

 José Pedro Antunes Ribeiro

A TrustZone-assisted Hypervisor

Supporting Dynamic Partial

Reconfiguration

Outubro de 2018

 José Pedro Antunes Ribeiro

A TrustZone-assisted Hypervisor

Supporting Dynamic Partial

Reconfiguration

 Dissertação de Mestrado em Engenharia Eletrónica Industrial

 e Computadores

 Trabalho efectuado sob a orientação do

 Doutor Sandro Pinto

Outubro de 2018

Acknowledgements

Firstly, I would like to thank my advisor Dr. Sandro Pinto, for being always
present throughout all of the development of my thesis. Thanks for proposing me
a challenging project for my dissertation, while also enlightening me with ideas on
the way to go whenever I encountered a dead-end. I would also thank you, for the
motivation to push my limits and the opportunity of writing my the first scientific
contribution.

I would also like to thanks Dr. Adriano Tavares, for the contribution he made
in the last 2 years where he always pushed the embedded systems class limits, in
ways that allowed us to grow as humans but also as the engineers of the future.

Following in the line, I want to give my thanks to José Martins and João
Alves, the developers of µRTZVisor, and how they made my job so much easier,
always being available to explain their reasons behind the implementation and full
support when my doubts and problems using the hypervisor appeared.

To my fellow lab friends, Ângelo Ribeiro, Andersen Bond, Fransciso Petrucci,
Hugo Araujo, José Silva, Nuno Silva, Pedro Machado, Sérgio Pereira and Ricardo
Roriz, thanks for providing a great environment to work and the great collabora-
tive spirit when there was the need, but also for the great friendship we made.

Finally, I could not let my family out of this note, specially my grandparents
and godparents, as they were always there to support me and had the patience
when the times were more complicated. To my parents, who have my "maior
obrigado" for supporting me in my 17 years as a student, and little brother, who
was the one always bringing a smile to my face on the roughest moments, I sincerely
hope that I made you feel proud.

v

Abstract

Traditionally, embedded systems were dedicated single-purpose systems char-
acterised by hardware resource constraints and real-time requirements. However,
with the growing computing abilities and resources on general purpose platforms,
systems that were formerly divided to provide different functions are now merg-
ing into one System on Chip. One of the solutions that allows the coexistence
of heterogeneous environments on the same hardware platform is virtualization
technology, usually in the form of an hypervisor that manage different instances
of OSes and arbitrate their execution and resource usage, according to the chosen
policy.

ARM TrustZone has been one of the technologies used to implement a virtu-
alization solution with low overhead and low footprint. µRTZVisor a TrustZone-
assisted hypervisor with a microkernel-like architecture - is a bare-metal embedded
hypervisor that relies on TrustZone hardware to provide the foundation to imple-
ment strong spatial and temporal isolation between multiple guest OSes.

The use of Partial Reconfiguration allows the designer to define partial recon-
figurable regions in the FPGA and reconfigure them during runtime. This allows
the system to have its functionalities changed during runtime using Dynamic Par-
tial Reconfiguration (DPR), without needing to reconfigure all the FPGA. This
is a major advantage, as it decreases the configuration overhead since partial bit-
streams are smaller than full bitstreams and the reconfiguration time is shorter.
Another advantage is reducing the need for larger logic areas and consequently
reducing their power consumption.

Therefore, a hypervisor that supports DPR brings benefits to the system. Aside
from better FPGA resources usage, another improvement that it brings, is when
critical hardware modules misbehave and the hardware module can be replaced.
It also enables the controlling and changing of hardware accelerators dynamically,
which can be used to meet the guest OSes requests for hardware resources as the
need appears. The propose of this thesis is extending the µRTZVisor to have a
DPR mechanism.

vii

Resumo

Tradicionalmente, os sistemas embebidos eram sistemas dedicados a uma única
tarefa e apenas limitados pelos seus requisitos de tempo real e de hardware. Con-
tudo, como as plataformas de uso geral têm cada vez mais recursos e capacidade
de processamento, muitos dos sistemas que executavam separadamente, passaram
a apenas um sistema em plataforma recorrendo à tecnologia de virtualização, nor-
malmente como um hipervisor que é capaz de gerir múltiplos sistemas operativos
arbitrando a sua execução e acesso aos recursos da plataforma de acordo com uma
politica predefinida.

A tecnologia TrustZone da ARM tem sido uma das soluções implementadas
sem ter grande impacto na performance dos sistemas operativos. µRTZVisor é um
dos hipervisores baseados na TrustZone para implementar um isolamento espacial
e temporal entre múltiplos sistemas operativos, sendo que defere de outras uma
vez que é de arquitectura microkernel.

O uso de Reconfiguração Parcial Dinâmica (RPD) permite ao designer definir
várias regiões reconfiguráveis no FPGA que podem ser dinamicamente reconfigu-
radas durante o período de execução. Esta é uma grande vantagem, porque reduz
os tempos de reconfiguração de módulos reconfiguráveis uma vez que os seus bit-
streams são mais pequenos que bitstreams para a plataforma toda. A tecnologia
também permite que nos FPGAs não sejam necessárias áreas lógicas tão grandes,
o que também reduz o consumo de energia da plataforma.

Um hipervisor que suporte RPD traz grandes benefícios para o sistema, no-
meadamente melhor uso dos recursos de FPGA, implementação de aceleradores em
hardware dinamicamente reconfiguráveis, e tratamento de falhas no hardware. Se
houverem módulos que estejam a demonstrar comportamentos inesperados estes
podem ser reconfigurados. O uso de aceleradores reconfiguráveis permite que o
hardware seja adaptável conforme a necessidade destes pelos diferentes sistemas
operativos. A proposta desta dissertação é então estender o µRTZVisor para ter
a capacidade de usar módulos reconfiguráveis por RPD.

ix

Contents

List of Figures xiv

List of Tables xv

List of Listings xvii

Glossary xix

1 Introduction 1
1.1 Objectives . 3
1.2 Document Structure . 5

2 Literature Review and Related Work 7
2.1 Virtualization . 7

2.1.1 Hypervisor Types . 9
2.1.2 Kernel Architectures . 10

2.2 ARM TrustZone . 12
2.2.1 TrustZone-based Virtualization 13

2.3 Partial Reconfiguration . 15
2.4 Related Work . 17

2.4.1 ReconOS . 18
2.4.2 FRED . 19
2.4.3 ZyCAP . 21
2.4.4 CODEZERO DPR Platform 22
2.4.5 Ker-ONE . 24

3 Platform and Tools 27
3.1 µRTZVisor . 27

3.1.1 Partition Manager . 30
3.1.2 Capability Manager . 31
3.1.3 Memory Manager . 32

xi

3.1.4 Device Manager . 34
3.1.5 IPC Manager . 34
3.1.6 Scheduler . 35
3.1.7 Interrupt Manager . 37

3.2 The Zynq-7000 SoC . 38
3.2.1 PS/PL Communication . 40
3.2.2 Partial Reconfiguration on Zynq 42
3.2.3 AXI Direct Memory Access 44

4 µRTZVisor DPR Framework 47
4.1 Overview . 47
4.2 Hardware Modules . 50

4.2.1 Reconfigurable Partition Manager 51
4.2.2 Reconfiguration Mechanism 54
4.2.3 Memory Access . 54
4.2.4 Reconfigurable Partitions . 56

4.3 Software Task . 57
4.4 µRTZVisor Integration . 61

5 Evaluation 67
5.1 Experimental Setup . 67
5.2 Engineering Effort . 67

5.2.1 Hardware . 68
5.2.2 µRTZVisor Modifications 69
5.2.3 Software Task . 69

5.3 Memory Footprint . 70
5.4 Hardware Costs . 71
5.5 Performance . 72

5.5.1 Reconfiguration Mechanisms 72
5.5.2 RPC Overheads . 73

6 Conclusion 77
6.1 Future Work . 78

References 81

xii

List of Figures

1.1 Generic TrustZone architecture for Space Applications. 2

2.1 System Evolution. 8
2.2 Types of Hypervisor Architectures. 9
2.3 Monolithic Architecture. 11
2.4 Microkernel Architecture. 12
2.5 Modes of an ARM core implementing TrustZone. 13
2.6 Generic ARM TrustZone architecture adaptation suitable for Hy-

pervisors. 14
2.7 Partial Reconfiguration Overview. 16
2.8 ReconOS Hardware Threads synchronization with OS. 18
2.9 Sample schedule of a Software task using two Hardware tasks. . . . 20
2.10 Reconfiguration Approaches. 21
2.11 Block Diagram of the Reconfigurable Region. 23
2.12 Overview of the DPR management framework in Ker-ONE. 25
2.13 Ker-ONE Reconfigurable Regions State Machine. 25

3.1 µRTZVisor architecture. 28
3.2 µRTZVisor Capability Sistem. 31
3.3 µRTZVisor Memory Configuration. 33
3.4 Interrupt Handling in the µRTZVisor. 38
3.5 ZYBO Zynq-7000 Development Board. 39
3.6 Zynq AP SoC architecture. 39
3.7 AXI Channel Transaction Flow. 41
3.8 Reconfiguration Mechanism Selector. 43
3.9 AXI DMA Block Design. 44

4.1 µRTZVisor focused DPR Architecture Overview. 48
4.2 Implemented Hardware Overview. 50
4.3 RP Manager Module Overview. 51

xiii

4.4 RP Manager State Machine. 52
4.5 Check RP0 Execution Flow. 53
4.6 ICAP Control Unit Overview. 54
4.7 Memory Access Module Overview. 55
4.8 Memory Access Read Branch Execution Flow. 55
4.9 RP Overview. 56
4.10 RM example Execution Flow. 57
4.11 Software Service Execution flow. 59
4.12 Private Configuration Request Execution flow. 60

5.1 Engineering Effort related to the number of RPs on the Hardware. . 68
5.2 Engineering Effort related to the number of RPs on the Software

Task. 70
5.3 Hardware Costs for a minimalistic setup. 71
5.4 Reconfiguration Times for the different Mechanisms. 73
5.5 Overhead introduced for each Operation. 74
5.6 Execution Flow for Generic Configurations Requests. 75
5.7 Execution Flow for a Private Configuration Request with Reconfig-

uration. 75

xiv

List of Tables

3.1 IPC operations available over ports. 35
3.2 AXI Ports on the Zynq-7000 SoC. 42
3.3 AXI DMA channels measured Throughput. 45

4.1 RP Manager register map. 58

5.1 Impact on the Hypervisor TCB. 69
5.2 µRTZVisor memory footprint. 70
5.3 Available Resources on the ZYBO SoC. 71
5.4 Average Measured Reconfigurations throughput for each mechanism. 72

xv

List of Listings

4.1 Configurations for secure AXI and DMA. 61
4.2 Additional page tables for AXI peripherals. 62
4.3 Device configuration for AXI DMA. 62
4.4 Translate Function added to the Memory Manager. 63
4.5 Configuring the devices for use by the Task. 63
4.6 Interrupts Configuration. 64
4.7 Send and Grant Port configuration for Partition 1. 64
4.8 Receive Port configuration for Partition 1. 64
4.9 Linker script edit for guest partitions. 65
4.10 Configuraring Interrupt on the partition code. 65

xvii

Glossary

µRTZVisor Microkernel Realtime TrustZone-assisted Hypervisor
AMBA Advanced Microcontroller Bus Architecture
AP SoC All Programmable System-On-Chip
API Application Programming Interface
APU Application Processing Unit
ASIC Application Specific Integrated Circuit
AXI Advanced eXtensible Interface
AXI DMA Advanced eXtensible Interface Direct Memory Access
CPU Central Processing Unit
DevCfg Device Configuration Interface
DMA Direct Memory Access
DMAC Direct Memory Access Controller
DPR Dynamic Partial Reconfiguration
DRAM Dynamic Random Access Memory
DSP Digital Signal Processing
FIFO First-In First-Out
FIQ Fast Interrupt Request
FPGA Field Programmable Gate Array
FRI FPGA Reconfiguration Interface
GIC Generic Interrupt Controller
GPOS General Purpose Operating System
hwMMU hardware Memory Management Unit
ICAP Internal Configuration Access Port
IoT Internet of Things
IP Intellectual Property
IPC Inter-Partition Communication
IRQ Interrupt Request
ISA Instruction Set Architecture
MEMIF Memory Interface

xix

MIO Multiplexed Input/Output
MM2S Memory-Mapped to Stream
MMU Memory Management Unit
OS Operating System
OSFSM OS Synchronization Finite State Machine
OSIF Operating System Interface Module
PCAP Processor Configuration Access Port
PCB Partition Control Block
PL Programmable Logic
PR Partial Reconfiguration
PRR Partial Reconfigurable Region
PS Processing System
RAM Random Access Memory
RM Reconfigurable Modules
ROM Read-Only Memory
RP Reconfigurable Partition
RPC Remote Procedure Calls
RTOS Real-Time Operating System
S2MM Stream to Memory-Mapped
SMC Secure Monitor Call
SoC System-on-Chip
SRAM Static Random-Access Memory
SWaP-C Size, Weight, Power and Cost
TCB Trusted Computing Base
TMR Triple Modular Redundancy
TZASC TrustZone Address Space Controller
TZMA TrustZone Memory Adapter
TZPC TrustZone Protection Controller
VE Virtualization Extensions
VHDL Very High Speed Integrated Circuit Hardware Description

Language
VM Virtual Machine
VMM Virtual Machine Monitor

xx

1. Introduction

In this technological era where the interconnectivity between everyday objects
is rising, embedded systems are becoming more and more predominant in our lives,
bringing us closer to the Internet of Things (IoT). The connection to the Internet
that many contemporary devices are capable of establishing, enables the user to
access remote sensor data anywhere in the world. Many of these devices, aside
from their core functionality, have some non-critical features that require man-
agement, and the growing necessity for these heterogeneous environments around
embedded system solutions has led to a rise in the complexity of these systems.
To manage such increase in complexity while still being a Size, Weight, Power
and Cost (SWaP-C) optimized system, virtualization has become a normalized
practice. To further complement this approach, and given the great emphasis to
flexibility and performance on some safety-critical environments, there is a grow-
ing investment in exploring Field-Programmable Gate Arrays (FPGA) assisted
approaches[GPG+15, PRAM17].

Virtualization allows the coexistence of heterogeneous environments on the
same hardware platform [RG05] while enforcing the crucial features mentioned
above, and can be both software or hardware-based. Contrary to more classical
approaches, where complex systems could have multiple embedded control units,
virtualization allows modern single embedded devices to run critical background
services concurrently with user-oriented applications.

TrustZone hardware architecture [ARM09] virtualizes a physical core as two
virtual cores, providing two execution environments: the secure and the non-secure
worlds. This feature enables a strong temporal and spatial isolation between the
guest Operating Systems (OSes), since the active guests runs on the non-secure
world, while the inactive guests remain in the secure world. ARM TrustZone
technology can be used to implement a virtualization solution with low overhead
and low footprint [POP+14], with hypervisors that introduce a virtualization layer
to the system stack, which enable the management of different instances of OSes,
arbitrating their execution and resource usage, according to the chosen policy.

1

2 Chapter 1. Introduction

Furthermore, the wide spread of ARM processors also helps on making the porting
solution easier.

FPGA Fabric

ARM TrustZone-enabled SoC

Application Application

RTOS GPOS

Reconfigurable
Modules

Hypervisor

BUS Interface

Figure 1.1: Generic TrustZone architecture for Space Applications.

Taking the example of a satellite operating system as seen in Figure 1.1, hyper-
visors can introduce several benefits to the system by allowing the incorporation
of multiple OSes into a single hardware platform. The communication and control
signals of the satellite are the critical tasks that cannot fail as they are essential to
keep in contact with ground control and managing the satellites’ telemetry and, as
such, they should be run on a Real-Time Operating System (RTOS). Aside from
that, some satellites have additional features like live video feed that is broadcasted
on Internet platforms, which is a non-critical task and can be run in a General
Purpose Operating System (GPOS). Having one hypervisor managing these OSes
in a single platform reduces the amount of hardware necessary, which consequently
reduces the risk of hardware fails.

Another technology that has been explored in recent decades, and is prone to
use in space applications and hypervisors that have hardware modules, is Partial

Chapter 1. Introduction 3

Reconfiguration (PR) [Xil17] given the reconfigurability that it brings during run-
time. This allows the system to have its functionalities changed during runtime
using Dynamic Partial Reconfiguration (DPR), without needing to reconfigure all
the hardware. In space, where high radiation can actively lead to the misbe-
haviours of hardware components, PR shines in critical hardware modules since,
when a fault is detected, it allows the hardware module to be reconfigured. As
with any system during useful life, components exhibit a failure rate, and to help
solving this problem, DPR can ensure the system reliability for longer. Triple
Modular Redundancy (TMR) is already a common practice to detect faults in
critical, not tolerable to fail modules. If any of the three modules fails, the other
two can correct and mask the fault. If a module is detected to consistently fail, it
can be replaced using DPR, maintaining the system properly working. Another
DPR benefit is that it allows to expand the security spectrum of the hypervisor
hardware system by implementing security by diversity. This means implementing
the same functionality using different implementations. When the system is de-
tected to be under attack, the modules can be reconfigured through DPR changing
their behaviour, while still obtaining the same results. Even if an attacker identi-
fies the configuration of one implementation, changing that implementation during
runtime will change the module footprint and force the attacker to discover the
new behaviour of the hardware module.

Therefore, an hypervisor-based system that supports DPR, can bring improve-
ments to the overall system,in performance, reliability and security.

1.1 Objectives

With the aforementioned points in mind, the proposal for this thesis is to create
a mechanism to support the use of partial reconfiguration for µRTZVisor, which
is a bare-metal TrustZone-assisted embedded hypervisor [MAC+17], exploring the
potential benefits of a microkernel architecture and object-oriented implementa-
tion. The hypervisor will be extended with a software-hardware co-designed DPR
framework focused on managing the reconfigurations and assignment of hardware
accelerators according to requests of guest OSes.

A user-level software module will implement a DPR Manager, responsible for
providing appropriate responses to the multiple requests for hardware accelerators
from guest OSes, supported by a hardware controller module directly connected
to each Reconfigurable Partition (RP) that will provide information about the
current execution state and configuration of each RP.

4 Chapter 1. Introduction

This way, the FPGA resources can be treated as user applications, making the
simultaneous management of hardware and software tasks possible in the hypervi-
sor. Therefore, the DPRManager will allow µRTZVisor to support reconfiguration
of multiple RPs dynamically. The system will focus on the following goals:

• Hardware Tasks: As DPR allows to reprogram part of the FPGA while the
rest of the hardware system is still running without interference, it is possi-
ble to introduce hardware tasks. Hardware tasks can be, for example, tasks
which were formerly executed in software by the guests, implemented as
hardware accelerators. A set of RPs will be used as containers for the hard-
ware accelerators. In this system, hardware tasks are predefined bitstream
files which hold the module fabric information for the desired hardware ac-
celerator and have a target RP. The accelerators might be provided by the
Manager itself or optionally by the guest that made the request. Different
hardware tasks are dispatched by programming the assigned RPs with the
respective bitstream file;

• Low Reconfiguration Overheads: As with most systems, one of the main
requirements is to limit the overhead introduced by services as much as pos-
sible. To do this, the proposition is to implement the fastest reconfigurable
method possible in the selected hardware platform, and couple it with fast
responses to the guest OSes requests. A set of interrupts will also be imple-
mented to send important signals to the guest, such as the end of execution
by the module. This way, the guest OS is free to run other software tasks
during the hardware reconfiguration and execution.

In summary, the proposed solution is intended to manage both software and
hardware tasks, alongside the capability to reconfigure the modules when the
need appears as fast as possible. The mechanism implemented and integrated
into µRTZVisor hypervisor and was deployed in a Xilinx Zynq-7000 System-on-
Chip (SoC) [Xil18b], for which the hypervisor was specifically tailored, will be
under extensive evaluation.

Chapter 1. Introduction 5

1.2 Document Structure

The remainder of this thesis is organized as the following: Chapter 2 introduces
the general techniques and concepts used throughout this thesis, first focusing on
virtualization technology in embedded systems, dealing especially with real-time
constraints. Then, the concepts and principles of DPR technology are described
and the state of the art is presented, introducing their principles and major fea-
tures. In Chapter 3, µRTZVisor is described in detail, which is the base platform
where the proposed architecture will be integrated, while also describing the con-
straints given by the chosen hardware platform, the Zynq 7000. In Chapter 4, the
proposed DPR mechanism architecture is explained, presenting the management
of DPR modules in the system, describing both sharing and security mechanisms.
Fundamental structures and design considerations are presented and explained.
In Chapter 5, the evaluation of the proposed solution is presented, using standard
open-source benchmarks as well as custom experiments are presented. The perfor-
mance of the system in terms of real-time scheduling and reconfigurable computing
are given and analysed. Conclusions and future perspectives are summarized in
Chapter 6.

2. Literature Review
and Related Work

This chapter aims at providing the necessary background to contextualize the
work of this thesis. The concepts of virtualization, hypervisors and their dif-
ferent architectures, TrustZone and Partial Reconfiguration are introduced and
described. Throughout this chapter, the state of the art in embedded virtualiza-
tion is presented, focusing on partial reconfiguration systems and highlighting the
developed solutions for the matter.

2.1 Virtualization

Traditionally, embedded systems were dedicated single-purpose systems char-
acterised by hardware resource constraints and real-time requirements, but, with
the growing computing functionalities and resources on general purpose platforms,
systems that were formerly divided to provide different functions are now merging
into one SoC [Hei11]. This is depicted in Figure 2.1, where 2.1a represents the
more traditional approach with multiple machines running a single application
and 2.1b represents a virtualized solution, with one machine running every ap-
plication. Virtualization is a technology that allows the coexistence of multiple
heterogeneous environments on the same hardware platform, providing an envi-
ronment that abstracts the underlying hardware and enables the safe sharing of
the available resources [Hei07]. The technology is well established in the enterprise
and cloud computing space, but also presents huge benefits for today’s intelligent
portable devices such as smart-phones and vehicles, as it provides the advantages
of better energy efficiency, shorter time-to-market cycles, higher reliability and
overall service consolidation [AH10, SBM+16, Hei08].

Abstraction is achieved by introducing a software layer, called Virtual Machine
Monitor (VMM) or hypervisor [Kai09]. This layer is what allows to have multiple
Virtual Machines (VMs) [SN05] running in the same hardware with improved

7

8 Chapter 2. Literature Review and Related Work

Hardware
Plaftorm

Hardware
Plaftorm

Guest OS

Guest OS

App

Hardware
Plaftorm

Guest OS

App

Hardware
Plaftorm

Guest OS

AppApp

(a) Tradional System.

Hardware Plaftorm

Virtualization Layer - VMM

VM

Guest OS

App

VM

Guest OS

App

VM

Guest OS

App

VM

Guest OS

App

VM

Guest OS

App

VM

Guest OS

App

VM

Guest OS

App

VM

Guest OS

App

(b) Virtualized System.

Figure 2.1: System Evolution.

system safety and security, as the isolation and independence amongst different
system components is assured, with any malfunction or incorrect behaviour being
constrained to their domains and blocked from propagating to others. The virtual
and physical computing platforms are decoupled via the VMs, which guarantee
that each hosted guest has a separate and secure execution environment [Gol74].

The foundations for virtualization were introduced by Popek and Goldberg
[PG74], when they identified the three essential properties for VMs:

• Equivalence: the environment that each VM runs should be the as identical
to the original or the emulated machine as possible, ideally allowing native
OSes to be used directly in VMs without any modifications. If not possible,
minimizing the costs of porting guest software to the VM is required.

• Efficiency: the performance from the incorporated OS must not be severely
affected. For this to be achieved, the VMM must have the lowest over-
head mechanisms as possible, while also improving the system’s safety and
security, providing environment isolation.

• Resource Control: the VMM must be in complete control of all system re-
sources making it impossible for an arbitrary guest OS to alter resources from
other guests. The machines should be thoroughly temporally and logically
isolated.

Chapter 2. Literature Review and Related Work 9

Inevitably, while being hosted in a virtualized environment, the performance
of guest software will be degraded, since the resources are shared with others,
and as such meeting this three properties is required. They enable the porting of
multiple guests to the solution with minimal engineering efforts while enforcing
their isolation and keeping most of the native performance.

2.1.1 Hypervisor Types

A hypervisor or VMM, manages different instances guest OSes, running on
the same platform, allowing them to seemingly run in an isolated environment
by arbitrating their execution according to the chosen scheduling policy, and this
brings performance and safety benefits to the system.

It is possible to distinguish two different types of hypervisors (Figure 2.2)
based on the position of the virtualization layer in the system stack, or based on
the permissions the VMM has to access hardware.

Hardware Plaftorm

Hypervisor

Guest OS Guest OS Guest OS

App App AppApp App App

(a) Type 1 Hypervisor.

Hardware Plaftorm

Hosted Hypervisor
App

OS

App App

Guest OS Guest OS

AppApp

App

(b) Type 2 Hypervisor.

Figure 2.2: Types of Hypervisor Architectures.

Type-1 - bare-metal hypervisors (Figure 2.2a), have direct access to the hard-
ware layer and manage the execution permissions of every system component,
which means that all the hardware accesses are to be mediated and controlled by
the VMM. As a consequence of this being the most privileged software on the run-
ning platform, the performance degradation of guests OSes will only be influenced
by the performance of the hypervisor itself, making this type of hypervisor more
suited to systems that must meet time constraints.

Type-2 - or hosted Hypervisors (Figure 2.2b), do not run directly above the
hardware layer. Instead, they run on a OS that is already executing. This type of
VMM usually does not have permissions to access and perform any operation on
the hardware directly, since those responsibilities usually rest in the OS that runs

10 Chapter 2. Literature Review and Related Work

below the VMM, which usually results in lower performance ratings compared to
type-1 hypervisors.

Regardless of the VMM type, the VMs must behave in the same way as they
would if they were executing directly over the hardware platform. In the domain
of embedded systems, virtualization solutions are mostly bare-metal hypervisors,
because having an OS between the hypervisor and the hrdware will introduce an
additional overhead to the system.

There are two different approaches, applicable to both hypervisor types, to-
wards a virtualization solution: full virtualization and para-virtualization. The
full virtualization technique is also called native virtualization [HRL+08, Kai09].
In this kind of virtualization, guests OSes require no software modification and
rely on the VMM to emulate the low-level features of the hardware platform. This
feature allows native OSes like Linux or Android to run directly inside the virtual
machines. Since it does not rely on OS code, even closed-source software can be
easily hosted. This technique relies on supporting technologies as virtualizable In-
struction Set Architecture (ISA) and hardware extensions, to support unmodified
guests and seemingly make them not aware they are not running on the actual
hardware.

Para-virtualization [KK12, Kai09], on the other hand, refers to communication
between the guest software and the VMM to implement virtualization, with guests
being aware that they are virtualized to take advantage of the hypervisor features.
This mechanism is mostly implemented by modifying the guest software code to
interact with the hypervisor’s Application Programming Interfaces (APIs). This
type of virtualization is especially suitable for architectures without hardware
assistance.

2.1.2 Kernel Architectures

The kernel is a software component in any OS that runs with the highest
privileges, having no restrictions over the entire system, in addition to being part
of its Trusted Computing Base (TCB). Ideally, kernels should be as small as
possible to minimize the frequency of bugs and reduce the TCB’s attack surface,
in order to become fully trustworthy [Kai09, HPHS04, HEK+07].

The classical approach to this problem are monolithic architectures, where all
the modules are linked together in a common address space and execute in the
most privileged mode [KK12, THB06]. Figure 2.3 is an example of a monolithic
implementation of a hypervisor, where all the OS functionalities like interrupt

Chapter 2. Literature Review and Related Work 11

handling, memory management, device drivers, network stacks, Inter-Partition
Communication (IPC) facilities and file systems are implemented inside the kernel.

Hardware Plaftorm

Kernel
Virtual
Devices

Drivers

Memory
Manager

SchedulerIPC
File

System

Guest OS Guest OS Guest OS

App App AppApp App App

Figure 2.3: Monolithic Architecture.

The major advantage of monolithic architectures is that, as all the services
reside in the same address space, the interaction between subsystems is fast and
efficient. The advantage of good performance is coupled with the disadvantage
of a larger TCB, since all code runs with complete access to all system resources
and must, therefore, be trustworthy. In widely used OSes, such as Windows or
Linux, which are colossal systems in terms of lines of code, the number of bugs
and vulnerabilities increases vastly.

An alternative approach to monolithic kernels are microkernel architecture
where the objective is making the kernel as small as possible. Device drivers and
other services are migrated to user-level servers, in order to minimize the TCB
and thus the attack surface [EH13]. As seen in Figure 2.4, only the memory
management, scheduling module and IPC are kept under kernel space, which can
be seen as a minimalistic implementation.

As the main drive with microkernel architectures is to reduce the amount of
privileged code, there are no real differences between a system server and an ap-
plication, since all run in user mode. User applications access system servers
through IPC mechanisms, which become performance-critical in the architecture
[HHL+97]. This induces a handicap to the microkernel approach because of the
obligatory reliance on IPC infrastructure, which was the main reason for micro-
kernels to not be accepted as a valid solution for several years [Lie96].

12 Chapter 2. Literature Review and Related Work

Kernel

Hardware Plaftorm

Guest
OS

Guest
OS

File
System

App App Driver

Memory
Manager

SchedulerIPC

Figure 2.4: Microkernel Architecture.

Microkernel architectures are proven to be more secure than a monolithic ker-
nel, given the benefit that if a service server fails, the hypervisor kernel remains
unaffected, which in a monolithic system could cause the system to be blocked.

2.2 ARM TrustZone

ARM TrustZone technology [ARM09] refers to the security extensions that
were introduced with the ARMv6 architecture. The ARM1176JZ(F)-S processor
was the first of the TrustZone processors, with the hardware architecture aiming
at providing a security framework that enables the device to counter many of the
specific threats that it will experience. TrustZone technology enables system-wide
security by integrating protective measures into the ARM processor, bus fabric,
and system peripheral Intellectual Property (IP).

The TrustZone hardware architecture virtualizes a physical core as two vir-
tual cores, providing two execution environments: the secure and the non-secure
worlds (Figure 2.5). The major change introduced in the hardware architecture is
the ability to tag system resources as belonging to the secure or normal world. To
indicate in which world the processor is executing, there is the new 33rd processor
bit - NS (Non-Secure) bit, which is also extended to the rest of devices, enhanc-
ing control for the system designer over peripheral buses and memory [Win08],
[SRSW14]. To preserve the processor state during the world switch, TrustZone
adds an extra processor mode: the monitor mode, which always executes in the
secure state, independently of the value of the NS bit. Since the processor only
runs in one world at a time, software stacks in both worlds can be bridged via
a new privileged instruction - Secure Monitor Calls (SMCs). The monitor mode

Chapter 2. Literature Review and Related Work 13

can also be entered by configuring it to handle interrupts and exceptions in the
secure side. To ensure a strong isolation between secure and non-secure states,
some special registers are banked, while others are totally unavailable to the non-
secure side. The memory infrastructure outside the core can be partitioned into
the two worlds through the TrustZone Address Space Controller (TZASC) and
the TrustZone Memory Adapter (TZMA), allowing distinct memory regions to be
configured and used in one or both worlds. TZASC can partition the Dynamic
Random-Access Memory (DRAM) into different secure and non-secure memory
regions, by using a programming interface which is only accessible from the secure
side, while the TZMA provides similar functionality but for on-SoC Read-Only
Memory (ROM) or Static Random-Access Memory (SRAM).

User User

System
Supervisor

FIQ
IRQ
Undef
Abort

System
Supervisor

FIQ
IRQ
Undef
Abort

Monitor

Non-secure State Secure State

Figure 2.5: Modes of an ARM core implementing TrustZone.

System peripherals can be also configured as secure or non-secure through the
TrustZone Protection Controller (TZPC).

2.2.1 TrustZone-based Virtualization

Despite the fact that TrustZone extensions are not oriented towards virtualiza-
tion solutions, being a security-oriented technology, the ability to have full control
over the exception system and the different execution levels that can be used for
both guest OSes and hypervisor, means that it provides similar features to those
offered by Virtualization Extensions (VE), and is viable for use in virtualization

14 Chapter 2. Literature Review and Related Work

[PS18]. However, TrustZone does not fulfil the requirements of classical virtual-
ization, as for example, one of the requirements that needs some addressing is
memory management. Although, guests can run nearly unmodified, they need to
be specially compiled to execute in the confinement of their attributed segments,
once TrustZone does not provide two-level address translation, only providing
memory segmentation support through peripherals such as TZASC.

Despite the drawbacks, the extension has been explored in embedded virtual-
ization, given the ubiquity of ARM platforms in everyday devices potentiating the
easy use of the technology. Typically, existing TrustZone-based hypervisor solu-
tions will execute the hypervisor in monitor mode while guests run in non-secure
state to have full leverage of all the facilities. The most common implementations
are usually monolithic hypervisors, supporting a dual-OS configuration, due to
the perfect match between the number of guests and virtual states supported by
the processors, as shown in Figure 2.6.

Non-Secure Apps Secure Apps

Non-Secure OS Secure OS

Hypervisor

Non-secure State Secure State

Figure 2.6: Generic ARM TrustZone architecture adaptation suitable
for Hypervisors.

Over the last few decades, several works have been carried out towards find-
ing viable frameworks for embedded systems using TrustZone technology. In
[Win08], Winter introduced a virtualization framework for handling non-secure
world guests, which was based on a secure version of the Linux kernel that was
able to boot only an adapted Linux kernel as non-secure world guest. Later in
[FLWH10], Frenzel proposes the use of TrustZone technology to implement the

Chapter 2. Literature Review and Related Work 15

Nizza secure architecture, which consists of a minimal adapted version of Linux
kernel (as normal world OS) on top of a hypervisor running on the secure world
side. Those first solutions were followed by SafeG [SHT13], which implements a
dual-OS configuration capitalizing on TrustZone worlds, where an RTOS for time-
critical tasks is running on the secure side while a GPOS runs on the non-secure
world. In a similar implementation, the Secure Automotive Software Platform
or SASP [KLJ+13] is a virtualization framework based on TrustZone that al-
lows the infotainment system of a vehicle to be simultaneously managed alongside
the critical control system, guaranteeing secure device access. VOSYSmonitor
[LCP+17], also enables concurrent execution of two OSes, a safety critical RTOS
and a GPOS. However, this implementation distinguishes itself from others, be-
cause it is implemented over ARMv8-A processors. In the in-house developed
family of hypervisors, the TZVisor family, LTZVisor [PPG+17], which is an open-
source lightweight TrustZone-assisted hypervisor mainly targeting the consolida-
tion of mixed-criticality systems, also supports the coexistence of two OSes: a
secure RTOS running concurrently with an untrusted GPOS.

Nonetheless, some TrustZone hypervisors support more than two guests, name-
ly RTZVisor [PTM16] and µRTZVisor [MAC+17], also from the TZVisor family,
which are capable of running multiple guest OSes at a time by multiplexing them
on the non-secure world.

2.3 Partial Reconfiguration

Partial Reconfiguration has been used to increase the flexibility of systems,
on both standalone FPGAs and heterogeneous platforms that integrate Central
Processing Units (CPU)s and FPGAs on the same platform. Since the focal
point of the dissertation are heterogeneous platforms, they will be the main focus
from now onwards, and in particular the platforms from Xilinx that integrate a
Processing System (PS) and a Programmable Logic (PL) subsystems.

The purpose of hardware-based acceleration is to increase the system through-
put by delegating modules outside the PS to perform former software tasks, pro-
viding more free time on the CPU side, so more tasks can be performed. The
trade-off here results in more hardware resource usage and increased complexity
in system design. It is relevant to say that not all of the overhead is taken off the
PS, since communications procedures between the hardware accelerator and the
PS are still needed and may vary in time with procedures such as handshakes, data
transaction and validation of signals. In order to justify the hardware modules,

16 Chapter 2. Literature Review and Related Work

most of the times, an accelerated task must be faster than its equivalent software
task.

To solve specific problems, a custom hardware accelerator is more efficient
than a general-purpose computer, and custom-designed accelerators can be imple-
mented into PL. Designing an application-specific hardware accelerator can sig-
nificantly increase the computational efficiency by exploiting the parallelism in an
algorithm, as well as removing resource intensive tasks from the CPU processing
time [LOG+03]

FPGAs are reconfigurable hardware chips that can be reprogrammed to imple-
ment varied combinational and sequential logic blocks and can still be considered
low cost compared to Application Specific Integrated Circuits (ASICs) with the
advantage of being quickly reusable. Their reprogramability offers great flexibility
and the opportunity to quickly develop a prototype of a circuit. While not as
fast as ASICs, FPGAs have an advantage in low volume prototyping and proof-of-
concept applications. FPGAs allow hardware designs to be quickly and cheaply
validated and offer a scalable solution for performance-limited systems [HN06].

However, while still providing the parallelism ability, traditional FPGA recon-
figuration had one major drawback - the lack of flexibility in the reconfiguration,
once the whole fabric was required to be reconfigured even when the smallest
modification was necessary. Today, some FPGA vendors, like Xilinx and Altera,
enable run-time reconfiguration in their architectures. RP allows the system to be
designed to have special reconfigurable regions in the FPGA that can be dynam-
ically reconfigured while the remaining of the FPGA design continues to execute
normally, as exemplified in Figure 2.7. As such, PR has been trending in the
scientific community for the past decades [BHH+07], becoming a interesting topic
towards cloud computing [BSB+14] and space applications [McD08].

FPGA

Reconfigurable
Block

Config 4Config 4

Config 3Config 3

Config 2Config 2

Config 1Config 1

Partial Reconfiguration

Figure 2.7: Partial Reconfiguration Overview.

Chapter 2. Literature Review and Related Work 17

As PR enables the dynamic utilization and allocation of resources, designers
can implement more complex algorithms breaking them down into smaller modules
and reconfigure them as they complete their tasks. This eliminates the need for
larger logic areas. It also allows the system’s power consumption to be reduced
when compared to full reconfigurations each time a functionality change is required
[TCL09].

For each configuration implemented for a reconfigurable block, a partial bit-
stream will be generated and his used during the runtime to reconfigure the block.
Partial bitstreams are smaller than full bitstreams and their reconfiguration time
is shorter, which leads to less processing time and energy consumption during the
reconfiguration. Other feature enabled by the technology, is that it can be used to
reconfigure the regions with blank bitstreams while they are inactive and not nec-
essary, as long as the throughput for the configuration is high enough [LPFG10],
reducing power consumption.

Several researchers in the last decade have been searching for a truly effi-
cient dynamic reconfiguration framework [HGNB10], as well as power optimiza-
tion [LKLJ09, BBCS14]. However, the technology is not yet suitable for most
real-world applications as it suffers from a somewhat still expensive reconfigu-
ration overhead, which is still a drawback [McD08]. In a computing-intensive
system, where several mutually exclusive components are sharing reconfigurable
resources, the time lost on reconfiguration will severely degrade the overall per-
formance [HD07] even with carefully executed designs.

2.4 Related Work

In this section, state of the art implementations of DPR frameworks, focusing
on projects making use of runtime reconfigurable hardware platforms in order to
maximize the performance of the system. Related works which target OSes and
hypervisors that employ similar features to ours, and implementations with the
goal of maximizing the reconfiguration throughput for run-time reconfigurations,
are detailed.

One of the concepts that promoted the raise in popularity of frameworks sup-
porting PR, was OSes having core modules accelerated in hardware. OSes pro-
viding their software features implemented as hardware accelerators capable of
concurrent processing with the software, some going further by having a complete
hardware task system, provide great benefits in performance while considerably
reducing the workload on the PS.

18 Chapter 2. Literature Review and Related Work

2.4.1 ReconOS

The key idea behind ReconOS [LP09] is providing the structural foundation to
support a multi-threading programming model across the hardware and software
in SoCs armed with FPGAs. The implemented model, aside from the multi-
threading, provides interfaces, communication channels, such as message queues
and semaphores, memory access and address translation to the hardware threads,
allowing fast integration of new hardware accelerators in the system. Also, the
system comprises software components in the form of libraries and kernel modules
that offer an interface to the hardware, the operating system, and the application’s
software threads.

GET_DATA

PROCESS

PUT_DATA

LOCK

READ

WRITE

UNLOCK

write

read

mutex_unlock

read_data

ready = ‘0’ /
run <= ‘1’

run

ready

data_in

data_outmutex_lock

store_data

ready = ‘1’ /
run <= ‘0’

M
em

o
ry

In
te

rf
ac

e
O

S
In

te
rf

ac
e

In

m
em

o
ry

O
u

t
m

em
o

ry

Hardware Thread

OS Sincronization Finite State Machine

Datapath

Figure 2.8: ReconOS Hardware Threads synchronization with OS.
Adapted from [LP09].

Hardware accelerators are placed in reconfigurable slots as hardware threads,
which are predefined areas of reconfigurable logic equipped with the necessary
communication interface, while software threads alongside with the RTOS kernel
are executed on the devices’ embedded PS. On ReconOS, every hardware thread
is independent from the software tasks, and has access to every service of the
OS which allows for parallel execution of hardware and software threads. To
enable hardware threads to access services, such as semaphores or mutexes, the

Chapter 2. Literature Review and Related Work 19

corresponding software API calls are exposed to the hardware through a Very
High Speed Integrated Circuit Hardware Description Language (VHDL) library.

The management of every hardware thread is done via a custom designed OS
Synchronization Finite State Machine (OSFSM) which is connected to the hard-
ware logic of the accelerator and both the memory, through the Memory Interface
(MEMIF) and the OS, via the Operating System Interface Module (OSIF). The
aforementioned VHDL library is used by the OSFSM to manipulate the interfaces.

Figure 2.8 depicts how the synchronism between the hardware and the OS is
established. At the beginning of an execution cycle, the hardware thread awaits
for the read_data semaphore. When the semaphore is given, the thread reads the
data from the local DRAM and consequently processes it. It then signals the OS
that the data is ready to be stored, operation which is dependent on the MEMIF.
When the cycle is complete, the thread becomes available again and returns to
the await semaphore stage.

When implemented in Xilinx FPGAs, DPR via the Internal Configuration Ac-
cess Port (ICAP) port is used to reconfigure the hardware accelerators during
run-time. Using the ICAP port instead of the more traditional Processor Con-
figuration Access Port (PCAP) allows the hardware to be reconfigured while the
software keeps executing, instead of stalling the operating systems during the
bitstream transfer, while also lowering the times required for each configuration.
However, the PCAP is the most commonly used as it does not require any hard-
ware resources but is limited to the theoretical 145MB/s of throughput, which is
the slowest reconfiguration interface on the platform. The differences between the
PCAP and ICAP will be detailed in section 3.2.

2.4.2 FRED

Another similar project to this work is the FRED framework [BBP+16], which
consists of a heterogeneous computing system composed by a PS and a DPR-
enabled FPGA fabric, both sharing a common memory, supporting both software
and hardware tasks. Hardware tasks are, similarly to the other projects, hardware
accelerators that can be configured and executed on the FPGA.

The FRED framework proposes that software tasks can have parts of their
computation accelerated by requesting the execution of hardware tasks to an en-
tity responsible for managing the hardware. This is where the proposed framework
enters ensuring predictability when reconfiguring the FPGA while minimizing the
overhead related to hardware allocation. Each software task may only be con-
nected to one hardware task at a given time, despite the FPGA being partitioned in

20 Chapter 2. Literature Review and Related Work

multiple regions containing multiple hardware tasks. In the same line of thought,
one hardware task can only be used by a single software task and can execute
only if it has been programmed into one of its slots. Hardware tasks execute in
a non-preemptive manner being that once started the execution related to one
hardware task, they will execute until they finish the process.

The implementation uses an FPGA Reconfiguration Interface (FRI), which is
a peripheral device external to the processor in a similar way to a DMA and hence
does not consume processor cycles to reconfigure slots in runtime. As an example,
Figure 2.9 shows one software task using two hardware tasks consecutively while
being descheduled after requesting the use of the hardware task until the execution
is complete.

Figure 2.9: Sample schedule of a Software task using two Hardware
tasks [BBP+16].

The scheduling mechanism is implemented in a multi-level structure of queues,
composed by software partition queues and the FRI queues. The partition queues
are ordered according to the First-In-First-Out (FIFO) policy. Each time a soft-
ware task issues an execution request for a hardware task, is assigned a ticket
marked with the current absolute time. Then, is inserted into its corresponding
partition queue (depending on the affinity of the hardware task). The partition
queues enqueue a request as long as there are no free slots into the correspond-
ing partition. The FRI queue is fed by the partition queues and is ordered by
increasing ticket time. This mechanism guarantees predictable delays incurred by
hardware task requests,

The communication between the tasks is done by shared-memory. In contrast
to other approaches that store the input/output data into private memory areas
within the FPGA slots, the solution adopted in FRED allows decoupling the time
a hardware task must hold a slot from the scheduling delays of software tasks.
This property facilitates the derivation of bounds on the delay incurred by the
software tasks when requesting hardware tasks.

Chapter 2. Literature Review and Related Work 21

2.4.3 ZyCAP

The ZyCAP [VS14] is a custom PR controller designed to achieve maximum
performance on hardware runtime reconfigurations in Xilinx platforms and to
accelerate the integration of PR in custom made hardware designs, using the
ICAP port, which allows the fastest reconfiguration times on these platforms.
ZyCAP is an open-source hardware IP that is composed by a soft Direct Memory
Access Controller (DMAC), a custom made ICAP manager and the respective
connection to the ICAP and an associated driver, which was implemented having
in consideration the minimal workload possible for the PS. The hardware module
uses two interfaces with the PS, an AXI-Lite interface to exchange the control
signals and an Advanced eXtensible Interface 4 (AXI4) interface connected to an
AXI HP port where the partial bitstreams are fetched to hardware.

Task 1 PR Idle Task2

Idle Task1 Idle Task2

PR Idle

PR PR

Task 1 Idle Task2 Idle

Idle Task1 Idle Task2PR PR

Processing
System

Hardware
Accelerator

Processing
System

Hardware
Accelerator

Task 1
Request

Task 2
Request

Task 1
Request

Task 2
Request

(a) PCAP Reconfiguration Flow.

Task 1 PR Idle Task2

Idle Task1 Idle Task2

PR Idle

PR PR

Task 1 Idle Task2 Idle

Idle Task1 Idle Task2PR PR

Processing
System

Hardware
Accelerator

Processing
System

Hardware
Accelerator

Task 1
Request

Task 2
Request

Task 1
Request

Task 2
Request

(b) ZyCAP ICAP based Reconfiguration Flow.

Figure 2.10: Reconfiguration Approaches. Adapted from [VS14].

The maximum performance was achieved using the Direct Memory Access
(DMA) for the transfers of the bitstreams to hardware. The controller is configured
with the starting address and size of the partial bitstream through the AXI-Lite
interface and bitstreams are transferred from the DRAM to the ZyCAP controller
at high-speed through the AXI HP, port using the burst transfers enabled by the
AXI4 interface. The custom ICAP manager converts the streaming data received
from the DMA controller to the required format for the ICAP port. Finally, an

22 Chapter 2. Literature Review and Related Work

interrupt is used to notify the software when the transfer and the reconfiguration
are complete.

ZyCAP achieved a maximum reconfiguration throughput of 382 MB/s (95.5%
of the theoretical maximum using the ICAP interface accelerated with the AXI
DMA, improving over the Xilinx provided IPs and PCAP significantly. The de-
viation from theoretical maximum is due to the software driver overhead, mainly
when doing the DMA configuration for the bitstream transfer and interrupt han-
dling, but also is caused by the DRAM access latency.

Figure 2.10 shows the differences and the gains obtained using the ICAP based
approach. The ICAP based controller (Figure 2.10a), allows for the reconfiguration
to be performed in parallel to the executing task without stopping the software
execution, as opposed to the PCAP based controller (Figure 2.10b) which needs
the CPU to coordinate the reconfiguration.

However, the ZyCAP was designed for a single RP and follows a predefined
reconfiguration sequence with zero decision time associated. The project was
implemented as a proof of concept and to be used in a multiple reconfigurable
blocks system it would require several modifications.

2.4.4 CODEZERO DPR Platform

Another relevant implementation using DPR was made by Jain et Al. [PJC+13],
where the researchers started with the CODEZERO microkernel hypervisor and
modified it to virtualize and manage both hardware and software components of
the platform. The hypervisor creates an abstraction of the underlying hardware
platform so that it can be used by multiple guest OSes, managing and executing
software and hardware tasks in the same manner, which makes hardware tasks
viewed as another software task. The hypervisor was modified to execute on the
dual-core ARM of the Zynq-7000 hybrid platform while providing support for
hardware task execution and scheduling.

However, the classical DPR technology is not present in this implementation
for hardware reconfiguration. Instead, reconfigurable computing components in
this framework are implemented by intermediate fabrics regions, which are built of
an interconnected network of coarse-grained processing elements overlaid on top
of the original FPGA fabric.

Two scheduling mechanisms were implemented in the hypervisor for the hard-
ware tasks - nonpreemptive hardware context switching and preemptive hardware
context switching. In non-preemptive hardware context switching the scheduling

Chapter 2. Literature Review and Related Work 23

Figure 2.11: Block Diagram of the Reconfigurable Region [PJC+13].

only occurs when a hardware context completes. At the start of a context an inter-
rupt that signals the start of execution is triggered and an hypervisor mutex, the
L4 mutex control, locks the reconfigurable fabric. Another interrupt is triggered
at the end of the execution so that the mutex is released and another context can
be loaded. The advantage of non-preemptive hardware context switching is that
context saving and restoring is not necessary, as the task scheduling occurs only
after a context finishes, implying that minimal modifications are required in the
hypervisor to add support for these tasks, as the existing hypervisor scheduling
policy and kernel scheme are enough.

In the alternative pre-emptive hardware context switching, it is necessary to
save a context frame and to restore it when necessary. Context-saving refers to a
readback mechanism to record the current context, the status, the DMA controller
status and the internal state. This information is stored in the task control block
which is a similar way to saving the CPU register set in a context switch. A context
frame restore occurs when a hardware task is swapped out, and an existing task
resumes its operation. This approach would provide a faster response, compared
to non-preemptive context switching, but the overhead is considerably higher.
This requires modification of the CODEZERO’s task control block data structure
and the hypervisor’s context switch mechanism, as well as a number of additional
APIs.

24 Chapter 2. Literature Review and Related Work

The exchange of data between the PS and PL is done using the DMA method.
The DMAC, being independent from the CPU, allows for transfers to be executed
without creating any overhead to the PS. The DMA is triggered by the hardware,
to store the data in the memory, when the hardware data buffer is full. Addi-
tionally, the PS can also request to read the data from the PL, programming the
DMAC to do the read process.

The researchers tested the system where they demonstrated the functionality
of the implementation with multiple different tasks running concurrently with the
hypervisor providing the necessary isolation [JPC+14].

2.4.5 Ker-ONE

The Ker-ONE [Xia16] represents a re-design of the Mini-NOVA framework
[XPN15a, XPN15b], while following the same design principles, into a new micro-
kernel for the ARMv7 architecture. It was designed having in mind the coexistence
of both software and hardware tasks, and supporting the possibility to reconfigure
the accelerators in runtime using DPR. This allows that, for each Partial Recon-
figurable Regions (PRR) placed on the FPGA, multiple unique algorithms can
be implemented and DPR makes the swapping between functions possible. Aside
from having multiple PRR running different functionalities, it is also possible to
have the same algorithm implemented in more than one PRR. This means, when
requested from a guest OS, the module can be implemented in any of the PRRs,
making unnecessary for the system to have wait for a specific accelerator to be
released.

Implemented on the Zynq-7000 platform, the reconfigurable accelerator mod-
ules are hosted and run in separate PRR, and are reconfigurable by downloading
the configuration data through the PCAP. All the configurations necessary for
each hardware task are sent from the PS to the PL through the AXI GPs. For
the data exchange, the system uses the AXI HP ports. In order to protect the
bitstreams from attacks, all of them are mapped in the memory space of the task
manager. This module is responsible for assigning the most appropriate PRR
when a specific hardware task is required by a guest OS. When a request happens
it checks each PRR and selects the region to be used as well as reconfiguring it if
necessary. Then the caller guest is allowed to use this hardware task as its client.

Figure 2.13 represents the states that each PRR might be at any time. As
depicted, a PRR can only be directly allocated to VMs when it is in idle state and
requires no reconfiguration. In other situations, the allocation process requires
extra overheads caused by PCAP transfer or preemption.

Chapter 2. Literature Review and Related Work 25

Figure 2.12: Overview of the DPR management framework in Ker-ONE
[Xia16].

An extra security mechanism, hardware Memory Management Unit (hwMMU)
was introduced, which guarantees that one hardware task is exclusively used once
it is given to a specific guest OS and the hardware task should only access the
data section of the VM which is currently using it, and accessing a memory space
outside the specific section is forbidden. The hwMMU is implemented in the
reconfigurable regions controller and is in charge of monitoring any access to the
PS side. When a hardware task is allocated to one guest OS, the hwMMU is
configured with the physical address of the guest OS’s hardware task data section.

Figure 2.13: Ker-ONE Reconfigurable Regions State Machine [Xia16].

To know which VM is accessing one specific hardware task, the page tables
where the configuration is kept are updated with information about the VM that
is using it. The hardware task’s behaviour is controlled by a PRR register group,
which contains information about the current configuration and is mapped to its
current VM client as the hardware task interface.

3. Platform and Tools

This chapter aims at providing the contextualization of the hypervisor and
development board used for the development of the project. The µRTZVisor
hypervisor and its architecture, as well as the Zynq 7000 board are introduced
and described.

3.1 µRTZVisor

Designed to achieve better and improved levels of safety and security, the
µRTZVisor is based on a refactoring of the RTZVisor [PTM16], which is a bare-
metal embedded hypervisor that relies on TrustZone hardware to provide the
foundation to implement strong spatial and temporal isolation between multiple
guest OSes, from C to C++ exploring an object-oriented language promoting a
higher structural degree and modularity to the implementation [MAC+17].

The µRTZVisor hypervisor, based on the microkernel architecture, differs from
traditional implementations as instead of using para-virtualization techniques,
which enforce guest source-code modifications, it was designed to keep the RTZVi-
sor’s capability of running nearly unmodified guest OSes while potentiating the
benefits of improved security and design flexibility inherited from the microkernel
implementation.

As TrustZone-enabled processors provide a secure and non-secure view of the
processor, which is also extended to devices and interrupts, guest OSes are allowed
to configure and managed their assigned system resources and interrupts. The
main disadvantage introduced by the technology is that this OSes need to be
compiled to be executed in the assigned memory segments. Another limitation is
that the TZASC only allows for fixed memory sections to be configured as secure
or non-secure. On the Zynq-7000, for the Random Access Memory (RAM) the
granularity is 64MB, which limits the number of possible supported concurrent
guests running on the platform.

27

28 Chapter 3. Platform and Tools

Besides relocation, guest OSes only need to be modified if they are required to
use auxiliary services or shared resources that rely on the kernel’s IPC facilities.
The overview of the hypervisor architecture can be seen in Figure 3.1.

Multi-guest support is achieved by dynamically changing the security state of
the memory segments, devices and interrupts at each context switch. The active
partition has its system resources configured as non-secure during runtime, while
all the inactive partitions have theirs configured as secure. If an active guest tries
to access secure resources, the hypervisor will receive an abort exception to be
handled.

Guest OS
(active)

Guest OS
(inactive)

Applications Applications

ARM TrustZone-enabled SoC

Non-secure State Secure State

ServiceDriver

Su
p

er
vi

so
r

M
o

n
it

o
r

 µRTZVisor MMUScheduler IPC
U

se
r

M
o

de

Figure 3.1: µRTZVisor architecture.

The hypervisor privileged code runs in monitor mode, which is the highest level
of privilege in TrustZone, enabling the complete access and configuration rights
over all system resources at all time. Following the principles of a microkernel ar-
chitecture, only the most essential infrastructures should be implemented at this
level, which is why only the IPC and the required mechanisms to implement the
VM abstraction, spatial and temporal partitioning are implemented at this level.
Secure user mode partitions are used to implement extra functionalities that usu-
ally are in the kernel of a monolithic system. In µRTZVisor, these functionalities
are implemented as server tasks that can be accessed through Remote Procedure
Calls (RPC), sitting on the IPC and scheduling infrastructure. They were imple-
mented as secure world tasks in the hypervisor, since secure virtual address space

Chapter 3. Platform and Tools 29

eliminates the need for relocation and recompilation while also reducing the frag-
mentation inherent to the segmented memory model. This also makes the process
of adding, removing or replacing services easier, while also enabling finer-grained
fault-encapsulation and making the propagation of faults to other components
easier to contain.

A crucial design characteristic of µRTZVisor is that partitions are allocated
statically, at compile-time which simplifies the implementation of partition man-
agement, communication channels and resource distribution. Aside from encapsu-
lating the services, TrustZone’s multiple privilege levels and control over memory
segments, devices and interrupts provides is key in order to achieve a higher degree
of security. Other hardware infrastructures such as virtual address translation and
the capability based system that controls the access to diverse mechanisms present
in the hypervisor also provide more robustness to the solution.

Each capability represents a kernel object or a hardware resource and a set of
rights over it. A partition that owns a certain capability can access it according to
the set read/write permissions. This means, that even secure tasks have to con-
figure and interact with their assigned hardware resources in an indirect manner,
by issuing hypercalls to the kernel, and makes the use of a system resource by
partitions conceptually impossible if they do not own a capability for it. The ca-
pability system overall provides greater control over resource distribution besides
reducing system configuration almost only to the this flexible mechanism.

The implemented capability system provides a set of versatile IPC primitives,
which is the base of any microkernel architecture. These are based on the notion
of a port, constituting an anchor to and from which partitions read and write mes-
sages. Ports allow system designers to specify the existing communication channels
which can be characterized as synchronous or asynchronous, which trade-off se-
curity and performance. Asynchronous communication is safer since it does not
require a partition to block, but entails some performance burden. In opposi-
tion, synchronous communication is more dangerous, since partitions may block
indefinitely, but allows communicate to be faster, by integration with scheduler
functionalities for efficient RPC communication.

One key feature of the µRTZVisor is that both client and server partitions use
the same APIs, which homogenizes the semantics of communication primitives.
The scheduling infrastructure also allows for the direct switch between guest client
and server partitions, reducing overhead, and for secure tasks to be scheduled in
their own right to perform background computations. This creates high-levels of

30 Chapter 3. Platform and Tools

IPC traffic between the VM and the guest OS and higher number of context-
switches but as the VMs are lightweight it significantly reduces overhead.

The real-time scheduler structure is based on the notion of time domains that
execute in a round-robin fashion and to which partitions are statically assigned.
Independently of their domain, higher priority partitions may preempt the cur-
rently executing partition, so that event-driven partitions can handle events such
as interrupts as quickly as possible. However, the budget allocated to these par-
titions must be chosen with care according to the frequency of the events, to
not be exhausted, delaying the handling of the event until the next cycle. This
implementation is enhanced with a time-slice donation scheme in which a client
partition may explicitly donate its domain’s bandwidth to the target server until
it responds, following an RPC pattern.

Finally, it is worth mentioning that the design and implementation of the
µRTZVisor to a Zynq-7000 SoC following a single-core configuration and is heavily
dependent on the implementation of TrustZone features on the platform.

3.1.1 Partition Manager

The partition manager is the kernel module responsible to keep track on the
execution context of each partition, guaranteeing the integrity and consistency of
their CPU state. The module keeps an array of all the Partition Control Blocks
(PCBs), which contain information about each partition state as well as the par-
tition that is currently active. The partition manager is used by other kernel
modules to access the partition’s PCB entries they are using.

As µRTZVisor supports two types of partitions the PCBs are different for
each type, containing specific informations alongside common fields. The com-
mon information for both types that the PCB contains, is information about the
capability space, communication channels, events, devices and the state of execu-
tion of each partition. The specific information kept tasks is limited to user mode
CPU registers, in contrast to guest partitions in which are kept banked registers
for all execution modes and co-processor state.

The partition manager, alongside keeping the execution state of each parti-
tion, is responsible for saving and restoring the context related to the processor
state and coordinates the context-switching process among the different hypervi-
sor core modules. When a different partition is scheduled, the partition manager is
informed of the context change and the performs the context switch before leaving
the kernel. As a coordinator of the system, it performs tasks such as invoking the

Chapter 3. Platform and Tools 31

memory manager to switch be between address spaces when saving and restoring
a partition state.

Other feature of the partition manager is that it can be used to delivery asyn-
chronous notifications to task partitions, in a similar way to Unix-style signals.

3.1.2 Capability Manager

As mentioned before, the µRTZVisor implements a capability system to ad-
dress partition access to system resources. The capability manager is the kernel
module that manages the capabilities providing a fine-grained and flexible super-
vision of the resources. Each capability is an object, that keeps informations in
a data structure about its owner, the object to which it is referenced and the
permissions inherent to the capability itself. In the implemented system, every
hypercall to the kernel requires the guest or task to provide the corresponding
capability.

Partition 1 Partition 2

µRTZVisor

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8 1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

IPC Objects Memory Objects

1 2 81 2 8 1 3 61 3 6

Capability
Spaces

Capabilities

Figure 3.2: µRTZVisor Capability Sistem.

As capabilities are created and assigned to the partitions at initialization time
according to the system design, the system guarantees that one partition does
not interact with objects that it doesn’t possess a capability to. There are fixed
capabilities, which are always in the same position of the capability space of all
partitions, as in example the capabilities that refer to objects as the address space.
Other capabilities are given a name at initialization, name who’s partitions need to
fetch during execution to access the objects. Figure 3.2 gives a briefly illustration
of the system. As an example, Partition 1 is configured with access to capabilities

32 Chapter 3. Platform and Tools

1, 2 and 8 at design time, and if the partition desires to use the IPC, it needs,
after initialization, to fetch the capability connected to the index 1 that assigned
to a certain IPC object, in order to be able to send or receive messages from other
partitions.

There is also the mechanisms to dynamic grant the access rights to other
partitions through the IPC. The Grant operation consists of creating a derived
capability, which is a copy of the original one, with only a subset of its permissions,
and assigning it to another partition. This means that the granter must possess
a capability for a port owned by the recipient. In turn, the revoke operation
withdraws a given capability from its owner, and can only be performed by one of
the partitions in a preceding grant chain. There is also a third type of capabilities
which is called a one-time capability, that can only be used once. The first time
a partition uses this capability it is erased from the partition’s capability space.

3.1.3 Memory Manager

The Memory Manager module is responsible to do the building of all the ad-
dress spaces for the partitions figuring out their layout in the physical memory.
Since in Zynq-based devices, TrustZone memory segments have a granularity of 64
MB, the manager needs to check each partition memory space in order ot guaran-
tee that when a guest partition is active, its the memory segment is configured as
non-secure. This is required because if the guest is unaligned with a 64MB segment
or if it the guest OS binary is bigger than 64MB, two segments must be configured
as non-secure. This early address space building also detects if two guests were
built to run by sharing the same memory segment and the manager will halt the
system, since the spatial isolation requirement cannot be guaranteed. From the
remaining free memory, the memory manager will build the virtual address spaces
for secure tasks.

In addition, in the current implementation, no more memory can be allocated
by tasks after initialization, so partition binaries must contemplate, at compile-
time, memory areas to be used as stack and heap, according to the expected system
needs. This module also manages two page tables used by the secure interface of
the Memory Management Unit (MMU). The first is a 1-to-1 mapping to physical
memory and is used when a guest partition is currently active. The second is used
when a task partition is active and is updated each time a new task is scheduled.

Since it is expected that secure service partitions do not need to occupy a
large number of pages, only the individual page table entries are saved in a list
structure. The extra-overhead of updating the table at each task context restore

Chapter 3. Platform and Tools 33

was preferred to keeping a large and variable number of page tables and only
switching the page table pointer, reducing the amount of memory used by the
hypervisor. Despite the transparent view of the top physical address space, this
is controlled by managing a set of three extra page tables that map the 4 KB
peripheral and the TZPC and TZASC partitioning infrastructure that enables
control over guest access to peripherals and shared slices.

Partition
Memory

µRTZVisor
Memory

0xFFFF_FFFF

0xFFFC_0000

0xF810_0000
0xF800_0000

0xE02F_FFFF

0xE000_0000

0x3FFF_FFFF

0x03FF_FFFF

0x0000_0000

0x0400_0000

Slice Region

Peripheral and
Control Registers

Figure 3.3: µRTZVisor Memory Configuration.

Figure 3.3 shows how the physical address space is organized. The hypervisor
code and data are placed in the bottom 64 MB memory segment, which is always
set as secure and mapped as kernel, privileged memory. The above memory region
until the 1 GB limit is memory assigned to partitions. Above the 1 GB limit, the
address space is fixed for all partitions, having the peripheral register area, and,
at the top, a memory region of 4KB security configurable segments, which serve
as slices and are used for guest shared memory.

Once the address space is determined, a capability is inserted into each par-
titions capability space that enables them to perform operations over it, such as
creating and mapping objects representing some portion of their physical memory
and that are support shared memory mechanisms. Two types of memory objects

34 Chapter 3. Platform and Tools

are supported by the µRTZVisor being them page and slice objects, always rep-
resented and manipulated through capabilities and this objects can be granted
through the IPC mechanism for usage by other partitions. Although both kinds
of objects may be created by guest and task partitions, only slice objects may
be mapped by guests, since guest address space control is exclusively performed
through TrustZone segmentation mechanisms.

3.1.4 Device Manager

The Device Manager job is to manage a set of three page-tables and configur-
ing TrustZone registers to enable peripheral access to task and guest partitions,
respectively. Each peripheral comprises a 4 KB aligned memory segment, which
enables mapping and unmapping of peripherals for tasks, since this is the finest-
grained page size allowed by the MMU.

When a peripheral is assigned to a task, the entry for that device is modified to
allow user mode access at each context switch. For all non attributed devices, the
reverse operation is performed. An analogous operation is carried out for guests,
but by setting and clearing the peripheral secure configuration bit in a TrustZone
register. If a peripheral is assigned to a partition, it can be accessed directly, in a
pass-through manner, without any intervention of the hypervisor.

At initialization, the device manager also distributes device capabilities for
each assigned device according to the system configuration, in a similar form of the
memory manager, as the peripherals are memory mapped. Here, when inserting
the capability in a partition’s capability space, the manager automatically maps
the peripheral for that partition, allowing the partition to directly interact with the
peripheral without ever using the capability. Partitions can also grant capabilities
to use devices to other partitions. Another feature of the implementation is that
the configuration that devices posses can also be secure and non-secure, which will
influence the allowance of access to the DMA mechanism.

3.1.5 IPC Manager

The IPC Manager implemented on the µRTZVisor is based on the notion of
ports, which are kernel objects that act as endpoints through which information
is read from and sent to in the form of messages. Communication mechanisms
are built around the capability-system, in order to promote a secure design and
enforce the principle of least authority.

Chapter 3. Platform and Tools 35

Similarly to devices and interrupts, ports are created at design time, and for a
partition to perform a IPC operation over it, the partition must have a capability
referencing the port with permissions for the operation wanted. In order to ensure
the communication process between partitions each endpoint of a port should
possess capabilities with the minimum read and write permissions. Port operations
may work in a synchronous or asynchronous style, and are further classified as
blocking or non-blocking.

Synchronous communication requires that at least one partition blocks wait-
ing for another partition to perform the complementary operation, while, in asyn-
chronous communication, both partitions perform non-blocking operations, but
asynchronous communication requires a double data copy: first from the sender’s
address space to the kernel, and then from the kernel to the recipient’s address
space, being the with the lowest performance oriented operation.

Port Operations Sync Async Blocking Non-Blocking
Send x x - x

RecvUnblock - x - x
RecvBlock x - x -
SendReceive x/- x/x - x

SendReceiveDonate x/x x/- x -
ReceiveDonate x - x -

Table 3.1: IPC operations available over ports.

Table 3.1 summarizes all IPC primitives over available ports. As shown in the
table, there are two kinds of receive operations — blocking and non-blocking. In
blocking operations, the partition will wait for a complementary send operation
to happen on the respective port to resume its execution. On non-blocking the
partition will check for messages in the port’s message buffer, which stores mes-
sages in FIFO fashion, returning one available message or an error value if the
port is empty. When performing an operation with the -Donate suffix, the par-
tition is donating its execution time-slice to the recipient partition, and it blocks
its execution until receiving a response message from that same partition.

3.1.6 Scheduler

The Scheduler in the µRTZVisor was implemented in order to provide fast
interaction between partitions as well as enabling the coexistence of both real-
time and non-real-time applications. The main idea behind the architecture is to
an execution window with a configurable, constant and guaranteed bandwidth in
a round-robin style scheduler, which schedules time domains.

36 Chapter 3. Platform and Tools

At design, each time domain is assigned an execution budget and a single
partition. The sum of all execution budgets constitutes a execution cycle, which
whenever a cycle is completed all the budgets are restored according to the design.
The idea is that a partition executes in a time domain, until its execution budget
is met, and then the scheduler will schedule the next domain. The implementation
guarantees that each partition meets its execution budget in every execution cycle,
providing a safe execution environment for time-driven real-time partitions.

Aside from the normal time domains, a special time domain is also provided,
the domain-0, allows that to have assigned multiple partitions that are scheduled
in according to the priority set at design time, in a time-sliced manner. At every
scheduling point, the priorities of the currently active time domain’s partition and
the domain-0’s highest priority ready partition are compared, and if the highest
ready domain-0 partition priority has indeed an higher priority than the current
domain, the domain-0 pre-empts the current domain, and starts to consume the
domain-0 time budget.

Aside from the normal scheduling features, with the objective of having fast
interaction between partitions, some of the functionalities were coupled with IPC
operations. The ReceiveBlocking, SendReplyDonate and ReceiveDonate opera-
tions result in changes to the scheduling routine. The ReceiveBlocking operation
allows to change the partition state to blocked, and then scheduling the next
ready partition from domain-0 to do background work. In this case the domain-0
partition keeps consuming the blocked partition, as the running time domain is
not changed. In this scenario the next scheduling point will be triggered in three
cases. First case occurs when the domain-0 internal time slice expires resulting
in scheduling the next highest priority partition from domain-0. The second case
happens when the active time domain budget expires, and the next time domain
is scheduled. The last case is when the executing partition sends a message to the
active time domain partition, resulting in the unblocking of the previously blocked
partition and scheduling it right away. Upon blocking, a partition remains in this
state until it is unblocked by receiving a message on the port it is hanging.

The other operations, namely the SendReplyDonate and ReceiveDonate, re-
sult in a partition explicitly donating its time budget to the recipient port’s owner,
staying blocked until the message recipient sends its response. In case the donator
has a higher priority than the donatee server, the latter will inherit the former’s
priority, augmenting the chances of it to execute and to resolve the dependency
faster. This enables services to be provided in a priority-based manner, main-
taining the priority semantics of the requesting partitions. However, a donate

Chapter 3. Platform and Tools 37

operation may be performed to or from a partition that is already part of a dona-
tion chain in a transitive manner, constituting a more intricate scenario. Whatever
partition is at the tail of the chain, it will be the one to execute whenever one of
the preceding partitions is picked by the scheduler. As so a mechanism to detect
deadlocks is provided, which aimed at being as lightweight as possible, considering
its pervasive execution in every donation procedure.

One consideration in the implementation is that all the design was devised so
that guest partitions are placed in common time-domains and secure task par-
titions are placed in domain-0, allowing to have the secure tasks encapsulating
the kernel services, that can be configured with lower priorities executing only
when they are useful for guest partitions. This model allows for the coexistence
of event-driven and background partitions in domain-0, while supporting guests
with real-time needs and that require a guaranteed execution bandwidth.

3.1.7 Interrupt Manager

As with any TrustZone-assisted system the GIC allows an interrupt to be
configured as secure or non-secure, as well as supporting secure interrupts to be
configured with higher priorities than non-secure. The CPU and GIC can also be
configured so that all secure interrupts are received in monitor mode by the hy-
pervisor as Fast Interrupt Request (FIQ) exceptions, and all non-secure interrupts
to be directly forwarded to the non-secure world as Interrupt Request (IRQs). All
of these features enable the hypervisor to have complete control over interrupts,
their priority and preemption, while enabling pass-through access of guests to the
GIC.

The implemented interrupt manager assumes that one interruption can only
have one implemented handler in the entire system, regardless of the position in
the system stack, as they may be in the kernel or in one of the partitions. If the
interrupt is assigned to one partition in the configuration, the capability for the
interrupt will be added to its capability space with the grant permission cleared.
Partition interrupts are always initially configured as disabled and configured with
the lowest priority possible.

Task partitions cannot be granted access to the GIC, since as they run on the
secure world, they would have complete control over all interrupts. All interactions
with the GIC are based on the hypervisor by invoking capability operations which
allow tasks such as interrupt enable or disable. In contrast guest partitions can
directly interact with the GIC, as a virtual GIC is maintained in the virtual
machine.

38 Chapter 3. Platform and Tools

Normal
Execution

IRQ
Handler

Interrupt Interrupt

(a) Normal Interrupt Handling.

Normal
Execution

IRQ
Handler

Interrupt Interrupt

(b) Critical Interrupt Handling.

Figure 3.4: Interrupt Handling in the µRTZVisor.

While a guest is inactive, its interrupts are kept secure but disabled. Before
running the guest, the hypervisor will restore the guest’s last interrupt configura-
tions as well as a number of other GIC registers that are banked between worlds
and may be fully controlled by the guest. Active guests receive their interrupts
transparently and as soon as they appear. Otherwise, as soon as the guest be-
comes active, the interrupts that became pending during its inactive state are
automatically triggered and are received normally through the hardware excep-
tion facilities in the non-secure world. This can be seen in Figure 3.4a. If the
partition has sufficient priority, it will preempt the currently active partition and
immediately receive and handle the interrupt Figure 3.4b.

3.2 The Zynq-7000 SoC

As µRTZVisor was tailored for the Zynq-7000 SoC, the board chosen to de-
velop the thesis was the low cost ZYBO board (Figure 3.5) which still manages to
keep the processing power and extensibility of the Zynq Xilinx All Programmable
System-on-Chip (AP SoC) architecture. The ZYBO [Dig16] is an entry-level plat-
form suitable for embedded systems development built around the smallest mem-
ber of the Xilinx Zynq-7000 family. The Zynq AP SoC is divided into two distinct
subsystems, the PS and the PL.

The PS consists of many components, including the Application Processing
Unit (APU) which includes two Cortex-A9 processors, an Advanced Microcon-
troller Bus Architecture (AMBA) Interconnect, a DDR3 Memory controller, and
various peripheral controllers with their inputs and outputs multiplexed to 54
dedicated pins, also called Multiplexed Input/Output (MIO) pins. The ZYBO
contains the Xilinx Zynq-7000 (XC7Z010-1CLG400C) SoC, which features a total
of 28,000 logic cells, 240 KB Block RAM, 80 DSP slices, 12-bit On-chip dual chan-
nel Analog-to-Digital converter (XADC) on the PL side, which must be configured

Chapter 3. Platform and Tools 39

Figure 3.5: ZYBO Zynq-7000 Development Board.

either directly by the processor or via the JTAG port. The SoC also contains sev-
eral low and high bandwidth peripheral controllers such as SPI, UART, I2C, 1G
Ethernet, USB 2.0 and SDIO, and other ports like HDMI, VGA, microSD, Au-
dio codec with headphone out, microphone and line in jacks. The overall SoC
overview can be seen in Figure 3.6.

Figure 3.6: Zynq AP SoC architecture.

40 Chapter 3. Platform and Tools

3.2.1 PS/PL Communication

The Zynq-7000 device builds up the communication bridge between PS and PL
by implementing several types of interfaces which are based on a standard AXI pro-
tocol. Peripheral controllers that do not have their inputs and outputs connected
to MIO pins can instead route their I/O through the PL, via the Extended-MIO
(EMIO) interface. The peripheral controllers are connected to the processors as
slaves via the AMBA interconnect, and contain readable/writeable control regis-
ters that are mapped in the processors’ address space. The programmable logic is
also connected to the interconnect as a slave, and designs can implement multiple
cores in the FPGA fabric each containing addressable control registers. Further-
more, cores implemented in the PL can trigger interrupts to the processors and
perform DMA accesses to DDR3 memory.

3.2.1.1 AXI

The Advanced eXtensible Interface (AXI) is the third generation of the AMBA,
which is an interconnect specification that describes the connection and manage-
ment of functional blocks in a SoC design. It was developed to support high-
performance, high-frequency system designs, having separate phases regarding
address/control configurations and data transmission on different channels, also
using burst-based transitions, that allow write or read operations on sequentially
addressed locations only issuing the first/start address. The AXI protocol includes
the AXI4-Lite specification, with simpler control register style interfaces within,
only allowing one data transfer per transaction, instead of the 256 data transfers
in one burst allowed by AXI4 [ARM11].

As aforementioned, the AXI protocol defines a set of channels regarding trans-
actions in the realm of control configurations and data transmission. These chan-
nels are: read address, write address, read data, write data and write response.
An address channel carries the information that describes the nature of the data
to be transferred. This data is then transferred between a master and a slave,
through a read or write channel, depending on the transaction in hand. In a read
transaction (Figure 3.7a), after the master indicates which is the address it is
trying to read, data will flow from the slave to the master, through a read data
channel. In a write transaction (Figure 3.7b), data will be transferred from the
master to the slave through a write data channel and, after the data is written,
the slave uses the write response channel to signal that the transfer has ended.

Chapter 3. Platform and Tools 41

(a) Read Transaction.

(b) Write Transaction.

Figure 3.7: AXI Channel Transaction Flow.

The way in which AXI4 is organized, providing separate channels for addresses
and data for both read and write transactions, allows for simultaneous bidirectional
transactions, while enabling address information to be issued prior to the actual
data transfer, which can speed up the communication process, given that the
master and slave implement the necessary logic.

Each of the channels consists of a set of information signals and VALID and
READY signals that provide a two-way handshake mechanism. The information
source uses the VALID signal to indicate when valid address, data or control
information is available on the channel. The destination uses the READY signal
to denote when it is ready to accept the information. Both the read data channel
and the write data channel also include a LAST signal to indicate when the final
data item in a transaction is being transferred. The timing of this handshake
mechanism, implemented in a few different fashions.

In each port there is an individual address channel for read and write transac-
tions, and each appropriate address channel carries all the required address and

42 Chapter 3. Platform and Tools

control information for a transaction. The read or write data channel carries the
read or write data and the read or write response information from the slave to
the master, while supporting a data bus, that can be 8, 16, 32, 64, 128, 256, 512,
or 1024 bits wide depending on the burst size. Write data channel information
is always treated as buffered, so that the master can perform write transactions
without slave acknowledgement of previous write transactions.

The majority of systems with AXI consist of several master and slave devices
connected through an interconnect, providing a single interface definition between
a master and the interconnect, a slave and the interconnect and a master and
slave.

PL Mode Port Throughput Description

Slave M_AXI_GP0

600 MB/s General Purpose PortsM_AXI_GP1

Master

S_AXI_GP0
S_AXI_GP1
S_AXI_ACP 1200 MB/s Accelerator Coherency Port
S_AXI_HP0

1200 MB/s High Performance PortsS_AXI_HP1
S_AXI_HP2
S_AXI_HP3

Table 3.2: AXI Ports on the Zynq-7000 SoC.

All the AXI port present on the Zynq are shown in Table 3.2. The AXI GP
enable the PS to access the PL directly is through the interface with the reserved
memory address space associated with it. Within this range the user can map
several PL modules and interact with them. Contrary to the AXI-HP and AXI-
ACP interfaces which only support slave mode in the PS, the AXI-GP support
both master and slave modes.

3.2.2 Partial Reconfiguration on Zynq

On Xilinx based systems, a PR system allows to have multiple user-defined
logical sections can be dynamically reconfigured. Each logical section is a RP
with the ability to have unlimited implemented configurations inside. For every
Reconfigurable Module (RM) for each RP, a partial bitstream is generated.

Partial bitstream files are processed just like normal bitstreams on a full re-
configuration of the FPGA, and contain all the configuration commands and data
necessary for a reconfigurable partition and the implemented logic. They have the

Chapter 3. Platform and Tools 43

Figure 3.8: Reconfiguration Mechanism Selector.

characteristic that they cannot be sent to the wrong logic area, as they contain
the configuration for specific hardware components. As such bitstream file sizes
will vary only depending on region size and resource type contained in the region.

On Zynq-7000 AP SoCs, PR can be performed using either the PCAP or the
ICAP and additionally the JTAG interface, the last one being more suitable for
debug purposes. All the interfaces are mutually exclusive and cannot be used
simultaneously, but there is the possibility to switch between in runtime using the
DevCfg registers as shown in Figure 3.8. The reconfiguration times will depend on
two factors, the configuration bandwidth of the used port and the partial bitstream
file size.

3.2.2.1 PCAP

The Processor Configuration Access Port (PCAP) is a reconfiguration con-
troller used for PR. The PCAP is accessed through a Device Configuration Inter-
face (DevCfg) that has a dedicated DMA controller to transfer the bitstreams from
the DRAM memory to the PCAP in order to have the reconfiguration executed.
The PCAP is a configuration interface that is tightly coupled with the PS region
of the SoC and has the capability of performing partial and full reconfigurations.
The port allows to write and read configurations, but is limited to a theoretical
maximum throughput of 145MB/s.

44 Chapter 3. Platform and Tools

3.2.2.2 ICAP

The Internal Configuration Access Port (ICAP) also provides the ability to
perform PR but as it requires the instantiation of an ICAP controller as well as
logic to drive the bitstream to the ICAP interface on the FPGA, it cannot perform
full reconfigurations. Additional to the configuration interfaces being mutually
exclusive, the ICAP is only available after the FPGA is configured and can only
be accessed once the other ports are de-selected.

This option requires more engineering effort but is useful when higher perfor-
mance is needed with configuration bandwidths up to the theoretical 400 MB/s.

3.2.3 AXI Direct Memory Access

The AXI Direct Memory Access (AXI DMA) IP core [Xil18a] provided by
Xilinx allows for high-bandwidth transfers between the AXI4 memory mapped
and AXI4-Stream IP interfaces. Another feature that the IP has is that it can
offload data movement tasks from the CPU in processor-based systems, with the
Scatter/Gather Engine it possesses. The IP core is accessible through the AXI-
Lite interface and enables the PS to configure and manage the core registers as
well as starting transfers. Figure 3.9 illustrates the overall block diagram of the
AXI DMA core.

Figure 3.9: AXI DMA Block Design.

Chapter 3. Platform and Tools 45

Primary high-speed DMA data movement between system memory and the
target is done in stream type transfers through the AXI Read Master to AXI DMA
Memory-Mapped to Stream (MM2S) Master and AXI Stream to Memory-Mapped
(S2MM) Slave to AXI Write Master. AXI DMA also enables up to 16 multiple
channels of data movement on both MM2S and S2MM paths in scatter/gather
mode. An important characteristic of the IP is the ability of both MM2S channel
and S2MM channel operating independently.

If the Scatter/Gather Engine is excluded from the IP through configurations,
a less FPGA resource intensive mode core can be enabled. In this mode transfers
are commanded by setting a Source Address for MM2S or Destination Address for
S2MM and then specifying a byte count in a length register.

Channel Clock Bytes Throughput Percent of
(MHz) Transferred (MB/s) Theoretical

MM2S 100 10000 399.84 99.76
S2MM 100 10000 298.59 74.64

Table 3.3: AXI DMA channels measured Throughput.

Table 3.3 shows the throughput obtained in a test presented in the reference
manual, transferring 10000 bytes through the AXI DMA without using the Scat-
ter/Gatter engine in both directions. The test revealed the MM2S to be a good
candidate to perform the transfers from the memory to an ICAP interface as it is
limited to 400MB/s.

4. µRTZVisor DPR Framework

In this chapter, the mechanisms implemented to support the reconfiguration
of the RMs and their interactions with the multiple guest OSes and the PS will be
described in detail. The explanation of the most relevant design options taken as
well as the reasons behind them will be presented before showing the modifications
required to integrate the mechanism in the hypervisor.

4.1 Overview

In order to achieve a system where the hypervisor is able to dynamically man-
age software and reconfigurable hardware tasks, several components were imple-
mented towards creating a DPR framework that allows such flexibility without
deteriorating the overall performance significantly. Being a software-hardware co-
designed solution, implemented to support concurrent reconfiguration requests of
multiple guest OSes on demand, it was necessary to integrate components in both
the software and hardware layers.

The software component of the framework that in a monolithic architecture
would be placed within the kernel, is implemented as a secure task, relying on
the provided architecture of µRTZVisor, as a microkernel-like hypervisor. While
still being a relevant feature of the hypervisor, the service fits the characteristic
concept of keeping the kernel as simple as possible, with the complexity of the
kernel remaining unmodified.

Having in mind the necessity to implement a mechanism that prevents the
jeopardizing of the hardware modules, the service acknowledges and gives proper
answers to the multiple requests while being the only one allowed to trigger the
reconfiguration, as it is the only partition in the hypervisor configured with the
capabilities to have access to the reconfiguration mechanism. The communication
mechanism between the guests and the service is established through the IPC, and
any guest that wishes to use a hardware accelerator can send requests, as long as
the ports between the partitions were created and configured. As mentioned in

47

48 Chapter 4. mRTZVisor DPR Framework

Guest OS
(active)

Guest OS
(inactive)

Applications Applications

ARM TrustZone-enabled SoC

Non-secure State Secure State

ServiceDriver

FPGA Fabric

RP
Manager

Reconfigurable
Partitions

Memory
Access

Su
p

er
vi

so
r

M
o

n
it

o
r

 µRTZVisor MMUScheduler IPC

BUS Interface

U
se

r
M

o
de

Figure 4.1: µRTZVisor focused DPR Architecture Overview.

the previous chapter, ports are established at design time and are used to allow
the communication between partitions. If there are no ports bridging the guest
partition and the service, the guest cannot use the functionality.

To execute the reconfigurations, the system was implemented using the ICAP
configuration port, enhanced with AXI DMA based bitstreams transfers, which
allows for reconfigurations with theoretical maximum throughput up to 400 MB/s.
On the hardware side, alongside the ICAP interface to accommodate the recon-
figuration of the RMs, multiple RPs are placed and connected to the two other
main modules, a controller and a module for memory interactions. An overview
of the proposed architecture can be seen on the Figure 4.1, which depicts the in-
terfacing of the guests through the IPC to the secure task, and the overview of
the hardware.

Following the concept behind the architecture, it is possible to identify five
main components:

• Reconfiguration Mechanism - using the ICAP coupled with AXI DMA

Chapter 4. mRTZVisor DPR Framework 49

transfers, while verifying its performance and making it capable of reconfig-
uring multiple modules;

• Reconfigurable Partition Manager - hardware module that serves as
a synchronization mechanism to the service implemented as a secure task
while managing all the modules implemented on the hardware. It manages
and stores information about the current configuration of the RM present
in each RP. It also grants and establishes the connection between the guest
data and the RMs underutilization. Additionally, the manager interfaces the
module with the reconfiguration mechanism to control the reconfiguration
flow, blocking unwanted reconfigurations and misbehaviours;

• Memory Access - hardware module that is capable of accessing the DRAM
using the AXI HP ports for maximum throughput. Analogously to the RP
Manager, it is connected to every RP, and supports burst read and write
operation requests from each module;

• Reconfigurable Partitions - containers for RMs developed with a common
interface that can be used to accommodate any type of function only being
limited to the hardware resources it contains. For example, if the RP has
multiplication functions that require DSP functionalities it needs to contain
at least one DSP slice on the assigned FPGA portion. Common interfaces
and execution flow allow for the same functionality to be implemented in
several RPs;

• Software Service and API - software component of the architecture that
is responsible to respond to the requests from the various guest OSes. Along-
side the service, a guest-service API defining a communication policy will be
established to make the request handling as efficient as possible.

Having the components and their implications to the system established, the
system was implemented in an iterative way starting from the reconfiguration
mechanism and progressing to the modules and their management and finalizing
with the software interface with the guest OSes.

Another feature of the proposed architecture is to have interrupts that signal
the end of execution of the hardware accelerators, allowing guests to avoid having
the traditional pooling methods to detect if the requested hardware accelerator has
finished its execution, allowing parallel processing between software and hardware.
Each of the components will be explained in detail in further sections as well as
the interfaces used to communicate with software.

50 Chapter 4. mRTZVisor DPR Framework

4.2 Hardware Modules

Before we begin with details of the implementation a brief, but more elaborated
view of the hardware, alongside with the interfaces used between the PS and
the PL, is introduced. Figure 4.2 depicts a simplified view of the implemented
hardware showing the main modules present in the FPGA as well as the existing
interfaces between each module and with the PS.

Programmable
Logic

RP2RPnRP0 RP1

AXI DMA
RP

Manager

RP0 RP1

IRQ_F2P

Memory
Access

A
X

I H
P

1

A
X

I H
P

2

A
X

I G
P

0

A
X

I H
P

0

Figure 4.2: Implemented Hardware Overview.

As explained in the previous section, the design is constituted by three main
hardware components interconnected between them and with the software. The
PS to PL interfaces required were the following:

• AXI HP - two channels were used to support concurrent read and write
operations to the DRAM where the guest data intended to be processed
in the RMs is stored. The choice fell on the high-performance ports as
they allow stream and burst based transfers for maximum throughput. One
channel is used for memory reads and the other is memory writes working
independently from each other.

• AXI_DMA - used to transfer the bitstreams from the DRAM to the hard-
ware logic. The IP provided for Xilinx is connected to a third AXI HP port
and uses stream type of transfers to transfer blocks of memory. It is very
suitable for this application as it allows to transfer full bitstreams in just
one transaction.

Chapter 4. mRTZVisor DPR Framework 51

• AXI GP - used to exchange information between the RP Manager and the
Secure Task.

• IRQ_F2P - One interrupt is used for each RP to signal the guest, to which
it is currently assigned, that the module execution is complete. Another
interrupt is connected to the ICAP interface, and signals the end of the
reconfiguration process.

The following sections of this chapter will delve deeper into each component,
explaining use cases and execution flow of relevant developed features.

4.2.1 Reconfigurable Partition Manager

Regarding the management of reconfigurable modules in this framework, the
goal was providing an easy to scale, reliable and fast response system, capable
of handling multiple RPs. The overview for the module is shown in 4.3. It is
composed by three types of interfaces, namely the interface where it receives the
bitstream from the AXI DMA in a stream type, the interface with the software
task based on the AXI Lite registers which allow the interchange of information,
and the interface with each RP. These interfaces are connected to two control
units, one that handles the reconfigurations and another that gives appropriate
responses to each request.

RP Manager

Control Unit

ICAP
Control Unit

Interface
RP0

Interface
RP1

Interface
RPn

AXI_LITE

AXI_DMA_MM2S
Bitstreams

Configs

Responses

Control
Signals

Enable

Figure 4.3: RP Manager Module Overview.

To meet the design feature of implementing a system capable of being easy to
scale, the manager was implemented in a modular model, minimizing the engineer-
ing effort required to introduce or remove RPs in the system. The state machine
shown in 4.4, is an overall overview of the states that the manager executes for
a system with three RPs. To introduce a new RPn+1, n being the current num-
ber of RPs on the system, there is the need two new introduced states, one for

52 Chapter 4. mRTZVisor DPR Framework

New
Configuration

RP0 Busy
Supported by RPn

Check
RP0

Check
RP0

RP0
Queue

RP0
Queue

New
Config
New

Config

StartStart

IdleIdle
Check
RP1

Check
RP1

RP1
Queue

RP1
Queue

Check
RPn

Check
RPn

RPn
Queue

RPn
Queue

Figure 4.4: RP Manager State Machine.

checking the state of the RP when new requests arrive and another for the queues.
Although the two states represent a significant addition in lines of code, they rep-
resent little to no engineering effort as they are essential copies of the RPn states.
The modifications decay over how the transition between states is done. Worth
mentioning that there is a state for when new configurations are added to the
system and they are introduced in lists. They are used so the manager knows
what RPs are compatible with the requested RM.

When a guest requests a hardware accelerator that is implemented as a RM, the
software service sends the guest ID and the ID referent to the hardware accelerator
to the RP Manager, since the response to the request is dependent on the current
state of the hardware, via the AXI GP channel that is mapped to the RP Manager
and allows to read and write registers from each side of the management unit. The
request is then compared to the current state of the accelerators in each RP. From
the comparison four cases can occur:

• An RP has the configuration correspondent to the request is in idle state, al-
lowing the assignment to the guest to be done on demand, and the execution
starting right away;

• An RP has the RM configured but is currently being used by another guest.
In this case, and taking into consideration power consumption, if the recon-
figuration time is longer than the remaining execution, the guest is intro-
duced in a queue state, which is then assigned to the RP as soon as the

Chapter 4. mRTZVisor DPR Framework 53

module ends its current execution;

• The configuration is not currently in any RP, but there are available parti-
tions capable of holding the hardware accelerator, so the reconfiguration is
made and the module is assigned to the guest. When the interrupt that sig-
nals when the ICAP has finished the reconfiguration process module occurs,
the module starts executing its task;

• The last option is when any of the above cases cannot happen, and all the
RPs are currently in use and their queues full, so the RP Manager returns
a busy response to the software service and the guest is informed that the
request cannot be fulfilled.

Check RP0
State

Config in
RP0 ?

RP0
Idling ?

Empty RP0
Queue ?

Add Guest
to RP0 Queue

Full RP0
Queue ?

Idle

Reconfigure
RP0

Assign RP0
to Guest

Yes

Assign RP0
to Guest

No

Yes No

No
Yes

No Yes

Check
RP1

RP1 Supports
Config ?

RP2 Supports
 Config ?

Check
RP2

No

YesNo

Yes

Figure 4.5: Check RP0 Execution Flow.

The flowchart presented in Figure 4.5 provides a better illustration of the
process that happens when a request is received and how the queues are connected
to the requests.

54 Chapter 4. mRTZVisor DPR Framework

4.2.2 Reconfiguration Mechanism

To support the module reconfigurations there was the need to implement a
hardware module capable of establishing the interface between the data stream
resultant from the AXI DMA memory to stream channel to the ICAPE2 primitive
that connects the hardware logic to the ICAP.

 ICAP
 Control Unit

Bitstream

Bit
Reverser

ICAPE2

Data
In

Enable

[31...0] [31...0]

Interrupt

[0...31] [0...31]

Figure 4.6: ICAP Control Unit Overview.

As Figure 4.6 shows, the control unit needs to reverse the bits from the word
received coming in the input stream that te DMA provides. This is due to the
requirement that the data input port from the ICAPE2 primitive has that needs
to receive the least significant bit in the position of the most significant bit, so
it requires the word to be mirrored. Additionally, the interface is enabled by the
RP Manager control unit when reconfigurations are necessary, providing another
safety level to the implementation. When the last frame is sent to the ICAP the
interrupt is triggered.

4.2.3 Memory Access

The memory access module represents another essential component in the
hardware, as every module that is present each RP is dependent on data stored in
the DRAM, that belongs to the guest that desires to use the hardware accelerator.
Again to sustain the design feature of an easy-to-scale system, the interface with
the RPs is the same for all of them. Figure 4.7 depicts the overview of the Memory
Access module, which is composed by an interface with each RP and interfaces
with the AXI HP channels used to the read and write data transactions.

Chapter 4. mRTZVisor DPR Framework 55

Memory Access

Control Unit

AXI_Read Channel

AXI_Write_Channel

Interface
RP0

Interface
RP1

Interface
RPn

Requests

Data

Data

Triggers

Figure 4.7: Memory Access Module Overview.

The flowchart presented in Figure 4.8 shows the behaviour of the control unit
connected to the read channel, and how the module is constantly waiting for
requests allowing the modules waiting time to be as small as possible when they
request memory read operations. An identical control unit is implemented for the
write requests, which is then connected to the write channel.

Init

Idle

RP0
Request ?

RP1
Request ?

RP2
Request ?

Read Data
Last

Frame ?

Yes

Yes

No

No

Yes

No

No

Yes

Figure 4.8: Memory Access Read Branch Execution Flow.

56 Chapter 4. mRTZVisor DPR Framework

4.2.4 Reconfigurable Partitions

The reconfigurability is an attribute of a partition, which is set on the moment
it is instantiated, and allows the implementation of multiple different RMs and
the respective partial bitstream generation used to configure the RP dynamically
during runtime. When designing an RP, it is essential that the unit is capable of
holding the largest RM while also having all the ports necessary to interface the
static logic with the RM. A good practise when designing RMs is implementing
common interfaces to the RP, as partition pins are automatically created for all RP
ports. If an RM uses different inputs or outputs from another RM, the resulting
RM inputs or outputs might not be connected.

Following these recommendations, implemented RPs have the same set of
ports, allowing RMs to be exchangeable between them, which then increases the
versatility of the system. This enables different guests to be using the same hard-
ware functionality in different RPs concurrently as well as making adding or re-
moving RPs easy. The changes necessary to add an additional RP to the system is
simply creating another port in both the RP Manager and Memory Access mod-
ules alongside the adaptations required to the state machines both modules are
using.

RP

Reconfigurable
Module

Interface
Memory
Reader

Interface
RP Manager

State Data

Requests

Figure 4.9: RP Overview.

The general execution flow is to have the hardware accelerator implemented
receive the trigger to start executing, which then makes the module request to read
the data stored in the memory, execute the processing of the task and then write
the results on the DRAM, using the Memory Access module for the operations.
The generic process is depicted on the Figure 4.10.

Chapter 4. mRTZVisor DPR Framework 57

Idle

Execution
Trigger ?

Custom
Algorithm

Store
Done ?

Fetch
Done ?

Fetch Data

Store Data

Yes

Interrupt
Trigger

Yes

Init

No

No

Yes

No

Figure 4.10: RM example Execution Flow.

As the data is fetched to the hardware through the Memory Access Module, the
amount of data that can be processed in one execution cycle is directly related to
the configuration of the AXI HP ports. As an example, if the port is transferring
bursts of 32 words, then the RM will be able to process 32 words at a time. One
module can requests multiple read and writes if necessary. Additionally, both the
read and write functions are also optional, and can be bypassed if the implemented
module does not require it.

4.3 Software Task

The software service was developed regarding the management of multiple
RPs while keeping the design goals of providing an easy to scale, reliable and fast
response system, thus the implementation and execution flow are highly affiliated
to the RP Manager. The task is the only part of the PS that is capable of
accessing the AXI-Lite connected to the hardware manager and also encompasses
the interface between the guests OSes and the hardware. The AXI-Lite connected
to the RP Manager contains the registers presented in table 4.1, and are used as
the interface between the task and the manager. The response register returns
information to the software according to the current state of the RPs and if a

58 Chapter 4. mRTZVisor DPR Framework

reconfiguration is need to satisfy the request, the response is used to select the
appropriated bitstream.

Offset Type Name Description
0 W GUEST_ID ID of the Guest
4 W GUEST_REQUEST ID of the Configuration Requested
8 R RESPONSE Response
12 W START_RPs Start Trigger
16 W NEW_CONFIG Add new configuration ID
20 R ACTIVE_GUESTS Guests Currently Using the RPs
24 W G0_RADDR ADDR of the Data to be Processed
28 W G0_WADDR ADDR to write the Processed data
... W Gn_RADDR ADDR of the Data to be Processed
... W Gn_WADDR ADDR to write the Processed data

Table 4.1: RP Manager register map.

The developed API encompasses four functions which allow the guests to re-
quest for generic accelerators provided by the service itself or for custom private
accelerators, and are the following:

• Add_Private_Configuration() allows the guest to inform the secure
task responsible for the reconfiguration mechanism that it has custom pri-
vate configurations for each RP. The API returns to the guest an ID that
should be kept and is used to request the configuration;

• Remove_Private_Configuration() allows the guest to remove private
configurations from the available configurations. For that the guest needs to
use ids that were assigned in the previous API;

• Request_Private_Configuration() following the same line of thought
the guest can request the usage of the accelerator by sending a message to
the secure task with the ID of the private configuration.

• Request_Configuration() similar to requesting a private configuration,
but for general configurations that the secure task provides.

It is worth mentioning that the guest needs to inform the task that it wants
to use private configurations before requesting to use them. The execution flow
for the service can be seen in Figure 4.11. The hypervisors’ event manager is used
to signal the task when the ports created between the task and the guests have

Chapter 4. mRTZVisor DPR Framework 59

messages, and according to the message it executes a function to determine the
appropriate response. Additionally, when a hardware task finishes execution it
warns the guest who was having its data processed on the task that the data is
ready.

Init

Idle

Event
Manager
Signal ?

Yes

No

RP
Interrupt ?

Add/Remove
Configuration ?

Configuration
Request?

Private
Configuration

Request?

Update
Lists

Check
 available RPs

Check
available RPs

No

No

Signal Guest
Data is Ready

Yes

Yes Yes Yes

No No

Figure 4.11: Software Service Execution flow.

When a guest requires to use a configuration, it can receive several responses
from the secure task as aforementioned. Figure 4.12 shows the overall sequence
that happens for each case in a request for a private configuration. When request-
ing a private configuration, the number of interactions with the secure task will
increase in case a reconfiguration is necessary.

This is due to the fact that private guest configurations are stored in the
memory space of the OSes, and even although the task is on the secure world,
it requires a capability to access the memory space of the guest in which the
bitstream is stored. So the guest needs to create a capability to the bitstream
memory space and send it to the task using the IPC mechanism. When the task
receives the capability it can then transfer the bitstream to the ICAP and reconfig-
ure the hardware accelerator. The guest is then notified that the reconfiguration

60 Chapter 4. mRTZVisor DPR Framework

is running and the data will be processed shortly after. This case is, however, the
worst case scenario, and the most extensive interaction between a guest and the
task.

Secure ServiceSecure Service

Memory Cap

GuestGuest

Request Cap
for Memory Space

Assigned and Executing

Queued

All Hardware Tasks
Occupyied / Queues Full

Configuration ID

Executing

Reconfiguration

Get
 Memory Cap

ResponsesResponses

Reconfiguration

Busy

Queue

Running

Figure 4.12: Private Configuration Request Execution flow.

When the reconfiguration is not required in private configuration requests, the
response time of is the same as for requests for generic configurations.

Chapter 4. mRTZVisor DPR Framework 61

4.4 µRTZVisor Integration

The last phase of the implementation was the integration of the complete
framework in µRTZVisor which required several modifications to its current con-
figuration, as well as some additional functions to be implemented in order to
execute without problems. The modifications encompassed the configurations for
the AXI DMA, DevCfg, AXI security settings, interrupts, and many others who
will be explained in detail in this section.

The first modification was to modify the TrustZone security registers of both
the DMA and AXI, seen in Listing 4.1. They were configured to always operate
in secure state, as the active guest runs in non-secure mode and the only partition
capable of accessing them is the Secure Task. This way, if the processing finishes
after the guest stops executing and is on the secure world, the data can still be
written to the guests memory assigned to the hardware task.

1 // Unlock SLCR register
2 write32 (platform :: SLCR_UNLOCK , platform :: SLCR_UNLOCK_KEY);
3 // DMAC TrustZone Config : Secure State
4 write32 (platform :: TZ_DMA_NS , read32 (platform :: TZ_DMA_NS) &

~(1 < <0));
5 // DMAC TrustZone Config for Interrupts : Secure State
6 write32 (platform :: TZ_DMA_IRQ_NS , read32 (platform :: TZ_DMA_IRQ_NS

) & ~(1 < <0));
7 // DMAC TrustZone Config for Peripherals : Secure State
8 write32 (platform :: TZ_DMA_PERIPH_NS , read32 (platform ::

TZ_DMA_PERIPH_NS) & ~(1 < <0));
9 // Configure PL access : Always Secure

10 write32 (platform :: SECURITY_FSSW_S0 , 0x0);
11 write32 (platform :: SECURITY_FSSW_S1 , 0x0);
12 write32 (platform :: SECURITY_APB , 0x0);
13 // Configure Master peripherals mode: Always Secure
14 write32 (platform :: TZ_FPGA_M , 0x0);
15 write32 (platform :: TZ_FPGA_AFI , 0x0);
16 // Lock SLCR register
17 write32 (platform :: SLCR_LOCK , platform :: SLCR_LOCK_KEY);

Listing 4.1: Configurations for secure AXI and DMA.

Further modifications were required to the device management of the hyper-
visor as the AXI DMA and AXI peripherals, both connected to the FPGA logic,
which were previously not mapped in the page tables of the hypervisor. This

62 Chapter 4. mRTZVisor DPR Framework

modification encompasses the mapping of the page tables for all the AXI based
peripherals, Listing 4.2.

1 static constexpr uint32_t * const device_table3 = &
device_table_3 ;

2 static const uint32_t table3_base = 0 x40400000 ;
3 static constexpr uint32_t * const device_table4 = &

device_table_4 ;
4 static const uint32_t table4_base = 0 x43C00000 ;

Listing 4.2: Additional page tables for AXI peripherals.

The AXI DMA required another adjustment to the hypervisor device manage-
ment since in the previous implementation each peripheral constituted a 4 KB
aligned memory segment, which enables mapping and unmapping of peripherals
for tasks, since this is the finest-grained page size allowed by the MMU, but the
AXI DMA requires further pages, as it is a 64MB device. On context switch the
configuration TrustZone registers changes to enable peripheral access to task and
guest partitions, respectively, and for this the function was altered to accommo-
date the 16 pages for the device, as presented in Listing 4.3.

1 if(id == DEV_AXIDMA){
2 for(i = 0; i < 15; i++) {
3 uint32_t index = ((device_address_table [id]. page_addr) & 0

x000FFFFF) >> 12;
4 index = index + i;
5 if(active){
6 table_ptr [index] |= 0x20;
7 }
8 else {
9 table_ptr [index] &= ~(0 x20);

10 assembly :: mmu_flush_tlb_mva (device_address_table [id].
page_addr);

11 }
12 }
13 }

Listing 4.3: Device configuration for AXI DMA.

When guests create the capability that they send to the DPR task in order
to reconfigure the hardware with private bitstreams, the memory capability has

Chapter 4. mRTZVisor DPR Framework 63

the virtual address which is incompatible with the physical address that the AXI
DMA requires to transfer the bitstream data to hardware. In order to allow that
an hypercall was introduced that calls the memory manager to translate the ad-
dress (Listing 4.4).

1 int32_t MemoryManager :: Translate (uint32_t addrspaceref ,
AddressSpaceArgs * args){

2 int32_t ret = -1;
3 uint32_t addr = args ->base;
4
5 if(TranslateVirtToPhys (addrspaceref , &addr)){
6 args ->base = addr;
7 ret = 0;
8 }
9 return ret;

10 }

Listing 4.4: Translate Function added to the Memory Manager.

Once all the modifications were done to µRTZVisor, the focus was to do the
proper configurations in order to have the task communicating with the hardware
and using the reconfiguration mechanism. The modifications involved expanding
the device list that the hypervisor supports as well as assigning the devices to the
task with the proper permissions. Listing 4.5 shows the additions to the device
configuration list that the hypervisor uses after initialization, to allow or deny the
device to the guest asking to use it.

1 {
2 2, DEV_DCFG , 0xFFFFFFFF , " devcfg "
3 },
4 {
5 2, DEV_AXIDMA , 0xFFFFFFFF , " axidma "
6 },
7 {
8 2, DEV_DPR , 0xFFFFFFFF , " dprdev "
9 }

Listing 4.5: Configuring the devices for use by the Task.

64 Chapter 4. mRTZVisor DPR Framework

Analogously to the devices, there was the necessity to configure the required
interrupts and ports. Listing 4.6 shows the example of the configuration of the
interrupts 61 and 62, which are on the interrupt scope of PL to PS and are used
by the partition number 2, which is the service.

1 {
2 partition : 2,
3 interrupt : 61,
4 rights : 0x3FFFFFFF ,
5 name: " dma_irq "
6 }
7 ,
8 {
9 partition : 2,

10 interrupt : 62,
11 rights : 0x3FFFFFFF ,
12 name: " task0_irq "
13 }

Listing 4.6: Interrupts Configuration.

Listing 4.7 on the other hand shows the example configuration of a port, in
which the partition 1 is able to send messages and grant capabilities to every par-
tition that has capabilities to receive messages on the port.

1 {
2 mConfigId : 31,
3 mOwner : 1,
4 mRights : (0 x01 << TzPortOperations :: SEND) | (0 x01 <<

TzCapabilityOperations :: GRANT),
5 mName : "port1"
6 }

Listing 4.7: Send and Grant Port configuration for Partition 1.

Another example port configuration is presented in Listing 4.8 in which the
partition 1 is able to receive messages and configure the port on runtime.

1 {
2 mConfigId : 30,
3 mOwner : 1,

Chapter 4. mRTZVisor DPR Framework 65

4 mRights : (0 x01 << TzPortOperations :: RECV) | (0 x01 <<
TzPortOperations :: CONFIG),

5 mName : "port"
6 }

Listing 4.8: Receive Port configuration for Partition 1.

One of the last modifications was focused on making guests compile with pri-
vate configurations and to do so, regions were added to their linker script that
contain bitstreams for each algorithm they want as the example on Listing 4.9.

1 MEMORY
2 {
3 ps7_ddr_0_S_AXI_BASEADDR : ORIGIN = 0x04000000 , LENGTH = 0

x003FFFFF
4 BITSTREAMS (rw): ORIGIN = 0x04400000 , LENGTH = 0 x040000
5 }

Listing 4.9: Linker script edit for guest partitions.

The last integration stage was to guarantee that the ports and device capa-
bilities were configured correctly in order to allow their owners to use them, and
so each partition on start-up get their respective capabilities and configures the
ports, devices and interrupts that they use onwards. Listing 4.10 shows the ex-
ample of the service task configuring the interrupt for the hardware RP.

1 if(SetPortInterrupt (st. task0_irq_cap , st. kernel_port_cap) <
0) {

2 sw_printk ("TASK 0: Failed to configure port cap !\n");
3 return XST_FAILURE ;
4 }
5 if(ConfigInterrupt (st. task0_irq_cap , &args) < 0){
6 sw_printk ("TASK 0: Failed to configure task0 irq cap !\n");
7 return XST_FAILURE ;
8 }

Listing 4.10: Configuraring Interrupt on the partition code.

After all the configurations and adjustments were complete the project reached
its last stage and from now onwards the verification and evaluation of the imple-
mentation will be given.

5. Evaluation

This section presents the evaluation done to the implemented solution towards
a TrustZone-assisted hypervisor supporting DPR. The engineering effort, memory
footprint, hardware costs and performance obtained on the experimental setup
tested are presented and discussed.

5.1 Experimental Setup

The implementation was evaluated on the ZYBO Zynq-7000 SoC, in a single
core configuration of the ARM Cortex-A9 running at 650MHz and the hardware
logic running at 100MHz. The FPGA can handle running at 250MHz but in this
implementation it is limited according to the maximum working frequency of the
ICAP interface. The project was developed and synthesized using the Vivado
2018.2 where the IP hardware modules were implemented in Verilog. Vivado HLS
2018.2 was also used to quickly implement hardware modules in order to do a
relevant application scenario. For the software development the tool of choice was
the XSDK 2018.2, also provided by Xilinx.

The evaluation is focused mainly on the impact on guest performance related
to the interaction with the DPR framework, as well as the improvements hardware
based accelerators can provide to them. The impact of the modifications necessary
to expand the µRTZVisor to support PR mechanisms are also evaluated. Both
the hypervisor and partition code were compiled using the Xilinx ARM GNU
toolchain.

5.2 Engineering Effort

The engineering effort required for the implementation of the developed code
was measured using the Understand software tool, in both software and hardware
languages.

67

68 Chapter 5. Evaluation

Additionally, it allowed to measure the engineer effort associated incurred by
each RP added to the system and the modifications necessary to each of the
components it interacts with.

5.2.1 Hardware

The hardware developed for the framework allowing for reliable response times
and correct assignments to the requests of hardware accelerators represented the
most engineering effort to the project. The baseline RP Manager with just one
RP on the system, represents an effort of 370 lines of code. From that point, each
RP added to the system represents an increase of 28% in lines of code for each RP
in the system when compared to the system with only one RP, which is related
to the states added to the control unit presented in the implementation chapter.
While the increase is considerable, only 30 of the added 105 template lines need
slightly changes, mainly connected to asserting the identification of the new RP,
with new lines not being required. Each consequent RP represents Figure 5.1
shows the lines of code required up to the limit of 15 RPs.

0

400

800

1200

1600

2000

1 2 3 5 10 15

Li
n

e
s

o
f

V
e

ri
lo

g
C

o
d

e

Number of RPs

Memory Access RP_Manager

Figure 5.1: Engineering Effort related to the number of RPs on the
Hardware.

The baseline Memory Access module with just one RP one the system, repre-
sents an effort of 265 lines of code. Each RP added to the system represents an
increase of 23% in the lines of code relative to the system with only one RP. In a
similar way to the RP Manager, the Memory Access module increase in lines of
code is related to the states introduced in the control unit, and also only 22 of the
added 62 template lines per RP need modifications.

Chapter 5. Evaluation 69

The RPs are composed of 95 lines of code that are common to every one and are
related to the interfaces to the Memory Access and RP_Manager, with engineering
effort being only dependent on lines of code of each algorithm implemented as the
hardware accelerators.

5.2.2 µRTZVisor Modifications

On the µRTZVisor, the required modifications were related to the integration
of the DPR mechanism and the components it requires to work, which represented
a 4.9% increase to the TCB of the hypervisor, as shown in 5.1.

µRTZVisor Lines of Code
Native 6693

DPR framework 7022

Table 5.1: Impact on the Hypervisor TCB.

The increase is mostly due to the lines of code related to the necessity of the
additional peripheral mapping, namely the AXI DMA used to transfer bitstreams
and the RP_Manager which needs to be accessed by the software running on the
PS.

It required the introduction of additional lines of assembly code for device
tables, mechanisms to handle the request to use the above mentioned hardware
modules and system configurations to let the software use them. It also produced
modifications to the security configurations of the AXI ports which also repre-
sented a significant factor in the verified increment.

Last but not least, the design feature of allowing guests to provide private
bitstreams, implied the addition of a hypercall and the respective handler in order
to allow the translation of the bitstreams address from the virtual memory to
physical addresses to be used by the AXI DMA.

5.2.3 Software Task

Figure 5.2 represents the lines of code necessary depending on the number of
RPs implemented on the hardware. For the software task all the developed code
accounted to 400 lines of code for a system with only one RP with an additional
100 lines of code to the task for each RP. The increase is mainly due to the
necessity of keeping track of the accelerators that can be configured into each RP
and the necessity to configure the interrupt assigned to the module.

70 Chapter 5. Evaluation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 5 10 15

Li
n

e
s

o
f

C
 C

o
d

e

Number of RPs

Figure 5.2: Engineering Effort related to the number of RPs on the
Software Task.

5.3 Memory Footprint

In order to evaluate the memory footprint of both the native and extended
version of the µRTZVisor were compiled using the ARM GNU toolchain.

In Table 5.2 is shown the introduced overhead by each approach on the whole
µRTZVisor image, which agglomerates the hypervisor code itself, drivers and li-
braries. As a consequence of the incurred modifications explained in the previous
chapter to the µRTZVisor the modifications are reflected in terms of memory foot-
print. Nonetheless, the overhead represents only an increase 1.8% in the memory
footprint which is acceptable when it encompasses the modifications and adapta-
tions to support DPR.

Memory Footprint in bytes

µRTZVisor .text .data .bss Total

Native 143308 40544 105264 289116
DPR framework 143792 43388 107220 294400

Table 5.2: µRTZVisor memory footprint.

Chapter 5. Evaluation 71

5.4 Hardware Costs

To measure the implemented framework hardware resource usage on the ZYBO
board, the post implementation hardware utilization report provided by the Vi-
vado tools was analysed. The report provides several information about the usage
of each resource present on the matrix of Configurable Logic Blocks (CLBs) and
overall impact of the implementation of the synthesised design on the resources
used. The ZYBO hardware resources are show in Table 5.3 as a reference point.

Resource Available
BUFG 32
BRAM 60
FF 35200

LUTRAM 6000
LUT 17600

Table 5.3: Available Resources on the ZYBO SoC.

The implemented design is referent to the minimalistic scenario where 3 RPs
were placed on the design and connected to the other modules with all the RPs
hosting empty RMs doing only data passing without any logic inside. The test
was designed to properly evaluate the resources necessary by the framework and
the impact of using the hardware based ICAP and evaluate the resource usage for
the increase on the reconfiguration throughput. The results can be seen in Figure
5.3.

4892

483

6356

2.5

2

0 10 20 30 40 50 60 70 80 90 100

LUT

LUTRAM

FF

BRAM

BUFG

Utilization (%)

Figure 5.3: Hardware Costs for a minimalistic setup.

72 Chapter 5. Evaluation

Vivado utilization report parameters indicates the number of registers, LUTs,
BUFGs, DSPs, FFs, IOs, Block RAM and many other components of the current
design required in order to implement it. The more logic is added to the current
design, the more resources are usually necessary and the utilization rate of these
parameters increases.

5.5 Performance

The performance evaluation process was split into three different phases. First,
the reconfiguration mechanisms were tested and compared. Then, the system
was evaluated to measure the overhead and latency over the interactions between
guests and the service. Finally, the system performance on a intensive test scenario
in an environment closer to the expected on real life applications was measured.

5.5.1 Reconfiguration Mechanisms

In order to better understand the impact of each PR mechanism, tested in pre-
liminary stages of the project a test was executed to measure reconfiguration times
for different bitstream sizes with every available method. The results presented
for this test have been collected in a test application in which the partial bitstream
files were stored into the DRAM and the average measured throughput is shown
in 5.4 with the PCAP, AXI HWICAP [Xil16b] and PRC [Xil16a] hardware COTS
IPs provided by Xilinx, and the custom ICAP accelerated with the AXI_DMA
developed for this work.

Mechanism Throughput (MB/s)
AXI HWICAP 14.26

PCAP 126.45
PRC ICAP 256.33

ICAP 389.25

Table 5.4: Average Measured Reconfigurations throughput for each
mechanism.

The tests proved that bitstream files describing the same RP even although
they are implementing different modules have exactly the same size, which is
related to the region and resource type contained in it. The following test was
to reconfigure the same RPs with all the ports and measure the reconfiguration
time. Figure 5.4 presents the results on the ZYBO board for the mechanism. It

Chapter 5. Evaluation 73

is worth mentioning the AXI HWICAP was purposely left out of the graphic as
it had reconfiguration times up to seventy milliseconds, which do not make sense
in the real time world. Also the PR controller IP provided by Xilinx, had the
same reconfiguration time for different sizes of bitstreams, which represents an
odd behaviour when compared to the other methods. This is although due to the
algorithm that is implemented in hardware module.

0

2

4

6

8

10

12

0 109 346 584 930 1282

R
e

co
n

fi
gu

ra
ti

o
n

 t
im

e
 (

m
s)

Bitstream Size (KB)

PCAP ICAP PRC ICAP

Figure 5.4: Reconfiguration Times for the different Mechanisms.

The measured times validated the dependability of the reconfiguration time
on the chosen interface, as given a bitstream size the reconfiguration time only
depends on the throughput of the mechanism. This characteristic makes the
reconfiguration process predictable and the overhead inserted by PR is known
at each reconfiguration.

The test was predominant to choose the standalone custom ICAP as mecha-
nism for the implementation, once the resources used were not extremely high,
with the most used resource being 10% of the LUTs. For a reconfigurable region
roughly the size of 50% of the FPGA used on the evaluation, the average recon-
figuration time was about 2.52ms, which makes the mechanism about four times
faster than the more traditional PCAP, while also having the CPU free to process
other tasks during the reconfiguration.

5.5.2 RPC Overheads

The last relevant test performed was the one that allowed to measure the
impact of the communication mechanism of the hypervisor associated with the

74 Chapter 5. Evaluation

decision time that the software task requires to handle the guest partition requests.
The hardware setup implemented on the FPGA fabric was composed of three RPs,
a RP Manager and a Memory Access module. On the software, the hypervisor is
supervising the secure task alongside one Free-RTOS and two baremetal guests,
each guest partition running ten milliseconds of time budget for each execution
cycle. All the software was compiled with -03 optimizations in compliance with
the evaluation done in [MAC+17]. To properly test the DPR framework, several
algorithms were implemented as hardware accelerators and synthesised as RMs
to be hosted on a RP and are provided by the software task as reconfigurable
accelerators for the guests to request and use. Additionally, one of the baremetal
guest partitions was compiled containing a private bitstream in its memory and
can request to use it on the hardware.

132.65

156.78

210.19

145.26

0

50

100

150

200

250

Add
Configuration

Generic Configuration
Request

Guest Configuration
Request

Remove
Configuration

A
ve

ra
ge

 r
e

sp
o

n
se

 t
im

e
 (

µ
s)

Figure 5.5: Overhead introduced for each Operation.

The measurement to check the overheads linked to the software service decision
time, was done in a test designed with the best case scenario, where only the secure
task service and one guest partition are running. Figure 5.5 presents the times
taken by the software and hardware framework to make a decision in each use
case.

Chapter 5. Evaluation 75

Request
Message

Guest > Task

Decis
ion

Response
Message

Task > Guest
IRQ

Interrupt
Message

Task > Guest

Request
Message

Guest > Task

Decis
ion

Need CAP
Message

Task > Guest
IRQ

Interrupt
Message

Task > Guest

Grant Cap
Message

Guest > Task

Idle HW TaskICAP

Idle HW TaskICAP

Idle

Idle

Request
Message

Guest1>Task

Decis
ion

Response
Message

Task>Guest1
IRQ

Interrupt
Message

Task>Guest1

Idle Guest1 HW TaskICAP

Request
Message

Guest2>Task

Decis
ion

Response
Message

Task>Guest2

Guest2 HW Task

IRQ
Interrupt
Message

Task>Guest2

Idle

Decis
ion

Response
Message

Task > Guest

Processing
System

FPGA

Processing
System

FPGA

Processing
System

FPGA

(a) Guest request for generic configuration.

Request
Message

Guest > Task

Decis
ion

Response
Message

Task > Guest
IRQ

Interrupt
Message

Task > Guest

Request
Message

Guest > Task

Decis
ion

Need CAP
Message

Task > Guest
IRQ

Interrupt
Message

Task > Guest

Grant Cap
Message

Guest > Task

Idle HW TaskICAP

Idle HW TaskICAP

Idle

Idle

Request
Message

Guest1>Task

Decis
ion

Response
Message

Task>Guest1
IRQ

Interrupt
Message

Task>Guest1

Idle Guest1 HW TaskICAP

Request
Message

Guest2>Task

Decis
ion

Response
Message

Task>Guest2

Guest2 HW Task

IRQ
Interrupt
Message

Task>Guest2

Idle

Decis
ion

Response
Message

Task > Guest

Processing
System

FPGA

Processing
System

FPGA

Processing
System

FPGA

(b) Guests 1 and 2 both request the same hardware task configuration sequentially.

Figure 5.6: Execution Flow for Generic Configurations Requests.

In cases as presented in Figure 5.6a, where a guest requests to use a generic
configuration, which will require a reconfiguration, the overhead of induced by
the task and the communication mechanism represented a average response time
of 156 microseconds. An additional test with multiple guest partitions running
(Figure 5.6b), showed that the response time is constant despite the number of
guests again with the same overheads being witnessed by both requests, revealing
the predictability of the framework.

Request
Message

Guest > Task

Decis
ion

Response
Message

Task > Guest
IRQ

Interrupt
Message

Task > Guest

Request
Message

Guest > Task

Decis
ion

Need CAP
Message

Task > Guest
IRQ

Interrupt
Message

Task > Guest

Grant Cap
Message

Guest > Task

Idle HW TaskICAP

Idle HW TaskICAP

Idle

Idle

Request
Message

Guest1>Task

Decis
ion

Response
Message

Task>Guest1
IRQ

Interrupt
Message

Task>Guest1

Idle Guest1 HW TaskICAP

Request
Message

Guest2>Task

Decis
ion

Response
Message

Task>Guest2

Guest2 HW Task

IRQ
Interrupt
Message

Task>Guest2

Idle

Decis
ion

Response
Message

Task > Guest

Processing
System

FPGA

Processing
System

FPGA

Processing
System

FPGA

Figure 5.7: Execution Flow for a Private Configuration Request with
Reconfiguration.

When tested the use case similar to the one shown in Figure 5.7, where the
guest partition makes a request to use a private configuration, the average re-
sponse was around 210 microseconds. In this use case the average response time
is considerably larger than on generic hardware tasks provided by the framework,
because the operation introduces two extra messages to the transaction between
the task and the guest, which are referent to the necessary capability that the
task needs to have, in order to access the memory space of the guest and fetch the
bitstream to configure the hardware accelerator.

76 Chapter 5. Evaluation

The response times from the moment that the task receives the message until
sends the response to the guest were in the order of the hundreds of microseconds,
which represents a fast response mechanism, and is made possible by the fast
decision time of the RP Manager, and the low overhead communication mechanism
of the hypervisor. The response times are heavily connected to the time that the
IPC mechanism of the hypervisor requires to send the message between partitions
and having such low overhead mechanism potentiates the framework greatly. It
is worth mentioning, that the schedulabity of the partitions involved impacts the
induced overhead, and the overhead is subject to partitions being scheduled during
the operations.

6. Conclusion

In this modern era, where embedded systems are expanding their presence in
our everyday lives, ranging from small IoT devices to systems of high complexity,
they all share the same design requirement towards the consolidation of a wide
variety of functions into the same hardware platform, while reducing SWaP-C.
The rise in the complexity of these systems, represented growing investment in
heterogeneous architectures, possessing both CPU and FPGA subsystems, given
their great flexibility. These platforms enable fast time-to-market cycles, high
adaptability and relatively-low cost, which are all suitable for embedded systems
development, while also enabling the extension of the traditional CPU virtualiza-
tion to FPGAs, which have been further explored for their computing capabilities.

The applicability of co-designed systems that explore the benefits of reconfig-
urable hardware to ensure the constraints of the embedded domain is used from
offloading specific application tasks to hardware, to offloading complete OSes and
even hypervisor services. In heterogeneous platforms that have dynamically recon-
figurable FPGAs, the DPR technology, which brings the reconfigurable hardware
benefits to a new level, has been the focus of recent research. Given its potential
for deploying hardware modules on-the-fly, DPR has the ability to bring flexibility
one step further, as well as overall improvement, from the multiple hardware ac-
celerators it allows to implement, which otherwise would require much larger logic
areas, and in some cases would not even fit on the same platform simultaneously.

This dissertation was focused on designing and implementing a framework for
real-time systems that enables real-time applications to exploit the DPR capabil-
ities of the heterogeneous platform, extending the concept of multitasking to the
FPGA. The presented framework, was specially developed in order to explore the
features of the architecture of µRTZVisor hypervisor, exploiting its communica-
tion mechanism and handling of user access to devices. The framework provides a
reconfiguration mechanism capable of handling multiple RPs, while providing fast
response times, in order to limit the overhead introduced to the normal execution
of the operating systems using the framework.

77

78 Chapter 6. Conclusion

Then a evaluation was done, to evaluate the determinism of the implemented
DPR framework, by measuring its latencies and the impact on the normal op-
eration of the OSes using it. The evaluation revealed, a major benefit of the
implementation, since the time required to reconfigure a portion of the FPGA is
highly predictable, and is dependent on the amount of logic resources involved in
the process. For the device used in the evaluation, the Zynq-7000 SoC, the time
required to reconfigure an RP of roughly 50% the size of the FPGA is around
2.5 milliseconds. Using the ICAP based reconfiguration process, also enables the
reconfiguration to be parallel to the normal execution on the PS. For the specific
device used in this study, which has one of the smallest FPGAs in its family,
the part of the framework implemented in hardware represented a maximum of
30% of resource usage, which enables the framework to be suitable even for less
resourceful platforms, even if with fewer RPs implemented.

Overall, the concept fits well in the concept of a microkernel hypervisor, while
still being a relevant feature of µRTZVisor, since the complexity of the kernel
remained nearly unmodified, with minimal additions to support the hardware
components, and the results appear to be promising.

6.1 Future Work

The proposed framework while being highly flexible in the sense of multiplexing
the numerous RPs present on the hardware, presents some limitations that can
be improved in future developments. A first step towards improving the system
capabilities, would be extending the limited interface between the software and the
hardware reconfigurable accelerators, providing more flexibility towards porting
hardware accelerators to the implementation. As of the current implementation,
the interface is done completely through the software service, and introducing
custom ports, that could be directly connected between the guest OSes and the
hardware accelerators, could be an interesting starting point. There is also room
for improvement in the quantity of processed data by each accelerator, as it is
primarily dependent on the AXI HP transfer modes. Dynamically adjustable
data size processing could greatly reduce the necessity to request the accelerators
multiple times. Additionally, some design automation to enable fast configuration
of the framework would also be an interesting improvement.

Furthermore, there is also room for improvements in both the security of the
framework and latency that it introduces to the OS using it. As the framework uses
the AXI DMA soft core with all the permissions and in secure mode, the hypervisor

Chapter 6. Conclusion 79

mechanisms to control memory access are unable to restring memory access to
the mechanism, and as such there is the possibility to jeopardize the hypervisor’s
memory. Para-virtualizing the AXI DMA could solve this specific problem. In
what concerns to the latency, an interesting approach to the framework, would
be exploring the potential benefits of using the secondary core present on the
platform, dedicated to the DPR framework.

Another objective going forward would be finalizing the implementation of the
project presented in [RSTS18], integrating and exploring the benefits of an hard-
ware accelerated IPC and how it can reduce the communication mechanism over-
head. Lastly, despite being developed on the Zynq-7000 platform and µRTZVisor
in particular, it can be adapted to standalone applications and hypervisors, as
well as other heterogeneous platforms enabled with dynamic reconfigurable FPGA
present on the market.

References

[AH10] A. Aguiar and F. Hessel. Embedded systems’ virtualization: The next
challenge? In Proceedings of 2010 21st IEEE International Symposium
on Rapid System Protyping, pages 1–7, June 2010.

[ARM09] ARM Limited. ARM Security Technology. Building a Secure System
using TrustZone Technology ARM. ARM white paper, April 2009.

[ARM11] ARM Limited. AMBA AXI and ACE Protocol Specification. October
2011.

[BBCS14] R. Bonamy, S. Bilavarn, D. Chillet, and O. Sentieys. Power consump-
tion models for the use of dynamic and partial reconfiguration. Micro-
processors and Microsystems, 38(8):860–872, November 2014.

[BBP+16] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo. A Framework for Supporting Real-Time Applications on Dy-
namic Reconfigurable FPGAs. In Proceedings of the 2016 IEEE Real-
Time Systems Symposium (RTSS), pages 1–12, November 2016.

[BHH+07] J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and
J. Luka. Dynamic and Partial FPGA Exploitation. Proceedings of the
IEEE, 95(2):438–452, February 2007.

[BSB+14] S. Byma, J. Steffan, H. Bannazadeh, A. Garcia, and P. Chow. FPGAs in
the Cloud: Booting Virtualized Hardware Accelerators with OpenStack.
In Proceedings of the 2014 IEEE 22nd Annual International Symposium
on Field-Programmable Custom Computing Machines, pages 109–116,
May 2014.

[Dig16] Digilent Inc. ZYBO FPGA Board Reference Manuals. [Online]. Avail-
able: https://reference.digilentinc.com/_media/zybo:zybo_rm.
pdf, April 2016.

[EH13] K. Elphinstone and G. Heiser. From L3 to seL4 - What Have We Learnt
in 20 years of L4 Microkernels? In Proceedings of the Twenty-Fourth

81

https://reference.digilentinc.com/_media/zybo:zybo_rm.pdf
https://reference.digilentinc.com/_media/zybo:zybo_rm.pdf

82 REFERENCES

ACM Symposium on Operating Systems Principles - SOSP ’13, Novem-
ber 2013.

[FLWH10] T. Frenzel, A. Lackorzynski, A. Warg, and H. Härtig. ARM TrustZone
as a Virtualization Technique in Embedded Systems. In Proceedings of
Twelfth Real-Time Linux Workshop, October 2010.

[Gol74] R. Goldberg. Survey of virtual machine research. Computer, 7(6):34–45,
June 1974.

[GPG+15] T. Gomes, S. Pinto, T. Gomes, A. Tavares, and J. Cabral. Towards an
FPGA-based edge device for the Internet of Things, September 2015.

[HD07] S. Hauck and A. DeHon. Reconfigurable Computing: the Theory and
Practice of FPGA-based Computing. November 2007.

[Hei07] G. Heiser. Virtualization for Embedded Systems. Open Kernel Labs
Technology White Paper, November 2007.

[Hei08] G. Heiser. The Role of Virtualization in Embedded Systems. In Pro-
ceedings of the 1st workshop on Isolation and integration in embedded
systems - IIES ’08, pages 11–16, April 2008.

[Hei11] G. Heiser. Virtualizing Embedded Systems: Why Bother? In Proceed-
ings of the 48th Design Automation Conference, DAC’11, pages 901–
905. ACM, June 2011.

[HEK+07] G. Heiser, K. Elphinstone, I. Kuz, G. Klein, and S. Petters. Towards
trustworthy computing systems: Taking microkernels to the next level.
ACM SIGOPS Operating Systems Review, 41(4):3–11, July 2007.

[HGNB10] M. Hübner, D. Göhringer, J. Noguera, and J. Becker. Fast dynamic
and partial reconfiguration data path with low hardware overhead on
Xilinx FPGAs. In Proceedings of the 2010 IEEE International Sym-
posium on Parallel Distributed Processing, Workshops and Phd Forum
(IPDPSW), pages 1–8, April 2010.

[HHL+97] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter. The
Performance of µ-Kernel-Based Systems. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles (SOSP ’97), October
1997.

[HN06] C. Hilton and B. Nelson. PNoC: a flexible circuit-switched NoC for
FPGA-based systems. IEE Proceedings - Computers and Digital Tech-
niques, 153(3):181–188, May 2006.

[HPHS04] M. Hohmuth, M. Peter, H. Härtig, and J. Shapiro. Reducing TCB size

REFERENCES 83

by using untrusted components - small kernels versus virtual-machine
monitors. In Proceedings of the 11th workshop on ACM SIGOPS Euro-
pean workshop, September 2004.

[HRL+08] H. Härtig, M. Roitzsch, A. Lackorzynski, B. Döbel, and A. Böttcher.
L4 – Virtualization and Beyond. Korean Information Science Society
Review, 2, April 2008.

[JPC+14] A. Jain, K. Pham, J. Cui, S. Fahmy, and D. Maskell. Virtualized Ex-
ecution and Management of Hardware Tasks on a Hybrid ARM-FPGA
Platform. Journal of Signal Processing Systems, 77(1-2):61–76, October
2014.

[Kai09] R. Kaiser. Complex embedded systems - a case for virtualization. In
Proceedings of the 2009 Seventh Workshop on Intelligent solutions in
Embedded Systems, pages 135–140, June 2009.

[KK12] D. Kleidermacher and M. Kleidermacher. Embedded Systems Security:
Practical Methods for Safe and Secure Software and Systems Develop-
ment. Elsevier Inc., March 2012.

[KLJ+13] S. Kim, C. Lee, M. Jeon, H. Kwon, H. Lee, and C. Yoo. Secure device
access for automotive software. In Proceedings of the 2013 International
Conference on Connected Vehicles and Expo (ICCVE), pages 177–181,
December 2013.

[LCP+17] P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, , and D. Raho. VOSYS-
monitor, a Low Latency Monitor Layer for Mixed-Criticality Systems on
ARMv8-A. In Proceedings of the Euromicro Conference on Real-Time
Systems (ECRTS), June 2017.

[Lie96] J. Liedtke. Toward real microkernels. Communications of the ACM,
September 1996.

[LKLJ09] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch. Run-time partial re-
configuration speed investigation and architectural design space explo-
ration. In Proceedings of the 2009 International Conference on Field
Programmable Logic and Applications, pages 498–502, August 2009.

[LOG+03] T. Lenart, V. Owall, M. Gustafsson, M. Sebesta, and P. Egelberg. Ac-
celerating signal processing algorithms in digital holography using an
fpga platform. In Proceedings of the 2003 IEEE International Confer-
ence on Field-Programmable Technology (FPT), January 2003.

[LP09] E. Lübbers and M. Platzner. Reconos: Multithreaded programming for

84 REFERENCES

reconfigurable computers. ACM Transactions on Embedded Computing
Systems (TECS), 9(1):8–33, October 2009.

[LPFG10] S. Liu, R. Pittman, A. Forin, and J. Gaudiot. On energy efficiency of
reconfigurable systems with run-time partial reconfiguration. In Pro-
ceedings of the ASAP 2010 - 21st IEEE International Conference on
Application-specific Systems, Architectures and Processors, pages 265–
272, July 2010.

[MAC+17] J. Martins, J. Alves, J. Cabral, A. Tavares, and S. Pinto. µRTZVisor: a
Secure and Safe Real-Time Hypervisor. Electronics, 6, no. 4:93, October
2017.

[McD08] E. McDonald. Runtime FPGA Partial Reconfiguration. In Proceedings
of the 2008 IEEE Aerospace Conference, pages 1–7, March 2008.

[PG74] G. Popek and R. Goldberg. Formal requirements for virtualizable third
generation architectures. Communications of the ACM, 7(17):412––42,
July 1974.

[PJC+13] K. Pham, A. Jain, J. Cui, S. Fahmy, and D. Maskell. Microkernel hy-
pervisor for a hybrid ARM-FPGA platform. In Proceedings of the 2013
IEEE 24th International Conference on Application-Specific Systems,
Architectures and Processors, pages 219–226, June 2013.

[POP+14] S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M. Ekpanyapong,
J. Cabral, and A. Tavares. Towards a lightweight embedded virtualiza-
tion architecture exploiting arm trustzone. In Proceedings of the 2014
IEEE Emerging Technology and Factory Automation (ETFA), pages 1–
4, September 2014.

[PPG+17] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral. LTZVisor :
TrustZone is the Key. In Proceedings of the 29th Euromicro Conference
on Real-Time Systems, Leibniz International Proceedings in Informatics
(LIPIcs), volume 76, pages 4:1–4:22, June 2017.

[PRAM17] M. Valdes Pena, J. Rodriguez-Andina, and M. Manic. The internet of
things: The role of reconfigurable platforms. IEEE Industrial Electron-
ics Magazine, 11(3):6–19, September 2017.

[PS18] S. Pinto and N. Santos. Demystifying Arm TrustZone: A Comprehen-
sive Survey. ACM Computing Surveys, preprint, 2018.

[PTM16] S. Pinto, A. Tavares, and S. Montenegro. Hypervisor for Real Time
Space Applications. In Proceedings of the The 4S Symposium, June

REFERENCES 85

2016.

[RG05] M. Rosenblum and T. Garfinkel. Virtual machine monitors: current
technology and future trends. Computer, 38(5):39–47, May 2005.

[RSTS18] J. Ribeiro, N. Silva, A. Tavares, and S.Pinto. A TrustZone-assisted
Hypervisor Supporting Dynamic Partial Reconfiguration. In Proceed-
ings of the XIV Jornadas sobre Sistemas Reconfiguráveis, pages 8 – 11,
February 2018.

[SBM+16] J. Shuja, K. Bilal, S. A. Madani, M. Othman, R. Ranjan, P. Balaji,
and S. U. Khan. Survey of Techniques and Architectures for Designing
Energy Efficient Data Centers. IEEE Systems Journal, 10(2):507–519,
June 2016.

[SHT13] D. Sangorrín, S. Honda, and H. Takada. Reliable and Efficient Dual-OS
Communications for Real-Time Embedded Virtualization. Information
and Media Technologies, October 2013.

[SN05] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems
and Processes. Elsevier Inc., June 2005.

[SRSW14] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using ARM TrustZone
to build a trusted language runtime for mobile applications. In Proceed-
ings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 67–80, March
2014.

[TCL09] D. Thomas, J. Coutinho, and W. Luk. Reconfigurable computing:
Productivity and performance. In Proceedings of the 2009 Conference
Record of the Forty-Third Asilomar Conference on Signals, Systems and
Computers, pages 685–689, November 2009.

[THB06] S. Tanenbaum, J. Herder, and H. Bos. Can We Make Operating Systems
Reliable and Secure? Computer, 39(5):44–51, May 2006.

[VS14] K. Vipin and S.Fahmy. ZyCAP: Efficient Partial Reconfiguration Man-
agement on the Xilinx Zynq. IEEE Embedded Systems Letters, 6(3):41–
44, September 2014.

[Win08] J. Winter. Trusted computing building blocks for embedded linux-based
arm trustzone platforms. In Proceedings of the 3rd ACM workshop on
Scalable trusted computing, pages 21–30, October 2008.

[Xia16] T. Xia. Research on Virtualisation Technology for Real-time Reconfig-
urable Systems. Electronics, December 2016.

86 REFERENCES

[Xil16a] Xilinx Inc. Partial Reconfiguration Controller (v1.0): Logi-
CORE IP Product Guide (PG193). [Online]. Available: https:
//www.xilinx.com/support/documentation/ip_documentation/
prc/v1_0/pg193-partial-reconfiguration-controller.pdf, April
2016.

[Xil16b] Xilinx Inc. AXI HWICAP v3.0: LogiCORE IP Product
Guide (PG134). [Online]. Available: https://www.xilinx.com/
support/documentation/ip_documentation/axi_hwicap/v3_0/
pg134-axi-hwicap.pdf, October 2016.

[Xil17] Xilinx Inc. Vivado Design Suite User Guide: Partial Recon-
figuration UG909 (v2017.1). [Online]. Available: https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2017_1/
ug909-vivado-partial-reconfiguration.pdf, April 2017.

[Xil18a] Xilinx Inc. AXI DMA v7.1: LogiCORE IP Product Guide
(PG021). [Online]. Available: https://www.xilinx.com/support/
documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.
pdf, April 2018.

[Xil18b] Xilinx Inc. Zynq-7000 SoC Technical Reference Manual UG585
(v1.12.2). [Online]. Available: https://www.xilinx.com/support/
documentation/user_guides/ug585-Zynq-7000-TRM.pdf, July 2018.

[XPN15a] T. Xia, J. Prevotet, and F. Nouvel. An ARM-based Microkernel on
Reconfigurable Zynq-7000 Platform. Mediterranean Telecommunication
Journal, 5(2):109–115, April 2015.

[XPN15b] T. Xia, J. Prevotet, and F. Nouvel. Mini-NOVA: A Lightweight ARM-
based Virtualization Microkernel Supporting Dynamic Partial Recon-
figuration. In Proceedings of the 2015 IEEE International Parallel and
Distributed Processing Symposium Workshops, pages 71–80, May 2015.

https://www.xilinx.com/support/documentation/ip_documentation/prc/v1_0/pg193-partial-reconfiguration-controller.pdf
https://www.xilinx.com/support/documentation/ip_documentation/prc/v1_0/pg193-partial-reconfiguration-controller.pdf
https://www.xilinx.com/support/documentation/ip_documentation/prc/v1_0/pg193-partial-reconfiguration-controller.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v3_0/pg134-axi-hwicap.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v3_0/pg134-axi-hwicap.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v3_0/pg134-axi-hwicap.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Listings
	Glossary
	Introduction
	Objectives
	Document Structure

	Literature Review and Related Work
	Virtualization
	Hypervisor Types
	Kernel Architectures

	ARM TrustZone
	TrustZone-based Virtualization

	Partial Reconfiguration
	Related Work
	ReconOS
	FRED
	ZyCAP
	CODEZERO DPR Platform
	Ker-ONE

	Platform and Tools
	µRTZVisor
	Partition Manager
	Capability Manager
	Memory Manager
	Device Manager
	IPC Manager
	Scheduler
	Interrupt Manager

	The Zynq-7000 SoC
	PS/PL Communication
	Partial Reconfiguration on Zynq
	AXI Direct Memory Access

	µRTZVisor DPR Framework
	Overview
	Hardware Modules
	Reconfigurable Partition Manager
	Reconfiguration Mechanism
	Memory Access
	Reconfigurable Partitions

	Software Task
	µRTZVisor Integration

	Evaluation
	Experimental Setup
	Engineering Effort
	Hardware
	µRTZVisor Modifications
	Software Task

	Memory Footprint
	Hardware Costs
	Performance
	Reconfiguration Mechanisms
	RPC Overheads

	Conclusion
	Future Work

	References

