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ABSTRACT 

Diabetic Retinopathy (DR) and diabetic macular edema (DME) are the damages caused to the retina 

and are complications that can affect the diabetic population. Diabetic retinopathy (DR), is the most 

common disease due to the presence of exudates and has three levels of severity, such as mild, 

moderate and severe, depending on the exudates distribution in the retina. For screening of diabetic 

retinopathy or a population-based clinical study, a large number of digital fundus images are captured 

and to be possible to recognize the signs of DR and DME, it is necessary that the images have quality, 

because low-quality images may force the patient to return for a second examination, wasting time and 

possibly delaying treatment. 

These images are evaluated by trained human experts, which can be a time-consuming and expensive 

task due to the number of images that need to be examined. Therefore, this is a field that would be 

hugely benefited with the development of an automated eye fundus quality assessment and analysis 

systems. It can potentially facilitate health care in remote regions and in developing countries where 

reading skills are scarce. 

Deep Learning is a kind of Machine Learning method that involves learning multi-level representations 

that begin with raw data entry and gradually moves to more abstract levels through non-linear 

transformations. With enough training data and sufficiently deep architectures, neural networks, such 

as Convolutional Neural Networks (CNN), can learn very complex functions and discover complex 

structures in the data. 

Thus, Deep Learning emerges as a powerful tool for medical image analysis and evaluation of retinal 

image quality using computer-aided diagnosis. 

Therefore, the aim of this study is to automatically assess all the three quality parameters alone (focus, 

illumination and color), and then an overall quality of fundus images assessment, classifying the images 

into the classes “accept” or “reject with a Deep Learning approach using convolutional neural networks 

(CNN). For the overall classification, the following results were obtained: test accuracy=97.89%, 

SN=97.9%, AUC=0.98 and 𝐹1-score=97.91%. 
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    RESUMO 

A retinopatia diabética (RD) e o edema macular diabético (EMD) são patologias da retina e são uma 

complicação que pode afetar a população diabética. A retinopatia diabética é a doença mais comum 

devido à presença de exsudatos e possui três níveis de gravidade, como leve, moderado e grave, 

dependendo da distribuição dos exsudatos na retina.  

Para triagem da retinopatia diabética ou estudo clínico de base populacional, um grande número de 

imagens digitais de fundo do olho são capturadas e para ser possível reconhecer os sinais da RD e 

EMD, é necessário que as imagens tenham qualidade, pois imagens de baixa qualidade podem forçar 

o paciente a retornar para um segundo exame, perdendo tempo e, possivelmente, retardando o 

tratamento. Essas imagens são avaliadas por especialistas humanos treinados, o que pode ser uma 

tarefa demorada e cara devido ao número de imagens que precisam de ser examinadas. Portanto, este 

é um campo que seria enormemente beneficiado com o desenvolvimento de sistemas automatizados 

de avaliação e análise da qualidade da imagem do fundo de olho. Pode potencialmente facilitar a 

assistência médica em regiões remotas e em países em desenvolvimento, onde as habilidades de 

leitura são escassas. 

Deep Learning é um tipo de método de Machine Learning que envolve a aprendizagem de 

representações em vários níveis que começam com a entrada de dados brutos e gradualmente se 

transformam para níveis mais abstratos através de transformações não lineares, para se obterem as 

previsões. Com dados de treino suficientes e arquiteturas suficientemente profundas, as redes 

neuronais, como as Convolutional Neural Networks (CNN), podem aprender funções muito complexas 

e descobrir estruturas complexas nos dados. Assim, o Deep Learning surge como uma ferramenta 

poderosa para analisar imagens médicas para avaliação da qualidade da retina, usando diagnóstico 

auxiliado por computador a partir do fundo do olho. 

Portanto, o objetivo deste estudo é avaliar automaticamente a qualidade geral das imagens do fundo, 

classificando as imagens em “aceites” ou “rejeitadas”, com base em três parâmetros principais, como 

o foco, a iluminação e cor com abordagem de Deep Learning usando convolutional neural networks 

(CNN).  

Para a classificação geral da qualidade das imagens, obtiveram-se os seguintes resultados: acurácia 

do teste = 97,89%, SN = 97,9%, AUC = 0,98 e 𝐹1-score=97.91%. 
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GLOSSARY 

Activation Function Used in Neural Networks, this is the function in the neuron, that takes 
in the weighted sum of all of the inputs from the previous layer and then 
generates and passes an output value (typically non-linear) to the next 
layer. 

Artificial Intelligence (AI) Computer programs designed that allows to make decisions and 
perform tasks that simulate human intelligence, human brain and 
behavior. 

Artificial Neural Networks 
(ANN) 

A model that, developed by the human brain inspiration, is composed 
of input layers, hidden layers and output layers of simple connected 
units or neurons followed by activation functions. 

Batch In Neural Networks, it is a set of examples or samples used in one 
iteration/epoch. 

Class In ML, a class refers to the output category of the data. A label in a 
dataset points to one of the classes. 

Convolutional Neural 
Network (CNN) 

A CNN is a deep neural network that is currently the state-of-the-art in 
image processing, in the recent years. Its major advantage is the little 
pre-processing steps required when compared to other image 
classification algorithms. 

Deep Learning (DL) A subset of AI and Machine learning which allows multi-processing 
layers and computational models to learn representations of data with 
multiple levels of abstraction. 

Epoch A full training iteration over the entire data set such that each example 
has been seen once. 

Overfitting Phenomenon that occurs when training the model, training data is 
memorized by the model and, then can’t generalize in new unseen data 

Test set The subset of the dataset that is used to test the model after the model 
has gone through initial vetting by the validation set. 

Train set The subset of the dataset used to train a model. 

Validation set A subset of the dataset — disjunct from the training set—that is used to 
adjust hyperparameters. 

Dropout A form of regularization in training neural networks. This regularization 
removes random selection neurons, by a given fixed parameter p. The 
more units dropped out, the stronger the regularization. 
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1.1 MOTIVATION 

The diagnosis of ocular diseases, such as Diabetic Retinopathy (DR) and Diabetic Macular Edema 

(DME) heavily relies on imaging techniques. One of the most used eye imaging modalities is fundus 

eye imaging because it is non-invasive and has low operating costs. 

At the time of image acquisition for eye diseases diagnosis, several problems may arise, such as the 

acquisition of low-quality images, where the lesions may become nebulous, leading to classification 

errors.  

To better understand the underlying causes and progression of DR and DME, the research 

community needs to analyze in detail, large amounts of retinal images over a long period of time, 

and a study based only on human classifiers is a time-consuming and error-prone task, since the 

experience, visual perception, types of cameras and judgment of photographers can vary [1],[2]. 

Another disadvantage of operator-dependent classifications are the increased rate of poor image 

acquisitions and repeated ophthalmology examinations, which has associated financial and time 

costs. 

To overcome these limitations, it is proposed the study of an automatic image quality assessment 

classifier, which aims to classify with low computational resources and in short time. This classifier 

would receive as input a varied set of images, returning as outputs, the images that are of good 

quality and those of poor quality, depending on the focus, the color and the illumination of these. 

It is intended that the developed classifiers would be able to learn the necessary features to generalize 

well in new unseen images and classify with a low number of false negatives and false positives 

detections. 

 

1.2    OBJECTIVES AND RESEARCH QUESTIONS 

The present work aims to design and develop reliable and fast algorithms that can evaluate the 

quality of the images, according to their focus, illumination and color parameters present in them. It 

is also intended that the algorithm can make an overall assessment of each image and that it outputs 

whether it accepts or rejects the image or set of images. 

Throughout this study, it is intended to find the answer to the following research questions: 

• What are the characteristics that contribute to the evaluation of image quality? 
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• How well can the model handle the use of different values and types of manually selected 

hyperparameters based on theoretical and empirical knowledge? 

• Are the models learning with different parameters and methods applied? Which techniques 

increase the accuracy and performance of a model? 

• Are the implemented models, computational and time expensive? Which model performs 

best?  

• Which characteristics highlights the present work from the previously works made? Which 

are the limitations of the present work? 

• Can these models be compared with the state-of-the-art techniques? 

 

1.3 RESEARCH METHODOLOGY 

In the present work, the initial phase contemplates the choice of the theme, the motivation, the 

definition of objectives and the creation of a plan of activities for the development of the study, in 

order to respond to the previous objectives.  

The next phase consisted on researching relevant sources of information such as articles and books, 

where these concepts and the use of these works were constantly renewed as new ideas or 

information emerged. 

To find the necessary knowledge to carry out the present work, the research was based on the use 

of keywords in the most prestigious editors and digital libraries of medical and scientific literature, 

such as: Elsevier, Springer, IEEE Xplore, PubMed, ScienceDirect, Google Scholar, ResearchGate, 

ACM Digital Library, SPIE Digital Library among other sources.  

 

Some of the keywords presented were used in the research: 

• Retinal Quality Assessment; 

• Retina; 

• Fundus Photography; 

• Diabetic Retinopathy; 

• Diabetic Macular Edema; 
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• Deep Learning; 

• Convolutional Neural Networks; 

 

The articles that did not show results with these or other similar, work-related keywords were 

excluded. 

In the final part of this work, it was proceeded the development and analysis of functional systems 

able to reach the proposed objectives. 

The applied methodology comprises the following stages of development: 

• Definition of the problem, its motivation, and its characteristics;  

• Elaboration of the state of the art and objectives of the work; 

• Development of algorithms that allow achieving the proposed objectives, as well as 

improvements and corrections of these based on the obtained results; 

• Presentation of conclusions, a discussion of the results and proposal of future work. 

 

1.4 DISSERTATION STRUCTURE 

This work is structured in 7 chapters including this as a first chapter which frames the reader with 

the context, motivations and objectives of the study. Next, the second chapter is presented with the 

medical background, with all the important concepts associated to the diseases and anatomy present 

in the eye. The third chapter includes the information about each of the retinal quality parameters 

and the state-of-the-art of the past 20 years in retinal image quality assessment methods. In chapter 

4, Machine Learning, Deep Learning and image processing concepts are presented, to better 

understand the pipeline developed and techniques used in the chapter 5. This chapter also presents 

which types of images and datasets used in the classification CNN algorithms. In chapter 6 the 

results and discussion of the networks developed are presented and in chapter 7, the main 

conclusions and the future work. 
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2.1 EYE ANATOMY 

The eye is a complex optical structure that is able to reflect and focus light that stimulates neural 

responses. The eye is essentially made up from a number of optical components, neural 

components, and supportive layers, as can be shown in Figure 2-1. At the front of the eye, a thin 

and transparent membrane known as the cornea, covers the anterior surface of the eye. This 

membrane has a dual purpose eye protection and refracting the light that enters in the eye. A 

portion of the light passing through the cornea passes through the pupil, a small opening in front 

of the lens.  

The choroid contains a network of blood vessels that serve as the major source of nutrition to the 

eye and is a membrane that lies directly below the sclera. The choroid coat is heavily pigmented, 

helping to reduce the amount of extraneous light entering the eye and the backscatter within the 

optic globe.  

The lens is made up of concentric layers of fibrous cells and is suspended by fibers that attach to 

the ciliary body. It contains 60 to 70% water, about 6% fat and more protein than any other tissue 

in the eye.  

The innermost membrane of the eye is the retina, shown in Figure 2-2, which lines the inside of 

the wall’s entire posterior portion. When the eye is properly focused, light from an object outside 

the eye is imaged on the retina. Pattern vision is afforded by the distribution of discrete light 

receptors over the surface of the retina. There are two classes of receptors: cones and rods. The 

cones in each eye number between 6 and 7 million. They are located primarily in the central portion 

of the retina, called of the fovea, and are highly sensitive to color. Humans can resolve fine details 

with these cones largely because each one is connected to its own nerve end [3]. 
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Figure 2-1 Human eye anatomy (adapted from [4]) 

 

 

 

 

 

Figure 2-2 The retina (adapted from [4]). 
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2.2 RETINAL IMAGING MODALITIES 

Retinal Imaging has developed rapidly during the last 160 years and is now a mainstay of the 

clinical care and management of patients with retinal as well as systemic diseases [5]. 

In the ophthalmology clinic, retinal imaging devices are primarily used in the diagnosis of retinal 

disease as well as a serial monitoring in retinal conditions such as age-related macular 

degeneration to monitor response to treatment. However, the detail with which the eye can be 

visualized non-invasively opens up investigative possibilities for a variety of long-term conditions.  

Fundus imaging is defined by [5] as the process which results in a 2D image, where the image 

intensities represent the amount of a reflected quantity of light [5]. 

Fundus imaging generates a two-dimensional (2D) image of the interior three-dimensional (3D) 

surface of the eye and is performed with a system that consists of a specialized low-power 

microscope and an attached camera. The patient sits with his/her chin in a rest and forehead 

placed against a bar, while the operator focuses and aligns the camera before pressing the shutter 

release to fire a flash and create the image. This image is an upright, magnified picture of the 

fundus with typical angles of view of 30, 45 or 60 and with a magnification of x2.5, depending on 

the system optics. Images of higher quality can often be achieved by dilating the pupils beforehand 

with mydriatic eye drops to enlarge the FOV of the fundus and improve image quality. Current 

digital image resolutions are around 3000 x 3000 pixels [6]. 

Fundus photography is widely used for population-based, large-scale detection of some retinal 

diseases like diabetic retinopathy, glaucoma, and age-related macular degeneration (AMD). Optical 

coherence tomography and fluorescein angiography are widely used in the management and 

diagnosis of patients with DR, AMD, and inflammatory retinal diseases [5]. 

In Table 2-1 is presented a summary of the principal retinal imaging modalities and their most 

differences. 
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2.1.1 DIGITAL FUNDUS PHOTOGRAPHY 

Automated diagnosis of retinal fundal images using digital imaging analysis offers huge potential 

benefits. In a research context, offers the potential to examine a large number of images with cost 

and time savings and offer more objective measurements the current observer-driven techniques 

[7]. 

The use of digital imaging systems has reduced the technical failure rate and the electronic image 

has been facilitating easy storage and cataloging. These digital systems for retinal photography 

acquisition have been shown to achieve sensitivities and specificities of approximately 90% in 

detecting referable DR. Comparisons between film and digital fundus photographs found 

agreement to be almost perfect for DR severity level and moderate to substantial for DME [8]. 

 

2.1.2 FLUORESCEIN ANGIOGRAPHY 

Fluorescein angiography has been utilized to provide measurements of overall fluorescein intensity 

variation over the fluorescein transit, or to examine vascular structures in the eye such as the 

choroid, iris and retina. A fluorescein dye is injected and remains within normal blood vessels, thus 

leakage into surrounding tissue indicates vascular pathology. Fluorescein angiography can offer a 

Table 2-1 A summary of the principal retinal imaging modalities, including the method of image formation, typical resolution (in 
micrometers) and some of the advantages and limitations [6]. 
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potential diagnostic index of retinopathy severity and it is most commonly used to investigate retinal 

diseases such as diabetic retinopathy.  

Fluorescein is a vital dye; it is composed of crystalline hydrocarbon dye and has the property of 

absorbing light in the blue wavelength and emitting it in the green wavelength [7]. 

This techniques also have drawbacks associated: it is an prohibit intervention in large-scale 

screening analysis and can contribute to nausea and vasovagal attack. The mortality associated 

with this technique is 1 in 200 000 patients. Its use should be limited to diagnosis in patients 

whose management may be altered by the results or subjects included in an ethically approved 

research study [9]. 

 

2.1.3 OPTICAL COHERENCE TOMOGRAPHY 

OCT is also widely used in preparation and follow-up in vitreoretinal surgery [5]. 

Optical coherence tomography (OCT) is a non-invasive, noncontact transpupillary imaging modality 

that has offered revolutionized ophthalmic clinical practices. This technique consists in using light 

with low coherence interferometry. OCT produces cross-sectional images of the macula allowing 

objective evaluation of macular thickness and evaluation of vitreomacular interface. However, it 

gives a poor correlation between macular thickness and visual acuity. The main disadvantage of 

OCT is the cost of the required equipment, which limits is availability [10]. 

This technique has the following procedures: an optical beam is directed at the target tissue and 

interferometry resolves the back-scattered light signals. The scanning beam is split with a beam 

splitter sending some to the target tissue (target arm) and the remaining portion to a reference 

mirror (reference arm). Both beams are reflected back to the beam splitter from the target and the 

reference mirror, respectively, and then directed together to a detector. When the distance to the 

reference mirror in the reference arm is equal to the distance to the reflecting target within the 

tissue, interference occurs, inferring to the depth of the reflecting structure in the target [8]. 

In Table 2.2, its presented the main differences found in the OCT and Fundus Imaging modalities. 
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Table 2-2 Findings assessed by graders in 3D OCT and Fundus Images. 

 3D-OCT Findings Fundus Image Findings 

Epiretinal ILM Irregularity EMR 

Macular Hole 

Retinal/Subretinal Increased Retinal Thickness 

Decreased Retinal Thickness 

Hyperreflective Features 

Hyporeflective Features 

Microaneurysms 

Cotton Wool Spots 

Exudate 

Hemorrhage 

Pigmentary Change 

RPE/Choroidal RPE Irregularity Drusen  

RPE Atrophy 
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Retinal images can be acquired through Fluorescein Angiography, Optical Coherence Tomography, 

and Digital Fundus Photography as discussed in Chapter 2. Before proceeding to the diagnosis, 

the image quality is assessed by the physician since it can impact a correct image analysis. Several 

parameters affect retinal image quality and its classification is usually manual. This rating is a slow, 

highly subjective and error-prone process even if rated by experienced professionals. In order to 

make the whole process more efficient, it is necessary to rely on an automated analysis and giving 

results in a short time can reduce the time of evaluation, the workload of the specialists, as well as 

reduce the discomfort of rescheduling further examination of patients [7]. In this chapter the image 

quality parameters regarding retinal fundus images will be described. In addition, an analysis of 

the state of the art methods that address this issue will be presented as well. 

 

3.1 RETINAL IMAGE QUALITY PARAMETERS 

Image sharpness is mainly influenced by camera focus at the moment of exposure, but also by 

any factor that has a blurring effect on the generated image (e.g. eye movement or cataract). 

Illumination reflects how well illuminated the retina is at exposure (that it is neither under or 

overexposed). Illumination is influenced by the flash settings of the camera, the pupil size and the 

pigmentation of the fundus [8]. 

Reliable factors for image quality assessment (IQA) identified by the Atherosclerotic Risk in 

Communities (ARIC) [9] study are grouped into two major categories: generic image quality 

parameters (e.g. contrast, clarity) and structural quality parameters (such as visibility of the optic 

disc and macula) [10]. 

Image quality is a difficult and subjective task in any field. Insufficient quality in medical images 

can affect the clinicians’ capacity to perform a correct diagnosis. In general, depending on the use 

of the images the interpretation of quality can vary [11]. 

Subjective quality can also be measured by psychophysical tests or questionnaires with numerical 

ratings, but this is not the ideal type of evaluation when the immediate assessment is desired.  

Quality of fundus images is usually verified by the photographer in the acquisition moment, and 

these images should be retaken if the image quality can impair an adequate assessment of key 

features in the retina. To capture high-quality fundus image, a proper camera-to-eye distance 

should be maintained to avoid haziness and artifacts, and also flash and gain should be adjusted 

to avoid severe over and underexposures.  
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Fundus Images are characterized by a dark background surrounding the FOV and cropping out the 

retinal area (do preprocessing in the images), diminishes the number of operations because it 

excludes the pixels outside the FOV [12]. 

Like Davis et al. [13], said in their study, several published clinical reports indicate that from 10% 

to 15% of fundus images are rejected from studies due to image quality. 

Obtaining the highest possible image quality is very important when photographing a patient’s 

retina in a clinic or collecting images of a subject for a study, because in longitudinal studies where 

every examination and image is critically important, losing an image for a given period may result 

the reduction in statistical power of results and, at worse, the loss of that individual diagnosis from 

the study. When the image is unacceptable, the best procedure to make, is retake the image(s), in 

order to reduce the inconvenience to a patient who will have to return to the clinic for re-imaging 

[13]. 

 

3.1.1 FIELD DEFINITION 

The field definition parameter is evaluated by the reader according to the correct positioning and 

presence of the optical disc and the macula.  

According to the Health Technology Board for Scotland [14] and Fleming et al. [15], fundus 

photographs should be centered on the macula and contain the optic disc. 

The field definition is classified as: 

• Excellent: The entire macula and optic disc are visible. The macula is centered 

horizontally and vertically in the image; 

• Good: The entire macula and optic disc are visible. The macula is complete but is not 

centered horizontally and vertically in the image, with both main temporal arcades 

completely visible; 

• Inadequate: A small artifact is present or at least the macula, optic disc, superior 

temporal arcade, or inferior temporal arcade are incomplete.  

For the classification of diabetic retinopathy and diabetic macular edema, it is necessary that the 

fovea is at least 2 disc diameter (DD), from the edge of the image. The optic disc and temporal 

arcades must be complete and visible in the image because they are considered a guide to ensure 

that the photograph has been correctly aligned. The visual definition of DD is shown in Figure 3-1. 

Images in Figure 3-2 are a) with excellent field of view and b) inadequate field of view. 
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Figure 3-1 Example of retinal disc diameter (DD) and disc-macula distance (DM). Adapted from [16]. 

 

 

Figure 3-2 Field definition comparison between 2 retinal images. 

 

3.1.2 CLARITY AND FOCUS 

An image is classified as defocused or with poor clarity when the expert concludes, in the time of 

image acquisition, that an automatic system will be unable to accurately detect the main retinal 

features such as blood vessels or the presence of diabetic lesions [12], since when the blur is 

significant, it may misclassify the disease and classify it as a normal patient. This blur may be due 

to the presence of cataracts, the appearance of diabetic macular edema, poor camera focus, 

optics, or saccadic eye movement during acquisition [15]. 

The focus is classified as: 

• Excellent: Small vessels are clearly sharp and visible within 1 DD around the macula, 

and the nerve fiber layer is visible; 
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• Good: Small vessels are clearly visible but not sharp within 1 DD around the macula or 

the nerve fiber layer is not visible; 

• Fair: Small vessels are not clearly visible within 1 DD around the macula but are of 

sufficient clarity to identify third-generation branches within 1 DD around the macula. 

• Inadequate: Third-generation branches within 1 DD around the macula cannot be 

identified. 

Therefore, an image with adequate clarity is defined as one that shows sufficient details for the 

automated classification of the retinal quality assessment. The visibility of macular vessels have 

been used as an indicator of image clarity, since these vessels are known to be narrow and to 

become less visible with any image degradation [15]. 

 

3.1.3 VISIBILITY OF THE MACULA 

To evaluate this parameter, it’s analyzed if any portion of the macula is obscured by a dark shadow 

resulting from poor pupillary dilation or omitted from the image due to poor field definition. If the 

macula is visible, the image is assessed as pared, but if the macula is obscured, missing or has 

some kind of artifact present in it, is classified as impaired [9]. 

 

3.1.4 VISIBILITY OF THE OPTIC DISC 

To evaluate the visibility of the optic disc, it’s analyzed if any portion of the optic disc is obscured 

by an artifact, such as a dark shadow or a blink or even omitted from the image due to poor field 

definition. If the optic disc is visible, it is assessed as pared, but if the optic disc is obscured, 

missing or has some kind of artifact present in it, is classified as impaired [9]. 

 

3.1.5 ARTIFACTS 

Retinal fundus cameras, just like any imaging device, suffer from particles or blemishes like dust 

particles attached to the sensor and lens. These particles may difficult its diagnostic purpose and 

reduce the image acuity and clarity. For example, these artifacts can be mistaken as small lesions, 

such as microaneurysms for the diagnosis of DR [17]. 

According to [9] there are some commonly artifacts present in the retinal images such as: 
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• Dust and Dirt: the presence of these sort of artifacts appear as white dots or spots that 

may have a varied size and are in the same location of the image, no matter which field of 

the retina is imaged, causing dirty lenses on the camera; 

• Lashes/Blink: Lashes are characterized as a partial blink. Often appear on the bottom 

of the image as either light or dark linear “shadows”. These “shadows” can easily obscure 

the lower half of the image and, occasionally they appear in the upper half of the image as 

a bright reflectance, but doesn’t affect the ability to grade DR and DME lesions; 

• Arcs: A patient with an incorrect distance from the camera or a small pupil may cause 

the appearance of arcs in the image, with yellowish, orange or bluish colors, in the size of 

a small slice or arc that obscures more than half the of the retina field. These artifacts may 

occur anywhere in the field, but they occur more frequently along the nasal or temporal 

margins; 

• Haze: Haze is a spectral reflectance located centrally and can be seen along the periphery 

of the image. This artifact is the result of an excessive camera to the patient distance [2]; 

Two types of haze can be considered: an overall and edge haze. The overall haze reduces 

the clarity and generally produces a yellowish or greenish color over the retinal image, and 

a edge haze is generally white and most opaque at the periphery and diffusing towards the 

center of the image. 

 

 

3.2 RETINAL IMAGE QUALITY ASSESSMENT STATE-OF-THE-ART 

Several approaches and algorithms have been developed to automatically determine the quality of 

the retina, relying on generic image quality parameters, structural parameters, both generic and 

structural image quality parameters (hybrid parameters) and finally based in Deep Learning 

approaches. The structural and hybrid parameters-based approaches are out of the present study 

scope.  

Based on generic IQA parameter methods are the following parameters: sharpness, illumination, 

contrast, focus, texture and color and are methods that use simple image measurements [18]. 

The methods based on structural IQA parameters require the identification and segmentation of 

anatomical structures of the retina such as the macula, optic disc, detection of small vessels 

around the fovea and retinal vessels. These approaches tend to lose robustness when the images 
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used for retinal structures segmentation are of poor quality [13], usually more complex and time-

consuming than generic parameter approaches [19]. 

The combination of generic and structural IQA parameters is based on retinal vessel segmentation 

to obtain values of vessel density, based on histograms that extract features such as contrast, 

brightness and texture of retinal images [20]. 

The last approaches discussed are Deep Learning IQA approaches. 

 

3.2.1 GENERIC IQA APPROACHES 

Several methods have been developed to assess the retinal image quality with generic features.  

Lee et al. [21], in 1999, were the first authors to develop an automated retinal image quality 

assessment method based on global image intensity histogram. They define a template intensity 

histogram whose parameters were derived from the analysis of 20 images with very good quality 

from a total of 360. 

The parameters studied for each image were brightness, contrast and signal-to-noise ratio (SNR). 

Each histogram of the target image is compared to the template intensity histogram. To obtain the 

quality index Q (which determines the image quality), the target images were normalized, and 

subsequently, convolved with the template intensity histogram. The index Q took values between 0 

and 1, being 0 the minimum value and 1 the maximum value taken; when Q was very close to 0, 

it meant that the image had low or very poor quality.  

 

In 2001, Lalonde et al., [22] proposed a region-based approach on the histogram/distribution of 

the edge magnitudes in the image and the local distribution of the pixel intensity, as opposed to 

the global histogram of Lee et al. 

Lalonde et al. used a total of 40 retinal images, to study the following two criteria: 

• 𝑑𝑒𝑑𝑔𝑒 – a measure of match between the edge magnitude distribution of the image, giving 

a global histogram.  

• 𝑑𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 – a measure of match between intensity distributions of some regions of the 

image. This is an illumination measure, where a good retinal image should not have too 

many dark or white pixels. 
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They have noticed that the distribution of the edge magnitudes 𝑑𝑒𝑑𝑔𝑒, in a good image, has a 

shape that is similar to Rayleigh distribution but with a gentler drop as the intensity increases. 

Images with bad quality show a Rayleigh distribution with an abrupt drop, as shown in Figure 3-3. 

The measure 𝑑𝑒𝑑𝑔𝑒  is also a focus measure because they experimented defocusing an image 

using a Gaussian or a mean filter and the more 𝑑𝑒𝑑𝑔𝑒  increases, more visible gets the blurring 

effect. 

These two criteria were assessed to decide whether the images studied were of good, fair or bad 

quality, so they build edge and intensity models. Figure 3-4 shows points that are the outcome for 

assessing the quality of all the images and the symbols (+, × or o) were the specialist assessment. 

It is important to note that very few images were used in the study, and for better evaluation, more 

images should have been used and ideally a comparison with many human observers. 

These authors also showed that the contribution developed by Lee et al., between image quality 

and histogram similarity is not that strong. They noticed that some poor quality images had a 

histogram that resembled the template intensity histogram and also found good quality images 

with different histograms.  

 

 

Figure 3-3 Examples of a good quality retinal image (upper left) and a bad retinal image (down left) and their 
corresponding edge distribution. The gray-scaled images were inverted for better visibility (adapted from [22]). 
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Figure 3-4 Scatter plot showing the separability of the three classes “Good image”, “Fair image” and “Bad image” 
(adapted from [22]). 

 

The major inconvenience in these two histogram-based methods, developed by Lee et al. and 

Lalonde et al. were the small set of very good quality images used to construct the template 

histogram model and its limited type of analysis, since it doesn’t consider the natural variance 

found in retinal images.  

 

Bartling et al. [8], in 2009, developed a method based on sharpness and illumination features.  

A total of 1000 fundus images, randomly selected, were assigned to four quality classes (not 

accepted, accepted, good and very good). The images studied were divided into squares (64x64 

pixels) and each square was analyzed separately. 

The amount of structural content within each square was determined and only the squares 

containing sufficient structural content were used for the measurement of sharpness. The 

structural content was evaluated by convolving the sub-image using a Laplacian Operator, 

calculating the standard deviation of the pixel values and then analyzing the high-frequency 

magnitudes using the two-dimensional discrete Wavelet Transform, where higher frequency meant 

more sharpness.  

As in sharpness, the measurements of the illumination parameter were performed after the image 

normalization and image square divisions. Measurements were first performed on the individual 

squares and then combined into a single value for the entire image. This single value was obtained 

by the fraction of all squares in an image classified as acceptable. The final illumination value for 

the entire image would be between 0 and 1. 
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With its method, Bartling et al. reached a concordance between the computed and human quality 

score, following a kappa approach, obtaining a median kappa value of 0.64 in a range of 

[0.52,0.68]. However, an unweighted kappa value approach (no image other than one category) 

was also used to analyze a concordance among all observers, obtaining a median kappa value of 

0.55. Therefore, although the results were not excellent, the work developed by the authors shows 

that an automatic retinal image quality test is executable and more objective than human 

classifications. 

Figure 3-5 shows the quality grade distribution values in 1000 fundus test images. These values 

are the product between the two properties (score = sharpness value x illumination value) and the 

lines indicate the borders between the quality groups, were score: > 10 (very good), > 6 and ≤ 10 

(good); > 2 and ≤ 6 (acceptable) and ≤ 2 (not acceptable). 

 

Figure 3-5 Distribution of automatic quality evaluation grade values. AEQ = 4 (green) means highest quality and AEQ 

= 1 (red) means lowest quality (adapted from [8]). 

 

Also, in 2009, Davis et al. [13],  developed a quality assessment method based on contrast and 

luminance features, using simple measures and keeping calculation time as low as possible. 

In this study, the authors, calculated a total of 17 features, for each RGB color channel (R – Red 

channel, G – Green channel, B – Blue channel) and CIELab1 in all the images studied. 

The features were produced for each of the three color spaces and produced for each of seven 

regions of the retinal image in order to obtain the effects of the spatial variations on image quality. 

The seven regions where the features were calculated are shown in Figure 3-6. 

                                                 
1 CIELab is a color model developed by the Commission International de L’Eclairage, that represents perceptual 
uniformity and meets the psychophysical need for a human observer. This model matches the sensitivity of human 
eyes with computer processing, whereas RGB color space didn´t have such a property [78]. 
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Figure 3-6 A yellow grid is placed showing the seven regions where the features are calculated (adapted from [13]). 

 

The first set of features calculated, would provide a complete characterization of the luminance 

parameter in the image and all the features were calculated for each color channel: 

• Mean intensities - where low or high exposure would be a reducing image quality factor; 

• Skewness – a measure of symmetry, or the lack thereof; 

• Kurtosis – a measure of whether the histogram of pixel intensities is peaked or flat relative 

to a normal distribution; 

 

The second set of features would provide the characterization of the contrast parameter in the 

image: 

• The variance of the intensities – within each of the seven regions in Figure 3-6 and each 

color channel, where low variance means low contrast, regardless of overall image 

brightness; 

• Co-occurrence contrast from Haralick features – the relationship between a pixel and other 

pixels in its neighborhood; 

• Entropy from Haralick texture – measures the quantized gray levels, where an even 

distribution (high contrast), will have the largest possible entropy value; 

• Spatial frequency - is a measure that is affected by contrast and noise, where sharp edges, 

like those produced from retinal vessels, will increase spatial frequency. 

 

With all the calculated features, the authors tried to find which of the characteristics were most 

relevant to the quality assessment, through their weights. The most important feature was the 

spatial frequency with a weight of 51.6% and in an overall classification, the first 15 features studied 
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contributed to 90.4%. Without discarding any feature, in a set of 200 non-indexable images and 

using two different fields of view (FOV) of 30˚ and 45˚, they obtained 100% sensitivity and 96% 

specificity. 

 

In 2014, Veiga et al., [12] developed an approach based on the analysis of retinal quality 

parameters such as focus (sharpness) and field of view (FOV), in order to distinguish normal images 

from poor quality images.  

The authors presented a method, never seen before in the literature, to analyze the quality of retinal 

fundus images where noise regions were extracted, and the focus was analyzed, using Wavelet-

based, Chebyshev-based and statistically based measures. After these features were extracted, 

they were used as the input of a fuzzy inference system (FIS). 

They proposed a quality system that would follow three blocks of processing. The first block was 

where they would calculate the FOV mask using the green channel extracted from the RGB retinal 

image (highest contrast channel) and calculated a noise mask. This last mask targeted regions of 

irregular illumination, that had very light or very dark areas. The optic disc was then detected to 

determine the most clinically relevant mask, which by the authors' analysis, was next to the macula. 

The binary mask of the FOV plus the noise mask is then analyzed to see if their common area was 

larger than a predefined threshold. This block ended with a classification phase, where the image 

was approved or not for a next stage (if this image did not have the minimum quality was not 

approved). 

The last phase was the focus evaluation, where a classifier analyzed the input image. 

The following figure, Figure 3-7, shows two examples of retinal images exhibiting slight 

decentralization at acquisition (a) and low pupil dilation (e). The images (b) and (f) are the FOV 

masks obtained by the mask FOV algorithm. Images (c) and (g) illustrates the light and dark noise 

masks obtained from the bright and dark mask algorithms. A logical OR is applied to obtain the 

final noise mask, as shown in (d) and (h). 
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Figure 3-7 Digital retinal images with their FOV and noise mask (adapted from [12]). 

 

To test this approach, Veiga et al., used three datasets, MESSIDOR with 200 images (100 original 

and 100 artificially defocused), a dataset with real images, and a dataset with MESSIDOR + real 

images. The best results were achieved in the group of MESSIDOR artificially defocused images, 

obtaining an AUC=0.9946 and an classification accuracy of 98%. 

Despite these good results, the authors concluded, that there are points of improvement in the 

speed of the algorithm and the use of more noise and real blurred images to resemble the real 

day-to-day problems of ophthalmologists. 

 

3.2.2 DEEP LEARNING IQA APPROACHES 

In the last years, almost all the classification methods used to classify fundus images depend on 

the type of features, that are based on generic quality parameters and are not generated generically 

in new datasets. 

On the other hand, human experts relied on subjective capacities to identify poor quality images 

and had to be able to adapt to new scenarios based on new data. However, when the assessment 

is subjective, it only depends on the perception of what good quality is for the photographer. To 

overcome this fact, solutions have been developed that, although they require large amounts of 

data for their validation, reduce significantly the subjectivity and bias of existing algorithms.  

These solutions start from Deep Learning, that solves this central problem in representation 

learning by introducing representations that are expressed in terms of other, simple representations 

[23]. Deep Learning allows the computer to build complex concepts out of simpler concepts, as 

presented in chapter 4. 
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Tennakoon et. al, [24] in 2016 presented a method for retinal IQA that uses Deep Learning 

computational algorithms to find if the images have sufficient quality or don’t have sufficient quality 

for automated analysis – a binary classification approach. The authors used two different CNN 

architectures (model parameter estimation techniques).  

The first network is a shallow CNN trained from scratch – with fewer parameters than conventional 

CNN and the second network is the AlexNet network, using transfer learning and pre-trained with 

the natural images from the ImageNet competition. 

The shallow network consists of three convolutional layers with 96, 256 and 256 convolutional 

filters of kernel size 11 x 11, 5 x 5, 3 x 3. Each of the convolutional layers is followed by the ReLU 

activation functions and max-pooling layers (with kernel size 3 x 3).  

Then the output of the feature maps of the previous convolution layers served as input for two fully 

connected layers. The last layer of the network was a softmax classification layer. In order to prevent 

overfitting, they used Dropout regularization in the last two fully connected layers and used the 

Batch Normalization to fill the problem called Internal Covariance Shift (where the distribution of 

the inputs of each layer changes with the training). 

The authors trained the shallow network with cross-entropy loss function and this loss was 

optimized with stochastic gradient descent (SGD) with momentum=0.9, 30 epochs, weight 

decay=0.0005, learning rate=0.01 decreased by a factor of 10 every 10 epochs. 

Figure 3.2.2-1 illustrates the shallow network used in fundus image quality assessment.  

 

 

Figure 3-8 Architecture of the shallow network (adapted from [24]). 

 

The second network is the AlexNet and is published in [25] consisting of five convolutional layers, 

three pooling layers, two local response normalization layers, and two fully connected layers.  

Tennakoon et al., trained four separate classifiers, with 5-fold cross-validation: 
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• AlexNet-FT – a single layer Neural Network, that is fine-tuning the last layer of the original 

AlexNet; 

• AlexNet-SVM – AlexNet with linear support vector machine; 

• AlexNet-BT – AlexNet with boosted trees; 

• AlexNet-KNN – AlexNet with k-Nearest Neighbours. 

 

The dataset used contained 908 ungradable images and 944 gradable retinal images, all with 

45˚FOV and non-mydriatic, with a resolution of 2812 x 2442 and the dataset was split randomly 

into 75% training and 25% test segments. 

Data Augmentation was used to train the two networks with translations and rotations in a set of 

fixed angles (6˚to 210˚with resolution of 6˚) to make the network rotation invariant.  

The results of the classification using the test set can be seen in Table 3-1. 

In table 3-1, the shallow network trained from scratch has achieved very high accuracy with 99.12% 

sensitivity – that indicates that this network was able to learn the necessary information for image 

quality classification, with only 3 convolutional layers, and the AlexNet with fine-tuning has higher 

sensitivity=99.55% but the same accuracy as shallowNet. However, the other classification models 

had lower accuracies, in the order of 96 to 97% (with the pre-trained weights).  

These results have been concluded by the authors to be satisfactory, where classifiers that extract 

features using a pre-trained network can perform quite close to networks that are fully trained from 

scratch, whereas CNN's that are trained from scratch also has the advantage of being 

computationally less complex. 

 

Table 3-1 Classification accuracy results on the test set for five classification models (adapted from [24]). 

 

 

In the same year, Mahapatra, [26] proposed a novel method based on combining unsupervised 

learning with local saliency maps and supervised learning with convolutional neural networks 

(CNN). 
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The authors were inspired by the Itti et al. article [27] where the original models for saliency maps 

can be found, but while their approach highlights the single region that is most salient and pixels 

outside the salient region have no importance, Mahapatra approach, proposes a local saliency map 

method that calculates the saliency value of each pixel incorporating both local and global features.  

The resized color image is converted to grayscale intensity, texture and curvature feature maps 

and the multiscale saliency maps are generated with these feature maps above. 

It is possible to visualize the course of construction of the saliency map, in Figure 3-9 from the 

original image of good quality in (a), (b) - (d) represents the creation of the saliency maps by the 

way the state of the art approaches them [27], [28], [29] (e) - (g) construction of the local saliency 

maps by the method of the author Mahapatra. with different scales, (h) poor quality original image, 

(i) - (k) the respective salient maps for the image of poor quality by the authors method.  

 

Figure 3-9 Local and global saliency maps obtained through the methods [5-7] and the authors' method Mahapatra 
(adapted from [26]). 

 

The CNN in the proposed approach was fed with 512 x 512 input patches of retinal images and is 

composed of 5 convolutional layers followed by 2 x 2 max-pooling layers which downsampling the 

images to half the input dimensions to 256. The first convolutional layer had 10 kernels of 11 x 11 

dimensions and the last layers (FC layers), had 4000, 2000 and 1000 nodes followed by a softmax 

classifier that outputs the class label as either gradable or ungradable (binary classification). 

They used Stochastic Gradient Descent (SGD) optimization function and dropout with a probability 

of 0.5 in the second fully connected layer to speed the training time and half of the outputs of this 

layer are randomly masked. Figure 3-10 illustrated the architecture of the proposed CNN network 

and in Figure 3-11 the learned filters from the final convolutional layer. 
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Figure 3-10 CNN architecture proposed in the present approach (adapted from [26]). 

 

 

 

Figure 3-11 Learned filters form the last convolutional layer (adapted from [26]). 

 

The dataset used for the study had 9653 ungradable retinal images and 11347 gradable images 

(more gradable than ungradable – little unbalanced), and all the images had 45˚FOV and were 

non-mydriatic. All the image intensities in the image were normalized between [0,1] and resized to 

512 x 512, and there resized images were subject to data augmentation (flipping, rotation, 

translation, and contrast changes). 

The image vector saliency maps (𝑓1) and the 1000 dimensional feature vector from the last FC 

layer of the CNN (𝑓2) were used to train two different Random Forest (RF classifiers denoted 𝑅𝐹1 

– supervised image features and 𝑅𝐹2 - unsupervised image features). 

The results are in Table 3.2 and the metrics studied were sensitivity (correctly identified gradable 

images), specificity (correctly identified ungradable images), accuracy and p-value. 𝑅𝐹1+2 stands 

for Mahapatra  method; 𝑅𝐹𝐴𝑙𝑙 is the method where the feature vectors 𝑓1 and 𝑓2 are concatenated 

to train the Random Forest; 𝑆𝑉𝑀𝐴𝑙𝑙 is the support vector machines using 𝑓1 and 𝑓2; 𝑅𝐹1+2 + 𝑆𝑀 

is the weighted combination of outputs of 𝑅𝐹1 and the softmax classifier form the CNN. The authors 
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obtained high accuracy of 97.9%, also higher sensitivity and specificity, than Dias [30], and 

Niemeijer [31], and significantly better than Paulus [1]. 

 

Table 3-2 Classification results for different methods compared to CNN (adapted from [26]). 

 

 

As final notes, the authors conclude that the good results compared to those of the state of the art 

are due to the fact that the models were tested with a larger test dataset, having combined two 

different sources of information - unsupervised information from visual saliency maps and 

supervised information from trained CNN, and finally, the computation times are low (4.7 seconds 

for classification) which allows a quick assessment of retinal image quality. 
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Computer vision (CV) is a process and a branch of computer science, that involves capturing, 

processing and analyzing real-world images and video, allowing machines to extract meaningful and 

contextual information from the physical world. Today, Computer Vision is the key means and a 

foundation of testing and exploiting deep learning models that are propelling the evolution of artificial 

intelligence toward useful and practical applications. 

A significant part of AI field deals with planning for system/machine which can perform mechanical 

actions. This type of processing needs a high amount of training data (input data), provided by a 

computer vision system algorithm, acting as a vision sensor and give away high-level of information 

about the environment and the machine. 

This chapter presents the key concepts for building a Deep Learning model as well as presenting 

more general knowledge so that someone new to the area can understand them. 

 

4.1 MACHINE LEARNING AND DEEP LEARNING 

Machine learning (ML) is a category of artificial intelligence algorithms that allows software 

applications to become more accurate in predicting outcomes without being explicitly programmed. 

The basic premise of machine learning is to build algorithms that can receive input data and 

use statistical analysis to predict an output while updating outputs as new data becomes available. 

As availability of computational capacity and data has increased, machine learning has become 

more and more practical over the years, to the point of being almost ubiquitous.  

Most machine learning algorithms can be divided into the categories of supervised learning and 

unsupervised learning.  

Unsupervised learning algorithms experience the dataset containing many learnable features and 

to extract useful properties from them. An unsupervised learning algorithms example is clustering, 

which consists of dividing the dataset into clusters of similar examples among the variables present 

in the data, having no way to know if they were correctly grouped. 

Supervised learning problems are categorized as regression and classification, and the approach 

of learning is different from the unsupervised algorithms, since the datasets for learning and 

training of the algorithms contain, besides the data to be evaluated, also the label associated to 

each input data, as the example of the study of Iris dataset. This type of learning involves observing 

several examples of training images and associating them with a predictive value [23]. 
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The central challenge in machine learning is that our algorithm must perform well on new, 

previously unseen inputs—not just those on which our model was trained. The ability to perform 

well on previously unobserved inputs is called generalization. Typically, when training a machine 

learning model, the training dataset is known, and to know how a model is performing with this 

seen data, some error measures can be computed, called the training error. This is called an 

optimization problem.  

To have a successfully machine learning algorithm, not only the training has to have low loss, but 

also the unseen data (validation set and test set). The generalization error is defined as the expected 

value of the error on a new input.  

The generalization error of a machine learning model is usually measured by its performance on a 

test set of examples that were collected separately from the training set. Therefore, the factors that 

most contribute to a good algorithm performance, are its ability to make the training error small 

and the gap between the two curves of learning (train and test curves) has to be small. 

When a model does not learn and is not able to obtain a low error value in the training set, it is 

occurring the phenomenon called underfitting. When the gap between training error and test is too 

large, that is overfitting, which has been one of the major problems faced in Machine Learning. In 

Figure 4-1 it can be seen the overfitting occurrence.   

 
 

 
Figure 4-1 Learning curves with and without overfitting. Adapted from [32]. 
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Deep Learning is a subset of a more general field of artificial intelligence called machine learning, 

which is predicated on this idea of learning from example. In Deep Learning, instead of teaching a 

computer a massive list rules to solve the problem, it is given a model with which it can evaluate 

examples and a small set of instructions to modify the model when it makes a mistake [33]. 

It consists of a pipeline of convolutions and subsampling operations, applied at various scaled 

versions of the original image, to handle faces of different sizes. This pipeline performs automatic 

feature extraction and classification of the extracted features, in a single integrated scheme. The 

full process is implemented via a convolutional neural network architecture, which offers the 

advantage of being trained to automatically derive all parameters, governing feature extraction and 

classification. Figure 4-2 shows the comparison between Machine Learning and Deep Learning 

and in Figure 4-3, the progress that all areas of artificial intelligence have been taking over the past 

60 years. 

 

 

Figure 4-2 Comparison between Machine Learning and Deep Learning. Adapted from [34]). 

 

 

Figure 4-3 Progress chronology of Artificial Intelligence, Machine Learning and Deep learning concepts. Adapted from 
[35]). 
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4.1.1 NEURAL NETWORK 

Neural network is a generic term in Deep Learning that works on the basis of the structure and 

functions of a human brain. Like the human brain has interconnected neurons that constantly 

transmit signals, a neural network also has interconnected artificial neurons that transmit data 

among each other and are called as nodes. These neural networks are called as Artificial neural 

networks (ANNs) [36]. 

Artificial neural networks (ANNs) model the relationship of learning units, called neurons or 

perceptrons, that convert input signals (e.g. picture of a dog) into corresponding output signals (e.g. 

the label “dog”), forming the basis of automated recognition. Taking the example of automatic 

recognition, the process of determining whether a picture contains a dog involves an activation 

function. If the picture resembles prior dog images the neurons have seen before, the label “dog” 

would be activated. Hence, the more labelled images the neurons are exposed to, the better it 

learns how to recognize other unlabeled images. This process is called training.  

A traditional neural network, also called Multi-layer perceptron (MLP), consists of 3 types of layers: 

input layers, hidden layers and output layers, taking 𝑥1, 𝑥2, . . . , 𝑥𝑛 number of inputs, each of which 

is multiplied by a specific weight 𝑤1, 𝑤2, . . . , 𝑤𝑛 and added to a bias 𝑏1, 𝑏2, . . . , 𝑏𝑛. These 

weighted inputs and biases are summed together producing the logit 𝑧 =  𝑏 +  ∑ 𝑤𝑖 ∙  𝑥𝑖
𝑛
𝑖=1 . 

The logit is then passed through a function 𝑓 to produce the output 𝑦 =  𝑓(𝑧) or 𝑦 =  𝑓(𝑥 ∙

𝑤 + 𝑏). In other words, the output computation is done by the dot product of the input and 

weights, adding the bias term to all the layers in the network [33]. The representation of a single 

neuron in an artificial neural network, is presented in Figure 4-4, and Figure 4.5 [37] represents 

an artificial neural network. 

  

Figure 4-4 Representation of a neuron in an artificial neural network Adapted from [33]. 
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The first layer (input layer) receives the input data, such as pictures of a dog and cat. The middle 

layer(s) of neurons, called hidden layers, transform the inputs, doing several calculations and 

feature extractions, according to the weights and bias from the last layer. Finally, the last layer, 

called output layer, computes the final answer and predictions, obtained through network learning. 

In this particular case, the network has two output nodes 𝑦1 𝑎𝑛𝑑 𝑦2, having a response equal to 

[0,1] if the image contains the label “dog”, [1,0], if the image contains the label “cat”, and [0,0], 

if the network doesn’t predict any of the classes.  

The process by which the network learns is based on feed-forward propagation, where the features 

are input to the network and fed through the following layers to produce the output activation, 

where for example, in the hidden layer, the activation obtained in a specific neuron is the 

combination of the weights and biases of the input layer and the weighted combination of all the 

input values. 

 

4.1.2 LOSS FUNCTIONS 

Each loss function is used depending on the type of problem to be solved. In the case of regression 

problems, mean squared error (MSE) is used, and in classification problems, logarithmic losses, 

log losses or cross-entropy losses like binary cross entropy and categorical cross entropy, are used. 

The cross-entropy losses measure the performance of a classification model whose output is a 

probability value between 0 and 1, and the loss increases as the predicted probability diverges 

from the actual label. A perfect model would have a log loss of 0. 

Figure 4-5 Example of an Artificial neural network, with three layers. 

 



DEEP NEURAL NETWORKS PRINCIPLES AND FUNDAMENTALS 

42 

These loss functions are derived from Maximum likelihood principle, where given Θ parameters of 

the model and a model generated with D inputs and P predictions, the idea of this principle is to 

find the Θ that maximizes the predictions done by the model, P(D|Θ). In binary classification, the 

loss function that maximizes the predictions in the model is the binary cross entropy and in multi-

class classification is the categorical cross entropy. Figure 4-6 shows a graph with the range of 

possible loss values given a true observation, for example, when the neural network true predicts 

the label “dog”. As the predicted probability approaches 1, log loss slowly decreases. 

 

 

Figure 4-6 Cross-entropy (log loss) when the true label is 1 and the predicted label is 1 too. 

 

 

4.1.3 ACTIVATION FUNCTIONS 

In order to learn complex relationships in neural networks, neurons that employ some 

nonlinearities, also called activation functions, are used. These functions are the mechanisms by 

which an artificial neuron processes information and passes it throughout the network [36]. In 

Figure 4-7, it is presented a neuron, where 𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛 are the activation functions, 

𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑛 are the weights, b is the bias, z is the logit 𝑧 =  𝑏 +  ∑ 𝑤𝑖 ∙  𝑥𝑖
𝑛
𝑖=1  and σ is 

the function calculated in the neuron. 
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Figure 4-7 A perceptron representation with the weights, activation functions, the bias and the function 𝜎(𝑧). 

 

There are some types of activation function: sigmoid, tanh, ReLU and softmax. Sigmoid neuron, 

which uses the function (4.1), takes a real valued number for logit z, that is in a range between 0 

and 1. The value is very close to 0, when the logit is very small and close to 1 when the logit is 

very large [33]. Sigmoid is a popular choice, which makes calculating derivatives easy and is easy 

to interpret [36]. 

Sigmoid units can be used in the output layer in conjunction with binary cross entropy for binary 

classifications [38]. 

 

𝜎(𝑧) =
1

1 + ⅇ−𝑧
      (4.1) 

   

Tanh neuron, which uses the function (4.2), is a s-shaped nonlinearity, ranges between -1 and 1 

and the output is zero-centered. When this kind of nonlinearity is used, the tanh neuron is often 

preferred over the sigmoid, because tanh is zero-centered [33], [36]. 

 

𝜎(𝑧) = 𝑡𝑎𝑛ℎ(𝑧)  =  2𝜎(2𝑥)  −  1    (4.2) 

 

Rectified linear unit (ReLU) applies the function (4.3) to all of the values in the input volume. In 

basic terms, this layer just changes all the negative activations to 0. This unit is more commonly 

used as a hidden unit in the recent times, because results show that ReLU lead to large and 

consistent gradients, which helps gradient-based learning and better convergence [36], [38]. 

 

𝜎(𝑧) = 𝑚𝑎𝑥(0, 𝑧)      (4.3) 

 

b 𝜎(𝑧) 
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To output a vector with probability distribution in the output layer, over a set of mutually exclusive 

labels and to know how confident the predictions are, it’s commonly used the softmax activation 

function [32]. The output of this neuron also depends on the outputs of all the other neurons in its 

layers, because it’s required the sum of all the outputs to be equal to 1. 

A strong prediction would have a single entry vector close to 1, while the other prediction values 

were close to 0. A weak prediction has all the possible labels more or less equally like.  

This kind of layer is typically used as an output layer for multi-classification tasks in conjunction 

with the cross-entropy loss function. Figure 4-8 represents a softmax layer and Figure 4-9 

represents the different types of activation functions used in neural networks. 

 

 

Figure 4-8 Softmax layer. Adapted from [38]. 

 

 

 

Figure 4-9 Neural network activation functions. 
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4.1.4 GRADIENT DESCENT, LEARNING RATE AND OPTIMIZATION FUNCTIONS 

In order to minimize the loss or penalty in neural networks, it’s necessary to use a strategy that 

tackle the training process, by finding the right values of weights, bias and the minimum error. This 

strategy is called gradient descent and is the algorithm used to train each of the individual neurons 

in the neural networks.  

In addition to the weight and bias parameters, learning algorithms also require some additional 

parameters, called hyperparameters that carry out the learning process, like the learning rate.  

Learning rate (LR) is the hyperparameter responsible for the directions and steps needed to 

convergence and proximity of the local minimum, given by the gradient descent algorithm.  

To understand how the error J minimizes, a 3 dimensional-space with circular contours is shown 

in Figure 4-10. The black lines are the steps that move perpendicular to the contour and show how 

close the minimum is. Picking a good learning rate is a hard problem, because when it’s too small, 

the training process risks taking too long, but if it’s too big, it’s mostly likely to start diverging away 

from the minimum error [33]. 

 

 

 

Figure 4-10 Gradient Descent Algorithm 3D visualization. Adapted from [39]. 
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When gradient descent approaches a minimum, a bad learning rate can cause it to oscillate 

between around the minima. To overcome this problem and select the best learning rate, there are 

some optimization functions. 

Stochastic Gradient Descent (SGD) or incremental gradient descent is an iterative method of neural 

network optimization. It’s called stochastic because samples of images are selected randomly 

(shuffled) instead of appearing in the order they appear in the training set. As the algorithm sweeps 

through the training set, it performs the above update for each training example. Several passes 

can be made over the training set until the algorithm converges.  

While stochastic gradient descent remains a popular optimization strategy, learning with it can be 

slow. To accelerate the learning process, the momentum method can be implemented, especially 

in the face of high curvature, small but consistent gradients, or noisy gradients [23]. 

Adam (Adaptive Moment Estimation), RMSprop (Root Mean Square Propagation) and Adagrad are 

other kind of optimization algorithms that are often used in neural networks and use adapted 

learning rates. 

Adam is an extension to SGD that has recently seen broader adoption for machine learning 

applications. This algorithm has become popular, getting good and fast results [40]. 

 

 

Figure 4-11 Loss curves of the different optimization functions. Adam is the optimization function with better learning, 
since the loss curve decreases continuously. Adapted from [40]. 
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4.2 CONVOLUTIONAL NEURAL NETWORKS 

Convolutional Neural Networks (CNN), introduced in 2010, by LeCun et. al. [41] are specialized 

and bioinspired hierarchical multilayered neural networks, that have a known grid-like topology, like 

a time series (1-dimension grid) or an image (2-dimension grid). 

The name “convolutional neural network” indicates that the network employs a mathematical 

operation called convolution, that is a matrix multiplication [23]. 

These neural networks, have gained wide popularity in computer vision, and their success is mainly 

attributed to faster processing (GPU), the use of non-linearity functions such as rectified linear units 

(ReLU) and dropout regularization [42]. 

These networks have been tremendously successful in practical applications, generally used for 

image detection and classification tasks, such as face recognition [43] ,handwriting recognition 

[41] and sentence classification [44]. 

 
 

4.3.1 CONVOLUTION OPERATION AND FEATURE MAPS 

CNNs combine three architectural ideas to ensure some degree of shift, scale, and distortion 

invariance: local receptive fields, shared weights, and spatial subsampling [45].These concepts will 

be discussed throughout the chapter. 

The first step layer in a CNN is the convolution layer, that consists in a set of learnable filter (also 

called kernel), that slide over the input images to compute the convolution operation. Every filter is 

normally spatially small but extends through the full depth of the input volume. A typical filter of 

the first convolution layer might have receptive field (filter size) of 5x5x3 (i.e. 5 pixels width, 5 pixels 

height and depth 3, because an RGB image has 3 channels. In case the input images are grayscale, 

the depth/number of channels is equal to 1. During the forward pass, each filter slides across the 

width and height of the input volume and computes dot products between the entries of the filter 

and the input at any position. As the filter slides, the width and height of the input volume produces 

a 2-dimensional feature map. Intuitively, the network will learn filters that activate when some type 

of visual feature, such as an edge or pattern, is present. An entire set of filters in each convolution 

layer (e.g. 12 filters), will produce a separate 2-dimensional feature [33],as can be seen, in Figure 

4-12 [25]. In figure 4-13 [46] is represented the convolution operation between the input image as 

I with kernel as K.  
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4.3.2 MAX POOLING, STRIDE AND PADDING 

It is common to insert a pooling layer in-between successive convolutional layers in a CNNs. 

These type of layers have the power to reduce dimensionally, downsampling the feature maps and 

sharpen the located features [33]. Reducing the dimension of the features also corresponds to 

reduce the number of parameters and computation in the network, helping to control overfitting. 

Figure 4-12  96 convolutional kernels of size 11×11×3 learned by the first 
convolutional layer on the 224×224×3 input images. 

 

 

Figure 4-13 Convolution operation of input image I with kernel K, resulting I*K. 



DEEP NEURAL NETWORKS PRINCIPLES AND FUNDAMENTALS 

49 

The pooling layer operates independently over each activation map (ReLU activation map) with, for 

example, a 2x2 dimension filters and stride 2, downscaling the input dimensions by half. Figure 4-

14 shows an example of a max pooling operation, where in each of the colored squares, the max 

value is taken, and the depth dimension remains the same [47]. 

Stride is a parameter that specifies how many pixels the filter skip over the input feature map. 

When the stride is 1, the filters move one pixel at a time. When the stride is 2, the filters jump 2 

pixels at a time. This will produce smaller output volumes spatially. Another parameter, frequently 

and convenient to use in convolutions is the parameter padding, which means, that the input 

volume is padded with, for example, zeros around the borders, which is called zero-padding.  

The size of this zero-padding is a hyperparameter and allows to control the spatial size of the output 

volumes [47], as seen in Figure 4-15 [48]. 

 

 

 

 

 

 

 

 

 

Figure 4-14 Max pooling operation. Adapted from [49]. 

Figure 4-15 Padding operation in an input image. 
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4.3.3 WEIGHTS INITIALIZATION  

In Convolutional neural networks, weights are usually initialized randomly, having a bad impact in 

the training session. This kind of initialization takes significant amount of repetitions to converge to 

the least loss and reach to the ideal weight matrix. The problem is, this kind of initialization is prone 

to vanishing or exploding gradient problems. 

One way to reduce this issue is carefully choosing the weight initialization, that is a parameter that 

is included in the fully connected layers.  

There are some weight initializations available:  

• random uniform weights initialization that generates tensors with uniform distribution; 

• random normal weights initialization that generates tensors with normal distribution; 

Xavier’s random weights initialization [50] that samples from truncated normal distribution 

centered in 0, represented in equation: 

 

𝑠𝑡𝑑 𝑑ⅇ𝑣 =  √
2

𝑓𝑎𝑛_𝑖𝑛 +  𝑓𝑎𝑛_𝑜𝑢𝑡
              (4.1) 

 

 where fan_in is the number of input units in the weight tensor and fan_out is the number of output 

units in the weight tensor [51]. 

 

 

4.3.4 NORMALIZATION 

4.3.4.1 LINEAR NORMALIZATION 

If the input data are on very different scales and the range of values is significant, then w (weights) 

parameters may assume very different values and the most likely would be if the cost function were 

to look like the shape of Figure 4 -10 (section 4.2.4) (upper left and right), resulting in an elongated 

cost figure, where the probability of having the local minimum in the function is small. When 

normalizing the data, the cost function seems more symmetrical as shown in figure 4-10 (down 

left and right). 

When executing the gradient descent algorithm over the cost function with non-normalized data, it 

is necessary to use a very low learning rate, since several steps and swings (usually small) between 
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the circular lines (Fig 4-10 upper right) may be needed to reach a local minimum. However, using 

the gradient descent in the more spherical contour, it can go directly to the minimum, with larger 

steps, whatever the starting point. Therefore, the cost function is easier and faster to optimize when 

data is on similar scales, for example between [0,1] or [-1,1]. 

Linear normalization transforms the pixels range [0,255] to the value range of  [0,1]. 

By normalizing the input distribution, a better model can be achieved, which learns faster, 

converges to low error and doesn’t get stuck at local minima, as Andrew Ng said in a lecture called 

Normalizing Inputs [39]. 

 

4.3.4.2 BATCH NORMALIZATION 

Training convolutional neural networks, where the distribution of each layer’s inputs changes during 

training, turns all the process complicated. This phenomenon is called internal covariate shift, that 

slows down the training, requiring lower learning rates, careful parameter initialization and a 

normalization of the layers inputs. To overcome this phenomenon, Batch Normalization can be 

implemented [52]. 

This kind of layer computes the mean and standard deviation of all the features, by shifting inputs 

to zero-mean and unit variance, making the inputs of each trainable layers comparable across 

features [23]. 

In addition to this function, Batch Normalization has proved to be a good method of regularization, 

making it possible, in some cases, to eliminate the dropout layer, reduce 𝐿2 weight decay 

regularization and enable the use of higher learning rates, making the training session faster [52]. 

 

 

4.3.5 MODEL OPTIMIZATION AND REGULARIZATION 

Methods of combating the overfitting phenomenon and variance reduction are called by 

regularization. Regularization usually modifies the objective function, minimizing it by adding extra 

parameters and penalizing large weights. 

The batch normalization proved to be a good regularizer, as mentioned in the previous section and 

among this type of regularization, there are others that can penalize the weights or penalize neurons 

used during training. 
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The most common type of regularization is 𝐿2 regularization, also known as weight decay 

regularization. This regularization technique decays or shrinks the weights found during learning 

and model optimization, favoring diffuse weights, vector relative to peaky weights vectors, avoiding 

that the weights become too big, throughout the training [33]. 

Another form of regularization is the max norm constraint which also has the function of restricting 

weights and preventing them from becoming large. This is imposed by a fixed value c that is 

normally between 3 and 4. One of the interesting properties of this regularizer is that the parameter 

vector does not go out of control, since, updates to the weights are always bounded. 

The Dropout has the function of keeping only a neuron active with some probability p (p is a 

hyperparameter), during training, preventing the network from becoming too dependent of any 

small combination of neurons and introduces random noise to the training samples [33], [23]. 

Researchers such as [24] and [26]have used dropout between the last two fully connected layers 

and the value of p = 0.50 and have proved to be a good strategy of regularization. Figure 4-16 

shows the representation of a standard network without dropout (a) and (b) corresponds to a 

network after the dropout is applied. 

 

 

Figure 4-16 Dropout regularization. Adapted from [53]. 
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The proposed retinal image quality assessment method using Deep Learning includes six main 

stages. The first step called Data Acquisition, involves searching for appropriate datasets to study 

the parameters that define quality (the parameters are described in subsections 3.1.1 to 3.1.5). 

The description of the datasets obtained, the type of images used, their size and the type of 

diseases/lesions that are acquired through the images are described in subsection 5.1 of this 

chapter. 

The next step is called Data Preprocessing, where some image processing techniques are 

contemplated, for example, the application of a threshold to obtain binary masks or application of 

black bounding boxes to the uniformization of the dimensions of the images.  

After processing the images, a file preparation follows, from loading pre-processed images to CSV 

files and then dividing the images into training, validation and test subsets (Data Preparation).  

Then, these images are loaded to the CNN network, with network creation, compiling and training 

the networks. The last step is called Predictions, where model evaluations and values of 

classification metrics are obtained.  

 

 

Figure 5-1 Methodology pipeline applied to automated retinal image quality assessment using a Deep Learning 
approach. 
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5.1 MATERIALS 

In order to carry out the present work, different types of images and databases were used in order 

to cover different types of cameras and demographic diversity. 

The images chosen were centered on the macula and centered on the optic disc, and these images 

first underwent a manual classification where the field definition (one of the image quality 

parameters discussed in subsection 3.1.1 of the present work) was analyzed. All images of the 

fundus of the eye were manually classified by two specialists and this classification was intended 

to cover all the parameters described in subsections 3.1.1 to 3.1.5. 

The experimental setup used for the present work to preprocess the images, train the neural 

networks and to predict the image quality assessment was implemented in JupyterLab. JupyterLab 

is a web-based user interface for Project Jupyter, enabling to work with documents such as Jupyter 

notebooks, terminals, text editors in an integrated and extensible manner [54]. 

JupyterLab was runned with Python 3.5, to preprocess the images it was used OpenCV 2 and the 

experiments computer had the specifications presented in table 5-1. 

 

Table 5-1 Specifications of the experiments computer. 

 

 

 

 

 

 

 

5.1.1 PROPRIETARY DATASET 

The proprietary dataset used in the study was provided by APDP. It contains in its total 983 digital 

fundus photographs, with the acquisition in 45˚FOV. The brand of the camera of photos acquisition 

is Canon and the model varies between CR-1 and CR1Mark2. There are  four different image 

dimensions in the dataset such as: 3888 x 2592, 2812 x 1880, 3456 x 2299 and 2376 x 1580 

pixels. The images are from diabetic retinopathy screening program, with images from R0 - without 

retinopathy to R2 - severe non-proliferative diabetic retinopathy (severe NPDR). Figure 5-2 contains 

examples of images that are available in the APDP dataset (with the preprocessing step described 

Operated System Ubuntu 16.04 LTS 64-bit 

GPU NVIDIA Quadro P6000 

GPU Memory 24 GB GDDR5X 

NVIDIA CUDA cores 2340 

CPU Intel Xeon, 12 cores, 2.70 GHz 
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in the subsection 5.2) where the image (a) contains R1 - Mild NPDR and is classified as macula-

centered, with good field definition, with even illumination, well focused, with no visible artifacts 

and with normal clarity; the image (b) is also R1 – Mild NPDR, macula-centered, with good field 

definition, with even illumination, well focused, with artifacts, and with normal clarity; the image in 

(c) is R2 - Moderate NPDR, centered on the optic disc, with good field definition, with uneven 

illumination where the area around the macula is dark, contains artifacts and with normal clarity. 

 

 

 

 

 

 

 
 

 

 

 

 

5.1.2 PUBLIC DATASETS  

• IDRiD [55] – This dataset is known by Indian Diabetic Retinopathy Image Dataset, with 

516 images, was created through an initiative called “Diabetic Retinopathy: Segmentation 

and Grading Challenge" at IEEE International Symposium on Biomedical Imaging (ISBI-

2018), to detect and grade diabetic retinopathy and diabetic macular edema using retinal 

fundus images. No information is given about retinal image FOV and all of the images have 

a resolution of 4288 x 2848 pixels and are macula-centered. 

Figure 5-3 contains examples of images that are available in the IDRiD dataset (with the 

preprocessing step described in the subsection 5.2) where the image (a) contains R2 - 

Moderate NPDR, with Risk of Macular Edema=2, and is classified as macula-centered, with 

good field definition, with even illumination, well focused, with no visible artifacts and with 

normal clarity; the image (b) is R1 – Mild NPDR, macula-centered, with good field 

definition, with even illumination, with a fair focus, with artifacts, and with normal clarity; 

the image in (c) is R0 – without DR, centered on the macula, with good field definition, 

with even illumination, without artifacts, and with normal clarity. 

Figure 5-2 Examples of images present in the APDP dataset. 
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• EyePACS [56] – This dataset contains images of different models and types of cameras, 

which can affect the visual appearance of retinal left and right sides. Some images are 

shown as one would see the retina anatomically (macula on the left, optic nerve on the 

right for the right eye). Some images have in the field definition and the acquisition was 

made with 30º, 45º and 60º FOV. The images present in these datasets are intended to 

detect lesions of diabetic retinopathy or if there are signs that point to the onset of this 

disease and to associate a degree between 0 - without retinopathy and 4 - proliferative 

retinopathy. There are images of varied quality, having images of good quality, of 

acceptable quality or without quality. 

• STARE [57] – STARE stands for Structured Analysis of the Retina project, initiated in 1975. 

Contains a full set of 400 images, with expert annotations and manual classification done 

by experts.  

• ROC [58] – ROC is the acronym for Retinopathy Online Challenge and was created in the 

University of Iowa. This challenge aims to help patients with diabetes and detect diabetic 

retinopathy. 

• HRF [59] – HRF is High-Resolution Fundus image dataset, with 18 image pairs of the same 

eye from 18 human subjects using a Canon CR-1 fundus camera and a field of view of 

45° and different acquisition setting. For each pair, the first image has poor quality and 

thus the examination had to be repeated.  

 

 

 Figure 5-3 Examples of retinal images from the IDRiD dataset (adapted from [55]). 
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5.2 METHODS 

5.2.1 DATA PREPROCESSING 

Before the quality analysis of retinal images, preprocessing operations are performed for a given 

image. The digital fundus photographs of the retina, consisting of different sizes and taken from 

different cameras, are used as input data of the preprocessing step.  

To preprocess the images, it was used the OpenCV computer vision library [60]. This library was 

designed for computational efficiency and with a strong focus on real-time application, providing a 

simple-to-use computer vision infrastructure that helps people build fairly sophisticated vision 

applications [61]. 

The preprocessing step includes image masking, image cropping and image resizing. 

The principle of image masking is based on labeling corresponding pixels of both retinal foreground 

and background throughout the image. The generated masks then follow the image cropping step, 

that is removing irrelevant image information such as useless black borders around the circular 

retina.  

Finally, the process of resizing the images is followed, because at the end of the last preprocessing 

steps, the images contain all different heights and widths and to be loaded into the neural network, 

they must be of the same size standard. 

The processes described above are presented sequentially in Figure 5-4. 
 

 

 

 

 

Figure 5-4 Implemented preprocessing pipeline. 
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5.2.1.1 IMAGE MASKING 

A retinal fundus photography consists of a colored circular region in the foreground (which is also 

the Region of Interest – ROI) on a black background and the process of labeling image pixels as 

the background is known as image masking. 

Image masking allows distinguishing background from foreground through the use of a simple 

threshold. The use of simple thresholds [62], [63], and region growing [64] can be seen in the 

algorithms implemented in the literature. 

To create the image mask, the following steps were followed (Appendix A-1): 

1. The RGB image is converted to grayscale; 

2. An empirically determined threshold is applied, with t=10, to the grayscale image; 

3. The noise of the image results in 2 is reduced by applying a morphological operation 

method called Structuring Element with a 3 x 3 kernel size; then is applied an opening, 

that removes noises in the background and in the boundary of the retina [3]; 

4. A closing operation with a 3 x 3 kernel size is applied in order to close small holes or black 

points inside the foreground [65]. The kernel size was empirically determined. 

5. The final step in an erosion morphological operation, with a kernel size 3 x 3. Erosion will 

remove small white noises in the boundary of the foreground [65]. 

In Figure 5-5 (a) represents the input and original image and (b) represents the resulting 

image after performing all the steps previously described. 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 5-5 Result of the mask generation of the retinal images. 
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5.2.1.2 IMAGE CROPPING 

The cropping step is the step where most black borders and background is removed to potentiate 

shorter processing times and avoid useless information for CNN neural networks.  

For this phase, in Appendix A, the original images and the masks were used, where the mask was 

used to find the contour of the circular retina (cv2.findContours) and form an area around this 

contour (cv2contourArea). 

Then a rectangular bounding box was added to the original images, going in search of the edges 

of the retina, obtained by the mask. As a starting point, the point (0,0) is in the upper left corner 

and is in the 𝑥 −direction, in the first column, with a nonzero sum on lines corresponding to the 

left side of the foreground of the retinal image. Similarly, the process starts in the right direction of 

the image mask, in the 𝑦-direction, which allows finding the right side of the foreground of the 

retina image. This procedure is also replicated from the top and bottom of the image mask, 

obtaining the 𝑦 + ℎ coordinates for the top and the 𝑥 + 𝑤 coordinates for the lower part of the 

retina image, where ℎ stands for height and 𝑤 for width. 

Figure 5-6 shows the results of the cropping process and the code excerpt corresponding to this 

function is present in Appendix A-1. 

 

 
Figure 5-6 Result of the cropping process, (c) is obtained by adding a bounding box in the original image in (a), 

through an area obtained by the mask image in (b). 
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5.2.1.3 IMAGE RESIZING 

The retinal images have different dimensions, after the cropping stage and have various forms of 

acquisition, in which the circle corresponding to the retina is totally in the image, and in other 

cases, the retina does not contain the upper and lower part of the retina as can be seen in Figure 

5-7 (a). In Figure 5-6 (a), it is shown an example of a retina with the circular shape in its entirety. 

Due to these differences, it was thought to construct a function that to maintain the aspect ratio 

and make all the images have the same dimension, were added a black frame in the background, 

with the image centered, as it can be found in Figure 5-7 (c). The first step would be to define an 

aspect ratio given by dividing the width by height and introducing the variables 𝑥 and 𝑦, which 𝑥 

is respectively the left-to-right direction and 𝑦 corresponds to the top-to-down direction. Then 

fill_color will fill in the black color at the top and bottom of the image, like the image (a) of Figure 

5-7. To all the images like (a) of Figure 5-6 there is not added a frame because it contains the 

complete circle and will not tend to lose their appearance, that is, they do not suffer from shrinking 

or stretching. All retinal images have been resized to 512 x 512 pixels. 

The code excerpt corresponding to this function is present in Appendix A.1. 

 

 

Figure 5-7 Result of the resizing process. The dimensions of the original image in (a) is 2560x1920 pixels; in the 
cropped image (b) 2306x1920 pixels and in (c) 512x512 pixels. 
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5.2.2 DATA PREPARATION 

5.2.2.1 TRAIN, VALIDATION AND TEST SPLIT AND LOADING DATA TO CSV FILES 

In order for retinal images to be entered into CNN networks, they are divided into 3 subsets: a 

training set, validation set, and testing set: 

• Train Set is the subset of data used to train and fit the model. The model “sees” and learns 

from this dataset. 

• Validation Set is the set of images used to provide an unbiased evaluation of a model fit 

on training dataset while tuning model hyperparameters. In Deep Learning it’s often 

included to prevent overfitting during the training process [33]. 

• Test Set is the set of data used to provide an unbiased evaluation of the model and is used 

when a model is completely trained with the train and validation sets.  

 

Figure 5-9 shows how the subsets were split was made, in this work, with the use of a library called 

Scikit-learn [66] that is an open source library, widely used in Machine Learning and is 

implemented in Python, is possible to split arrays or matrices, with the train_test_split function.  

This function reads a file of type CSV (Comma-Separated Values) that contains the path of the 

images and respective classes to which they belong, and according to a test splitting rate, it divides 

into two subsets of images. The excerpt of the code is in Appendix A.2. 

The first splitting, seen in Figure 5-8, was done between the train and test subsets, 20% of test 

images and 80% of train images, of which 80%, 20% would be validation and 80% of the train. With 

the use of an integer random seed, and this being equal for the two subsets divisions, it guarantees 

that when the dataset is split, the subsets are always the same allowing reproducibility between 

experiments. 
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Appendix B.1 graphs are presented with the distribution of focus images, by training, validation 

and test sets. 

 

 

After splitting the images into training, testing and validation, the two columns - directories of the 

images and their respective manual quality classification are read and placed again in three 

different CSV files, designated by train.csv, validation.csv and test.csv as shown in Figure 5-8. 

For the contents of CSVs to be viewed and read on a JupyterLab notebook, the Pandas library was 

used. The data were kept in a DataFrame for their visualization, but for loading them into the CNN 

network, they were loaded and manipulated as numpy arrays. 

As can be seen in Figure 5-9, the images were loaded from a certain CSV file, obtained in the 

previous stage (train.csv, validation.csv and test.csv). This CSV contains the path of the location of 

the image and its label or classification given by the human. 

 

Figure 5-8 Diagram that explains the proportions of the train, validation and test sets split used in every CNN train and test. 
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Figure 5-9 Reading of a CSV file with Pandas DataFrame, in a Jupyter Notebook. 

 

5.2.2.2 DATA NORMALIZATION  

Before the images were loaded onto the CNN network, they were normalized. 

The normalization used linear normalization, where the image intensities are in a range of 

intensities of [0-1], obtained by dividing the respective pixel level of the image by the highest 

intensity value that an image can have (255), in a range of values of [0-255] (0 - minimum and 

255 - maximum). The standardization function used can be found in Appendix A.2. 

Normalization has been reported by the literature to improve performance. Sola and Sevilla [67] 

pointed out the importance of data normalization prior to the neural network training to fasten the 

calculations and obtain good results. 

It wasn’t applied any other preprocessing that would alter the image quality since the aim of this 

work is to assess the quality of the original images, in RGB e and with pixel intensity between 0 

and 1. 
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5.2.3 CONVOLUTIONAL NEURAL NETWORKS 

5.2.3.1 CNN DESIGN AND TOPOLOGY 

For the present work, two CNN architectures were created and studied, one based on the AlexNet 

architecture present in the article [25] and also inspired by the shallowNet in [25] and the other 

network was not inspired in the state-of-the-art architectures and papers. The first developed 

network is called Net1 and the second is Net2. 

To create and design these CNN networks, some guidelines and rules were followed. First, all the 

hidden layers (fully connected layers) should have the same number of neurons per layer. Second, 

typically, two hidden layers are good enough to use in a neural network, once, it solves the majority 

of problems. Using scaling or batch normalization, with mean=0 and variance=1, for all input 

variables after each layer could improve the convergence effectiveness, and finally, step size 

reduction after each epoch/iteration could improve convergence, in addition to the use of 

momentum and dropout [36]. 

AlexNet, presented in Figure 5-10, is an architecture that consists of 5 convolutional layers, 3 

pooling layers, 2 local response normalization layers and 2 fully connected layers. The shallowNet 

has three convolutional layers with 96, 256 and 256 convolutional filters (Figure 5-11) 

   

Figure 5-10 AlexNet architecture (adapted from [25]). 

 

 

Figure 5-11 shallowNet architecture (adapted from [24]). 
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Net1 has five convolutional layers, with 4, 9, 12, 12 and 9 convolutional filters of size 11x11, 5x5, 

3x3, 3x3, 3x3 and 2 fully connected layers, with 200, 100 neurons respectively and an 

output/classification layer. In case of Binary Classification, it was used a Sigmoid Unit in 

conjunction with binary cross entropy loss function. In case of multiclass classification, it was used 

a softmax unit in conjunction with categorical cross entropy loss function.  

 

 

 

Net2 has also five convolutional layers, with 11, 11, 22, 22 and 44 convolutional filters of size 3x3 

A configuração da rede inspirada na AlexNet, Net1, é apresentada de seguida, na Figura 5-12 e a 

rede Net2 na Figura 5.13. 

 

 

In Net1 and Net2 networks, the activation functions used after each convolution were the Rectified 

Linear Units (ReLU), which introduce nonlinearity to the system; without these the model would 

only learn linear mappings that are present in the convolution operations [68]. 

The choice of this activation function followed the recent studies conducted by researchers who 

have found that these activation layers have the ability to accelerate the convergence of the SGD 

optimization function in relation to tanh and sigmoid activation functions, without creating change 

in accuracy [25] and without modifying the scale of the input images [26]. 

 

 

Figure 5-12 Net1 neural network. 

Figure 5-13 Net2 neural network. 
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Both in Net1 and Net2 networks, the input images took as spatial resolution, 512x512 pixel 

dimensions that follow a 2-Dimensional convolution layer. The filter/kernel size of the first 

convolutional layer was 4x4x3, in the case of Net1 (width = 4, height = 4 and 3 RGB channels) and 

a filter size of 11x11x3 in the case of Net2 (width = 11, height = 11, RGB channels = 3). The 

pooling layers, where the layers that followed each of the convolution layers, downsampling the 

spatial dimensions of the outputs of each convolution, independently in each depth slice of the 

input volume. Both Net1 and Net2 followed the CONV-POOL configuration, five blocks throughout 

the network. 

It was pre-defined in the Keras data format options, that the input size would be of the 

channels_last type, for example, 512x512x3 with width = 512, height = 512 and channels = 3, as 

can be seen in Appendix A.3. 

The input images had the dimensions 512x512x3, (width=512, height=512, channels=3, 3 

channels because the input volume is RGB), and the pooling implemented throughout the network 

was max-pooling with a 2x2 filter and a stride=2 (slides 2 in 2 pixels of the input image).  

This max-pooling layer is responsible for the downsampling and reduction of spatial resolution of 

input image by half; this means, in each pooling layer, the output dimensions are half of the input 

dimensions from the last convolution layer. 

Following each convolution layer, the image is halved five times, having an original dimension of 

512x512 pixels and ending with 16x16 pixels. These 16x16 pixel feature maps are then fed and 

converted to a 1-Dimension vector to be understandable for the following layers (the fully connected 

layers), combining all the found local features of the previous convolutional layers into one layer. 

After choosing the kernel and stride size, the padding parameter chosen was zero-padding or 

“same”, to prevent that the image width is not shrunk to a pixel less than the kernel width at each 

layer and, therefore, to prevent the loss of edge information. This type of padding allows greater 

control over the kernel width and the size of the output independently. 

Table 5-2 summarizes the values agreed for each parameter in the Net1 and Net2 networks. 
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Table 5-2 Summary of all the parameter values of CCN topology. 

 

 

 

 

 

 

 

 

After defining all parameters discussed above, in the fully connected layers weights and bias 

initializers were added, as you can see an excerpt from the script with those of the Net2 FC layers, 

in Figure 5-14. 

 

Figure 5-14 Weights and bias initializations.  

 
Network weights are initialized with uniform distributed random real values ranging between 0 and 

1, and the experiments done in Net1 and Net2 use the same initial random weights method. 

According to Shin et al. [42], arbitrary weights initialization can delay or stop convergence and 

delay the back propagation process, so a correct initialization of weights can mean convergence 

for neural networks. The typical configuration of the structure of a sequential CNN network is shown 

in figure 5-15, which shows the layer name, the output size of each layer and the number of 

parameters of each layer. In this particular case, figure 5-15 represents the network topology Net2, 

with the 5 convolution-maxpooling blocks, the flatten layer and the 3 fully connected layers. The 

total number of parameters of the network, is just below the last FC layer description.  

This model can be obtained by the model_print command in a Jupyter Notebook cell. The models 

topology Net1 and Net2 are in Appendices C.1 and C.2. 

 Net1 Net2 

Number of kernels 4, 9, 12, 12, 9 11, 11, 22, 22, 44 

Kernel size 11x11, 5x5, 3x3, 3x3 and 3x3 all 3x3 

Padding Zero-padding Zero-padding 

Stride 2x2 2x2 

Max-pooling 2x2 2x2 

Number of FC neurons 200, 100, (1 or 3) 100, 100, (1 or 3) 



RETINAL QUALITY ASSESSMENT EXPERIMENTS 

71 

 

 

Figure 5-15 Sequential model configuration of Net1. 
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5.2.3.2 CNN TRAINING – FITTING AND COMPILING MODEL 

With all the layers added to the network, it is important at a later stage to compile, train and 

continually improve network performance. To compile the model, the model_compile command 

requires passing parameters such as the type of optimization function to use, the learning rate, 

and the loss function. After compiling it is necessary to fit the model by the model_fit command, 

and in this phase the batch size parameter is added, the number of training epochs, the loaded 

training and validation images and even add or not callbacks (such as Early Stopping and the Model 

Checkpoint that saves the best model). In Appendices A.3 is the code excerpt corresponding to 

these steps. 

 

The optimization functions used in the experiments were: 

• Adam, with LR ranging from 0.1 to 0.00001; 

• SGD, with LR varying between 0.1 and 0.00001; 

• SGD with momentum = 0.9 and varying between 0.1 and 0.00001. 

The functions of loss used were: 

• binary cross entropy, in the case of a binary classification with output equal to [0,1] or 

[1,0]; 

• categorical cross entropy, if it is a multi-class classification with categorical output equal 

to [0,0,1], [0,1,0] or [1,0,0]. 

The activation functions used were: 

• ReLU in all convolutional layers; 

• Sigmoid in the last fully connected layer when it came to binary classification; 

• Softmax in the last fully connected layer when it was a multi-class classification. 

The batch size varied between 4,12,24,32 and 64. 

The number of epochs used was 400 epochs, since the use of 50, 100 and 200 epochs, meant 

that some training did not converge. 
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5.2.3.3 MODEL OPTIMIZATION AND HYPERPARAMETERS TUNING 

Some effects like overfitting or the internal covariate shift may be present when a model is being 

created and trained. The techniques used to reduce or eliminates these effects are known as 

regularization and optimization methods. 

To reduce and monitor overfitting the following techniques were tried: 

• Add validation set to measure how much a model is generalizing, since these are images 

that the model will never see, and therefore will never memorize, the introduction of this 

set of images is a strong indicator that the network is not learning well and memorizes the 

training data (i.e. is overfitting) or if the model is learning the features of the training cases 

without memorizing (model is generalizing - good fitting); 

• Learning process "babysitting" which is a way of seeing the progress of the results 

either at the graphic level (by the progress of the learning curves) or by making a print of 

the results using various techniques in order to see which parameters are important and 

makes the network learning better (grid search of techniques); 

• Grid search that is directly associated to the validation set, since, when choosing the 

best combination of hyperparameters, both the validation training and the validation loss 

will have satisfactory values throughout the training. This method is obtained by choosing 

finite values that the hyperparameters (batch size, learning rate, ...) can assume [33]. 

• Dropout with probability = 0.5, between the second and third fully connected layer; 

• 𝑳𝟐 regularization or weight decay with λ = 0.001. Were performed empirical tests for λ 

equal to 0.1, 0.01 and 0.001, obtaining the best global value of λ=0.001; 

• Early Stopping with mode = 'auto', patience = 50 epochs and monitor = 'val_loss'; 

• Max-norm constraint with c=3; 

In order to reduce the internal covariate shift phenomenon, a Batch Normalization layers were 

introduced between the activation layer and the max-pooling layer in each CONV-POOL block. 
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5.2.3.4 EVALUATION OF CNN PERFORMANCE 

To evaluate the Net1 and Net2 models trained, the test set (unseen data) created before was used, 

along with the respective image labels for each image. Like train and validation sets, the test set 

had all the preprocessing steps (mask creation, crop and resize images with 512x512 pixels). 

Then, the linear normalization was performed. 

After obtaining and saving the best model and weights by Model Checkpoint and CSV logger 

callbacks, this model was loaded with the test dataset with model_predict,. Computing this last 

command, the classifications were performed, with the predicted labels returning an array with the 

probability of each class and a function called argmax, giving the one-hot vector classifications 

[0,1], [1,0] (for binary classification) and [0,0,1], [0,1,0], [1,0,0] (for multi-class classification). 

With the Python module, model_print_predictions, was possible to obtain a list of the TP, FP, TN 

and FN, and to know exactly which the incorrect classifications were. 

These results were given by a log file, that stored all the TP, FP, TN and FN values, and 

automatically, calculated the sensitivity, specificity, accuracy, precision, 𝐹1-score and AUC, having 

the advantage to visualize the log files anytime. 

Both predicted and ground truth labels are compared, and a confusion matrix is created and 

plotted. Also, ROC curve, AUC and the classification computation time were given. The code used 

to test and evaluate the model performance and give the list of the classification predictions are in 

Appendices A.4. 

 

 

 

 

 

Figure 5-16 Log file generated with the classification metrics.  
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In this Chapter the classification results for the focus, color and illumination feature extraction are 

presented. The cases studied in the present work are binary classification for focus and illumination 

analysis and multi-class classification for color analysis. Focus parameter is classified as blurred 

or focused; illumination is classified as even or uneven; and finally, the color is classified in dark, 

normal or bright. 

 

6.1 CLASSIFICATION MEASURES 

In supervised Machine Learning, there are several ways to evaluate the performance of learning 

algorithms and the classifiers they produce. The measures for the classification model quality are 

built from a confusion matrix which records correctly and incorrectly recognized examples from 

each class [69]. 

The positive class is the occurrence of poor image acquisition (blurred, uneven illumination, dark 

and bright color) and the negative class is the occurrence of good image acquisition (even, focused 

and normal color). 

The confusion matrix records the True Positives (TP), True Negatives (TN), False Positives (FP) and 

False Negatives (FN) in binary classification as can be seen in table 6-1. 

• True Positive (TP): correctly positive predicted classes, that are blurred images correctly 

predicted as blurred; 

• False Positive (FP): incorrectly positive predicted classes, that are focused images 

predicted as blurred; 

• True Negative (TN): correctly negative predicted classes, that are focused images correctly 

predicted as focused; 

• False Negative (FN): incorrectly negative predicted classes, that are blurred images 

predicted as focused. 
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Actual 

Class 

 Predicted Class 

     Negative Positive 

Negative TN FP 

Positive FN TP 

 

 

Multi-class classification assumes that each image is assigned to one and only one label. In the 

color parameter assessment context, an image can only be predicted as normal, bright or dark. 

For this kind of classification, as shown in table 6-2, it’s also used a confusion matrix, where the 

elements in the main diagonal show the correct predicted classifications and all other elements, 

off the diagonal, are classified as incorrect.  

 

 

 Predicted Class 

Class 1 Class 2 Class n 

 

Actual 

Class 

Class 1 TP   

Class 2  TP  

Class n   TP 

 

With this confusion matrix, the overall evaluation metrics are averages across classes. The number 

of instances of each class in train, validation and test are important to consider, since the class 

unbalance can play a determinant role, of which kind of average to choose. There are two different 

averages: 

• "macro-average" that calculates the mean of the binary metrics, giving equal weight to 

each class.  

• "micro-average" this variant extends the classification measures to the averaged values 

across all the classes, by treating one class as negative and others as positives. However, 

this variant doesn’t place emphasis on rare classes, and is not recommended to use, when 

the classes are imbalanced [70]. 

Table 6-1. Confusion matrix for binary classification. 

Table 6-2. Confusion matrix for multi-class classification. 
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Accuracy is the most general way of comparing algorithms and the most used empirical measure 

used in binary and multiclass classification, without focusing on a class, but doesn’t distinguish 

between the number of correct labels of different classes. The accuracy can be obtained through 

the values obtained by the confusion matrix and can be computed as follows, in equation 6.1. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  𝑏𝑖𝑛𝑎𝑟𝑦 𝑐𝑙𝑎𝑠𝑠.  =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁 +  𝑇𝑁
      (6.1) 

 

In multi-class classification the total accuracy can be computed as follows in equation 6.2: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  𝑚𝑢𝑙𝑡𝑖−𝑐𝑙𝑎𝑠𝑠. =  
𝑇𝑃1  +  𝑇𝑃2  +  𝑇𝑃𝑛

∑ 𝑎𝑙𝑙 𝑐ⅇ𝑙𝑙𝑠 𝑖𝑛 𝑡ℎⅇ 𝐶𝑀
           (6.2) 

 

Beyond accuracy, there are other metrics that evaluate the model’s performance and their way of 

correctly predicting the positive class and the negative class. These metrics are sensitivity (SN), 

also called recall or true positive rate (TPR) (equation 6.3), specificity (SP) (equation 6.4), and 

precision (P) (equation 6.5) which confirm or refute the presence or absence of bad image 

acquisition. 

Sensitivity and specificity are often employed in biomedical applications and in studies involved 

image and visual data [69]. 

 

𝑠ⅇ𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
                 (6.3) 

 

𝑠𝑝ⅇ𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
                (6.4) 

 

𝑝𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
                 (6.5) 

 

Sensitivity or Recall (equation 6.3) is a metric often used in disease detection where it gives high 

classification scores, achieving high numbers of true positives and avoiding false negatives, that is, 

that rarely failed the occurrence of disease. To obtain a high sensitivity value it’s necessary that 
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the classifier has predicted a high number of TP and a low value of FN (FN occurs when the patient 

definitely has a poor image acquisition, but the classifier evaluated as good quality). 

Specificity (equation 6.4) measures the proportion of patients with good image acquisition that are 

correctly classified as not having bad acquisition, in other words, is the classification percentage of 

correctly rejecting the good acquisition images that are actually good. 

Precision (equation 6.5), is another ML metric, where it's important to avoid false positives. This 

metric also shows how confident and accurate the classifiers are. To increase precision, the 

number of true positives, that the classifier predicts must be high or the number of false negatives 

must be low.  

The combination of the recall and precision metrics result in a metric called 𝐹1score found in the 

equation 6.6.  

 

𝐹1 𝑠𝑐𝑜𝑟ⅇ =  2 × 
𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅ⅇ𝑐𝑎𝑙𝑙 

𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅ⅇ𝑐𝑎𝑙𝑙
               (6.6) 

 

𝐹1 𝑠𝑐𝑜𝑟ⅇ is used as a classifier evaluation metric, when only the accuracy does not give the 

necessary information of the classifier performance.  

 

Therefore, in the present work, it is intended that the classifier would give a high recall value, with 

a reduced number of false negatives, but also to predict when an event is positive when in fact it 

is, that is, it also has a high precision value. 

Ideally, these metrics would show all patients with good image acquisition, and similarly, all patients 

who do not have good image acquisition.  

A perfect test is never positive in a patient who has a good image acquisition and is never negative 

in a patient who has in fact bad image acquisition [71], because the evaluation of the classifier 

may contain some margin of error, this classifier should try to reduce the false negative predictions 

in that the patient definitely has a poor image acquisition, but the classifier evaluated as good 

quality. 

Another of the problems that arise in the classification is class imbalance, when the datasets 

studied exhibits an unequal distribution between its classes [72]. For several base classifiers, 

studies have shown that, a balanced data set provides improved overall classification performance 

compared to an imbalanced dataset [73], [74]. 
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For the present study it was not necessary to carry out class balancing techniques, since in the 

Data Acquisition process (section 5.1), the number of images corresponding to each class was 

considered, and a manual classification of images was carried out in such a way that there were a 

similar number of images classified for each class. 

 

One way to graphically visualize the behavior of the false positive rate (FPR or specificity) and the 

true positive rate (TPR or 1-sensitivity) is called receiver operating characteristic (ROC), represented 

by Figure 6.1. This is presented as a curve, in the unit square, where the TPR value lies on the 

vertical axis and the FPR value lies on the horizontal axis. In the top left corner is the ideal point of 

the ROC curve, with the FPR at zero and the TPR at 1, as shown in Figure 6-1 in curve A. 

The area under the curve (AUC) is the area underneath the ROC curve and is an effective and 

combined measure of TPR and FPR that describes the inherent validity and performance of the 

classifier [75]. When the AUC has a value of 0.5 it’s called the random classifier and as the 

classifier improves its performance, the AUC also walks to higher values and closer to the optimal 

value. 

 

 

Figure 6-1 ROC Curves. Curve A represents and AUC=1 and a perfect test; curve B are a good and a moderate 
diagnostic results, respectively; and D is the random classifier, with an AUC=0.5. Adapted from [76]. 
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6.2 CLASSIFICATION RESULTS OF FOCUS ASSESSMENT 

The results of the focus parameter are divided between the results obtained from Net1 and Net2. 

A total of 378 images were used to test the two models, divided into 202 positive (unfocused) 

images and 176 negative (focused) images. For training and validation, 1510 and 472 images 

were used respectively. The distribution of the images by training, validation and test dataset can 

be found in Appendix B-1. 

The loss function used was binary cross entropy, widely used in binary classification, and three 

different optimization functions were used: Stochastic gradient descent (SGD), Stochastic gradient 

descent with momentum (SGD + Momentum) and Adam. 

The following regularization was applied to Net1 and Net2: dropout between the first and the 

second fully connected layers with probability of 0.5 and the weight decay regularization 𝐿2 with 

factor of λ = 0.001. 

The fixed and varied parameters used in the training of the two models are presented in table 6.3 

and table 6.4. 

 

Table 6-3 Fixed parameters used in each model Net1 and Net2. 

Fixed parameter Value 

Batch size 4 

Epochs 400 epochs (Early Stopping, patience=50 epochs) 

Convolution Layers 5 

Loss Function binary cross entropy 

Activation function ReLU (Convolution layers) and Sigmoid (FCL) 

Dropout 0.5 

𝐿2 regularization 0.001 

Momentum 0.9 

 

Table 6-4 Varied parameters used in each model Net1 and Net2. 

Varied parameter Value 

Learning rate (LR) 0.1, 0.01, 0.001, 0.0001, 0.00001 

Optimization Functions SGD, SGD + Momentum, Adam 
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6.2.1 RESULTS OF MODEL NET1 

The cases where the accuracy test was no greater than 46.56% and AUC was equal to 0.5 (random 

guessing), Batch Normalization was then implemented, in order to increase accuracy and other 

classification metrics. The results are shown in Table 6.5, 6.6 and 6.7 and with a star are marked 

the models that went well without Batch Normalization. 

The abbreviations presented in the tables are: TP for True Positives, TN for True negatives, FP for 

False Positives, FN for False Negatives, SN for Sensitivity, SP for Specificity, P for Precision and 

AUC for Area under the curve. The values of sensitivity, specificity, precision and 𝐹1-score are in 

percentages and the AUC value is between 0 and 1. 

 

Table 6-5 Classification performance values for each model trained with each LR and optimization function, without 
Batch Normalization. 

Optm.  LR Test 
Acc. 

TP TN FP FN SN SP P AUC 𝑭𝟏-score 

 
 
 

ADAM 

0.1 46.56 0 176 0 202 0 100 0 0.50 0 

0.01 46.56 0 176 0 202 0 100 0 0.50 0 

0.001 96.56 192 173 3 10 95.05 98.30 98.46 0.97 96.73 

0.0001 46.56 0 176 0 202 0 100 0 0.50 0 

0.00001 92.06 186 162 14 16 92.08 92.04 93.00 0.92 92.54 

 
 
 

SGD 

0.1 82.54 155 165 11 47 76.73 93.75 93.38 0.85 84.24 

0.01 96.83 193 173 3 9 95.54 98.30 98.47 0.97 96.68 

0.001 97.62 197 172 4 5 97.52 97.73 98.01 0.98 97.77 

0.0001 95.77 190 172 4 12 94.06 97.73 97.94 0.96 95.96 

0.00001 46.56 0 176 0 202 0 100 0 0.50 0 

 
 

SGD  
+  

Mom. 

0.1 46.56 0 176 0 202 0 100 0 0.50 0 

0.01 46.56 0 176 0 202 0 100 0 0.50 0 

0.001 96.30 192 172 4 10 95.05 97.73 97.96 0.96 96.48 

0.0001 93.03 189 174 2 13 93.56 98.86 98.85 0.96 96.18 

0.00001 46.56 0 176 0 202 0 100 0 0.50 0 

 

The results of table 6.7, with Batch normalization, show significant improvements comparing with 

table 6.5, in which the classifier was able to learn very well the training, validation and test cases, 

as can be seen in figure 6.2 where it shows training with batch normalization. In some cases, with 

the same learning rate and optimization function, without batch normalization, the classifier did 
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not obtain better accuracy than the 46.56%, and an AUC greater than 0.50, and therefore could 

not learn or extract features from the images. 

 

 

Figure 6-2 Accuracy and Loss learning curves of the trained network, with Batch normalization, for LR=0.0001 and 
the ADAM optimization function. 

 

To reduce the validation learning curve instability, of accuracy and loss, shown in figure 6.2, the 

dropout layer was removed. Figure 6.2 corresponds to training with dropout and figure 6.3, the 

training without dropout. 

 

Figure 6-3 Accuracy and Loss learning curves of the trained network, with Batch normalization and without the dropout 
layer, for LR=0.0001 and the ADAM optimization function. 

 

By the table 6.6 visualization, it was found that although in training C was no improvement in the 

test accuracy value or in the value of 𝐹1--score, the model created in C detected much less FN 

compared to A and B, and so it is a better sensitivity classifier, and therefore, goes in the right way 

to the intended classifier.  
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Table 6-6 Training performed for the LR = 0.0001 and the ADAM optimization function, where A represents the 
training without BN, B represents training with BN and C represents the training with BN and without dropout. 
 

 
 

Test Acc. 

 

TP 

 

TN 

 

FP 

 

FN 

 

SN 

 

SP 

 

P 

 

AUC 

 

𝑭𝟏-score 

A 46.56 0 176 0 202 0 100 0 0.50 0 

B 97.09 193 174 2 9 95.54 98.86 98.97 0.97 97.22 

C 96.56 198 167 9 4 98.02 94.89 95.65 0.96 96.82 

 

 

Although the removal of the dropout layer has reduced the instability of the accuracy and loss 

learning curves, there was a greater tendency of the validation curve to disperse from the training 

curve and cause a slight overfitting, as can be seen in figure 6.3. There were no significant 

improvements, in test accuracy and all other metrics, except for FN detection, which has a lower 

value than the classifier trained only with Batch normalization, and therefore greater sensitivity 

(sensitivity=98.02%). It was also noted that removing the dropout layer did not improve the results, 

so all the next models were trained with the dropout layer.  

 

Table 6-7. Final frame with the all the best classification metric values for each LR and optimizer studied. With a star 
are marked the models that performed better without Batch Normalization. 
 

 

Optm.  
 

LR 
Test 
Acc. 

 

TP 
 

TN 
 

FP 
 

FN 
 

SN 
 

SP 
 

P 
 

AUC 
 

𝑭𝟏--score 

 
 
 

ADAM 

0.1 46.56 0 176 0 202 0 100 0 0.50 0 

0.01 95.77 192 170 6 10 95.05 96.59 96.97 0.96 96.00 

0.001* 96.56 192 173 3 10 95.05 98.30 98.46 0.97 96.73 

0.0001 97.09 193 174 2 9 95.54 98.86 98.97 0.97 97.22 

0.00001* 92.06 186 162 14 16 92.08 92.04 93.00 0.92 92.54 

 
 
 

SGD 

0.1* 84.66 155 165 11 47 76.73 93.75 93.38 0.85 84.24 

0.01* 96.83 193 173 3 9 95.54 98.30 98.47 0.97 96.68 

0.001* 97.62 197 172 4 5 97.52 97.73 98.01 0.98 97.77 

0.0001* 95.77 190 172 4 12 94.06 97.73 97.94 0.96 95.96 

0.00001 93.12 186 166 10 16 92.08 94.31 94.90 0.93 93.47 

 
 

SGD  
+  

Mom. 

0.1 57.94 82 137 39 120 40.59 77.84 67.77 0.59 50.77 

0.01 96.03 197 166 10 5 97.52 94.32 97.46 0.96 96.24 

0.001* 96.30 192 172 4 10 95.05 97.73 97.96 0.96 96.48 

0.0001* 96.03 189 174 2 13 93.56 98.86 98.85 0.96 96.18 

0.00001 96.03 194 169 7 8 96.04 96.02 96.52 0.96 96.28 
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After obtaining all the results, it can be seen from Table 6.7 that the optimization function with the 

best classification results was the SGD, with the test accuracy ranging from 82.54% to 97.62%. 

The best result obtained in the whole training pipeline is highlighted in bold in table 6.7, for an 

LR=0.001 and the SGD optimization function - test accuracy was equal to 97.62%, an AUC of 0.98, 

false negative number of 5 and number of false positives of 4. 

For the same parameters, the best model was obtained, with Batch Normalization. This training 

was performed to verify if using Batch Normalization could reduce the rate of FN and FP and it was 

verified the opposite, since these increased considerably, thus reducing the sensitivity of the 

classifier. All other performance metrics for the classifier also decreased, showing why the use of 

Batch Normalization did not add improvements to the best classifier that had been previously 

obtained without Batch Normalization. 

 
 
Table 6-8 Results obtained from the best classifier trained without Batch Normalization (A) and with Batch 
Normalization (B). 
 

 Test Acc. TP TN FP FN SN SP P AUC 𝑭𝟏--score 

A 97.62 197 172 4 5 97.52 97.73 98.01 0.98 97.77 

B 85.98 158 167 9 44 78.22 94.89 94.61 0.87 85.64 

 

The results in table 6.7 and table 6.8 (A) show that Net1 has achieved high accuracy (9 errors - 4 

FP and 5 FN) over 378 images, with 97.52% of sensitivity (the probability that Net1 would correctly 

identify a blurred image) and a specificity of 97.73% (the probability that Net1 would correctly 

identify a focused image).Table 6.9 presents the confusion matrix for the best focus classifier and  

Figure 6.4 has the ROC curve with AUC value. The ROC curve was generated with three points by 

the sklearn plot_ROC function. 

 

Table 6-9. Confusion matrix for the best focused images classifier. 

 

 

Actual 

Class 

 Predicted Class 

     Focused Blurred 

Focused 172 4 

Blurred 5 197 
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Figure 6-4 ROC curve for the best classification model, with LR=0.001 and SGD optimization function.  

 

To obtain a qualitative idea of Net1’s performance, the images that were erroneously classified are 

shown below (wrongly classified as focused and blurred). Figure 6.5 shows the images that are 

classified by the human as blurred class, but were classified as focused by the network, and Figure 

6.6 shows images that are focused but classified as blurred by the network. 
 

 

 

Figure 6-5 Images that represent instances of wrong blurred predicted images. a), b), c), d) and e) are labeled as 
blurred but predicted as focused. However, it can be concluded that d) and e) were correctly classified by the network 
as focused and incorrectly manually classified by the expert. This was a success case in which the network learned 
the features that differentiate between focus and blur. 
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Figure 6-6 Images that represent instances of wrong focused predicted images. a), b), c) and d) are labeled as focused 
but predicted as blurred. It can be concluded that a) and d) are definitely focused, b) is a little blurred in the fovea area 
and c) is blurred and is a case of bad manual classification by the expert. Once again, the network learned the main 
differences between focused and blurred images. 

 

After verifying and correcting the number of images correctly classified by the network Net1, in the 

test dataset, and that surpassed the human classification, all the metrics involved in the 

classification were recalculated, obtaining the values of table 6.10. Case A corresponds to the 

values before recalculation and those in case B are recalculated. 

 

Table 6-10 Comparison of results before and after recalculation of all classification metrics. 

 

All values of the metrics in case B improved, obtaining a very low classification error, equal to 100% 

- 98.68% = 1.32% and a detection of FN = 3 of 5 images incorrectly classified as belonging to the 

class "focused "; and FP = 2 where previously 4 images were incorrectly classified as the" blurred 

"class. 

 

 

 

 

 

Case  Test Acc. TP TN F
P 

F
N 

SN SP P AUC
C 

𝑭𝟏--score 
score A 97.62 197 172 4 5 97.52 97.73 98.01 0.98 97.77 

B 98.68 199 174 2 3 98.51 98.86 99.00 0.99 98.75 
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Conv2D #1 

4 feature maps 

Conv2D #2 

9 feature maps 

Conv2D #3 

12 feature maps 

Conv2D #4 

12 feature maps 

Conv2D #5 

9 feature maps 

Input image 

Figure 6-7 Feature maps of each 
convolutional layer for Net1. 
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CNN networks are seen as hierarchical feature extractors, where at the first level of extraction, from 

the first layers, simple features such as edges or local contrast are extracted. In the following layers 

of convolution more complex features are extracted that combine the several low level features 

[24]. The characteristics and information learned in the network through the feature maps for a 

blurred test image are represented in the images in figure 6.7. 

In the Conv2D layer #1, 4 feature maps are generated that extracted geometric and border 

information between the retina and the background, as well as the differentiation of the retinal 

circle and the optic disc. Between the Conv2D #1 and Conv2D #2 layers there was a max-pooling 

operation that downsampled the image size in the first convolution layer to reduce by half the 

previous pixel value. In the second convolution layer (Conv2D #2), information about the location 

and volume of vessels and retinal constituents, such as the macula, optic disc and fovea, were 

mostly extracted. From Conv2D #3 to Conv2D #4 information is extracted from the color variation 

in the retina and the blur of the image with segmentation of blurred and focused areas. These 

segmentations are most prominent in Conv2D #5 with 9 feature maps of 32x32-pixel sized images. 

 

The computation time for Net1 to train and extract was between 15min34sec and 1h50min4sec, 

depending on the optimization function and learning rate used. To predict the classes of 378 

images, the execution time was between 1sec2msec and 3sec1msec. 

The training that took the longest time was 1h50min and each training was about to be trained 

between 52 and 389 epochs/iterations. When Early Stopping was introduced, which contained a 

patience equal to 50 epochs, the training was extended while the reduction criterion of validation 

loss was maintained. The algorithm terminates when no parameters have improved over the best 

recorded validation error for some pre-specified number of iterations. 

This regularization strategy proved to be a good parameter picker, returning models with the lowest 

validation loss value. After all the training sessions, it is verified that as the rate of learning rate 

decreases, the number of training periods increases, since the network requires more training 

epochs until it converges. 
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6.2.2 RESULTS OF MODEL NET2 

Since there were good results in the use of Batch Normalization in the Net1 model, this method 

was also used in the Net2 training. 

Table 6-12 has the Batch Normalization results without regularization 𝐿2  (weight decay) and table 

6-13 has the results of training with Batch Normalization with regularization 𝐿2. Was experimented 

the use of weights regularization 𝐿2, due to the appearance of the overfitting and instability 

phenomenon in some Batch Normalization accuracy and loss learning curves, in both training and 

validation states. 

Table 6-11. the training curves are shown only with Batch Normalization and the training with Batch 

Normalization and with regularization 𝐿2. 
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Table 6-11 Learning curves of models trained with Batch Normalization and L2 regularizer, for two different LR and 
SGD optimization functions (trained with and without momentum). 
 

 

 

 

 Without Regularization 𝐿2 With Regularization 𝐿2 

 

 

 

 

 

 

  LR = 0.01 

      SGD 

  

  

 

 

 

 

 

LR=0.001 

SGD  

+  

Mom. 
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By the validation loss learning curve visualization, Table 6-11 shows that there is a greater 

stabilization of learning by reducing of the peaks occurrence and the continuously reduction of 

validation loss values throughout the training, converging to smaller values and closer to zero. 

The lines highlighted in the next tables (6-12 and 6-13) are related to the trained models with the 

best values and performance in the classification metrics. 
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Table 6-12 Results obtained without the use of regularization 𝐿2. 

Optm.  LR Test 
Acc. 

TP TN FP FN SN SP P AUC 𝑭𝟏--score  

 
 
ADAM 

0.1 60.58 186 43 13
3 

16 92.08 24.43 58.31 0.58 71.40 

0.01 96.83 19
6 

17
0 

6 6 97.03 96.03 97.03 0.97 97.03 

0.001 97.09 194 173 3 8 96.04 98.30 98.48 0.97 97.24 

0.0001 97.09 19
5 

17
2 

4 7 96.53 97.73 97.99 0.97 97.26 

0.0000
1 

93.39 187 166 10 15 92.57 94.32 94.92 0.93 93.73 

 
 
SGD 

0.1 73.02 146 130 46 56 72.28 73.86 76.04 0.73 74.11 

0.01 94.44 188 169 7 14 93.07 96.03 96.41 0.95 94.71 

0.001 97.09 194 173 3 8 98.04 98.30 98.48 0.97 97.24 

0.0001 95.50 191 170 6 11 94.55 96.59 96.95 0.95 95.74 

0.0000
1 

76.98 133 158 18 69 65.84 89.77 88.08 0.78 75.35 

 
SGD  

+  
Mom. 

0.1 58.73 69 153 23 13
3 

34.16 86.93 75.00 0.61 46.94 

0.01 94.70 194 164 12 8 96.04 93.18 94.17 0.95 95.10 

0.001 95.77 195 167 9 7 96.53 94.89 95.59 0.96 96.06 

0.0001 94.97 187 172 4 15 92.57 94.89 97.91 0.95 95.17 

0.0000
1 

95.77 194 168 8 8 96.04 95.45 96.04 0.95 96.04 

 

Table 6-13 Results obtained with the use of regularization 𝐿2. 

Optm. LR Test 
Acc. 

TP TN FP FN SN SP P AUC 𝑭𝟏-
score 

 
 

ADAM 

0.1 46.56 0 176 0 20
2 

0 100 0 0.50 0 

0.01 84.49 153 168 8 49 75.74 95.45 95.03 0.86 84.30 

0.001 96.03 193 170 6 9 95.54 96.59 96.98 0.96 96.26 

0.0001 94.44 193 164 12 9 95.54 96.59 94.15 0.94 94.84 

0.0000
1 

93.92 188 167 9 14 93.07 94.89 95.43 0.94 93.07 

 
 

SGD 

0.1 66.67 180 72 104 22 89.11 40.91 63.38 0.65 74.07 

0.01 95.50 190 171 5 12 94.06 97.16 97.44 0.96 95.72 

0.001 96.30 194 170 6 8 96.04 96.59 97.00 0.96 96.52 

0.0001 94.44 192 165 11 10 95.05 93.75 94.58 0.94 94.81 

0.0000
1 

71.43 117 153 23 85 57.92 88.93 83.57 0.72 68.42 

 
SGD  

+  
Mom. 

0.1 65.87 134 115 61 68 66.34 65.34 68.72 0.66 67.51 

0.01 97.09 196 171 5 6 97.03 97.16 97.51 0.97 97.27 

0.001 94.44 187 170 6 15 92.57 96.59 96.89 0.95 94.68 

0.0001 95.50 194 167 9 8 96.04 94.89 95.57 0.95 95.80 

0.0000
1 

96.03 193 170 6 9 95.54 96.59 96.98 0.96 96.26 

 

From the results obtained in the table 6-12 and 6-13, it can be observed that although the use of 

the regularizer did not improve significantly the results, there were some cases in which they 

improved. For the learning rates of 0.1, 0.01, 0.0001 and 0.00001, using regularizer, and in the 

SGD optimization function with moment, an improvement in the classifier learning can be verified. 
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The optimization function with better performance in training without regularizer was the ADAM, 

and as was said earlier, the optimization function that best suited the training with regularization 

was the SGD with momentum. 

The best overall result for Net2 was obtained with the use of regularizer for a learning rate of LR = 

0.01 and SGD optimization function, with the lowest number of false negatives detected (FN = 6), 

with a low number of false positives (FP = 5), and therefore a better 𝐹1-score (𝐹1-score = 97.27%), 

sensitivity (SN = 97.03%) and AUC = 0.97. Table 6-14 shows the confusion matrix and figure 6- 8 

the respective ROC curve and the AUC value for the best obtained model. 

 

Table 6-14 Confusion matrix for the best focused images classifier, with LR=0.01, SGD optimization function and 
with 𝐿2. 

 

 

 

Actual 

Class 

 Predicted Class 

     Focused Blurred 

Focused 171 5 

Blurred 6 196 

 

 

 

 

Figure 6-8 ROC curve for the best classification model, with LR=0.01 and SGD optimization function with 𝐿2. The 

ROC curve was generated with 3 points. 

 

 

The classifier was also evaluated by the images that were incorrectly classified, where focused 

images (true class negative) was classified as blurred (positive class) by the network, and the 

blurred (positive class) images were classified as focused (negative class) by the network. These 

images are in Figure 6-9 and 6-10. 
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Figure 6-9 Images belonging to the positive class (blurred images) that were classified as focused. In this case none 
of the images was correctly classified nor surpassed the human classification, since none of the images is focused. 

 
 

 
 

Figure 6-10 Images belonging to the negative class (focused images) that were classified as blurred. Image a), b) and 
c) are focused while d) and e) where correctly classified by the network and incorrectly classified by the specialist. 

 

After verifying and correcting the labels that were incorrectly classified by the specialist and were 

correctly classified by the Net2 network and exceeding the human classification, all the metrics 

involved in the classification were recalculated, obtaining the values of table 6-15. Case A 

corresponds to the values before the recalculation and in case B are those that were recalculated. 
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Table 6-15 Comparison of results before and after recalculation of classification metrics. 

 

The precision in case B has improved after the recalculation of the classification metrics, since the 

number of FP is much smaller after the correction of classes 0 and 1 of the test images, of the 

previously incorrect classifications. The other metrics such as 𝐹1-score, AUC, specificity also 

improved. 

Figure 6-11 shows the information and features learned from the network in each of the five 

convolutions, represented as Conv2 1, Conv2D #2, Conv2D #3, Conv2D #4 and Conv2D #5. 

The same Net1 feature extraction test image was used for the Net2 network. 

In the Conv2D layer #1, 11 feature maps were generated that extracted geometric information, the 

border between the retina and the background, with differentiation of the circle of the retina, the 

macula and the optical disc; this differentiation can be seen through the different shades of color 

in feature maps. In addition to all the features extracted above, it’s possible to see the segmentation 

of the blurred zone from the focused area of the image (blurred has a bluish tint and focus has an 

orange tint) and also the visualization of the surrounding area of the fovea. 

From the second convolution layer (Conv2D #2) to the fourth (Conv2D #4) more detailed 

information on the location, shape and volume of vessels and retinal constituents such as the 

macula, optic disc and fovea were extracted, as well as a differentiation of the areas out of focus. 

From the fifth convolution layer (Conv2D #5), feature maps were generated with the targeting of 

the unfocused zone to dark blue and the zone focused to lighter blue. 

The computation time to train and extract features was between 17min30sec and 1h40min4sec, 

depending on the optimizer and learning rate used. To predict the classes of 378 images, the 

execution time was 1sec3msec. 

The model that took more time to train, had a training time of 1h40min and each training was 

around to be trained between 40 and 336 epochs. 

Globally, the two Net1 and Net2 networks were able to successfully classify and extract features, 

but Net1 has performed better with 98.68% of test accuracy, 99% AUC and 𝐹1 − 𝑠𝑐𝑜𝑟ⅇ =98.75%. 

 

Case  Test Acc. TP TN FP FN SN SP P AUC 𝑭𝟏-score 

A 97.09 196 171 5 6 97.03 97.16 97.51 0.97 97.27 

B 97.62 196 173 3 6 97.03 98.30 98.49 0.98 97.75 
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Conv2D #5 
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Figure 6-11 Feature maps of each 
convolutional layer for Net2. 
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6.3 CLASSIFICATION RESULTS OF COLOR ASSESSMENT 

The results of the color parameter are divided between the results obtained in the Net1 and Net2 

networks. 

To obtain the performance results of the Net1 and Net2 networks, 201 images were used as test 

dataset, divided into 86 images of class 0 (normal color images), 44 images of class 1 (light color 

images) and 71 images of class 2 (dark color images). For training and validation, 641 images and 

162 images were used respectively. The distribution of the images by training, validation and test 

dataset can be found in Appendix B-2. 

The loss function used was the categorical cross entropy, widely used in multi-class classification, 

and three different optimization functions were used: Stochastic gradient descent (SGD), Stochastic 

gradient descent with momentum (SGD + Momentum) and Adam. 

As in the focus classification, the color classification was used for dropout regularization with a 

probability of 0.5 entering the first and second fully connected layers and the 𝐿2 regularization with 

factor of λ = 0.001. The fixed and varied parameters used in the training of the two models are 

presented in table 6-16 and 6-17. As there is some class imbalance in the color dataset, both in 

training and in validation, which can be seen in Appendix B-2, the micro-average 𝐹1-score metric 

is the same value calculated for the test accuracy. 

 

 

Table 6-16 Fixed parameters used in each model Net1 and Net2. 

Fixed parameter Value 

Epochs 400 epochs (Early Stopping, patience=50 epochs) 

Convolution Layers 5 

Loss Function categorical cross entropy 

Activation function ReLU (Convolution layers) and Softmax (FCL) 

Dropout 0.5 

𝐿2 regularization 0.001 

Momentum 0.9 
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Table 6-17 Varied parameters used in each model Net1 and Net2. 

Varied parameter Value 

Batch size 4, 12, 24, 32, 64 

Learning rate (LR) 0.01, 0.001, 0.0001, 0.00001 

Optimization Functions SGD, SGD + Momentum, Adam 

 

 

6.3.1 RESULTS OF MODEL NET1 

In order to classify color images of the retina, transfer learning of the varied and fixed parameters 

of the best obtained with the Net1 network in the focus images was used, because they served as 

a guide for the training to be performed with the color dataset. Therefore, instead of performing 

the entire pipeline of the 15 trainings performed for each learning rate and each optimization 

function with and without Batch Normalization, as the focus assessment, only the best classification 

results were chosen, above the 96.03% test accuracy. Table 6-18 summarizes the classification 

results. 

Table 6-18  Results obtained from the classification of color images of Net1 network. 

Optm.  LR 𝑭𝟏-score 

 
ADAM 

0.001 88.06 

0.0001 93.03 

 
SGD 

0.01 91.04 

0.001 92.04 

 
 

SGD + Momentum 

0.01 86.07 

0.001 89.55 

0.0001 93.53 

0.00001 91.04 

 

 

After table 6-18 reading, it is verified that the best 𝐹1-score result (𝐹1-score = 93.53%) was obtained 

with the SGD optimization function with moment, with the learning rate equal to 0.0001 and batch 

size of 4.  
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To reduce the slight overfitting, improve network performance and increase the 𝐹1-score value in 

the test images, the best model with 𝐿2 regularization was trained and different batch sizes of 12, 

24, 32 and 64 were used. The results are shown in table 6-19. And the learning of the network is 

shown in figure 6-12. 

 

Figure 6-12 Learning curves for the model trained with Batch Normalization and without regularization 𝐿2 (left) and 

with regularization 𝐿2 (right). 

 

There was learning improvement in use regularization in the model training, with reduction of 

overfitting and therefore, obtaining better values of training and validation accuracy and reduction 

of validation loss. The use of regularization stabilized, accelerating the training process, since there 

is less variation and oscillation in the learning curve of the training loss and training accuracy, as 

well as fewer number of iterations/epochs for the model to be trained (without regularization = 250 

epochs and with regularization = 177 epochs). 

 
Table 6-19 Results of the classifier performance for LR = 0.0001 and SGD optimization function with momentum, 
using Batch Normalization, different batch sizes and the use of 𝐿2 regularization. 
 

Use of 
regularization  

 

Batch size 
 

𝑭𝟏-score 

No 4 93.53 

Yes 4 94.53 

No 12 90.55 

No 24 91.04 

No 32 91.04 

No 64 90.55 
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What can be concluded from the results of Table 6-19 is that the use of regularization improved 

the value of 𝐹1-score, contrary to the increase of batch size. In the table 6-20, the confusion matrix 

for the best classifier obtained by Net1 is shown, and what can be verified, the class that was 

mostly badly classified was the “bright” class (class 1), with 5 wrong classifications in 41 images. 

None of the images that were of class “normal” were incorrectly classified as “bright”, that is, it 

can be verified that the classifier was able to extract and differentiate the normal color characteristic 

of bright color but not vice versa, obtaining 2 wrong classifications of “bright” color (true class) to 

“normal” (predicted class). Finally, the class that suffered less with the incorrect classifications 

was the “normal” class (class 0), having only 2 incorrect classifications in 86 images. In a total of 

201 images, 11 images were classified differently by the human and the network. 

 

Table 6-20 Confusion matrix for the best result obtained from Net1 network, with Batch Normalization and 𝐿2 

regularization. 

 

 

 

Actual 

Class 

                         Predicted Class  

     Normal Bright Dark 

Normal           84 0 2 

Bright 2 39 3 

Dark 3 1 67 

 

 

In Figure 6-13, the images are classified by Net1 as a given class and belonging to another that 

was obtained, in the process of data acquisition, through human classification. Images a) and b) 

belong to the class “normal” and were classified as “dark” by the network; Images c) and d) are 

of the "bright" class and are predicted to be of the "normal" class. Images (e) to g) are classified 

by the human as "bright" the images are of the "dark" class and predicted by the network as of 

the "normal" class. Finally, the image k) is classified as "dark" but predicted as "bright". 

 

 

 

 



RESULTS AND DISCUSSION 

104 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

Of all the images differently classified between the human and the network (11 images), 5 were 

correctly classified by the network and surpassed the human classification, which shows that the 

network generalized well and was able to surpass the human classification. 

The images a) and b) are definitely from class “dark”, d) it is “normal”, h) is “normal” despite 

being a bit darker as usual. The classification of image k) is divided between the human and the 

network since it contains both dark and bright characteristic, so, on this image, one can conclude 

that it is on the threshold of the two characteristics and both classifications (human and network) 

Normal Dark 

Bright Dark 

Bright Normal 

c) 

e) f) 

h) 

i) 

Dark Normal 

Dark Bright 

a) b) 

c) d) 

g) 

h) j) 

k) 

Figure 6-13 Images that the network classified differently from the human. 
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are also accepted. Due to some test images being misclassified by the human and correctly 

classified by the Net1 network, 𝐹1-score classification value was recalculated from the corrected 

values of TP, TN, FP and FN, shown in table 6-21. Case A corresponds to the case before the 

recalculation of the classification metric 𝐹1-score and case B is the one in which it has already been 

recalculated. From table 6-21, it can be seen that the value of 𝐹1-score in B increased by 2.48% in 

relation to case A. 

 

Table 6-21 Comparison of results before and after recalculation of classification metrics. 
 

 

 

 

In order to understand how the network interpreted the color images, feature maps were generated 

of a test image of the “bright” class, and this representation is shown in figure 6-14. 

In the first convolution layers (Conv #1 and Conv #2), the geometric features of the border were 

extracted, but also the internal organization of the retina, with macula, optic disc and fovea 

differentiations. Still from these layers were extracted the different shades and the brightness 

feature of this image. In the following layers, Conv #3 to Conv #5, the optic disc is more evidenced 

and the region with the highest brightness of the image also (with yellowish and orange tint), or 

darker as appear in the third feature map of the Conv #3 and second feature map of Conv #4. 

As can be concluded, all the important features to be extracted from the “bright” class image were 

successfully extracted and learned by the network. 

The nets were trained between 5min13sec and 21min33sec, that is, these train weren’t time 

expensive, since they trained fast, with a batch size of 4 and with 400 epochs and Early Stopping. 

The training with the shortest time spent (5min13sec), trained with 70 epochs/iterations and the 

training that took more (21min33sec) trained until 260 epochs, which shows that it was not 

necessary more than this number of epochs to converge and find a low value of loss and a high 

value of validation accuracy, as shown in figure 6-12. The execution time and prediction of classes 

was between 1sec5msec and 2sec11ms. This time difference is due to the fact that the available 

memory in the training machine, at the time of predictions, differ, interfering in the loading time of 

the test images and the print output of the network. 

 

 

Case  𝑭𝟏-score 

A 94.53 

B 97.01 
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Input image 

Figure 6-14 Feature maps of each convolutional 
layer for Net1, of a bright test image. 
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6.3.2 RESULTS OF MODEL NET2 

As in Net1 network, for the Net2 network, transfer learning of the varied and fixed parameters of 

the best models obtained with the Net2 network in the focus images, were used. All the training 

pipeline was performed with Batch Normalization and the parameters of the eight best models 

trained in the focus images were chosen, that is, above the 94.97% test accuracy of the Net2 

network. Table 6-22 summarizes the results of the classification. 

Some overfitting occurred, for example, for LR = 0.0001 and ADAM optimization function with 

Batch Normalization. To overcome this phenomenon, 𝐿2 regularization was used, to reduce or 

mitigate the overfitting effect, and by figure 6-15, it’s verified that it reduced the overfitting, 

stabilized the learning, increased the accuracy of training and validation, as well as reduce the 

training loss and validation, converging the latter to a low value and close to zero - there was 

improvement in learning performance. The regularization implementation also increased the 𝐹1-

score, going from 92.54% without regularizer, to 94.53% with regularizer. 

It was used regularizer for the three LR (0.01, 0.001 and 0.0001) and ADAM optimization function 

and the results of these trainings are presented in table 6-23. 

 

Table 6-22 Results of the color image classification of Net2. 

Optm.  LR 𝑭𝟏-score 

 
ADAM 

0.01 89.05 

0.001 92.54 

0.0001 92.54 
 

SGD 
0.001 89.55 

0.0001 90.55 

 
SGD + Momentum 

0.001 90.55 

0.0001 91.54 

0.00001 88.06 

 

Table 6-23 Results of images classification, with the 𝐿2 regularization implementation, in Net2. 

Optm.  LR 𝑭𝟏-score 

 
ADAM 

0.01 90.05 

0.001 93.53 

0.0001 94.53 
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Figure 6-15 Accuracy and Loss learning curves along the training, for the train and validation datasets, without 
regularization on the left and with regularization on the right. 

 

After reading Table 6-23, it can be seen that all previous values of 𝐹1-score obtained only with Batch 

Normalization, increased with the use of 𝐿2 regularization. The best 𝐹1-score result (𝐹1-score = 

94.53%) was obtained with the Adam optimization function, with the learning rate of 0.0001 and 

batch size of 4. The following confusion matrix, represented in table 6-24, corresponds to the best 

model of the Net2 network, obtained with regularization, being able to correctly identify 81 images 

of the class “normal” in a total of 86, 39 images of class “bright” in 44 and 70 images of class 

“dark” in 71 images. The “dark” class was the class with the lowest number of incorrect 

classifications given by the network, with a total number of 1 image classified as “normal” color. 

The network predicted 11 images, contrary to the human, in a total of 201 images. Table 6-24 

represents the confusion matrix with the correct and incorrect predicted classes. 

 

Table 6-24 Confusion matrix with the distribution of the classification given by Net2 network. 
 

 

 

 

Actual 

Class 

             Predicted Class  

     Normal Bright Dark 

Normal 81 1 4 

Bright 4 39 1 

Dark 1 0 70 
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Normal Bright 
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Bright Dark 

a) b) 

c) d) 

f) 

i) j) 

Bright Normal 

Normal Dark 

b) 

e) f) 

g) 

h) i) 

j) k) 

Figure 6-16 Images with classification made by 
Net2 network, different from human classification. 
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Figure 6-17 Feature maps of each 
convolutional layer for Net2. 
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In Figure 6-16, from a) to k) are the images that were differently classified from the human 

classification. The images a), b), c), e), f), j) and k) were incorrectly classified by the network, but 

images d), h), i) were correctly classified by the network, where d) belongs is truly from class 

“normal” and h), i) and j) belong to the “dark” class. In 11 images, 4 were classified correctly by 

the network and surpassed the selection of the images made by the human. 

𝐹1--score metric was recalculated, since the network classified some images correctly, which the 

expert had not previously done, obtaining a higher value (𝐹1-score = 96.52%) than previously 

predicted (still with the incorrect human classification, 𝐹1-score = 94.53%). These results are 

shown in Table 6-25, where case A is before the 𝐹1-score recalculation and B is after the 

recalculation. 

. 
 

Table 6-25 Comparison of results before and after recalculation of classification metrics. 
 

 

 

 

 

 

Figure 6-17 shows the feature maps extracted from the convolution layers of Net2 network of a 

bright image. From the first layer (Conv2D #1) to the last layer (Conv2D #5) it can be seen that 

the features of location and retinal constituents, their border with the background, and a light color 

segmentation with respect to the remaining color of the retina (the light color is represented by a 

more orange and yellowish tint in the feature maps). From these feature maps, the shape and 

structure of retinal vessels are also evident. 

The training time of the studied networks was between 4min49sec and 19min44sec, taking less 

time than the Net1 training network. The training with 4min49sec required 91 epochs and the 

training with 19min44sec,159 epochs. Figure 6-15 (right side), for example has a training time of 

10min50sec and required 142 epochs of 400 using Early Stopping. The use of Early Stopping 

causes the training to progress until the validation loss reaches a low value and stabilizes. Class 

prediction and classification time was between 1sec4ms and 4sec19msec. This difference, as with 

the Net1 network, is due to the fact that the available memory oscillates and differs at the time of 

the classes prediction. 

Case  𝑭𝟏-score 

A 94.53 

B 96.52 
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The study and evaluation of the color parameter, made by the network Net1 and Net2, was 

completed successfully, since the values of 𝐹1-score were high, and equal to 97.01% for Net1 and 

96.52% for Net2. 

One of the major limitations in the study of color was the fact that the human classification failed 

to correctly distribute the test images, to their correct classes, which created some margin of error 

in the prediction of the classes, as can be seen from the analysis of the confusion matrices of both 

Net1 and Net2. On the other hand, these images poorly classified by the human were, however, 

correctly classified by the network, surpassing the human classification. The net that most features 

learned, and the failed least was network Net1, having from 11 images, 5 images correctly 

classified by him and therefore 97.01% of 𝐹1-score. 

In general, the two Net1 and Net2 networks have extracted the most important features and 

information to distinguish a “normal” image, an image with “bright” color and a “dark” image and 

this can be seen by the feature maps extracted from the convolution layers, as well as the 𝐹1-score 

great values. 
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6.4 CLASSIFICATION RESULTS OF ILLUMINATION ASSESSMENT 

The results of the illumination parameter (classes “even” and “uneven”) are divided between the 

obtained results in Net1 and Net2 networks. 

To test the performance of Net1 and Net2, 320 images were used, divided into 180 images of 

class 0 (images of even illumination) and 160 images of class 1 (images of uneven illumination). 

For training and validation, 1610 images and 500 images were used respectively. The distribution 

of the images by training, validation and test datasets are given in Appendix B-3. 

The loss function used was binary cross entropy, since a binary classification was used, and three 

different optimization functions were used: Stochastic gradient descent (SGD), Stochastic gradient 

descent with momentum (SGD + Momentum) and Adam. 

As in the classification of focus and color parameters, for the illumination classification, were used 

dropout regularization with probability of 0.5 between the first and second fully connected layers 

and regularization 𝐿2 with factor of λ = 0.001. 

The fixed and varied parameters used in the training of the two models are presented in tables 6-

26 and 6-27. 

Table 6-26 Fixed parameters used in each model Net1 and Net2. 

Fixed parameter Value 

Epochs 400 epochs (Early Stopping, patience=50 epochs) 

Batch size 4 

Convolution Layers 5 

Loss Function binary cross entropy 

Activation function ReLU (Convolution layers) and Sigmoid (FCL) 

Dropout 0.5 

𝐿2 regularization 0.001 

Momentum 0.9 

 

Table 6-27 Varied parameters used in each model Net1 and Net2. 

Varied parameter Value 

Learning rate (LR) 0.01, 0.001, 0.0001, 0.00001 

Optimization Functions SGD, SGD + Momentum, Adam 
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6.4.1 RESULTS OF MODEL NET1 

In order to classify the images of the retinal illumination parameter, transfer learning of the varied 

and fixed parameters of the best models obtained with the Net1 network in the focus images, above 

96.03% of the test accuracy, were used. Table 6-28 summarizes the results of the classification. 

All the training pipeline were carried out with Batch Normalization. 

 
 

Table 6-28 Results obtained from the illumination classification of Net1. 
 

 

Optm.  
 

LR 
Test 
Acc. 

 

TP 
 

TN 
 

FP 
 

FN 
 

SN 
 

SP 
 

P 
 

AUC 
 

𝑭𝟏-score 

 
ADAM 

0.001 78.75 125 127 33 35 78.13 79.38 79.11 0.79 78.62 

0.0001 93.75 149 151 9 11 93.13 94.38 94.30 0.94 93.71 

 
SGD 

 
SGD 

0.01 91.25 150 142 18 10 93.75 88.75 89.29 0.91 91.46 

0.001 90.94 148 143 17 12 92.50 89.38 89.70 0.91 91.08 

 
SGD  

+  
Mom. 

0.01 91.56 140 153 7 20 87.50 95.63 95.24 0.92 91.21 

0.001 91.25 146 146 14 14 91.25 91.25 91.25 0.91 91.25 

0.0001 91.25 149 143 17 11 93.13 89.38 89.76 0.91 91.41 

0.00001 89.06 144 141 19 16 90.00 88.13 88.34 0.89 89.16 

 

What can be seen from table 6-28 is that the test accuracy, AUC and 𝐹1--score values for all 

constructed models are greater than 90%, except for the models trained with ADAM optimization 

function and LR = 0.001 and the model trained with the SGD optimization function with momentum 

and LR=0.00001. 

The highest test accuracy, 𝐹1--score and AUC values, obtained by the Net1 network, are highlighted 

in the table and obtained with a learning rate of 0.0001 and ADAM optimization function. However, 

it was not the model with the highest sensitivity and the lowest number of FN, detecting one more 

FN than the model with the highest sensitivity - model with FN=10, for LR=0.01 and SGD 

optimization function. This model has also not the lowest FP detection, since it has a rate of 94.30% 

and not 95.24% as obtained the model trained with the optimization function SGD with momentum 

and LR=0.01. Overall, the model that performed best in all classification metrics was 93.75% 

accuracy, 0.94 AUC and a 𝐹1—score of 93.71%. 

In order to reduce overfitting and to increase the classification metric values, in the best model, 

the use of 𝐿2 regularization was implemented. 
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Figure 6-18 shows the graphs of the validation and training learning process, without regularization 

(left) and with regularization (right). By the analysis of the figure, the use of regularization did not 

reduce the overfitting phenomenon, that had already happened previously in the training without 

regularization. It would be expected that with the use of regularizer and Batch Normalization, in 

addition to the training loss, also the validation loss would decrease, and, therefore, learning 

stabilizes and converges to a low loss value, which was not case. 

 

 

Figure 6-18 Learning curves, of train and validation for the two trained models, only with Batch Normalization (left) 
and Batch Normalization+𝐿2 regularization (right). 

 

Table 6-29 shows a comparison of the classification performance metric values of the models 

presented in figure 6-18, where it can be verified that, despite the use of regularization, not bring 

improvements in metric values of test accuracy, specificity, AUC, F1-score and predicting a greater 

number of false detections (of the positive class - "uneven"), was able to detect smaller number of 

FN (false detections of the class to be "even" that aren’t in fact), and, therefore, obtained greater 

sensitivity ratio compared to the other model without regularization. The objective of the classifier 

used is that it provides the lowest number of FN, so the best model was obtained with regularizer. 

Table 6-30 corresponds to the confusion matrix of the regularization model and Figure 6-19 to the 

ROC curve graph, with its AUC value, elaborated with 3 points. 

 

 



RESULTS AND DISCUSSION 

116 

Table 6-29 Comparison of the results obtained by the trained model with and without regularization. 

Use of 
regularization  

Test Acc. TP TN FP FN SN SP P AUC 𝑭𝟏-score 

No 93.75 149 151 9 11 93.13 94.38 94.30 0.94 93.71 

Yes 93.13 153 145 15 7 95.63 90.63 91.07 0.93 93.30 

 

 

Table 6-30 Confusion matrix with the distribution of the classification given by Net1 network. 
 

 

 

Actual 

Class 

 Predicted Class 

Even Uneven 

Even 145 15 

Uneven 7 153 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6-20 and 6-21 represent the images that Net2 classified differently from the human graders. 

Supporting the results of the confusion matrix (table 6-30), there are 15 FP and 7 FN. The images 

present in figure 6-20 were classified by the network as being even and two of them are in fact (2 

images in a total of 7 FN). In Figure 6-21, 6 images were correctly classified by the network, totaling 

15 FP. It can be concluded that the network has been able to learn the features that differentiate 

the images with even and uneven illumination and has the power to generalize well for cases not 

seen before. 
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Figure 6-19 ROC curve for the best classification model, with LR=0.0001 and Adam optimization function. 
ROC curve was created with 3 points. 
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a) b) c) d) 

e) f) g) 

Figure 6-20 Images belonging to the positive class (images classified by the human as uneven illumination) and that were classified as 
negative class (even) by the network. Images f) and g) were correctly classified by the network since their illumination is regular along all 
the retinal perimeter. These two cases exceeded the human classification, and the network generalized well for these images. 

Figure 6-21 Images belonging to the negative class (images classified by the human as even illumination) and that were 
classified by the network as positive class (uneven). The last image of the second line and all the images that belong to the 
last line of images are correctly classified as uneven by the network and incorrectly classified by the human classification. 
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As there were quite a few images correctly classified as class “even” and class “uneven” by the 

network and surpassed the human classification, it was recalculated the classification metrics, 

already with this correction. Table 6-31, contains the metric values without class correction in case 

A and with class correction in case B. 

 

Table 6-31 Comparison of results before and after recalculation of classification metrics. 
 

 

The case B, with the recalculation of the metrics and the values TP, TN, FP and FN, exceeded the 

case A in which it only has a prediction error of 4.37% and smaller than the case A with error equal 

to 6.87 %. 

 

The generated maps for a “uneven” test image are represented in figure 6-22. It is found that along 

the convolution layers important features were extracted, such as the dark taint that extends from 

the macula to the retinal edges, and was confused with the background, represented by dark blue 

or reddish orange, depending on the feature map. All other features such as the location of the 

retinal constituents and the retina's borders were also extracted. 

 

All the resulting models were trained between 12min50s and 1h08min35sec, being training 

sessions that had some time cost associated. These models were trained with a batch size of 4 

and with 400 epochs and Early Stopping, which means that until the validation loss curve 

converges, training continues. The fact that the batch size is also small, makes the model take 

longer to learn the features present in the input images. 

The training with the shortest time (12min50sec) was trained with 72 epochs/iterations and the 

training that took the longest (1h08min35sec) was finished after 231 epochs. 

The runtime and class prediction were for all models equal to 1sec3msec.  

  

Case Test Acc. TP TN FP FN SN SP P AUC 𝑭𝟏-score 

A 93.13 153 145 15 7 95.63 90.63 91.07 0.93 93.30 

B 95.63 155 151 9 5 96.88 94.38 94.51 0.96 95.68 
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Conv2D #1 

4 feature maps 

Conv2D #2 

9 feature maps 

Conv2D #3 

12 feature maps 

Conv2D #4 

12 feature maps 

Conv2D #5 

9 feature maps 

Input image 

Figure 6-22  Feature maps of each convolutional layer 
for Net1, of an uneven test image. 
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6.4.2 RESULTS OF MODEL NET2 

As in the Net1 network, for the Net2 network, transfer learning of the varied and fixed parameters 

of the best models obtained with the Net2 network in the focus images, were used. All training 

sessions were performed with Batch Normalization and the parameters of the eight best models 

trained in the focus images were chosen, that is, above the 94.97% test accuracy of the Net2 

network. Table 6-32 summarizes the classification results. 

 

Table 6-32 Results obtained from the illumination classification of Net2 network. 
 

 

Optm.  
 

LR 
Test 
Acc. 

 

TP 
 

TN 
 

FP 
 

FN 
 

SN 
 

SP 
 

P 
 

AUC 
 

𝑭𝟏-score 

 
ADAM 

0.01 87.50 136 144 16 24 85.00 90.00 89.47 0.88 87.18 

0.001 92.19 147 148 12 13 91.88 92.50 92.45 0.92 92.16 

0.0001 94.38 150 152 8 10 93.75 95.00 94.94 0.94 94.34 
 

SGD 
0.001 91.25 151 141 19 9 94.38 88.13 88.62 0.91 91.52 

0.0001 92.81 153 144 16 7 95.63 90.00 90.53 0.93 93.01 

      SGD  
+  

Momentum 

0.001 91.25 148 144 16 12 92.50 90.00 90.24 0.91 91.52 

0.0001 90.94 148 143 17 12 92.50 89.37 89.70 0.91 91.08 

0.00001 92.81 149 148 12 11 93.13 92.50 92.55 0.93 92.84 

 

The model that stood out for the good results in most of the metrics was the model trained with 

learning rate of 0.0001 and Adam optimization function, obtaining an accuracy of 94.38%, 

precision of 94.94%, an AUC of 0.94 and an 𝐹1-score of 94.34 %. Despite these good results, it is 

not the most sensitive model and, therefore, it detects less FN. This model was trained with LR = 

0.0001 and SGD and detected FN = 7, containing a sensitivity of 95.63%. However, the model with 

the lowest number of false-positive detections of the positive class, detecting a total of 8 images, 

with a higher value of 𝐹1-score and accuracy of the entire pipeline of training performed, was the 

one performed with LR=0.0001 and Adam optimization function. In Table 6-32, the confusion 

matrix of this last interpreted model is represented and in Figure 6-23 its ROC curve is represented. 

In Figures 6-24 and 6-25 are the images that the Net2 network classified contrary to the human 

classification previously made. 
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Table 6-33 Confusion matrix with the distribution of the classification given by Net2 network, for LR=0.0001 and 
Adam. 

 

 

Actual 

Class 

 Predicted Class 

Even Uneven 

Even 152 8 

Uneven 10 150 
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Figure 6-23 ROC curve and AUC value. ROC generated with 3 points. 

Figure 6-24 Images belonging to the negative class (images classified by the human as even illumination) and were classified by 
the network as positive class (uneven). Image d) contains artifacts and the network confused as a case of uneven illumination. 
Images g) and h) were correctly classified by the network as uneven and incorrectly classified by human classification. 
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Some images have been correctly classified by the Net2 network, which causes the TP, FP, TN 

and FN values to improve the true predictive values and reduce false detections. As the Net2 

network surpassed the human, it was done, as for Net1, the recalculation of the classification 

metrics, already with this correction. Table 6-34 contains the metric values without class correction 

in case A and with class correction in case B. Case B, with the recalculation of metrics and values 

TP, TN, FP and FN, has its higher TP and TN values and the amount of FN and FP decreases, 

predicting FN=5 and FP=6. False negative class detections reduced by 5 images and those 

corresponding to the positive class reduced 2 images. 
 

Table 6-34 Comparison of results before and after recalculation of classification metrics. 

 

The generated maps for a test uneven image are represented in figure 6-26. It is verified that, along 

the convolution layers, features such as the location of the retina edges, the optical disc and the 

macula are extracted. Another of the characteristics that make a network differentiate an even and 

uneven image is the presence and detection of the dark taint, that in this case, extends from the 

macula to the edge of the retina and that is confused with the background. These features are, 

firstly extracted from the Conv2D#1 and, as the network depth increases, more complex features 

are extracted. In the last convolutional layer (Conv2D#5) a segmentation and differentiation of 

volumes and color gradients are visible. 

Case Test 
Acc. 

TP TN FP FN SN SP P AUC F1-score 

A 94.38 150 152 8 10 93.75 95.00 94.94 0.94 94.34 

B 96.56 155 154 6 5 96.88 96.25 96.27 0.97 96.57 

a) b) c) d) e) 

f) g) h) i) j) 

Figure 6-25 Images belonging to the positive class (images classified by the human as uneven illumination) and that were classified as 
negative class (even). Images f) to j) were correctly classified by the network since their illumination is regular along the perimeter of 
the retina. These two cases exceeded the human classification, and the network generalized well for these images. 
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Input image 

Conv2D #1 

11 feature maps 

Conv2D #2 

11 feature maps 

Conv2D #3 

22 feature maps 

Conv2D #4 

22 feature maps 

Conv2D #5 

44 feature maps 

Figure 6-26 Feature maps of each 
convolutional layer for Net2. 
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The nets were trained between 11min47sec and 1h03min42sec, with training sessions that were 

a bit time expensive, for a batch size of 4 and with 400 epochs and Early Stopping. The training 

with the shortest time spent (11min47sec), trained up to 69 epochs/iterations and the training 

that took the longest (1h03min42sec) trained until 211 epochs, which shows that it was not 

necessary more than this number of epochs to converge and find a low loss value of validation loss 

and a high validation accuracy value. The execution time of class prediction was between 

1sec2msec and 1sec5msec. 

 

The study and evaluation of the illumination parameter, made by the network Net1 and Net2, was 

completed successfully, since the test accuracy values were high, and equal to 95.63% for Net1 

and 96.56% for Net2. 

As with color classification, in the illumination parameter there was also the problem that some 

images in the test dataset were incorrectly classified by the specialists. This limitation did not prove 

to be an obstacle in the correct prediction of the images by Net1 and Net2 networks. 

Net1 network was able to correctly predict 2 images in 7 of the positive class (“uneven”), and 

therefore, reduce the number of FN and increase the number of TP; and correctly predict 6 images 

in 15 of the negative class (“even”), reducing the number of FP and increasing the TN value. 

The Net2 network correctly predicted 5 images in 10 of the positive class and predicted 2 images 

in 8 of the negative class and, therefore, increasing the value of sensitivity and precision. 

 

The most important characteristics were extracted to distinguish an even image from an uneven 

image, by the presence of irregular light and of darker and lighter areas in the same image, as can 

be seen by the feature maps generated by the convolution layers in each network. It can be verified 

by the analysis of the generated feature maps (Figure 6-22 and 6-26) that the network that was 

able to extract more detailed information about the color modifications and its gradient was the 

Net2 network, since each feature map generated extracted more features than the Net1 network. 
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6.5 CNN CLASSIFICATION PERFORMANCE FOR EACH QUALITY PARAMETER 

This sub-chapter serves to compare the performance of each of the studied networks, evaluating 

the metric values for each of the parameters studied (focus, color and illumination). 

By the interpretation of the three tables 6-35, 6-36 and 6-37, Net1 network stood out to obtain the 

best prediction and classification results for all parameters, except only for illumination, with a 

small difference of accuracy value between Net1 and Net2 networks (approximately 0.93%). All 

other metrics have a small percentage difference, comparing the two networks. These results were 

fundamental for the next phase, which consists in evaluating the images in the "reject" and 

"accept" classes, by tuning the best parameters and using the best classification network, which 

in this case is Net1. 

 

FOCUS 

Table 6-35 Results of the focus classification of Net1 and Net2 networks. 

 

 

COLOR 

Table 6-36 Results of the color classification of Net1 and Net2 networks. 

 
 

 

 

ILLUMINATION 

Table 6-37 Results of the illumination classification of Net1 and Net2 networks. 

 

Network Test Acc. TP TN FP FN SN SP P AUC 𝑭𝟏-score 

Net1 98.68 199 174 2 3 98.51 98.86 99.00 0.99 98.75 

Net2 97.62 196 173 3 6 97.03 98.30 98.49 0.98 97.75 

Network  𝑭𝟏-score 

Net1 97.01 

Net2 96.52 

Network Test Acc. TP TN FP FN SN SP P AUC 𝑭𝟏-score 

Net1 95.63 155 151 9 5 96.88 94.38 94.51 0.96 95.68 

Net2 96.56 155 154 6 5 96.88 96.25 96.27 0.97 96.57 
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6.6 OVERALL QUALITY ASSESSMENT  

In order to evaluate and classify the network images in the classes "accept" and "reject", the tuning 

of parameters such as LR and the optimization function performed in the previous sections were 

used in this assessment. The network that showed to have better performance, was tested in the 

images where the parameter studied was the focus, as can be seen from the tables 6-35, 6-36 

and 6-37. 

The motivation to evaluate the images in these two classes was the fact that, in a clinical context, 

the evaluation is more advantageous and quicker and, therefore, it is possible to know in good time 

if a given image has to be taken again, preventing the patient from moving to the place of acquisition 

of images, once again, and correctly detect possible retinal lesions in the acquired images. 

The dataset used had 284 images, 144 images of class 1 (“rejected” images) and 140 images of 

class 0 (“accepted” images). The distribution of train, validation and test datasets are present in 

Appendix B.4. 

 

Table 6-38 Fixed parameters used in model Net1. 

Fixed parameter Value 

Epochs 400 epochs (Early Stopping, patience=50 epochs) 

Batch size 4 

Convolution Layers 5 

Loss Function binary cross entropy 

Activation function ReLU (Convolution layers) and Sigmoid (FCL) 

Dropout 0.5 

Optimization Function SGD 

Learning Rate 0.001 

 

Using Net1, and all the values and parameters fixed (Table 6-38), from the best model trained 

previously, the following classification metrics results were obtained, shown in Table 6-39.  

The confusion matrix corresponding to the trained model is presented in the table 6-40. 

 

Table 6-39 Results obtained with the parameters of best focus assessment model. 

Test Acc. TP TN FP FN SN SP P AUC 𝑭𝟏-score 

96.83 140 135 5 4 97.22 96.43 96.55 0.97 96.89 
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Table 6-40 Confusion matrix of Net1. 

 

 

Actual 

Class 

 Predicted Class 

Even Uneven 

Even 135 5 

Uneven 4 140 

 

Figures 6-27 and 6-28 correspond to images that were classified differently by the network and the 

specialist. In Figure 6-27, 2 images in 5 were correctly classified as "rejected" by the network. In 

Figure 6-28, of 4 images, one was correctly classified as "accepted". 

 

 

 

 

 

 

 

 

 

 

 

  

a) b) c) 

d) e) 

a) b) c) d) 

Figure 6-27 Images that belong to the negative class (images classified by the human as “accept”) and that 
were classified by the network as negative class (“reject”). Image (d) and (e) were correctly classified by the 
network, since the image d) appears with blurred optic disc and vessels. Image e) is quite dark and contains a 
uneven illumination on most of the retinal border, so, is correctly classified by the network. 

 

Figure 6-28 Images belonging to the positive class (images classified by the human as “reject”) and that were classified 
by the network as negative class (“accept”). The image c) was the only image correctly classified by the network in 4 
images, since it contains good illumination, focus and a normal color, which allows to see all the details of the retina. 



RESULTS AND DISCUSSION 

128 

As some images were correctly classified by the network and not by the human, the classification 

metrics were recalculated, obtaining the comparative results before and after the recalculation, in 

table 6-41. 

Case A corresponds to the classification where the human erred in the assignment of the "reject" 

and "accept" labels and case B corresponds to the corrected classification of the classes, thanks 

to the correct classification of the images by the network. From what can be seen from the results 

obtained in both cases, with the correction of the labels, there was improvement in the test 

accuracy in 1.86% of case A for case B, and as expected, all other metrics also improved.  

 

Table 6-41 Results obtained for each case. Case A corresponds to the results without the labels correction and case 
B to the labels correction. 

 

The experimental results obtained in case B of the previous table can be compared with those of 

the state of the art since all follow a binary classification, of "accept" or "reject" images. The results 

of each approach are presented in Table 6-42. 

 

Table 6-42 Accuracy, Sensitivity and Specificity values for different state-of-the-art approaches and the proposed 

method. With dashed lines, are the values unknown or not mentioned in the documents. 

 

 

 

 

 

 

. 

 

The results obtained from the Net1 classification performance were found to be very close or to 

outperform some approaches and state-of-the-art results, resulting in an accuracy, sensitivity and 

specificity value superior to Yu et al. [77] approach, and proved to be very close to the methods of 

Case Test Acc. TP TN FP FN SN SP P AUC 𝑭𝟏-score 

A 96.83 140 135 5 4 97.22 96.43 96.55 0.97 96.89 

B 97.89 141 137 3 3 97.92 97.86 97.92 0.98 97.91 

 

Approach 
 

Accuracy 
 

Sensitivity 
 

Specificity 
Computation 
Time (sec) 

Dias [30] ------ 99.76 99.48 6 

Davis [13] 99 100 96 ------- 

Yu [77] 95.42 96.66 93.10 ------ 

Tennakoon [24] 98.27 99.12 97.46 [0.168-0.297] 

Proposed Net1 97.89 97.92 97.86 1.5 

Mahapatra [26] 97.9 98.2 97.8 8.2 
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Tennakoon et al. [24] and Mahapatra [26]. Although verifying that the results of the classification 

metrics obtained by the present study are very close to those obtained by the state of the art, these 

results cannot be comparable, since the context of the images acquisition, the number of images 

for training, validation and testing, the type of images, and the most fundamental, the network and 

classification approach, were different for all the approaches discussed above. Dias et al. approach 

[30], was based in a neural network with a hidden layer with 3 to 50 neurons, and was not a CNN 

approach; Davis et al. approach [13] use simple generic measures of contrast and luminance 

features; Yu et al. approach [77] described a Deep Learning approach based in saliency maps and 

CNN; Tennakoon et al. [27] used a CNN approach and Mahapatra [29] also used a CNN approach.  

On the results obtained about computational time, the method of the present study was carried 

out with a low temporal cost, with only 1.5 seconds. Compared with the state of the art results, 

this time is quite satisfactory in clinical context and for classification of images in real time. 
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7.1 CONCLUSIONS 

It was proposed a novel method based on two convolutional neural networks Net1 and Net2, for 

the purpose of identifying if, after an image is acquired, it has sufficient quality to be analyzed, 

based on the focus, color and illumination quality parameters. 

The first phase of the work consisted of a collection of retinal images, from various sources and 

repositories, both public and the use of a proprietary dataset. The images collected and chosen 

had to meet the following requirements: they had to contain field definition, at least the macula or 

the optical disc had to be visible. All these requirements were followed by the ARIC study [9]. 

After this image acquisition phase, the images were processed so that, before entering the CNN 

networks, they were with a standardized size and the redundant information present in the retinal 

images was removed. 

The next stage contemplated a study of the technologies that had already been developed by the 

state of the art, with a view to the evaluation of generic parameters and evaluation of methodologies 

already implemented in Deep Learning. This study was the basis for the creation, development of 

scripts with the methods and techniques that were based improving the performance of the 

networks created. 

Therefore, specialized networks were developed only for a quality parameter, analyzing, after each 

training and prediction of classes, which was the network (Net1 or Net2) with better performance 

for a given parameter analyzed. 

The performance of a network had to take into account the number of images that had been 

correctly classified and the number of images that had been incorrectly classified. In the case of 

classification between two classes of parameters, the values of the erroneous detections of both 

the positive class (FP) and the negative class (FN) would be obtained, the construction of confusion 

matrixes with this data and the ROC curve with the respective Area under the curve (AUC). In case 

of multi-class classification (with at least 3 classes), the number of correctly classified images were 

obtained and visualized in confusion matrixes. 

In order to make it possible for a network to have good results, and to learn the features of each 

image, the concept of optimization of the trained models was present, by tuning parameters that 

would allow the model to be trained quickly and able to generalize for images that it never has seen 

before (test images). 
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After each training and each optimized model, good results were obtained in all the classification 

metrics and in each parameter evaluated. 

For the Net1, the focus parameter classification had the following results: Acc = 98.68%, SN = 

98.51%, AUC = 0.99 and 𝐹1-score = 98.75%; the color classification had: 𝐹1-score = 97.01% and 

the lighting classification had: Acc = 95.63%, SN = 96.88%, AUC = 0.96 and 𝐹1-score = 95.68%. 

For the Net2 network, the focus classification had: Acc = 97.62%, SN = 97.03%, AUC = 0.98 and 

𝐹1-score = 97.75%, the color parameter classification had: 𝐹1-score = 96.52%, and finally, the 

illumination obtained: Acc = 96.56%, SN = 96.88%, AUC = 0.97 and 𝐹1-score = 96.57%. 

These CNN networks proved to be good classifiers once they outperformed the human 

classification, correctly classifying images that the specialist had not previously correctly classified. 

In order to make the analysis of acquired retinal images faster and more feasible, in the clinical 

context, the best specialized network in one of the parameters - in this case, the Net1 network of 

the focus - was developed, which input images and previous human classification, these images 

were classified as rejected or accepted to avoid chance of examination retaken. Another advantage 

of developing such a system is that after an image acquisition, images that do not contribute to 

visualize and detect possible retinal lesions in the context of diabetic retinopathy or diabetic 

macular edema can be discarded. 

The results of this network were as follows: Acc = 97.89%, SN = 97.86%, AUC = 0.98% and 𝐹1-

score = 97.91%. From these results, it can be concluded that the developed network can give, with 

a low margin of error, a correct evaluation of the images and in a short time, since the class 

prediction time was of 1sec5msec to 284 test images. Due to these good results, the performance 

of the implemented algorithms is comparable to Yu et al. (paper that described a Deep Learning 

approach based in saliency maps and CNN, with Acc=95.42%, SN=96.66% and SP=93.10%). The 

results of this study are very close to the results obtained by Tennakoon et al. (CNN approach with 

Acc=98.27%, SN=99.12% and SP=097.46%) and Mahapatra approach (CNN approach with 

Acc=97.9%, SN=98.2% and SP=97.8%).  

Another important factor in the classification of images in a clinical context is that they are evaluated 

in real time, ideally, when the image is acquired. As the computational time of the present work 

was 1.5 seconds, in the evaluation of the images, it can classify and give a quick response to the 

operator who is acquiring the images. 
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The AlexNet network contains 60 millions of parameters and 650,000 neurons in total and 5 

convolution layers and 3 FC layers. The VGG16 network contains 13 convolution layers and 3 FC 

layers and a total of 138 million parameters. 

If the networks of the present study are compared, Net1 and Net2, with only 5 layers, in which 

Net1 contains 486,600 parameters and Net2 contains 1.5 million parameters, it can be concluded 

that it did not require much network complexity or more parameters, to the networks obtain good 

results, and learn, with the advantage that, generally, the training is faster the lower the number of 

network parameters. 

 

 

7.2 FUTURE WORK 

It is proposed as future work to improve classification metrics with the exploration of new forms of 

CNN network optimization. Another form of improvement would be to use other types of parameters 

such as the weight decay, the number of feature maps generated in each convolutional layer and 

the number of neurons in the fully connected layers. 

Due to lack of time, the idea of creating an embedded network of three specialized networks was 

not possible. This would have as parameters, the weights previously obtained from the best 

specialized networks in the focus, illumination and color. Both the weights and the images would 

be fed to this system of three CNN networks. 

In order for the final output of the network to be given as "accept" and "reject", a neural network 

multi-layer perceptrons would be implemented at the end of the three network systems. There 

would be a concatenation operation of the three classification output networks that would be 

evaluated by the MLP to give the final evaluation on "accept" and "reject". 

This approach was designed with the purpose of making the classification more weighted and 

correct in relation to the parameters of the image quality, in order to give classification values also 

in a useful time, such as the network that was already developed in the present work. 
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A – PYTHON MODULES 

A.1 Preprocessing 
 

1) Create mask and crop the images in a folder  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Listings A-1.1. Create a mask and crop the images in folder loaded in input_path and saved to output_path. 

 

2) Resize images with the same ratio  

Listings A-1.2. Resize the images in folder loaded in input_path and saved to output_path. 
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A.2. Data Preparation 
 

1) Split images into train, validation and test datasets  

 

 

Listings A-2.1. Train, Validation, and Test split with Scikit-Learn library. 

 

 

2) Split, Reshape and normalize CNN input images  

 

Listings A-2-2. Loading images from CSV, split data, reshape into the Keras data format form and normalization of 
the images between 0 and 1. 
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A.3. Convolutional Neural Networks 
 

1)  CNN creation and compiling  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Listings A-3-1. CNN creation and compiling. In this case Net2 was created and compiled. 
 
 
 
  

2)  Fitting the model  

Listings A-3-2. Fitting the model function, with the load images, callbacks and fitting functions. 
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A.4. Model Evaluation 

 

 

Listings A-4-1. Function that loads the best classification model, computes its classification metrics and also the 

confusion matrix and ROC curve. 
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B – DISTRIBUTION OF TRAIN, VALIDATION AND TEST SETS  

 

B.1 Distribution of blurred and focused images in train, validation and test sets 

 

 

Figure B-0-1 Distribution of focused and blurred retinal images in train dataset acquired from various sources. 

 

 

Figure B-0-2 Distribution of focused and blurred retinal images in validation dataset acquired from various sources. 
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Figure B-0-3 Distribution of focused and blurred retinal images in test dataset acquired from various sources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38

72

20

8

38

176

2

191

4

4

202

0 50 100 150 200 250

APDP

EYEPACS

HRF

IDRiD

ROC

STARE

Total

Distribution of blurred and focused images in the test dataset

Blurred 1 Focused 0



APPENDICES 

154 

B.2 Distribution of normal, bright and dark images in train, validation and test sets 

 

 

Figure B-0-4 Distribution of train images for each class – class 0 (normal images), class 1 (bright images), class 2 
(dark images). 

 

Figure B-0-5 Distribution of validation images for each class – class 0 (normal images), class 1 (bright images), class 
2 (dark images). 

 

Figure B-0-6 Distribution of test images for each class – class 0 (normal images), class 1 (bright images), class 2 (dark 
images). 
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B.3 Distribution of even and uneven images in train, validation and test sets  

                                

Figure B-0-7 Distribution of train images for each class – class 0 (even images), class 1 (uneven images). 

                      

Figure B-0-8 Distribution of validation images for each class – class 0 (even images) and class 1 (uneven images). 

 

                     

Figure B-0-9 Distribution of test images for each class – class 0 (even images) and class 1 (uneven images). 
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B.4 Distribution of rejected and accepted images in train, validation and test sets  

 

 

Figure B-0-10 Distribution of train images for each class – class 0 (accepted images) and class 1 (rejected images). 

 

 

Figure B-0-11 Distribution of validation images for each class – class 0 (accepted images) and class 1 (rejected 
images). 

 

Figure B-0-12 Distribution of test images for each class – class 0 (accepted images) and class 1 (rejected images). 
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C – CNN STRUCTURES 

C.1. Net1 Structure 

 

 

 

Figure C-1. CNN Structure of Net1. 
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C.2. Net2 Structure 

 

 

 

Figure C-2. CNN Structure of Net2. 

 


