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1 Introduction

Let Cn×n denote the set of all n × n complex matrices. It is well known that (AB)−1 =
B−1A−1, where A,B ∈ Cn×n are invertible. The previous equality is called the reverse order
law for the ordinary inverse. In general, the equality doesn’t hold when the ordinary inverse is
replaced by the generalized inverse. In 1966, Greville [13] first gave a necessary and sufficient
condition of the reverse order law (AB)† = B†A† for the Moore-Penrose inverse. Since
then, many authors studied the reverse order law for various classes of generalized inverses
in the setting of complex matrices, operators, and elements of rings with involution. For
example, Deng [10] investigated some necessary and sufficient conditions of the reverse order
law (ab)# = b#a# for the group inverse of linear bounded operators on Hilbert spaces. In [23],
Mosić and Djordjević extended the results of [10] to the ring case, giving some new conditions
and providing simpler and more transparent proofs to already existing conditions. Recently,
Mary [19] provided equivalent conditions for the two-sided reverse order law (ab)# = b#a#

and (ba)# = a#b# for the group inverse in semigroups and rings. In [20, 22, 24], Mosić
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et al. considered the mixed-type reverse order laws in rings, such as (ab)† = b†(a†abb†)†a†,
(ab)# = b†(a†abb†)†a†, (ab)# = (a†ab)†a†, and (ab)# = b†a†. More results on the reverse order
law for the generalized inverse can be found in [3, 7–9, 11, 16–18, 21, 25, 29].

The following problem on the reverse order law for the core inverse was proposed by
Baksalary and Trenkler [2]:

If A#©, B#©, and (AB)#© exist, does it follow that (AB)#© = B#©A#©?

This problem attracted researchers’ attention. Later, Cohen, Herman and Jayaraman [6]
gave several counterexamples for the problem. In [30], Wang and Liu obtained equivalent
conditions of the reverse order (AB)#© = B#©A#© by the ranks of matrices. Next, we will
continue to consider the reverse law for the core inverse in rings with involution.

The article is motivated by the papers [19, 22, 30]. We present some equivalent conditions
for the one-sided reverse order law (ab)#© = b#©a#©, the two-sided reverse order law (ab)#© =
b#©a#© and (ba)#© = a#©b#© for the core inverse in rings with involution. We also study the
mixed-type reverse order laws, such as (ab)# = b#©(abb#©)#©, a#© = b(ab)# and (ab)# = b#©a#©.

2 Preliminaries

Throughout this paper, R denotes a unital ∗-ring, that is, a ring with unity 1 and an involution
a 7→ a∗ satisfying (a∗)∗ = a, (a+ b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗ for all a, b ∈ R.

For the readers’ convenience, we first recall the definitions of some generalized inverses.
An element a ∈ R is said to be Moore-Penrose invertible with respect to the involution ∗ if
the following equations

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa

have a common solution [26]. Such solution is unique if it exists, and is denoted by a†.
The Drazin inverse [12] of a ∈ R is the element x ∈ R which satisfies

(1k) ak = ak+1x, (2) xax = x, (5) ax = xa, for some k ≥ 1.

The element x above is unique if it exists and is denoted by aD. The smallest such k is called
the index of a, and denoted by ind(a). In particular, when ind(a)=1, the Drazin inverse aD

is called the group inverse of a and it is denoted by a#.
Baksalary and Trenkler [1] introduced the core inverse for complex matrices. Let A ∈

Cn×n. A matrix A#© ∈ Cn×n is called core inverse of A if

(i) AA#© = PA and (ii) R(A#©) ⊆ R(A),

where PA is the orthogonal projector onto R(A), and R(A) is the column space of A.
Later, the notion of the core inverse for complex matrices was extended to the ring case

by Rakić, Dinčić and Djordjević [28]. The core inverse [28] of a ∈ R is the element x ∈ R
which satisfies

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (6) xa2 = a (7) ax2 = x.
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The element x above is unique if it exists and is denoted by a#©.
Let δ = {1, 2, 3, 4, 5, 6, 7}. If x ∈ R satisfies the equations in (i) for all i ∈ δ, then x

is called a δ-inverse of a. The set of all δ-inverses of a is denoted by a{δ}. For example,
a{1, 2, 5} = {a#}. The element a ∈ R is regular if a{1} 6= ∅. R#, R{1,3}, R†, R#© stand for
the set of all group, {1,3}, Moore-Penrose, core invertible elements of R, respectively. Let
Mn(R) denote the ring of n× n matrices over R.

Given a ∈ R, the following notations will be used:

a0 = {x ∈ R : ax = 0} and 0a = {x ∈ R : xa = 0}.

An element a ∈ R is said to be EP if a ∈ R# ∩ R† and a# = a†. An element a ∈ R
satisfying a∗ = a is called Hermitian.

Now, we present several known characterizations for some generalized inverses, which play
an important role in the sequel.

Lemma 2.1. [31, Theorem 3.1] Let a, x ∈ R. Then a ∈ R#© with x = a#© if and only if

(ax)∗ = ax, xa2 = a and ax2 = x.

Lemma 2.2. [31, Theorem 2.6] Let a ∈ R. Then a ∈ R#© if and only if a ∈ R# ∩ R{1,3}. In
this case, a#© = a#aa(1,3), where a(1,3) ∈ a{1, 3}.
Lemma 2.3. [15, Theorem 1] Let a ∈ R. Then a ∈ R# if and only if a = a2x = ya2 for
some x, y ∈ R. In this case, a# = yax = y2a = ax2.

Lemma 2.4. [14, p. 201] Let a, x ∈ R. Then x is a {1, 3}-inverse of a if and only if
a = x∗a∗a.

The following lemmas will also be useful.

Lemma 2.5. [4, Corollary 3.4] Let a, x ∈ R with xa = ax and xa∗ = a∗x. If a ∈ R#©, then
xa#© = a#©x.

Lemma 2.6. [5, Cline’s formula] Let a, b ∈ R. If ab is Drazin invertible, then ba is Drazin
invertible and (ba)D = b((ab)D)2a.

Lemma 2.7. [28, Theorem 3.1] Let a ∈ R. Then the following are equivalent:
(i) a is EP;
(ii) a ∈ R#© and a# = a#©.
(iii) a ∈ R#© and aa#© = a#©a.
(iv) a ∈ R# ∩R† and a† = a#©

Lemma 2.8. [28, Lemma 2.5, Lemma 2.6] Let a, b ∈ R.
(i) If aR ⊆ bR, then ◦b ⊆ ◦a.
(ii) If b is regular and ◦b ⊆ ◦a, then aR ⊆ bR.
(iii) If Ra ⊆ Rb, then b◦ ⊆ a◦.
(iv) If b is regular and b◦ ⊆ a◦, then Ra ⊆ Rb.
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3 One-sided and Two-sided Reverse Order Laws

In this section, we will give some equivalent conditions of the one-sided (ab)#© = b#©a#©, the
two-sided reverse order laws (ab)#© = b#©a#© and (ba)#© = a#©b#© for the core inverse in rings.

First, in order to prove our main results, we give new existence criterion for the core
inverse as follows:

Theorem 3.1. Let a, x ∈ R. Then the following are equivalent:
(i) a ∈ R#© and x = a#©;
(ii) axa = a, xR = aR and Rx ⊆ Ra∗;
(iii) axa = a, 0x = 0a and (a∗)0 ⊆ x0;
(iv) xax = x, xR = aR and Rx = Ra∗;
(v) xax = x, xR = aR and Ra∗ ⊆ Rx;
(vi) xax = x, 0x = 0a and x0 ⊆ (a∗)0;
(vii) a ∈ R#, axa = a, (ax)∗ = ax, and xR ⊆ aR;
(viii) a ∈ R#, xax = x, (ax)∗ = ax, and aR ⊆ xR.

Proof. (i) ⇒ (ii) and (iv) ⇒ (v) are trivial.
(ii) ⇒ (iii) and (v) ⇒ (vi) follow directly from Lemma 2.8.
(iii)⇒ (iv) Note that a∗ is regular. Since (a∗)0 ⊆ x0, using Lemma 2.8, we have Rx ⊆ Ra∗,

which implies that x = t1a
∗ for some t1 ∈ R. Thus, we get

x = t1a
∗ = t1(axa)∗ = t1a

∗x∗a∗ = xx∗a∗ = x(ax)∗.

Multiplying the previous equality by a from the left side, we obtain ax = ax(ax)∗, which gives
that ax = (ax)∗. Therefore, we get x = x(ax)∗ = xax.

From a = axa = (ax)∗a = x∗a∗a, it follows that a∗ = a∗ax. So, Ra∗ ⊆ Rx. Therefore,
Ra∗ = Rx. According to the condition 0x = 0a, we deduce that xR = aR by Lemma 2.8.

(vi)⇒ (i) Clearly, we have Ra∗ ⊆ Rx, which yields a = x∗t2 for some t2 ∈ R. So, we have

a = x∗t2 = (xax)∗t2 = x∗a∗x∗t2 = x∗a∗a = (ax)∗a.

Hence, we get ax = (ax)∗ax, which immediately yields ax = (ax)∗. Then, a = (ax)∗a = axa.
On one hand, we can see that x = xax = x(ax)∗ = xx∗a∗, which implies Rx ⊆ Ra∗,

leading to Rx = Ra∗, since Ra∗ ⊆ Rx. On the other hand, it is easy to get xR = aR. Finally,
by the definition of the core inverse, we claim that a ∈ R#© and x = a#©.

(i) ⇒ (vii) and (i) ⇒ (viii) can be obtained by Lemma 2.2 and the definition of core
inverse.

(vii)⇒ (i) Note that x ∈ a{1, 3} and x = at3 for some t3 ∈ R. From Lemma 2.2, it follows
that a ∈ R#© and a#© = a#ax = a#aat3 = at3 = x.

(viii) ⇒ (i) This is analogous to the proof of (ii) ⇒ (i). Indeed, there exists r4 ∈ R such
that a = xt4. Then, we have

axa = axaaa# = a(xax)t4a
# = a(xt4)a

# = a2a# = a,
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which gives that x ∈ a{1, 3}, since (ax)∗ = ax. Hence, a ∈ R#© with

a#© = a#ax = aa#x = xt4a
#x = xa(xt4)a

#x = xa2a#x = xax = x.

Now, we state a sufficient condition for the reverse order law (ab)#© = b#©a#© to hold, which
extends [4, Theorem 3.5].

Theorem 3.2. Let a, b ∈ R#©, ab ∈ R#. If abb#© = bb#©a and baa#© = aa#©b, then ab ∈ R#©

and (ab)#© = b#©a#©.

Proof. According to Theorem 3.1 (i) and (ii), it suffices to prove that abb#©a#©ab = ab,
b#©a#©R = abR, and Rb#©a#© ⊆ R(ab)∗.

The condition abb#© = bb#©a implies a∗bb#© = bb#©a∗. Then, from Lemma 2.5, it follows
that a#©bb#© = bb#©a#©. Similarly, we obtain b#©aa#© = aa#©b#©. Hence, we get abb#©a#©ab =
aa#©abb#©b = ab.

On one hand, we have

b#©a#© = (b#©aa#©)a#© = aa#©b#©a#© = a(a#©bb#©)b#©a#©

= abb#©a#©b#©a#© = ab(b#©a#©)2,

which gives b#©a#©R ⊆ abR. On the other hand, combining b#©a#© = ab(b#©a#©)2 and abb#©a#©ab =
ab, we get

ab = (ab)#ab(b#©a#©)(ab)2 = (ab)#abab(b#©a#©)2(ab)2

= (ab(b#©a#©)2)(ab)2 = b#©a#©(ab)2,

which yields abR ⊆ b#©a#©R. Thus, we have b#©a#©R = abR.
Finally, by the following equalities

b#©a#© = b#©(bb#©a#©)aa#© = b#©a#©bb#©aa#© = b#©a#©(aa#©bb#©)∗

= b#©a#©(abb#©a#©)∗ = b#©a#©(b#©a#©)∗(ab)∗,

we have Rb#©a#© ⊆ R(ab)∗.
The proof is completed.

Proposition 3.3. [4, Theorem 3.5] Let a, b ∈ R#© with ab = ba and ab∗ = b∗a. Then ab ∈ R#©

and (ab)#© = b#©a#©.

Proof. From ab = ba and ab∗ = b∗a, we have ab#© = b#©a and ba#© = a#©b by Lemma 2.5, which
imply abb#© = bb#©a and baa#© = aa#©b. In addition, we know that ab ∈ R#, since a, b ∈ R#

with ab = ba. Then, (ab)#© = b#©a#© by Theorem 3.2.

Remark 3.4. We have seen that the condition of Proposition 3.3 can imply the condition of
Theorem 3.2. But, in general, the condition of Theorem 3.2 does not imply the condition of
Proposition 3.3. Indeed, take non-commutative invertible elements a, b ∈ R. Obviously, a and
b satisfy the condition of Theorem 3.2. However, ab 6= ba.
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Next, we give an equivalent condition which ensures the reverse order law (ab)#© = b#©a#©

holds.

Theorem 3.5. Let a, b ∈ R#©. Then the following are equivalent:
(i) ab ∈ R#© and (ab)#© = b#©a#©;
(ii) ab ∈ R#, ab#©R ⊆ b#©a#©R, and b∗a#(1− (abb#©a#©)∗)a = 0.

Proof. (i) ⇒ (ii) Obviously, ab ∈ R#. Note that

ab#© = ab(b#©)2 = b#©a#©(ab)2(b#©)2,

which implies ab#©R ⊆ b#©a#©R. By Lemma 2.2, we have a#©a = a#aa(1,3)a = a#a, together
with b∗ = b∗bb#©, we obtain

b∗aa# = b∗bb#©a#©a2a# = b∗bb#©(a#©a) = b∗b(ab)#©a = b∗b(ab)#©ab(ab)#©a
= b∗bb#©a#©abb#©a#©a = (b∗bb#©)(a#©a)bb#©a#©a = b∗a#abb#©a#©a
= b∗a#(abb#©a#©)∗a.

Therefore, b∗a#(1− (abb#©a#©)∗)a = 0.
(ii) ⇒ (i) Observe that a#© = a#©aa(1,3) and a#aa#© = a#© by Lemma 2.2. Then, applying

the condition b∗a#a = b∗a#(abb#©a#©)∗a, we obtain

b∗a#© = (b∗a#a)a#© = b∗a#(abb#©a#©)∗aa#© = b∗a#(a#©)∗bb#©a∗aa#©

= b∗a#(a#©)∗bb#©a∗ = b∗a#(a#©aa(1,3))∗bb#©a∗

= b∗a#aa(1,3)(a#©)∗bb#©a∗

= b∗a#©(a#©)∗bb#©a∗,

which yields (a#©)∗b = abb#©a#©(a#©)∗b. By the previous equality, we get

(a#©)∗(b#©)∗ = (a#©)∗(b#©bb#©)∗ = ((a#©)∗b)b#©(b#©)∗ = abb#©a#©(a#©)∗bb#©(b#©)∗

= abb#©a#©(a#©)∗(b#©)∗ = abb#©a#©(b#©a#©)∗,

which gives b#©a#© = b#©a#©(abb#©a#©)∗. Then, abb#©a#© = abb#©a#©(abb#©a#©)∗. So, we have
abb#©a#© = (abb#©a#©)∗. This immediately yields b#©a#© = b#©a#©abb#©a#©.

The condition ab#©R ⊆ b#©a#©R ensures that ab#© = b#©a#©r for some r ∈ R. Hence, we
get ab = (ab#©)b2 = b#©a#©rb2, which gives abR ⊆ b#©a#©R. From Theorem 3.1, it follows that
ab ∈ R#© and (ab)#© = b#©a#©.

In order to simplify the proof of the following theorems, we present a useful lemma.

Lemma 3.6. Let a, b, ab ∈ R#© with (ab)#© = b#©a#©. Then
(i) ab = bb#©ab = b#©bab;
(ii) abR ⊆ baR;
(iii) ab(ab)#©bb#© = bb#©ab(ab)#© = ab(ab)#©;
(iv) bb#©a#© ∈ abb#©{3, 6}.
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Proof. (i) Suppose that (ab)#© = b#©a#©. Then, we have

ab = b#©a#©(ab)2 = bb#©(b#©a#©(ab)2) = bb#©ab,

and
ab = b#©a#©(ab)2 = b#©b(b#©a#©(ab)2) = b#©bab.

(ii) From (i), it follows that

ab = bb#©ab = bb#©a#©a2b = b(ab)#©a2b = bab((ab)#©)2a2b.

Hence, abR ⊆ baR.
(iii) Clearly, we have

ab(ab)#©bb#© = (ab(ab)#©)∗(bb#©)∗ = (bb#©ab(ab)#©)∗ = (bb#©abb#©a#©)∗

= (abb#©a#©)∗ = ab(ab)#©,

which implies that ab(ab)#©bb#© = (ab(ab)#©bb#©)∗ = bb#©ab(ab)#©.
(iv) Since (ab)#© = b#©a#©, we have abb#©bb#©a#© = abb#©a#© = ab(ab)#©, which gives bb#©a#© ∈

abb#©{3}. Also, we have

bb#©a#©(abb#©)2 = b(b#©a#©abb#©a#©)a2bb#© = bb#©(a#©a2)bb#© = (bb#©ab)b#©

= abb#©.

Thus, bb#©a#© ∈ abb#©{3, 6}.

Deng [10] and Mosić [23] studied the reverse order law (ab)# = b#a# for the group inverse
under the condition ba = a2. Motivated by this, we will consider the one-sided reverse law
for the core inverse under the same condition, using Theorem 3.5.

Theorem 3.7. Let a, b ∈ R#© with ba = a2. Then,
(i) ab ∈ R#© and (ab)#© = b#©a#©.
(ii) abb#© ∈ R#© and (abb#©)#© = bb#©a#©.

Proof. (i) First, we prove ab ∈ R#. Note that a ∈ R# and ba = a2. Then, we have

ab = aa2a2(a#)4b = ababa(a#)4b = (ab)2(a#)3b

and
ab = a2a#b = baa#b = b(a#)3aa2b = b(a#)3abab = b(a#)3(ab)2,

which imply ab ∈ R# by Lemma 2.3.
Next, we see that

a = a2a# = baa# = b#©b2aa# = b#©b(ba)a# = b#©ba2a# = b#©ba = b#©a2.
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Hence, ab#© = b#©a2b#© = b#©a#©a3b#©, which yields ab#©R ⊆ b#©a#©R. Note that a = b#©ba, then
we deduce that a#© = a(a#©)2 = b#©ba(a#©)2 = b#©ba#©. In addition, the assumption ba = a2

ensures that aa#© = a2(a#©)2 = ba(a#©)2 = ba#©. Therefore,

abb#©a#© = abb#©b#©ba#© = ab#©ba#© = a(b#©a)a#© = a(b#©a2)a#a#© = aaa#a#© = aa#©,

which implies (abb#©a#©)∗ = abb#©a#©. So, we conclude that

b∗a#(1− (abb#©a#©)∗)a = b∗a#a− b∗a#(abb#©a#©)a = b∗a#a− b∗a#aa#©a = 0.

By Theorem 3.5, we claim that ab ∈ R#© and (ab)#© = b#©a#©.
(ii) By (i), Lemma 3.6(iv), and Lemma 2.1, we only need to prove bb#©a#© ∈ abb#©{7}.
In the proof of (i), we obtain a#© = b#©ba#© and ba#© = aa#© which imply that bb#©a#© =

bb#©b#©(ba#©) = b#©aa#©. Hence,

bb#©a#©(abb#©)2 = b#©(aa#©a)(bb#©ab)b#© = b#©aabb#© = (b#©bab)b#© = abb#©.

Using Lemma 3.6 and Theorem 3.1, we deduce the following result.

Theorem 3.8. Let a, b, ab ∈ R#©. Then the following are equivalent:
(i) (ab)#© = b#©a#©;
(ii) b(ab)#© = bb#©a#© and abb#© = b#©babb#©.

Proof. (i) ⇒ (ii) can be obtained by Lemma 3.6(i).
(ii) ⇒ (i) Since b(ab)#© = bb#©a#©, we have

a(bb#©a#©)ab = ab(ab)#©ab = ab and abb#©a#© = ab(ab)#©,

which implies b#©a#© ∈ ab{1, 3}. In addition, observe that

b#©a#© = b#©(bb#©a#©) = b#©b(ab)#© = b#©bab((ab)#©)2

= (b#©babb#©)b((ab)#©)2 = abb#©b((ab)#©)2,

which yields b#©a#©R ⊆ abR. Hence, by Theorem 3.1 (i) and (vii), we obtain (ab)#© = b#©a#©.

In the following theorem, we investigate the one-sided reverse order law for the core inverse
under the condition Rb∗a ⊆ Rab∗.

Theorem 3.9. Let a, b ∈ R#© with Rb∗a ⊆ Rab∗. Then the following are equivalent:
(i) ab ∈ R#© and (ab)#© = b#©a#©;
(ii) ab ∈ R#, abR ⊆ baR, b#©aR ⊆ abR, and aa#©bb#© = bb#©aa#©;
(iii) ab, abb#© ∈ R#© with (abb#©)#© = bb#©a#© and (ab)#© = b#©(abb#©)#©.
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Proof. (i) ⇒ (ii) Obviously, ab ∈ R#. From (ab)#© = b#©a#© and Lemma 3.6, it follows that
abR ⊆ baR. The equality b#©a = b#©a#©a2 = ab((ab)#©)2a2 implies b#©aR ⊆ abR.

Next, our aim is to prove aa#©bb#© = bb#©aa#©. The assumption Rb∗a ⊆ Rab∗ guarantees
b∗a = w1ab

∗ for some w1 ∈ R. Then, we have

b∗a = w1a(bb#©b)∗ = w1ab
∗bb#© = b∗abb#©.

Note that ab = bb#©ab by Lemma 3.6(i), we obtain

abb#©a#© = bb#©abb#©a#© = (bb#©)∗abb#©a#© = (b#©)∗(b∗abb#©)a#©

= (b#©)∗b∗aa#© = bb#©aa#©.

Therefore, the following equalities hold:

abb#©a#© = (abb#©a#©)∗ = (bb#©aa#©)∗ = aa#©bb#©.

So, we have aa#©bb#© = bb#©aa#©.
(ii) ⇒ (i) Since abR ⊆ baR, there exists w2 ∈ R such that ab = baw2. Therefore, we

obtain ab = bb#©(baw2) = bb#©ab. Then, the equality abb#©a#© = bb#©aa#© can be obtained in a
similar way as in the proof of (i) ⇒ (ii). Hence, we deduce that

(b#©a#©)∗(ab)∗ab = (abb#©a#©)∗ab = (bb#©aa#©)∗ab = aa#©bb#©ab
= bb#©aa#©ab = bb#©ab = ab,

which implies b#©a#© ∈ ab{1, 3} by Lemma 2.4.
From b#©aR ⊆ abR, we know that b#©a = abw3 for some w3 ∈ R. Then, we obtain

b#©a#© = b#©a(a#©)2 = abw3(a
#©)2, which gives that b#©a#©R ⊆ abR. Hence, ab ∈ R#© with

(ab)#© = b#©a#© by Theorem 3.1.
(i)⇒ (iii) According to the condition (i) and Lemma 3.6 (iv), we get bb#©a#© ∈ abb#©{3, 6}.

In addition, from the proof of (i) ⇒ (ii), we see that abb#©a#© = bb#©aa#© = aa#©bb#©. Then, we
obtain

abb#©(bb#©a#©)2 = (abb#©a#©)bb#©a#© = aa#©bb#©bb#©a#© = aa#©bb#©a#©

= bb#©aa#©a#© = bb#©a#©.

By Lemma 2.1, it follows that abb#© ∈ R#© and (abb#©)#© = bb#©a#©. Then, it is easy to see that
(ab)#© = b#©(bb#©a#©) = b#©(abb#©)#©.

(iii) ⇒ (i) Suppose that (abb#©)#© = bb#©a#© and (ab)#© = b#©(abb#©)#©. Then, we deduce

(ab)#© = b#©(abb#©)#© = b#©bb#©a#© = b#©a#©.

Remark 3.10. (1) Note that Corollary 3.3 can also be obtained by Theorem 3.9. Indeed, we
have ab#© = b#©a, ba#© = a#©b, and a#©b#© = b#©a#© by Lemma 2.5. Then, aa#©bb#© = bb#©aa#© and
b#©a = ab#© = ab(b#©)2, which gives b#©aR ⊆ abR. Hence, we have ab ∈ R#© and (ab)#© = b#©a#©

by Theorem 3.9.
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(2) In general, any item of (i)−(iii) in Theorem 3.9 does not imply Rb∗a ⊆ Rab∗. For
example, let Z2 be the ring of integers modulo 2, take R = M2(Z2) with the transpose of
matrices as involution. Setting a = b = [ 1 1

0 0 ] ∈ R. Then a2 = a, which implies that
a ∈ R# with a# = a. Note that a = [ 1 0

0 0 ] a∗a ∈ Ra∗a, then a ∈ R{1,3}. Hence, a ∈ R#©

with a#© = [ 1 0
0 0 ]. Then, it is easy to check that such a and b satisfy any item of (i)−(iii) in

Theorem 3.9. However, ab∗ = 0 and b∗a 6= 0, so Rb∗a " Rab∗.
(3) If we replace Rb∗a ⊆ Rab∗ with ba = a2 in Theorem 3.9 then the items (i),(ii), and

(iii) hold. Indeed, by Theorem 3.7 and Lemma 3.6, we only need to show that b#©aR ⊆ abR
and aa#©bb#© = bb#©aa#©. Since (ab)#© = b#©a#© by Theorem 3.7, then b#©aR = (b#©a#©)a2R =
(ab)#©a2R = ab((ab)#©)2a2R ⊆ abR. In addition, from the proof of Theorem 3.7, we see that
a#© = b#©ba#© and aa#© = ba#©, which gives b(b#©aa#©) = ba#© = aa#© is Hermitian. Thus, we
get bb#©aa#© = (bb#©aa#©)∗ = (aa#©)∗(bb#©)∗ = aa#©bb#©.

Next, we continue to consider the one-sided reverse law for the core inverse under certain
conditions.

Theorem 3.11. Let a, b ∈ R#© with Rb ⊆ Rab (or aR ⊆ abR). If a is EP, then the following
are equivalent:

(i) ab ∈ R#© and (ab)#© = b#©a#©;
(ii) (a#©)∗b ∈ R#© and ((a#©)∗b)#© = b#©a∗.

Proof. (i) ⇒ (ii) Since (ab)#© = b#©a#©, the we have that

(a#©)∗bb#©a∗ = (a#©)∗(bb#©)∗a∗ = (abb#©a#©)∗ = abb#©a#©

is Hermitian, i.e., b#©a∗ ∈ (a#©)∗b{3}.
Note that a is EP, then a#©a = aa#© is Hermitian by Lemma 2.7. So, a∗ = (a(a#©a))∗ =

a#©aa∗. Thus, we have

(a#©)∗b(b#©a∗)2 = ((a#©)∗(bb#©)∗a∗)b#©a∗ = (abb#©a#©)b#©a∗

= (abb#©a#©b#©a#©)aa∗ = b#©a#©aa∗ = b#©a∗.

If Rb ⊆ Rab, then b = xab for some x ∈ R. Therefore, we can deduce that

b#©a∗((a#©)∗b)2 = b#©a∗(a#©)∗b(a#©)∗b = b#©(a#©a)∗b(a#©)∗b
= b#©a#©ab(a#©)∗(bb#©)∗b = b#©a#©ab(bb#©a#©)∗b
= b#©a#©ab(xabb#©a#©)∗b = (b#©a#©abab)b#©a#©x∗b
= abb#©a#©x∗b = (abb#©a#©)∗x∗b
= (xabb#©a#©)∗b = (bb#©a#©)∗b
= (a#©)∗(bb#©)∗b = (a#©)∗b.

If aR ⊆ abR, then a = aby for some y ∈ R. Thus, we get

b#©a∗((a#©)∗b)2 = b#©a#©ab(a#©)∗b = b#©a#©ab(a#©aa#©)∗b
= b#©a#©abaa#©(a#©)∗b = (b#©a#©abab)ya#©(a#©)∗b
= abya#©(a#©)∗b = aa#©(a#©)∗b = (a#©)∗b.
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Finally, from Lemma 2.1, it follows that (a#©)∗b ∈ R#© and ((a#©)∗b)#© = b#©a∗.
(ii) ⇒ (i) By Lemma 2.7, we have a# = a#©. Let c = (a#©)∗, then c = (a#)∗ = (a∗)#,

which implies that a∗ = c#. Note that c is EP. Thus, a∗ = c#©. According to the condition
(ii), we obtain that cb ∈ R#© and (cb)#© = b#©c#©.

If Rb ⊆ Rab, then Rb ⊆ Rab = Raa#©ab = Ra(a#©a)∗b = Raa∗(a#©)∗b ⊆ R(a#©)∗b = Rcb.
If aR ⊆ abR, then a = aby for some y ∈ R. Since ((a#©)∗b)#© = b#©a∗, then b#©a∗R =

(a#©)∗bR, which yields (a#©)∗b = b#©a∗z for some z ∈ R. Note that a∗ = a#©aa∗. Then, we
obtain

(a#©)∗ = (aa#©a#©)∗ = (a#©)∗(a#©)∗a∗ = (a#©)∗(a#©)∗a#©aa∗

= (a#©)∗(a#©)∗a#©abya∗ = (a#©)∗((a#©)∗(a#©a)∗)bya∗

= (a#©)∗((a#©)∗b)ya∗ = (a#©)∗b#©a∗zya∗

= (a#©)∗b(b#©)2a∗zya∗,

which gives (a#©)∗R ⊆ (a#©)∗bR, i.e., cR ⊆ cbR.
Now, replacing a with c in the proof of (i) ⇒ (ii), we can obtain that (i) holds.

If we replace the assumption Rb ⊆ Rab (or aR ⊆ abR) of Theorem 3.11 by Rb ⊆ Rab and
aR ⊆ abR, then we obtain the following result.

Theorem 3.12. Let a, b ∈ R#© with Rb ⊆ Rab and aR ⊆ abR. If a is EP, then the following
are equivalent:

(i) ab ∈ R#© and (ab)#© = b#©a#©;
(ii) ab, abb#© ∈ R#© with (ab)#© = b#©(abb#©)#© and (abb#©)#© = bb#©a#©.

Proof. (i)⇒ (ii) In order to prove (abb#©)#© = bb#©a#©, it suffices to prove that abb#©(bb#©a#©)2 =
bb#©a#© by Lemma 2.6 (iv).

Since Rb ⊆ Rab and aR ⊆ abR, there exist t1, t2 such that b = t1ab and a = abt2. Note
that ab = bb#©ab and aa#© = a#©a. Thus, we get

abb#©(bb#©a#©)2 = abb#©a#©bb#©a#© = bb#©abb#©a#©aa#©bb#©a#©.
= bb#©(abb#©a#©ab)t2a

#©bb#©a#© = t1abb
#©(abt2)a

#©bb#©a#©

= t1abb
#©aa#©bb#©a#© = t1(abb

#©a#©ab)b#©a#©

= (t1ab)b
#©a#© = bb#©a#©.

(ii) ⇒ (i) It is obvious.

Now, necessary and sufficient conditions of the two-sided reverse laws for the core inverse
are stated as follows.

Theorem 3.13. Let a, b ∈ R#©. Then the following are equivalent:
(i) ab, ba ∈ R#© with (ab)#© = b#©a#©, (ba)#© = a#©b#©;
(ii) abb#©, baa#© ∈ R#© with (abb#©)#© = bb#©a#©, (baa#©)#© = aa#©b#©, abR = (ab)2R, and

baR = (ba)2R.
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Proof. (i) ⇒ (ii) Obviously, abR = (ab)2R and baR = (ba)2R. By symmetry, we only need
to prove abb#© ∈ R#© with (abb#©)#© = bb#©a#©. Note that bb#©a#© ∈ abb#©{3, 6}. Applying the
hypothesis (ba)#© = a#©b#© and Lemma 3.6(ii), we have baR = abR, i.e., ba = abu for some
u ∈ R. Then,

abb#©(bb#©a#©)2 = abb#©a#©bb#©a#© = ab(ab)#©b(ab)#© = ab(ab)#©bab((ab)#©)2

= (ab(ab)#©ab)ub((ab)#©)2 = abub((ab)#©)2 = bab((ab)#©)2

= b(ab)#© = bb#©a#©.

Using Lemma 2.1, we get abb#© ∈ R#© with (abb#©)#© = bb#©a#©.
(ii) ⇒ (i) Since (abb#©)#© = bb#©a#©, we claim that

b#©a#©abb#©a#© = b#©(bb#©a#©abb#©bb#©a#©) = b#©bb#©a#© = b#©a#©

and
abb#©a#© = abb#©bb#©a#© = abb#©(abb#©)#©,

which imply b#©a#© ∈ ab{2, 3}. In addition, observe that

abb#© = bb#©a#©(abb#©)2 = b#©b(bb#©a#©(abb#©)2) = b#©babb#©.

Multiplying the previous equality by b from the right side, we get ab = b#©bab. Symmetrically,
ba = a#©aba. Hence, we have ab = b#©(ba)b = b#©a#©(ab)2, which gives abR ⊆ b#©a#©R and
Rab = R(ab)2. Note that abR = (ab)2R, then ab ∈ R# by Lemma 2.3. Finally, from
Theorem 3.1, it follows that ab ∈ R#© with (ab)#© = b#©a#©. The statement for ba can be
obtained by symmetry.

Recall that a ring R (with unit 1) is a Dedekind-finite ring if ab = 1 is sufficient for
ba = 1. Let p = q = 1 ∈ R in [27, Theorem 1]. Then we can see the fact: If a ∈ R is regular,
a− ∈ a{1}, then u = a2a− + 1 − aa− is right (resp. left) invertible if and only if aR = a2R
(resp. Ra = Ra2). Form the previous fact, it immediately yields that aR = a2R if and only if
Ra = Ra2, where R is a Dedekind-finite ring, and a is regular in R. Thus, by Theorem 3.13,
we get

Corollary 3.14. Let R be a Dedekind-finite ring and a, b ∈ R#©. Then the following are
equivalent:

(i) ab, ba ∈ R#© with (ab)#© = b#©a#©, (ba)#© = a#©b#©;
(ii) abb#©, baa#© ∈ R#© with (abb#©)#© = bb#©a#©, (baa#©)#© = aa#©b#©.

Proof. According to the proof of Theorem 3.13, we only need to prove that ab and ba are
regular. Suppose that (abb#©)#© = bb#©a#©, then we have

abb#© = bb#©a#©(abb#©)2 = bb#©(bb#©a#©(abb#©)2) = bb#©abb#©,

which yields

ab = (abb#©)b = bb#©abb#©b = bb#©ab = (bb#©a#©)a2b = abb#©(bb#©a#©)2aab.

Therefore, ab is regular. Similarly, by the condition (baa#©)#© = aa#©b#©, we can obtain that
ba is regular.
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4 Mixed-type Reverse Order Laws

In this section, we will consider necessary and sufficient conditions for the mixed-type reverse
laws: (ab)# = b#©(abb#©)#©, a#© = b(ab)# and (ab)# = b#©a#© to hold in rings.

Theorem 4.1. Let b ∈ R#©, abb#© ∈ R#©. Then the following are equivalent:
(i) ab ∈ R#© and (ab)#© = (ab)# = b#©(abb#©)#©;
(ii) b#©(abb#©)#© ∈ ab{5};
(iii) b#©bab = ab = bb#©ab and ba(abb#©)#© = (abb#©)#©ab;
(iv) ab ∈ R# and (abb#©)#© = b(ab)#.

Proof. (i) ⇒ (ii) It is obvious.
(ii) ⇒ (iii) Note that abb#©(abb#©)#©ab = (abb#©(abb#©)#©abb#©)b = abb#©b = ab. Also, since

b#©(abb#©)#© ∈ ab{5}, we have ab = b#©(abb#©)#©(ab)2. From the previous equality, we get

ab = bb#©(b#©(abb#©)#©(ab)2) = bb#©ab

and
ab = b#©b(b#©(abb#©)#©(ab)2) = b#©bab.

Thus, we obtain abb#© = bb#©abb#©. From the definition of the core inverse, it follows that
(abb#©)#©R = abb#©R, i.e., (abb#©)#© = abb#©u for some u ∈ R. Hence, we deduce

(abb#©)#© = bb#©abb#©u = bb#©(abb#©)#©.

Thus, the following equations hold:

ba(abb#©)#© = babb#©(abb#©)#© = bb#©(abb#©)#©ab = (abb#©)#©ab.

(iii) ⇒ (iv) Clearly, b#©(abb#©)#© ∈ ab{1, 2}.
Now, we prove b#©(abb#©)#© ∈ ab{5}. Since ab = bb#©ab, from the proof of (ii) ⇒ (iii), we

can get (abb#©)#© = bb#©(abb#©)#©. Then,

(ab)b#©(abb#©)#© = b#©babb#©(abb#©)#© = b#©ba(abb#©)#© = b#©(abb#©)#©(ab),

which implies that (ab)# = b#©(abb#©)#©. Thus, we get

(abb#©)#© = abb#©((abb#©)#©)2 = bb#©abb#©((abb#©)#©)2 = bb#©(abb#©)#© = b(ab)#.

(iv) ⇒ (i) Since (abb#©)#© = b(ab)#, we have

ab = abb#©b = (abb#©)#©(abb#©)2b = b(ab)#(abb#©)2b
= b#©bb(ab)#(abb#©)2b = b#©b(abb#©)#©(abb#©)2b
= b#©babb#©b = b#©bab.

Then, we get

(ab)# = ab((ab)#)2 = b#©bab((ab)#)2 = b#©b(ab)# = b#©(abb#©)#©.
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Our next aim is to prove (ab)#© = b#©(abb#©)#©. Obviously, b#©(abb#©)#© ∈ ab{3}. Note that

b#©(abb#©)#©(ab)2 = (ab)#(ab)2 = ab

and
ab(b#©(abb#©)#©)2 = ab((ab)#)2 = (ab)# = b#©(abb#©)#©,

which imply ab ∈ R#© and (ab)#© = b#©(abb#©)#© by Lemma 2.1.

Remark 4.2. Any item of (i)−(iv) in Theorem 4.1 can imply that ab is EP. Indeed, this can
be obtained by Lemma 2.7.

Next, characterizations for the equality a#© = b(ab)# are presented. In particular, we will
see that such equivalent conditions also ensure that ab is EP.

Theorem 4.3. Let a, b ∈ R#©, ab ∈ R#. Then the following are equivalent:
(i) a#© = b(ab)#;
(ii) a#©ab = baa#© and aR ⊆ abR;
(iii) ab ∈ R#© with (ab)# = (ab)#© = b#©a#©, and aR ⊆ bR;
(iv) abb#© ∈ R#© with (abb#©)#© = bb#©a#©, (ab)# = b#©(abb#©)#©, and aR ⊆ bR;
(v) abb#© ∈ R#© with (abb#©)#© = bb#©a#© = b(ab)#, and aR ⊆ bR.

Proof. (i) ⇒ (ii) Suppose that a#© = b(ab)#, then

a#©ab = b(ab)#ab = ba(b(ab)#) = baa#©.

Also, we have a = aa#©a = ab(ab)#a, which implies aR ⊆ abR.
(ii) ⇒ (iii) There exists r1 ∈ R such that a = abr1, since aR ⊆ abR. Then

a = a#©a2 = (a#©ab)r1a = baa#©r1a.

Let r2 = aa#©r1a. Then, a = br2, which gives aR ⊆ bR.
Since

b#©(a#©ab) = b#©baa#© = b#©bbr2a
#© = br2a

#© = aa#©

and
abb#©a#© = abb#©a(a#©)2 = abb#©br2(a

#©)2 = abr2(a
#©)2 = a2(a#©)2 = aa#©,

we have b#©a#© ∈ ab{3, 5}.
Note that (abb#©a#©)ab = aa#©ab = ab and b#©a#©(abb#©a#©) = b#©a#©aa#© = b#©a#©, which

gives b#©a#© ∈ ab{1, 2}. Hence, ab ∈ R# with (ab)# = b#©a#©. In addition, it is easy to see that
(ab)#© = b#©a#©. In fact,

b#©a#©(ab)2 = (ab)#(ab)2 = ab and ab(b#©a#©)2 = ab((ab)#)2 = (ab)# = b#©a#©.
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(iii) ⇒ (i) Obviously, b(ab)# ∈ a{2, 3}. Observe that a = br3 for some r3 ∈ R. Then, we
have

a = a(a#©)2a2 = br3(a
#©)2a2 = bb#©br3(a

#©)2a2 = bb#©a(a#©)2a2

= bb#©a#©a2 = b(ab)#a2,

which implies that aR ⊆ b(ab)#R. Therefore, a ∈ R#© and a#© = b(ab)# by Theorem 3.1.
(iii) ⇒ (iv) Since a = br4 for some r4 ∈ R, we get

bb#©a#© = bb#©a(a#©)2 = bb#©br4(a
#©)2 = br4(a

#©)2 = a(a#©)2 = a#©.

Therefore, we only need to prove abb#© ∈ R#© with (abb#©)#© = a#©. From a(bb#©a#©) = aa#©, it
follows that a#© ∈ abb#©{3}. Also, we have

abb#©(a#©)2 = (abb#©a#©)a#© = aa#©a#© = a#©

and
a#©(abb#©)2 = a#©(abb#©a#©)a2bb#© = a#©aa#©a2bb#© = abb#©.

Hence, we have (abb#©)#© = a#© by Lemma 2.1. Then, it is easy to see that (ab)# = b#©(abb#©)#©.
(iv) ⇒ (v) It is obvious.
(v) ⇒ (i) From the proof of (iii) ⇒ (iv), we know a#© = bb#©a#©, which gives a#© =

b(ab)#.

The next theorem gives the result related to a#© = b(ab)#©.

Theorem 4.4. Let a ∈ R#, ab ∈ R#©. Then the following are equivalent:
(i) a ∈ R#© and a#© = b(ab)#©;
(ii) aR ⊆ babR.

Proof. (i) ⇒ (ii) Suppose that a#© = b(ab)#©. Then, we have

a = a#©a2 = b(ab)#©a2 = bab((ab)#©)2a2,

which implies that aR ⊆ babR.
(ii) ⇒ (i) Since aR ⊆ babR, there exists w ∈ R such that a = babw. Then, we obtain

a = b(ab)#©(ab)2w, which gives aR ⊆ b(ab)#©R. In addition, it is easy to verify b(ab)#© ∈ a{2, 3}.
Hence, by Theorem 3.1, it follows that a ∈ R#© with a#© = b(ab)#©.

Finally, we characterize the mixed-type reverse order laws (ab)# = b#©a#© and (ba)# =
a#©b#© by the following necessary and sufficient conditions.

Theorem 4.5. Let a, b ∈ R#©. Then the following are equivalent:
(i) ab, ba ∈ R# with (ab)# = b#©a#©, (ba)# = a#©b#©;
(ii) a#©ab = baa#©, b#©ba = abb#©, and aa#©b#© = b#©a#©a.

15



Proof. (i) ⇒ (ii) Since (ab)# = b#©a#©, we have

ab = b#©a#©(ab)2 = b#©b(b#©a#©(ab)2) = b#©bab

and
ab = (ab)2b#©a#© = ((ab)2b#©a#©)aa#© = abaa#©.

Similarly, from (ba)# = a#©b#©, it follows that ba = a#©aba = babb#©. Hence,

a#©ab = (a#©aba)a#© = baa#© and b#©ba = (b#©bab)b#© = abb#©.

Since ab, ba ∈ R#, from Lemma 2.6, it follows that a(ba)# = ab((ab)#)2a = (ab)#a, which
immediately yields aa#©b#© = b#©a#©a.

(ii) ⇒ (i) By the hypotheses, we deduce

abb#©(a#©ab) = abb#©baa#© = a(baa#©) = aa#©ab = ab,

(b#©a#©a)bb#©a#© = aa#©b#©bb#©a#© = (aa#©b#©)a#© = b#©a#©aa#© = b#©a#©

and
b#©(a#©ab) = (b#©ba)a#© = abb#©a#©,

which imply b#©a#© ∈ ab{1, 2, 5}, i.e., (ab)# = b#©a#©. Similarly, we can obtain (ba)#© =
a#©b#©.
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[24] D. Mosić, D.S. Djordjević, The reverse order law (ab)# = b†(a†abb†)†a† in rings with
involution, Revista de la Real Academia de Ciencias Exactas, F́ısicas y Naturales. Serie
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