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MEMOTE for standardized genome-scale 
metabolic model testing
To the Editor — Reconstructing metabolic 
reaction networks enables the development 
of testable hypotheses of an organism’s 
metabolism under different conditions1. 
State-of-the-art genome-scale metabolic 
models (GEMs) can include thousands of 
metabolites and reactions that are assigned 
to subcellular locations. Gene–protein–
reaction (GPR) rules and annotations 
using database information can add meta-
information to GEMs. GEMs with metadata 
can be built using standard reconstruction 
protocols2, and guidelines have been put in 
place for tracking provenance and enabling 
interoperability, but a standardized means 
of quality control for GEMs is lacking3. Here 
we report a community effort to develop a 
test suite named MEMOTE (for metabolic 
model tests) to assess GEM quality.

Incompatible description formats and 
missing annotations4 limit GEM reuse. 
Moreover, numerical errors5 and omission 
of essential cofactors6 in a single biomass 
objective function can have substantial 
impact on the predictive performance of 
a GEM. Failure to make checks for flux 
cycles and imbalances can render model 
predictions untrustworthy7.

Every year, increasing numbers of 
manually curated and automatically 
generated GEMs are published, including 
those for human and cancer tissue models8. 
We believe that it is essential to optimize 
GEM reproducibility and reuse. Researchers 
need models that are software-agnostic, 
with components that have standardized, 
database-independent identifiers. Default 
conditions and mathematically specified 
modeling formulations must be precisely 
defined to allow reproduction of the 
original model predictions. Models must 
produce feasible phenotypes under various 
conditions. Finally, data used to build  
any model must be made available in a 
reusable format.

A dual approach could be used to 
improve GEM reuse and reproducibility. 
First, we advocate adoption of the latest 
version of the Systems Biology Markup 
Language (SBML) level 3 flux balance 
constraints (SBML3FBC) package9 as the 
primary description and exchange format. 
The SBML3FBC package adds structured, 
semantic descriptions for domain-specific 
model components such as flux bounds, 
multiple linear objective functions, GPR 
rules, metabolite chemical formulas, charge 

and annotations. The SBML and constraint-
based modeling communities collaboratively 
develop this package, updating it based on 
user input. It has been adopted by a wide 
range of constraint-based modeling software 
and public model repositories (http://cbmpy.
sourceforge.net/ and refs. 10–15), and should 
therefore be considered the standard for 
encoding GEMs.

Second, we present MEMOTE 
(/’mi:moʊt/ in international phonetic 
alphabet notation), an open-source Python 
software that represents a unified approach 
to ensure the formally correct definition of 
SBML3FBC and provides quality control and 
continuous quality assurance of metabolic 
models with tools and best practices already 
used in software development16,17. MEMOTE 
accepts stoichiometric models encoded 
in SBML3FBC and previous versions as 
input. In addition to structural validation 
analogous to the SBML validator18, 
MEMOTE benchmarks metabolic models 
using consensus tests from four general 
areas: annotation, basic tests, biomass 
reaction and stoichiometry.

Annotation tests check that a model 
is annotated according to community 
standards with minimum information 
required in annotation of models 
(MIRIAM)-compliant cross-references19, 
that all primary identifiers belong to 
the same namespace rather than being 
fractured across several namespaces, and 
that components are described using 
Systems Biology Ontology (SBO) terms20. 
A lack of explicit, standardized annotations 
complicates the use, comparison and 
extension of GEMs, and thus strongly 
hampers collaboration3,4.

Basic tests check the formal correctness 
of a model and verify the presence 
of components such as metabolites, 
compartments, reactions and genes. These 
tests also check for metabolite formula and 
charge information, and GPR rules. General 
quality metrics, such as the degree of 
metabolic coverage representing the ratio of 
reactions and genes21, are also checked.

A model is tested for production of 
biomass precursors in different conditions, 
for biomass consistency, for nonzero 
growth rate and for direct precursors. The 
biomass reaction is based on the biomass 
composition of the modeled organism and 
expresses its ability to produce the necessary 
precursors for in silico cell growth and 

maintenance. Thus, an extensive, well-
formed biomass reaction is crucial for 
accurate predictions with a GEM6.

Stoichiometric inconsistency, erroneously 
produced energy metabolites7 and 
permanently blocked reactions are identified 
by MEMOTE. Errors in stoichiometries may 
result in the production of ATP or redox 
cofactors from nothing2 and are detrimental 
to the performance of the model when using 
flux-based analysis4.

MEMOTE enables a quick comparison of 
any two given models, in which individual 
test results are quantified and condensed to 
calculate an overall score (Supplementary 
Note 1). In addition to these consensus 
tests, researchers can supply experimental 
data from growth and gene perturbation 
studies in a range of input formats (.csv, 
.tsv, .xls or .xslx) in MEMOTE. To support 
reproducibility, researchers can configure 
MEMOTE to recognize specific data types 
as input to predefined experimental tests for 
model validation (Supplementary Note 2).

There are two main workflows for 
MEMOTE (Fig. 1a and Supplementary 
Figs. 1–3). For peer review, MEMOTE 
can produce either a ‘snapshot report’ or 
a ‘diff report’ that display MEMOTE test 
results of one single or multiple models, 
respectively. For model reconstruction, 
MEMOTE helps users to create a version-
controlled repository of the model and 
to activate continuous integration toward 
building a ‘history report’ that records 
the results of each tracked edit of the 
model. Although a model repository can 
be used offline, we encourage community 
collaboration via distributed version control 
development platforms, such as GitHub 
(https://github.com), GitLab (https://gitlab.
com/) or BioModels12 (http://wwwdev.ebi.
ac.uk/biomodels/). MEMOTE is tightly 
integrated with GitHub. Models generated 
and versioned in MEMOTE can easily 
be uploaded to GitLab and BioModels. 
Collaborative model reconstruction with 
MEMOTE as benchmark can occur using all 
three software platforms (Fig. 1b).

We validated MEMOTE using models 
from seven GEM collections (Fig. 2, 
Supplementary Table 1 and Supplementary 
Methods), that comprise manually and 
(semi)-automatically reconstructed GEMs 
(10,780 models in total). Most GEM 
collections have already made models 
available in SMBL format. A nonlinear 
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dimensional reduction of the normalized 
test results (Supplementary Methods) using 
t-distributed stochastic neighbor embedding 
(t-SNE; Fig. 2a) indicates that models from 
the same source are generally more similar 
to each other than to models from other 
sources. Nevertheless, several model sources 
reveal internal subgroupings (Fig. 2a).  
With the exception of Path2Models22, 
which relies on pathway resources that 
contain problematic reaction information 
on stoichiometry and directionality23, 
automatically reconstructed GEMs were 
stoichiometrically consistent (Fig. 2b) and 
mass-balanced (Supplementary Fig. 4).  
Of the manually reconstructed GEMs 
we tested, most models in BiGG13 are 
stoichiometrically consistent, but there is 
wide variation among published models, 
with ~70% of models having at least one 
stoichiometrically unbalanced metabolite. 
Stoichiometrically inconsistent models 
cannot be mass-balanced, but missing 
formula annotations, from which molecular 
masses are calculated, further contribute to 
reactions being counted as unbalanced. The 
problems that we identified in published 
models underpin the need for application of 
MEMOTE during peer-review process (but 
ideally before submission) of GEMs.

During GEM reconstruction, metabolic 
reactions are defined based on functional 
gene annotations, and this information is 
output as GPR rules. We found that ~15% 
of reactions in models we tested are not 
annotated with GPR rules (Fig. 2c). For 
published models, subgroups of models 
contain up to 85% of reactions without GPR 
rules. This could be due to a large number 
of modeling-specific reactions, spontaneous 
reactions24 and known reactions with 
undiscovered genes, or if GPR rules were 
annotated in nonstandard ways.

CarveMe25 and Path2Models22 have a very 
low fraction of universally blocked reactions, 
whereas models from AGORA26 and 
KBase14 contain ~30% blocked reactions, 
and BiGG13 models and OptFlux15 models 
contain ~20% blocked reactions (Fig. 2d). 
Similarly, orphan and dead-end metabolites 
(Supplementary Figs. 5 and 6) are also 
present in all of these published collections. 
We note that blocked reactions and dead-
end metabolites are not indicators of low-
quality models but that a large proportion 
(for example, >50%) of universally 
blocked reactions can indicate problems in 
reconstruction that need solving.

AGORA, KBase and BiGG are the only 
collections with SBML-compliant metabolite 
and reaction annotations. Gene annotations 
are only present in KBase models and 
selected BiGG models (Supplementary  
Figs. 7–9). Each collection uses its own 
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Fig. 1 | graphical summary of MeMote. a, Graphical representation of the two principal workflows 
in detail. For peer review, MEMOTE serves as a benchmark tool generating a comprehensive, human-
readable report, which quantifies the model’s performance (Supplementary Figs. 1 and 2). With this 
information, a definitive assessment of model quality can be made by editors, reviewers and users. This 
workflow is accessible through a web interface (https://memote.io) or locally through a command line 
interface. For model reconstruction, MEMOTE helps users to create a version-controlled repository 
for the model (indicated by the blue asterisk), and to activate continuous integration. The model is 
tested using MEMOTE’s library of test cases, the results are saved, and an initial report of the model is 
generated. This constitutes the first iteration of the development cycle. Now, users may edit the model 
using their preferred reconstruction tool and subsequently export it to SBML3FBc, thus creating a 
new version (indicated by +n). This will restart the cycle by running the tests automatically, saving the 
results for each version and including them incrementally in a report on the entire history of results. 
This serves as a guide toward a functional, high-quality GEM (Supplementary Fig. 3). This workflow is 
accessible through the command line only. b, Both, Github and GitLab support a branching strategy, 
which model builders could use to curate different parts of the model simultaneously or to invite 
external experts to improve specific model features. MEMOTE further enables model authors to act as 
gatekeepers, choosing to accept only high-quality contributions. Identification of functional differences 
happens in the form of a comparative ‘diff’ report, whereas for file-based discrepancies MEMOTE 
capitalizes on the platform’s ability to show the line-by-line changes between different versions of a 
model. For this purpose, the model is written in a sorted YaML format28 after every change. Bold blue 
text denotes actions performed by MEMOTE.
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system of identifiers for each model 
component, but there is some overlap 
between all three (Supplementary Figs. 10 
and 11), and partial overlaps for models 
from KBase and BiGG (Supplementary 
Figs. 12–16), or AGORA and BiGG 
(Supplementary Figs. 17 and 18), but not 
KBase and AGORA. BiGG is the only 
collection with models using MetaNetX27 
annotations (Supplementary Fig. 19). 
MetaNetX consolidates biochemical 
namespaces by establishing a mapping 
between them through a set of unique 
identifiers. Hence, knowing the MetaNetX 
identifier for a given entity often means also 
knowing the identifiers for other databases 
(Supplementary Methods).

MEMOTE tests cover semantic and 
conceptual requirements, which are 
fundamental to SBML3FBC and constraint-
based modeling, respectively. They are 
extensible to allow the validation of a 
model’s performance against experimental 
data and can be executed as a stand-alone  

tool or integrated into existing 
reconstruction pipelines. Capitalizing on 
robust workflows established in modern 
software development, MEMOTE promotes 
openness and collaboration by granting 
the community tangible metrics to support 
their research and to discuss assumptions or 
limitations openly.

Application of a set of defined 
metabolic model tests is not dependent on 
implementation in MEMOTE, and for some 
users it may be more desirable to implement 
each test separately to streamline the user 
experience.

We propose that an independent, central 
library of tests and a tool to run them 
offers an unbiased approach to quality 
control because the tests are continuously 
reviewed by the community. This resource 
will be maintained under stewardship of 
Nikolaus Sonnenschein by the openCOBRA 
consortium (https://github.com/opencobra). 
To encourage integration as opposed to 
duplication, MEMOTE provides a Python 

application programing interface (API) 
as well as being available as a web service. 
MEMOTE has already been integrated in 
several services and tools (Supplementary 
Note 3). We discuss alternatives and future 
perspectives of MEMOTE in Supplementary 
Notes 4 and 5, respectively.

We recommend that MEMOTE users 
reach out to GEM authors to report any 
errors and thereby enable community 
improvement of models as resources. Using 
inconsistent GEMs for hypothesis generation 
could lead researchers down blind alleys, so 
we weighed the influence of ‘consistency’ and 
‘stoichiometric consistency’ and SBO terms 
higher than tests for metabolite, reaction and 
gene annotations.

We are committed to keeping MEMOTE 
open to support community principles. 
Robust benchmarking will only work if it is 
actively supported by the whole community, 
and we call on any interested experts to 
join this endeavor and enable its continual 
improvement.

reporting Summary
Further information on research design is 
available in the Nature Research Reporting 
Summary linked to this article.

Data availability
The model collection is available at https://
doi.org/10.5281/zenodo.2636858. Individual 
results and aggregated tables, as well as 
analysis code, are available at https://doi.
org/10.5281/zenodo.2638234.

code availability
MEMOTE source code is available at 
https://github.com/opencobra/memote 
under the Apache license, version 2.0. 
Supporting documentation is available at 
https://memote.readthedocs.io/en/latest/. 
The MEMOTE web interface is hosted at 
https://memote.io. A detailed list of all 
tests in MEMOTE is available at https://
memote.readthedocs.io/en/latest/autoapi/
index.html. ❐
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Fig. 2 | Quality of manually reconstructed geMs 
from collections without quality control or 
quality assurance. a, Depicted is a t-SNE two-
dimensional reduction of models using normalized 
test features as input. Only GEMs from the BiGG 
collection form a single albeit small cluster. 
Models from all other collections are grouped 
in several fragmented but distinct clusters. b–d, 
SinaPlots29 of each collection overlaid with box 
and whisker plots to indicate 25%, 50% (median) 
and 75% quantiles. GEMs from collections built in 
a modern automated pipeline (aGOra, carveMe, 
KBase) are stoichiometrically consistent, whereas 
models from the older Path2Models collection 
are up to 50% stoichiometrically inconsistent (b). 
Manually reconstructed models (BiGG, Ebrahim 
et al.30, OptFlux models) contain varying degrees 
of inconsistent GEMs. GPr rules are essential 
for in silico knockout studies, but also serve to 
justify the presence of a reaction (c). Generally, 
the fraction of reactions without GPr rules is low 
(~15%). Yet a distinct group of models from the 
collections of Ebrahim et al. and OptFlux lack GPr 
rules for >75% of their reactions. Most models 
from the carveMe and Path2Models collections 
contain very few blocked reactions, whereas for 
models from the other collections the number of 
blocked reactions lies mostly between 10% and 
30% (d). again, models from the collections of 
Ebrahim et al. and the Optflux models show the 
largest variance.
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The nf-core framework for community-curated 
bioinformatics pipelines
To the Editor — The standardization, 
portability and reproducibility of 
analysis pipelines are key issues within 
the bioinformatics community. Most 
bioinformatics pipelines are designed for 
use on-premises; as a result, the associated 
software dependencies and execution 
logic are likely to be tightly coupled with 
proprietary computing environments. This 
can make it difficult or even impossible for 
others to reproduce the ensuing results, 
which is a fundamental requirement for the 
validation of scientific findings. Here, we 
introduce the nf-core framework as a means 
for the development of collaborative, peer-
reviewed, best-practice analysis pipelines 
(Fig. 1). All nf-core pipelines are written 
in Nextflow and so inherit the ability 
to be executed on most computational 
infrastructures, as well as having native 
support for container technologies such 
as Docker and Singularity. The nf-core 
community (Supplementary Fig. 1) has 
developed a suite of tools that automate 
pipeline creation, testing, deployment and 
synchronization. Our goal is to provide a 
framework for high-quality bioinformatics 
pipelines that can be used across all 
institutions and research facilities.

Being able to reproduce scientific results 
is the central tenet of the scientific method. 
However, moving toward FAIR (findable, 
accessible, interoperable and reusable) 

research methods1 in data-driven science is 
complex2,3. Central repositories, such as bio.
tools4, omictools5 and the Galaxy toolshed6, 
make it possible to find existing pipelines 
and their associated tools. However, it is 
still notoriously challenging to develop 
analysis pipelines that are fully reproducible 
and interoperable across multiple systems 
and institutions — primarily because of 
differences in hardware, operating systems 
and software versions.

Although the recommended guidelines 
for some analysis pipelines have become 
standardized (for example, GATK best 
practices7), the actual implementations are 
usually developed on a case-by-case basis. 
As such, there is often little incentive to 
test, document and implement pipelines 
in a way that permits their reuse by other 
researchers. This can hamper sustainable 
sharing of data and tools, and results in 
a proliferation of heterogeneous analysis 
pipelines, making it difficult for newcomers 
to find what they need to address a specific 
analysis question.

As the scale of -omics data and their 
associated analytical tools has grown, the 
scientific community is increasingly moving 
toward the use of specialized workflow 
management systems to build analysis 
pipelines8. They separate the requirements 
of the underlying compute infrastructure 
from the analysis and workflow description, 

introducing a higher degree of portability  
as compared to custom in-house scripts. 
One such popular tool is Nextflow9.  
Using Nextflow, software packages can 
be bundled with analysis pipelines using 
built-in integration for package managers, 
such as Conda, and containerization 
platforms, such as Docker and Singularity. 
Moreover, support for most common  
high-performance-computing batch 
schedulers and cloud providers allows 
simple deployment of analysis pipelines on 
almost any infrastructure. The opportunity 
to run pipelines locally during initial 
development and then to proceed seamlessly 
to large-scale computational resources in 
high-performance-computing or cloud 
settings provides users and developers  
with great flexibility.

The nf-core community project collects  
a curated set of best-practice analysis 
pipelines built using Nextflow. Similar 
projects include the ‘awesome-pipelines’ 
repository, which provides an extensive 
list of pipelines developed by the 
Nextflow community (https://github.com/
pditommaso/awesome-pipeline), although 
these pipelines are variable in terms of 
development status and design. High-
level approaches to facilitate the creation 
of end-to-end analysis pipelines are also 
available: Flowcraft (https://github.com/
assemblerflow/flowcraft) and Pipeliner10 are 
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