expensive. Training deep learning models took
several folds more time than shallow models. On supervised learning, looking for the
results we obtained, there seems to be a possibility to achieve better results when compared
to shallow models like SVM, LR, RF, KNN and LDA. But it takes a huge amount of time as
well as computational power to achieve that, which can be a problem.

Also, the DNN and MT-DNN models have shown some difficulties because of the nature
of datasets. The number of samples is low. It was reflected especially on MT-DNN which
dealt with only complete cases, that were below 200. The last two problems lead to a third,
that was to develop a more robust pipeline where we could perform nested cross validation.
Also, when using deep learning models we intend to capture the high dimensionality of the
data. However, that was not entirely possible because we limited the number of features to
5000, where we had datasets with more than 30,000 and 60,000 features.

For unsupervised learning, the SA model seemed to show potential to reduce the dimen-
sionality of data and capture the intricate patterns of gene expression datasets. But, one
more time, it would be interesting to conduct experiments with more computational power,
an adequate pipeline and try to increase the number of features. Another improvements
could be to use a different feature selection method and try a different approach to the
model selection step like using artificial intelligence algorithms to tune the parameters.
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A
C O D E E X P L A N AT I O N

a.1 nbhighthroughput

Table A.1.1.: NBHighThroughput properties.

Property Description

ht file Hightroughput data path

cd file Clinical data path

exprs
Hightroughput gene expression
matrix

clinical data Clinical data table

n features Number of features

n samples Number of samples

features
List of features
(gene/transcript/probe names)

X X matrix

y y matrix

endpoint name
Name of clinical endpoint
currently selected
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Table A.1.2.: NBHighThroughput methods.

Method Description

read exprs data
Loads hightroughput file to a
Pandas dataframe object

read clinical data
Loads clinical data file to a Pandas
dataframe object

set feature number
Reads the number of columns in
gene expression matrix and saves
the number of features

set list features
Saves a list with the features
(genes/transcripts/probes)

set sample number
Reads the number of rows in gene
expression matrix and saves the
number of samples

load data
Runs all previously described
methods to properly load
expression file and clinical data

get feature number Returns the number of features

get list features Returns the list of features

get sample number Returns the number of samples

mad filter
Filters features by mean absolute
deviation - feature selection

normalize data
Scale expression data using
StandardScaler normalization
(Scikit learn)

endpoint ENDPOINT
Returns X and y matrices
according to the selected clinical
endpoint

multi task
Returns X and y matrices
including all the endpoints to
construct a MT-DNN
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a.2 shallowmodel

Table A.2.1.: ShallowModel properties.

Property Description

X X matrix

y y matrix

X train, X test,
y train, y test

train/test split resulting matrices

model
Sci-kit learn model object returned
by model selection function

model name
Name of generated files related to
that model

cv
Number of folds for k-fold cross
validation

splitted
Boolean True if it is a train and test
splitted experiment

feature number
Number of features
(genes/probes) of X matrix

scores Storage of model selection scores

endpoint name
Name of endpoint currently in
execution

results Storage of best models results

list endpoints List of endpoints to be tested

list models List of models to be tested
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Table A.2.2.: ShallowModel methods.

Method Description

print parameter values
Prints the selected model
parameters

calculate score
Calculates the selected model
score with hold out test set

save best model Saves a file with the best model

load model Loads a model from a file

model selection (MODEL)

Performs grid search model
selection for each MODEL within
a pipeline where the data is first
normalized.

write cv results

Creates a Comma Separated Values
(csv) file with the results from
model selection in separated
folders by endpoint and by model
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a.3 dnnmodel

Table A.3.1.: DNNModel properties.

Property Description

X X matrix

y y matrix

X train, X test, y train, y test train/test split resulting matrices

model
Keras model object returned by
model selection function

valid size Factor of train/test split

feature number
Number of features
(genes/probes) of X matrix

parameters

Dictionary with neural network
parameters - dropout, output
activation function, optimization
algorithm, learning rate, units in
input layer, units in hidden layers,
number of epochs, batch size,
early stopping, patience.

cv
Number of folds for k-fold cross
validation

splitted
Boolean True if it is a train and test
splitted experiment

filename
Name of generated files related to
that model

verbose
When 1 prints all the information
that Keras generates during the
training of DNN

parameters batch
Dictionary with neural network
parameters list to be tested in
model selection function

model selection history
Storage of model selection scores
and history of DNN training
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Table A.3.2.: DNNModel methods.

Method Description

print parameter values
Prints the selected model
parameters

create DNN model
Using sequential model from
Keras creates the DNN model
based on parameters

fit model
Fits the DNN model, calculating
time of execution

print fit results
prints the fit results - loss and
MCC

evaluate model
Calculates the selected model
score

model selection
Performs random search model
selection keeping track of fit
history for each model tested.

find best model
After the model selection runs it
picks the best model from
model selection history

select best model
Loads the parameter configuration
of the best model saved

batch parameter shuffler
Shuffles the parameters to feed the
model selection function

set filename
Sets the name of files to be
generated

plot model performance

Creates a Matplotlib graph with
history of loss and MCC of a
model fit and writes a file with it
in separated folders by endpoint

write model selection results

Writes a csv file with the results of
model selection in separated
folders by endpoint

write report
Writes a file with the results of a
model fit in separated folders by
endpoint
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B
D E TA I L E D R E S U LT S

b.1 rna-seq results

Table B.1.1.: NB shallow models results (RNA-Seq) part 1.

Endpoint
Best

Model

No.
Fea-

tures
Parameters Scores

Sex LR 100

C: 0.05

penalty: l1

roc auc: 0.9959 ± 0.0083

accuracy: 0.9960 ± 0.0080

f1 score: 0.9952 ± 0.0095

mcc: 0.9920 ± 0.0161

precision: 0.9955 ± 0.0136

recall: 0.9952 ± 0.0142

log loss: 0.1381 ± 0.2763

Class Label SVM 5000

C: 0.0005

kernel: linear

roc auc: 0.9283 ± 0.0560

accuracy: 0.9447 ± 0.0415

f1 score: 0.9114 ± 0.0699

mcc: 0.8762 ± 0.0957

precision: 0.9535 ± 0.0579

recall: 0.8789 ± 0.1050

log loss: 1.9100 ± 1.4344

EFS All LR 5000

C: 0.0005

penalty: l2

roc auc: 0.7403 ± 0.0763

accuracy: 0.7299 ± 0.0977

f1 score: 0.6824 ± 0.0849

mcc: 0.4933 ± 0.1491

precision: 0.6467 ± 0.1458

recall: 0.7787 ± 0.1645

log loss: 9.3274 ± 3.3731
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Table B.1.2.: NB shallow models results (RNA-Seq) part 2.

Endpoint
Best

Model

No.
Fea-

tures
Parameters Scores

OS All LR 1000

C: 0.0001

penalty: l2

roc auc: 0.7896 ± 0.1046

accuracy: 0.7043 ± 0.1840

f1 score: 0.6079 ± 0.1406

mcc: 0.5097 ± 0.1787

precision: 0.4740 ± 0.1621

recall: 0.9345 ± 0.0592

log loss: 10.2135 ± 6.3554

EFS HR LDA 2000

n components:
1

roc auc: 0.5442 ± 0.0588

accuracy: 0.6941 ± 0.0521

f1 score: 0.8100 ± 0.0348

mcc: 0.1445 ± 0.1940

precision: 0.7034 ± 0.0413

recall: 0.9583 ± 0.0559

log loss: 10.5650 ± 1.7983

OS HR LR 1000

C: 500

penalty: l1

roc auc: 0.5958 ± 0.1601

accuracy: 0.5957 ± 0.1594

f1 score: 0.5950 ± 0.1621

mcc: 0.1982 ± 0.3265

precision: 0.6256 ± 0.1605

recall: 0.5833 ± 0.1929

log loss: 13.9654 ± 5.5045
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Table B.1.3.: NB DNN models results (RNA-Seq) part 1.

Endpoint Parameters Scores

Sex

batch size: 75

dropout: 0.6
early stopping: False
learning rate: 0.015

nb epoch: 800

optimization: SGD
output activation: sigmoid

units in hidden layers: [2500, 500]
units in input layer: 5000

roc auc: 0.9924 ± 0.0094

accuracy: 0.9920 ± 0.0098

f1 score: 0.9907 ± 0.0114

mcc: 0.9841 ± 0.0195

precision: 0.9866 ± 0.0205

recall: 0.9952 ± 0.0143

log loss: 0.2750 ± 0.3368

Class Label

batch size: 150

dropout: 0.6
early stopping: False
learning rate: 0.005

nb epoch: 80

optimization: Adam
output activation: sigmoid

units in hidden layers: [1000, 100]
units in input layer: 5000

roc auc: 0.9450 ± 0.0570

accuracy: 0.9521 ± 0.0471

f1 score: 0.9269 ± 0.0752

mcc: 0.8951 ± 0.1060

precision: 0.9375 ± 0.0803

recall: 0.9233 ± 0.0997

log loss: 1.6542 +/- 1.6255

EFS All

batch size: 80

dropout: 0.6
early stopping: False
learning rate: 0.001

nb epoch: 800

optimization: SGD
output activation: sigmoid

units in hidden layers: [1000, 100]
units in input layer: 5000

roc auc: 0.7163 ± 0.0783

accuracy: 0.7341 +/- 0.0820

f1 score: 0.6306 ± 0.1128

mcc: 0.4694 ± 0.1493

precision: 0.7096 ± 0.1762

recall: 0.6480 ± 0.2135

log loss: 9.1823 ± 2.8329
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Table B.1.4.: NB DNN models results (RNA-Seq) part 2.

Endpoint Parameters Scores

OS All

batch size: 75

dropout: 0.2
early stopping: True
learning rate: 0.015

nb epoch: 1000

optimization: SGD
output activation: sigmoid

units in hidden layers: [2500, 100]
units in input layer: 5000

roc auc: 0.7798 ± 0.0813

accuracy: 0.7814 ± 0.1285

f1 score: 0.6236 ± 0.1333

mcc: 0.5284 ± 0.1707

precision: 0.5707 ± 0.1928

recall: 0.7745 ± 0.1562

log loss: 7.5502 ± 4.4389

EFS HR

batch size: 80

dropout: 0.6
early stopping: False
learning rate: 0.015

nb epoch: 30

optimization: SGD
output activation: sigmoid

units in hidden layers: [2500, 100, 10]
units in input layer: 5000

roc auc: 0.5925 ± 0.0999

accuracy: 0.6431 ± 0.0943

f1 score: 0.7305 ± 0.0797

mcc: 0.1985 ± 0.2166

precision: 0.7500 ± 0.0843

recall: 0.7250 ± 0.1294

log loss: 12.3257 ± 3.2561

OS HR

batch size: 80

dropout: 0.6
early stopping: False
learning rate: 0.015

nb epoch: 25

optimization: SGD
output activation: sigmoid

units in hidden layers: [2500, 100]
units in input layer: 5000

roc auc: 0.6047 ± 0.1546

accuracy: 0.6012 ± 0.1576

f1 score: 0.5733 ± 0.2042

mcc: 0.2211 ± 0.3197

precision: 0.6683 ± 0.1933

recall: 0.5622 ± 0.2356

log loss: 13.7735 ± 5.4442
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b.2 MA results

Table B.2.1.: NB shallow models results (MA) part 1.

Endpoint
Best

Model

No.
Fea-

tures
Parameters Scores

Sex LR 100

C: 0.05

penalty: l1

roc auc: 1.0 ± 0.0
accuracy: 1.0 ± 0.0
f1 score: 1.0 ± 0.0

mcc: 1.0 ± 0.0
precision: 1.0 ± 0.0

recall: 1.0 ± 0.0
log loss: 9.9920e-16 ± 1.9722

Class Label SVM 5000

C: 0.0001

kernel: linear

roc auc: 0.9533 ± 0.0527

accuracy: 0.9632 ± 0.0406

f1 score: 0.9419 ± 0.0661

mcc: 0.9197 ± 0.0885

precision: 0.9700 ± 0.0640

recall: 0.9233 ± 0.997

log loss: 1.2704 ± 1.4016

EFS All SVM 5000

C: 0.0001

kernel: linear

roc auc: 0.6982 ± 0.668

accuracy: 0.7269 ± 0.0585

f1 score: 0.5943 ± 0.1189

mcc: 0.4330 ± 0.1154

precision: 0.6946 ± 0.1431

recall: 0.5889 ± 0.2226

log loss: 9.4338 ± 2.020
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Table B.2.2.: NB shallow models results (MA) part 2.

Endpoint
Best

Model

No.
Fea-

tures
Parameters Scores

OS All LR 100

C: 0.001

penalty: l2

roc auc: 0.7761 ± 0.0673

accuracy: 0.7556 ± 0.1235

f1 score: 0.5997 ± 0.1090

mcc: 0.5021 ± 0.1259

precision: 0.5175 ± 0.1518

recall: 0.8100 ± 0.1650

log loss: 8.4403 ± 4.2665

EFS HR SVM 2000

C: 0.001

kernel: linear

roc auc: 0.6217 ± 0.1180

accuracy: 0.6889 ± 0.0970

f1 score: 0.7791 ± 0.0725

mcc: 0.2704 ± 0.2521

precision: 0.7628 ± 0.1064

recall: 0.8167 ± 0.1225

log loss: 10.7455 ± 3.3502

OS HR LR 1000

C: 10

penalty: l1

roc auc: 0.6240 ± 0.0746

accuracy: 0.6244 ± 0.0768

f1 score: 0.6207 ± 0.1322

mcc: 0.2738 ± 0.1644

precision: 0.6629 ± 0.0842

recall: 0.6467 ± 0.2334

log loss: 12.9745 ± 2.6536
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Table B.2.3.: NB DNN models results (MA) part 1.

Endpoint Parameters Scores

Sex

batch size: 80

dropout: 0.9
early stopping: False
learning rate: 0.001

nb epoch: 500

optimization: RMSprop
output activation: sigmoid

units in hidden layers: [1000, 100]
units in input layer: 5000

roc auc: 0.9888 ± 0.0114

accuracy: 0.9899 ± 0.0101

f1 score: 0.9879 ± 0.0121

mcc: 0.9796 ± 0.0204

precision: 0.9955 ± 0.0136

recall: 0.9810 ± 0.0233

log loss: 0.3496 ± 0.3497

Class Label

batch size: 150

dropout: 0.9
early stopping: False

learning rate: 0.01

nb epoch: 100

optimization: RMSprop
output activation: sigmoid

units in hidden layers: [2500, 500]
units in input layer: 5000

roc auc: 0.9517 ± 0.0548

accuracy: 0.9563 ± 0.0452

f1 score: 0.9340 ± 0.0694

mcc: 0.9075 ± 0.0957

precision: 0.9425 ± 0.0806

recall: 0.9367 ± 0.1056

log loss: 1.5086 +/- 1.5612

EFS All

batch size: 60

dropout: 0.7
early stopping: False

learning rate: 0.01

nb epoch: 80

optimization: SGD
output activation: sigmoid

units in hidden layers: [2500, 100, 100]
units in input layer: 5000

roc auc: 0.7232 ± 0.0695

accuracy: 0.7590 +/- 0.0555

f1 score: 0.6281 ± 0.1118

mcc: 0.4871 ± 0.1257

precision: 0.7451 ± 0.1337

recall: 0.5874 ± 0.1949

log loss: 8.3240 ± 1.9176
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Table B.2.4.: NB DNN models results (MA) part 2.

Endpoint Parameters Scores

OS All

batch size: 80

dropout: 0

early stopping: False
learning rate: 0.015

nb epoch: 90

optimization: SGD
output activation: sigmoid

units in hidden layers: [2500, 500]
units in input layer: 5000

roc auc: 0.7944 ± 0.0741

accuracy: 0.7673 ± 0.1288

f1 score: 0.6301 ± 0.1333

mcc: 0.5303 ± 0.1672

precision: 0.5328 ± 0.1834

recall: 0.8391 ± 0.0751

log loss: 8.0368 ± 4.4473

EFS HR

batch size: 60

dropout: 0.6
early stopping: False
learning rate: 0.005

nb epoch: 80

optimization: SGD
output activation: sigmoid

units in hidden layers: [2500, 1000, 500]
units in input layer: 5000

roc auc: 0.5983 ± 0.0914

accuracy: 0.6314 ± 0.0853

f1 score: 0.7123 ± 0.0955

mcc: 0.2034 ± 0.1811

precision: 0.7654 ± 0.1087

recall: 0.7000 ± 0.1546

log loss: 12.7321 ± 2.9454

OS HR

batch size: 75

dropout: 0.6
early stopping: False
learning rate: 0.005

nb epoch: 100

optimization: Adam
output activation: sigmoid

units in hidden layers: [1000, 100]
units in input layer: 5000

roc auc: 0.6488 ± 0.0906

accuracy: 0.6488 ± 0.0853

f1 score: 0.6590 ± 0.0700

mcc: 0.3093 ± 0.1881

precision: 0.7016 ± 0.1367

recall: 0.6489 ± 0.1145

log loss: 12.1303 ± 2.9455
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b.3 MT-DNN results

Table B.3.1.: NB MT-DNN models results (RNA-Seq) part 1.

Endpoint Scores

Sex

roc auc: 0.5215 ± 0.0649

accuracy: 0.6876 ± 0.1123

f1 score: 0.7992 ± 0.0909

mcc: 0.0604 ± 0.2120

precision: 0.6908 ± 0.1264

recall: 0.9652 ± 0.0451

log loss: 10.7910 ± 3.8791

Class Label

roc auc: 0.5253 ± 0.0623

accuracy: 0.6931 ± 0.1125

f1 score: 0.8031 ± 0.0916

mcc: 0.0754 ± 0.2016

precision: 0.6925 ± 0.1267

recall: 0.9730 ± 0.0438

log loss: 10.5989 ± 3.8860

EFS All

roc auc: 0.5381 ± 0.1707

accuracy: 0.5402 ± 0.1880

f1 score: 0.5196 ± 0.2695

mcc: 0.0919 ± 0.3717

precision: 0.5209 ± 0.2978

recall: 0.5821 ± 0.2767

log loss: 15.8813 ± 6.4935
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Table B.3.2.: NB MT-DNN models results (RNA-Seq) part 2.

Endpoint Scores

OS All

roc auc: 0.5467 ± 0.1373

accuracy: 0.5575 ± 0.1627

f1 score: 0.5314 ± 0.2617

mcc: 0.1010 ± 0.3178

precision: 0.5190 ± 0.2837

recall: 0.6016 ± 0.2692

log loss: 15.2830 ± 5.6204

EFS HR

roc auc: 0.5442 ± 0.0588

accuracy: 0.6941 ± 0.0521

f1 score: 0.8100 ± 0.0348

mcc: 0.1445 ± 0.1940

precision: 0.7034 ± 0.0413

recall: 0.9583 ± 0.0559

log loss: 10.5650 ± 2.0349

OS HR

roc auc: 0.5811 ± 0.1651

accuracy: 0.5784 ± 0.2141

f1 score: 0.3101 ± 0.2474

mcc: 0.1893 ± 0.2874

precision: 0.4983 ± 0.4000

recall: 0.2781 ± 0.2980

log loss: 14.5610 ± 7.3946
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